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Dedication

This book is dedicated to the memory of Professor Angelo Marcello Anile (1948–
2007). Worldwide known mathematician, genial scientist, professor dedicated to
the creation and spreading of knowledge, gifted with exceptional human qualities,
and highest moral. He produced original results in several fields, among which
relativistic astrophysics and cosmology, relativistic thermodynamics, mathemat-
ical modeling of semiconductors, wave propagation, fuzzy logic, optimization,
industrial mathematics. Leader in scientific research, he founded a school of
Mathematical Physics with several students. Contributed to support research also
with national and international projects, and various forms of contracts. Helped find
job opportunities for many young people. Active member of ECMI, created and
strengthened relationship between University and Industry in Italy and abroad.
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Preface

This volume presents a snapshot of current activities in industrial mathematics in
Europe and will be highly relevant for anyone interested in the latest applications
of mathematics to industrial problems. It features papers based on contributions
to the 18th conference of ECMI, the European Consortium for Mathematics in
Industry. The biannual conference has established itself as a jour fixe for researchers
interested in the applications of mathematical and computational methods to
relevant problems in many different areas of social and economic importance. It
brings together applied mathematicians and experts from industry, offering them a
unique opportunity to exchange ideas, problems, and methodologies and bridging
the gap between mathematics and industry to further the advancement of science
and technology.

The conference focused on various aspects of industrial and applied mathematics,
such as aerospace, information and communication, energy, imaging, medicine and
biotechnology, finance, and education.

The event continued for five full days. In addition to the nine plenary speakers,
the conference hosted 56 mini-symposia, each of which consisted of one or more
2-h sessions. Six parallel sessions were held at the same time, allowing roughly
three hundred and fifty speakers to present the results of their research. A 2-h poster
session was also held, offering participants an alternate form of presentation. The
participation of young researchers was encouraged by a reduced fee with respect to
previous years.

Several topics were discussed at the conference. Specifically, five main topics
were addressed by the nine plenary speakers and discussed in several mini-
symposia: the life sciences, material science and semiconductors, the environment,
design automation, and finance.

Several other interesting mini-symposia on different fields of industrial math-
ematics enriched the program. A complete list can be found on the conference
website.1

1http://www.taosciences.it/ecmi2014/.
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viii Preface

The conference also included an extended mini-symposium organized by EU-
Maths-In (European Network of Mathematics for Industry and Innovation),2 a
recent joint initiative of ECMI and EMS (the European Mathematical Society). In
keeping with tradition, this year several prizes and awards were announced during
the conference.

Alan Tayler Lecture—This lecture was set up by the ECMI Council to honor
Alan Tayler, who passed away on January 28, 1995. Alan was one of the founding
members of ECMI and served as its third president in 1989. The Alan Tayler Lecture
has been a key feature of the biannual ECMI conferences since 1996 and was
delivered this year by Sylvie Méléard.3

Anile-ECMI Prize for Mathematics in Industry4—This prize is cosponsored by
the Associazione Angelo Marcello Anile and ECMI. The prize was established in
memory of Angelo Marcello Anile, a brilliant astrophysicist and applied mathemati-
cian and a highly active member of ECMI; it is awarded to a young researcher for
an excellent PhD thesis in industrial mathematics. This year it has been awarded
to Dr. Paolo Pintus, from Scuola Superiore Sant’Anna of Pisa, in recognition of
the excellent results achieved in his PhD thesis “Design of silicon based integrated
optical devices using the finite element method.”

Hansjörg Wacker Memorial Prize—This prize is cosponsored by ECMI and
RICAM (the Johann Radon Institute for Computational and Applied Mathematics5)
at the Austrian Academy of Sciences (ÖAW). This year it was awarded to Kishan
Patel, who completed his MSc in scientific computing and mathematical modeling
at the University of Oxford in 2012.

ECMI Honorary Membership—It is a tradition that ECMI, during its biannual
conference, offers an honorary lifetime membership to a scientist of the hosting
country, in recognition of his or her important contributions to Mathematics in
Industry. This year the honorary membership was awarded to Professor Alfio Quar-
teroni,6 in recognition of his important contributions to Mathematics in Industry.

With over four hundred participants, this year was one of the most successful
ECMI conferences to date. The number of authors involved in the organization of the
mini-symposia and preparation of abstracts and short papers totaled more than 800
people from 41 different countries. The authors came mainly, but not exclusively,
from Europe, with the largest group from Germany (167), followed by Italy (152),
Spain (79), the UK (69), and France (65).

Given the large variety of subjects, it has been difficult to classify the contri-
butions into broader topics. Therefore, we decided to merely draw a distinction
between short papers related to talks at the mini-symposia (chapter “MS 1 Min-
isymposium: Advanced Imaging for Industrial Application”), and short papers from

2http://www.eu-maths-in.eu.
3http://www.cmap.polytechnique.fr/spip.php?rubrique61.
4http://asso-ama.dmi.unict.it/en.
5http://www.ricam.oeaw.ac.at/.
6http://http://cmcs.epfl.ch/people/quarteroni.

http://www.eu-maths-in.eu
http://www.cmap.polytechnique.fr/spip.php?rubrique61
http://asso-ama.dmi.unict.it/en
http://www.ricam.oeaw.ac.at/
http://http://cmcs.epfl.ch/people/quarteroni


Preface ix

the contributed sessions (chapter “A Customized System for Vehicle Tracking and
Classification”).

The mini-symposia are ordered alphabetically by title, as are the corresponding
papers.

The last chapter contains the paper related to the Anile prize lecture.
The 18th ECMI conference, managed by the organizing committee, with the

collaboration of ECMI and Tao Sciences Research Center, took place in Taormina,
Sicily, on the beautiful premises of the Hotel Villa Diodoro, conveniently located
near the Villa Comunale of Taormina and the Teatro Greco, offering a gorgeous
view of Taormina Bay.
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Keywords
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Short Description

The aim of this mini-symposium is to provide an overview of state of the art
methods for imaging applications in different industrial contexts (consumer devices,
e-health, digital signage, forensics, Cultural Heritage, etc.) to stimulate the creation
of appropriate benchmark dataset to be used as reference for the development of
novel algorithms.



A Customized System for Vehicle Tracking
and Classification

Sebastiano Battiato, Giovanni Maria Farinella, Antonino Furnari,
and Giovanni Puglisi

Abstract We present a customized system for vehicle tracking and classification.
The main purpose of the system is tracking the vehicles in order to understand
lane changes, gates transits and other behaviors useful for traffic analysis. The
classification of the vehicles into two classes (short vehicles vs. tall vehicles) is
also performed for electronic truck-tolling as well as to optimize the performances
of the tracker module. The whole system has been developed through a data driven
approach based on video sequences acquired by QFree. (Q-Free (www.q-free.com)
is a global supplier of solutions and products for Road User Charging and Advanced
Transportation Management having applications mainly within electronic toll col-
lection for road financing, congestion charging, truck-tolling, law enforcement and
parking/access control.) The sequences are acquired by wide angle cameras from
the top of the road and are preprocessed in order to obtain a normalized, low-
resolution representation of the scene where the distance between neighboring
pixels is constant in the real world. The sequences exhibit high variability in terms
of lighting changes, contrast changes and distortion. We assume that the vehicle
detection is performed by an external module for plate recognition.

Keywords Image matching • Tracking

The tracking algorithm is based on Template Matching [1, 2] and the Normalized
Cross Correlation is used as similarity measure. The vehicle template is updated
at each frame to cope with the vehicles’ changes of appearance. In order to deal
with the main variabilities, four modules are designed: a multicorrelation module to
deal with the appearance of artifacts on the vehicles; a refinement module to deal
with the change of the vehicle horizontal scale due to distortion (see Fig. 1a–c); a
background subtraction module to deal with perspective issues on tall vehicles; a
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(a) (b)

(c) (d)

Fig. 1 Some sample images from the developed system. (a), (b) Vehicle deformation. (c) Tracking
results. (d) Classification results

selective update module to avoid the propagation of a wrong template in the slow
scenes. A controller has been realized to switch on or off the modules depending on
the vehicle estimated speed and the vehicle estimated class. Two measuring methods
are defined to assess the performances of the proposed tracker with respect to other
standard tracking pipelines [3–6] in a supervised way. The performance analysis
points out that the vehicles are correctly tracked for nearly the 99% of the scene.
Fig. 1b shows some tracking results.

The classification is performed when the vehicle approaches the central part
of the scene, where the variabilities are less significant. The image patches are
extracted from the frame taking into account the estimated vehicle bounding
box. The training set is built considering the image patches extracted from the
input sequences. To make the learning procedure more robust, the training set is
augmented generating artificial patches tailored to introduce alignment, perspective,
rotation and photometric variabilities. The patches are normalized to the training
set mean patch size and the HOG (Histogram of Oriented Gradients) features are
extracted [7]. The feature vectors dimensionality is reduced through the Principal
Component Analysis (PCA) [8]. The labeled samples are then projected through
the Linear Discriminant Analysis (LDA) [9] to the most discriminant dimension.
This unidimensional feature is aggregated to the patch height in pixels, obtaining
a two-dimensional vector. A new LDA projection is hence performed on the
two-dimensional samples and the two projected populations are modeled as unidi-
mensional Gaussian distributions. In the classification step, the sample is projected
using the previously learned PCA and LDA bases. The Mahalanobis distances [10]
are computed between the projected sample and the Gaussian distributions related
to the two classes (short vs. tall vehicles). The sample is assigned to the class giving
the smallest distance. The classification performances are evaluated with the Leave
One Out strategy and the overall classification accuracy is over the 98%. Fig. 1d
shows some classification results.

This work has been performed in the project PANORAMA, co-funded by grants
from Belgium, Italy, France, the Netherlands, and the United Kingdom, and the
ENIAC Joint Undertaking.
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Iris Segmentation: A New Strategy for Real
Biometric Applications

Marco Leo, Tommaso De Marco, and Cosimo Distante

Abstract Iris segmentation is driven by three different quality factors: accuracy,
usability and speed. Unfortunately the deeply analysis of the literature shows that
the greatest efforts of the researchers mainly focus on accuracy and speed. Proposed
solutions, in fact, do not meet the usability requirement since they are based on
specific optimizations related to the operating context and they impose binding
conditions on the sensors to be used for the acquisition of periocular images. This
paper tries to fill this gap by introducing an innovative iris segmentation technique
that can be used in unconstrained environments, under non-ideal imaging conditions
and, above all, that does not require any interaction for adaptation to different
operating conditions. Experimental results, carried out on challenging databases,
demonstrate that the high usability of the proposed solution does not penalize
segmentation accuracy which, in some respects, outperforms that of the leading
approaches in the literature.

Keywords Image matching • Segmentation

1 Introduction

Human identification leads to mutual trust that is essential for the proper functioning
of society. With an increasing attention to security, biometric authentication has
grown in popularity as an alternative way to provide personal identification that
can overcome the limits of traditional authentication systems based on credentials
(documents and PIN) which may be lost, stolen, or easily forgotten [10, 11]. The
design and suitability of biometric technology for person identification depends
on the application requirements. These requirements are typically specified in
terms of identification accuracy, throughput, user acceptance, system security,
robustness, and return on investment. The next generation biometric technology
must overcome many hurdles and challenges to improve the recognition accuracy.
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These include ability to handle poor quality and incomplete data, achieve scalability
to accommodate hundreds of millions of users, ensure interoperability, and protect
user privacy while reducing system cost and enhancing system integrity. One of the
most attractive and promising biometric modalities is based on the recognition of
the iris texture that is stable and distinctive, even among identical twins (similar
to fingerprints), and extremely difficult to surgically spoof. There are now various
national identity schemes in progress that make use of iris recognition technology
and there is also a large and vibrant research community studying ways to make
it even more accurate in even larger-scale applications [1]. The fundamental
components of an iris recognition system are: image acquisition, iris segmentation,
iris feature extraction, iris template generation, iris template matching, and iris
identification. Iris segmentation includes pupillary boundary and limbic boundary
detection, and eyelids and eyelash exclusion [7] and its performances strongly affect
the accuracy of the person’s identification accuracy.

The most relevant and widely used algorithms require NIF camera to segment
the iris images [3]. The well-known integro differential operator [4] is then used to
search a circle to separate iris clearly from other parts of the imagery and remains in
use widely today in commercial applications. Another classical circle-based model
is the edge detection-based techniques [17], where the circular Hough transform
is followed by edge detection to localise iris boundary. The above algorithms
significantly decrease their accuracy if noisy iris images taken in visible wavelength
and under non-ideal imaging conditions are used as input. In these cases, some
of the factors that make the segmentation very challenging are: occlusions caused
by the anatomical features of the eye (eyelids, eyelashes,. . . ), illumination (poor
illumination, specular reflections ), user cooperation (off-angled iris, motion blur,
eye glasses or contact lenses,. . . ) [6, 13]. To address such a challenge, some efforts
have been recently made [2, 14–16]. Unfortunately, most of the above segmentation
schemes are very complex (many different sequential algorithmic steps involved),
are not parameter free and, above all, they make use of some a priori knowledge.
In other words, the experimented accuracy results on challenging datasets, are
obtained through the use of specific optimizations which reduce the usability in
real identity check applications. Starting from these considerations, this paper
aims at introducing an iris segmentation algorithm that overcomes some of the
aforementioned limitations of the state of the art methods: the core is a randomized
circle detection algorithm which uses an alternative multiple-evidence strategy to
define a valid circles set. The algorithm is iteratively applied to find limbic, pupil and
eyelid boundaries. The proposed segmentation scheme can be used in unconstrained
environments, under non-ideal imaging conditions, and above all it does not require
any interaction for adaptation to different operating conditions. This has been
widely proved by testing it on a challenging dataset containing noisy image and
by comparing its outcomes with those of the leading approaches in literature.
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2 Overview of the Proposed Approach

The proposed approach works on input iris image taken in visible wavelength. In
Fig. 1 a schematic representation of how the system works is reported.

The system takes as input a periocular image and then a randomized circle
detection algorithm (described in [5]) is firstly applied in order to find the outer
boundaries of the iris region. No constraints about the searched radius are imposed:
the algorithm searches for all possible radius and for all the possible locations of
its center. The robustness of the circle detection algorithm allows the system to
highlight the limbic boundaries among the number of possible false circular shapes
that can emerge around the eye. The radius R of the detected circular region is then
used as a reference for the following steps. Then, inside the detected iris region, the
same circle detection algorithm is applied to search the region corresponding to the
pupil boundaries. In this case the searched region is expected to have a radius in
the range ŒR

3
I 2R
3
� depending on the pupil dilation [8] and a center quite coincident

with the center of the iris region previously detected. Detected pupil area is then
removed and the next step is performed with the aim to locate the upper and lower
eyelids: this is done by dividing the image in two small rectangles from the outer
two sides of the iris. On the rectangle corresponding to the upper part of the image
the circle detection algorithm is performed to search a circular shape having radius
in the range Œ 2R

3
I 3R� whereas on the rectangle corresponding to the lower part of the

image, the circle detection algorithm, is performed to search a circular shape having
radius in the range Œ4RI 6R�. External regions (with respect to the center of the iris)
are then removed and the remaining pixels approximatively correspond to the only
iris region that can be supplied as input to the biometric identification algorithm.

Fig. 1 A schematic representation of how the proposed system works
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The strength of the proposed approach is undoubtedly the circle solver that uses
an alternative multiple-evidence strategy to define a valid circles set: maintaining
the four edge pixels approach, the circle solver adds further constraints based
on the curvature of the isophotes. Isophotes are curves connecting pixels in the
image with equal intensity, whose properties make them particularly suitable for
objects detection [9]. Preliminarily it discards edge pixels with too high or low
local isophote curvature, then the remaining pixels are classified into subsets of
adjacent pixels with the same isophotes curvature (and consequently belonging to
possible candidate circles with the same radius). This leads to three improvements
with respect classical randomized approaches: firstly, the sampling process can be
limited on each subset, so increasing probability to sample edge pixels belonging to
the same circle, secondly candidate circles with radius not compliant with the subset
under exam (false positives) can be discarded before the voting process and finally,
dependency of the results from the used edge map is reduced. For each candidate
circle, a kernel density based estimation voting process is performed: this provides
better results than simple counting of edge pixels, because inliers are automatically
defined according to the distribution of the distances between each edge pixel and
the circle center. Then, detected circles parameters are refined with an error linear
compensation algorithm, in order to provide a better fitting with the recognized
circle and the inliers. The next subsections explain in more detail the algorithms
involved in the proposed system.

3 Experimental Results

To evaluate the accuracy, usability and speed of proposed iris segmentation algo-
rithm, it has been implemented using MATLABr—R2012a software on a ASUS
N56V with Intelr CoreTM—i7 3630 QM Processor (2.54 GHz, RAM 16 GB).
Experiments were carried out on the UBIRISv1 database [12]. This database is
composed of 1877 images collected from 241 persons in two distinct sessions:
its most relevant characteristic is to incorporate images with several noise factors,
simulating less constrained image acquisition environments. This enables the strict
evaluation of the robustness of the proposed iris segmentation method. The database
consists of two sessions of image capture: in the first session the noise factors are
minimized, specially those relative to reflections, luminosity and contrast, since the
image capture framework was installed inside a dark room. In the second session
the capture place was changed in order to introduce natural luminosity factors.
This propitiates the appearance of heterogeneous images with respect to reflections,
contrast, luminosity and focus problems. Images collected at this stage simulate the
ones captured by a vision system without or with minimal active participation from
the subjects, adding several noise problems.

In Fig. 2 on the left an image of the UBIRIS dataset is shown, whereas, on the
right, the four circles, detected by sequentially applying the algorithm in [5], are
superimposed. The circle in red corresponds to the limbic boundaries (the iris), the
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Fig. 2 The four circles detected on a periocular image

Fig. 3 Segmentation results on the UBIRISv1 dataset (Session 2)

green one corresponds to the pupil boundaries, the blue one to the lower eyelid and
finally the purple one to the upper eyelid boundaries.

Figure 3 shows some periocular images of the UBIRIS dataset (session 1) and
the corresponding final segmented images.

Figure 4 shows, instead, the segmented images after applying the proposed iris
segmentation algorithm on session 2 of the UBIRISv1 database. These images are
very challenging due to the noise and the iris occlusions: in particular image in
the first row contains an eye acquired with a strong frontal light source and then
some regions are overexposed (with pixel saturation effect) whereas the image in the
second row is out of focus. Finally the image in the third row reports a semi-closed
eye. Anyway, as proved by the corresponding segmented image on the right, these
challenging conditions (that simulate acquisition in unconstrained environments)
did not affect the segmentation process.
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Fig. 4 Segmentation results on the UBIRISv1 dataset (Session 1)

Fig. 5 Some images on which the proposed approach failed

Table 1 Segmentation
accuracy

Step Time (s)

Detection of outer borders of iris 1.1

Detection of inner borders of iris 0.4

Detection of lower eyelid 0.3

Detection of upper eyelid 0.3

Overall 2.1

Anyway, the proposed algorithm fails in segmenting noisy irises when eyelids
and eyelashes obstruct big portions of the iris (more than 50 %) or when the upper
or lower eyelids cover the pupil of the iris (note that most segmentation methods
fail in these cases). Some of the images on which the proposed approach failed are
reported in Fig. 5.

Concerning the computational remarks, the whole segmentation process took an
average time about 2 s for each image of the dataset UBIRISv1 (image size 200�150
pixels). In particular the average computational time for each step involved in the
segmentation process is reported in Table 1.

As expected, the first step (search for outer boundaries of the iris) is more
computationally expensive since it can not exploit any a priori knowledge about the
position and the size of the searched circle. The following steps instead, using the
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position and radius information of the iris extracted in the step 1, are faster although
they are based on the same iterative algorithm. In practice they exploit the available
information to optimize the selection of initial points used to fit the searched circle
and thus allowing a fast convergence to the optimal solution.

4 Conclusion

This paper introduced an innovative iris segmentation technique that can be used
in unconstrained environments, under non-ideal imaging conditions, and above all
that does not require any interaction for adaptation to different operating conditions.
Experimental results, carried out on a challenging database, demonstrated that the
high usability of the proposed solution does not penalize segmentation accuracy
which, in terms of capability to extract the inner (pupillarity) and outer borders
(limbic) of the iris, outperforms that of the leading approach in the literature. Future
work will address the test of the system on different datasets and the implementation
in an intermediate level language in order to speed up the calculation.
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Web Scraping of Online Newspapers via Image
Matching

D. Moltisanti, G.M. Farinella, S. Battiato, and G. Giuffrida

Abstract Reading is an activity which takes place widely on the web: almost all
newspapers have his own digital version on the internet and there are even a lot of
magazines only on the web. In such a scenario, Computer Vision can offer a useful
set of tools that can help web editors to improve the quality of the provided service.
One of these tools is here presented: given a webpage of a newspaper or journal,
the proposed framework localizes news items remotely clicked by users, giving the
bounding box of the content of an article in its relative homepage. The tool is hence
able to track an article in the page in which is contained at any time during the day:
such an information is very useful for web editors to understand the trend of the
published items and to rearrange the contents of the homepage accordingly.

Keywords Computer vision • Image matching

1 Introduction

The system has been developed with an hybrid approach: first we manipulate the
HTML source of the homepage in order to generate a visual template (a HTML
page) for the news item we want to localize. Thereafter we take the screenshot of
such template in order to obtain an image to be used for the localization of the
article, which is done via Keypoint and Template Matching.

The results depend on the layout of the websites and on the manner they
arrange the contents in the homepage. Our tests show that good performances can
be reached, giving also an interesting analysis and comparison among different
keypoint descriptors.
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Fig. 1 General workflow of the localization system

2 Proposed Work

Given a web page, first we take its screenshot in order to have the image version of
the HTML page for further operations; once we have done so, the pipeline for the
article localization is used. The work flow of the system is synthetically sketched in
Fig. 1.

2.1 Web Item Template Generation

The most delicate and important phase of the whole system is the generation of
a HTML page containing only the sought web item which contains the news we
want to localize. We call such HTML page “web item template”, as it represents the
item we are looking for in the parent page. In order to succeed with the following
step of template (or keypoint) matching, it is crucial to have a template which is
consistent with the layout of the web item: we can localize web items in their parent
web pages only if the generated templates are arranged in the same manner of the
original page from which are extracted. We use the JSoup Library1 to produce web
item templates. To generate the template of an article given its URL, the system
seeks the item in the parent page and, for each element pointing to such URL, it
runs a cleaning procedure which generates the corresponding template by removing
from the page everything except the item to localize.

1Hedley, J.: Jsoup java html parser. http://jsoup.org.

http://jsoup.org
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(a) (b)

(c)

Fig. 2 Web item template cut. Since FAST keypoints are localized only upon non blank zones, we
can remove void areas in order to have a tight-fitting picture representing the web item. (a) Web
item template. (b) Web item template with keypoints. (c) Web item template after the cut

2.2 Web Item Template Screenshot

Once we have generated the web item we take its screenshot, as we did at the
beginning with the main web page we are working on.

By taking the screenshot of the HTML page we obtain the image version of the
HTML document and we can then extract the keypoints of such image using the
OpenCV Library.2 Since the images we have to deal with are all synthetics (no
skew or rotation problems), and given that the images of the web item templates are
almost blank pictures mainly composed of text, we decided to use the Fast Corner
Detector [7]. This detector fits well for our purpose because the extracted keypoints
in the screenshot image are localized only over text and pictures, excluding layout
lines and uniform zones (i.e. the background of the page).

2.2.1 Keypoint Extraction

The extraction of the keypoints of the template images has two aims: the generation
of the set of keypoints of the web item, to be used for keypoint matching; the cutting
of the screenshot image, in the case of the template matching localization method.

Taking the screenshot of a web item template HTML page we obtain a mostly
blank image with some content in it (our web item); if we want to localize the item
via template matching, we need an image containing only the content of the item. To
obtain a tight-fitting template image we cut conveniently the image, by selecting the
region where the keypoints are concentrated and discarding remaining areas. Zones
which contain only sparse keypoints are removed too. In Fig. 2 we can observe an
example of a web item image cut. In Fig. 3 we have the keypoints extracted for the
headline web item of the Italian newspaper “La Repubblica” (www.repubblica.it).

2Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000).

www.repubblica.it
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Fig. 3 FAST keypoint extracted for the headline web item template

2.3 Localizing the Web Item

The last step of our flow is the image-based localization phase. We provide two
methods: keypoints based matching and template matching.

The general task performed by the two methods is the following: we have an
image I, representing our main web page we are working on, and an image T
representing our web item template, extracted from the main page. We know that
T is contained in I, and we want to know the position of T in I. Both methods do the
same thing, but differ from how they do that. Both provide the bounding box of the
sought web item (the coordinates of the top left corner, the width and the height),
giving hence the location of the item relative to the page in which is contained.

2.3.1 Template Matching Method

The template matching is a method to localize a pattern T (a w � h image) in an
image I. The method compares the template T against overlapped regions of the
image I. To do so, it slides through I, compares the overlapped patches of size w � h
against T using the Normalized Correlation Coefficient (NCC) method and stores
the comparison results. The NCC method compares two images as follows:

R.x; y/ D
P

x0;y0 .T 0.x0; y0/ � I0.x C x0; y C y0//
qP

x0;y0 T 0.x0; y0/2 �Px0;y0 I0.x C x0; y C y0/2
(1)

where

T 0.x0; y0/ D T.x0; y0/ � 1

w � h
�
X

x00;y00

T.x00; y00/ (2)

I0.x C x0; y C y0/ D I.x C x0; y C y0/ � 1

w � h
�
X

x00;y00

I.x C x00; y C y00/
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R.x; y/ is the result of the comparison calculated in I.x : : : x C w; y : : : y C h/; the
summation is done over the template and the image patch: x0 D 0; : : : ;w � 1; y0 D
0; : : : ; h � 1.

The point .x; y/ where R reaches its maximum is the location of the top left
corner of the template T inside the image I, and therefore the position of our web
item relative to the web page in which is contained.

2.3.2 Keypoints Matching

To localize a pattern T in an image I, we first need the keypoints of both images.
As described formerly, at this point of the work flow we already hold the keypoints
of the main web page, extracted at system start time, and the keypoints of the web
item template, extracted during the screenshot phase.

To localize T in I we use the FLANN (Fast Library for Approximate Nearest
Neighbors) library [6] implemented in OpenCV.

We provide four descriptors for the matching: SIFT [5], SURF [1], BRIEF [2],
BRISK [4]. Our tests (see Sect. 3) prove that SIFT descriptor is the one which best
performs the correct bounding box extraction of the web items.

Once we have got the correspondences between the keypoints sets, we are able
to obtain the location in which the matching takes place. The keypoints matching
method is the default localizing method of the system, because it is much faster
than the template matching method. This is due to the fact that the dimension of the
pattern is much smaller than the one of the template matching method, as we have
to deal only with a subset of points (the keypoints) of the template image, instead of
the whole set of points (namely each pixel) of the image.

In Fig. 4 we can observe the localization of a news item via keypoint matching.

3 Experimental Results

In this section we report some of the results of the experimental tests we executed
on several online newspapers. For each test, we compare the localization results
obtained via template matching against those obtained via keypoint matching using
the four aforementioned descriptors: SIFT, SURF, BRIEF, BRISK. We have then a
total of five localization method.

The ground truth of each test is provided by a Javascript algorithm which, given
in input the URL of a web item, returns its bounding box by analysing the HTML
source code.

The test of a website has been developed as follows:

1. Extraction of all of the news item in the web page;
2. Generation of the bounding box Bgt.a/ (the box provided by the ground truth)

for each web item a;
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Fig. 4 Keypoint matching localization. The coloured lines track the correspondences between the
keypoints, represented with thin circles. The green rectangle represents the bounding box of the
news item

3. For each localization method Lm, generation of the bounding box Bm.a/ for each
web item a;

4. Comparison of the boxes Bgt.a/ with the corresponding boxes Bm.a/.

The bounding boxes are compared using a rectangles overlap measure proposed
in [3], which is defined as follows:

p
�

Bgt.a/;Bm.a/
�

D
area

�
Bgt.a/\ Bm.a/

�

area
�

Bgt.a/[ Bm.a/
� (3)

Where the range of p values is Œ0 : : : 1�. We use the p value to determine if a
box obtained with our system is a hit or a miss: if p is greater or equal to 0:10, the
overlapping area of the ground truth box with the area of the test rectangle is large
enough to state that the test box is located on the correct region of the page. We have
a hit also when Bgt.a/ contains entirely the box Bm.a/, regardless of the value of p.

The definition of hit and miss is eventually the following:

Bm.a/ D

8
ˆ̂
<

ˆ̂
:

HIT p
�

Bgt.a/;Bm.a/
�

� 0:10

HIT Bm.a/ � Bgt.a/

MISS otherwise

(4)

where Bm.a/ � Bgt.a/ indicates that the ground truth box contains entirely the box
Bm.a/. For each test we report the mean of the localization error of each localization
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Fig. 5 Test results on the homepage of “Corriere della Sera” (www.corriere.it)

Fig. 6 Test results on the homepage of “National Geographic” (www.nationalgeographic.it)

Fig. 7 Test results on the homepage of “Huffington Post” (www.huffingtonpost.it)

method, along with hit/miss percentages and mean precision of the boxes (that
is, mean of p values). The localization error is defined as the Euclidean distance
between the top left corners of the boxes Bm.a/ and Bgt.a/. In Figs. 5, 6, and 7 we
report the results of three tests we executed.

4 Conclusions

The work presented in this paper aimed to provide a new point of view about web
sites; if we look at a web page not only as a HTML document, but also as an image,
we can imagine several Computer Vision instruments to be built for several scopes.

An important instrument is the tracking of the news items positions over time,
since the location of a news in the homepage is a critical factor for the audience
interest. Many other factors influence the visibility and the appealing of a news:

www.corriere.it
www.nationalgeographic.it
www.huffingtonpost.it
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for instance, if an image is attached to an item, then the corresponding news has
statistically a greater chance to be red. The dimension and the style of the news title,
and in general the size of the bounding box containing the item is important too.

Considering web pages as images, layout analysis tools could be developed: for
instance, a density map which draws the interest of the news could be helpful
to properly dispose the web items. Also, one could develop a system which
automatically detect page layout changes over time, or a tool which gives a score
of the quality of the design of the page, according to some psychological study. In
such a scenario, Computer Vision can hence offer a useful set of tools that can help
web editors to improve the quality of the provided service.
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Short Description

The aim of Uncertainty Quantification is to estimate the reliability of model
simulations. In addition to the statistical uncertainties due to noisy measurement
data, one wants to estimate the impact of model bias and numerical approximations
necessary due to high CPU demands or high model state dimensions.
The motive for the methods presented in this mini symposium comes from weather
and climate models. We present methods that enable MCMC sampling for high-
CPU systems, as well as approximative filtering methods that enable state estimation
of very high-dimensional models. The approaches are applied to parameter estima-
tion of chaotic systems. On the other hand, a no-cost parameter estimation approach
is discussed, that is based on monitoring of operational weather predictions. The
results are compared to those we obtain by differential evolution algorithms.



Numerical Modelling of Wind Flow over Hills

O. Agafonova, A. Koivuniemi, B. Conan, A. Chaudhari, H. Haario,
and J. Hamalainen

Abstract The paper demonstrates when the Wind Atlas Analysis and Application
Program (WAsP) is comparable to Computational Fluid Dynamics (CFD) in order
to use the WAsP wind prediction later for time consuming CFD simulations. Three
different numerical methods (WAsP, RANS, LES) for observation of wind flow
over the hills are described and compared with the wind-tunnel experiment. The
paper shows that WAsP provides reasonably realistic results for the flow over the
commonly found in nature shallow hills.

Keywords Flow over hills • LES • RANS • Turbulence • WAsP • Wind tunnel
experiment

1 Introduction

Numerical modelling of atmospheric flows over a complex terrain is an important
problem for wind energy applications, since it helps in arrangement, installation and
control of the on-shore wind farms. The research subject is a justification of possible
use of WAsP as prediction for the precise and time consuming CFD for a complex
terrain. This is our second paper devoted to WAsP and CFD comparison for a wind
flow over two-dimensional hills. In the first study [2], two hills (Hill3 and Hill5)
from Castro and Apsley [5] were studied numerically and compared with the well
known RUSHIL wind tunnel experiment [9]. The expected agreement was obtained
for those hills [2]. In the present work, we continue to study the wind flow over two-
dimensional hills as it represents the simplest flow over a complex terrain. Earlier,
experiments for the hill flow were conducted using the hot-wired anemometry
methodology. This time, we study the same shape of hills but with different slopes
(Hill2 and Hill4). Meanwhile, computational results for these particular hills are
compared with PIV measurements. At the same time, these hills are interesting
for comparison because Hill2 has a very high slope and Hill4 is a borderline case
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because of the reattachment zone beyond the hill. In addition, these two hills have
not been studied enough neither numerically nor experimentally.

The equations, which describe the shape of the hills, are given in [1, 5]. The
average slope of hills n

�
n D H

a ; a is half length and H—the height of the hill
�

are
equal to 0.5 and 0.25. In present study, these hills are named as Hill2 and Hill4
respectively. The experiment for Hill2 and Hill4 was conducted in the VKI-L2 wind
tunnel of the von Karman Institute for Fluid Dynamics using the Particle Image
Velocimetry (PIV) methodology. The hills were fabricated in wood in similarity
with the RUSHIL experiment. The Reynolds number, based on the hill height, used
in experiments is around 17,000. The inlet velocity and turbulence profiles of the
experiment are detailed in Conan [8].

2 Mathematical Modelling

The equations of motion for a viscous incompressible liquid (Navier-Stokes Equa-
tions) without body forces are obtained from the integral laws of mass and
momentum conservation and are written in the form [1]:

8
<

:

r � v D 0

�
dv

dt
D �rp C �r2v

In scalar-tensor form the system of Navier-Stokes equations takes the following
appearance:

@ui

@xi
D 0I (1)

@ui

@t
C uj

@ui

@xj
D �1

�

@p

@xi
C 1

�

@

@xj
tij: (2)

Then, using Eqs. (1), (2) can be rewritten in the form (3):

@ui

@t
C @

@xj
.ujui/ D �1

�

@p

@xi
C 1

�

@

@xj
tij: (3)

The components tij of the viscous stress tensor are equal to tij D 2�sij, where sij

are the components of the strain-rate tensor sij D 1
2
.
@uj

@xi
C @ui

@xj
/.

Using the Reynolds averaging [12], the velocity component ui can be represented
in the form ui D Ui C u0i, where Ui and u0i are mean and fluctuating components
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respectively. Therefore, Eq. (1) leads to:

@Ui

@xi
D 0I @u0i

@xi
D 0: (4)

Applying the averaging operation to Eq. (3), we obtain the Reynolds-averaged
Navier-Stokes (RANS) equation:

@

@t
.�Ui/C @

@xj
.�UjUi/ D � @p

@xi
C @

@xj
.tij � �u0ju0i/; (5)

where tij D 2�Sij and �u0ju0i are the components of the viscous stress tensor and the
Reynolds-stress tensor respectively.

Large Eddy Simulation (LES) is a computational technique in which the large
eddies are computed and the smallest eddies are modelled. Using the filtration
concept that is applying the volume-average filter to the original Navier-Stokes
equations, the velocity component ui can be written in the form ui D ui C u0i,
where ui; u0i denote the resolvable-scale filtered and subgrid scale (SGS) components
respectively. For an incompressible flow, the continuity and Navier-Stokes equations
assume the following form [12] :

@ui

@xi
D 0I (6)

@ui

@t
C @uiuj

@xj
D �1

�

@p

@xi
C �

@2ui

@xk@xk
: (7)

The WAsP equations are based on a linearization of the Navier-Stokes equations
of motion. The second order terms of the Navier-Stokes equations are ignored in the
solution, leading to the simple steady equations [10]:

@ui

@xi
D 0I (8)

uj0
@ui

@xj
D �1

�

@p

@xi
C 1

�

@

@xj
tij; (9)

where the velocities .u10; u20; 0/ are the components of the initial wind vector v0.
The flow is modeled as horizontal flow perturbations of u and is independent of the
real wind velocity. This can be done using potential flow

u D r�: (10)
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The boundary conditions for the model are such that the potential flow is zero far
away from the point of interest

r�jrDR D 0; (11)

and the flow is parallel to the ground surface

u30 D @�

@z

ˇ
ˇ
ˇ
ˇ
zD0

D u0 � rh.r; �/: (12)

In the WAsP program the solution is derived by expressing the equation in
cylindrical coordinates and writing the solution in a series of J-Bessel functions.

3 Numerical Modelling

The steady state problem is solved numerically using the CFD technique for
different hill slopes. The finite-volume meshes for RANS simulations are created
using the Gambit software and the total number of cells is 300,800 elements in
each case. The minimum control volume dimension is 0.05 H � 0.00205 H at the
hill summit and is extended upwind and downwind uniformly, and vertically with
expansion ratio of 1.025 using a geometric progression method. RANS equations
are solved numerically using the ANSYS FLUENT software by applying the SST
k � ! turbulence model with the so-called “Low Reynolds Corrections” treatment
near the wall [3]. The inlet velocity profile used for the computation is logarithmic
(for details see [5]). The inflow boundary conditions for the turbulent kinetic energy
and the specific dissipation rate are obtained from the periodic flow simulations over
the flat terrain of the same size as the computation domain for hill simulations.

In addition to RANS simulations, several LES calculations are also carried out
for both Hill2 and Hill4. For this purpose, the 2D hill geometry is extruded in
the spanwise direction in order to perform 3D LES (see Fig. 2). The finite volume
mesh consisting of 7,875,000 cells is used for the LES simulation. The minimum
control volume size at the hill summit is 0.125 H � 0.0031 H � 0.137 H in x, y and z
directions, respectively. The standard Smagorinsky sub-grid scale model is used to
model the smaller eddies. The mapping technique was used at the inlet boundary in
order to generate the realistic upstream boundary layer for LES, as explained in [6].
Recently, we have used the recycling technique in LES for Hill3 [2, 7].

The LES computations for both hills are run with the automatic time-step by
fixing the maximum Courant number to Cu D 0:25 until the physical time t D 40 s
is reached. Then, they are time averaged with all quantities over the last 30 s. In
addition to time averaging, the results are also space averaged over the span-wise
direction.

WAsP maps that describe similar hills are created for comparison with CFD.
WAsP simulations are performed at real scale. The height of the hills is taken as
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117 m and the computational domain is extended up to 1 km in vertical direction.
Surface roughness is similar to RANS modelling. The flow-model parameters are
configured in order to model a neutrally stratified situation. The actual flow is
examined with reference sites along the stream-wise axis of the hill.

4 Results and Discussions

In this study the finite-volume method based open source OpenFOAM 2.2.2 and
commercial ANSYS FLUENT 13.0 software are employed for LES and RANS
calculations, correspondingly.

Figure 1 shows the mean velocity in stream-wise direction from the experiment
for the steep hill. The size of the recirculation x=H can be estimated between 3.5
and 4.5.

Experimental results for Hill4 did not show the reverse flow beyond the hill. At
the same time, the separation region for this hill was detected by both RANS and
LES approaches (see Figs. 2 and 3b). In the case of RANS, the reattachment point
is xr = 5.216 H. The reattachment point predicted by LES is xr = 6.58 H. In fact,

Umean
0 4 8 12 16

16.44074–2.7117

Fig. 1 Mean velocity [m/s] in stream-wise direction from the experiment [8] for Hill2

Fig. 2 Instantaneous velocity [m/s] in stream-wise direction from the simulation for Hill4
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Fig. 3 Vertical profiles of the mean stream-wise velocity .U=U1/ compared with measurements
for the flow over Hill2 (a) and Hill4 (b) at certain longitudinal locations

the reattachment length in the experiment by Loureiro et al. [11] for a shallower hill
(average slope is 0.2) than Hill4 equals 6.67 H.

Figure 3a, b show the vertical profiles of the stream-wise velocity compared with
the measurements. The current RANS agrees with the experiment well enough for
Hill2 (see Fig. 3a). Both RANS and LES underestimate the wind velocity in the
separation region of Hill2.

It can be seen in Fig. 4a that WAsP significantly differs and overestimates the
wind velocity in reattachment region of steep Hill2. However, Fig. 4b shows that
WAsP agrees well enough for the shallow hill (Hill4) except the separation region,
in which WAsP slightly overestimates the velocity.
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Fig. 4 Vertical profiles of the mean stream-wise velocity (U, [m/s]) compared with RANS for the
flow over Hill2 (a) and Hill4 (b) at certain longitudinal locations

5 Conclusions

In the current study, we carried out WAsP, RANS and LES to investigate the turbu-
lent flows over two-dimensional hills with different slopes. The results of RANS and
LES simulations were described and compared with available experimental data.
The obtained RANS results agree relatively well with LES and measurements and
might be used for later validation of WAsP results.

WAsP produces reasonably realistic results for the flow over the shallow hills
which are commonly found in nature (see Fig. 4b) and corresponds well with the
other studies [2, 4].

This research work shows that the WAsP wind prediction agrees relatively well
with RANS and can be used as an inflow for performing later RANS simulations
over the real-scale and complex wind park terrain with shallow hills, forest and wind
turbines.
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Tuning Parameters of Ensemble Prediction
System and Optimization with Differential
Evolution Approach

Vladimir Shemyakin and Heikki Haario

Abstract Ensemble Prediction System (EPS) is the approach used in present day
weather predictions to estimate the uncertainty of predictions. Along with the main
prediction an ensemble of simulations is launched with perturbed initial values.
Recently, the EPS with simultaneous parameter estimation approach (EPPES) has
been proposed to tune model parameters online, without additional computational
costs, by perturbing the parameter values and monitoring the respective perfor-
mances. The key point of EPPES is the estimation of the parameter covariance
by sequentially updating the covariance as hyperparameters by aid of importance
weights. Here, we study the Differential Evolution (DE) optimization approach as
a new way to solve the problem as a stochastic optimization task. We show that the
convergence is improved using DE, especially in case when initial values of model
parameters are far enough from the true ones.

Keywords DE • EPPES • EPS • Importance weights

1 Introduction

A number of mathematical models have been proposed to forecast the weather by
taking into account its current state and range of measured data. Models differ in
applicability for specific purpose, complexity and forecast power. The most efficient
models make possible to continuously provide reliable predictions, estimate its
uncertainty and adopt model parameters with new available data. The ability to tune
the parameters with minimal computational cost is a crucial requirement for such
complex models.

The core idea of EPS is to launch several predictions with slightly perturbed
initial conditions to generate possible future states of the model. The main sources
of uncertainties are the chaotic nature of the system and model bias caused by
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simplifications, approximations in calculations and rounding errors. EPS is designed
to take into account these issues.

EPPES [1, 2] extends the basic function of EPS by simultaneous tuning the
model parameters online, without additional computational cost. The crucial part of
EPPES is the sequential estimation of hyperparameters of the underlying parameter
distribution. The estimation of hyperparameters in EPPES is done using resampling
with importance weights. When the cost function is specified, the importance
weights for each proposed ensemble member are calculated as relative goodness
with respect to other members. Further, these importance weights are used to update
the distribution of hyperparameters from which the next ensemble will be drawn to
continue prediction and estimation processes.

Here, we study the performance of the DE algorithm to enhance the convergence
of EPPES style parameter estimation problems. DE [3, 4] belongs to the class of
Evolutionary Algorithms (EA) and is based on the vector differences. Although the
original DE approach is primarily designed for numerical optimization problems,
we modify it in order to apply it for estimation of chaotic and stochastic optimization
tasks. According to the provided test case, modified DE demonstrates clearly
improved convergence from poor initial values with respect to EPPES.

2 Background

2.1 Lorenz-95 System

A conventional test case for the estimation of the chaotic behaviour is Lorenz-95
system. In order to explicitly represent parameters involved in the system the linear
parametrization is added and the target model has the form:

dxk

dt
D �xk�1.xk�2 � xkC1/ � xk C F � gU.xk/; (1)

where k D 1; : : : ; 40, F D 8:2, gU D �0 C �1xk, O� D .�0; �1/ is parameter vector to
be estimated.

Figure 1a, b demonstrate that the chaotic nature appears when the system is run
both with small initial perturbations and small changes in underlying parameters
values. Nevertheless, it can be seen that there is a time interval wherein the system
behaves deterministically. This interval is called assimilation or time window.
Further, the states of the system are divided into such sequential assimilation
windows with corresponding measured data [5].

In order to simulate a real life parameter estimation procedure, we assume that
a data assimilation mechanism provided. For the test purposes this is done by
generating the synthetic data with known parameters and adding noise to it. It
also makes possible the a measuring the reliability of the estimating process by
comparison the resulting parameters with the original ones.
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Fig. 1 Chaotic nature caused by (a) initial perturbations and (b) perturbations in parameters values

Hence, the common assumption is that there are several measurements available
for each time window g and they serve to calculate a cost function, which can be
computed in the least square way:

ssg.�/ D
KX

kD1

JX

jD1
.xk.tg;j; �/� Yk.tg;j//

2; (2)

where k is a state number, j is a measurement number within a time window g, K is
a total number of states, J is a total number of measurements within a time window
g, xk is a state value for a given time point tg;j and a parameter value � , Yk is a
measurement of a corresponding state for a given time point tg;j.

The following set-up is used both for DE and EPPES cases:

• A parameter value O� D .0; 0/ is used for generating the synthetic data.
• A normally distributed noise drawn from a distribution N .0; 	2a / with 	a D 0:1

is added to the generated data to simulate the measurement errors.
• The noisy data is divided into sequential assimilation windows of length 1.6 time

units.
• There are 40 observable states.
• There are four measurements available within a time window for each state of

the system, thus J D 4 in (2).
• A population/ensemble size is 51 elements, thus K D 51 in (2).
• Small perturbations in initial values following the normal distribution N .0; 	2ip/

with 	ip D 0:01 are used.

The last two items directly correspond to the EPS ideas. Since the Lorenz-95
system is highly sensitive to initial values, the ensemble with small perturbations
of initial values with respect to assimilated ones are used in order to obtain the
possible distribution of future states of the system. Such approach is designed to
take into account different sources of possible errors involved into dynamic of the
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system. Then, decision of goodness of a particular element in ensemble is based on
a corresponding cost function value.

2.2 EPPES

The original concept and the method implementation have been presented by
Järvinen et al. [1, 2]. The main idea of the EPPES is a hierarchical model of
parameters. It means that these parameters are considered to be normally distributed
with unknown hyperparameters which are being estimated and sequentially updated
at each assimilation window g during EPPES run:

�g � N .�;˙/; � � N .�g�1;Wg�1/; ˙ � W�1.˙g�1; ng�1/: (3)

The key part of EPPES is the importance weights idea. Importance weights
provide information about relative goodness of a particular ensemble member with
respect to the other members. With a cost function ss, given, for example, by (2),
the importance weight for the n-th ensemble member �n

g in a Np-member population
can be calculated as follows:

wn D e� 12 ss.�n
g /=

NpX

iD1
e� 12 ss.� i

g/ (4)

At each time window g, the estimation of the hyperparameters consists of
several steps. Firstly, the proposal values for the parameters are sampled from the
multivariate normal distributionN .�i�1;˙i�1/with the hyperparameters calculated
in the previous time window g � 1. Then, for each proposal value of the parameters
the importance weight is calculated as stated in (4). These importance weights
are used to resample the ensemble of parameters generated earlier. Finally, this
resampled ensemble �g provides the information for updating the hyperparameters
using a following set of formulas:

Wg D .W�1g�1 C˙�1g�1/�1; �g D Wg.W
�1
g�1�g�1 C˙�1g�1�g/;

ng D ng�1 C 1; ˙g D .ng�1˙g�1 C .�g � �g/.�g � �g/
0/=ng: (5)

It has been shown that the EPPES approach is applicable for an on-line
estimation of chaotic problems with changing data, see [6–8]. However, its ability
to converge depends on specified ensemble size and provided prior distributions
for hyperparameters. The key property is that it converges to the distribution of
parameter vectors, not to a single parameter vector.
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2.3 Differential Evolution

Differential evolution, introduced by Price and Storn [3], belongs to the class of
Evolutionary algorithms. This algorithm has been shown as a powerful tool for
solution of nonlinear and complex optimization problems due to its performance
and simplicity in implementation. DE is a population-based optimizer as well as
others EAs. The population consists of predefined number (Np) of D-dimensional
vectors, where D is the dimension of the parameter space. One full evolution step
contains 4 main stages: initialization, mutation, crossover and selection.

DE operates with three population within one full step:

• Current population (Px;g) is the population after initialization step.
• Intermediate population (Pv;g) is the population of mutant vectors.
• Trial population (Pu;g) is the population of mutant vectors after crossover step

of the algorithm.

All mentioned populations have the similar structure, for example, the current
population Px;g consists of vectors .xi;g/ D .xj;i;g/jD1;:::;D, where g is a generation
number, i is a population member number.

The description of evolutions steps [4] can be stated as follows:

1. Initialization. The initial population for the first generation (g D 0) is usually
drawn uniformly from the specified searching domain:

.xj;i;0/ D rj� .bj;U � bj;L/C bj;L; (6)

where rj � U.0; 1/, bj;U and bj;L are upper and lower boundaries for the
corresponding dimension j. The initial population for the next generation is the
population that survived after the previous selection step.

2. Mutation. The most common mutation scheme is called “DE/rand/1/bin” which
corresponds to a mutant vector vi;g calculation as follows:

vi;g D xr1;g C F� .xr2;g � xr3;g/; (7)

where xr1;g, xr2;g and xr3;g are mutually different members of the current
population, F 2 .0;1/ is a scale factor which controls the evolution rate.

3. Crossover. Trial population is calculated according to the following equation:

ui;g D ui;j;g D
(
vi;j;g; if rj � Cr or j D jr

xi;j;g; otherwise.
(8)

where Cr 2 Œ0; 1� is a crossover probability, xi;j;g is a target vector, rj � U.0; 1/.
Additional requirement j D jr, where jr is a random index, ensures that the trial
vector differs from the target vector at least in a one component.
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4. Selection. The selection is based on comparison of a provided cost function f
values of target and trial vectors:

xi;gC1 D
(

ui;g if f .ui;g/ � f .xi;g/

xi;g; otherwise.
(9)

After one entire evolution step of DE, the process is repeated until the desired
criteria for the population is met. For more details about classical DE, see [4].

3 Parameter Estimation with Single Cost Function

3.1 DE Modification for Stochastic Cost Function

In order to adopt the original DE to work with the estimation of chaotic dynamics,
we introduce a number of significant modifications to the original algorithm. Also,
several known improvements has been utilized [9, 10].

Since each assimilation window has new data, there is no fixed cost function.
In this case, each generation is considered only within corresponding assimilation
window and produces a descendant population for the next window. If one applies
the usual scheme of DE to this problem, he can face with two main problems.
Firstly, for every time window it is necessary to calculate the cost function both
for the current and trial populations in order to make the selection, what doubles the
number of evaluation of the computational costly function. Secondly, by doing so,
we entirely lose the information between the previous and present time windows,
which causes the risk of rejecting, by chance, well performing parameters. That is
why it is essential to preserve both the parameters and corresponding values of the
cost function to be able to compare sequential populations and reduce computational
cost of the algorithm. Therefore, the modified population structure of DE for a
generation/assimilation window g has the following form:

• xi;g D .xi;j;g/ is a population member,
• ssi;g is the corresponding cost function value,
• Px;s;g D .xi;g; ssi;g/ is current population information.

Thus, in the time window g we have the current population xi;g with correspond-
ing cost function values ssi;g, which may come from one of the previous selection
steps. Then, by mutation and crossover procedures we obtain the trial population
ui;g. In order to compare current and trial populations we utilize the cost function for
present assimilation window denoted as fg, which is calculated in the least square
way (2). Thereby, the selection decision is made according to the comparison of
just calculated cost function values for the trial population fg.ui;g/ and stored cost
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function values ssi;g:

Px;s;gC1 D .xi;gC1; ssi;gC1/ D
(
.ui;g; fg.ui;g// if fg.ui;g// � ssi;g

.xi;g; ssi;g/ otherwise
(10)

Note the stochastic nature of the cost function: the values ssi;g and fg.ui;g// are
computed with different data. Hence, it may happen that the specific population
member with the corresponding cost function value survives during several sequen-
tial assimilation windows until being compared to a more promising element of the
trial population.

3.2 Comparison of DE and EPPES for Parameter Estimation
Problem

The DE approach with discussed modification and improvements is applied to
the parameter estimation of Lorenz-95 system. The description and set-up for this
problem is explained earlier in Sect. 2.1.

An application of the DE to this test case demonstrates behaviour of the
algorithm in details starting from the initialization and continuing until the estimated
parameters in the last generation. Figure 2a–d depict this process. Here, each figure
consists of upper and lower plots. The upper ones show the actual data for a fixed
state (the first state out of 40 in this case) and a specific assimilation window by
circles and behaviour of the population within this window by a set of continuous
curves. The lower plots depict a distribution of parameters within the population
for the current time window. Each generation of DE corresponds to particular time
window.

We can see that DE is able to reasonable accurately estimate the true values of
O� D .0; 0/ which were used to generate the data. However, it should be emphasised
that DE is optimizer, hence, it tends to converge to one parameter vector with non-
significant oscillation around unlike EPPES which is devoted to find the distribution
of parameter vectors. Further, it is important to compare the convergence of the
algorithm with EPPES. Figure 3 is devoted to make the comparison. The initial
population for DE is uniformly drawn from the interval [�10;10] for both param-
eters. Solid lines in the plot correspond to population/ensemble means for target
parameters while dashed lines are intervals of ˙3	 , where 	 is population/ensemble
standard deviations.

We can conclude that although both DE and EPPES are able to estimate the
parameters of the problem, DE has faster convergence and, moreover, is able to
succeed even from the poor initial population drawn from the huge interval.
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Fig. 2 Conformity of real and estimated data; distribution of parameters at different time windows.
(a) The 1st time window after initialization of DE population. (b) The 1st time window and the 1st
DE population. (c) The 10th time window and the 10th DE population. (d) The 70th time window
and the 70th DE population

4 Results

We have presented the Lorenz-95 system with linear parametrization in order to use
as a test case for estimation purposes. Also, the core ideas of original algorithms
of both EPPES and DE have been explained. Further, we have modified original
DE method to be applicable to the problem of the parameter estimation of chaotic
dynamics and tested it on the described Lorenz-95 system. Test runs have proved the
applicability of the suggested method. Moreover, the comparison between EPPES
and DE has been demonstrated in order to show the convergence properties of each
approach. Combining the benefits from both approaches becomes a valuable field
for the further investigation of the algorithms together as building elements for a
more general method.
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An Efficient Monte Carlo Algorithm for Pricing
Arithmetic Asian Options Under a Jump
Diffusion Process

Walter Mudzimbabwe

Abstract We develop a Monte Carlo algorithm to price an Asian option whose
underlying price is driven by a jump diffusion process. By conditioning on the
number of jumps, we characterise the underlying asset process as lognormally
distributed from which a control variate for the generic Monte Carlo algorithm is
derived. Numeric results confirm that the control variate method is an effective
variance reduction method.

Keywords Computational finance • Option pricing

1 Introduction

One of the most traded options is the Asian option whose payoff depends on the
average price of the underlying. Due to their averaging nature, they have lower
volatilities than the underlying asset, hence are cheaper that vanilla European
options. They are also less prone to price manipulations.

A fixed-strike Asian option with maturity T, strike price K > 0 and whose
underlying asset price St has payoff max. 1T

R T
0

S.t/ � K; 0/. To price this option,
an expectation under a risk neutral measure of the discounted payoff is found (see
[3]), i.e.,

e�rT
E

�

max

�
1

T

Z T

0

S.t/ � K; 0

��

; (1)

The usual assumption is that price of the underlying asset S.t/ is lognormal. The
pricing problem then hinges on the distribution of a sum of lognormal variables
which is unknown (see e.g., [2]). This is the reason why a closed form solution has
not been developed.
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In this article, we generalise the price dynamics so that the price follows a
jump-diffusion process The jumps could be interpreted as arrival of information
such as mergers, takeovers etc. Under this generalisation, the distribution of S.t/ is
intractable. Among the several methods that are used to price Asian options, is the
Monte Carlo method. We develop an efficient control variate that can be used to
make the Monte Carlo method efficient.

There is a vast literature on the Asian options under jump-diffusion. In [4], they
develop a double-Laplace inversion method. Albrecher [1], derives an algorithm to
calculate moments of the sum of the underlying then replacing it by a tractable
one such as lognormal model. In [10], the Asian option is characterised by a
partial integro-differential equation (PIDE). Of interest is the work by Schoutens
and Symens [9] where a Monte-Carlo method based on control variate technique is
explored. We develop our control variate based on a related Asian option.

The paper is organised as follows. Section 2 describes the price process model. In
Sect. 3, we develop the control variate and Sect. 4 derives the Monte Carlo method.
We demonstrate the control variate for different levels of parameters in Sect. 5.
Conclusions are given in Sect. 6.

2 The Price Model

In this section we describe the price of the underlying dynamics S.t/. We assume that
the S.t/ is driven by the following jump-diffusion stochastic differential equation
(SDE):

dS.t/ D S.t�/ .�dt C 	dB.t/C .˘ � 1/dY.t// ; (2)

where S.
�/ D limt"
 S.t/; B.t/ is a Weiner process; dY.t/ is a Poisson process with
intensity �; ˘ is the jump size with expected value of � C 1; dB.t/, dY.t/ and ˘.t/
are assumed to be mutually independent. We assume that ˘ is i.i.d lognormally
distributed, i.e., ln.˘/ � N.�� ; 	2�/: This implies � WD E.˘ � 1/ D exp.�� C
	2�=2/� 1. These dynamics can also be found in [11], where they are used to model
value of the firm assets in a structural Merton model of credit risk. See also [5] or
[10].

Assuming a finite number of jumps and jump sizes, we can apply a general Ito
formula (see, e.g., [7]) for semi-martingale processes such as (2). In this case, the
solution for (2) is (assuming S.0/ D S)

S.t/ D S expf.�� 	2=2/t C 	B.t/C ln.˘/Y.t/g; (3)

where ln.˘/Y.t/ D PYt
jD1 ln.˘j/, which is zero if Yt 	 0.
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Although the distribution of St is intractable, under certain assumptions it can
be written explicitly. We also assume that in a small interval ti D ti � ti�1, the
number of jumps is at most one, i.e., Yt is either 0 or 1. Using a uniform spacing,
i.e., ti D t D T=N, where N is the number of partitions of Œ0;T�. We may write
(see, e.g. [11])

ln.S.ti/=S.ti�1// D xi CY.ti/ ln.˘/

xi � N..� � 	2v =2/T=N; 	2vT=N/ IY.ti/ D
�
0; w:p 1� � � T=N
1; w:p � � T=N:

(4)

3 The Control Variate

In this section, we develop the control variate which will be used in the Monte Carlo
algorithm. Similar to [8], the control variate will be based on the geometric average:

GN D
 

NY

iD1
Sti

!1=N

:

The price of a geometric average Asian option Ce is given by
Ce D e�rT

E .max.GN � K; 0// : By conditioning on the number of jumps, we will
show how a closed expression for the price of geometric average Asian option may
be found. Under this assumption, St is lognormally distributed, just as in the case of
pure Brownian motion, as we will see shortly. We may write

log.GN/ D 1

N

"

log

�
S.tN/

S.tN�1/

�

C 2 log

�
S.tN�1/
S.tN�2/

�

C 3 log

�
S.tN�2/
S.tN�3/

�

C : : :C .N � 2/ log

�
S.t3/

S.t2/

�

C .N � 1/ log

�
S.t2/

S.t1/

�

C N log

�
S.t1/

S

�

C N log.S/

#

:

Conditioning on Yti D Yt D k, St is lognormally distributed, i.e.,
log .S.ti/=S.ti�1//jYt D k � N

�
b�;b	2

�
; 8i D 1; � � � ;N, where b� D

.r � 	2=2� ��/T=N C k�� andb	2 D 	2T=N C k	2� . Consequently,

Sk.ti/ D Sk.ti�1/ exp

8
<

:

�

r � 	2

2
� ��

�
T

N
C 	B

�
T

N

�

C
kX

jD1
ln.˘j/

9
=

;
: (5)
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The subscript k, indicates the dependence of the price formula on the deterministic
number of jumps. The expectation and variance of GN can be found as

E.log.GN/jYt D k/ D 1

N
.b�C 2b�C 3b�C � � � C Nb�C N log.S//

D log.S/C
��

r � 	2

2
� ��

�
T

N
C k��

�
N C 1

2
:

Var.log.GN/jYt D k/ D 1

N2

�
b	2 C 4b	2 C 9b	2 C � � � C N2b	2

�

D
�

	2
T

N
C k	2�

�
.N C 1/.2N C 1/

6N
; (6)

The following theorem characterises a closed form formula for the geometric
average Asian option.

Theorem 1 Assuming that Y.t/ follows (4), then

Ce D
�

1 � � T

N

�

CBS

�
Se.er0�r/T ;TI K; r; Q	20

�
C �

T

N
CBS

�
Se.er1�r/T ;TI K; r; Q	21

�
;

where CBS.S;TI K; r; 	2/ is the Black-Scholes formula for the price of a European
call option.

Proof By conditioning on Y.t/ D k, where k D 0; 1 and using the law of iterated
expectation, we can write down the value of geometric average Asian option as

Ce D e�rT
E
	
E
�
.GN � K/C jY.t/ D k

�


D e�rT
X

k

E

�
.exp.log.GN jY.t/ D k// � K/C

�
P.Y.t/ D k/; (7)

where P.Y.t/ D k/ is calculated using (4) and xC D max.x; 0/.
We can compare this with a synthetic European call whose log of the price of the

underlying asset log.eS.T// is normal with mean log.S/C .Qrk � Q	2k =2/T and variance
Q	2k T. Therefore

Q	2k D 	2
�
1

N
C k	2�

T	2

�
.N C 1/.2N C 1/

6N
;

Qrk D 1

2
Q	2k C

��

r � 	2

2
� ��

�
1

N
C k��

T

�
N C 1

2
:
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Using properties of the Lognormal distribution it follows that

e�rT
E

�
.exp.log.GN jY.ti/ D k//� K/C

�
D Se.Qrk�r/TN.Qd1/ � Ke�rTN.Qd2/;

D CBS

�
Se.erk�r/T ;TI K; r; Q	2k

�
;

where CBS.S;TI K; r; 	2/ is the Black-Scholes formula for the price of a European
call option, N.:/ is the cumulative normal distribution function and

Qd1 D log.S=K/C �Qrk C Q	2k =2
�

T

Q	k

p
T

; Qd2 D Qd1 � Q	k

p
T :

The result follows from (7).

4 Monte Carlo Pricing

In this section, we consider Monte Carlo algorithm to price the fixed-strike Asian
option. As in the case of the geometric Asian option we first condition on the
number of jumps. In practice, the continuous sum in (1) is usually an approximation
of the arithmetic average AN D 1

N

PN
iD1 S.ti/ and so the price is given by

Ca D e�rT
E..AN � K/C/. It is worth remarking that, the distribution of S.t/ is

not known since it is the exponentiation of a sum of compound Poisson process
and Brownian motion. Likewise, the distribution AN is also intractable. We may
improve tractability of S.t/ by considering the random variable .B.t/;˘.t// in leu
of .B.t/;Y.t/;˘.t// by conditioning on the number of jumps. Similar to (7),

Ca D e�rT

��

1 � �
T

N

�

E .A0;N � K/C C �
T

N
E .A1;N � K/C

�

(8)

where Ak;N D 1
N

PN
iD1 Sk.ti/; k D 0; 1. Though S.t/ is now lognormal, the

corresponding sum AN does not have an explicit distribution. This is the reason
why a closed form formula for the price the arithmetic Asian option has not be
developed, see e.g., [2].

One method that has been used in such cases is the Monte Carlo method, see [6].
Due to the computational demands variance reduction methods are used to improve
accuracy for moderate number of Monte-Carlo simulations. To illustrate the control
variate Monte Carlo technique (see also [9]), let

Xk
j D e�rT

 
1

N

NX

iD1
Sk.ti/� K

!C
;Yk

j D e�rT

0

@

 
NY

iD1
Sk.ti/

! 1
N

� K

1

A

C

;

Zk
j .b/ WD Xk

j C bk
�
Yk

j � E
	
Yk

�
; bk 2 R; k D 0; 1:
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As a consequence of Theorem 1, EŒY0� D C
�

Se.er0�r/T ;TI K; r; Q	20
�

and EŒY1� D
C
�

Se.er1�r/T ;TI K; r; Q	21
�

, so that Yk � E
Q.Yk/ serves as control in estimating

E
Q.Xk/; our variable of interest. The control variate Monte Carlo then becomes

the computation of the sample mean Zk.b/ D 1

M

PM
iD1 Zk

j .b/.

5 Numerical Results

In this section we perform numeric calculation based on the control variate. We
compare an ordinary Monte Carlo and the control variate Monte Carlo. We also
include a 95 % confidence interval (CI) for each calculation that we make. The table
shows that the later method is efficient in reducing the variance.

In Table 1, we tabulate a 95 % confidence interval (CI) for both ordinary Monte
Carlo method (MC) and control variate Monte Carlo method (CMC) for T D 1.
It is apparent that our control variate method is effective as a variance reduction
method by considering the ratio of confidence interval lengths i.e., the ratio of
standard deviation of ordinary Monte Carlo method (MC) O	MC to standard deviation

Table 1 Comparison of ordinary Monte Carlo method (MC) with control variate Monte Carlo
method (CMC) for T D 1

	 K 	� MC CI CMC CI O	MC/ O	CMC

0.05 95 0:01 8:8474 [8.8300, 8.8647] 8:8428 [8.8415, 8.8442] 12:9859

0:1 8:8476 [8.8301, 8.8650] 8:8307 [8.8290, 8.8324] 10:2720

100 0:01 4:3493 [4.3326, 4.3659] 4:3468 [4.3454, 4.3481] 12:3486

0:1 4:3491 [4.3325, 4.3657] 4:3352 [4.3335, 4.3369] 9:7379

105 0:01 0:9852 [0.9754, 0.9950] 0:9851 [0.9837, 0.9866] 6:8677

0:1 0:9999 [0.9902, 1.0097] 0:9796 [0.9778, 0.9813] 5:5096

0.1 95 0:01 8:9415 [8.9079, 8.9752] 8:9474 [8.9453, 8.9496] 15:9013

0:1 8:9483 [8.9146, 8.9820] 8:9364 [8.9341, 8.9388] 14:2763

100 0:01 4:9543 [4.9252, 4.9834] 4:9556 [4.9534, 4.9577] 13:4980

0:1 4:9510 [4.9220, 4.9801] 4:9461 [4.9437, 4.9485] 12:1640

105 0:01 2:1161 [2.0954, 2.1368] 2:1051 [2.1029, 2.1073] 9:3769

0:1 2:1189 [2.0984, 2.1395] 2:0993 [2.0969, 2.1018] 8:4081

0.8 95 0:01 21:5786 [21.3298, 21.8274] 21:4896 [21.4726, 21.5066] 14:6339

0:1 21:4544 [21.2082, 21.7006] 21:4522 [21.4354, 21.4690] 14:6497

100 0:01 19:4092 [19.1668, 19.6516] 19:4374 [19.4203, 19.4546] 14:1610

0:1 19:3115 [19.0740, 19.5491] 19:3970 [19.3802, 19.4138] 14:1123

105 0:01 17:5957 [17.3620, 17.8293] 17:5750 [17.5578, 17.5921] 13:6104

0:1 17:5330 [17.3015, 17.7645] 17:5371 [17.5201, 17.5541] 13:6143

The rest of the parameters are S D 100:0, r D 0:09, T D 1, � D 0:05 and �� D 0:0. The other
variables: 	 , K and 	� are varied in the table
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Table 2 Comparison of ordinary Monte Carlo method (MC) with control variate Monte Carlo
method (CMC) for longer maturities

T 	� K MC CI CMC CI O	MC/ O	CMC

3 0.01 90 15:5453 [15.4877, 15.6029] 15:5070 [15.5033, 15.5106] 15:7303

100 7:9934 [7.9440, 8.0427] 7:9812 [7.9775 7.9849] 13:2396

110 2:9882 [2.9551, 3.0213] 2:9870 [2.9832, 2.9908] 8:6956

0.1 90 15:5727 [15.5154, 15.6301] 15:4376 [15.4331, 15.4421] 12:7462

100 8:0797 [8.0302, 8.1291] 7:9262 [7.9216, 7.9308] 10:8107

110 3:0741 [3.0411, 3.1071] 2:9566 [2.9520, 2.9613] 7:1114

5 0.01 90 18:5849 [18.5129, 18.6568] 18:5239 [18.5188, 18.5290] 14:1504

100 11:5713 [11.5061, 11.6366] 11:5568 [11.5517, 11.5619] 12:7443

110 6:1737 [6.1212, 6.2262] 6:1536 [6.1484, 6.1589] 10:0625

0.1 90 18:7349 [18.6619, 18.8078] 18:4099 [18.4035, 18.4162] 11:4871

100 11:8572 [11.7908, 11.9235] 11:4615 [11.4551, 11.4679] 10:3574

110 6:4608 [6.4050, 6.5166] 6:0797 [6.0730, 6.0864] 8:2976

The rest of the parameters are S D 100:0, r D 0:05 and 	 D 0:1; the jump sensitivities are
� D 0:1 and �� D 0:0

of control variate Monte Carlo method (CMC) O	CMC. The ratio is at least 5 and
at most 15. Table 2 shows that the control variate is also effective even for longer
maturities.

6 Conclusions

We have developed a control variate to price Asian options using Monte Carlo
method. We considered the price of the underlying asset to be driven by a
jump diffusion model resulting in a process with exponential Brownian motion a
compound Poisson process. The results show that our method is an efficient speed-
up for the Monte Carlo method.
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A Positive, Stable and Consistent Front-Fixing
Numerical Scheme for American Options

R. Company, V.N. Egorova, and L. Jódar

Abstract In this paper we propose an explicit finite-difference scheme to solve
the American option pricing problem. It is based on front-fixing transformation
that involves unknown free boundary to the equation. The proposed stable and
consistent numerical scheme preserves positivity and monotonicity of the solution
in accordance with the behavior of the exact solution. Numerical examples and
comparison with other methods are included. This technique can be applied to some
types of two-asset options after reducing the dimension. In the paper the front-fixing
method is applied to exchange option pricing.

Keywords Computational finance • Option pricing

1 Front-Fixing Method

American call option price model is given by Wilmott [9] as the moving free
boundary PDE

@C

@

D 1

2
	2S2

@2C

@S2
C .r � q/S

@C

@S
� rC; 0 � S < B.
/; 0 < 
 � T; (1)

together with the boundary and initial conditions

@C

@S
.B.
/; 
/ D 1; C.B.
/; 
/ D B.
/� E; C.0; 
/ D 0; (2)

C.S; 0/ D max.S � E; 0/; B.0/ D
(

E; r � q;
r
q E; r > q:

(3)
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where 
 D T � t denotes the time to maturity T, S is the asset’s price, C.S; 
/ is the
option price, B.
/ is the unknown early exercise boundary, 	 is the volatility of the
asset, r is the risk free interest rate, q is the continuous dividend yield and E is the
strike price.

Note that if there is no any dividends (q D 0), then the optimal strategy is to
exercise option at the maturity (see [3]). In that case the American call becomes
European one. Because of that we consider problem (1)–(3) with q > 0.

Let us consider the dimensionless transformation

c.x; 
/ D C.S; 
/

E
; Sf .
/ D B.
/

E
; x D ln

B.
/

S
: (4)

Under transformation (4) the problem (1)–(3) can be rewritten in normalized
form

@c

@

D 1

2
	2
@2c

@x2
�
 

r � q � 	2

2
C S0f

Sf

!
@c

@x
� rc; x � 0; 0 < 
 � T; (5)

with new boundary and initial conditions

c.x; 0/ D
(
0; r � q;

g.x/; r > q;
x � 0I g.x/ D max

�
r

q
e�x � 1; 0

�

; (6)

@c

@x
.0; 
/ D �Sf .
/; (7)

c.0; 
/ D Sf .
/ � 1; (8)

lim
x!1 c.x; 
/ D 0; (9)

Sf .0/ D
(
1; r � q;
r
q ; r > q:

(10)

Following the ideas of [10] and in order to solve the numerical difficulties derived
from the discretization at the numerical boundary, we assume that (5) holds true at
x D 0,

	2

2

@2c

@x2
�
�

q C 	2

2

�

Sf C r D 0: (11)

Equation (5) is a non-linear differential equation on the domain Œ0;1/ � .0;T�.
In order to solve numerically problem (5)–(10), one has to consider a bounded
numerical domain. Let us introduce xmax large enough to translate the boundary
condition (9). Then the problem (5)–(10) can be studied on the fixed domain
Œ0; xmax�� .0;T�. The value xmax is chosen following the criterion pointed out in [4].
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1.1 Finite-Difference Scheme

Let us introduce the computational grid of M C 2 space points and N time levels
with respective stepsizes h and k

h D xmax

M C 1
; k D T

N
; (12)

xj D hj; j D 0; ::;M C 1; 
n D kn; n D 0; ::;N: (13)

The approximate value of c.x; 
/ at the point xj and time 
n is denoted by cn
j 


c.xj; 

n/ and the approximate value of the free boundary is denoted by Sn

f 
 Sf .

n/.

Then a forward two-time level and centred in a space explicit scheme is constructed
for internal spacial nodes as follows

cnC1
j � cn

j

k
D 1

2
	2

cn
j�1 � 2cn

j C cn
jC1

h2
�

 

r � q � 	2

2
C SnC1

f � Sn
f

kSn
f

!
cn

jC1 � cn
j�1

2h
� rcn

j : (14)

Equation (14) can be rewritten on form

cnC1
j D acn

j�1 C bcn
j C fcn

jC1 C SnC1
f � Sn

f

2hSn
f

�
cn

jC1 � cn
j�1
�
; 1 � j � M: (15)

The second order discretization of the boundary conditions (7), (8) and (11) is as
follows

cn
0 D Sn

f � 1; cn
1 � cn�1
2h

D �Sn
f ; (16)

	2

2

cn�1 � 2cn
0 C cn

1

h2
�
�

q C 	2

2

�

Sn
f C r D 0; (17)

where cn�1 means the value of the solution at the fictitious point x D �h, that should
be eliminated later.

The connection of the free boundary Sn
f and option value cn

1 on the same time
level n is presented in form

cn
1 D ˛ � ˇSn

f D �1 � rh2

	2
�
�

�1C h �
�

q

	2
C 1

2

�

h2
�

Sn
f ; n � 1: (18)
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We use together (15) for j D 1 and (18) to obtain the nonlinear law of the free
boundary motion

SnC1
f D dnSn

f D acn
0 C bcn

1 C fcn
2 C cn

2�cn
0

2h � ˛

cn
2�cn

0

2h � ˇSn
f

Sn
f : (19)

1.2 Numerical Analysis

In this section we will show qualitative scheme properties such as the free boundary
non-decreasing monotonicity as well as the positivity and non-increasing spacial
monotonicity of the numerical option price under transformation. These properties
preserve the behaviour of the theoretical solution of the American option price
problem as it is shown in [5].

Note, that using expressions (15) it is easy to obtain, that the constants of the
scheme a, b and f are positive for both cases: r � q and r > q under following
conditions

h <
	2

ˇ
ˇ
ˇr � q � 	2

2

ˇ
ˇ
ˇ
; r ¤ q C 	2

2
; k <

h2

	2 C rh2
; (20)

If r D q C 	2

2
, then under the condition (20), coefficients a, b and f are positive.

Then the following result can be established:

Theorem 1 Let fcn
j ; S

n
f g be the numerical solution of scheme (15) for a transformed

American call option problem (5) and let dn be defined by (19). Then the numerical
scheme (15) guarantees the following properties of the numerical solution:

1. Increasing monotonicity and positivity of values Sn
f ; n D 0; : : : ;N;

2. Non-negativity and non-increasing monotonicity of the vectors cn D
.cn
0; : : : c

n
MC1/ with respect to space indexes for each fixed n D 0; : : : ;NI

3. The scheme (15) is stable with respect to the norm jj � jj1;
4. The numerical solution computed by the scheme is consistent of order two in

space and order one in time with Eq. (5) and boundary conditions (2), (11) .

Remark In the case r > q, when 6q is close to 	2, we couldn’t guarantee that
d0 > 1. It means that monotonicity of the free boundary is not preserved for the first
time step.
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2 Numerical Experiments

Free boundary obtained of both examples below is compared with analytical
approximation closed to maturity presented in [2].

Example 1 We consider the problem with the parameters [7],

r D 0:03; q D 0:07; 	 D 0:2; T D 0:5: (21)

The proposed method is compared with other approaches presented in [7]. As
we can see from Table 1 difference between proposed method (FF) and “True”
value becomes smaller with increasing asset price S. All methods: Gauss-Leguere
(GL), Lower and upper bound approximation (LUBA), Han and Wu method (HW),
operator splitting method (OS) are compared in [7]. The results are presented in
Table 1. The root-mean-square error (RMSE) is used to measure the accuracy of the
scheme.

Example 2 We can compare the front-fixing method with transformation presented
by Ševčovič [8]. There is a problem with the following parameters

r D 0:1; q D 0:05; 	 D 0:2; T D 1; E D 10: (22)

The position of the free boundary at 
 D T is B.T/ D 22:3754 (in [8])
and it was computed by the proposed method as Sf .T/ D 2:2375, since the
transformed problem is dimensionless. In Table 2 we present a comparison of

Table 1 Comparison of option price calculated by proposed method (FF) for Example 1 with
other methods

Asset price True value GL LUBA HW OS FF

80 0:2194 0:2185 0:2195 0:2193 0:2193 0:2196

90 1:3864 1:3851 1:3862 1:3858 1:3858 1:3868

100 4:7825 4:7835 4:7821 4:7816 4:7817 4:7827

110 11:0978 11:1120 11:0976 11:0969 11:0971 11:0981

120 20:0004 20:0000 20:0000 20:0005 20:0000 20:0006

RMSE 6.4078-3 2.8636-4 6.3246-4 5.7619-4 2.5391-4

Table 2 Comparison of the proposed method with other methods for parameters (22)

Method/the asset value S 15 18 20 21 22.375

Ševčovič’s method 5.15 8.09 10.03 11.01 12.37

Trinomial tree 5.15 8.09 10.03 11.01 12.37

Finite differences 5.49 8.48 10.48 11.48 12.48

Analytical approximation 5.23 8.10 10.04 11.02 12.38

Proposed method 5.21 8.09 10.03 11.01 12.37
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Fig. 1 Comparison free boundary from Example 2 with analytical approximation on the whole
domain

results obtained by the proposed front-fixing method and by other methods such as
semi-explicit formula, presented in [8], trinomial tree, finite difference approxi-
mation and analytical approximation of Barone-Adesi and Whaley [1]. The free
boundary motion for that problem is compared with analytical approximation [2].
Results are presented on Fig. 1.

Example 3 Some types of two asset American Option problems can be transformed
into a one-spatial dimensional equation by a suitable change of variables. It is
important to realize that a reduction in the number of dimensions can contribute
greatly to efficiency of the finite difference implementation. After appropriate
transformation we obtain the Black-Scholes equation with the different parameters.

As a numerical example, we consider the American exchange option (see [6]) for
correlated assets with � D 0:5, and 	1 D 	2 D 0:5, then 	2 D 0:25. The results are
presented on Fig. 2.

3 Conclusion

We proposed a front-fixing method for American call option with dividends pricing
problem. An explicit finite difference scheme is constructed for numerical solution.
It has several proved advantages such as conditional stability and consistency with
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Fig. 2 Optimal exercise ratio in time: calculated by proposed method (left) and presented in [6]

the differential equation. Moreover, the explicit finite difference scheme guarantees
the positivity and monotonicity of the solution. By numerical experiments the
stability and accuracy are proved.

Moreover, several types of multi-asset option after appropriate transformation
can be presented as an American call option with dividends. Therefore, the proposed
method can be used for such options. Results of applying this technique are
compared with known results.

Acknowledgements This paper has been partially supported by the European Union in the FP7-
PEOPLE-2012-ITN program under Grant Agreement Number 304617 (FP7 Marie Curie Action,
Project Multi-ITN STRIKE-Novel Methods in Computational Finance).

References

1. Barone-Adesi, G., Whaley, R.: Efficient analytic approximation of American option values. J.
Financ. 42, 301–320 (1987)

2. Evans, J., Kuske, R., Keller, J.: American options on assets with dividends near expiry. J. Math.
Financ. 12(3), 219–237 (2002)

3. Hull, J., White, A.: Valuing derivative securities using the explicit finite difference method. J.
Financ. Quant. Anal. 25(1), 87–100 (1990)

4. Kangro, R., Nicolaides, R.: Far field boundary conditions for Black-Scholes equations. SIAM
J. Numer. Anal. 38(4), 1357–1368 (2000)

5. Kim, I.J.: The analytic valuation of American options. Rev. Financ. Stud. 3, 547–572 (1990)
6. Liu, H.K.: The valuation of American options on single asset and multiple assets. Ph.D. thesis,

National Chengchi University, Taiwan (2007)
7. Saib, A., Tangman, Y., Thakoor, N., Bhuruth, M.: On some finite difference algorithms for

pricing American options and their implementation in mathematica. In: Proceedings of the
11th International Conference on Computational and Mathematical Methods in Science and
Engineering (2011)



64 R. Company et al.
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Efficient Calibration and Pricing in LIBOR
Market Models with SABR Stochastic Volatility
Using GPUs

A.M. Ferreiro, J.A. García, J.G. López-Salas, and C. Vázquez

Abstract In order to overcome the drawbacks of assuming deterministic volatility
coefficients in the standard LIBOR market models, several extensions of LIBOR
models to incorporate stochastic volatilities have been proposed. The efficient
calibration to market data of these more complex models becomes a relevant target
in practice. The main objective of the present work is to efficiently calibrate some
recent SABR/LIBOR market models to real market prices of caplets and swaptions.
For the calibration we propose a parallelized version of the simulated annealing
algorithm for multi-GPUs. The numerical results clearly illustrate the advantages of
using the proposed multi-GPUs tools when applied to real market data and popular
SABR/LIBOR models.

Keywords Computational finance • Market model calibration

1 SABR/LIBOR Market Models

This work is mainly concerned with three extensions of the LIBOR market model
(LMM) that incorporate the volatility smile by means of the SABR stochastic
volatility model. The SABR model has become the market standard for interpolating
and extrapolating prices of plain vanilla caplets and swaptions [6]. It is widely used
because it involves a closed-form formula for the implied volatility which allows an
easy calibration of the model. In the more standard LIBOR market model [1] the
dynamics of each LIBOR forward rate under the corresponding terminal measure
are assumed to be martingales with constant volatility. When adding the SABR
stochastic volatility model, the forward rates and volatility processes satisfy the
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following coupled dynamics

dFi.t/ D Vi.t/Fi.t/
ˇi dWi.t/;

dVi.t/ D 	iVi.t/dZi.t/:

We note that if the interest rate derivative only depends on one particular forward
rate then it is convenient to use the corresponding terminal measure. However
when derivatives depend on several forward rates, a common measure needs to
be used. Thus, in the case of pricing complex derivatives a change of measure
produces the appearance of drift terms in both dynamics. The main drawback of
classical LMM comes from considering constant volatilities. SABR/LIBOR market
models combine the advantages of these two models. In this paper we consider the
different SABR/LIBOR models proposed by Hagan [5], Mercurio and Morini [8]
and Rebonato [10]. Hereafter, for sake of brevity we only present the Rebonato
model. Interested readers on the other two models are referred to [4].

For each i D 1; : : : ;M let Fi and Vi be the ith forward rate that matures at time
Ti and its corresponding stochastic volatility, respectively. Then, under a common
measure their dynamics are given by (see [10])

dFi.t/ D �Fi.t/dt C Vi.t/Fi.t/
ˇi dWi.t/; (1)

Vi.t/ D �i.t/gi.t/; (2)

d�i.t/ D ��i.t/dt C �i.t/hi.t/dZi.t/; (3)

where

gi.t/ D �
aCb.Ti�t/

�
exp

��c.Ti�t/
�Cd; hi.t/ D �

˛Cˇ.Ti�t/
�

exp
���.Ti�t/

�Cı;

with the associated correlations denoted by

EŒdWi.t/ �dWj.t/� D �i;jdt; EŒdWi.t/ �dZj.t/� D �i;jdt; EŒdZi.t/ �dZj.t/� D �i;jdt;

and the initial given values �i D �i.0/ and Fi.0/. Thus, the correlation structure is
given by the block-matrix

P D
�
� �

�> �

�

;

where the submatrix � D .�i;j/ represents the correlations between the forward rates
Fi and Fj, the submatrix � D .�i;j/ includes the correlations between the forward
rates Fi and the instantaneous volatilities Vj, and the submatrix � D .�i;j/ contains
the correlations between the instantaneous volatilities Vi and Vj.
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More precisely, if we introduce the bank-account numeraire ˇ.t/, defined by

ˇ.t/ D
i�1Y

jD0

�
1CtFj.Tj/

�
if t 2 ŒTi;TiC1�;

then, under the associated spot probability measure, the drift terms of the processes
defined in (1) and (3) are

�Fi.t/ D Vi.t/Fi.t/
ˇi

iX

jDh.t/


j�i;jVj.t/Fj.t/ˇj

1C 
jFj.t/
;

��i.t/ D �i.t/hi.t/
iX

jDh.t/


j�i;jVj.t/Fj.t/ˇj

1C 
jFj.t/
;

where h.t/ denotes the index of the first unfixed Fi, i.e.,

h.t/ D j, if t 2 ŒTj�1;Tj/: (4)

The implied volatility for this model can be computed from Hagan second order
approximation formula [9]:

	
�
K;Fi.0/

� 
 ˛i

Fi.0/.1�ˇi/
�
(

1 � 1

2
.1 � ˇi � �i;i	i!i/ � ln

� K

Fi.0/

�

C 1

12

�
.1 � ˇi/

2 C .2 � 3�2i;i/	2i !2i C 3
�
.1 � ˇi/� �i;i	i!i

��

�
�

ln
� K

Fi.0/

��2
)

; (5)

where !i D ˛�1i Fi.0/
.1�ˇi/, by using the following parameters denoted with SABR

superindexes,

ˇSABR
i D ˇi; �SABR

i;i D �i;i; ˛SABR
i D �i.0/

�
1

Ti

Z Ti

0

gi.t/
2dt

� 1
2

;

	SABR
i D �i.0/

˛SABR
i Ti

�

2

Z Ti

0

gi.t/
2 Ohi.t/

2tdt

� 1
2

; where Ohi.t/ D
s
1

t

Z t

0

.hi.s//
2 ds:

(6)
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For the correlations, we consider the following function parameterizations:

�i;j D �1 C .1 � �1/ expŒ��1jTi � Tjj�; (7)

�i;j D �2 C .1 � �2/ expŒ��2jTi � Tjj�; (8)

�i;j D sign.�i;i/

q
j�i;i�j;jj exp

	��3.Ti � Tj/
C � �3.Tj � Ti/

C
 ; (9)

where the terms �i;i are previously calibrated using Hagan formula (5) for the whole
volatilities surface.

In this work we propose an efficient calibration strategy to some market prices for
the parameters appearing in the three previous models. More precisely, we consider
the market prices of caplets and swaptions and we pose the corresponding global
optimization problems to calibrate the model parameters. In order to speed up the
optimization algorithm we use an implementation in GPUs.

2 Model Calibration

Model parameters are calibrated in two stages, firstly to caplets and secondly
to swaptions. We note that model parameters can be classified into two cate-
gories (volatility and correlation parameters). The volatility parameters are xxx D
.�ii; �i; parameters of the volatility functions g and h/ and the correlation ones yyy D
.�1; �1; �2; �2; �3/. According to this classification, the cost functions to be mini-
mized in the calibration process are the following:

• Function to calibrate the market prices of caplets:

fc.xxx/ D
MX

iD1

numKX

jD1

�
	
�
Kj;Fi.0/

�� 	market
�
Kj;Fi.0/

��2
.xxx/;

where 	 is given by Hagan formula (5) with the parameters (6), 	market are the
market smiles and xxx is the vector containing the volatility parameters of the
model. Moreover, M and numK denote the number of maturities and strikes of
the caplets, respectively.

• Function to calibrate the market prices of swaptions:

fs.yyy/ D
numSwsX

iD1
.SBlack.swaptioni/� SMC.swaptioni//

2 .yyy/;
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where swaptioni denotes the ith swaption, SBlack is the Black formula for
swaptions and SMC.swaptioni/ is the value of the ith swaption computed
using Monte Carlo method. Moreover yyy denotes the vector containing
the correlation parameters of the model and numSws is the number of
swaptions.

In this work, the calibration of the parameters has been performed with a
Simulated Annealing (SA) global optimization algorithm [7]. The algorithm con-
sists in an external decreasing temperature loop. At each fixed temperature a
Metropolis process, that can be seen as a Markov chain, is performed to com-
pute the equilibrium state at this temperature level. This Markov chain consists
of randomly choosing points in the search domain: if the value of the cost
function at a new point decreases, the point is accepted; otherwise the point
is randomly accepted following the Boltzman criterion, where the probability
of accepting points with higher cost function value decreases with tempera-
ture. This process is repeated at each temperature level until temperature is low
enough. As it is well known in the literature, SA involves a great computational
cost.

In [3], the parallelization of the SA algorithm has been performed with GPUs.
The idea is that at each temperature level the Markov chains are distributed
among the GPU threads. Among all the final reached points of the threads,
the one with the minimum cost function value is selected, thus performing a
reduction operation. The selected point is the starting one for all the threads in
the next temperature level. The process is repeated until reaching a certain value
of temperature.

The previous implementation can also be improved using multi-GPUs. In this
case, the Markov chains are distributed among GPUs (for example, if we have two
GPUs, half of the chains are computed by each GPU, see Fig. 1) and at each GPU the
chains are distributed among the threads of this particular GPU. Before advancing to
the next temperature level the best point must be computed in each GPU and then the
best point of all GPUs is computed and used as starting point for all the upcoming
threads of the new temperature level (see Fig. 1). This multi-GPU algorithm was
presented in [2], where it was used to calibrate some SABR models to a volatility
surface.

In order to calibrate models with many parameters, as the Rebonato one, the
multi-GPU version becomes more suitable, since the minimization process is very
costly.

In the SABR/LIBOR market models, for the calibration to swaption market
prices there is not an explicit formula to price swaptions. Therefore, we use a Monte
Carlo simulation technique to price swaptions, thus leading to two nested Monte
Carlo loops: one for the SA and the other one for the swaption pricer. So, as the
Monte Carlo swaption pricer is carried out inside the GPU, the SA minimization
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Fig. 1 Sketch of the parallel SA algorithm using two GPUs and OpenMP

algorithm is run on CPU. In order to use all available GPUs in the system, we
propose a CPU SA parallelization using OpenMP. So, each OpenMP SA thread
uses a GPU to evaluate the Monte Carlo objective function.

3 Numerical Results

Market data correspond to the 6 month EURIBOR rate. In this section, for sake of
brevity, we only present the results of the calibration of the model to the smiles of
the swap rates shown in Table 1. The results of the previous calibration to the smiles
of the forward rates presented in Table 2 are detailed in the article [4].

The calibrated correlation parameters are �1 D 0:650997, �1 D 3:617546, �2 D
0:999000, �2 D 0:380984 and �3 D 0:001000. Using two GPUs the execution
time was approximately 2 h (by using a cluster of GPUs time could be substantially
reduced). In Table 3, some market vs. model swaption prices are shown. The mean
absolute error considering all market swaptions is 6:30 � 10�2. Figure 2 shows the
model fitting to the first four swaption market prices.
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Table 3 Calibration to swaptions, SBlack vs. SMC , prices in %

0:5� 1 swaptions 1� 1 swaptions

Moneyness SBlack SMC jSBlack � SMCj SBlack SMC jSBlack � SMCj
�40% 0:4866 0:4870 4:00 � 10�4 0:5917 0:5839 7:80 � 10�3

�20% 0:3562 0:3669 1:07 � 10�2 0:4661 0:4693 3:20 � 10�3

0% 0:2356 0:2477 1:21 � 10�2 0:3467 0:3546 7:90 � 10�3

20% 0:1363 0:1441 7:80 � 10�3 0:2394 0:2488 9:40 � 10�3

40% 0:0680 0:0699 1:90 � 10�3 0:1517 0:1606 8:90 � 10�3

1:5� 1 swaptions 2� 1 swaptions

Moneyness SBlack SMC jSBlack � SMCj SBlack SMC jSBlack � SMCj
�40% 0:7357 0:6902 4:55 � 10�2 0:8184 0:7465 7:19 � 10�2

�20% 0:5908 0:5612 2:96 � 10�2 0:6603 0:6028 5:75 � 10�2

0% 0:4536 0:4339 1:97 � 10�2 0:5118 0:4620 4:98� 10�2

20% 0:3277 0:3171 1:06 � 10�2 0:3754 0:3354 4:00� 10�2

40% 0:2213 0:2188 2:50 � 10�3 0:2587 0:2308 2:79� 10�2
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Fig. 2 SBlack vs. SMC, f0:5; : : : ; 2g � 1 swaptions



74 A.M. Ferreiro et al.

References

1. Brace, A., Gatarek, D., Musiela, M.: The Market model of interest rate dynamics. Math.
Finance 7(2), 127–155 (1997)

2. Fernández, J.L., Ferreiro, A.M., García, J.A., López-Salas, J.G., Vázquez, C.: Static and
dynamic SABR stochastic volatility models: calibration and option pricing using GPUs. Math.
Comput. Simul. 94, 55–75 (2013)

3. Ferreiro, A.M., García, J.A., López-Salas, J.G., Vázquez, C.: An efficient implementation of
parallel simulated annealing algorithm in GPUs. J. Glob. Optim. 57(3), 863–890 (2013)

4. Ferreiro, A.M., García, J.A., López-Salas, J.G., Vázquez, C.: SABR/LIBOR market models:
pricing and calibration for some interest rate derivatives. Appl. Math. Comput. (2014). http://
dx.doi.org/10.1016/j.amc.2014.05.017

5. Hagan, P., Lesniewski, A.: LIBOR market model with SABR style stochastic volatility.
Working paper (2008). Available at http://lesniewski.us/papers/working/SABRLMM.pdf

6. Hagan, P.S., Kumar, D., Lesniewski, A.S., Woodward, D.E.: Managing smile risk. In: The Best
of Wilmott, vol. 1, pp. 249–296. Wiley, Hoboken (2002)

7. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220,
671–680 (1983)

8. Mercurio, F., Morini, M.: No-arbitrage dynamics for a tractable SABR term structure Libor
model. In: Modeling Interest Rates: Advances in Derivatives Pricing. Risk Books, London
(2009)

9. Oblój, J.: Fine-tune your smile: correction to Hagan et al. Wilmott Mag. (2007/2008). Preprint,
arXiv:0708.0998

10. Rebonato, R.: A time-homogeneous SABR-consistent extension of the LMM. Risk 20,
102–106 (2007)

http://dx.doi.org/10.1016/j.amc.2014.05.017
http://dx.doi.org/10.1016/j.amc.2014.05.017
http://lesniewski.us/papers/working/SABRLMM.pdf


Extension of a Fourier-Cosine Method to Solve
BSDEs with Higher Dimensions

M. Pou, M.R. Ruijter, and C.W. Oosterlee

Abstract A Backward Stochastic Differential Equation (BSDE) is a stochastic
differential equation for which a terminal condition has been specified. In Ruijter
and Oosterlee (A Fourier-cosine method for an efficient computation of solutions
to BSDEs, 2013) a Fourier-cosine method to solve BSDEs is developed. This
technique is known as BCOS method and consists of the approximation of the
BSDE’s solution backwards in time by the use of the COS method developed in
Fang and Oosterlee (SIAM J Sci Comput 31(2):826–848, 2008) to compute the
conditional expectations that rise after the discretization by means of a �-method
for the time-integration.

In this work, the methodology is extended to the case in which there are
more than one source of uncertainty or the terminal condition depends on more
than one process, allowing the pricing of derivatives contracts such as rainbow
options. The extension of the BCOS technique can be done taking into account
some ideas developed in Ruijter and Oosterlee (SIAM J Sci Comput 34(5):B642–
B671, 2012). We present some results concerning to derivatives on two processes
without jumps. We also apply our extended method to solve the BSDEs that rise
with the use of quadratic hedging techniques for pricing in incomplete markets
without or with jumps (Lim, Math Oper Res 29(1):132–161, 2004; Lim, SIAM J
Sci Comput 44(5):1893–1922, 2005). Problems in which the randomness of the
terminal condition depends not only on the risky asset but also on the insurance
risk or the counterparty default risk can be introduced in this framework (Delong,
Backward Stochastic Differential Equations with Jumps and Their Actuarial and
Financial Applications. Springer, London, 2013).
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1 Introduction

A Backward Stochastic Differential Equation (BSDE) is a Stochastic Differential
Equation (SDE) for which a terminal condition has been specified. This terminal
condition is given by a random variable, instead of by a fixed value. Specifically, we
consider the case in which the terminal condition is a function of a stochastic process
whose initial value and dynamic are known. By this way a Forward-Backward SDE
(FBSDE) is considered. We allow the general framework of a forward stochastic
process with jumps arising FBSDE with jumps (FBSDEJ). These kind of equations
appear in the pricing and hedging of derivative contracts with payoff equals to a
function of one or more risky assets whose prices have known dynamics.

In this paper we do not pay special attention to the theory of BSDEs that has
been widely studied. See [1–4, 11, 12, 14]. In this work we extend the BCOS
methodology presented in [16] to solve FBSDEs with higher dimensions, i.e., to
solve FBSDEs in which more than one source of uncertainty is involved and/or in
which the terminal condition depends on more than one stochastic process. This
technique consists of the approximation of the solution backwards in time. After the
necessary discretization of the equation, some conditional expectations have to be
computed. The BCOS technique approximates these conditional expectations by the
use of the close relation of the characteristic function of the forward process with
the coefficients of the Fourier-cosine expansion of its density function. Therefore
the simulation of the forward stochastic process is avoided. The extension of the
technique to the case of higher dimensions takes some ideas from [15].

The paper is organized as follows. Section 2 presents the setting and notation
on BSDEJs. In Sect. 3 several numerical examples in which these kind of equations
appear are presented. Section 4 is devoted to the explanation of the BCOS technique.
In Sect. 5 some of the obtained results are shown. Section 6 summarizes the
conclusions.

2 Notation and Definitions on BSDEJs

In this section we introduce some definitions and theorems on BSDEJs and
FBSDEJs. In order to that, according to [9, 16], we introduce the necessary notation.

We assume that all stochastic processes which we consider are defined on a finite
time horizon Œ0;T� and let .˝;F;P/ be a complete probability space equipped with
following independent stochastic processes:

• A standard d-dimensional Brownian motion Wt D .W1
t ; : : : ;W

d
t /
0, with each

component defined on ˝ � Œ0;T�.
• A real-valued c-dimensional Poisson point process q D .q1; : : : ; qc/0, with each

component defined on ˝ � Œ0;T� � Ep, where Ep WD Rnf0g. For p D 1; : : : ; c,
we denote by Np.d� p; dt/ the Poisson random measure associated to qp, whose
compensator is assumed to be of the form �p.d� p/dt, where �p.d� p/ stands for
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the Levy measure, which is positive and satisfies

�p.f0g/ D 0 and
Z

Ep
.1 ^ j� pj/2�p.d� p/ < 1: (1)

Np.B; t/, with B � R, represents the number of jumps with size in set B which
occur before or at time t, and �p.B/ counts the expected number of jumps in a
unit time interval. We denote with ONp, p D 1; : : : ; c, the compensated Poisson
random measure, that is given by:

ONp.d� p; dt/ D Np.d� p; dt/ � �p.d� p/dt: (2)

F is the completed filtration generated by the processes W D .W1; : : : ;Wd/0 and
N D .N1; : : : ;Nc/0. We assume independence between the different components in
W and N.

Moreover, Ep, p D 1; : : : ; c, is assumed to be a finite set, Ep D f�p
1 ; : : : ; �

p

pg,

with Levy measure �p.f�p
l g/ D �pPp

l , where �p D �p.R/ is the intensity rate, i.e.,
Pp

l is the probability of jump size �p
l and

Z

Ep
� p ONp.d� p; dt/ D


p
X

lD1
�

p
l

ONp.f�p
l g; dt/; p D 1; : : : ; c: (3)

We consider the BSDEJ:

dYt D �f .t;Yt;Zt;Ut/dt C Z0t dWt C
cX

pD1

Z

Ep
Up

t .�
p/ ONp.d� p; dt/; 0 6 t 6 T;

(4)

YT D �; (5)

or, equivalently,

Yt D � C
Z T

t
f .s;Ys;Zs;Us/ds

�
Z T

t
Z0sdWs �

cX

pD1

Z T

t

Z

Ep
Up

s .�
p/ ONp.d� p; ds/; 0 6 t 6 T; (6)

where the terminal condition � W ˝ ! R is an FT -measurable random variable and
the generator f W ˝ � Œ0;T��R�R

d �R
c ! R is P ˝B˝Bd ˝Bc-measurable,

being P the set of Ft-progressively measurable scalar processes on ˝ � Œ0;T�.
A solution of (4) is a triplet .Y;Z;U/, with Z D .Z1; : : : ;Zd/0, U D

.U1; : : : ;Uc/0, such that fYt; t 2 Œ0;T�g is a F -adapted process in L1.F ;R/
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and fZt; t 2 Œ0;T�g and fUt; t 2 Œ0;T�g are F -predictable processes in P2.F ;Rd/

and P2.F ;Rc/, respectively, being:

• L1.F ;Rm/ the set of F -adapted P-essentially bounded R
m-valued processes

on Œ0;T�,
• P2.F ;Rm/ the set of F -predictable R

m-valued processes � on Œ0;T� under P
with norm

k�k2 WD
�

E
PŒ

Z T

0

j�tj2dt�

� 1
2

< 1:

See [14] for conditions of existence and uniqueness of solution.
Now we suppose that the randomness of the parameters . f ; �/ of the BSDEJ

comes from the state variable Xt D .X1t ; : : : ;X
n
t /
0 2 R

n, i.e.:

dYt D �f .t;Xt;Yt;Zt;Ut/dt C Z0t dWt

C
cX

pD1

Z

Ep
Up

t .�
p/ ONp.d� p; dt/; 0 6 t 6 T; (7)

YT D g.XT/; (8)

where the functions f W Œ0;T��R
n �R�R

d �R
c ! R and g W Rn ! R are R-valued

Borel functions and fXt; t 2 Œ0;T�g is the solution to

dXt D �.t;Xt/dt C 	.t;Xt/dWt C ".t;Xt/

Z

E
� N.d�; dt/; 0 6 t 6 T; (9)

X0 D x0; (10)

with x0 2 R
n, � W Œ0;T� � R

n ! R
n, 	 W Œ0;T� � R

n ! R
n�d and � W Œ0;T� � R

n !
R

n�r:

x0 D

0

B
@

x10
:::

xn
0

1

C
A ; �.t;Xt/ D

0

B
@

�1.t;Xt/
:::

�n.t;Xt/

1

C
A ; 	.t;Xt/ D

0

B
@

	11.t;Xt/ � � � 	1d.t;Xt/
:::

:::

	n1.t;Xt/ � � � 	nd.t;Xt/

1

C
A ;

".t;Xt/ D

0

B
@

"11.t;Xt/ � � � "1c.t;Xt/
:::

:::

"n1.t;Xt/ � � � "nc.t;Xt/

1

C
A ;

Z

E
� N.d�; dt/ D

0

B
@

R
E1 �

1N1.d� 1; dt/
:::

R
Ec �

cNc.d� c; dt/

1

C
A :

The coupled system (7)–(9) is said to represent a FBSDEJ system.
In the next section we show interesting numerical examples in which FBSDEs

appear.
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3 Numerical Examples with FBSDEs: Pricing and Hedging

Following [9], in this section we present the problem of pricing and hedging
derivative contracts depending on more than one asset.

We consider a financial market with n C 1 assets, consisting of 1 bond and n
risky assets with price processes B and .S1; : : : ; Sn/, respectively. We assume that
such price processes are solutions to the FSDEs:

8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

dBt D rBtdt; B0 D 1;

dSj
t

Sj
t�

D N�jdt C
dX

iD1
N	 jidWi

t

C
cX

pD1
N" jp
Z

Ep

N� pNp.d� p; dt/; Sj
0 D sj

0; j D 1; : : : ; n:

(11)

Remark 3.1 In [9], the interest rate r, the terms N�j, N	 ji and N"jp are assumed to be
random variables. However we consider constant values r, N�j, N	 ji and N"jp. Notice
that we will be in the constant parameters framework by considering the FSDE of
the processes Xj WD ln.Sj/.

Consider an investor in this financial market who faces at time T some liability �,
whose uncertain value depends on .W1; : : : ;Wd/ and on .N1; : : : ;Nc/. The investor
would like to reduce the uncertainty. One method to minimize his/her risk is to invest
in assets that depend on the same sources of uncertainty as �.

Let !t be the agent wealth at time t 2 Œ0;T� and suppose that the initial agent
wealth is Q!0. Let � j

t denote the invested amount in each asset Sj at time t, with
j D 1; : : : ; n. The amount invested in the bond B will be !t � Pn

jD1 �
j
t . Therefore

the wealth process associated to this strategy is the solution of the SDE:
8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

d!t D
0

@!t �
nX

jD1
�

j
t

1

A dBt
Bt

C
nX

jD1
�

j
t
dSj

t

Sj
t

D

D
2

4r!t C
nX

jD1
. N�j � r/� j

t

3

5 dt C
nX

jD1

dX

iD1
�

j
t N	 jidWi

t

C
nX

jD1
�

j
t

cX

pD1
N"jp
Z

Ep

N� pNp.d� p; dt/;

!0 D Q!0:

(12)

The class of admissible portfolios is the set:

U D ˚
� D .�1; : : : ; �n/ W Œ0;T� �˝ ! R

n=�t is F -predictable and

EŒ

Z T

0

j�tj2dt� < C1


: (13)
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The objective is to find a hedging portfolio �t such that the terminal value of this
investment!T is as close as possible to the value �. We have the following stochastic
control problem:

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

min
�2U EŒ� � !T �

2;

subject to

d!t D
2

4r!t C
nX

jD1
. N�j � r/� j

t

3

5 dt C
nX

jD1

dX

iD1
�

j
t N	 jidWi

t

C
nX

jD1
�

j
t

cX

pD1
N"jp
Z

Ep

N� pNp.d� p; dt/;

!0 D Q!0:

(14)

The solution to this problem is different depending on the kind of market in which
the investor is. In the next sections we study how to address (14) in the case of a
complete market without jumps and in the cases of an incomplete market without
and with jumps.

3.1 Pricing and Hedging Without Jumps (Case c D 0)

3.1.1 Pricing and Perfect Hedging in Complete Markets Without Jumps
(Case n D d; c D 0)

In a complete market, that means a market with the same number of sources of
uncertainty than risky assets, an investor with the appropriate initial wealth Q!0 can
eliminate all the risk by replicating �, that is, there is a unique value !0 and an
unique associated trading strategy � such that an investor with initial wealth !0
and investing according to � will have a terminal wealth satisfying !T D �, P-a.s.
Therefore a perfect hedging is possible in this case.

Taking (12) in matrix form, Yt D !t and Z0t D .Z1t ; : : : ;Z
n
t / D �t N	 , we obtain

dYt D 	
rYt C Z0t N	�1. N�� r1/



dt C Z0t dWt; 0 6 t 6 T; YT D �; (15)

where 1 2 M n�1 and Y0 corresponds to the value of the portfolio at time 0 that
matches the price of the claim � at that time.

Remark 3.2 The completeness condition of the market (number of assets equal to
number of uncertainty sources) makes invertible the matrix N	 , allowing introduce
� D Z0t N	�1 in the driven function.

If the terminal condition is a function of S1T ; : : : ; S
n
T , the BCOS methodology

explained in the next section can be applied to approximate the solution to (15).
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3.1.2 Pricing and Quadratic Hedging in Incomplete Markets Without
Jumps (Case n < d; c D 0)

In a incomplete market, that means a market with the less sources of uncertainty
than risky assets, perfect replication is usually not possible. Super-replication (find
a portfolio such that !T > �, P-a.s.) may be possible, but it is unfeasible since the
required initial wealth is usually too large to be of practical use. Then, an investor
in an incomplete market (or in a complete market but with insufficient initial capital
to replicate the claim) needs to solve, for instance, the problem (14) with c D 0. In
[8] can be seen that such problem is equivalent to solve the following BSDE:

dYt D 	
rYt C . N� � r1/0. N	 N	 0/�1 N	Zt



dt C Z0t dWt; 0 6 t 6 T; YT D �: (16)

Remark 3.3 See [8] for the derivation of and specific results of existence and
uniqueness of solution to (16). Since random parameters are considered in [8], then
to solve (14) is equivalent to solve one system consisting of one Stochastic Riccati
Equation (SRE) and one BSDE. For simplicity, we consider constant parameters
avoiding the SRE.

With .Y;Z/ solution to (16), the solution of (14) is given by:

�t D . N	 N	 0/�1 Œ N	Zt C . N� � r1/.Yt � !t/� : (17)

Another problem that an investor may be interested in solving is the problem of
pricing the claim �. In the case of a complete market, the unique arbitrage-free price
at time 0 is the value Q!0 such that the objective function J.!0/ D EŒ��!T �

2 is equal
to zero. In the case of an incomplete market we can consider the mean-variance price
at time 0 given by:

arg min
!0

J.!0/ D Y0: (18)

Under which conditions Eqs. (17) and (18) are satisfied can be seen in [8].
If the terminal condition is a function of S1T ; : : : ; S

n
T , the BCOS methodology

explained in the next section can be applied to approximate the solution to (16).

3.1.3 Note on Terminal Condition in BSDEs Without Jumps

The solution of a BSDE without jumps is given by the pair .Y;Z/. In this case is
possible to have an expression of both components of the solution at the terminal
time thanks to the following extension of the usual Feynman-Kac theorem, that was
stated in [12] and gives a relation between BSDE and semilinear PDEs.
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Theorem 3.4 Let v be a classical solution to the semilinear PDE

@v

@t
.t; x/C L v.t; x/C f .t; x; v.t; x/; ŒDxv.t; x/	.t; x/�

0/ D 0; .t; x/ 2 Œ0;T/ � R
n;

(19)

v.T; x/ D g.x/; x 2 R
n; (20)

where Dx is the gradient of v, Dxv.t; x/ D .@x1v.t; x/; : : : ; @xnv.t; x//, and L
denotes a second order differential operator. Assume that a constant C > 0 exists
such that, for all .t; x/, jv.t; x/j C jDxv.t; x/	.t; x/j 6 C.1 C jxj/. Then the pair
.Yt;Zt/ defined by .v.t;Xt/; ŒDxv.t;Xt/	.t;Xt/�

0/, s 6 t 6 T, is the solution to the
BSDE

dYt D �f .t;Xt;Yt;Zt/dt C Z0t dWt; 0 6 t 6 T; YT D g.XT/; (21)

where the functions f W Œ0;T� � R
n � R � R

d ! R and g W Rn ! R are R-valued
Borel functions and fXt; t 2 Œ0;T�g is the solution to

dXt D �.t;Xt/dt C 	.t;Xt/dWt; 0 6 t 6 T; X0 D x0; (22)

with x0 2 R
n, � W Œ0;T� � R

n ! R
n and 	 W Œ0;T� � R

n ! R
n�d.

The converse results states: Suppose .Yt;Zt/ is the solution to the BSDE (21),
then the function defined by v.t; x/ D Yt is the solution to (19)–(20).

3.2 Pricing and Quadratic Hedging with Jumps (Case c > 0)

Since the number of uncertainty sources (d C c) is bigger than the number of
assets (n) we have an incomplete market. Therefore, as in the previous case perfect
replication is usually not possible. We need to solve the problem (14). In [8] can be
seen that such problem is equivalent to solve the following BSDE:

dYt D 	
rYt C A0˙�1 N	Zt C A0˙�1 N"D N� Ut



dt C Z0t dWt

C
cX

pD1

Z

Ep
Up

t .�
p/ ONp.d� p; dt/; 0 6 t 6 T; (23)

YT D �; (24)

where

A D .A1; : : : ;An/
0; with Aj D N�j C

cX

pD1
N"jp
Z

Ep

N� p�p.d� p/� r; (25)

� D N"diag.

1X

lD1
N�1l P1l ; : : : ;


c
X

lD1
N� c
l Pc

l /; (26)



Extension of a Fourier-Cosine Method to Solve BSDEs with Higher Dimensions 83

D D diag.�1; : : : ; �c/; (27)

˙ D N	 N	 0 C�D�0; (28)

N� Ut D .


1X

lD1
N�1l P1l U1.�1l /; : : : ;


c
X

lD1
N� c
l Pc

l Uc.� c
l //
0: (29)

Remark 3.5 See [9] for the derivation of and specific results of existence and
uniqueness of solution to (23). As in the no jumps case, since random parameters are
considered in [9], then to solve (14) is equivalent to solve one system consisting of
one SRE and one BSDE. For simplicity, we consider constant parameters avoiding
the SRE.

With .Y;Z;U/ solution to (23), the solution of (14) is given by:

�t D ˙�1
	 N	Zt C N"D N� Ut C A.Yt� � !t/



: (30)

Under which conditions Eq. (30) is satisfied can be seen in [9].
If the terminal condition is a function of S1T ; : : : ; S

n
T , the BCOS methodology

explained in the next section can be applied to approximate the solution to (23).
In the next section we propose a technique to approximate the solution of the

BSDE (7) that is an extension to higher dimensions of the method developed in
[16]. This technique can be used to solve the different FBSDEs presented in this
section.

4 Fourier-Cosine Method to Solve the BSDEJ

In [16] a Fourier-cosine method to solve BSDEs in which the terminal condition
depends on one process is developed. This technique consists of two steps:

1. the discretization of the FBSDE by a general �-method for the time-integration,
2. (BCOS method) the approximation of the conditional expectations that arise after

the corresponding discretization by the use of the COS method developed in [5].

In this work, the methodology is extended to the case in which the terminal
condition depends on more than one process. The extension of the BCOS technique
follows the same steps as in [16] and takes into account ideas developed in [15].
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4.1 Discretization of the FBSDEJ

We wish to discretize the coupled system (7)–(9) that is equivalent to:

Xj
t D Xj

0 C
Z t

0

�j.s;Xs/ds C
dX

iD1

Z t

0

	 ji.s;Xs/dWi
s

C
cX

pD1

Z T

0

"jp.s;Xs/

Z

Ep
� pNp.d� p; ds/; 0 < t 6 T; (31)

Xj
0 D xj

0; (32)

with j D 1; : : : ; n, and:

Yt D YT C
Z T

t
f .s; �s/ds �

dX

iD1

Z T

t
Zi

sdWi
s

�
cX

pD1

Z T

t

Z

Ep
Up

s .�
p/ ONs.d� p; ds/; 0 6 t < T; (33)

YT D g.XT/; (34)

where �s D �
.X1s ; : : : ;X

n
s /;Ys; .Z1s ; : : : ;Z

d
s /; .U

1
s ; : : : ;U

c
s /
�0
:

In order to obtain the discretization of the coupled system (31)–(33) we consider
the partition ftmgM

mD0 with t0 D 0, tM D T and t D tmC1 � tm > 0. We use the
simplification of notation:

�m 	 �tm ; Xj
m 	 Xj

tm ; Ym 	 Ytm ; Zi
m 	 Zi

tm ; Up
m 	 Up

tm ;

Wi
m 	 Wi

tmC1
� Wi

tm
; ONp.d� p; t/ 	 ONp.d� p; tmC1/� ONp.d� p; tm/:

Therefore, we obtain:

Xj
0 D xj

0; (35)

Xj
mC1 D Xj

m C
Z tmC1

tm

�j.s;Xs/ds C
dX

iD1

Z tmC1

tm

	 ji.s;Xs/dWi
s

C
cX

pD1
"jp.s;Xs/

Z tmC1

tm

Z

Ep
� pNp.d� p; ds/; (36)

m D 0; : : : ;M � 1;
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with j D 1; : : : ; n, and:

YM D g.XM/; (37)

Ym D YmC1 C
Z tmC1

tm

f .s; �s/ds �
dX

iD1

Z tmC1

tm

Zi
sdWi

s

�
cX

pD1

Z tmC1

tm

Z

Ep
Up

s .�
p/ ONs.d� p; ds/; (38)

m D M � 1; : : : ; 0:

Then, the following approximation of the solution to (31) is derived by applying
the Euler discretization scheme:

Xj
0 D xj

0; (39)

Xj
mC1 D Xj

m C �j.tm;Xm/t C
dX

iD1
	 ji.tm;Xm/Wi

m

C
cX

pD1
"jp.tm;Xm/

Z

Ep
� pNp.d� p; t/; (40)

m D 0; : : : ;M � 1;

with j D 1; : : : ; n. However, it is not possible to apply the same discretization
scheme backwards in time to (38), because it would not take into account the
adaptability constraint on the solution. Following [16], conditional expectations
are taken to go backwards in time. Let EmŒ�� denote EŒ�jFtm �. Taking conditional
expectations at both sides of (38), at both sides of (38) multiplied by Wi

m,
i D 1; : : : ; d, and at both sides of (38) multiplied by ON.f�p

l g; t/, p D 1; : : : ; c,
l D 1; : : : ; 
p, we obtain:

Ym 
 EmŒYmC1�Ct�Y f .tm; �m/Ct.1 � �Y/EmŒ f .tmC1; �mC1/�; �Y 2 Œ0; 1�;
(41)

0 
 EmŒYmC1Wi
m�Ct.1 � � i

Z/EmŒ f .tmC1; �mC1/Wi
m��

�t� i
ZZi

m �t.1 � � i
Z/EmŒZ

i
mC1�; � i

Z 2 Œ0; 1�; i D 1; : : : ; d (42)

0 
 EmŒYmC1 ONp.f�p
l g; t/�Ct.1 � �p

U/EmŒ f .tmC1; �mC1/ ONp.f�p
l g; t/��

� Pp
l �

pt�p
UUp

m.�
p
l /� Pp

l �
pt.1 � �

p
U/EmŒU

p
mC1.�

p
l /�; �

p
U 2 Œ0; 1�;

p D 1; : : : ; c;

l D 1; : : : ; 
p: (43)
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These equations allow the following approximation for the solution of (7):

1. YM D g.XM/.
2. For m D M � 1; : : : ; 0:

Zi
m D �.� i

Z/
�1.1 � � i

Z/EmŒZ
i
mC1�Ct�1.� i

Z/
�1
EmŒYmC1Wi

m�C
C .� i

Z/
�1.1 � � i

Z/EmŒ f .tmC1; �mC1/Wi
m�; i D 1; : : : ; d; (44)

Up
m.�

p
l / D �.�p

U/
�1.1 � �p

U/EmŒU
p
mC1.�

p
l /�

C .Pp
l �

pt/�1.�p
U/
�1
EmŒYmC1 ONp.f�p

l g; t/�C
C .Pp

l �
p/�1.�p

U/
�1.1 � �p

U/EmŒ f .tmC1; �mC1/ ONp.f�p
l g; t/�;

p D 1; : : : ; c;

l D 1; : : : ; 
p; (45)

Ym D EmŒYmC1�Ct�Y f .tm; �m/Ct.1 � �Y/EmŒ f .tmC1; �mC1/�: (46)

The terminal condition is a deterministic function of XM and X is a Markov process.
Therefore, there are deterministic functions y; z1; : : : ; zd; u1; : : : ; uc so that

Ym D y.tm;Xm/ D y.tm; .X
1
m; : : : ;X

n
m//; (47)

Zi
m D zi.tm;Xm/ D zi.tm; .X

1
m; : : : ;X

n
m//; i D 1; : : : ; d; (48)

Up
m.�

p
l / D up.tm;Xm; �

p
l / D up.tm; .X

1
m; : : : ;X

n
m/; �

p
l /; p D 1; : : : ; c;

l D 1; : : : ; 
p: (49)

Then EmŒ�� can be replaced by E
x
mŒ��, where E

x
mŒ�� is the expectation conditioned to

Xm D x 2 R
n. We have a scheme to solve the BSDE backwards in time in which the

approximation of conditional expectations is necessary. Following [15], we propose
the approximation of these expectations by Fourier-cosine series expansions.

4.2 BCOS Method

In this section we propose a methodology to approximate the conditional expecta-
tions that appear after the discretization. This technique is called BCOS method and
is based on the close relation of the characteristic function of the process X with the
coefficients of the Fourier-cosine expansion of its density function.

We present the case n D 2, however the methodology can be extended to
higher dimensions (see [15, Sect. 8] and [13]). For simplicity, we assume constant
parameters �, 	 and " in (9), although the use of more general terms is possible.
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Then we obtain:

Xj
0 D xj

0; j D 1; 2 (50)

�
X1mC1
X2mC1

�

D
�

X1m
X2m

�

C
�
�1

�2

�

t C
�
	11 � � � 	1d

	21 � � � 	2d

�
0

B
@

W1
m
:::

Wd
m

1

C
A

C
�
"11 � � � "1c

"21 � � � "2c

�
0

B
@

R
E1 �

1N1.d� 1;t/
:::

R
Ec �

cNc.d� c; t/;

1

C
A ;

m D 0; : : : ;M � 1; (51)

and the characteristic function in u D .u1; u2/0 of the process X D .X1;X2/0 given
x D .x1; x2/0 is

'.ujx/ D '.uj.0; 0/0/eiu0x D �.u/eiu0x; (52)

with

�.u/ D exp
�
i�0ut � 1

2
u0		 0ut

� cY

pD1
exp

�
�pt.'� p.u/� 1/�; (53)

where '� p.u/ D P
p

lD1 Pp
l ei."1p;"2p/u�

p
l .

The characteristic function allows the approximation of the conditional expecta-
tions Ex

mŒ��, Ex
mŒ�Wi

m� and E
x
mŒ� ONp.f�p

l g; t/� by the following formulas1:

• IA WD E
x
mŒv.tmC1;X1mC1;X2mC1/�:

IA 

N1�1X0

k1D0

N2�1X0

k2D0
Vk1k2.tmC1/˘A

k1k2 .x
1; x2/; (54)

with

˘A
k1k2 .x

1; x2/ WD b1 � a1

2

b2 � a2

2

1

2

	
˚C

k1k2
.x1; x2/C ˚�k1k2 .x

1; x2/


; (55)

1
X0

denotes that the first term in the sum is multiplied by 1
2
.
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where

˚˙k1k2 .x
1; x2/ WD 2

b1 � a1
2

b2 � a2
Re

�

exp

�

ik1�
x1 � a1

b1 � a1
˙ ik2�

x2 � a2

b2 � a2

�

��
�

k1�

b1 � a1
;˙ k2�

b2 � a2

�

: (56)

• IB.i/ WD E
x
mŒv.tmC1;X1mC1;X2mC1/Wi

m� (i D 1; : : : ; d):

IB.i/ 

N1�1X0

k1D0

N2�1X0

k2D0
Vk1k2 .tmC1/˘

B.i/
k1k2
.x1; x2/; (57)

with

˘
B.i/
k1k2
.x1; x2/ D b1 � a1

2

b2 � a2

2

1

2
.	1i; 	2i/

	r˚C
k1k2
.x1; x2/C r˚�k1k2 .x

1; x2/


:

(58)

• IC.p;l/ WD EmŒv.tmC1;X1mC1;X2mC1/ ONp.f�p
l g; t/� (p D 1; : : : ; c, l D 1; :::; 
p):

IC.p;l/ 

N1�1X0

k1D0

N2�1X0

k2D0
Vk1k2 .tmC1/

1

2

h
˘

C.p;l/C
k1k2

.x1; x2/C˘
C.p;l/�
k1k2

.x1; x2/
i
; (59)

with

˘
C.p;l/˙
k1k2

.x1; x2/ D Re

�

exp

�

ik1�
x1 � a1

b1 � a1
˙ ik2�

x2 � a2

b2 � a2

�

� �
�

k1�

b1 � a1
;˙ k2�

b2 � a2

�

�

� Pp
l �

pt

�

exp

�

i."1p k1�

b1 � a1
˙ "2p k2�

b2 � a2
/�p

�

� 1
�

:

(60)

These formulas can be obtained adapting the derivation in [15, 16]. First we put
the conditional expectation as a double integer of the density function multiplied
by the function v. Secondly, the infinite integration range of the expectations are
truncated and a sufficiently large interval Œa1; b1� � Œa2; b2� � R

2 is considered.
Thirdly, the density function and the function v are replaced by the Fourier-cosine
series expansions on Œa1; b1��Œa2; b2� and the series summations in these expansions
are truncated by taking finite summations with N1 and N2 terms. Finally, the Fourier-
cosine coefficients of the density function are approximated following [5]. Then, the
terms Vk1k2 .tmC1/ denote the Fourier-cosine coefficients of the function v.
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Briefly, all derivations carried out in [16] can be adapted to the 2 dimensional
case taking into account the equality cos.˛/ cos.ˇ/ D 1

2
Œcos.˛C ˇ/C cos.˛ �ˇ/�.

4.2.1 Approximation of y.tm; .x1; x2//, zi.tm; .x1; x2//, i D 1; : : : ; d, and
up.tm; .x1; x2/; �

p
l /, p D 1; : : : ; c, l D 1; : : : ; �p

Taking into account the formulas (54)–(59) and (47)–(48), we can approximate the
conditional expectations in (44)–(46) obtaining:

zi.tm; .x
1; x2// D

N1�1X0

k1D0

N2�1X0

k2D0

�

�1 � � i
Z

� i
Z

Z i
k1k2 .tmC1/

�

˘A
k1k2.x

1; x2/C

C
N1�1X0

k1D0

N2�1X0

k2D0

�
1

t� i
Z

Yk1k2 .tmC1/C 1 � � i
Z

� i
Z

Fk1k2 .tmC1/
�

t˘B.i/
k1k2
.x1; x2/;

(61)

up.tm; .x
1; x2/; �p

l / D
N1�1X0

k1D0

N2�1X0

k2D0

�

�1 � �p
U

�
p
U

U
p;l

k1k2
.tmC1/

�

˘A
k1k2 .x

1; x2/C

C
N1�1X0

k1D0

N2�1X0

k2D0

�
1

Pp
l �

pt�p
U

Yk1k2 .tmC1/

C 1 � �
p
U

Pp
l �

p�
p
U

Fk1k2 .tmC1/
�

� 1

2

h
˘

C.p;l/C
k1k2

.x1; x2/C˘
C.p;l/�
k1k2

.x1; x2/
i
; (62)

y.tm; .x
1; x2// D t�Y f .tm; x

1; x2; y.tm; .x
1; x2//; fzi.tm; .x

1; x2//gd
iD1;

fful.tm; .x
1; x2/; �p

l /g

p

lD1gr
pD1/C

C h.tm; .x
1; x2//; (63)

with

h.tm; .x
1; x2// D E

x
mŒYmC1�Ct.1 � �Y/E

x
mŒ f .tmC1; �mC1/� 




N1�1X0

k1D0

N2�1X0

k2D0
.Yk1k2 .tmC1/Ct.1 � �Y/Fk1k2 .tmC1//˘A

k1k2 .x
1; x2/:

(64)

Fk1k2 .tmC1/, Yk1k2 .tmC1/, Z i
k1k2
.tmC1/ and U p;l

k1k2
.tmC1/ denote the Fourier-cosine

coefficients of f , y, zi and up, respectively. Notice that we use the function h to
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represent the explicit part in Eq. (46). Due to the implicit part in this equation
we will need an iterative method to obtain the value y.tm; .x1; x2//. We propose
y.tm; .x1; x2// 
 yPIt�1.tm; .x1; x2// where yPIt�1.tm; .x1; x2// is the result obtained
after PIt Picard iterations (see [7]), starting with an initial value:

y0.tm; .x
1; x2// D E

x
mŒYmC1� 


N1�1X0

k1D0

N2�1X0

k2D0
Yk1k2 .tmC1/˘A

k1k2 .x
1; x2/: (65)

4.2.2 Recovery of Fourier-Cosine Coefficients

In this section we explain an efficient algorithm to compute the Fourier-cosine
coefficients backwards in time.

For this purpose, following [15], we define:

M˙
k1k2 .a; b/ D 2

b � a

Z b

a
e
˙ik2�

x � a

b � a cos
�
k1�

� x � a

b � a
dx: (66)

Taking into account this notation and the expressions (61), (62) and (64) for
the functions zi.tm; .x1; x2//, up.tm; .x1; x2/; �

p
l / and h.tm; .x1; x2//, respectively, we

obtain:

Z i
k1k2 .tm/ D 2

b1 � a1
2

b2 � a2

Z b1

a1

Z b2

a2
zi.tm; .x

1; x2// cos

�

k1�
x1 � a1

b1 � a1

�

� cos

�

k2�
x2 � a2

b2 � a2

�

dx1dx2 



 Re

8
<

:

N1�1X0

Ok1D0

N2�1X0

Ok2D0
V

Zi
C

Ok1;Ok2 .tmC1/M
C
k1Ok1 .a

1; b1/MC
k2Ok2 .a

2; b2/

9
=

;
C

C Re

8
<

:

N1�1X0

Ok1D0

N2�1X0

Ok2D0
VZi

�

Ok1;Ok2 .tmC1/M
C
k1Ok1 .a

1; b1/M�
k2 Ok2 .a

2; b2/

9
=

;
; (67)

where

V
Zi

˙

Ok1;Ok2 .tmC1/ D 1

2
�

 Ok1�
b1 � a1

;˙ Ok2�
b2 � a2

!�

�1 � � i
Z

� i
Z

Z i
Ok1;Ok2 .tmC1/C

Ct

 

	1i iOk1�
b1 � a1

˙ 	2i iOk2�
b2 � a2

!�
1

t� i
Z

YOk1;Ok2 .tmC1/

C1 � � i
Z

� i
Z

FOk1;Ok2 .tmC1/
��

: (68)
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U
p;l

k1k2
.tm/ D 2

b1 � a1
2

b2 � a2

Z b1

a1

Z b2

a2
up.tm; .X

1
m;X

2
m/; �

p
l / cos

�

k1�
x1 � a1

b1 � a1

�

� cos

�

k2�
x2 � a2

b2 � a2

�

dx1dx2 



 Re

8
<

:

N1�1X0

Ok1D0

N2�1X0

Ok2D0
V

U
p;l
C

Ok1;Ok2 .tmC1/M
C
k1Ok1 .a

1; b1/MC
k2Ok2 .a

2; b2/

9
=

;
C

C Re

8
<

:

N1�1X0

Ok1D0

N2�1X0

Ok2D0
VUp;l

�

Ok1;Ok2 .tmC1/M
C
k1Ok1 .a

1; b1/M�
k2Ok2 .a

2; b2/

9
=

;
; (69)

where

V
U

p;l
˙

Ok1;Ok2 .tmC1/ D 1

2
�

 Ok1�
b1 � a1

;˙
Ok2�

b2 � a2

!�

�1 � �p
U

�
p
U

U p;l
Ok1;Ok2 .tmC1/C

CPp
l �

pt

"

exp

 

i."1p
Ok1�

b1 � a1
˙ "2p

Ok2�
b2 � a2

/�p

!

� 1

#

�

�
�

1

Pp
l �

pt�p
U

YOk1;Ok2 .tmC1/C 1 � �p
U

Pp
l �

p�
p
U

FOk1;Ok2 .tmC1/
��

: (70)

Hk1k2 .tm/ D 2

b1 � a1
2

b2 � a2

Z b1

a1

Z b2

a2
h.tm; .x

1; x2// cos

�

k1�
x1 � a1

b1 � a1

�

� cos

�

k2�
x2 � a2

b2 � a2

�

dx1dx2 



 Re

8
<

:

N1�1X0

Ok1D0

N2�1X0

Ok2D0
VHC

Ok1;Ok2 .tmC1/M
C
k1Ok1 .a

1; b1/MC
k2Ok2 .a

2; b2/

9
=

;
C

C Re

8
<

:

N1�1X0

Ok1D0

N2�1X0

Ok2D0
VH�

Ok1;Ok2 .tmC1/M
C
k1Ok1 .a

1; b1/M�
k2Ok2 .a

2; b2/

9
=

;
; (71)

where

VH
˙

Ok1;Ok2 .tmC1/D 1

2
�

 Ok1�
b1 � a1

;˙ Ok2�
b2 � a2

!
h
YOk1;Ok2 .tmC1/Ct.1 � �Y/FOk1;Ok2 .tmC1/

i
:

(72)



92 M. Pou et al.

Therefore, in each case we need compute Ck1k2 .tm/ D CC
k1k2
.tm/CC �

k1k2
.tm/, with

C˙k1k2 .tm/ D Re

8
<

:

N1�1X0

Ok1D0

N2�1X0

Ok2D0
V˙Ok1;Ok2 .tmC1/M

C
k1Ok1 .a

1; b1/M˙
k2 Ok2 .a

2; b2/

9
=

;
: (73)

Notice that the coefficients Ck1k2 .tm/ are representing the Fourier-cosine coeffi-
cients Z i

k1k2
.tm/, U

p;l
k1k2
.tm/ or Hk1k2 .tm/ and the values V˙Ok1;Ok2 .tmC1/ are representing

V
Zi

˙

Ok1;Ok2 .tmC1/, V
U

p;l
˙

Ok1;Ok2 .tmC1/ or V
H

˙

Ok1;Ok2 .tmC1/.
The computation of these coefficients consists of two matrix-vector multiplica-

tions that can be efficiently obtained by an Fast Fourier Transform (FFT) algorithm,
thanks to the desirable properties of the matrix with entries M˙

k1k2
.a; b/. See [6].

Finally,

Yk1k2 .tm/ 
 t�YFk1k2 .tm/C Hk1k2 .tm/; (74)

where the coefficients

Fk1k2 .tm/ D 2

b1 � a1
2

b2 � a2

Z b1

a1

Z b2

a2
f .tm; .x

1; x2/; y.tm; .x
1; x2//;

fzi.tm; .x
1; x2//gd

iD1; ffup.tm; .x
1; x2/; �p

l /g

p

lD1gc
pD1/�

� cos

�

k1�
x1 � a1

b1 � a1

�

cos

�

k2�
x2 � a2

b2 � a2

�

dx1dx2 (75)

are approximated by a Discrete Fourier-Cosine Transform (DCT).

4.2.3 Algorithm

Briefly, the algorithm we propose to approximate the solution of the FBSDE is:

1. Compute Yk1k2 .tM/ from the terminal condition.2

2. For m D M � 1; : : : ; 1, compute:

a. on an equidistant .x1; x2/-grid with Q1 � Q2 grid points, fzi.tm; .x1; x2//gd
iD1,

ffup.tm; .x1; x2/; �
p
l /g
p

lD1gc
pD1, h.tm; .x1; x2//, y.tm; .x1; x2// and

f .tm; .x1; x2/; y.tm; .x1; x2//; fzi.tm; .x1; x2//gd
iD1; ffup.tm; .x1; x2/;

�
p
l /g
p

lD1gc
pD1/, with (61)–(65),

2Since the terminal conditions ZM and Um are not known, we set �Y D �1Z D : : : D �d
Z D �1U D

: : :D � c
U D 1 in the first time iteration.
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b. fZ i
k1k2
.tm/gd

iD1, ffU p;l
k1k2
.tm/g
p

lD1gc
pD1, Hk1k2 .tm/, Fk1k2 .tm/ and Yk1k2 .tm/, by

using the Fourier-cosine coefficients of the time tmC1 and (67)–(75).

3. Compute fzi.t0; .x10; x
2
0//gd

iD1, ffup.t0; .x10; x
2
0/; �

p
l /g
p

lD1gc
pD1, y.t0; .x10; x

2
0// from

(61), (62) and (65).

5 Results

In this section we present the obtained results for the case n D 2, i.e., two forward
stochastic processes.

5.1 No Jumps Case in Complete Market

Following the numerical example presented in Sect. 3.1.1, we consider two assets
whose prices S1 and S2 are driven by

�
dS1t
dS2t

�

D
� N�1S1t

N�2S2t

�

dt C
� N	11S1t N	12S1t

N	21S2t N	22S2t

��
dW1

t

dW2
t

�

; (76)

with N	11 D O	1, N	12 D 0, N	21 D � O	2 and N	22 D p
1 � �2 O	2. Notice that the

processes are correlated by the parameter �. Taking Xj
t D ln.Sj

t/, j D 1; 2, we obtain:

�
dX1t
dX2t

�

D
� N�1 � 1

2
. O	1/2

N�2 � 1
2
. O	2/2

�

dt C
� O	1 0

� O	2 p1 � �2 O	2
��

dW1
t

dW2
t

�

: (77)

We consider a derivative contract with payoff � D g.S1T ; S
2
T/ D g.eX1T ; eX2T /. The

BSDE for pricing and hedging such derivative contract is given by:

dYt D 	
rYt C .Z1t ;Z

2
t / N	�1. N� � r1/



dt C .Z1t ;Z

2
t /

�
dW1

t

dW2
t

�

;

0 6 t 6 T; YT D g.eX1T ; eX2T /; (78)

with

N� � r1 D
� N�1 � r

N�2 � r

�

; N	 D
� N	11 N	12

N	21 N	22
�

D
� O	1 0

� O	2 p1 � �2 O	2
�

: (79)
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5.1.1 Method Data

According to [15], we take a1 D a2 D a and b1 D b2 D b for the range of
integration in (75) and further, where

a WD min
jD1;2

�

Xj
0 C K j

1 � L
q

K j
2

�

; b WD max
jD1;2

�

Xj
0 C K j

1 C L
q

K j
2

�

; L D 10;

(80)
being K j

i the ith cumulant of the variable Xj:

K j
1 D Œ N�j � 1

2
. O	 j/2�T; K j

2 D . O	 j/2T: (81)

We consider two different schemes for the discretization:

• Scheme A: �Y D 0, �1
Z D �2

Z D 1,
• Scheme B: �Y D 0:5, �1

Z D �2
Z D 0:5.

PIt D 5 Picard iterations are taken in the Scheme B, with which y.tm; .X1m;X
2
m//

is solved implicitly.
We will take the values N1 D N2 D N and Q1 D Q2 D Q.

5.1.2 Model Data

The different sets of model parameters that we consider are shown in Table 1.

5.1.3 Payoff Functions

We take into account derivatives whose payoffs are given by:

• Spread Option (SO): g.S1T ; S
2
T/ D max

�
S1T � S2T ; 0

�
,

• Geometric Basket Call Option (Geo): g.S1T ; S
2
T/ D max

�q
S1T

q
S2T � K; 0

�

,

• Arithmetic Basket Call Option (Arith): g.S1T ; S
2
T/ D max

�
.S1T C S2T/=2� K; 0

�
,

• Call-On-Maximum Option (COM): g.S1T ; S
2
T/ D max

�
max.S1T ; S

2
T/� K; 0

�
,

• Put-On-Minimum Option (POM): g.S1T ; S
2
T/ D max

�
K � min.S1T ; S

2
T/; 0

�
.

Table 1 Model parameters

S10 S20 N�1 N�2 O	1 O	2 � r T K

Set I 100 100 0:1 0:1 0:25 0:3 0:3 0:05 0.1 100

Set II 90 110 0:1 0:1 0:2 0:3 0:25 0:04 1 100

Set III 40 40 0:1 0:1 0:2 0:3 0:5 0:048790 7/12 40
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5.1.4 Results

Tables 2 and 3 show the results with different data and payoff functions. Table 1
shows the expected behavior respect to the convergence in the variable Y when
M is increased: first order with Scheme A and second order with Scheme B. As
we expected, Scheme B provides better results in the pricing of derivatives than
Scheme A. Table 2 shows small errors in the pricing of several contracts depending
on two assets. We can conclude that the extension of the BCOS method works in
the two-dimensional problem.

5.2 No Jumps Case in Incomplete Market

Following the numerical example presented in Sect. 3.1.2, we consider two assets
whose prices S1 and S2 are driven by

�
dS1t
dS2t

�

D
� N�1S1t

N�2S2t

�

dt C
� N	11S1t N	12S1t N	13S1t

N	21S2t N	22S2t N	23S2t

�
0

@
dW1

t

dW2
t

dW3
t

1

A ; (82)

with N	11 D N	12 D O	1=p2, N	13 D 0, N	21 D N	22 D � O	2=p2 and N	23 D p
1 � �2 O	2.

Notice that the processes are correlated by the parameter �. Taking Xj
t D ln.Sj

t/,
j D 1; 2, we obtain:

�
dX1t
dX2t

�

D
� N�1 � 1

2
. O	1/2

N�2 � 1
2
. O	2/2

�

dt C
� O	1=p2 O	1=p2 0

� O	2=p2 � O	2=p2 p1 � �2 O	2
�
0

@
dW1

t

dW2
t

dW3
t

1

A :

(83)

We consider a derivative contract with payoff � D g.S1T ; S
2
T/ D g.eX1T ; eX2T /. The

BSDE for pricing and hedging such derivative contract is given by:

dYt D 	
rYt C . N� � r1/0. N	 N	 0/�1 N	.Z1t ;Z2t ;Z3t /0



dt

C.Z1t ;Z2t ;Z3t /
0

@
dW1

t

dW2
t

dW3
t

1

A ; YT D g.eX1T ; eX2T /; (84)

with

N� � r1 D
� N�1 � r

N�2 � r

�

; N	 D
� N	11 N	12 N	13

N	21 N	22 N	23
�

D
� O	1=p2 O	1=p2 0

� O	2=p2 � O	2=p2 p1 � �2 O	2
�

:

(85)
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Table 3 SO with Set I model data, Arith with Set II model data and COM and POM with Set III
model data

Sch B SO Arith COM POM

Reference value 4:1345 � 100 1:0173 � 101 5:4879 � 100 3:7986 � 100
Error 4:7091 � 10�4 7:1873 � 10�5 6:8658 � 10�4 5:3795 � 10�4

For the reference values see [10, 15] and [17]. We take M D N D Q D 128

Table 4 Mean-variance price and quadratic hedging of a Geometric Basket Call Option

Y0 Z10 Z20 Z30
8:8810 5:5807 5:5807 8:3358

5.2.1 Method Data

The range of integration is taken as in the previous example in the complete market.
We consider the following scheme for the discretization:�Y D 0:5,�1

Z D �2
Z D

�3
Z D 0:5.
PIt D 5 Picard iterations are taken.
We will take the values N1 D N2 D Q1 D Q2 D M D 256.

5.2.2 Model Data

The model parameters that we consider are the corresponding to the Set II in Table 1.

5.2.3 Payoff Functions

We apply the methodology for the pricing and hedging of a Geometric Basket Call
Option whose payoff was previously indicated.

5.2.4 Results

Table 4 shows the results of the mean-variance price and the quadratic hedging of a
Geometric Basket Call Option. As we expected, the mean-variance price equals to
the price in the case of a complete market and the hedging is the same in the first
two sources of uncertainty and equal to the complete case in the third one. We can
conclude that the extension of the BCOS method works also in incomplete markets.
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5.3 Jumps Case

Following the numerical example presented in Sect. 3.2, we consider two assets
whose prices S1 and S2 are driven by

�
dS1t
dS2t

�

D
�

b1S1t
b2S2t

�

dt C
� N	11S1t N	12S1t

N	21S2t N	22S2t

��
dW1

t

dW2
t

�

C
� N"11S1t N"12S1t

N"21S2t N"22S2t

�

0

B
B
B
B
@

2X

lD1
.e�

1
l � 1/ ON1.f�1l g; dt/

2X

lD1
.e�

2
l � 1/ ON2.f�2l g; dt/

1

C
C
C
C
A
; (86)

with N	11 D O	 , N	12 D 0, N	21 D � O	2, N	22 D p
1 � �2 O	2, "11 D "22 D 1 and

"12 D "21 D 0. Notice that the processes are correlated by the parameter �. If we

denote N�j D b j �
2X

lD1
.e�

j
l � 1/�jP j

l , j D 1; 2, we have:

�
dS1t
dS2t

�

D
� N�1S1t

N�2S2t

�

dt C
� N	11S1t N	12S1t

N	21S2t N	22S2t

��
dW1

t

dW2
t

�

C
�N"11S1t N"12S1t

N"21S2t N"22S2t

�

0

B
B
B
B
@

2X

lD1
.e�

1
l � 1/N1.f�1l g; dt/

2X

lD1
.e�

2
l � 1/N2.f�2l g; dt/

1

C
C
C
C
A
: (87)

Taking Xj
t D ln.Sj

t/, j D 1; 2, we obtain:

�
dX1t
dX2t

�

D
� N�1 � 1

2
. O	1/2

N�2 � 1
2
. O	2/2

�

dt C
� O	1 0

� O	2 p1 � �2 O	2
��

dW1
t

dW2
t

�

C
� N"11 N"12

N"21 N"22
�

0

B
B
B
B
@

2X

lD1
�1l N1.f�1l g; dt/

2X

lD1
�2l N2.f�2l g; dt/

1

C
C
C
C
A
: (88)

We consider a derivative contract with payoff � D g.S1T ; S
2
T/ D g.eX1T ; eX2T /. The

BSDE for pricing and hedging such derivative contract is given by (23) with YT D
g.eX1T ; eX2T /.
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5.3.1 Method Data

According to [15], we take a1 D a2 D a and b1 D b2 D b for the range of
integration in (75) and further, where

a WD min
jD1;2

"

Xj
0 C K j

1 � L

r

K j
2 C

q

K j
4

#

;

b WD max
jD1;2

"

Xj
0 C K

j
1 C L

r

K
j
2 C

q

K
j
4

#

; L D 12; (89)

being K j
i the ith cumulant of the variable Xj:

K j
1 D Œ N�j � 1

2
. O	 j/2 C �j��

j
�T (90)

K
j
2 D Œ. O	 j/2 C �j.��

j
/2 C �j.	�

j
/2�T; (91)

K
j
4 D Œ.��

j
/4 C 6.��

j
/2.	�

j
/2 C 3�j.	�

j
/4��jT; (92)

where ��
j D

2X

lD1
�

j
l P

j
l and 	�

j D
 

2X

lD1
.�

j
l /
2Pj

l � .�� j
/2

!1=2

.

We consider the following scheme for the discretization:�Y D 0:5,�1
Z D �2

Z D
�3

Z D 0:5.
PIt D 5 Picard iterations are taken.
We will take the values N1 D N2 D Q1 D Q2 D 128.

5.3.2 Model Data

The model parameters that we consider are represented in Table 5 and we take � D
0:25, r D 0:04, T D 1 and K D 100.

Table 5 Model parameters

j Sj
0 bj O	 j �j Pj � j

1 90 0:1 0:2 0.0228 .�0:1338;�0:9838/ .0:5; 0:5/

2 110 0:1 0:3 0.03 .�0:1;�0:8/ .0:5; 0:5/
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Table 6 Mean-variance price and quadratic hedging of a Geometric Basket Call Option on jump
diffusion processes

M Y0 Z10 Z20 U1
0.�

1
1 / U1

0.�
1
2 / U2

0.�
2
1 / U2

0.�
2
2 /

4 9:2600 7:8108 8:2503 0:6650 0:6650 0:8816 0:8816

8 9:2623 7:9959 8:4455 0:6798 0:6798 0:9011 0:9011

16 9:2622 8:0360 8:4873 0:6828 0:6828 0:9049 0:9049

32 9:2622 8:0453 8:5019 0:6833 0:6833 0:9061 0:9061

64 9:2621 8:0484 8:5136 0:6832 0:6832 0:9072 0:9072

128 9:2621 8:0498 8:5209 0:6831 0:6831 0:9079 0:9079

We take M 2 f4; 8; 16; 32; 64; 128g

5.3.3 Payoff Functions

We apply the methodology for the pricing and hedging of a Geometric Basket Call
Option whose payoff was previously indicated.

5.3.4 Results

Table 6 shows the results of the mean-variance price and the quadratic hedging of a
Geometric Basket Call Option on jump diffusion processes.

6 Conclusions

The technique developed was applied to price and hedge derivatives contracts on two
risky assets. We obtained results in the no jumps case (for complete and incomplete
markets) and in the jumps case. We can conclude that the extension of the BCOS
method works to solve the BSDEs that arise in the different cases.
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Fichera Theory and Its Application in Finance

Zuzana Bučková, Matthias Ehrhardt, and Michael Günther

Abstract The Fichera theory was first proposed in 1960 by Gaetano Fichera and
later developed by Olejnik and Radkevič in 1973. It turned out to be very useful
for establishing the well-posedness of initial boundary value problems for parabolic
partial differential equations degenerating to hyperbolic ones at the boundary.

In this paper we outline the application of the Fichera theory to interest rates
models of Cox-Ingersoll-Ross (CIR) and Chan-Karolyi-Longstaff-Sanders (CKLS)
type. For the one-factor CIR model the obtained results are consistent with the
corresponding Feller condition.

Keywords Computational finance • Interest rate model

1 Introduction

The Fichera theory focus on the question of appropriate boundary conditions (BCs)
for parabolic partial differential equations (PDEs) degenerating at the boundary.
According to the sign of the Fichera function one can separate the outflow or inflow
part of the solution at the boundary. Thus, this classical theory indicates whether
one has to supply a BC at the degenerating boundary.

In this paper we illustrate the application of the Fichera theory to the Cox-
Ingersoll-Ross (CIR) interest rate model and its generalisation, the Chan-Karolyi-
Longstaff-Sanders (CKLS) model [2]. Here, at the left boundary the interest rate
tends to zero and thus the parabolic PDE degenerates to a hyperbolic one. For further
applications of Fichera theory to other current models in financial mathematics we
refer the interested reader to [4].
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2 The Boundary Value Problem for the Elliptic PDE

We consider an elliptic second order linear differential operator

Lu D aij
@2u

@xi@xj
C bi

@u

@xi
C cu; x 2 ˝ � R

n; (1)

where A D .aij/ 2 R
n�n is symmetric and induces a semi-definite quadratic form

�>A� � 0 for all � 2 R
n. ˙ denotes a piecewise smooth boundary of the domain

˝ . The subset of ˙ where the quadratic form vanishes, �>A� D 0, will be denoted
as˙h (hyperbolic part) and the set of points of˙ where the quadratic form remains
positive, �>A� > 0, is denoted as a ˙p (parabolic) part. For˙h, the hyperbolic part
of the boundary˙h, we introduce the Fichera function

b D
nX

iD1

 

bi �
nX

kD1

@aik

@xk

!

�i; (2)

where �i is the direction cosine of the inner normal to ˙ , i.e. it is �i D cos.xi;ni/,
where ni is the inward normal vector at the boundary.

On the hyperbolic part of the boundary ˙h we define according to the sign of
the Fichera function the three subsets ˙0 (b D 0 tangential flow), ˙C (b > 0,
outflow) and˙� (b < 0, inflow), i.e. the boundary˙ D ˙p [˙h can be written as
a unification of four boundary parts: ˙ D ˙p [˙0 [˙C [˙�.

Olejnik and Radkevič [7, Lemma 1.1.1] showed that the sign of the Fichera
function b at the single points ˙h does not change under smooth nondegenerate
changes of independent variables in a given elliptic operator (1). In [7, Theorem
1.1.1] it is stated that the subsets ˙0, ˙C, ˙� remain invariant under a smooth
nonsingular changes of independent variables in the elliptic operator (1).

The parabolic boundary ˙p can be rewritten as a unification of two sets ˙D
p

(Dirichlet BC) and˙N
p (Neumann BC). Let us state one simple example.

Example 1 ([6]) The boundary value problem for an elliptic PDE reads

Lu D f on ˝ � R
n;

u D g on ˙� [˙D
p

aij
@u

@xi
nj D h on ˙N

p

If ˙N
p is an empty set, we obtain a Dirichlet problem; if ˙D

p is an empty set, a
Neumann problem; if˙D

p and˙N
p are not empty, the problem is of mixed Dirichlet-

Neumann type. Recall that for hyperbolic PDEs one must not supply BCs for
outflow boundaries (˙C) or boundaries where the characteristics are tangential to
the boundary (˙0), since this may violate the information that is transported from
the interior of the domain.
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3 Application to One-Factor Interest Rate Models
of CKLS Type

We start with an interest rate model in the form of a stochastic differential equation

dr D �.� � r/ dt C 	r� dW; (3)

where �, � are positive constants, and � non-negative. This CKLS model [2] is a
mean-reversion process with non-constant volatility 	r� . Using the Itô formula for
a duplicating portfolio in a risk neutral world one can derive a PDE for the zero-
coupon bond price P.r; 
/:

@P

@

D ˛.r; 
/

@2P

@r2
C ˇ.r; 
/

@P

@r
� rP; r > 0; 
 > 0; (4)

where ˛.r; 
/ D 1
2
	2r2� , ˇ.r; 
/ D �.� � r/. A closed form formula for this model

can be given in special cases, cf. [1]:

(a) if � D 0, this is the classical Vašíček model with constant volatility.
(b) for � D 0:5, we get the Cox-Ingersoll-Ross (CIR) model (CIR), [3].

For general � (CKLS model) there is no closed form formula for the bond price
P.r; 
/ and the PDE (4) has to be solved numerically.

The volatility term in (4), for a short rate r tending to zero, is ˛.0; 
/ D 0. Thus
the parabolic PDE (4) reduces at r D 0 to the hyperbolic PDE

@P

@

D ��

@P

@r
; 
 > 0: (5)

Next, the Fichera function (2) for our model reads

b.r/ D ˇ.r; 
/ � @˛.r; 
/

@r
; (6)

and we check the sign of (6) for r ! 0C:

• if lim
r!0C

b.r/ � 0 (outflow boundary) we must not supply any BCs at r D 0.

• if lim
r!0C

b.r/ < 0 (inflow boundary) we have to define BCs at r D 0.

Especially for the proposed model we get b.r/ D �.� � r/ � 	2�r2��1 and we
can distinguish the following situations:

(a) for � D 0:5 (CIR model) ) if �� � 	2=2 � 0, we do not need any BCs.
(b) for � > 0:5 ) if �� � 0, we do not need any BCs.
(c) for � 2 .0; 0:5/) if lim

r!0C

b.r/ D �1, we need BCs.
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Remark 1 (Feller Condition) The Feller condition guaranteeing a positive interest
rate defined by (3) for the one-factor CIR model is 2�� > 	2 and is equivalent with
the condition derived from the Fichera theory. If the Feller condition holds, then the
Fichera theory states that one must not supply any BC at r D 0.

4 A Two-Factor Interest Rate Model

We consider a general two-factor model given by the set of two SDEs

dx1 D .a1 C a2x1 C a3x2/ dt C 	1x
�1
1 dW1; (7)

dx2 D .b1 C b2x1 C b3x2/ dt C 	2x
�2
2 dW2; (8)

CovŒdW1; dW2� D � dt; (9)

containing as special cases the Vašíček model (�1 D �2 D 0) and the CIR model
(�1 D �2 D 0:5). The drift functions are defined as linear functions of the two
variables x1 and x2. Choosing a1 D b1 D b2 D 0 we get two-factor convergence
model of CKLS type (in case of general �1, �2 � 0). The variable x1 models the
interest rate of a small country (e.g. Slovakia) before entering the monetary EURO
union and the variable x2 represents the interest rate of the union of the countries
(such as the EU).

Applying the standard Itô formula one can easily derive a parabolic PDE

@P

@

D Qa11 @

2P

@x21
C Qa22 @

2P

@x22
C Qa12 @2P

@x1@x2
C Qa21 @2P

@x2@x1
C Qb1 @P

@x1
C Qb2 @P

@x2
C QcP; (10)

where P.x; y; 
/ represents the bond price at time 
 for interest rates x and y, and

Qa11 D 	21 x2�11
2

; Qa22 D 	22 x2�22
2

; Qa12 D Qa21 D 1

2
�	1x

�1
1 	2x

�2
2

Qb1 D a1 C a2x1 C a3x2; Qb2 D b1 C b2x1 C b3x2; Qc D �x1;

for x1; x2 � 0, 
 2 .0;T/, with initial condition P.x1; x2; 0/ D 1 for x1, x2 ¤ 0.
Now, the Fichera function (2) in general reads

b.x1; x2/ D
�

a1 C a2x1 C a3x2 �
�
	21 �1x

2�1�1
1 C 1

2
�	1x

�1
1 	2�2x

�2�1
2

�� x1
q
1C x21

C
�

b1 C b2x1 C b3x2 �
�1

2
�	1�1x

�1�1
1 	2x

�2
2 C 	22 �2x

2�2�1
2

�� x2
q
1C x22

:
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Depending on �1 and �2, we get the following results:

• For �1 D �2 D 0 (classical Vašíček model), the Fichera function simplifies to

b.x1; x2/ D .a1 C b1/C .a2 C b2/x1 C .a3 C b3/x2;

and boundary conditions must be supplied, if

8
ˆ̂
<

ˆ̂
:

x1 � � a1Cb1C.a3Cb3/x2
a2Cb2

for a2 C b2 ¤ 0

x2 � � a1Cb1
a3Cb3

for a2 C b2 D 0; a3 C b3 ¤ 0

a1 C b1 � 0 for a2 C b2 D 0; a3 C b3 D 0

:

• For �1 D �2 D 0:5 (CIR model), the Fichera function simplifies to

b.x1; x2/ D
�

a1 C a2x1 C a3x2 �
�

	21 �1 C 1

4
�	1	2

r
x1
x2

��
x1

q
1C x21

C
�

b1 C b2x1 C b3x2 �
�
1

4
�	1	2

r
x2
x1

C 	22 �2

��
x2

q
1C x22

We must supply boundary conditions for � > 0, and must not for � < 0. For
� D 0, BCs at x2 D 0 must be posed if x1 � 	21 �1=.2a2/ � a1=a2 (assuming
a2 > 0, and for x1 D 0, if x2 � 	22 �2=.2b2/�b1=b2 (assuming b2 > 0), otherwise
not.

• For the general case �1, �2 > 0, we discuss the boundary x2 D 0; x1 > 0; due to
symmetry, the case x2 D 0; x1 > 0 follows then by changing the roles of x1 and
x2, as well as �1 and �2. For x2 D 0 the Fichera function simplifies to

lim
x2!0C

b.x1; x2/D
�

a1 C a2x1 � 	21 �1x2�1�1
1 � 1

2
�	1x

�1
1 	2�20

�2�1

�
x1

q
1C x21

D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

h
a1 C a2x1 � 	21 �1x2�1�1

1

i
x1p
1Cx21

� D 0

�1 0 < �2 < 1; � ¤ 0
h
a1 C a2x1 � 	21 �1x2�1�1

1 � 1
2
�	1x

�1
1 	2

i
x1p
1Cx21

�2 D 1; � ¤ 0
h
a1 C a2x1 � 	21 �1x2�1�1

1

i
x1p
1Cx21

�2 > 1; � ¤ 0

For 0 < �2 < 1 and � ¤ 0, BCs are needed, if � is positive, and BCs must not
be posed, if � is negative. In all other cases, the sign of b, which defines whether
BCs must be supplied or not, depends on a1, a2, 	1, 	2 and �1, see Fig. 1.
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Fig. 1 Boundary decomposition in two-factor CIR model

5 Numerical Results

Choosing set of parameters � D 0:5, � D 0:05, 	 D 0:1, � D 0:5 (CIR), we
get at r D 0 a positive Fichera function b D �� � 	2=2 D 0:02 > 0. This is
equivalent with the statement that the Feller condition is satisfied. According to the
Fichera theory, as soon as it is outflow part of boundary, we must not supply BCs.
In this example in Figs. 2 and 3 and Table 1, we intentionally supplied BCs in an
‘outflow’ situation when we should not in order to illustrate what might happen if
one disregards the Fichera theory. In the evolution of the solution we can observe a
peak and oscillations close to the boundary. In Fig. 3 we plot with the relative error,
which is reported also in Table 1.

In our example we used the same parameters, but with or without defining
Dirichlet BC. Here, “without BC” means that we used for the numerical BC the
limit of the interior PDE for r ! 0. The corresponding results are shown in Figs. 4
and 5 and the relative errors are recorded in Table 2.

For the numerical solution we used the implicit finite difference method from
[5]. The reference solution is obtained either as the analytic solution for the CIR
model (� D 0:5, if Feller condition is satisfied), cf. [1] or in all other cases using
a very fine resolution (and suitable BCs). The conditions at outflow boundaries
are obtained by studying the limiting behaviour of the interior PDE or simply by
horizontal extrapolation of appropriate order. Recall that negative values of the
Fichera function (i.e. an inflow boundary) corresponds to a not satisfied Feller
condition and may destroy the uniqueness of solutions to the PDE.
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Fig. 2 Numerical solution, Dirichlet BC
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Fig. 3 Relative error, case with Dirichlet BC

Table 1 Relative error, case
with BC

Time [days] Relative error

1 0.0147

40 0.0079

80 0.0029

120 (maturity) 0

6 Conclusion

We discussed one and two factor interest rate models and applied the classical
Fichera theory to the resulting degenerate parabolic PDEs. This theory provides
highly relevant information how to supply BCs in these applications.

As a next step, we will investigate multi-factor models, which are coupled only
via the correlation of the Brownian motion:

dxi D .ai C bixi/dt C 	ix
�i
i dWi;

CovŒdWi; dWj� D �ij dt; i; j D 1; : : : ; n:
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Fig. 4 Numerical solution,
without BC
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Fig. 5 Relative error, case
without BC
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Table 2 Relative error, case
without BC

Time [days] Relative error

1 0.0039

40 0.0029

80 0.0015

120 (maturity) 0
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Modelling Stochastic Correlation

Long Teng, Matthias Ehrhardt, and Michael Günther

Abstract It is well known that the correlation between financial products, financial
institutions, e.g., plays an essential role in pricing and evaluation of derivatives.
Using a constant or deterministic correlation may lead to correlation risk, since
market observations give evidence that the correlation is hardly a deterministic
quantity.

Here, the approach of Teng et al. (A versatile approach for stochastic correlation
using hyperbolic functions. Preprint 13/14. University of Wuppertal, 2013) for mod-
elling the correlation as a hyperbolic function of a stochastic process is generalized
to derive stochastic correlation processes (SCP) from a hyperbolic transformation
of the modified Ornstein-Uhlenbeck process. We determine a transition density
function of this SCP in closed form which could be used easily to calibrate SCP
models to historical data.
As an example we compute the price of a quantity adjusting option (Quanto) and
discuss concisely the effect of considering stochastic correlation on pricing the
Quanto.

Keywords Computational finance • Option pricing • Stochastic correlation pro-
cess

1 General Instructions

Correlation is an established concept for quantifying the relationship between assets.
It plays an essential role in several financial applications, e.g. in portfolio credit
models, the default correlation is one fundamental factor of risk evaluation [1, 9].
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For two random variables X1, X2 with finite variances, the correlation of them is

�1;2 D Corr.X1;X2/ D Cov.X1;X2/

	1	2
; (1)

with the covariance

Cov.X1;X2/ D E
	
.X1 � �1/.X2 � �2/



; (2)

where �i and 	i are the expectation and standard deviation of Xi, i D 1; 2. Here
�1;2 denotes a coefficient number in the interval Œ�1; 1�. The boundaries �1 and 1
will be reached if and only if X1 and X2 are indeed linearly related. The greater the
absolute value of �1;2 the stronger the dependence between X1 and X2 is.

The observability is a problem of using a correlation concept in financial markets.
Unlike price, exchange rate, etc., the correlation cannot be observed directly in
the market and can only be measured in the context of a model. The easiest
estimator of the correlation is the sample correlation coefficient. Given a series of N
measurements of the observable quantities X1, X2, and denoting the measurements
by x1;j, x2;j, j D 1; 2; : : : ;N, the sample coefficient correlation reads

O�12 D
PN

jD1.x1;j � N�1/.x2;j � N�2/
qPN

jD1.x1;j � N�1/2PN
jD1.x2;j � N�2/2

; (3)

where N�1 and N�2 are the sample means of X1 and X2.
In financial models, stochastic processes are used quite often to model data series,

like price, interest rate and exchange rate. The dependence between the series is
given by the correlated Brownian motions W1 and W2 (in symbolic notion)

dW1;t dW2;t D �1;2 dt: (4)

However, the dependence can be hardly modelled by a fixed constant, i.e. the
constant correlation may not be an appropriate measure of co-dependence. Using
constant (“wrong”) correlation may result some ‘correlation risk’. There exist
already some works which show that the correlation should not be constant and even
changes over a small time interval as the volatility, see e.g. [7]. Several approaches
generalize the constant correlation to a time-varying and stochastic concept, like
the Dynamic Conditional Correlation model [2], the Local correlation models see
e.g. [4] and the Wishart autoregressive process proposed by Gourieroux [3] that
guarantees the positive definiteness of the variance-covariance matrix. Furthermore,
modelling correlation as stochastic process was proposed, see [5, 10] and [8].
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2 Stochastic Correlation with a Modified
Ornstein-Uhlenbeck Process

In this section, we specify a SCP by a hyperbolic transformation of the modified
Ornstein-Uhlenbeck process. The derivation of the transition density function of
this SCP is provided in a closed form which could be used easily for calibration.

2.1 The Transformed Modified Ornstein-Uhlenbeck Process

The Ornstein-Uhlenbeck process is defined by the SDE

dXt D �.� � Xt/ dt C 	 dWt; (5)

where �, 	 > 0 and X0, � 2 R. If we want to restrict the mean value � to be only
in .�1; 1/, it is reasonable to modify the Ornstein-Uhlenbeck process (5) as

dXt D �
�
�� tanh.Xt/

�
dt C 	 dWt; (6)

where �, 	 > 0 and X0, � 2 .�1; 1/.
Lemma 1 Applying Itô’s Lemma with �t D tanh.Xt/,

d�t D @ tanh.Xt/

@x
dXt C 1

2

@2 tanh.Xt/

@x2
	2 dt (7)

gives the stochastic correlation process as

d�t D .1 � �2t /
�
�.�� �t/ � 	2�t

�
dt C .1 � �2t /	 dWt; (8)

where t � 0, �0 2 .�1; 1/, �, 	 > 0 and � 2 .�1; 1/.
Proof

(7) D sech2.Xt/�
�
� � tanh.Xt/

�
dt � sech2.Xt/

sinh.Xt/

cosh.Xt/
	2dt C sech2.Xt/	dWt

D .1 � �2t /�.� � �t/dt � .1 � �2t /�t	
2dt C .1 � �2t /	dWt
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We define �� D � C 	2, �� D ��

�C	2 , 	� D 	 and rewrite (8) as

d�t

1 � �2t
D ��.1 � ��/dt C 	� dWt; (9)

where t � 0, �0 2 .�1; 1/, ��, 	� > 0 and �� 2 .�1; 1/.

2.2 Transition Density Function

For calibration purposes, we need to determine the transition density function of (9)
with the aid of the Fokker-Planck equation [6]. Then, we obtain the parameters of
the correlation process (9) by fitting the density function to the market data.

Let us assume that the SCP (9) possesses a transition density f .t; Q�j�0/ which
satisfies the following Fokker-Planck equation

@

@t
f .t; Q�/C @

@ Q�
�Oa.t; Q�/f .t; Q�/� � 1

2

@2

@ Q�2
�Ob.t; Q�/2f .t; Q�/� D 0; (10)

with

Oa.t; Q�/ D ��.1 � ��/.1 � Q�2/; Ob.t; Q�/ D .1 � Q�2/	�: (11)

For the calibration purpose we consider the stationary density (for t ! 1/

f . Q�/ WD lim
t!1 f .t; Q�j�0/: (12)

With the above construction the SCP (9) is a mean-reverting process. Every two
solutions of (10) are equal for t ! 1, i.e. a unique stationary solution f . Q�/ exists
[6].

Next we show how to determine the analytical stationary density function f . Q�/
of the SCP (9). First, the stationary density function f . Q�/ obviously satisfies

@

@ Q�
�
.1 � Q�2/���.1 � ��/�f . Q�/

�
D 1

2

@2

@ Q�2
�
.1 � Q�2/	��2f . Q�/: (13)
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By solving the elliptic equation (13) we obtain the stationary density f . Q�/ as

f . Q�/ D m

2
��

	�

.1C Q�/ �
�

�2	�2

	�2
C ����

	�2 .1 � Q�/ �
�

�2	�2

	�2
� ����

	�2

C n

Q�2 � 1

�
1

2

� 2	�2
���

	�2

F

 

1;
2.	�2 � ��/

	�2
;
.��� � 1/�� C 2	�2

	�2
;

Q�C 1

2

!

(14)

with the constants m, n 2 R, the hypergeometric function F and the Pochhammer
symbol .�/k. Now we need to fix the constants m and n in (14) to obtain the stationary
density. Due to the mean reversion the stationary density f . Q�/ must satisfy

Z 1

�1
Q�f . Q�/ d Q� D ��: (15)

If we choose �� D 0; we observe that the first term in (14) becomes

m

2
��

	�2

.1C Q�/ �
�

�2	�2

	�2 .1 � Q�/ �
�

�2	�2

	�2 ; (16)

which is obviously symmetric around Q� D 0, i.e. the condition (16) will be fulfilled
for n D 0. In the sequel we assume that n 	 0 for all general �� 2 .�1; 1/ such
that the transition density function (14) can be rewritten as

f . Q�/ D m

2
��

	�2

.1C Q�/ �
�

�2	�2

	�2
C ����

	�2 .1 � Q�/ �
�

�2	�2

	�2
� ����

	�2 : (17)

To determine the value of m we can employ the basic property of a density function

Z 1

�1
f . Q�/ d Q� D 1: (18)

The constant m in (17) must be chosen such that the normalization condition (18) is

always fulfilled. We set a D ���2	�2

	�2
, b D ����

	�2
, and substitute it into (17) to obtain

f . Q�/ D m

2
��

	�2

.1C Q�/aCb.1 � Q�/a�b: (19)

The fact, as long as the condition (A): a ˙ b > �1, is fulfilled, the integral

Z 1

�1
.1C Q�/aCb.1 � Q�/a�b d Q� (20)
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has the solution

M WD� .1C a � b/F.1;�a � b; 2C a � b;�1/
� .2C a � b/

C � .1C a C b/F.1;�a C b; 2C a C b;�1/
� .2C a C b/

;

(21)

with the hypergeometric function F and the gamma function � . Straightforward
calculations show that the condition (A) will always hold due to � 2 .�1; 1/. Thus,

the constant m can be determined as m D 2
��

	�2 =M. Finally, we obtain the transition
density function in a closed form as

f . Q�/ D .1C Q�/aCb.1 � Q�/a�b

M
; (22)

with M defined in (21). The parameters ��, �� and 	� can be obtained by fitting (22)
to the historical correlation, if we assume that the correlation is itself observable.

We could generalize the correlation process (9) with the same definition but
directly with the arbitrary parameter coefficients � > 0, � 2 .�1; 1/ and 	 > 0,
like

d�t

1 � �2t
D �.1 � �/dt C 	 dWt: (23)

For this case, we obtain a D ��2	2
	2

, b D ��

	2
. We perform a similar calculation for

checking the condition (A) as above:

a C b > �1 ( ��2	2
	2

C ��

	2
> �1 ( �.1C �/ > 	2 ( � > 	2

1C� ;

a � b > �1 ( ��2	2
	2

� ��

	2
> �1 ( �.1 � �/ > 	2 ( � > 	2

1�� .

The process (23) could be employed for the stochastic correlation if the condition
� > 	2

1˙� is fulfilled. We find that this condition dovetails nicely with that condition
in [10], which ensures that the boundaries �1 and 1 are unattainable.

3 Pricing Quantos with Stochastic Correlation

Quanto options hedge the exchange rate risk when investing in products not valued
in the domestic currency. One has to consider the correlation between the currency
exchange rate Rt between domestic and foreign currencies, and the price St of the
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underlying. We assume that St and Rt follow the coupled stochastic process by

(
dSt D �SSt dt C 	SSt dWS

t

dRt D �RRt dt C 	RRt dWR
t ;

(24)

where WS
t and WR

t are correlated using the SCP (23) as:

d�t

1 � �2t
D �.1 � �/ dt C 	 dWt: (25)

Wt is assumed to be independent of WS
t and WR

t . From [8] we know that the price of
a Quanto Put-Option in the extended BS model incorporating the SCP reads

PQuanto D PQuanto.S0;K; re; rd;D.�t/; 	S; 	R;T/

D R0
�
K exp�rdT N .�d2/� S0 exp�D.�t/T N .�d1/

� (26)

d1 D log. S0
K /C ..rd � D.�t//C 	2S

2
/=T

	S

p
T

; d2 D d1 � 	S

p
T: (27)

Using the conditional Monte-Carlo approach the fair price can be approximated by

P0 D e
	
eŒPQuanto.S0;K; rd;D.�t/; 	S;T/jF .�f0�s�tg/�


 

PM

iD1 Pi
Quanto

M
(28)

We assume the parameters for the pricing formula (28) up to correlation. Then,
we estimate both the constant correlation coefficient and the SCP parameters using
the same market data, namely historical data of S&P 500 and Euro/US-Dollar
exchange rate (January 2003–March 2013). The estimated constant correlation is
0.025 and SCP parameters are provided in Fig. 1. We let the SCP starting from the
first correlation in the historical correlations and compare the Quanto option prices
between using constant and stochastic correlation, the plot of price differences is on
the right side.

We can observe, whilst the maturity T is shorter than 3 years, the price with
constant correlation is lower than the price with stochastic correlation. Then, from
nearly T D 3, the price calculated with constant correlation becomes higher than
the corresponding price calculated with stochastic correlation. The reason for this,
before the time T D 3; the SCP provides the correlations which are closed to the
initial correlation �0 D 0:3 which is larger than the constant correlation � D 0:025.

We conclude that our numerical results give strong evidence that the correlation
risk caused by using a wrong (constant) correlation model cannot be neglected.
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Fig. 1 Black-Scholes parameters: K D 80, S0 D 100, R0 D 1, rd D 0:05, re D 0:03, 	S D 0:2,
	R D 0:4, Correlation process parameters: � D 7:937, � D 0:003, 	 D 1:186 and �0 D 0:3
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Numerical Solution of Partial
Integro-Differential Option Pricing Models
with Cross Derivative Term

M. Fakharany, R. Company, and L. Jódar

Abstract The aim of this paper is to construct a reliable and efficient finite
difference scheme for American option pricing under Bates model. First, we
transform the associated partial-integro differential equation for this model into
another suitable one without the cross derivative. Thereafter, a finite difference
discretization has been used for the partial derivatives while the integral part is
discretized using the four-points open type formula. The obtained finite difference
scheme is solved using PSOR method. Several examples are included showing the
advantage of the proposed approach.

Keywords Computational finance • Option pricing • Partial-integro-differential
equations

1 Problem Formulation

In this paper we study American options under Bates model. This model is dedicated
to describe the behavior of the underlying asset S and its variance � by the following
coupled stochastic differential equations:

dS.t/ D .r � q � ��/S.t/dt Cp
�.t/S.t/dW1 C .� � 1/S.t/dZ.t/;

d�.t/ D �.� � �.t//dt C 	
p
�.t/dW2;

such that

dW1dW2 D �dt;
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where W1 and W2 are standard Brownian motions, Z is the poisson process. The
parameter r is the risk free interest rate, q is the continuous dividend yield, � is the
jump intensity, � is the jump amplitude of the jump diffusion process and � is the
expected relative jump size (� D EŒ� � 1�). Whereas � is the mean reversion rate,
� is the long-run variance, 	 is the volatility of the variance � and � is the Wiener
correlation parameter. By using Itô calculus and standard arbitrage arguments one
gets the partial integro-differential equation (PIDE) for European option case [1, 2]

L.U/ D @U

@

� 1

2
�S2

@2U

@S2
� �	�S

@2U

@S@�
� 1

2
�	2

@2U

@�2
� .r � q � ��/S

@U

@S

� �.� � �/
@U

@�
C .r C �/U � �

Z 1

0

U.S�; �; 
/f .�/d� D 0; (1)

f .�/ D 1p
2� O	� expŒ� .ln � � �/2

2 O	2 �; (2)

where 
 D T � t is the time to maturity, � is the mean of the jump and O	 is the
standard deviation. The problem is subjected to the initial condition given by the
payoff function g1.S; �/ for call options

U.S; �; 0/ D g1.S; �/ D maxfS � E; 0g: (3)

On the other hand the corresponding linear complementarity problem (LCP) for
American option pricing is given by

L.U/ � 0; U � g1; L.U/.U � g1/ D 0; (4)

associated with the following boundary conditions

U.0; �; 
/ D g1.0; �/; lim
S!1U.S; �; 
/ D lim

S!1 g1.S; �/; lim
�!1

@U

@�
.S; �; 
/ D 0:

(5)

2 Problem Transformation and Discretization

2.1 Problem Transformation

The discretization of the cross spatial derivative generates negative coefficients
which lead to several problems such as poor accuracy and slow convergence [3].
In [4], the mixed spatial derivative is discretized using nine point compact stencil,
while it is discretized by seven point stencil associated with a condition on the
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correlation parameter � in [2, 5, 6]. A finite difference scheme with cross derivatives
correctors for multidimensional parabolic systems is investigated in [7] and this idea
is used in [8] to solve the Heston model PDE problem for the case of European
options.

Our aim is to remove the cross spatial derivative using a suitable transformation.
To achieve this aim, first we use the discriminant quantity

.�; S/ D B2 � 4AC D 	2�2S2.�2 � 1/; (6)

where A D 1
2
�S2; B D �	�S and C D 1

2
�	2. Since �1 < � < 1, implies that

.�; S/ < 0, consequently, (1) is of elliptic type. Then by using the canonical form
for the elliptic equation, see [9], the suitable substitution is obtained by solving the
following ordinary differential equation

d�

dS
D 	.�C i

p
1 � �2/

S
D 	

S
.�C i Q�/; i D p�1; (7)

where Q� D p
1 � �2. From (7), we have x D 	 Q� ln S and y D 	� ln S � �, i.e.,

(y D mx � �) such that m D �

Q� . Hence by using the following transformation

x D 	 Q� ln S; y D mx � �; V.x; y; 
/ D e.rC�/
U.S; �; 
/; (8)

the operator L.U/ is transformed into

L .V/ D @V

@

� Q�2�	2

2

�@2V

@x2
C @2V

@y2
� � Oa@V

@x
� Qa@V

@y
� I.V/; (9)

with

I.V/ D �

Z 1

0

V.x C 	 Q� ln �; y C �	 ln �; 
/f .�/d�; (10)

where

Oa D 	 Q�. O� � �

2
/; Qa D 	�. O� � �

2
/� �.� � �/ and O� D r � q � ��: (11)

In order to match the discretization of the differential and integral parts of (9), we
consider the following change of variable in the integral part

� D x C 	 Q� ln �: (12)



124 M. Fakharany et al.

Hence from (2) and (10) one gets

I.V/ D �p
2� O	 Q�	

Z 1

�1
V.�; y C m.� � x/; 
/ exp

"
�1
O	2
�
� � x

	 Q� � �

�2
#

d�:

(13)

In light of the transformation (8), the payoff (3) is converted into

V.x; y/ D g2.x; y/ D maxfe
x
	 Q� � E; 0g:

Therefore, the transformed LCP (4) for American options pricing takes the follow-
ing form

L .V/ D @V

@

� D.V/ � I.V/ � 0; V � g2; L .V/.V � g2/ D 0; (14)

where,

D 	 Q�2�	2
2

� @2

@x2
C @2

@y2
�C Oa @

@x
C Qa @

@y
: (15)

The transformed boundary conditions are

lim
x!˙1V.x; y; 
/ D lim

x!˙1 g2.x; y/;
@V

@y
D 0;mx � y ! 1: (16)

Under the transformation (8), a numerical bounded rectangular domain of the
form ŒS1; S2�� Œ�1; �2� is converted into a rhomboid ABCD as shown in Fig. 1, where
the sides are given by

ABDf.x;y/2R2j a�x�b; yDmx��2g;

BCDf.x;y/2R2j xDb; yDmb��; �1����2g;

CDDf.x;y/2R2j a�x�b; yDmx��1g;

DADf.x;y/2R2j xDa; yDma��; �1����2g;
where aD	 Q� ln S1 and bD	 Q� ln S2:
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Fig. 1 Rhomboid numerical
domain ABCD

2.2 Numerical Scheme Construction

Here the rhomboid computational domain is discretized by a uniform mesh points
.xi; yj/ such that xi D a C ih; 0 � i � Nx and yj D y0 C jjmjh; i � j � Nx C i
where h D .b �a/=Nx; y0 D ma ��2 and Ny D .�2��1/=jmjh. The first and second
derivatives of the spatial variables of the operator D are discretized using the central
finite difference approximation as follow

@V
@x 
 ViC1;j�Vi�1;j

2h
@V
@y 
 Vi;jC1�Vi;j�1

2jmjh
@2V
@x2


 ViC1;j�2Vi;jCVi�1;j

h2
@2V
@y2


 Vi;jC1�2Vi;jCVi;j�1

m2h2
:

(17)

Thus the discretization of the differential operator is given by

D.Vi;j/ 
 MB.i; j/Vi�1;jC MC.i; j/Vi;j�1�B.i; j/Vi;jCOB.i; j/ViC1;jC OC.i; j/Vi;jC1; (18)
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where

MB.i; j/ D
� Q�2	2�i;j

2h2
� Oai;j

2h

�
; B.i; j/ D 	2�i;j

m2h2
; OB.i; j/ D

� Q�2	2�i;j

2h2
C Oai;j

2h

�

MC.i; j/ D
� Q�2	2�i;j

2m2h2
� Qai;j

2jmjh
�
; OC.i; j/ D

� Q�2	2�i;j

2m2h2
C Qai;j

2jmjh
�
;

(19)

Oaij and Qaij are obtained from (11) by replacing � with �i;j. It is worth mention that
based on the foregoing transformation (8) we obtain a five point discretization sten-
cil for the spatial differential operator D which leads to minimize the computational
cost. Moreover, there is no restriction on the correlation parameter �.

Since the improper integral part of the Bates model contains the Gaussian
probability density function, thus the unbounded domain of this integration can be
truncated into a finite domain .a; b/ with a suitable tolerance error " > 0, see [10]

b D
q

�2 O	2 ln." O	p
2�/; a D �b: (20)

There are various kinds of approximations for the integration. The approximation
is said to be of closed type if the integrand function is evaluated at the end points
of the interval and it is of open type when these end points are omitted. In order
to discretize the integral part (13) using a suitable method, here the four point
open type approximation has been used. Derives its accuracy via extrapolating the
integrand function based on four interior points and excluding the end points of each
subinterval [11]. Furthermore, for functions whose derivatives have singularities at
the end points, open type formulas are more efficient than the corresponding closed
formulas.

Let us denote the approximation of the I.V/ by Ii;j. Here each subinterval is
selected such that it contains four interior points, so Nx should be chosen as a
multiple of 5. Then we have

Ii;j D O�
Nx=5�1X

`D0

�
11Ogi;5`C1V5`C1;5`C1Cj�i C Ogi;5`C2V5`C2;5`C2Cj�i

COgi;5`C3V5`C3;5`C3Cj�i C 11Ogi;5`C4V5`C4;5`C4Cj�i
�
; (21)

where O� D 5h�
24
p
2� O	 Q�	 and

Ogi;` 	 Og.xi; �`/ D exp

"
�1
2 O	2

�
�` � xi

	 Q� � �

�2
#

; 0 � ` � Nx: (22)

Hence we have the following semi-discrete LCP

@V
@


C AV � 0; V � g2; .
@V
@


C AV/T.V � g2/ D 0; (23)
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where A is a matrix of size .Nx C 1/.Ny C 1/ � .Nx C 1/.Ny C 1/ involving the
differential and integral parts.

Finally, the time variable 
 is discretized using the Rannacher scheme [12], such
that the first four time levels are implemented using the implicit Euler while the
rest of the time levels are obtained using Crank-Nicolson. The time variable is
discretized in this manner to avoid the oscillation of the solution, see [5].


n D
(
. n
2N

/2T; n D 0; 1; 2; 3;

. n�2
N
�2 /

2T; n D 4; 5; : : : ;N
 :
(24)

The time step size is given by kn D 
nC1 � 
n; n D 0; 1; : : : ;N
 � 1. Hence we
obtain the following sequence of LCPs

LCP. QA.nC1/;V.nC1/; QV.nC1/; g2/; (25)

where

QA.nC1/ D
�

I C knA n D 0; 1; 2; 3;

I C 1
2
knA n D 4; 5; : : : ;N
 � 1;

;

QV.nC1/ D
�

V.n/ n D 0; 1; 2; 3;

.I � 1
2
knA/V.n/ n D 4; 5; : : : ;N
 � 1:

(26)

3 Numerical Results

The following examples have been done using a CPU with Microprocessor 3.4 GHz
Intel Core i7 and implemented in Matlab. The option prices are obtained using
the PSOR method with the relaxation parameter ! D 1:5. The first example
investigates the error for Bates model with negative correlation, meanwhile the
second one investigates the error with positive correlation.

Example 1 Consider an American call option under Bates model with the following
parameters T D 0:5, E D 100, r D 0:03, q D 0:05, � D 0:04, � D 2, 	 D 0:25,
O	 D 0:4, � D �0:5, � D 0:2 and � D �0:5, the computational domain for
x 2 Œa; b�, where a and b are obtained by (20) and Œ�1; �2� D Œ0:1; 1�. Table 1
shows the variation of the root mean square relative error (RMSRE) of the option
value at S D f80; 90; 100; 110; 120g for several values of domain discretizations
.Nx;Ny;N
 /. The reference values for the prices U are given in [5]. The ratio in
Table 1 is the ratio of the each two successive root mean square relative errors.
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Table 1 Results for
example 1

PSOR.Nx;Ny;N
 / RMSRE Ratio CPU (s)

(25,15,10) 0:1377 0:024

(50,28,25) 0:0571 2:4116 0:185

(100,55,50) 0:0103 5:5269 5:596

(125,69,75) 0:0068 1:5117 17:08

(150,82,75) 0:0033 2:0430 51:74

Table 2 Results for
example 2

PSOR.Nx;Ny;N
 / RMSRE Ratio CPU (s)

(25,53,10) 0:1405 0:24

(40,85,25) 0:0687 2:0452 3:56

(60,162,50) 0:0136 5:0676 57:42

(80,216,75) 0:0078 1:7439 200:73

(100,270,100) 0:0042 1:8525 415:26

Example 2 The parameters for an American call option under Bates model are
selected as follow T D 0:5, E D 100, r D 0:03, q D 0:05, � D 0:04, � D 2,
	 D 0:4, O	 D 0:1, � D 0, � D 5 and � D 0:5 with a tolerance error " D 10�4. The
reference values are in [2], Table 2 reveals the associated RMSRE, ratio and CPU
time for several step sizes discretization.
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Short Description

In the aftermath of the crisis, the computational challenges in Finance have
been shifting from exotic derivative pricing to the simulation of large complex
portfolios of simpler instruments. This symposium focuses on emerging problems
and challenges in this area.



Recasting Finite Difference Methods in Finance
to Exploit GPU Computing

Claudio Albanese, Sebastian del Baño Rollin, and Giacomo Pietronero

Abstract Finite difference methods (FDM) have been developed and optimized in
a technology context that has radically changed. When FDMs became a standard
it used to be that memory was a scarce resource and that algorithms were either
memory or compute bound. As a consequence traditional FDMs have been designed
to minimize the number of operations and the memory footprint given a certain level
of accuracy. In this paper we describe how the potential of GPU computing can
be exploited to rethink the way FDM are implemented in the context of financial
applications.

Keywords Computational finance • Finite difference • GPU computing

1 Introduction

Finite difference methods (FDM) have been developed and optimized in a tech-
nology context that is no longer current. When FDMs affirmed themselves as a
standard it used to be that memory was a scarce resource and that algorithms were
either memory or compute bound. As a consequence traditional FDMs have been
designed to minimize the number of operations and the memory footprint to the
detriment of accuracy.

The potential of computers in terms of floating point operations per seconds
(FLOPS) and memory available increased dramatically over the last years offering
an opportunity for a rethink of the way finite difference methods are implemented.
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Nowadays only a small class of algorithms are able to exploit the computational
power of modern hardware. Most algorithms, including the (sparse) matrix-vector
multiplication that is a cornerstone of traditional finite difference methods, are
bounded by the number of memory reads and therefore are unable to exploit the
computational power of parallel computing. To highlight these limitations we test
the performance of FDMs on GPUs and analyze how GPU computing can be
exploited to improve the way FDM are traditionally implemented.

As an alternative to the FDM approach we also describe a framework proposed
by Albanese in [1] that is based on matrix multiplication (BLAS 3) and aims at
retaining modelling flexibility while using compute bound algorithms.

2 Traditional Finite Difference Methods

Finite difference methods are numerical methods that approximate the solution of
differential equations using finite difference equation to approximate derivatives.

In finance often problems are formulated in terms of partial differential equations
(PDE), where the price of a derivative over time is a function of the first and
second order derivative of the price of the option with respect to the underlying
asset. When the PDE does not admit a closed form solution one can resort to finite
difference methods to approximate the derivatives and solve the PDE iteratively on
a lattice, [5].

In this paper we use the following parallelism between the different finite dif-
ference approximations and Padé approximants described in [6] and [7]. A pricing
partial differential equation can be represented in terms of:

Vt C L � V D 0 (1)

With L being a Sturm-Liuville operator. Assuming a time-homogeneous setting
the solution to Eq. (1) is formally given by iterating:

V.t �t/ D et�LV.t/ (2)

FDMs can be seen as ways to approximate the matrix exponential et�L, for the
methods listed below the approximation corresponds with a Padé approximant.

Given a function f .x/ the Padé approximant is defined as the rational polinominal
of order (m,n) where the coefficients ai and bj are chosen so to match the first m C n
derivatives of the exponential:

R.m;n/.x/ D
Pm

iD1 aixi

1CPn
jD1 bjxj

(3)
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In line with this parallelism the traditional explicit method is given by approxi-
mating the exponential in (2) with its Padé of order .1; 0/:

R.1;0/.t � L/ D I Ct � L (4)

The implicit method instead approximates the exponential in (2) with the Padé
of order .0; 1/:

R.1;0/.t � L/ D .I �t � L/�1 (5)

and the Crank-Nicolson method corresponds to the Padé approximant of order
.1; 1/:

R.1;0/.t � L/ D
�

I C 1

2
t � L

��

I � 1

2
t � L

��1
(6)

In Eq. (2), given the choice of the method implemented, we substitute the
appropriate Padé approximant to obtain:

V.t �t/ D Rm;n.t � L/V.t/ (7)

In general this iteration based on a matrix-vector multiplication is repeated
many times until V.0/ is computed. So far the research in the field of FDM has
focused mainly on finding approximations that allow to achieve a certain degree
of accuracy while minimizing the memory usage and number of floating point
operations needed to execute the algorithm. This translate in a search for algorithms
that are well behaved for large t steps, so to minimize the number of iterations.
Therefore important properties are the stability and the degree of accuracy of the
approximation ast increases. Of the three methods presented here Crank-Nicolson
is the only one that is second order accurate and it is also A0 stable, meaning that
the approximation converges for all choices of the time step. Nevertheless above a
certain threshold for the choice of the time-step the eigenvalues of the operator R
computed using CN can become negative, giving rise to unwanted oscillations in
the solution as we show in Fig. 1.

3 GPU Computing

In the last decade the performance of a single processor has been increasing at a rate
that has been much slower then in the previous decades. As a consequence the focus
has shifted towards building multi-processor machines able to keep up for the need
for more powerful machines. The result of this trend is that nowadays servers can
have more then one central processing unit (CPU) and each CPU can have tens of
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Fig. 1 Comparison of the solution of a PDE with a delta function as the final condition, on the left
the solution has been obtained using CN with a step of 0.01 while on the right the step is 0.1

cores that execute instructions independently. In addition to that there is a wide range
of co-processors that have been developed to provide additional computational
power for bespoke problems. Among co-processors, Graphics Processing Units
(GPUs) have initially been developed to accelerate computer graphics problems but
are now used for a wide range of problems.

Nowadays a GPU can have up to 2880 cores, 12 GB of memory, and can
achieve a performance of up to 4.27 Teraflops. The type of parallelism that
can be implemented on GPUs is restricted to a Single Instruction Multiple Data
(SIMD) paradigm, meaning that in order to compute a parallel calculation the same
instruction set is applied by each core to different data.

Although the performance of multithreaded systems still continues to growth at
a high rate, it becomes more and more difficult to achieve the peak performance of
a machine. Many algorithms are not parallelizable and therefore cannot execute in
a multithreaded fashion. Further the speed of memory access has been growing at a
very low level and that means that the performance of algorithms is bounded by the
number of memory reads rather than the number of floating point operations.

As it has been pointed out by Dongarra and van der Steen [4] the algorithms that
are better suited to exploit parallel hardware, in particular GPUs, are the ones that
show a high ratio of floating point operations (FLOP) per memory read. Let d be the
dimension of a square matrix, a Matrix-Vector multiplication requires O.d2/ FLOP
and O.d2/ memory reads, the ratio between the two is a constant. Matrix-matrix
multiplication instead requires O.d3/ FLOP and O.d2/, so the ratio between the two
depends on the dimension d. As shown in Fig. 2 the performance measured in terms
of FLOP per second on a GPU is very different for the two algorithms.
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Fig. 2 Comparison of the performance measured in Floating point operations per second of the
Matrix-Matrix multiplication (GEMM) vs Matrix-Vector multiplication (GEMV) for different
dimensions of the matrix

4 How to Adapt FDM to Parallel Hardware

We have discussed how GPU computing favors algorithm that rely on matrix-matrix
multiplications.

Under the assumption of time-homogeneity the iterative scheme introduced
in (7) can be restructured using fast exponentiation. Instead of T

t matrix-vector
operations we can re-write the algorithm in terms of log2

�
T
t

�
matrix squarings (for

an appropriate choice of t), with only one final matrix-vector operation:

V.0/ D �
Rt

m;n.�/
� T
t V.T/ (8)

where the exponential of the operator can be computed using a fast exponentiation
algorithm that allows to double the time step of the operator by squaring the operator
itself:

�
Rt

m;n.�/
� � �Rt

m;n.�/
� D �

Rt
m;n.�/

�2

�
Rt

m;n.�/
�2 � �Rt

m;n.�/
�2 D �

Rt
m;n.�/

�4
(9)

The solution has the advantage that the t can be halved with an additional
matrix-matrix operation, while the traditional iterative algorithm would require to
double the number of iterations. Nevertheless the assumption of time-homogeneity
is not realistic, in financial applications typically one or more parameters have a
term structure so to fit the complexity of market data.
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4.1 A Case Study: Crank-Nicolson

The Crank-Nicolson (CN) method is one of the most popular among practitioners
because it is second order accurate and A0 stable, meaning that the approximation
converges for all choices of the time step. On the other side above a certain threshold
for the time-step the eigenvalues of the operator R computed with CN can become
negative, creating unwanted oscillations in the solution.

To avoid this issue we implement a backward induction where the approximation
is computed over an interval t small enough so that the matrix Rt

m;n.�/ has only
positive eigenvalues. This operator is then exponentiated in order to obtain the
operator overT so that the backward induction is executed over longer time steps.

V.T �T/ D 	
Rt

m;n.�/

T
t V.T/ (10)

We implemented a case study on a nVidia K10 GPU using the cuBLAS library.
The set up of the backward induction is T D 1 year,T D T

10
andt is chosen to be

equal to 2�10 �T, as a resultt is less then 1 h. The aim of the study is to compare
the performance of three different implementations of a backward induction using a
Crank-Nicolson approximation. This is how the backward induction algorithm has
been structured in the different runs:

• Run 1: this is the classic backward induction algorithm based on matrix-vector
operations executed with T

t steps of length t
• Run 2: in this run we allow for time dependencies in the PDE, as a consequence

Rt
m;n.�/ is computed and exponentiated for each intervalT

• Run 3: in this run we assume that the PDE is time-homogeneous, therefore the
operator RT

m;n.�/ can be computed only once.

In the different runs the Crank Nicolson algorithm is always implemented over a
stept, hence the final results differ only because of floating point errors. Figures 3

Fig. 3 Time to execute the backward induction in MS for different choices in the number of points
for the spot discretization
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Fig. 4 Number of floating point operations for different choices in the number of points for the
spot discretization

and 4 show how despite Run 1 requires considerably less number of floating point
operations compared to Run 2 it takes more time to execute it.

The fast exponentiation can be even more useful to speed up higher-order Padé
approximants, where the approximation is stable and free of oscillations only below
a very small t.

4.2 Operator Methods

In finance numerical schemes are typically used to approximate processes that are
continuous in time and space. The calibration of the model can be carried out
exploiting the analytical properties of the exact dynamic while numerical schemes
can be used for pricing, when analytical shortcuts are not available for a given
payoff.

In [2], [1] and [3] Albanese et al., taking advantage of the performance of BLAS
3 algorithms on GPUs, has developed a mathematical framework that allows to
specify a dynamic in discrete time and space.

A process is defined by a parametrized set of rules that fill a Markov generator
L, this generator is used to build a matrix u of transition probabilities over an
interval ıt:

uıt
�
y; y0

� D I C ıt � L
�
y; y0

�
(11)
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where y is a generic state of the underlying and

ıt � 1

maxy jL .y; y/j (12)

Although this formula is the same we used for the explicit method approximation
in Eq. (4), here the formula is used to define a process, not as approximation of a
continuous-time process with generator L.

As this set-up doesn’t require any analytical tractability of the dynamic, one can
implement a wider range of models to achieve a better degree of realism in the
process.

Also calibration and pricing can be executed consistently using the same
numerical schemes.

5 Conclusions

GPUs strongly favor algorithms based on BLAS 3 routines, in particular matrix-
matrix multiplication. This opens an opportunity to rethink the way finite difference
methods are implemented. Instead of looking for methods that prove satisfactory for
a large time-step, fast exponentiation allows to efficiently use higher order methods
with a small time-step so to avoid instabilities and oscillations.
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BLAS Extensions for Algebraic Pricing Methods

Claudio Albanese, Paolo Regondi, and Mohammad Zubair

Abstract PDE pricing methods such as backward and forward induction are
typically implemented as unconditionally marginally stable algorithms in double
precision for individual transactions. In this paper, we reconsider this strategy and
argue that optimal GPU implementations should be based on a quite different strat-
egy involving higher level BLAS routines. We argue that it is advantageous to use
conditionally strongly stable algorithms in single precision and to price concurrently
sub-portfolios of similar transactions. To support these operator algebraic methods,
we propose some BLAS extensions. CUDA implementations of our extensions turn
out to be significantly faster than implementations based on standard cuBLAS. The
key to the performance gain of our implementation is in the efficient utilization of
the memory system of the new GPU architecture.

Keywords Computational finance • GPU computing

1 Introduction

Recently, one of the authors of this paper developed a method for combined value-
risk analysis within a global market using mathematical formalism around matrix
operations making it amenable to efficient implementation on massively parallel
architectures like GPUs [1]. One of the matrix operations that dominates the overall
execution time of the calibration component of the combined value-risk analysis
framework is a BLAS-like operation, which we refer to it as Sgemv4.

The Sgemv4 computation can be viewed as a multiplication type operation of
a vector of matrices A1;A2; : : : Am with a matrix B, where Ai is multiplied by a
number of columns fBj1 ;Bj2 ;Bj3 ; : : : ;Bjqi

g, not necessarily contiguous, of matrix
B. Note that qi, which is the number of columns of B that need to be used for
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Table 1 Performance comparison of Sgemm8 with cublasSgemv and cublasSgemm for
matrix size 1024 � 1024
Number of Sgemm8 cublasSgemv cublasSgemm

vectors (GFLOPS/s) (GFLOPS/s) (GFLOPS/s)

1 52 30 14

2 95 30 27

3 128 30 31

4 161 30 54

5 175 30 68

6 188 30 82

7 202 30 94

8 200 30 107

multiplication, varies and is a function of i. In this paper, we discuss different
ways of implementing Sgemv4 on Kepler GPU with varying level of performance.
A naive implementation is to use a level-2 BLAS [2], for this operation. CUDA
Toolkit 5.5 is shipped with CUDA Basic Linear Algebra Subroutines (cuBLAS)
library [5]. We make qi calls of cublasSgemv (part of cuBLAS) for multiplying
Ai by qi columns of B. We improve on the naive implementation by collecting
columns fBj1 ;Bj2 ;Bj3 ; : : : ;Bjqi

g to form a matrix and using a cublasSgemm (part
of cuBLAS), a level-3 BLAS [7] that replaces qi calls of cublasSgemv. We
observed that for small values of qi, the performance of cublasSgemm is worse
than repeated calls of cublasSgemv. The value of qi in our application ranges
from 1 to 50. In our experimentation with matrices of size 1024 � 1024, we found
that for value of qi < 8 it is better not to use cublasSgemm. This required that we
develop our own BLAS-like extension, Sgemm8, that is optimized for multiplying
a matrix with one to eight columns. NVIDIA cuBLAS library does not support such
an extension.1

We developed an optimized implementation of Sgemm8 for Tesla Kepler
architecture. The performance of Sgemm8 is significantly better than that of
cublasSgemv or cublasSgemm for matrix multiplication with one to eight
vectors. Table 1 summarizes the performance of Sgemm8 as compared to
that of cuBLAS library on a GK104 device. Sgemm8 is 40% better than the
cublasSgemv for multiplying a matrix with a single vector; and is two times
better than cublasSgemm for multiplying a matrix with eight vectors for matrix
sizes that occur in our financial application. The key to the performance gain of
Sgemm8 is due to a novel algorithm that utilizes the new intrinsic function shuffle,
which allows sharing of data between threads of a warp and helps in reducing
memory latency. Note that Sgemm8 is close to a level-2 BLAS and the execution
time is dominated by the time to access the data from device memory.

1Intel MKL library does support, Sgem2vu, an extension of Sgemv for multiplying a matrix with
two vectors [3].
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We incorporated Sgemm8 in the Sgemv4 computation and observed an overall
speedup of 7 as compared to a base level implementation of Sgemv4 that uses
cublasSgemv.

The rest of the paper is organized as follows. In the next section, we briefly dis-
cuss CUDA and Kepler architecture. We discuss implementation of Sgemv4 using
CUDA BLAS library in Sect. 3. In Sect. 4, we give details of the kernelSgemm8 that
is key to enhancing the performance of Sgemv4. We discuss performance results
of Sgemv4 that utilizes the kernel Sgemm8 and cublasSgemm in Sect. 5. Finally
we conclude in Sect. 6.

2 CUDA and NVIDIA Kepler

A typical program on a system with a single GPU device is a C/C++ program with
CUDA APIs to move data between system memory and GPU device memory, and
to launch computation kernels on GPU [4]. The data between system memory and
the device memory is moved using the PCI Express (PCIe) bus. These transfers are
costly and therefore applications that have a higher computation to I/O ratio are
suitable for GPU computing. Also, if possible these transfers should be minimized
and it is desirable to leave the data on GPU if a subsequent kernel is going to use
the same data. A GPU device uses several memory spaces that differ in their size,
access latency, and read/write restrictions. These memory spaces include global,
local, shared, texture, and registers. Global, local, and texture memory have the
greatest access latency, followed by constant memory, registers, and shared memory.

CUDA provides an abstraction of thread hierarchy to allow computation from
different domain to nicely map to different cores of the underlying hardware. The
GPU hardware consists of a number of streaming multiprocessor which in turn
consists of multiple cores. Threads are organized in blocks, where one or more block
runs on a streaming multiprocessors. The threads in a block are further partitioned
into subgroups of 32 threads referred as Warps. A Warp, that is a sub block of 32
threads, runs on eight or sixteen cores of a streaming multiprocessor in multiple
clock cycles. Typically, data sharing between threads of a block is facilitated by
the shared memory. The Kepler architecture supports another way of sharing data
between threads of a warp, namely by using an intrinsic shuffle function. In this
paper, we focus our implementation on the NVIDIA Kepler architecture.

The Kepler architecture comes in two models K10 (GK104) and K20 (GK110).
We limit our discussion to K10 as we ran all our experiments on this model. Note
that the K10 board has two GK104 devices. However, our performance results will
hold on K20 also. All our performance results reported in this paper are on a single
GK104 device. The Kepler GK104 model has eight streaming multiprocessors
(SMX) with 192 cores on each SMX for a total of 1536 cores. Kepler has a
larger register file per multiprocessor as compared to earlier models, which helps
in improving occupancy [6].
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3 Performance Result Using cuBLAS

We tested the performance of Sgemv4 that occurs in the calibration of US dollar
interest rate model that is part of the counter party credit risk analysis framework.
For this scenario, the number of A matrices that is the value of m D 57, size of A
matrix is 1024� 1024, and size of B matrix is 1024� 1213. Recall that in Sgemv4
computation, we are multiplying a matrix Ai with qi columns of B, for i D 1–57.

3.1 Base Level Using cublasSgemv

The base level implementation of Sgemv4 was done using cublasSgemv. We
make qi calls of cublasSgemv to multiply Ai with qi columns of B, for i D 1–
57. We collected frequency distribution for values of qis to capture how often we
need to multiply a matrix with multiple vectors. The result is shown in Fig. 1. We
also calculated the percentage of time spent for qi � 8 and qi > 8, see Fig. 2. The
reason for this was to explore whether using cublasSgemm can help in improving
performance. The choice of 8 was based on our experimentation that indicated
that cublasSgemm has reasonable performance beyond eight columns. In this
figure we also included the percentage of time we spent in data movement. After
multiplying a vector of B with the matrix, we need to store the result vector back
in B at the same location. This requires that we use a temporary buffer in device
memory to hold the output vector before moving it back to the storage area of B.
These results indicate that we are spending around 60% of the time on multiplying
matrices with qi > 8. This suggest it may be better to use cublasSgemm when
multiplying Ai with multiple vectors, that is for qi > 8.

Fig. 1 Frequency
distribution for values of qi
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Fig. 2 Percentage of time
spent by cublasSgemv for
qi � 8, and qi > 8. The cost
of data movement required to
support cublasSgemv is
also shown in the figure
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Fig. 3 Percentage of time
spent by cublasSgemv for
qi � 8, and cublasSgemm
for qi > 8. The cost of data
movement using efficient
gather and scatter is also
shown in the figure
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3.2 Using cublasSgemv and cublasSgemm

For using cublasSgemm, we need to gather qi vectors of B into a matrix. We make
qi calls of cudaCopy to collect qi vectors into a matrix, before making a call to
cublasSgemm. Though the execution time for matrix operations has significantly
reduced by a factor of 50%, the overhead of moving data within device memory
has significantly increased. The major reason of this overhead is that we are making
q D 	m

iD1qi calls of cudaCopy and in each call we are copying a small amount of
data. To address this issue, we wrote two kernel programs: gather and scatter. The
gather program copies all q columns of B scattered in the memory to a temporary
contiguous area of memory; and the scatter program does the reverse. This reduced
the data movement time by a factor of 100. We also observed that for small values
of qi in the range from 2 to 4, the cublasSgemm is more expensive than calling
cublasSgemv qi times. The performance results where we call cublasSgemm
for qi > 8 along with the efficient gather and scatter is shown in Fig. 3.
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4 Sgemm8

The Sgemm8 kernel is an extension of BLAS to support matrix multiplication with
one to eight vectors. For the case of one vector the Sgemm8 is essentially a standard
Sgemv BLAS routine.

The key idea of the algorithm is to use the new intrinsic shuffle function available
on devices of compute capability 3.x that enables data sharing between threads of
a warp without going to the shared memory. This has two benefits: (a) the sharing
of data between threads happen with low latency, and (b) use of shared memory
reduces, which in turn helps in improving occupancy. The shuffle function comes in
four flavors [4].

• _shfl(): Copy from a specified source lane
• _shfl_up(): Copy from a lane with lower ID by a specified delta relative to

caller
• _shfl_down(): Copy from a lane with higher ID by a specified delta relative

to caller
• _shfl_xor(): Copy from a lane based on bitwise XOR of own lane ID

In the proposed implementation, we use the _shfl() function to share a register
value of a thread with other threads in a warp. Figure 4 illustrates the working of
_shfl(xt, j).

4.1 Performance Results of Sgemm8

We compare the performance of Sgemm8 for various matrix sizes with that of
cublasSgemv and cublasSgemm, and the results are summarized in Figs. 5
and 6. These results indicate that the performance of Sgemm8 is 40% better than the

0 1 2 31j

xt

gxt

Fig. 4 A thread th reads j element of x into xt. The shuffle function as shown in the code segment
broadcast value of xt at thread j to all threads in the warp
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Fig. 5 Performance
comparison of Sgemm8 with
cuBlas routines for
multiplying a matrix with one
column
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Fig. 6 Performance
comparison of Sgemm8 with
cuBlas routines for
multiplying a matrix with
four columns
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Fig. 7 Performance results
for Sgemm8 with varying
number of columns
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cublasSgemv for multiplying a matrix with a single vector for matrix sizes up to
1500. For larger matrices Sgemm8 has a consistent performance for a single vector
case, and is slightly better than cublasSgemv. The performance of Sgemm8
is up to two times better compared to cublasSgemm or cublasSgemv, for
multiplying matrix with multiple columns. We also summarize the performance
results for Sgemm8 with varying number of columns for matrix size 1024 � 1024

that occur in our financial application, see Fig. 7.
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Fig. 8 The performance
comparison of the base level
with the final implementation
that has all the optimizations
like efficient gather/scatter,
use of Sgemm8 for columns
1–8, and cublasSgemm for
columns greater than 8 1310
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5 Performance Results for Sgemv4 Using Sgemm8 Kernel

The performance comparison of the base level with the final implementation that
has all the optimizations like efficient gather/scatter, use of Sgemm8 for columns
1–8, and cublasSgemm for columns greater than 8 is shown in Fig. 8. Observe
that the total execution time of the base level implementation is 6100ms compared
to that of 857ms for the final implementation using all the optimizations, giving an
overall speedup of over 7.

6 Conclusion

In this paper, we give an optimized implementation of a financial calibration
application that relies heavily on matrix operations. We developed a BLAS-like
kernel, Sgemm8, in support of the financial application that is used for multiplying
a matrix with one to eight vectors. We demonstrated that the performance of
Sgemm8 is significantly better than that of cublasSgemv or cublasSgemm for
matrix multiplication with one to eight vectors. Sgemm8 is 40% better than the
cublasSgemv for multiplying a matrix with a single vector; and is two times
better than cublasSgemm for multiplying a matrix with eight vectors for matrix
sizes that occur in our financial application. The key to the performance gain of
Sgemm8 is due to a novel algorithm that utilizes the new intrinsic function shuffle,
which allows sharing of data between threads of a warp and helps in reducing
latency. We demonstrated that the calibration model speeds up by a factor of over
7 when we use Sgemm8 compared to a base level implementation using cuBLAS
routines.
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In order to present the goals and strategies of EU-MATHS-IN and the operational
background of its founding members, some mini-symposia were organized to collect
and present the industrial experiences of these organizations in cooperation with
their research partners, highlighting, when possible, the benefit for the interested
firms.

The first session of mini symposium, entitled EU-MATHS-IN: a European
Network of Mathematics for Industry and Innovation was devoted to introduce the
goals and strategies of the new European network, together with the organization
and the role of each national node member of EU-MATHS-IN, including their legal
organization, their way of working to promote the relationship between researchers
and businesses, how they spread the skills and experience of their groups, how
they act as a one stop shop for their groups, which research groups/entities are
represented in the node or how to become a member.

Then, three sessions of 2 h were followed, entitled: EU-MATHS-IN: European
success stories with Industry by collecting contributions from several national
networks. In particular, these sessions were organized by sorting on the base of
the industrial sector they refer to: Manufacturing and Service Management; Traffic
Management and Sustainable Energy and Biomedical Imaging, Electronics and
Telecommunications.



Automatic Analysis of Floating Offshore
Structures
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Francisco Pena, Andrés Prieto, Jerónimo Rodríguez,
and José Francisco Rodríguez-Calo

Abstract In the coming years offshore wind energy will be one of the most
promising areas in the renewable power generation field. Achieving the optimum
design of floating platforms requires a rigorous analysis chain to establish the
response of the whole platform under different scenarios. With this aim, we have
developed a software package that automatically analyzes the feasibility of a
floating structure. The structure of the platform is defined according to a very
general set of parameters, allowing us to consider a wide range of designs. The
package calls some commercial applications and some own codes, to complete
the analysis process. Returned results include the hydrostatic equilibrium position,
hydrodynamic pressure, RAOs (response-amplitude operators), material costs and
static stresses.

Keywords Optimal design • Sustainable energy

1 Introduction

Offshore wind power is one of the most promising fields in renewable energy
generation in the coming years. More than 90 % of the world’s offshore wind power
is currently installed in Europe. According to Global Wind Energy Council, offshore
wind represents today about 2 % of the global wind power installed capacity, and
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this figure will increase to 10 % by 2020, with many ongoing projects mainly in
Europe, United States, China and Japan.

Offshore wind has a number of advantages compared to on land such as higher
wind speeds and less turbulence, thus generating more energy from fewer turbines,
and usually fewer environmental constraints. Offshore is particularly suitable for
large scale developments near major demand centers represented by large coastal
cities, avoiding the need for long transmission lines to bring the power to these
demand centers, as is the usual case onshore.

The main areas for exploitation are however found far off the coast, in deep
waters, where fixed supporting structures similar to the ones installed on land are
no longer economical. These distant sites mean more difficult sea bottom operations
and higher waves and thus floating platforms are more suitable in these conditions.

Floating platform designs were initially conceived for Oil and Gas industry
operations. Therefore these designs were associated to huge safety factors due
to implications to human safety and to the environment of the failure of such
installations. But floating wind requirements are completely different and thus the
major challenge for offshore wind development today is to continue to bring down
costs, developing designs aimed at minimizing the capital expenditure and operating
expenses while guaranteeing structural integrity and providing suitable operating
conditions for the turbine.

For a formal optimization cycle to achieve the optimal design that minimizes the
cost of produced energy (balancing the produced power and the expenses), it is first
necessary to develop an analysis chain able to:

• Provide the response of the set platform-tower-turbine to different load scenarios
(wind and waves spectra) in a fast and rigorous way.

• Robustly handle changes in design variables.

The response analysis of the whole set to different wave and wind scenarios is
usually quite complex. The basis of floating structures optimization can be consulted
in [1–3, 7]. Unfortunately these tools are not widely available for the companies
working in this field. With this aim, we have developed a software package that
automatically analyzes the feasibility of a floating structure. The structure of the
platform is defined according to a very general set of parameters, allowing us to
consider a wide range of designs. The package calls some commercial applications
and some own codes, to complete the analysis process. The main steps are:

• Generation of a CAD file of the floating structure.
• Estimation of material cost for the whole structure.
• Calculation of the hydrostatic equilibrium position, subject to moorings and wind

force at the top of the tower.
• Calculation of hydrodynamic pressure and RAOs (response-amplitude operators)

considering moorings and wave interaction.
• Structural analysis of the platform, using the previous calculations.

This analysis tool can be used into a multi-objective optimization strategy. This
can help us find optimal designs depending on the placement of future exploitation
fields.
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Fig. 1 Flow chart for the analyzer program: (1) process geometry data, (2) mesh for the buoyancy
program, (3) wind force, (4) buoyancy program, (5) geometry in the equilibrium state, (6)
conformal mesh for structural study, (7) RAOs and hydrostatic pressure, (8) power calculation
and (9) structural study

Figure 1 shows a flowchart of the analyzer program. The rest of the paper is
organized as follows: Sect. 2 describes how to encode geometry and to create a
CAD model of the platform. Section 3 deals with the calculation of the equilibrium
state. The numerical procedures to compute aerodynamic and hydrodynamic loads
are described in Sect. 4. Section 5 details the structural study.

2 Geometry Encoding

In order to consider a geometry encoding flexible enough to model a wide variety
platform designs, we assume that platforms are mainly composed of empty bodies
made of metal sheets, that is, their internal structures are neglected. We distinguish
between three type of objects: pillars, connectors and towers.

• Pillars are bodies of cylindrical section that give the platform the ability to float.
They can have a rectangular or elliptical base and their dimensions and position



160 D. Aller et al.

in the space are parametrized, as well as their lateral profile, thickness and anchor
points. If they contain water acting as ballast, water height is also a parameter.

• Connectors have also cylindrical section; their geometry is parametrized in the
same way than pillars. They can connect pillars or other connectors; contact
points with the connected objects are also parameters.

• Towers are cylindrical objects on the top of some pillars; they are intended to
hold wind generators.

The previous information is stored in a file keeping the structure of the three
object types. Thus, it is very natural not only to change a specific parameter in the
file, but also to remove or include a complete pillar, connector or tower. Such actions
are among the first rules that an optimization algorithm based on grammatical
evolution could need to be implemented (see [9]).

The first step in the analyzer program is to create a CAD model of the platform
from the geometry encoding. To this end, a Python script was programmed to take
advantage of the Python scripting for Rhinoceros [10]. The resulting geometry is
composed of NURBS surfaces that can be exported in several formats. Figure 2
shows the resulting CAD file for the a semisubmersible platform designed by Mitsui
Engineering and Shipbuilding Co. [4].

3 Buoyancy Position

The hydrodynamic behavior of the platform is modelled with WAMIT [8], which
assumes that the structure is given in the equilibrium state. We have implemented
the calculation of such equilibrium state for a rigid body subjected to its weight,
buoyancy forces, moorings, wind forces applied at the top of the tower and ballasts.
We remark that the movement of a rigid body can be decomposed into the movement
of the center of mass and the movement induced by the rotation respect to the center
of mass. Besides, the total force applied to the body produces a change in the linear
moment, whereas the total moment respect to the center of mass changes the angular
moment of the body. When the body is balanced, both linear and angular moments
are null as well as both the sum of forces and the sum of moments.

To find out the equilibrium state requires to solve a nonlinear system: the
condition of the vertical alignment of the center of mass and the buoyancy center
gives two equations; the balance between total forces and weight gives another one.
Among all possible solutions, only those which are stable are relevant. A position
is stable when the body recovers its position subjected to small perturbations.
To calculate the stable positions, the time-dependent dynamic problem is solved,
integrating the equations of the rigid body with frictional force in a time interval
long enough.

We assume that moorings are composed of chains or cables that partially lay on
the seabed. They are modeled with a nonlinear uni-element model based on catenary
(see [11]). Both flexural rigidity and friction with seabed are neglected.
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Fig. 2 Example of a semisubmersible platform designed by Mitsui Engineering and Shipbuilding
Co. Some of the geometry parameters are detailed: pillars in blue, connectors in red and towers in
green
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4 Hydrodynamic and Aerodynamic Modelling

The hydrodynamic interaction between surface waves and the platform has been
computed using the software package WAMIT [8]. Its implemented model is
based on a linear model where a potential representation is applied to the fluid
velocity field. Once this potential is split taking into account the radiation and
diffraction contributions, the hydrodynamic loads on the wetted body surface are
computed. The numerical solution involves the discretization of an integral equation
whose Green function satisfies the free-surface boundary condition. The high-order
implementation of this numerical method, the so-called panel method, represents the
surface body geometry by means of continuous B-splines. This geometric setting
is accomplished since NURBS surfaces are approximated by B-splines when the
original structure representation is exported from Rhinoceros.

These numerical simulations allow to evaluate physical quantities such as
the total force and total moment acting on the rigid solid and also fluid fields
(pressure, velocity, and free-surface elevation). However, only the RAOs and the
hydrodynamic pressure computed by WAMIT are relevant for our analyzer. The
six RAOs are transfer functions associated to each degree of freedom (DOF) of
the platform motion. They depend on the heading angle and the frequency of the
incident plane-wave excitations.

For the aerodynamic modelling, the software package FAST [6] has been used
to compute forces and moments induced by wind at the top of the tower. Since
only static wind loads have been considered, only the module Aerodyn was used.
This computational code requires two kind of input data: those ones related to the
platform dynamics (such as the turbine configuration, its weight, characteristics of
its mechanical components, the tower dimensions, its vibration modes, etc.), and
those data related to the aerodynamic setting, which include the physical parameters
of air, wind speed and direction, airfoil profiles and blade configuration. This code
has been used twice in the analysis process (see Fig. 1): Firstly, forces and moments
are computed at the equilibrium position of the platform, which have been taken into
account to determine the buoyancy position; Second, for each frequency considered,
the aerodynamic forces and moments are computed and used as input data in the
structural analysis performed by Code_Aster [5].

5 Structural Study

The structural analysis is done using Code_Aster [5], a finite element code which
includes a wide variety of mathematical models. Pillars are modeled as shells, while
connectors and towers are modeled as beams with a shell transition at the end. Since
Code_Aster can be executed through Python scripts, it is suitable to be integrated in
the analyzer.
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Fig. 3 Von Mises norm of the stress calculated with Code_Aster

Mesh produced by Rhinoceros is not a conformal one; we created an appropriate
mesh from the CAD file using SALOME. The forces and loads calculated through
the process are provided to Code_Aster to define two problems:

• The dynamic problem considers time dependent forces and it is solved in the
frequency domain. Its solution is added to the solution of the next problem.

• The static problem takes into account the hydrostatic pressure, moorings and the
wind force. This is a pure Neumann problem because static forces are balanced
and there are no fixed nodes. In order to remove rigid movements and to have
a well posed problem, assembly matrices are modified and transferred to the
external solver UMFPACK. The result is injected again in Code_Aster.

The resulting stress is processed to detect critical values in the structure (see Fig. 3).

6 Conclusions

• The increasing development of offshore wind power requires tools to evaluate
the validity of the platforms.

• An analyzer program is presented in this paper, being the result of a project
conducted by the Repsol Technology Center.
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• This program combines commercial and specifically developed software to
calculate power, RAOs and stress for each structure.

• Inputs and outputs have been designed to easily integrate analyzer in an
optimization code.
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Math-in: A Structure Created to Improve
the Transfer of Mathematical Technology
to Industry

G. Parente and P. Quintela

Abstract Since 2007, a group of Spanish mathematicians has been promoting
mathematical knowledge transfer through the Ingenio Mathematica (i-MATH)
Project’s ‘Consulting Platform’. The outcome of this groundwork has been the
creation of the national network, math-in. In this paper we will briefly present its
aims, management, main activities and workspace.

Keywords EU-maths-in • Network of industrial mathematics

1 The Organization

The Spanish Network for Mathematics and Industry (math-in)1 is a private non-
profit organization focused on transferring mathematical technology to businesses
and industrial sectors, thus stimulating competitiveness not only within the research
groups involved, but industry itself. It arises as the result of the work of a group
of Spanish mathematicians who decided to take on the challenge of industrial
mathematics, by proposing a new means of mathematical knowledge in which the
role of researchers would be fully proactive.

One of the key differentiating features of math-in is its network structure that
facilitates access to nearly 40 research groups, which include 428 highly skilled
researchers spread throughout Spain, for companies. Research activities within the
groups are aimed at specific issues of their own areas of expertise, paying particular
attention to development and innovation in companies. Math-in has created its own
corporate image to be easily identified with (see Fig. 1).

1www.math-in.net.
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Fig. 1 Math-in’s corporate
image

According to math-in’s principles, its aims in the field of Mathematics to
industry are:

• Promote and facilitate strategic relationships with researchers.
• Increase the presence of mathematical methods and techniques in the productive

sector by encouraging the participation of researchers in collaborative strategic
projects.

• Realize the potential of existing knowledge via training.
• Facilitate the internationalization of research results by promoting partnerships

with other entities through R and D projects.
• Promote and lead collaborative projects of national and international interest.
• Ensure competitive advantage of researchers through the registration and

exploitation of their research results.
• Create a favorable environment for the creation of technology-based companies

arising from research results.
• Reinforce the confidence and the interest of the industry in the mathematical

community.
• Strengthen the technological image of the mathematical community in Spain.

math-in main aim is to provide solutions and transfer mathematical technology
to the productive sectors of society, by introducing innovations and improvements
using the most demanded mathematical technologies nowadays.

1.1 Partnerships

Thirty seven research groups in industrial mathematics spread throughout Spain, one
legal entity which represents research groups and two sponsors constitute the math-
in network on June, 2014. Members pay an annual fee to be part of this network.

The research groups vary in size and number, but are linked together by
their common interest in research. Each group has a coordinator who acts as an
interlocutor with math-in.

The General Assembly and the Board of Directors constitute math-in governing
bodies.

The Board of Directors manages and represents math-in. It is composed of eight
members, selected by the General Assembly, who belong to the different research
groups. Its mandate is for 4 years, changing half of its members every 2 years.

All members in the Board of Directors are appointed by the General Assembly
following elections.
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The General Assembly is the main governing body and comprises 40 Spanish
research groups. Each research group has a vote in the assembly regardless of
the number of its members. The following research groups belong to the math-in
network:

• A2M_ICMAT | Mathematical Analysis Applications, Institute of Mathematical
Sciences.

• D-Time | Development and Transfer of Mathematical Innovation in Business,
University of Almería.

• DEMACOM | Challenges in Computational Mathematics, University of Sevilla.
• EDA_ICMAT | Differential Equations and Applications, Institute of Mathemati-

cal Sciences.
• EDANYA | Differential Equations, Numerical Analysis and Applications, Uni-

versity of Málaga.
• EDNL | Non Linear Differential Equations, University of Santiago de Com-

postela.
• EIO_ICMAT | Statistics and Operations Research, Institute of Mathematical

Sciences.
• EOPT | Statistics and Optimization, University of the País Vasco.
• GATNA_ICMAT | Algebraic Geometry, Number Theory and Applications,

Institute of Mathematical Sciences.
• GEUVA | UVa Statistical Applications Group, University of Valladolid.
• GIOPTIM | Optimization, University of Sevilla.
• GNOM | Numerical Optimization and Modelling, Polytechnic University of

Catalunya.
• GRID[ECMB] | Interdisciplinary Group in Statistics, Computing, Medicine and

Biology, University of Santiago de Compostela.
• GSC | Simulation and Control Group, University of Vigo.
• GSO | Optimization Solutions Group, University of Valladolid.
• INFERES | Statistical Inference, Decision and Operations Research, University

of Vigo.
• INTERTECH | Interdisciplinary Modelling Group, Polytechnic University of

Valencia.
• LOGRO | Location, University of Sevilla.
• M2NICA | Numerical Models and Methods in Engineering and Applied Sci-

ences, University of A Coruña.
• M2S2M | Mathematical Modelling and Simulation of Environmental Systems,

University of Sevilla.
• M3A | Mathematical Modelling with Multidisciplinary Applications, Basque

Center for Applied Mathematics.
• MAI | Differential Equations and Numerical Simulation Group, University of

Vigo.
• mat+i | Mathematical Engineering, University of Santiago de Compostela.
• MathCUD | Interdisciplinary Group of Mathematics, University Center for the

Defense of Zaragoza.
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• MCS-UAB | Mathematical Consulting Service, Autonomous University of
Barcelona.

• MGC_ICMAT | Geometric Mechanics, Control and Applications, Institute of
Mathematical Sciences.

• MODES | Modelling and Statistical Inference, University of A Coruña.
• MODESTYA | Optimization Modelling, Decision, Statistics and Applications,

University of Santiago de Compostela.
• MOSISOLID | Mathematical Modelling and Numerical Simulation in Solid

Mechanics, University of Santiago de Compostela.
• OPTECO | Multicriteria Optimization and Econometric Modelling applied to the

Socio-Economic Sphere, University of Málaga.
• PSYCOTRIP | Programming and Symbolic Computation, University of La Rioja.
• RiTO | Risk, Time and Optimization, Rey Juan Carlos University.
• SCT-CRM | Consultancy and Transfer Service, Centre de Recerca Matemática.
• SOR | Stochastic and Operations Research, Basque Center for Applied Mathe-

matics.
• TAMI | Processing and Mathematical Analysis of Digital Images, University of

Les Illes Balears.
• TEBADM | Bayesian and Decision Statistical Techniques in Economy and

Enterprise, University of Las Palmas de Gran Canaria.
• TTM | Mathematical Technology Transfer, University of the País Vasco.

Another type of partner is the legal entity:

• ITMATI | Technological Institute for Industrial Mathematics

which represents nine partner groups, and finally the following companies as
sponsors:

• BSH | BSH Electrodomésticos España, S.A.
• REPSOL | Repsol, S.A.

Math-in has signed (or is in process to signing) agreements with the 20
universities or research centers which legally support the procedures between math-
in and its partners. Furthermore, the network has also signed (or is in process of
signing) a framework agreements with the companies that are partners of math-in.

2 Management

The math-in Transfer Office is located in Santiago de Compostela. This office is
the point of contact of all its members and is also in charge of improving the
relationships between research groups and companies. The math-in website, also
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managed from the office in Santiago, contains information classified in 23 sectors
of economic activity and linked to one of the following icons:

The math-in website contains information about the groups expertise in indus-
trial contracts, partially supported by companies research projects, training courses
for technicians, experience in the use of free or commercial software and software
development for companies. Also in the website there is extensive information about
the masters on the subject of Industrial Mathematics in which some of the math-in
groups are involved.

An important feature of the website is its public on-line database which is an easy
way to look for information on research groups, research lines, projects, contracts,
training courses, software by industrial sector and keywords.

The Transfer Office handles all international relations with institutions which
deal with mathematical technology transfer to the productive sector. As such, math-
in is the Spanish node of the European network EU-MATHS-IN. Other nodes of
this Network are: AMIES (France), EU-MATHS-IN.se (Sweden), HU-MATHS-IN
(Hungary), IMNA (Austria), KoMSO (Germany), PL-MATHS-IN (Poland), PWN
(The Netherlands), SM[i]2 (Italy), and The Smith Institute (UK). In addition, math-
in belongs to the European Consortium for Mathematics in Industry (ECMI) since
2012.

The Transfer Office is also a single point of contact for companies. In this sense,
math-in aims to improve the industrial processes and needs of companies by always
selecting the most appropriate research groups for each industrial challenge.
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3 Areas of Technology Transfer

Math-in network provides all business sectors and Administrations with a wide
range of technological solutions based on the application of Mathematics. The
services provided by math-in can be grouped into three major areas:

• Computer-Aided Engineering (CAD/CAE)
Computer-Aided Engineering (CAE) uses the results obtained in computer-

aided design (e.g. parts, plans, images or graphics design) and in calculation
computer programmes to simulate, predict or study the performance of products
or processes (e.g. for thermic, mechanical stress, manufacturing process studies,
etc.), thus achieving significant improvement in cost, time and, in general, the
monitor research, development and innovation processes.

Computer-Aided Engineering is applied to all types of fields: mechanical
or structural, thermal or thermodynamic, manufacturing processes (injection,
stamping, forging, etc.), electronic and electromagnetic, fluid (gases and liquids),
acoustic or vibroacoustic, environmental, multiphysics, etc.

Within the CAD/CAE field, math-in meets all companies needs concerning
information or advice on its possible applicability, selection, initial implemen-
tation or validation of the tools to be used, training, definition or calculation of
the processes to be improved, development of customized software or interfaces
between programmes, etc.

• Statistical, data analysis or decision support techniques
These mathematical techniques include different methods used such as to

improve customer analysis, markets, products, quality, planning, risks, logistics,
allocation or optimization of resources and processes, etc.

These methods cover business needs in several areas: quality control; stock
control and optimization, manufacturing process control and optimization; risk
or financial product analysis; business strategy, decision, logistics and planning;
customer analysis, and market research or product studies; exploitation of
internal information (data mining, business intelligence); design of experiments;
clinical trials, etc.

• Other mathematical techniques
Several mathematical techniques can be applied to areas such as geographical

location; image or signal processing; geometry, design or visualization; bio-
informatics or biomathematics; search and coding information or computing.

Applying such techniques provides solutions in several areas: digital image
processing (graphics, video, animation, image recognition); geometric analysis
(computational geometry, visualization, CAD development, symbolic methods);
digital signal processing; design of geographic information systems such as
GIS or GPS; communication networks; information coding, cryptography and
computer security; computing, computer algebra; language processors; symbolic
and numeric algorithms; information and knowledge processing and search
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(semantic web, algorithms for Internet); bio-informatics, genomic and proteomic,
biomathematics (applications in life and health sciences such as diagnostic
techniques, medical prescription, drug administration, growth and spread of
diseases, pest control, systems biology), etc. (See [1–3]).
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On the Italian Network of Industrial
Mathematics and Its Future Developments:
Sportello Matematico per l’Industria Italiana

Michiel Bertsch, Maurizio Ceseri, Roberto Natalini, Mario Santoro,
Antonino Sgalambro, and Francesco Visconti

Abstract Sportello Matematico per l’Industria Italiana is a project developed by the
National Research Council of Italy to build an effective and high-quality network of
research groups in Industrial Mathematics in Italy. Here we will recall the objectives
and the main actions taken by the project team during its first year of activities.

Keywords EU-maths-in • Network of industrial mathematics

1 Introduction

Mathematics is a key enabling factor for scientific and industrial innovation since it
offers flexible, cheap, and highly reliable techniques [6–8]. Mathematical skills will
be more and more important to innovate production systems and to face the hard
challenges set by the international competitiveness. Mathematics is a driving force
of economic growth, and this is why the efforts to introduce mathematical research
into the industry have grown worldwide in the last 20 years; they have been sus-
tained by governments in conjunction with Universities and Applied Mathematical
Societies such as SIAM in the USA and ECMI in Europe. In North America, there
exists a strong cooperation between public research bodies and the productive sector.
In Europe, institutions such as AMIES (France), Matheon (Germany), MATH-IN
(Spain), and Smith Institute (Great Britain) offer mathematical consultancy for
innovation to private firms [1]. These cooperations between Applied Mathematics
and Industry have generally been fostered by different kind of actions. Master
degree and PhD programs or PostDoctoral Fellowships with an application focus
are organized by Universities in collaboration with an industrial partner (that partly
funds the program and supervises the research). Modeling weeks, Study Groups
and internships are other way to foster industry academia contacts. The objective
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is to train a professional figure called “Technology Translator” or Facilitator: a
mathematician that can communicate with both University and Industry thanks to
the so called “Soft Skills” [8]: business experience, team work, the ability to meet
time constraints just to mention a few.

These efforts have started to pay off. A recent report commissioned by the
Engineering and Physical Sciences Research Council (EPSRC) to Deloitte [2] states
that Mathematical Research accounts for about 2.8 million jobs and £208 billion on
Gross Value Added in UK. Similar figures are reported for The Netherlands [3].

In Italy, the situation has been way less vibrant so far, and this is caused by several
factors (see for example [1] and references therein). One is the industrial landscape
dominated by small enterprises: in 2010, Italian companies were 4,372,143 and
94.9 % of them employed less than 10 workers. A second factor is the poor
investment in research and development: 1.26 % of Gross Domestic Product, well
below the 3 % stated in the Lisbon Strategy [4]. Lack of cooperation between
industry and academia is another reason: just 12.1 % of the Italian innovative
enterprises are involved in some kind of collaboration (with other enterprises and/or
Universities). However, Italian enterprises show a natural tendency to innovation:
56.3 % of companies has innovated their products and/or processes in 2010—a
proportion that compares favorably with respect to the European average, 52.9 %
[5]. The Italian Applied Mathematics community can easily catch this trend. This is
why Sportello Matematico per l’Industria Italiana (Sportello Matematico or SMŒI�2

from now on) is born (http://www.sportellomatematico.it): to connect research
groups and companies and activate collaborations between them towards innovation.
There are several examples of success cases of Academia-Industry cooperation: the
aim of Sportello Matematico is to make these collaborations systematic in the Italian
landscape. In the remainder of this paper the main activities carried on by SMŒI�2

during its first year will be described.

2 Sportello Matematico per l’Industria Italiana

Sportello Matematico is a project of the Istituto per le Applicazioni del Calcolo
“Mauro Picone” (IAC) of the National Research Council of Italy and has been
funded by the Italian Ministry of Education, University and Research in 2012 for
a starting period of 3 years. The project is run in collaboration with the Italian
Society of Applied and Industrial Mathematics (SIMAI) and the Italian Association
of Operations Research (AIRO).

The project has the following objectives:

1. to promote the industrial mathematics towards the productive sector;
2. to put into contact industries with Applied Mathematics Research Groups in

order to deal with innovation problems requiring the use of mathematical models
and numerical simulation tools;

http://www.sportellomatematico.it
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3. to give industry, and especially SMEs, a unique and qualified center for consul-
tancy in the field of applied mathematics;

4. to create an Italian network of excellence in the field of Industrial Mathematics
and to integrate it in the European context;

5. to stimulate the future engagement of young mathematicians in private enter-
prises.

The first two objectives are clearly connected since enterprises are often not
aware of what mathematics can offer to them in terms of product innovation and
process optimization. On the other hand, research groups have the tendency to
present their job and skills in a too much technical way; this gives private enterprises
the impression that mathematics is useless for their practical problems. The team
of Sportello Matematico addressed them by simplifying the message towards the
industry on the real benefit of mathematics to product innovation and process
optimization through a capillary and intense promotional activity: a marketing
campaign of Mathematics towards the productive sector based on a high number
of contacts among companies.

Even in case an enterprise wants to collaborate with the Industrial Mathematics
Community, it often does not know which research group is suitable for its needs.
This issue is the focus of the third and fourth objectives. They aim at creating a
network of research groups acting as a one-stop-shop for industrial mathematics: a
company can address its problems to this structure; the structure will in turn support
the company in finding the qualified research group to deal with their specific needs.
Such an activity is particularly important for SMEs that produce most part of the
innovative technology but have few contacts with academia. The network shall
interact with other European Institutes sharing the same mission to coordinate the
efforts of each Country in the Continent, especially in the framework of Horizon
2020 program.

Finally, the last objective is known to be one of the major way to foster
connections between Industry and Academia: a young mathematician from a Master
or PhD program remains likely in contact with his former research group.

Given the above challenges, it came naturally that Sportello Matematico was
founded as an initiative of the Istituto per le Applicazioni del Calcolo—the first
Institute fully devoted to Applied Mathematics ever created in the world. Mauro
Picone (1885–1977) founded IAC in 1927 to promote the interactions between
Applied Mathematics and Industry (http://www.iac.cnr.it). His vision was based on
the strong conviction that coupling Mathematical abstraction and simulation tools is
successful to solve real life problems and, thus, to the advance of both Industry and
Society. The strategic project of SMŒI�2 is a strong bid to carry on Picone’s intuition
while updating it to present days.

To promote this ideal, Sportello Matematico quickly realized that it was neces-
sary to turn to three actors: the Industrial Mathematics community, the world of
enterprises and the young mathematicians.

http://www.iac.cnr.it
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2.1 Towards the Research Community in Applied Mathematics

Sportello Matematico promoted a partnership with a growing number of Italian
research centers in Applied Mathematics and Operations Research, all of them
sharing a common interest towards concrete collaborations with the industrial sector.
About thirty high-quality research groups in Industrial Mathematics have been
already involved in the SMŒI�2 project as partners: they represent the real core
of the Industrial Mathematics network described above and will be involved in
collaborations with Italian enterprises through the intermediary services of SMŒI�2.
Once an enterprise contacts Sportello Matematico about a business issue, the team
translates this problem in a request of service and forward it to the network. The
interested research groups communicate their potential willing to collaborate with
the company and are involved in a technical meeting with the enterprise. After the
meeting, the interested research groups send to the enterprise their individual offers
of service detailing the project, the timeline and the economic plan. Finally, the
enterprise will evaluate the received proposals and choose the offer that considers
the most suitable, eventually giving rise to a collaboration with the related research
group. To provide visibility to each group in the network, SMŒI�2 team developed a
questionnaire for its partners to collect success stories of collaboration with Italian
Enterprises. Such stories are summarized according to the following scheme: the
industrial problem, the scientific approach and the final benefits for the company
involved in the collaboration.

2.2 Towards the Productive Sector

Most part of the work of SMŒI�2 has been to contact industries possibly interested
in a collaboration with the Italian Applied Mathematics Community. To this aim,
Sportello Matematico participates at events where it can meet enterprises. For
example, the team has been involved in a series of events organized together by
National Research Council and Confindustria—the Italian Industry Association.
They were organized in different Italian cities with the participation of several
Italian enterprises: at any workshop, SMŒI�2 presented its activities and a list of
success stories from its network of scientific partners, selected to match the specific
interests of the present companies. The latter were successively contacted by SMŒI�2

and many of them showed an interest in the activities of the project: following these
contacts, a few meetings have been arranged. Although, most of these companies
are not fully aware of the potential benefits arising from Industrial Mathematics, a
lot of work can be done in this sense and in the long run thanks to the action of the
Sportello Matematico project.

A survey for the productive sector has been developed by SMŒI�2. The survey
collects information on the activities of the firms and their past collaboration with
research centers: such information will be useful to have a first idea on the needs
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of the company—especially if this company requests a meeting with the team of
Sportello Matematico—and to improve the communication strategy. Furthermore,
this is another way to promote the activities of the network. Indeed, such a survey
will be at the center of a marketing campaign: a sample of Italian enterprises will be
chosen and contacted to fill the survey. From this campaign, SMŒI�2 expects to find
a number of contacts that can be translated in active cooperations. Finally, survey’s
results will be included in future reports about the state of the art of Industry-
Academic cooperation in the field of Industrial Mathematics in Italy.

2.3 Towards Young Mathematicians

The last objective of SMŒI�2 concerns the employment of young mathematicians.
Being Mathematics a driving force for innovation, a simple way for an enterprise
to innovate its processes and/or products is to hire young mathematicians. This
is important for cooperation purposes as well: mathematicians can play a relevant
role in the future contacts with research centers. In order to make more systematic
the connections between Industry and Applied Mathematics research groups, this
objective becomes crucial. SMŒI�2 developed a survey for young mathematicians
with questions about their Academic degrees, their mathematical expertise, their
past experiences with enterprises and so on; finally, they can submit their whole
CV as well and express their willingness to be contacted by the team of Sportello
Matematico in case a possible matching with a job is identified.

2.4 Sportello Matematico in Europe

Sportello Matematico is in contact with other organizations with similar mission
and interests in order to share experience and improve the quality and effectiveness
of its activities. Collaborations with other European entities have started during
SMŒI�2 first year of activity and will be further developed in the participation in
EU-MATHS-IN.

In November 2013, the European network of networks in Industrial Mathematics
EU-MATHS-IN has been founded (http://www.eu-maths-in.eu). It currently collects
major Industrial Mathematics networks from ten Countries: AMIES (France), HU-
MATHS-IN (Hungary), IMNA (Austria), KoMSO (Germany), EU-MATHS-IN.se
(Sweden), MATH-IN (Spain), PWN (The Netherlands), PL-MATHS-IN (Poland),
Smith Institute for Industrial Mathematics and System Engineering (UK) and
SMŒI�2 (Italy). The European Mathematical Society (EMS) and the European
Consortium for Mathematics in Industry (ECMI) promoted the foundation of EU-
MATHS-IN and Sportello Matematico joined the project from the beginning as
Italian member of this network of networks. EU-MATHS-IN was born in the wake
of the experience reported in “Success Stories in Industrial Mathematics” [7]: to

http://www.eu-maths-in.eu
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better coordinate the efforts of the National networks in the whole Continent.
Moreover, it will have a crucial role in the Horizon 2020 framework program
to facilitate the formation of transnational partnerships among research centers in
Industrial Mathematics and private companies.

References

1. Bertsch, M., Ceseri, M., Felici, G., Natalini, R., Santoro, M., Sgalambro, A., Visconti, F.:
Mathematical desk for Italian industry: an applied and industrial mathematics project. Proc.
Soc. Behav. Sci. 108(0), 79–95 (2014). doi:http://dx.doi.org/10.1016/j.sbspro.2013.12.822

2. DELOITTE: Measuring the Economic Benefits of Mathematical Sciences Research in the UK.
http://www.epsrc.ac.uk/newsevents/news/2012/Pages/mathsciresearch.aspx (2012)

3. DELOITTE: Mathematical sciences and their value for the Dutch economy. http://www.
eu-maths-in.eu/download/generalReports/20140115%20Mathematical%20sciences%20v6
%20Web.pdf (2014)

4. EUROSTAT: Science, technology and innovation. http://epp.eurostat.ec.europa.eu/portal/page/
portal/science_technology_innovation/introduction (2012)

5. EUROSTAT: Innovation statistics. http://epp.eurostat.ec.europa.eu/statistics_explained/index.
php/Innovation_statistics (2013)

6. Lery, T., Primicerio, M., Esteban, M.J., Fontes, M., Maday, Y., Mehrmann, V., Quadros,
G., Schilders, W., Schuppert, A., Tewkesbury, H.: Forward Look Mathematics and Industry.
European Science Foundation, Strasbourg (2010)

7. Lery, T., Primicerio, M., Esteban, M.J., Fontes, M., Maday, Y., Mehrmann, V., Quadros,
G., Schilders, W., Schuppert, A., Tewkesbury, H.: European Success Stories in Industrial
Mathematics. Springer, New York (2011)

8. SIAM: SIAM report on mathematics in industry. http://www.siam.org/reports/mii/2012/ (2012)

http://www.epsrc.ac.uk/newsevents/news/2012/Pages/mathsciresearch.aspx
http://www.eu-maths-in.eu/download/generalReports/20140115%20Mathematical%20sciences%20v6%20Web.pdf
http://www.eu-maths-in.eu/download/generalReports/20140115%20Mathematical%20sciences%20v6%20Web.pdf
http://www.eu-maths-in.eu/download/generalReports/20140115%20Mathematical%20sciences%20v6%20Web.pdf
http://epp.eurostat.ec.europa.eu/portal/page/portal/science_technology_innovation/introduction
http://epp.eurostat.ec.europa.eu/portal/page/portal/science_technology_innovation/introduction
http://epp.eurostat.ec.europa.eu/statistics_explained/index.php/Innovation_statistics
http://epp.eurostat.ec.europa.eu/statistics_explained/index.php/Innovation_statistics
http://www.siam.org/reports/mii/2012/


Optimal Design of Solar Power Tower Systems
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Abstract In this paper we review the recent research done by the authors in
Solar Power Tower systems design focusing on the heliostat field problem. We
first analyze the basic problem, in which all heliostats have the same size, as
commonly addressed in the literature. A brief review of the problem itself and
the pattern-free procedure proposed to solve it is given. The algorithm proposed, a
greedy-based heuristic procedure, provides a new way to solve the problem different
from previous algorithms in the literature. Our methodology consists of a pattern-
free heliostat location and therefore it can be easily (even though carefully) adapted
to solve other issues such as multi-size or multiple-receiver heliostat field.

The multi-size heliostat fields design is also reviewed given the similarities of
the problem. This algorithm is tested using two different heliostat sizes. Some ideas
about the application of the procedure to more general settings, such as multiple-
receiver field, are given as further work.
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1 Introduction

Solar Power Tower (SPT) system is one of the most promising technologies
for producing solar electricity because of the high thermodynamic performances
reached, see review [8] and the references therein. Since much of this technology
is recent, there is still room for improving designs and emerging concepts are often
proposed and analyzed.

An SPT system is here considered of two elements: a tower-receiver and a field
of heliostats, see [5]. Operation of the system is as follows: direct solar radiation
is reflected by the heliostat field onto a receiver placed at the top of the tower. In
the receiver, the thermal energy is transferred to a heat transfer fluid to produce
electricity through a thermodynamic cycle. The heliostats field is considered of
a group of rectangular mirrors having two-axis movement, they move around to
follow the position of the sun in order to correctly reflect solar radiation.

In this paper we give a review on the heliostat field design problem, some variants
and the procedures we have applied to address this problem when the tower-receiver
variables are fixed. This is the critical part of the process, since, once the heliostat
field is optimized, the full SPT optimization problem can be tackled by means of an
alternating approach, as shown in [2].

The remainder of the paper is organized as follows. The heliostat field design
problem and the heuristic algorithm to solve it are presented in Sect. 2. Section 3
explains our methodology to design multi-size heliostats fields. The last section is
intended to present some results, the work in progress and perspectives for further
work.

2 Heliostat Field Design

When addressing the heliostat field design problem two challenging issues appear,
namely, the dimensionality of the optimization problem (with hundreds or thousands
of variables a priori unknown), and the evaluation of the objective function (many
local optima, hard to compute and no apparent mathematical structure which can
help).

The process we study, presented in [2], with the goal to find an optimal heliostat
field is different from others in the literature in three aspects: no initial field
is needed, no parametric form is used (commonly used in the literature: radial-
stagger [7], spiral [9], grid [10]) and no oversize procedure is applied.
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2.1 Variables and Functions

We will assume that the receiver consists of a cylinder pointing to the North with
circular aperture, as explained in [5]. As we have said we are going to focus on
the heliostat field design problem, we suppose the tower-receiver parameters fixed.
In what concerns the heliostat field, the variables to be used are the heliostats
locations, given by the coordinates .x; y/ of their centers. From now on we will
denote by S the collection of coordinates of the centers of the heliostats. It
is expressed as follows, where N denotes the total amount of heliostats: S D˚
.x1; y1/; .x2; y2/; : : : ; .xN ; yN/

�
, observe that N is also a decision variable.

Two criteria are taken into account for the optimization: the total investment
cost and the generated annual energy. The cost function C takes into account the
investment in equipment (tower, receiver and heliostats) and it depends on the
number of heliostats in the field, as we can see in (1):

C.jS j/ D K C �.jS j/; (1)

where K is a constant including all fixed costs, jS j stands for the cardinality of S
and � is the linear heliostat cost function.

With this notation, the annual energy input function E generated by the plant
takes the form:

E.S / D
Z T

O

Q̆ t.S / dt ; (2)

where the function Q̆ t denotes the polynomial fitting of the power input reached by
the plant at each time instant t. The power input values of the system at each time
instant are calculated by adding the values reached by each heliostat as follows:

˘t.S / D I.t/�.t/fref

NX

iD1
'.t; xi; yi;S / : (3)

Here I.t/ is the so-called instantaneous direct solar radiation, �.t/ measures the
radiation losses, fref is the heliostat reflectance factor and ' is the product of the
efficiency factors. The efficiency factors are detailed as follows: ' D fat fcos fsb fsp.
In particular, fat is the atmospheric efficiency, fcos is the cosine efficiency; fsb is the
shadowing and blocking efficiency, and, finally fsp is the interception efficiency or
spillage factor. We refer the reader to [1, 4, 6] and the references therein, for further
details.
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2.2 Optimization Problem

As mentioned above, the two criteria involved are the total investment cost and the
annual energy produced. No common optimum can be found for both criteria, so
they are aggregated into one single objective, namely, the maximization of generated
energy per unit cost F.S /. The .P/ problem, that is, the optimization of the
heliostat field for a given tower-receiver, can be written as follows:

.P/

8
ˆ̂
<̂

ˆ̂
:̂

max
S

F.S / D E.S /=C.S /

subject to ˘Td .S / � ˘0

S � S0

jj.xi; yi/ � .x j; y j/jj � ı for i ¤ j ;

where the first constraint sets a minimal power˘0 that has to be achieved at Td. As
explained in [4, 10], a fixed instant, named design point Td, is used to size the SPT
system. The second constraint defines the feasible region S0 where heliostats must
be located. And finally, for the proper operation the heliostats, they have to rotate
freely avoiding collisions consequently, we have to consider the last constraints,
where ı > 0 is the given safety distance.

2.3 Procedure: Greedy Algorithm

The Greedy Algorithm, presented in [2] and designed to solve problem .P/,
operates as follows: firstly it locates the heliostats one by one at the best feasible
position, that is, the location where the annual energy input is highest. Once a
new heliostat is located and the shading and blocking effects are incorporated, the
process is repeated until no improvement is reached. Only the two geometrical
constraints have to be taken into account: the field shape constraint and safety
distance constraints to avoid collisions.

The optimization problem of locating heliostat k when there are already located
k � 1 heliostats in the field is equivalent to maximizing the energy generated by
the new heliostat location, because the cost function is fixed at each step as all
the heliostats have the same size and cost in this problem. In order to solve the
problem, since the functions involved are highly multimodal, and the output strongly
depends on the starting points, a multistart procedure is used to avoid local minima.
The heliostat position that reaches the best objective value will become part of the
heliostat field solution. See Fig. 1 as a graphic example, two heliostat fields left-side
(radial-stagger distribution) and right-side (Greedy Algorithm).
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Fig. 1 Radial-Stagger and Greedy Algorithm

The annual energy is modified at each step as well as the shading and blocking
effects that the new heliostat is causing in the field. This is the main reason
of increase of the computing time. Given that the energy function is hard to
compute [10], we approximate it by a much simpler function: Instead of computing
E as in (2), the power input (3) at the design point Td is used.

3 Multi-Size Heliostat Field Design

All the papers we are aware of address problem .P/ assuming all heliostats with
identical size. However choosing all heliostats of one single size may not lead to
optimal fields. We address problem .P/ using two heliostat sizes, called large-size
and small-size, in [3]. The choice of the size of the heliostats may dramatically affect
the performance of the field and also its cost.

The variables involved in the optimization problem are the same as in the previ-
ous section adding the heliostat size as a variable. We denote by d, the new variable
to be included i.e. the heliostat size. In order to continue with the same notation
the coordinates of the centers and sizes of the heliostats, denoted by .x; y; d/, are
the variables to be used and the collection of them is denoted by ˝ . The set ˝ is
described as follows: ˝ D ˚

.xi; yi; di/ for i 2 Œ1;N� with .xi; yi/ 2 S and di 2 D
�
,

where D denotes the set of the possible sizes, large-size and small-size.
In order to properly calculate the solar efficiencies values the heliostat size must

be carefully taken into account as a variable in this problem. The optimization
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problem can be rewritten to collect all these changes as follows:

�
PD

�

8
ˆ̂
<̂

ˆ̂
:̂

max
˝

F.˝/

subject to ˘Td.˝/ � ˘0

˝ � S0 � D

jj.xi; yi/ � .x j; y j/jj � ıi C ıj for i ¤ j :

note that in this case the security distance must be dependant on the heliostat size in
order to properly avoid collisions.

3.1 Procedure: Expansion-Contraction Algorithm

We briefly describe in this paragraph the heuristic algorithm to solve problem�
PD

�
, called Expansion-Contraction Algorithm and studied in [3]. The algorithm

starts generating a large-size heliostat field following the Greedy Algorithm already
explained in Sect. 2. Then two phases, Expansion and Contraction, are applied into
this initial field and repeated until no improvement is obtained.

In the Expansion Phase the field is filled with small-size heliostats until a certain
power input value ˘C0 > ˘0 is reached. Small-size heliostats are more versatile,
they are expected to fill-in holes between large-size heliostats and to reduce spillage
losses, reaching higher energy values. Once the mixed-field is calculated, the
heliostats are arranged according to their annual energy values per unit area. The
best heliostats are sequentially selected in the Contraction Phase and the final
number of heliostats of the mixed-field is given by ˘0.

As an example, see Fig. 2, where an intermediate stage of Expansion-Contraction
process is shown.
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Fig. 2 Expansion Phase and Contraction Phase
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4 Concluding Remarks and Extensions

In this paper we have reviewed our findings on heliostats fields design. Our Greedy
Algorithm provides competitive results against the standard results in the literature
as can be seen in [2] and is more versatile since it is not based on geometrical
patterns which may be valid only under certain physical conditions. Moreover,
our algorithm can be extended to address many other situations such as ground
irregularities. Moreover, the procedure is extended to a Multi-Size heliostat field
using the Expansion-Contraction Algorithm.

The results shown in [3] give better efficiency values than single-size heliostats
fields. The numerical experiments show the advantages of combining heliostats of
different sizes, if different prices apply, which is a very reasonable assumption.

Our approach can be extended to more challenging problems, now under
research. One of them is the possibility of considering multiple receivers. Higher
conversion efficiency of solar energy to electricity can be achieved only at high
temperatures, and SPT systems with multiple receivers are required to achieve them.
In Multiple Receiver systems heliostats are allow to be located all around the tower,
because they can reflect the solar rays to one of the receivers at almost any position
of the field.

When designing the heliostat field with multiple receivers, if we consider that
the aiming strategy is fixed (heliostats aim the same receiver for all time instant)
the main problems are the calculation of the feasible region for each receiver
and the properly location of the heliostats in order to maximize the SPT annual
efficiency. As our algorithm allows a pattern-free heliostat location, the feasible
region associated with each receiver do not have any shape limitation. A polynomial
fitting can be used to approximate the boundaries of each region taking into account
the annual efficiency values obtained with the empty field. An iterative procedure is
now being tested, see Fig. 3 as an example with three receivers.

Fig. 3 Three-receivers field
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Eliana Costa e Silva, Manuel Cruz, Isabel Cristina Lopes, and Ana Moura

Abstract Order picking consists in retrieving products from storage locations to
satisfy independent orders from multiple customers. It is generally recognized as
one of the most significant activities in a warehouse (Koster et al, Eur J Oper
Res 182(2):481–501, 2007). In fact, order picking accounts up to 50 % (Frazelle,
World-class warehousing and material handling. McGraw-Hill, New York, 2001) or
even 80 % (Van den Berg, IIE Trans 31(8):751–762, 1999) of the total warehouse
operating costs. The critical issue in today’s business environment is to simulta-
neously reduce the cost and increase the speed of order picking. In this paper, we
address the order picking process in one of the Portuguese largest companies in the
grocery business. This problem was proposed at the 92nd European Study Group
with Industry (ESGI92). In this setting, each operator steers a trolley on the shop
floor in order to select items for multiple customers. The objective is to improve their
grocery e-commerce and bring it up to the level of the best international practices.
In particular, the company wants to improve the routing tasks in order to decrease
distances. For this purpose, a mathematical model for a faster open shop picking
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was developed. In this paper, we describe the problem, our proposed solution as
well as some preliminary results and conclusions.

Keywords Order picking • Study group

1 Introduction

This paper addresses the problem of the order picking process on large grocery
e-commerce business. This is a case study of one of the major players in the
Portuguese grocery business, SonaeMC, which was presented to the 92nd European
Study Group with Industry (ESGI92). It regards the optimization of the order
picking process that is conducted in an open shop, to fulfill orders from online
customers. The challenge proposed to the participants of the ESGI92 was to
boost the efficiency in the picking rate in 10 %. Optimizing the order picking
process for faster picking and 100 % accuracy (as a goal) is crucial to increase
the competitiveness of the company and to preserve customers. This work includes
several ideas held by the contributors of the ESGI92, as well as the modeling,
implementation, some tests and improvements made afterwards by the authors of
this paper.

Order picking may be defined as the process of retrieving products from storage
in response to a specific customer request. It is generally recognized as one of the
most significant activities in a warehouse. According to different authors, order
picking accounts up to 50 % [5], or even 80 % [9], of the total warehouse operating
costs. The picker’s time distribution has been estimated to be around 50 % for
traveling, 20 % for searching and 15 % for picking, with the remaining 15 % being
divided between setups and other minor activities [7]. In this paper, we focus our
efforts on the third and fourth of the following main issues of the order picking
activity [2]:

1. Storage Assignment—The assignment of articles to storage locations.
2. Zoning—The establishment of work zones to which pickers are confined.
3. Order Consolidation—The transformation of customer orders into picking

orders.
4. Routing—The determination of sequences (routes) according to which the items

have to be picked.

We propose a mathematical model to be solved with integer linear programming
(ILP) techniques. The goal is to minimize the distance traveled by the pickers
inside the shop. At first sight, this may resembles a capacitated vehicle routing
problem (CVRP). However, for a given vehicle (picking trolley), the items from
each customer order must be grouped in the proper boxes, which poses additional
constraints to the problem. The CVRP is already a NP-hard problem. Furthermore,
given the large number of orders processed by SonaeMC daily, the optimization
problem is a large scale one. The need to get the solution in a small period of time
and to deal with the additional constraints, led us to propose a tailored model (see
Sect. 3).
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2 An Overview of the Company’s Picking Process

In this section we present an overview of the company’s picking process at the time
of the ESGI92. SonaeMC holds, all over Portugal, stores with different dimensions
and architectures. However, they all share the topology depicted in Fig. 1, where five
areas can be found:

• The shop—where the customers that visit the store pick their products.
• The warehouse—where the products are stored for replacement.
• The depot—an area inside the warehouse where the products of each client are

gathered and packed.
• The HRP area—an area inside the warehouse where the High Rotation Products

are stored.
• The dock—where the packed orders are loaded into vans that will deliver them

to their final destination (the customer’s address).

The process of assembling an order may be described as follows. An online cus-
tomer makes an order on the company’s website. The e-commerce team partitions
the order in: High Rotation Products (HRP)—top selling articles or seasonal prod-
ucts; Fresh Products (FP)—products with special temperature and/or conservation
requirements; and Regular Products (RP)—all the other products. The RP items are
collected inside the shop by pickers who take them to the depot, where they are
gathered with the HRP items that were previously packed for that customer. The
remaining products—FP—are only delivered (by another picker) at the dock station
when the order is taken to the van that will make the deliver.

We devoted our attention to the Regular Products (RP) which, according to the
company, is the largest subset of items and where the pickers spend most of the time.

Unlike a warehouse, a supermarket is not designed to be efficient for the picking
process (the goal is the opposite: make the customer see as much as possible).
Therefore, changing the location of the products was not allowed.

At that time, pickers collected items for a single customer at a time. The purpose
for this was to minimize the probability of swapping products between different
orders. However, the picking trolleys have several separate boxes, which allows
picking for multiple clients, and as they are already equipped with barcode scanners,
the swapping can be avoided with a simple software update (checking in which box
the item was placed).

Fig. 1 Each store consists of
five different areas: the shop,
the warehouse, the depot,
high rotation products area
(HRP) and the dock SHOP

DOCK
HRP DEPOT

WAREHOUSE
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3 The Model

The problem may be stated as: Given a set of orders of different customers, the
objective is to minimize the traveling distance needed to pick all the items, satisfying
the weight and volume capacity constraints of the trolley, and imposing that in each
box there are items of only one customer.

For the capacity constraints, let R be the maximum number of routes allowed, B
the number of boxes per trolley, W the maximum weight allowed per box and S the
maximum size allowed per box.

Let Ic be the set of items requested by customer c 2 C and I D [c2CIc the set
of items to be picked. An item is understood as the quantity of a specific product
ordered by one customer, i.e., in our model, the same product requested by different
customers produces different items. For all i 2 I, let wi and si be, respectively, the
weight and the size of item i, and ci the customer who requested it. We suppose that
wi � W and si � S, for all i 2 I. If not, we previously divide the whole quantity of
a specific product by a sufficient number of items in order to satisfy the conditions.

Our problem can be viewed as a variant of the CVRP Problem (see [8] for some
variants), where:

• the depot d and each aisle vi in the supermarket belong to the set of vertices V;
• each circuit (route) visits the depot vertex d exactly once;
• each vertex is visited at least once in the total of the circuits, and at most once in

each circuit;
• each vertex vi needs to be visited while there are items i to collect there;
• the total weight and the total volume of the items picked in a circuit do not exceed

the vehicle and boxes capacity;
• the items are separated according to clients as they are being picked and put in

the boxes of the trolley respecting the assignment of boxes to clients.

We construct a directed weighted graph G D .VI;A; �/ as follows (see Fig. 2).
For every i 2 I, the set VI is the subset of V consisting of vertices vi 2 V
corresponding to the aisles where items i are stored, together with the depot. Note
that while V consists of all aisles of the shop (and the depot), VI contains only the
aisles with the items to be picked (and the depot). To define the set of arcs A, we
consider a total ordering on the set of aisles, without the depot, VInfdg, defined as:

u < v if and only if ux < vx _ .ux D vx ^ uy > vy/;

where .ux; uy/ and .vx; vy/ are the coordinates of the center of the aisles u; v 2
VInfdg. Now, the arcs A of the graph are:

A D f.u; v/ 2 .VInfdg/2 j u < vg [ f.u; v/ 2 V2
I j u D d _ v D dg:

Finally, the function � W A ! R defines the weight of every arc .u; v/ 2 A as
the minimum distance that the picker needs to travel throughout the aisles of the
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Fig. 2 An example of the directed graph G of part of the store, with the depot d, and aisles
v1;N ; v1;S; v2;N ; v2;S; v3;N and v3;S. The labels of the arcs are the distances

store, to get from vertex u, located at the center of an aisle, to vertex v, at the center
of another aisle (it is not the usual Euclidean distance). To formulate the problem
we use the binary variables xr

uv D 1 if arc .u; v/ 2 A is selected in route r, with
r D 1; : : : ;R, and yrb

i D 1 if item i 2 I is picked in route r into box b, with
r D 1; : : : ;R, and b D 1; : : : ;B. The model is the following.

Min
X

1�r�R

X

.u;v/2A

�uvx
r
uv (1)

s:t:
X

.v;u/2A

xr
vu � 1 8r D 1; : : : ;R; 8v 2 VInfdg (2)

X

.u;v/2A

xr
uv � 1 8r D 1; : : : ;R; 8v 2 VInfdg (3)
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X

.v;u/2A

xr
vu D

X

.u;v/2A

xr
uv 8r D 1; : : : ;R; 8v 2 VInfdg (4)

X

rD1;:::;R

X

.v;u/2A

xr
vu � 1 8v 2 VInfdg (5)

X

rD1;:::;R

X

.u;v/2A

xr
uv � 1 8v 2 VInfdg (6)

X

.d;u/2A

xr
du D 1 8r D 1; : : : ;R (7)

X

.u;d/2A

xr
ud D 1 8r D 1; : : : ;R (8)

X

rD1;:::;R

X

bD1;:::;B
yrb

i D 1 8i 2 I (9)

X

bD1;:::;B
yrb

i �
X

.u;vi/2A

xr
uvi

8r D 1; : : : ;R 8i 2 I (10)

yrb
i C yrb

j � 1 8i 2 I;8j 2 InIci ;8r D 1; : : : ;R;8b D 1; : : : ;B (11)
X

i2I

wiy
rb
i � W 8r D 1; : : : ;R; 8b D 1; : : : ;B (12)

X

i2I

siy
rb
i � S 8r D 1; : : : ;R; 8b D 1; : : : ;B (13)

xr
uv 2 f0; 1g 8.u; v/ 2 A; 8r D 1; : : : ;R (14)

yrb
i 2 f0; 1g 8i 2 I; 8r D 1; : : : ;R; 8b D 1; : : : ;B (15)

The objective function in (1) deems to minimize the total traveling distance.
Constraints (2) and (3) ensure that there will be at most one arc leaving every aisle v,
and there will be at most one arc entering v in each route r, for all vertices in VInfdg.
Equations (4) ensure that, for each route, the number of arcs entering an aisle is
equal to the number of arcs leaving it. Constraints (5) and (6) guarantee that each
aisle is visited at least once in the total of routes. There are also similar constraints
for the depot: (7) and (8). The next constraints concern the boxes where the items
are placed. In (9) we force that each item is picked to exactly one box in exactly one
route. Also, if an item is picked in a route, its aisle needs to be visited in such route;
this is given by (10). Inequalities (11) guarantee that each box in a route does not
have items of different customers. Finally, we add the weight and volume constraints
concerning the dimensions of the boxes (12) and (13). The range of the variables are
established in (14) and (15).



A Mathematical Model for Supermarket Order Picking 195

4 Results

The model was implemented using AMPL [4] and tested with real data provided by
SonaeMC, regarding the orders placed at one of their main stores in a given period.
The dataset was composed of several orders, with an overall weight of 
600 kg and
volume of 
1.6 m3. In our implementation we set R D 10, B D 6, W D 12 kg
and S D 46;400 cm3. The model was submitted to Gurobi solver on NEOS online
server [1, 3, 6].

As the complexity of this kind of model is non-polynomial, we used an heuristic
to reduce the dimension of the problem. This heuristic computes a matrix of
distances between customers, based on their similarity in terms of number of
products in common aisles, and gathers the orders in clusters, so that the available
computational resources may solve the integer programming model, within these
clusters. The heuristic splits our set of orders in 7 subsets: 3 of them with products
in a single aisle (no routing needed), and 4 clusters with products in several aisles.
For each one of these 4 clusters, we solved the IP model in (1)–(15). In this 4 subsets
the optimal solutions were found, in a total time of 435 s.

We compared the results of our model with a simulation of SonaeMC’s current
picking. We were able to reduce the total distance by 39 %, from 1341.5 to 818 m.
The number of routes and the number of boxes is similar in both. With our routing
solution, the picker would increase the picking rate in 24 %.

5 Conclusions

We focused on a case study of a large Portuguese grocery company, regarding the
open shop order picking process for online customers. We developed an integer
programming model for a variant of the Capacitated Vehicle Routing Problem, with
additional constraints to deal with the specificity of the trolley and the company’s
requirements. The model integrates the batching and the routing problems with very
promising first results. Also, an heuristic was designed for reducing the dimension
of the problem, in order to obtain reasonable computational times. On a real dataset,
the model reduced the total traveling distance by 39 %, and increased the picking
rate in 24 %, a result that exceeded the company’s expectations.

Acknowledgements A. Moura was partially supported by CMUP (UID/MAT/00144/2013),
which is funded by FCT (Portugal) with national (MEC) and European structural funds through
the programs FEDER, under the partnership agreement PT2020.
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Study Groups in Ireland: A Reflection

William Lee, Joanna Mason, and Stephen O’Brien

Abstract Study groups were first introduced to Ireland in 2008 by MACSI. We
present an overview of MACSI study groups focusing on the role study groups play
in initiating longer term interactions between industry and academia.

Keywords Study group

1 Introduction

A study group is a week long workshop at which academic mathematicians work on
problems brought to the group by industry. Typically there are 6–8 problems, which
are introduced by the industrial representatives on the first day. Following these
presentations the mathematicians break up into groups to work on the problems.
The format works best if the industrial representatives stay with the group to provide
information as needed and to ensure that the group stays focussed on the most
important aspects of the problem. On the final day of the workshop preliminary
results are shared with all academic and industrial participants. Following the study
group a report of progress made during the study group is written.

Study groups in Ireland were introduced to Ireland in 2008 by MACSI, the Math-
ematics Applications Consortium for Science and Industry based at the University of
Limerick. In this paper we report progress towards developing a mutually beneficial
interaction between academic applied mathematicians and industry. In particular we
consider the role that study groups with industry play in initiating these interactions.

An idealised vision of the interaction between academic mathematicians and
industry is shown in Fig. 1. In this vision a study group acts as the gateway to
an ongoing interaction leading to outputs beneficial to both the academics and the
industrial partner.

Following the study group the company, having seen the value in a mathematical
approach to their problem, commissions a small amount of consultancy work to be
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Fig. 1 Idealised study group workflow

carried out by academic or research staff already in employment. This allows work
to begin immediately, without recruitment delays, and, since it is fully funded by the
industrial partner, entitles them to full ownership of any IP generated. Any of the
company’s IP they were not able to bring to an open forum such as a study group
can now be disclosed since an NDA will form part of the consulting agreement.

This short burst of consultancy work will be followed by a program of contract or
collaborative research, funded either entirely by the company or with some portion
of the funding coming from enterprise support agencies e.g. Enterprise Ireland. This
contract research includes any original research needed to develop a viable solution
to the company’s needs. At the conclusion of the contract research stage there is
a handover of the solution to the company. The solution may be in the form of
software, documented research results or something else.

During the course of the industrially focussed research, avenues for academic
research will have opened up, maybe leading to more accurate or more complete
solutions to the industrial problem, maybe only tangentially related to it. Thus, a
contract research program will be followed by academic research, funded by an
academic funding body such as Science Foundation Ireland. This research will often
be supported by the company, whose interaction with the project will strengthen the
case for the research satisfying impact criteria that are becoming an increasingly
prominent feature of the academic landscape, particularly in Ireland and the UK [2].
This phase of the research will lead to standard academic deliverables: papers,
seminars, invited talks and trained PhDs.
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Having found the mathematical tools developed during the project of interest to
themselves the company will request training, either in the specifics of the tools
developed in this project or more generally in the mathematical modelling toolkit
and approach to problem solving.

Finally the company will enhance its own research and development capability
by hiring graduating PhDs trained by this research program. Also, benefitting from
an enhanced ability to identify problems susceptible to a mathematical approach,
the company will participate in another study group, restarting the cycle.

As described above this is an idealised vision of the role study groups play in
a thriving interaction between academics and industry. It should be noted that this
vision may be specific to an Irish context where due to severe economic pressures
on the government academic funding is predicated on being able to demonstrate
“impact” which is often translated to mean industry cash contribution. With a large
number of groups chasing smaller and smaller pots of money alternative income
generation strategies are highly desirable.

In the rest of this paper we consider how closely reality approaches this vision.
In Sect. 2 we give a brief overview of Irish study groups. The next two sections
consider two case studies of the interaction of MACSI with companies which have
attended multiple study groups: Analog Devices in Sect. 3 and Aughinish Alumina
in Sect. 4. We discuss how to get the most from study groups in Sect. 5, and give our
conclusions in Sect. 6.

2 Overview of Irish Study Groups

Table 1 gives an overview of study groups with industry in Ireland, including
outputs subsequent to the study group: papers, undergraduate, MSc and PhD thesis,
company or enterprise funding following the study group and media exposure.

Table 1 Irish study groups
in numbers

Study groups 6

Study group problems 42

Companies returning 4

Papers 13

Theses 9

Funding 9

Study groups held in Ireland
have proved successful in
generating and funding subse-
quent academic activity, such
as papers and theses (PhD,
MSc or undergraduate)



200 W. Lee et al.

The table shows a number of important facts. Firstly a number of companies have
attended multiple study groups. Secondly a number of study group projects have
stimulated further engagement as illustrated by followup funding. (It is important to
note that lack of further funding may also indicate success: a problem completely
solved during the study group itself.) Thirdly a number of study groups problems
have opened up avenues of academic enquiry as shown by resulting publications.
Nevertheless these still only form a small fraction of the total number of study group
problems. It is vital to ascertain whether this indicates that the study group format is
acting as it should in giving academics and industrialists a rapid way of determining
if there is scope for a mutually beneficial outcomes, or if there is a “valley of death”
following a study group in which academically or industrially viable projects are
not being managed effectively.

3 Case Study: Analog Devices

Analog Devices are a multinational electronics company with a significant presence
in Limerick. They have brought problems to five out of the six MACSI study groups,
one of which is illustrated in Fig. 2. The problem of modelling the blowing of
polysilicon fuses was brought by Analog Devices to ESGI62 and a model initially
developed there was developed further by MACSI academics and Analog electrical
engineers working together [1].
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Fig. 2 Mathematical model of blowing polysilicon fuses [1]. Developed following ECMI62
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Fig. 3 Modelling product quality in the Bayer Process. Developed preceding ESGI82

4 Case Study: Aughinish Alumina

Rusal Aughinish Alumina is Europe’s largest alumina refinery, situated on the
Shannon Estuary in Ireland. Aughinish Alumina has also participated in multiple
study groups, and has both funded research coauthored papers with MACSI
coauthors. However their interaction also doesn’t conform to the idealised workflow
shown in Fig. 1 since in their case a contract research project whose results are
illustrated in Fig. 3 acted as a gateway to study groups rather than the reverse.

5 Discussion

As the case studies show, the idealised study group driven workflow shown in
Fig. 1 remains an ideal, with no real interaction between academic mathematicians
and industry conforming to the template. While this in itself is not grounds for
concern, the failure of most study group projects to lead to interactions of any
kind should be examined carefully. As discussed above, in some cases this is an
indicator of success: the problem posed is completely solved during the study
group. In other cases it is hard for the academics to make meaningful progress on
the project because of lack of access to the industrial representative—this form of
interaction is inherently collaborative and cannot be expected to succeed without
both sides working together. However, we there are several steps that can be taken
by academics, both before and after the study group to maximise the chances of a
meaningful engagement.
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Before the Study Group:

• Work with the company to formulate the problem statement and to identify
information that is likely to be needed during the study group. We have found it
best to write the problem statement ourselves, getting feedback from industry on
each draft of the problem statement until they are satisfied it accurately captures
their requirements. This usually results in us having a much better understanding
of the problem.

• Manage expectations. Make sure industry understands the likely outcomes. Is a
complete solution to the problem during the study group possible? Is it already
known that their problem is very hard (e.g. granular flow and segregation)?

After the Study Group:

• Quick turnaround of reports is essential. In practice this means the host institution
must take charge of the report writing.

• Going to the site to present reports. This is especially important if the main
contacts require buy in from more senior colleagues to continue the engagement.

• Options for follow up work must be explicitly discussed.

6 Conclusions

In the current higher education landscape in which available academic funding is
diminishing and increasingly tied to industry co-funding or demonstrable impact
Study Groups can play an important role demonstrating the continuing relevance
of applied mathematics, while also unlocking alternative, non-exchequer revenue
streams. However, this cannot be achieved by study groups in isolation. A study
group must be seen as only one step of a pathway leading to mutually beneficial
outcomes for academics and industry. Our own analysis of study groups in
Ireland has highlighted the importance of correctly managing the subsequent step
which currently acts a something of a “valley of death” for industrial-academic
collaborations.
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Short Description

New computing paradigms and platforms have introduced a new range of previously
unfeasible strategies and algorithms to solve computationally intensive problems in
finance. On the other hand, it allows current schemes and algorithms to tackle more
complex problems. This symposium will bring together young researchers from two
research networks, ITN-Strike and ITN-HPCFinance, who are currently developing
methods to apply in computationally demanding problems both from the point of
view of using new architectures, i.e., GPUs, FPGAs, as well as strategies, namely,
Model Order Reduction. The interchange of ideas will certainly create the basis for
a collaboration between these two networks.
A parallel GPU version of the Monte Carlo based Stochastic Grid Bundling Method
(SGBM) for pricing multi-dimensional Bermudan options is presented, as well as
parameter estimation using Field-Programmable Gate Arrays and the use of Proper
Orthogonal Decomposition as a technique to drastically reduced the computational
time needed to solve option pricing PDE.



On a GPU Acceleration of the Stochastic Grid
Bundling Method

Alvaro Leitao and Cornelis W. Oosterlee

Abstract Pricing early-exercise financial options under multi-dimensional stochas-
tic processes is a challenge in the financial sector. For this purpose, the authors
in Jain and Oosterlee (The stochastic grid bundling method: efficient pricing of
Bermudan options and their Greeks, 2015) proposed a practical simulation-based
algorithm called Stochastic Bundling Grid Method (SGBM). SGBM is a Monte
Carlo based method for pricing multi-dimensional Bermudan options. The method
is based in a combination of dynamic programming, simulation, regression and
bundling of paths. In the present work, the SGBM method is taken to the extreme
with as a purpose a near-future extension of the method, for example, to Credit
Value Adjustment (CVA) calculations. Here, the number of Monte Carlo paths,
the problem dimensions, the amount of bundles are increased drastically. As a
consequence, the SGBM method becomes significantly more (almost impractically)
expensive. Overall, with the increase of the number of bundles, the iterative bundling
process used in the original method would take too much computing time. In
addition, the algorithm needs a huge storage because many bundles contain many
more Monte Carlo paths. In order to make the method affordable, the General-
Purpose computing on Graphics Processing Units (GPGPU) paradigm is used to
parallelize the algorithm. More specifically, the Nvidia CUDA platform (CUDA
webpage: URL http://www.nvidia.com/object/cuda_home_new.html) is chosen to
reach this aim, taking advantage of its latest features. Two steps of parallelization
are performed, one for the Monte Carlo path simulation and another one for the
bundling calculations. Furthermore, a new way to make the bundles is proposed,
which is efficient and overcomes the drawbacks caused by the increasing number of
bundles and the problem dimensionality.
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1 Introduction

In recent years, different Monte Carlo simulation techniques for pricing high-
dimensional early-exercise option contracts appearing in computational finance
were developed. In the wake of the recent financial crisis, accurately modeling and
pricing these kinds of options gains importance due to the incorporation of a so-
called counterparty risk premium to the option value, which can be seen as an option
in which a counterparty may go into default before the end of a financial contract,
and thus cannot pay possible contractual obligations. One of the recent Monte Carlo
pricing techniques is the Stochastic Bundling Grid Method (SGBM), proposed by
Jain and Oosterlee in [5] for pricing Bermudan options with several underlying
assets. The method is a hybrid of regression- and bundling—based approaches,
and uses regressed value functions, together with bundling of the state space to
approximate continuation values at different time steps. In this paper, we extend
the method’s applicability by increasing the number of bundles and the problem
dimensionality, which, together, also imply a drastic increase of the number of
Monte Carlo paths. As the method becomes much more time-consuming then, we
propose to parallelize the SGBM method taking advantage of the General-Purpose
computing on Graphics Processing Units (GPGPU) paradigm. For this purpose,
the CUDA [2] tool developed by Nvidia for their GPUs is used. In order to get
a significant improvement, we also present a new bundling technique for SGBM
which is much more efficient on parallel hardware.

The paper is organized as follows. In Sect. 2, the particular Bermudan option
pricing problem is introduced. Section 3 describes briefly the Stochastic Grid
Bundling Method. Section 4 gives details about the choices made in the GPU
implementation process. In Sect. 5, some results and time comparisons are shown.
Finally, we conclude in Sect. 6.

2 Problem Formulation

This section defines the Bermudan option pricing problem and sets up the notations
used in this paper. A Bermudan option is an option where the buyer has the right
to exercise at a set number of times, t 2 Œt0 D 0; : : : ; tm; : : : ; tM D T�, before the
end of the contract, T. St D .S1t ; : : : ; S

d
t / 2 R

d defines the d-dimensional underlying
process. Let ht WD h.St/ be an adapted process representing the intrinsic value of
the option, i.e. the holder of the option receives max.ht; 0/, if the option is exercised
at time t: With the risk-less savings account process Bt D exp.

R t
0

rs ds/; where rt

denotes the instantaneous risk-free rate of return, we define

Dtm D Btm

BtmC1

:
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We consider the special case where rt is constant. The problem is then to compute

Vt0 .St0 / D max



E

�
h.S
 /

B


�

;

where 
 is a stopping time, taking values in the finite set f0; t1; : : : ;Tg. The value
of the option at the terminal time T is equal to the option’s payoff,

VT.ST/ D max.h.ST/; 0/:

The conditional continuation value Qtm , i.e. the expected payoff at time tm, is
given by:

Qtm.Stm/ D DtmE
	
VtmC1

.StmC1
/jStm



:

The Bermudan option value at time tm and state Stm is then given by

Vtm.Stm/ D max.h.Stm/;Qtm.Stm//:

We are interested in finding the value of the option at the initial state St0 , i.e.
Vt0 .St0 /.

3 Stochastic Grid Bundling Method

The Stochastic Grid Bundling Method (SGBM) [5] is a simulation-based Monte
Carlo dynamic programming method, which first generates Monte Carlo paths
forward in time, followed by determining the optimal early-exercise policy moving
backwards in time in a dynamic programming framework, based on the Bellman
principle of optimality. The steps involved in the SGBM algorithm are briefly
described in the following paragraphs:

Step I: Generation of Stochastic Grid Points
The grid points in SGBM are generated by simulating independent copies of

sample paths, fSt0 .n/; : : : ;StM .n/g; n D 1; : : : ;N; of the underlying process St;

all starting from the same initial state St0 : The n-th grid point at time step tm is
then denoted by Stm.n/; n D 1; : : : ;N. Depending upon the underlying stochastic
process an appropriate discretization scheme, e.g. the Euler scheme, is used to
generate sample paths. Sometimes the diffusion process can be simulated directly,
essentially because it appears in closed form, like for the regular multi-dimensional
Black-Scholes model.
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Step II: Option Value at Terminal Time
The option value at the terminal time tM D T is given by:

VtM .StM / D max.h.StM /; 0/;

with max.h.StM /; 0/ a multi-dimensional payoff function. This relation is used to
compute the option value for all grid points at the final time step.

The following steps are subsequently performed for each time step, tm; m � M;
recursively, moving backwards in time, starting from tM .

Step III: Bundling
The grid points at tm�1 are bundled into Btm�1 .1/; : : : ;Btm�1 .�/ non-overlapping

sets or partitions. Different approaches for partitioning can be considered. Due to its
importance, this decision is discussed in more detail in Sect. 3.1.

Step IV: Mapping High-Dimensional State Space to a Low-Dimensional Space

Corresponding to each bundle Btm�1 .ˇ/; ˇ D 1; : : : ; �, a parameterized value
function Z W R

d � R
K 7! R; which assigns values Z.Stm ; ˛

ˇ
tm/ to states Stm ; is

computed. Here ˛ˇtm 2 R
K is a vector of free parameters. The objective is then

to choose, for each tm and ˇ; a parameter vector ˛ˇtm so that

Z.Stm ; ˛
ˇ
tm/ 
 Vtm.Stm/:

After some approximations, Z.Stm ; ˛
ˇ
tm/ can be computed using ordinary least

squares regression.

Step V: Computing the Continuation and Option Values at tm�1
The continuation values for Stm�1 .n/ 2 Btm�1 .ˇ/; n D 1; : : : ;N; ˇ D 1; : : : ; �;

are approximated by

bQtm�1 .Stm�1 .n// D EŒZ.Stm ; ˛
ˇ
tm/jStm�1 .n/�

The option value is then given by:

bVtm�1 .Stm�1 .n// D max.h.Stm�1 .n//;bQtm�1 .Stm�1 .n///:

3.1 Bundling

One of the techniques proposed to partition the data into � non-overlapping sets
is the k-means clustering technique. The algorithm uses an iterative refinement
algorithm, where, given an initial guess of clusters means, first of all the algorithm
assigns each data item to one specific set and subsequently updates the clusters. This
process is repeated until some stop criterion is satisfied (see [5] for more details).
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Since our goal is to drastically increase the number of bundles used and,
in particular, the problem dimensionality, the k-means algorithm becomes too
expensive in terms of computational time and memory usage. In addition, it may
happen that some bundles do not contain enough data to compute an accurate
regression function when the number of bundles is increased. In order to overcome
these two problems of the k-means clustering, we propose a new bundling technique
which is more efficient taking into account our goal: it does not involve an iterative
process and distributes the data equally. The details are shown in the next subsection.

3.1.1 Equal-Partitioning Technique

This bundling technique is particularly well-suited for parallel processing; it
involves two steps: sorting and splitting. The general idea is to sort the data first
under some convenient criterion and then split the sorted data items in sets of equal
size. A schematic representation of this technique is shown in Fig. 1.

With this simple approach, the drawbacks of the iterative bundling for very high
dimensions and an enormous amount of paths are avoided. The sorting process is
more efficient and less time-consuming than an iterative search and, furthermore,
it is highly parallelizable. The split stage assigns directly the portions of data to
bundles which will contain the same amount of similar (following some criterion)
data items. Hence, the regression can be performed even though the number of
bundles increases in a significant way.

Fig. 1 Equal partitioning
scheme

SORT SPLIT
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(a) (b)

Fig. 2 SGBM Monte Carlo and bundling stages. (a) SGBM Monte Carlo stage. (b) SGBM
bundling stage

4 Implementation Details

The original SGBM implementation was done in Matlab. The first step of our
implementation is to code an efficient version of the method in the C programming
language, because it eases the subsequent parallel coding in CUDA. In addition,
we can use both implementations to compare results and execution times. Once
we obtained the C-version, we coded the CUDA-version aiming to parallelize the
suitable parts of the method. In addition, we also carry out the implementation of
SGBM with the equal-partitioning bundling technique in C and CUDA.

Since the SGBM method is based on two clearly separated parts, we perform
the parallelization separately. First of all, the Monte Carlo grid generation is
parallelized (step I). As is well-known, Monte Carlo methods are very suitable for
parallelization, because of characteristics like a high number of simulations and
data independence. In Fig. 2a, we see how the parallelization is done. The second
main stage of SGBM is the regression and the computation of the continuation and
option values (Steps IV and V) in each bundle, backwards in time. Due to the
data dependency between time steps, the only way to parallelize this part of the
method is by performing the calculations in each bundle in parallel. A schematic
representation is given in Fig. 2b.

We will focus on the CUDA implementation and its main details. The memory
transfers between CPU and GPU are key since we have to move huge amounts of
data. The increase of the number of bundles implies an increase of the number of
Monte Carlo paths which we need. For example, in case of the Monte Carlo scenario
generator, we need to store in and move from GPU MC simulations � Time Steps �
Dimension doubles1 (8 bytes). In order to improve the performance in this aspect,
we take advantage of the CUDA feature Unified Virtual Addressing (UVA) which

1The number in double-precision floating-point format.
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allows asynchronous transfers and page-locked memory accesses using a single
address space for CPU and GPU.

In the following subsections, we will show more specific details of the CUDA
implementations of the two SGBM versions, the original one (with k-means
bundling) and new one (with equal-partitioning).

4.1 Parallel SGBM

4.1.1 Monte Carlo paths

In a GPU very large amount of threads can be managed, so we launch one thread per
Monte Carlo simulation. The necessary random numbers are obtained “on the fly”
in each thread by means of cuRAND library [3]. In addition, the intrinsic value of
the option is calculated by the Monte Carlo generator decreasing the launched loops
and improving the GPU memory accesses. In the original implementation, we need
to store all Monte Carlo data because it will be used in the bundling stage. This is a
limiting factor since the maximum memory storage is easily reached. Furthermore,
we have to move each obtained value from GPU to CPU and, with a significant
amount of paths and dimensions, this transfer could become really expensive.

As in the case of the k-means clustering version, one GPU thread per Monte
Carlo scenario is launched when using equal-partitioning clustering. The main
difference between the two schemes is that we now perform calculations for the
sorting criterion to avoid storage of the complete Monte Carlo simulation and to
transfer only a small amount of data between GPU and CPU. This approach gives
us a considerable performance improvement and allows us to increase drastically
the number of simulations (depending on the number of bundles) and thus the
dimensionality.

4.1.2 Bundling Schemes

After the Monte Carlo simulation, the bundling process using k-means clustering
is performed in one test, and the equal-partitioning scheme in another test. For the
k-means clustering the computations of the differences between the cluster centers
and all of the scenarios have been parallelized. However, the very large amount of
bundles makes this very expensive, since the bundling must be done in each time
step. The other parts of the algorithm have to be done in a sequential way because
of data dependency.

As mentioned, equal-partitioning bundling involves two stages: sorting and
splitting. For the sorting stage, we employ the sort functions of the Thrust library.
After the sorting, the splitting stage is immediate since the size of the bundles is
known, i.e. Paths=Number Bundles. Each GPU thread manages a pointer which
points at the beginning of each bundle.
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4.1.3 Estimator

When the bundling stage is done, the exercise policy and the final time option values
can be computed. In order to use the GPU memory efficiently, the obtained scenarios
(once bundled by k-means clustering) are sorted with respect to the bundles and
stored in that way. We minimize the memory accesses and the amount of used
memory. For this purpose, we use the Thrust library [6] which allows, among other
features, sorting of data on the GPU. Note that the data is already sorted in the case
of equal-partitioning bundling.

At each time step, one GPU thread per bundle is launched. For each bundle, the
regression and option values are calculated on GPU. All threads collaborate in order
to compute the continuation value which determines the early-exercise policy.

In the final stage, a summation is necessary to determine the option price. Again,
we take advantage of the Thrust library to perform this reduction on the GPU.

5 Results

Experiments were performed on the Accelerator Island system of the Cartesius
Supercomputer (more information in [1]) with the following main characteristics:

• Intel Xeon E5-2420 (Sandy Bridge).
• NVIDIA Tesla K20m.
• C-compiler: GCC 4.4.6.
• CUDA version: 5.5.

All computations are made in double precision, because a high accuracy is
needed in the k-means clustering and in the regression computations. In each per-
formed test, we consider the d-dimensional problem of pricing a geometric basket
Bermudan put option with the following characteristics: St0 D .40; : : : ; 40/ 2 R

d,
K D 40, rt D 0:06, 	 D .0:2; : : : ; 0:2/ 2 R

d, �ij D 0:25, T D 1 and
M D 10. As the stochastic asset model, we choose the multi-dimensional Geometric
Brownian motion (GBM), and for the discretization scheme we employ the Euler
discretization.

In the original SGBM paper, the authors have shown the convergence of
SGBM using k-means bundling, in dependence of the number of bundles. For the
equal-partitioning bundling, we make a similar convergence study by pricing the
previously mentioned option. In Fig. 3, we show the convergence of the calculated
option price to the reference price (obtained by the COS method [4]) for different
dimensionalities, i.e. 5d, 15d and 50d.

Once the convergence of the equal-partitioning technique is shown numerically,
we increase drastically the amount of bundles and, hence, the number of Monte
Carlo paths. For the two presented bundling techniques, we perform a time
comparison between the C and CUDA implementations. The results are shown
in Table 1. We observe a significant acceleration for both cases, with a special



On a GPU Acceleration of the Stochastic Grid Bundling Method 215

Fig. 3 Convergence with
equal-partitioning bundling
technique. Test configuration:
N D 216 and ıt D T=M

Table 1 Time (s) for the C and CUDA versions

k-means Equal-partitioning

5d 10d 15d 5d 10d 15d

C 676:25 1347:07 2008:16 157:83 234:60 320:59

CUDA 38:77 145:28 307:64 13:85 14:78 15:42

Speedup 17:44 9:27 6:52 11:40 15:87 20:79

Test configuration: N D 222, ıt D T=M and � D 211

Table 2 Time (s) for a high-dimensional problem with equal-partitioning

� D 212 � D 213 � D 214

30d 40d 50d 30d 40d 50d 30d 40d 50d

C 570:83 787:36 989:15 573.88 787:51 986:16 571:97 787.22 984:51

CUDA 18:06 21:44 25:09 18.43 21:93 25:42 19:25 22.60 26:06

Speedup 31:61 36:72 39:42 31.14 35:91 38:79 29:71 34.83 37:78

Test configuration: N D 222 and ıt D T=M

improvement in the case of the equal-partitioning technique. This is because the
iterative process of k-means bundling penalizes parallelism and memory transfers,
while equal-partitioning handles these issues in a more efficient way.

The second goal is to increase the problem dimensionality. In the case of
the k-means bundling algorithm, this is not possible because of memory usage.
However, we save memory using the equal-partitioning technique which enables
increasing dimensions. In Table 2, the execution times of pricing the geometric
basket Bermudan put option in different dimensions and with different numbers
of bundles, �, are shown. Note that the number of bundles hardly influences the
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execution times. With the equal-partitioning technique, the performance is mainly
dependent on the number of paths and the dimensionality. For that reason, we can
thus exploit the GPU parallelism reaching a speedup of around 40 times for the
50-dimensional problem.

6 Conclusions

In this work, we have presented an efficient implementation of the Stochastic Grid
Bundling Method on a GPU architecture. Through the GPU parallelism, we can
speed up the execution times when the number of bundles and the dimensionality
increase. In addition, we have proposed a new bundling technique which is more
efficient in terms of memory usage and parallelism. These two improvements enable
the use of SGBM for more involved problems, like, for example, counterparty risk
and CVA computations.
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Proper Orthogonal Decomposition in Option
Pricing: Basket Options and Heston Model

J.P. Silva, E.J.W. ter Maten, M. Günther, and M. Ehrhardt

Abstract The finance world, relying more and more on mathematical models, also
expects them to be fast, robust and cheap, especially for calibration purposes. The
recent revolution in Graphical Processing Units (GPU) and Field-Programmable
Gate Array (FPGA) has helped to reduce time and costs but it is the algorithms that
ultimately prevail. In this respect, Model Order Reduction (MOR) seems to be espe-
cially suited to financial problems as it can reduce extremely computational costs
(Achdou and Pironneau, Computational methods for option pricing. SIAM frontiers
in applied mathematics, vol 30. Society for Industrial and Applied Mathematics,
Philadelphia, 2005). We present two cases when MOR can be extremely useful and
how Proper Orthogonal Decomposition (POD) stands out as a valid MOR technique
in finance (Volkwein, Proper orthogonal decomposition: theory and reduced-order
modelling. Lecture notes, Universität Konstanz, 2013). We show the validity of its
application to pricing of basket options, as well as to stochastic volatility models
(Heston, Rev Financ Stud 6:327–343, 1993), through the solution of a reduced
Black-Scholes PDE. Finally, its computational efficiency when compared with some
extensively used numerical methods, as well as some of its limitations are discussed.

Keywords Computational finance • Model order reduction • Option pricing •
Proper orthogonal decomposition

1 Introduction

Model Order Reduction (MOR) [2] emerged at the end of the twentieth century
as an answer to the increasing complexity of models being developed. Higher
and higher resolution schemes lead to bigger problems which, in turn, lead to
the development of new accurate schemes (non-uniform and refined grids, higher-
order schemes, sparse schemes, parallelization, problem-specific hardware, etc.).
The goal of MOR is to generate smaller models, faster to solve and, if not with
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similar, with high enough precision with respect to the original Full Order Model
(FOM). The Reduced Order Model (ROM) is then a cheaper and faster proxy of
the FOM, making it ideal for multi-query problems: parameter studies, parameter
optimization, inverse problems, control problems. In finance, and particularly option
pricing, inverse problems arise when calibrating model parameters to market data,
with volatility being one of the parameters, for example [1].

Among the different MOR techniques, c.f. [2], Proper Orthogonal Decomposi-
tion (POD) stands out as a fairly robust technique as it is one of the few techniques
able to tackle general non-linear problems. Due to its data-driven approach, it
generates ROM in a tailored way [15].

Similar problems have been tackled before in a different setting. For example,
in [7], Reduced Basis are used for the American Options pricing with parameter
dependency, in [4] tailored basis are generated based on the Black-Scholes operator
applied to the Black-Scholes and Merton models. We present the results for basket
options and Heston Model using numerical methods used in practice to compare the
numerical advantage of ROM.

In Sect. 2 we describe briefly Proper Orthogonal Decomposition and in Sect. 3 we
introduce the models used and present numerical results for these models. Firstly a
2-dimensional European-type basket option with two underlyings which originates
a 2d PDE and then a particular model belonging to the class of stochastic volatility
models, namely the Heston Model.

2 Proper Orthogonal Decomposition

In practice, most reduced models are generated in a two step approach. In a first step,
information from the full order model is retrieved and with that information a basis
of a subspace is generated. In a second step, the original model is projected onto
the same (different) subspace space spanned by this new basis, a procedure called
Galerkin projection (Petrov-Galerkin projection). In that sense, POD is no different,
the big difference being the basis generation, as it is generated solely from data.

The POD is a mathematical procedure that, given an ensemble of data, constructs
a basis for the ensemble that is optimal in the following sense. Let X be a real
Hilbert space, with inner product .�; �/X , and Y D 	

y1 y2 : : : yn



an ensemble of n

snapshots yi 2 X. The snapshots contain the solution for different configurations
of the problem, i.e., it may contain the solution at different time instances for an
evolution problem, it may contain the solution for different parameter values or any
other configuration, which we will try to reproduce with our ROM. Then, for some
l � n a POD basis is an optimal orthonormal basis  j; j D 1; : : : ; l such that the
square error between the elements yi and its l-partial sum of the decomposition of yi

in the space spanned by  j, is minimized, i.e.

min
f kglkD1

J . / D min
f kglkD1

nX

iD1

�
�
�
�
�
�

yi �
lX

jD1

�
yi;  j

�
X
 j

�
�
�
�
�
�

2

X

; (1)
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subject to
�
 i;  j

�
X D ıij. It can be proved that the above minimization problem is

equivalent to the eigenvalue problem

YY> D � :

If we factorize Y using a Singular Value decomposition (SVD), we can see that
the resulting left-singular vectors form a POD basis, where � D 	2, with 	 the
singular values of Y. For the POD basis, J . / D Pn

iDlC1 �i D Pn
iDlC1 	2i . The

size of the basis l necessary for a good approximation is problem dependent, but
we can take the relative error as a good indicator. As we are minimizing a sum of
squares, this criterion guarantees that we are maximizing the information on the
reconstructed snapshots in the least-squares sense,

E .l/ D
Pl

iD1 	2iPn
iD1 	2i

: (2)

As the singular values are ordered and reflect the relevance of each dimension in the
state space, it is sometimes called relative information measure.

The second step in constructing a ROM is to project the PDE onto the space
spanned by the POD basis. Rewriting our PDEs as

@

@t
V D L V; (3)

where L is a linear operator, we project in a Galerkin fashion, i.e.

�

 i;
@V

@t

�

X

D . i;L V/X ; i D 1; : : : ; l:

Substituting V by its representation in the POD basis of size l , V D Pl
j aj .t/  j .s/

and bearing in mind the orthogonality of the basis, we obtain the explicit system of
ODEs

Pai D
lX

jD1
aj .t/ . i;L l/X i D 1; : : : ; l:

The inner product exhibits two roles in the construction of the ROM. First by
defining the POD basis optimality and secondly in the projection step of the PDE.
Besides, there are two ways in which we can treat our projection step, before or after
semi-discretizing our original, continuous PDE. In our numerical results we will use
the former, where we use the method of lines (MOL) to discretize our PDE in space.
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3 POD in Option Pricing

The first FOM we want to reduce is an European-type basket option. The basket
option is the generalization of the usual option contract with one underlying to n
underlyings, usually n correlated assets, see [10]. So, assuming a financial contract
with n underlyings following geometrical Brownian motions (GBM) we obtain its
price V D V .t; s/ as the solution of the PDE

@V

@t
.t; s/C

nX

i

.r � qi/ si
@V

@si
.t; s/C 1

2

nX

i;j

�?ij	i	jsisj
@2V

@si@sj
.t; s/ � rV .t; s/ D 0

(4)

with si 2 Œ0;1/; t 2 Œ0;T�; �?ij D 2�ij; i ¤ j. r is the risk-free interest rate, �ij is the
correlation between stochastic processes Si and Sj, qi is the dividend yield of Si and
	i is the annualized standard deviation of logarithmic returns of Si.

As this parabolic PDE is, most of the time, supplied with a terminal condition at
t D T, we will integrate it backwards in time. Depending on the characteristics of the
financial contract, we supply (4) with appropriate boundary and terminal conditions.

The second model comes as a result of GBM being a very restrictive model in
what concerns the paths of the underlying. A possible extension is to assume that
volatility is not constant but follows its own stochastic process, giving origin to the
class of Stochastic Volatility Models. Introducing a square root variance model with
a mean reverting process for variance one obtains the Heston PDE [9]

@V

@t
.t; �; S/ D � 1

2
�S2

@2V

@S2
.t; �; S/� �	�S

@2V

@�@S
.t; �; S/� 1

2
	2�

@2V

@�2
.t; �; S/

(5)

� .rd � rf /S
@V

@S
.t; �; S/� �.� � �/

@V

@�
C rV.t; �; S/;

with � the correlation between Wiener processes, � the reversion speed of the
volatility to its long-term mean, � the long-term mean of variance and 	2 the
variance of variance. Here we denote the risk-free interest rate r as rd as the dividend
rate q as rf as they take the role of domestic and foreign interest rates, respectively.

We used the MOL in space to discretize Eqs. (4) (for n D 2) and (5) obtaining
a system of ODEs, with second order approximations for both first and second
derivatives. We took ni discretization points in direction xi, resulting in a grid of
size N D Q

i ni, including Dirichlet boundary conditions. Our PDE becomes then
a system of ODEs with size equal to the total number of (interior) discretization
points Nint D Q

i .ni � 2/, which can easily be written in a state-space formulation,
common to most MOR techniques,

Pv D Av C b v; b 2 R
Nint ; A 2 R

Nint�Nint (6)

where A has a sparse structure.
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In this setting, we have X D R
Nint with the Euclidean inner product, .x1; x2/X D

xT
1 x2. Setting v D  a and projecting Eq. (6) we obtained the reduced ODE system

IN„ƒ‚…
 T 

Pa D QA„ƒ‚…
 T A 

a C Qb„ƒ‚…
 T b

: (7)

We first solve (6), whose solution we will call truth solution, and then proceed to
solve (7) using the same integration scheme as in (6). There is no need to ensure we
use the same integration scheme however that will be generally the case either in
third party software or for ease of implementation.

3.1 2D Basket Option

We solve (4) for two underlyings (2D PDE) in a uniform grid with n1 points in
s1-direction and n2 points in s2-direction for the spatial domain ˝ D Œ0; 6K� �
Œ0; 6K�, where K is a problem dependent parameter. Although different terminal
conditions are possible (geometric average, arithmetic average, max, etc. . . ), we
chose the standard weighted average with weights wi, reflecting the weight of each
underlying in the portfolio, which the basket option comprises. So with a put option
payoff with strike price K as terminal condition, i.e.

V .T; S1; S2/ D max .K � !1S1 � !2S2; 0/ ; !1 C !2 D 1; !i > 0

and following boundary conditions (V� is a 1D put option with a rescaled strike
price, K� D K=!1)

V .t; S1min D 0; S2/ D !2V
? .t; S2/ V .t; S1max D 6K; S2/ D 0

V .t; S1; S2min D 0/ D !1V
? .t; S1/ V .t; S1; S2max D 6K/ D 0:

We used the following set of parameters (Table 1)
We proceed to solve the FOM with a trapezoidal integration in time with 100

time steps, retrieve our snapshots at each time level ti D it; t D T
100

, generate
the basis, project and solve the ROM with the same trapezoidal integration in time.
We used all equally time spaced snapshots available to generate our basis. In Fig. 1,
we display on the left axis the maximum absolute error between the FOM and the
ROM at the final time t D 0 for increasing number of basis vectors �j and the
corresponding squared singular values, 	2, on the right axis.

Table 1 2D parameters � 	1 	2 r K T !1 n1 n2
0.5 0.1 0.2 0.025 100 1 0.25 20 40
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Fig. 1 Absolute Error kVFOM.0; S1; S2/ � VROM.0; S1; S2/k1 at final time t D 0 for reduced 2D
Basket Option

First of all, we can observe an exponential decay in the singular values, a
condition necessary for our FOM to possess the so-called sparse representation
property [4]. Secondly, we can observe that only 20 basis vectors are enough to
achieve a 10�12 precision.

3.2 Heston Model

In our second case, following [11], we applied an Alternating Direction Implicit
(ADI) type of scheme, Modified Craig-Sneyd (MCS), to solve the ODE system
resulting from the spatial discretization of (5). More details regarding ADI schemes
with mixed derivatives and the MCS scheme in particular can be found in [5, 12, 13].
Contrary to the Basket Option case, we used a non-uniform spatial grid based on the
hyperbolic sine with focus around � D 0 and S D K [11]. We used a spatial domain
˝ D Œ0; 15��Œ0; 30K�with a discretization consisting of 25 points in the � direction
and 50 in the S direction. All the following results are for nt D 1000.

To supply our PDE with the appropriate conditions, we define for our terminal
condition as a call option payoff V .T; �; S/ D max .S � K; 0/ and for the boundary
conditions

V .t; 15; S/ D Se�rf t; V .t; �; 0/ D 0;
@V

@S
.t; �; 30K/ D e�rf t:
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Note that we do not impose any boundary condition at � D 0, a degenerate
point of our PDE, as numerically we just use the degenerate PDE along � D 0, cf.
[6]. As in [11], we tested our reduced models with four different set of parameters,
originally taken from [3] (Table 2).

Figure 2 presents the results for the absolute error for the solution at final time
t D 0 for each of the four cases. All the numerical integration is done in the full
grid, we decided to evaluate the error only in a region of interest Œ0; 1� � Œ0; 6K�,
instead of on the original grid domain Œ0; 15� � Œ0; 30K�, as those range of values
would be of little meaning in financial markets. Even though we are in the realm
of numerical analysis, we should note one thing about applying these methods in
finance. With some exceptions (American-type options), we are mostly interested

Table 2 Heston model parameters [11]

� 	 rd rf � � K T

Case 1 �0:13 0:49 0:02 0:04 0:02 6:02 100 0:25

Case 2 �0:67 0:62 0:01 0:02 0:02 1:50 100 1

Case 3 �0:55 1:26 0:01 0:06 0:09 0:38 100 4

Case 4 0:78 0:15 0:1 0:02 0:06 0:3 100 5

(a) (b)

(c) (d)

Fig. 2 Absolute Error kVFOM.0; �; S/�VROM.0; �; S/k1 at time t D 0 for reduced Heston Model
and .�; S/ 2 Œ0; 1�� Œ0; 6K�. (a) Case 1. (b) Case 2. (c) Case 3. (d) Case 4
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in the solution of our PDE at the final time t D 0 or at a few selected times. This
provides an opportunity to optimize our choice of snapshots in order to minimize
the error at these selected times, procedure that was not taken into account in this
paper.

Comparing these results with the FOM in [11], we can see that we have a
very good approximation with an error of similar magnitude to the temporal
discretization error in the FOM. We also would like to observe that in cases 1, 2
and 4, the maximum error is attained near the focus of the grid while on case 3 it
happens at the corner of the domain, .1; 6K/. The error of case 3 might then be even
smaller if a smaller region of interest is considered, according to the values of � and
S desired.

3.3 ADI and MOR for Higher-Dimensional Problems

Splitting methods, and ADI in particular, have recently been used in finance [8]
as it lightens the weight of the curse of dimensionality by having to solve, at
each time step, only tridiagonal systems implicitly, some of them time-independent.
Following conventions in [14], we evaluate and compare the computational cost of
using an ADI MCS scheme to solve a full model and the cost for of solving the
corresponding reduced one. In what follows, we take d as the number of dimensions
in our problem, nt the number of time-steps in our time-stepping scheme and nd the
number of discretization points in each dimension. We will assume nd is the same
in all dimensions.

After space discretization, the operator A is decomposed into A0, which contains
all the mixed derivatives terms, and Aj, which contains the spatial operator in
dimension j. Therefore, we observe that the MCS scheme consists, at each time
step, of

Y0 D Un�1 CtF .tn�1;Un�1/

Yj D Yj�1 C �t
�
Fj
�
tn;Yj

� � Fj .tn�1;Un�1/
�

j D 1; 2; : : : ; d

OY0 D Y0 CtA0
�
F0 .tn;Y3/� Fj .tn�1;Un�1/

�

QY0 D OY0 C .
1

2
� �/t ŒF .tn;Y3/� F .tn�1;Un�1/�

QYj D QYj�1 C �t
�
Fj
�
tn; QYj

� � Fj .tn�1;Un�1/
�

j D 1; 2; : : : ; d

Vn D QYd

• two implicit integrations corresponding to A (predictor step)
• one explicit integration of the mixed derivative term A0
• two implicit integrations per direction/dimension corresponding to Aj



POD in Option Pricing: Basket Options and Heston Model 225

Dealing with a PDE of up to second order and with second order approximation
for the derivative operators will result in tridiagonal systems for each Aj. For the
mixed derivatives, the PDE may contain up to d.d�1/

2
mixed derivatives and each

mixed derivative discretization will originate 4 new points so, in total, we have
2d .d � 1/ diagonals in A0. This situation occurs in financial PDEs unless the
correlation between each stochastic process is zero, hence we will always have all
mixed derivatives terms. In the following calculation we assume time independence
of our matrices, which allows for a LU decomposition a priori and corresponds to
time-independent parameters in our PDE, as happens in both our examples. The
computational cost will then be:

1. Once

d
32nd

d

2

as for the LU decomposition for the tridiagonal matrices Aj; j D 1; : : : ; d
2. At each time step

a. Two Explicit steps for A

2 .2d .d � 1/C 2d C 1/ nd
d

b. Two Implicit steps per dimension

2d5nd
d D 10dnd

d

c. One explicit step for A0

2d .d � 1/ nd
d

Hence, the total cost is

f .�/ D d
32nd

d

2
C nt

�
.6d .d � 1/C 4d C 2/ nd

d C 10dnd
d

�

D 9

2
dnd

d C �
6d2 C 8d C 2

�
ntn

d
d

D dnd
d

�
9

2
C 8nt C 6dnt

�

C 2ntn
d
d

We now represent graphically the computational cost of ADI vs a reduced model
generated with basis of different sizes. Note that the reduced model will have much
less sparsity than the FOM. The ADI method exploits this sparsity and, therefore,
only when the dense ROM can compete with the ADI, can it be of practical use.
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Fig. 3 Computational advantage of MOR

We see that we can achieve a significant reduction in the number of operations
(speed-up) already for a two-dimensional problem even in the 50 modes case. Due
to the exponential dependence on dimension for the ADI method and the respective
independence for the reduced model, we can theoretically obtain better and better
results the higher the dimension of the problem. Although higher dimensional ADI
methods still lack some rigorous proofs of their properties (stability, consistency),
in practice they have been applied with success [8] and so, at least for up to four
dimensional problems, we can regard Fig. 3 as showing realistic cases of application.

4 Conclusion

We generated reduced models using POD for two of the most common mathematical
models in finance: Basket Options and Heston Model. In both cases it was shown
that 25 basis elements at most are needed to obtain the best approximation. We
also showed that even for numerical schemes regarded as computationally efficient
(ADI) we can obtain significant gains already on 3 and 4 dimensional problems [8].
The advantage is even more clear in a multi-query problem as the cost of SVD is
diluted over each online calculation. We expect that to be the case in parametric
ROM, which will be subject to future work.
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Ana Carpio6 and María-Luisa Rapún7

Domain and Parameter Reconstruction in Photothermal Imaging

Peter Monk and Virginia Selgas8

Transmission Eigenvalues for a Dielectric Object Resting on a Perfect Conductor

B. Tomas Johansson9

Source Reconstruction from Final Data in the Heat Equation

Keywords

Imaging problem
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Short Description

Imaging problems appear in many real life applications, for example, medical
imaging, material testing, geophysical or astrophysical studies. Depending on the
context, these problems may adopt different mathematical forms. Often, information
about objects is to be found from knowledge of the influence that those obstacles
have on propagating waves. A different situation arises when an existing image or
signal has to be restored to remove noise. In this minisymposium, we present a
summary of recent results in both frameworks.

P. Gonzalez will discuss optical imaging of tissues. A. Marquina analyzes
the reconstruction of noisy and blurry signals by means of L1 regularizations.
S. Serna pursues this topic resorting to total variation image restoration. M.L. Rapun
considers photothermal imaging. V. Selgas presents some results on scattering by
dielectric objects. Finally, T. Johansson will address source reconstruction from final
data in diffusion problems.

The Inverse Source Problem in Mesoscopic Scattering Regimes Using
Angle-Resolved Measurements

P. González-Rodríguez, Universidad Carlos III

We study optical imaging of tissues in the mesoscopic scattering regime in which
light multiply scatters in tissues, but is not fully diffusive. Our purpose is to show

6Universidad Complutense
7Universidad Politécnica de Madrid
8(University of Delaware) and (Universidad de Oviedo)
9(Linköping University)
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that, in this regime, using angle-resolved data improves the results considerably.
To prove this we compare the solution of two similar inverse source problems that
are solved using the same `1-optimization method. In the first problem we find a
solution of a linear system Ax D b in which the initial entries Ai;j of the matrix
are the scalar flux response at a boundary grid point �i due to an isotropic point
source ri governed by the radiative transport equation. Once the matrix is calculated,
we normalize the columns. The right hand side b is the angle averaged data. The
second problem Bx D c is similar, but in this case the entries Bi;j of the matrix are
the directional response at a boundary grid point �i due to an isotropic point source
ri also governed by the radiative transport equation. As with A, we normalize the
columns of B. The right hand side c represents the angle-resolved measurements.
We show that recovering the location and strength of several point-like sources is
not possible when using angle-averaged measurements, while just using two angled-
resolved measurements the results are improved radically. In both problems, the
matrices A and B are calculated efficiently computing the RTE Green’s functions as
an expansion of plane wave solutions.

Variational Models and Numerical Algorithms for One-Dimensional Signal
Reconstruction of Noisy and Blurry Signals: Application to the Signal Recovery for

Future Detection of Gravitational Waves
Antonio Marquina, Universidad de Valencia

In this research work we examine the one dimensional variational models
for reconstruction of signals using L1-regularizations. We present an analysis of
the variational models based on L1-regularization and we implement numerical
algorithms that allow to recover noisy and blurry signals, using direct methods and
regularization procedures. We shall present an application for the recovery of one-
dimensional signals to be observed in the near future in different gravitational wave
detectors.

The Regularized Split Bregman Method Based on Rational Approximations of the
Absolute Value Function for Total Variation Image Restoration

Susana Serna, Universidad Autónoma de Barcelona

We explore the regularization of the “shrinkage” function based on an approx-
imation of the absolute value function to design a class of split Bregman methods
for total variation image restoration. We introduce a hierarchy of regularizations
depending on a positive parameter that determines the accuracy in the approxi-
mation of the absolute value function by rational functions. We present a set of
numerical tests involving the restoration of signals and synthetic images contami-
nated with noise and blur.
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Domain and Parameter Reconstruction in Photothermal Imaging
Ana Carpio (Universidad Complutense) and María–Luisa Rapún (Universidad

Politécnica de Madrid)

Photothermal imaging aims to reconstruct the inner structure of materials by
heating their surface using a laser beam and recording the surface temperature.
The goal is to detect structural defects or inclusions (determine their location, size,
shape, orientation) and their nature (physical parameters).

In this work we propose an iterative descent method that combines topological
derivative computations to reconstruct the geometry of the defects with gradient
iterations to approximate the material parameters.

Some numerical experiments showing the ability of the method to obtain
reasonable reconstructions in a few iterations will be shown. Furthermore, we
numerically corroborate that a small number of sampling points and source points
allow for reliable reconstructions if we record the temperature during a time interval.

Transmission Eigenvalues for a Dielectric Object Resting on a Perfect Conductor
Peter Monk (University of Delaware) and Virginia Selgas (Universidad de Oviedo)

We introduce a new transmission eigenvalue problem with mixed boundary
conditions that arises when a dielectric scatterer is mounted on a metal structure.

Indeed, we describe the forward problem and show that it has a unique solution
using a reflection principle. We also formulate the inverse problem of identifying
the shape of the dielectric from near field measurements. To solve numerically
this inverse problem, we propose the standard near field Linear Sampling Method
(LSM); notice that the equations involved in the LSM and in the approximation of
transmission eigenvalues from measurements are one and the same.

Moreover, we reformulate the mixed transmission eigenvalue problem as a fourth
order partial differential equation. Then we show that there exist infinitely many
transmission eigenvalues and derive monotonicity as well as a lower bound estimate
for the first eigenvalue. Our analysis mainly uses techniques from [1, 2, 4], and
requires us to prove suitable density and compactness properties.

We also provide numerical examples for the LSM; and finally demonstrate
that, for the cases we have considered, mixed transmission eigenvalues can be
approximated from near field data; see [3] for a study of the corresponding far field
problem for standard transmission eigenvalues.

1. Cakoni, F., Haddar, H.: A variational approach for the solution of the electromag-
netic interior transmission problem for anisotropic media. Inverse Probl. Imag.
1, 443–456 (2007)

2. Cakoni, F., Haddar, H.: On the existence of transmission eigenvalues in an
inhomogeneous media. Appl. Anal. 88, 475–493 (2009)

3. Cossonnière, A.: Valeurs propres de transmission et leur utilisation dans
l’identification d’inclusions a partir de mesures électromagnétiques. Ph.D. thesis,
Université de Toulouse (2011)
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4. Haddar, H.: The interior transmission problem for anisotropic Maxwell’s equa-
tions and its applications to the inverse problem. Math. Methods Appl. Sci. 27,
2111–2129 (2004)

Source Reconstruction from Final Data in the Heat Equation
B. Tomas Johansson (Linköping University)

We consider the inverse ill-posed problem of determining an unknown source
term in the linear heat conduction equation from final time data (together with
known boundary and initial conditions) having applications in pollutant source
identification and in the design of melting and freezing processes. We shall review
a recent extension of a uniqueness result for source reconstruction. Moreover, an
iterative method together with some numerical results for the reconstruction of a
source from final data will be given.



Domain and Parameter Reconstruction
in Photothermal Imaging

Ana Carpio and María-Luisa Rapún

Abstract In this work we address the inverse problem of reconstructing inclusions
and their thermal parameters given temperature measurements at the accessible side
of a material. We describe an iterative descent method that combines topological
derivative computations to reconstruct the geometry of the defects with gradient
iterations to approximate the material parameters. A numerical experiment showing
the ability of the method to obtain reasonable reconstructions in a few iterations is
presented.

Keywords Inverse problem • Photothermal imaging

1 Statement of the Problem

Photothermal imaging techniques are suitable means of inspecting composite
materials with nondestructive tests. In this work we develop techniques to detect
defects ˝ buried in a medium by surface thermal measurements. We are interested
in a photothermal technique that consists in heating the surface of a semi–infinite
medium by a laser beam and recording the temperature at several receptors located
on the same surface during a time interval, see Fig. 1. Recent physical experiments
using this kind of technique can be found in [9, 18].

The forward problem is modelled by a heat diffusion equation in the half plane
R
2� WD f.x; y/ 2 R

2; y < 0g. The surface of the sample ˘ WD f.x; 0/; x 2 Rg is
thermically excited with a delta–pulse located at a source point x0 2 ˘ , generating
a thermal wave of the form

Uinc.x; t/ D .1=t/ exp
���ejx � x0j2=.4�et/

�
; x 2 R

2; t > 0: (1)
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source point Π

Ω Ω

Fig. 1 Geometrical configuration. The source and observation points are located on the boundary
˘ of the medium. The objects ˝ and their physical parameters are the unknowns of the
photothermal imaging problem

Here �e is the thermal conductivity of the exterior medium ˝e WD R
2� n ˝ and �e

is the density multiplied by its specific heat. The corresponding thermal parameters
inside the inclusions˝ are �i and �i. The temperature distribution

U.x; t/ WD
�

UC.x; t/; in ˝e � .0;1/;

U�.x; t/; in ˝ � .0;1/;

satisfies the heat equations

�e@tUC D �eUC; in ˝e � .0;1/; �i@tU� D �iU�; in ˝ � .0;1/:

(2)

In the exterior domain ˝e, the total temperature Utotal D UC C Uinc is the
superposition of UC and the incident wave defined in (1). The temperature satisfies
the following transmission conditions at the common interface:

U� � UC D Uinc; �i@nU� � �e@nUC D �e@nUinc; on @˝ � .0;1/: (3)

The forward problem is completed imposing an adiabatic boundary condition on the
upper boundary˘ , and homogeneous initial conditions:

@nUC D 0; on ˘ � .0;1/; UC.x; 0/ D U�.x; 0/ D 0; 8x 2 R
2�: (4)

The solution U of the forward problem can be numerically approximated using
the following strategy [12, 14]: if we consider the Laplace transform of U and Uinc,
u.x; s/ D R1

0
e�stU.x; t/dt and uinc;s.x/ D R1

0
e�stUinc.x; t/dt, then, for each value

of s the function us.x/ WD u.x; s/ is a radiating solution of the stationary problem

8
<

:

�eus � s�eus D 0; in ˝e; �ius � s�ius D 0; in ˝;
u�s � uCs D uinc;s; on @˝ �i@nu�s � �e@nuCs D �e@nuinc;s; on @˝;
@nus D 0; on ˘:

(5)
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To invert the Laplace transform we choose the hyperbolic paths of the form [17]:
�.�/ WD �.1�sin.�=4C{�//; � 2 R, where� > 0. Then, the solution of (2)–(4) is

U.x; t/ D 1

2�{

Z 1

�1
et�.�/u.x; �.�//� 0.�/d�:

Numerical approximations of U can be calculated using a truncated trapezoidal rule

U.x; t/ 

LX

`D�L

c`e
ts`u.x; s`/;

s` D �
�

log.L/
L `

�
and weights c` D log.L/

2�{L �
0
�

log.L/
L `

�
.

The inverse problem consists in finding the objects ˝ and the parameters �i,
�i such that the solution of the forward transmission problem (2)–(4) equals the
measured values of the total wave Umeas.xi; tj/ at the detector locations x1; : : : ; xM 2
˘ at the time instants t1; : : : ; tN . Since this problem is ill–posed, we consider a
weaker variational reformulation: find ˝; �i; �i minimizing the functional

J.R2� n˝; �i; �i/ D 1

2

MX

iD1

NX

jD1
f .tj/

�
Utotal.xi; tj/ � Umeas.xi; tj/

�2
; (6)

where Utotal is the solution of the forward problem (2)–(4) when the object is˝ and
the interior thermal parameters are �i and �i. The weight function f .t/ normalizes
the time decay of the solutions of the heat equation. For our numerical experiment
in Sect. 3 we select f .t/ D maxx2fx1;:::;xMg jUmeas.x; t/j�1: Other possibilities were
explored in [2, 6].

Based on the Laplace-transform strategy described above, we proposed in [2, 6]
to substitute the cost functional (6) by the approximated functional

J.R2� n˝; �i; �i/ D 1

2

MX

iD1

NX

jD1
f .tj/

 
LX

`D�L

c`e
tjs`u.xi; s`/ � Umeas.xi; tj/

!2

; (7)

having now 2L C 1 stationary constraints.

2 Iterative Method to Reconstruct Inclusions
and Parameters

To solve the optimization problem we combine gradient and topological derivative
(TD in the sequel) methods to generate sequences of parameters and objects in such
a way that the cost functional decreases throughout the iterative procedure. Our
choice of a TD strategy is based on the following advantageous features:
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• Without a priori information, the TD provides a good first guess of the number,
size and location of the inclusions. This has been tested in a wide range of
physical settings, including acoustics, electromagnetism, elastodynamics, electri-
cal impedance tomography, fluorescence optical tomography, and photothermal
imaging [1, 5, 7, 8, 10, 15, 20].

• Iterative TD methods allow for topological changes during the iterations, in
contrast to classical shape deformation strategies [11, 13, 19] that require
knowledge of the number of objects from the start. Using iterative TD based
methods, new objects may be created in the course of the iterations, existing
contours may merge and holes inside existing objects may be detected, see [3, 4].
Furthermore, even if the number of inclusions is known (assumption that in
most practical applications is not realistic), TD-iterative methods are a powerful
alternative to these classical methods, providing accurate reconstructions at a low
computational cost, as extensively checked by the authors in different contexts
(see [2–6] and references therein).

• In comparison with other strategies allowing for topological changes (as i.e. level
set methods [16, 21]), the number of iterations with respect to the domain is
usually much smaller.

In our previous papers [2, 6] we used a non–standard formulation of the pho-
tothermal problem (2)–(4), involving two interior parameters related with �e; �i; �e;

and �i with no physical meaning. In this paper we adapt the results in [2, 6] to deal
with the reconstruction of defects and of their physical parameters �i and �i.

The TD of a shape functional J .R/ is a pointwise function defined as [22]:

DT.x;R/ D lim
"!0

J .R n B".x// � J .R/

�"2
; x 2 R; (8)

where B".x/ is a ball centered at x with radius ". Then, it follows the expansion:

J .R n B".x// D J .R/C DT.x;R/�"2 C o."2/; as " ! 0:

This motivates the key idea for the reconstruction technique: if we locate small
objects B".x/ at the points x 2 R where DT.x;R/ is negative, thenJ .RnB".x// <
J .R/, that is, the value of the functional decreases. Hence we will identify the
points where the TD attains the larger negative values with the regions where it is
more likely to have an object.

The next result can be proved following Theorem 3.2 in [2].

Theorem 1 The TD of the functional J.R2� n˝; �i; �i/ defined in (7) is

DT.x/ D Re

� LX

`D�L

2�e.�e � �i/

�e C �i
rutotal;s` .x/rps`.x/C .�e � �i/s`utotal;s` .x/ps`.x/

�

(9)
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for x 2 R
2� n˝ , where utotal;s` D uinc;s` Cus` and us` is the solution of (5) for s D s`.

The adjoint fields ps` are solutions of:

8
<

:

�eps` � s`�eps` D gs` ; in ˝e; �ips` � s`�ips` D 0; in ˝;
p�s` � pCs` D 0; on @˝ �i@np�s` � �e@npCs` D 0; on @˝;
@nps` D 0; on ˘;

(10)

with gs`.x/ WD PM
iD1

PN
jD1 f .tj/cs`e

tjs`
�

Umeas.xi; tj/�PL
kD�L cketjsk usk.xi/

�
ıxi.x/.

By iteratively applying Theorem 1, we construct a monotone sequence of
approximate domains ˝d � ˝dC1 adding to the current approximation ˝d the
points where the TD attains pronounced negative values. To be able to remove points
from ˝d, we need to compute the TD inside the inclusions. The definition (8) can
be extended to the points inside ˝ [4], and an analogous expression to (9) can be
found for x 2 ˝ [5, 6]. This extension is the basis to develop iterative strategies
able to correct an approximation of ˝ by removing the points where the TD attains
pronounced positive values.

To determine the thermal parameters we proceed as follows. If e� i, e�i are
approximate values of �i and �i, and e̋ is an approximation of ˝ , then we correct
the valuese� i;e�i by a gradient method. The idea is to define �i D e� i C ��; �i D
e�i C � ; where � > 0 is small and �; are selected calculating the derivative of
J.�/ WD J.e̋;e� i C ��;e�i C � / with respect to � to ensure that J0.0/ < 0. A
procedure to obtain explicit formulae in terms of forward and adjoint fields for this
kind of functionals is explained in [4, 6]. In our case, it can be proven that the choice

� D Re

�Z

e̋

LX

`D�L

rus`rps`

�

;  D Re

�Z

e̋

LX

`D�L

s` us`ps`

�

; (11)

makes J0.0/ < 0. Here us` ; ps` are solutions of (5) and (10), respectively, with ˝ D
e̋ , �i De� i and �i De�i.

Finally, our procedure is as follows. In a first step we consider initial guesses of
the parameters �i D �0i , �i D �0i and compute the TD in R

2� for these parameters,
that is, the TD of J.R2�; �0i ; �0i /. We find then a first approximation˝1 of ˝ as the
union of all the points where the TD is smaller than a negative constant (see [2, 4] for
guidelines of the selection of such constant). Once ˝1 is set, we update the values
of the parameters performing Q iterations of the gradient method (Q D 8 in our
numerical example in Sect. 3) as explained above:

�
q
i D �

q�1
i C ��q; �

q
i D �

q�1
i C � q; q D 1; : : : ;Q;

with �q;  q defined as in (11) with e̋ D ˝1, e� i D �
q�1
i and e�i D �

q�1
i . Once

the parameters are corrected, we compute the TD of J.R2� n ˝1; �
Q
i ; �

Q
i / to update

the domain ˝1 by adding to it the points x 2 R
2� n ˝1 where the TD attains the
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larger negative values, and removing from ˝1 the points inside it, if any, where
the TD attains the larger positive values. Once the approximation of the domains is
improved we perform further gradient iterations to update the parameters and so on.
The algorithm stops if any of the following stopping criteria is satisfied:

• meas(˝d n˝d�1) is small,
• j�q

i � �q�1
i j C j�q

i � �q�1
i j is small and kUmeas � Utotalk is small,

• J.R2� n˝d; �
q
i ; �

q
i / is small.

3 A Numerical Example

In this section we present a numerical example to illustrate the feasibility of our
reconstruction algorithm. We consider a simple geometry where ˝ is the ellipse
˝ D f.x; y/ 2 R

2; x2=0:552 C .y C 1/2=0:352 < 1g, with thermal parameters
�i D 1=2 and �i D 1. In the exterior medium the values of the parameters are
�e D 1 and �e D 1=5.

Synthetic data are created solving (2)–(4) by means of the Laplace transform
with respect to time and a boundary element formulation in space (see [2, 12] for
details). A relative 1 % Gaussian error was added at each observation point to both
avoid inverse crimes and to simulate measurement errors. We have considered six
incident waves of the form (1) generated at the uniformly distributed source points
represented in all the plots in Fig. 2 by ‘’ marks. Measurements of the temperature
were taken at the seven observation points represented by ‘�’ marks at 10 uniformly
distributed times in the time interval [0.05,0.5].

Fig. 2 (a) Topological derivative when �0i D 3=4, �0i D 1=3 and ˝ D ;. (b)–(d) Approximated
domains ˝d ; d D 1; 2; 3, superimposed to the TD computed for ˝ D ˝d and the corresponding
updated values of the thermal parameters �i and �i
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We started the algorithm by choosing the initial values �0i D 3=4 and �0i D 1=3.
To obtain an initial guess for the domain, we computed the TD in the sampling
region Œ�3; 3� � Œ�2:5; 0�. This yields the colormap represented in Fig. 2a. Dark
blue colors indicate the regions where the TD takes large negative values, at which
the objects should be located. The boundary of the true defect is represented by a
solid white line in all plots in Fig. 2. Our initial guess ˝1 is represented in Fig. 2b.
We set now ˝ D ˝1 and perform eight iterations with the gradient method to
correct the values of �i and �i. In the next step, the values of the parameters are
fixed and the TD is again computed. In Fig. 2c we represent the updated object
˝2. The hybrid algorithm alternates eight iterations with the gradient method with
one TD computation. It stopped at the tenth iteration with respect to the domain.
The first three approximated domains are represented in Fig. 2. In Fig. 3a we show
the true object (solid blue line), the initial guess ˝1 (dashed green line), and the
final reconstruction ˝10 (dashed red line). The values of �i and �i throughout the
iterations are given in Fig. 3b. Two identical values mark a TD computation to
update the domain. The final approximations were �final

i D 0:5703 (recall that the
true value is 0.5), and �final

i D 0:8266 (while the true value is 1). We have obtained a
satisfactory reconstruction taking into account that no a priori knowledge about the
number, size or location of the objects is assumed, and that few data were available.

In our example, we found a sequence of enlarging sets, i.e., satisfying ˝d �
˝dC1. An example where the TD provides a sequence of defects where˝d ª ˝dC1
for some values of d 2 N can be found in [6]. The interested reader may find
some reconstructions with other geometries, multiple objects and different weight
functions f .t/ in [2, 6]. Furthermore, a gallery of comparisons varying the different
parameters of the problem, namely, the number of source points and/or observation
points, the number of time observations, etc, can be found in [2] for a simplified
situation where the interior parameters are assumed to be known and in [6] for a
related problem with unknown domains and parameters.

−3 −2 −1 0 1 2 3
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Fig. 3 Final reconstruction after 10 iterations with respect to the domain. (a) Initial (green dashed
line), predicted (red dashed line) and true (blue solid line) objects. (b) Values of the thermal
parameters �i and �i versus the number of iterations
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Fast Backprojection Operator for Synchrotron
Tomographic Data

Eduardo X. Miqueles and Elias S. Helou

Abstract Reduction of computational time in high resolution image reconstruction
is essential in basic research and applications as well. This reduction is important
for different types of traditional non diffractive tomography in medical diagnosis as
well as for applications in nanomaterials research, related to modern technologies.
Alternatives to alleviate the computationally intense part of each iteration of iterative
methods in tomographic reconstruction have all been based on interpolation over a
regular grid in the Fourier domain or in fast nonuniform Fourier transforms. Both
approaches speed up substantially the computation of each iteration of classical
algorithms, but are not suitable for being used in a large class of more advanced
faster algorithms: incremental methods such as OS-EM, BRAMLA or BSREM,
among others, cannot benefit from these techniques. The backprojection is a
stacking operator, known to be the adjoint of the Radon transform. As a mappingB,
the backprojection can be recast as a convolution operator, in a different coordinate
system, which is an improvement in accelerating the computation of B. In this
work, we propose several analytical representations for the operator B, in order to
find a fast algorithm.
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1 Introduction

Image reconstruction from projections depends on the computation of the so
called stacking operators Radon transform and Backprojection transform. They are
defined, respectively, as

g.t; �/ D
Z

˝.t;�/
f .x/dx 	 Rf .t; �/; b.x/ D Bg.x/ D

Z

Œ0;2��

g.x��� ; �/d� (1)

with ˝.t; �/ D fx 2 R
2W x � �� D tg a straight line parameterized by .t; �/ 2

Œ�1; 1� � Œ0; 2��. Here �� D .cos �; sin �/T is the normal vector to ˝ and x lies in

the unit ball kxk1 �
p
2
2

. The pair .b; g/ is dual in the sense that B is the adjoint
transform of R at an appropriate functional space, see [4, 8, 12]. Let us denote U as
the feature space, wherein lie all the map functions of the form z D z.x/, and denote
V as the Radon space, gathering all the sinogram functions g D g.t; �/.

The goal is: find f given the function g over the set f˝.t; �/g satisfying g D Rf .
Usually b D b.x/ is used as a first order approximation of f D f .x/, see [15]. A
typical algorithm to find an approximation of f , either analytical or iterative, depends
on the computation of Bg. This has been recognized in the literature as the main
time consuming bottleneck in image reconstruction. Indeed, as the integral of B
has to be computed for each pixel x, the average cost for reconstruction increases
proportionally to the dimensions of the scanning geometry.

Our aim in this paper is to present a fast computation of the backprojection image
b D Bg for a given sinogram g 2 V . It has a great impact at iterative methods, which
generally produce better results for noisy data compared to the analytical ones. In
fact, a typical iterative procedure is given by f .kC1/ D f .k/ C D

�
f .k/;Bg.k/;Rf .k/

�

where D is an operator defining a direction towards the solution. If the cost per
iteration is high, and the reconstruction time is required to be low, such iterations are
non-recommended, unless high computing performance is involved. This is one of
the reasons why the celebrated filtered backprojection algorithm has been preferred
when the data is large and the calculation of Bg is time consuming. Nevertheless,
even the filtered backprojection suffers from time delaying since Bg is part of the
analytical inversion.

For high-resolution tomographic synchrotron experiments, the amount of data
for a micro-tomography setup is considered huge; for instance, in reconstructions
of 2200 � 2200 pixel images, with sinograms having 3200 angles and 2500 rays,
if a single slice reconstruction takes up to 1.5 s, a total of 3000 slices takes more
than an hour. Program execution with a GPU (graphics processing unity) and naïve
implementation of Bg is becoming highly attractive for these problems, where
the full reconstruction can be achieved within the tolerance of 10 min. If the
mathematical model for B is more sophisticated, e.g. using Fourier transforms,
these times can be reduced even more through the usage of available Fast Fourier
Transform implementations [5, 9].
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A Fourier approach was already established in [1], where the computation of
Bg depends on a change from cartesian to log-polar coordinates. This approach,
although elegant, suffer from the ill-conditioning of the Log-polar transform at the
“fovea”. Nevertheless, it is possible to translate the fovea to different regions of
the cartesian plane, in order to enclose the reconstruction region. This leads to the
concept of partial-backprojection which can be easily implemented in a parallel
form. See also [10, 11, 13, 14].

Other methods for fast computation of Bg were recently discovered in [2, 3, 6],
using an hierarchical approach based on the old computing strategy divide and
conquer. In this paper, we propose another fast method for Bg, also based on
Fourier transform. We claim that the backprojection of g 2 V can be easily done
by filtering the lines of the Qg one by one, where Qg is the polar representation of g in
SC D R � Œ0; ��.

2 Integral Representations

From now on, we will use the following representation for path integrals, the proof
of which can be found in [8]. For a continuously differentiable mWRm ! R such
that krmk 6D 0:

Z

Rm
h. y/ı.m. y//dy D

Z

C�1.0/

h. y.s//
krm. y.s//kds.x/: (2)

where ds.x/ is the arclength measure along curve C�1.0/. Let g 2 V a given
sinogram and x a pixel in the reconstruction region. The backprojection (1) of g
is defined as the contribution of all possible straight lines, parameterized by the
angle � , and passing through x. Using the sifting property of the Delta distribution,
we have

Bg.x/ D
Z �

0

g.x � �� ; �/d� D
Z �

0

Z

R

g.t; �/ı.t � x � �� /dtd� (3)

Switching the above integral from .t; �/ coordinates to cartesian coordinates y 2 R
2

we have jtjdtd� D dy; where Bg now becomes

Bg.x/ D
Z

R2

Œg�c. y/ı.m. y//
1

kykdy (4)
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with Œg�c. y/ D g.t. y/; �. y// referring to the sinogram g in cartesian coordinates. In
fact, jtj D kyk is the unsigned distance to the origin and � D arctan. y2y1 / 2 Œ0; �� is
the angle with respect to the y1-axis. Function m reads

m. y/ D t � x � �� D kyk � x1 cos �.y/� x2 sin �.y/ (5)

D kyk � x1
y1

kyk � x2
y2

kyk D kyk � .x1y1 C x2y2/
kyk D y � . y � x/

kyk (6)

From (6), (4) and the property ı.au/ D 1
jajı.u/ for all u 2 R, the backprojection

now follows:

Bg.x/ D
Z

R2

Œg�c. y/ı.�x. y//dy; �x. y/ D y � . y � x/ (7)

It should be noted that, for a fixed x 2 R
2, the set ��1x .0/ D fy 2 R

2 W �x. y/ D 0g
is defined as a circle in the plane. Indeed, since y � . y � x/ D y � y � 2y � � x

2

� D
�
�y � x

2

�
�2 � �� x

2

�
�2, it follows that ��1x .0/ is a circle passing through the origin y D 0,

centered at 1
2
x and with radius 1

2
kxk, see Fig. 1. Since ��1x .0/ D f 1

2
x C r�� W � 2

Œ0; 2��; r D 1
2
kxkg is a parametric representation of the circle, the backprojection

operator also reads, in an alternative form:

B is a stacking operator through circles ��1x .0/:

Bg.x/ D
Z

��1
x .0/

Œg�c. y/
k2y � xkds D 1

2

Z 2�

0

Œg�c

�
1

2
x C 1

2
kxk��

�

d� (8)

The above representation follows from ds D 1
2
kxkd� , (7) and (2) with r�x. y/ D

2y�x. Last equality comes from y D 1
2
xC 1

2
kxk�� 2 ��1x .0/ for some � . Therefore,

in cartesian coordinates, the backprojection contribution for a ball fz 2 R
2 W kz �

xk � �g comes from a family of circles passing through the ball and the origin,
see dashed region S in Figs. 1 and 2. This fact is closely related to the “comet-tail
region” mentioned by [7].
Andersson’s formula: The integral form of the classical backprojection operator,
either from (1) or (7), is not suitable for a fast implementation. Andersson’s
approach [1], using a convolution kernel, is an elegant and analytical alternative
for a rapid execution of Bg. For completeness, we rederive his formula using four
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Fig. 1 Only dashed region S
contributes for the
backprojection of the �-ball
centered at x

Fig. 2 Support set h�1
y .0/

for operator T in (18). S is a
two dimensional �

2
rotation

matrix

steps:

1. Changing the integral (7) from cartesian coordinates y 2 R
2 to Prüfer coordi-

nates,1 i.e., y 	 y�;� D p.�/�� we get dy D jp0.�/p.�/jd�d� and

Bg.x�;� / D
Z

SC

g. y�;�/ı
�
�x�;� . y�;�/

� jp0.�/p.�/jd�d� (9)

2. The support of the Delta distribution in (9) is

�x�;� . y�;�/ D p.�/2
�

1� p.�/

p.�/
�� � ��

�

D p.�/2
�

1� p.�/

p.�/
cos.� � �/

�

(10)

1A generalized polar coordinate system f.�; �/I .�; �/ 2 SCg, where p is invertible and p.�/ D
kyk for cartesian coordinates y 2 R

2. Using p.�/ D �we arrive at the polar system and p.�/ D e�

to the log-polar system.
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3. Let Œ��G be the representation in Prüfer coordinates. From (10) and (9) we arrive
at

ŒBg�G.�; �/ D
Z

SC

Œg�G.�; �/ı

�

p.�/2
�

1� p.�/

p.�/
cos.� � �/

��

jp0.�/p.�/jd�d�

D
Z

SC

Œg�G.�; �/ı

�

1� p.�/

p.�/
cos.� � �/

� jp0.�/p.�/j
p.�/2

d�d�

(11)

4. A convolution is obtained in (11) only if p is such that p.�/ D p.�/p.� � �/,
which in turn implies that p is an exponential function. Hence, Prüfer coordinates
reduce to log-polar coordinates; which we denote by Œ��L. Finally,

ŒBg�L.�; �/ D
Z

SC

Œg�L.�; �/ı .1 � e��� cos.� � �// d�d� (12)

Andersson’s convolution formula for backprojection:

ŒBg�L.�; �/ D .Œg�L ? ŒK�L/ .�; �/; ŒK�L.�; �/ D ı .1� e� cos �/ (13)

The above formula is particularly good for implementation through the use of
Fast fourier transforms. Figure 3 presents a real sinogram, in different coordinate
systems.

3 Fourier Analysis

Our analysis starts from the two-dimensional Fourier transform of (7), i.e.,
F WBg 7!bBg:

bBg.!/ D
Z

R2

BŒg�c.x/e�i!�xdx D
Z

R2

dx
Z

R2

dy Œg�c. y/ı .y � .y � x// e�i!�x (14)

D
Z

R2

dyŒg�c. y/
Z

R2

dx ı . y � . y � x// e�i!�x (15)

	
Z

R2

dyŒg�c. y/T . y;!/ (16)
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Fig. 3 Synchroton data for a mustard seed. Sinogram in different coordinate systems. Clockwise
from the top: g in usual sinogram coordinates, Œg�p in polar, Œg�L in log-polar and Œg�c in cartesian
coordinates

Keeping y;! 2 R
2 fixed, we evaluate T now:

T . y;!/ D
Z

R2

dx ı
�
hy.x/

�
e�i!�x; hy.x/ D y � . y � x/ (17)

Since the above distribution is supported in the set h�1y .0/ D fx 2 R
2W hy.x/ D

0g, it follows from the integral representation (2) and rhy D �y that

T . y;!/ D 1

kyk
Z

h�1
y .0/

e�i!�xds.x/ D
Z

h�1
y .0/

e�i!�x.q/dq (18)

The set h�1y .0/ determines a straight line passing through y and with normal vector
y, see Fig. 2. Hence, h�1y .0/ D yCspanfSyg, being Sy ? y and S a �

2
-rotation matrix.

Therefore, x.q/ 2 h�1x .0/ is on the form x.q/ D y C qSy and the integral in (18)
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yields

T . y;!/ D
Z

R

e�i!�ŒyCqSy�dq D e�i!�y
Z

R

e�iq!�.Sy/dq D e�i!�yı .! � Sy/ (19)

At this point, the Fourier transform of Bg becomes

bBg.!/ D
Z

R2

Œg�c. y/ı .! � Sy/ e�i!�y dy (20)

For ! fixed, fy 2 R
2W! � .Sy/ D 0g D spanf!g. Indeed, since Sy ? w and Sy ? y,

it follows! k y. Once again, using the representation (2) for (20) we arrive at

bBg.!/ D
Z

R

Œg�c.q!/

kS!k e�i!�.q!/ ds.!/ (21)

Since kS!k D k!k and ds.!/ D k!kdq, we finally obtain

bBg.!/ D
Z

R

Œg�c.q!/e
�iqk!k2 dq (22)

We claim that the backprojection is a polar convolution. Indeed, switching the
frequency domain to polar coordinates, i.e., ! D 	�� (with 	 2 RC and � 2
Œ0; 2��) we get

bBg.	�� / D
Z

R

Œg�c.q	�� /e
�iqk	��k2dq D

Z

R

Œg�c.u�� /

	
e�iu	du: (23)

Now, letting Œ��s be the representation in semi-polar coordinates, it is true that
Œg�c.u�� / D Œg�s.u; �/ is the input sinogram g.u; �/. From (22) and (23), using
semi-polar coordinates

ŒbBg�p.	; �/ DbBg.	�� / D 1

	

Z

R

g.u; �/e�iu	du (24)

Identity (24) is our backprojection-slice theorem for computing the operator B.
Indeed, at each radial line � in the frequency domain, the two-dimensional
Fourier transform of B equals the one-dimensional radial Fourier transform of the
projection g.t; �/ multiplied by the kernel 1=	 .
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Fig. 4 Full backprojection with the sinogram presented in Fig. 3

Backprojection Slice-Theorem:

g 2 V ) bBg.	�� / D Og.	; �/
	

; 	 2 RC � 2 Œ0; 2�� (25)

It is evident that a signal function and a derivative operator is present in (25),
i.e., the backprojection Bg is closely related to the Hilbert transform. A full
backprojection from synchrotron data is depicted in Fig. 4.
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Short Description

Particles and interfaces are ubiquitous in industrial processes. This mini-symposium
will focus on mathematical modelling of processes occurring at interfaces and in
particulate systems which arise in industry (for example, food and drink, pharma-
ceutical, and other sectors). These challenging industrial problems are currently
under investigation at the Mathematics Application Consortium for Science and
Industry (MACSI) in Ireland. The talks will cover the development of innovative
mathematical models to help industry optimise and improve processes, increase
scientific understanding, and meet regulatory requirements. Models are developed
for chemical extraction from powdered substrates, and particle motion and adhesion
in circulating flows. Asymptotic, analytical and numerical techniques are used to
investigate the mathematical models.



Bubble Dynamics in Stout Beers

W.T. Lee and E. Murphy

Abstract Technology for promoting nucleation is important in a number of con-
texts, for instance degassing carbon dioxide lakes, designing champagne glasses and
stout beer widgets. A new design of stout beer widget has recently been proposed
which makes use cellulose fibres to initiate foaming in canned stout beers. However,
our current scientific understanding of the nucleation of bubbles by cellulose fibres
is incomplete, making it impossible to optimise this technology. One particularly
poorly understood aspect is the detachment of bubbles from a gas pocket in the fibre.
We report experimental and theoretical results towards a model of the detachment
based on a model of Rayleigh-Plateau instability including a disjoining pressure.

Keywords Disjoining pressure • Nucleation • Stout beer

1 Introduction

Technology for promoting bubble nucleation is important for numerous applica-
tions. These include:

– Siphons for removing carbon dioxide from lakes near volcanoes, such as Lake
Kivu in Rwanda [1]. Uncontrolled degassing of these lakes can release a
large volume of carbon dioxide which can asphyxiate nearby livestock and
communities.

– Engraved champagne glasses. By adding artificial nucleation sites to champagne
glasses by engraving the rate of effervescence of the champagne can be con-
trolled, leading to a more appealing appearance and bouquet [2].

– Widgets for stout beers. Unlike most beers which foam spontaneously, stout
beers require special technology to promote foaming. In canned stout beer this
technology takes the form of a widget [3].
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The reason for a difference in foaming properties in stout beers is ultimately
traceable to the dissolved gases in the beer. A typical carbonated beer foams due
to the presence of dissolved carbon dioxide. However most stout beers contain both
dissolved carbon dioxide and nitrogen—the latter being a much less soluble gas than
carbon dioxide. This gas mixture imparts a number of desirable properties to stout
beers. It affects the taste since carbon dioxide is acidic in solution, replacing it with
inert nitrogen gives stout beers a smoother, less acidic taste. The low solubility of
nitrogen also means that bubbles in stout beers are smaller, this leads to the famous
sinking bubble of Guinness phenomenon, but in addition is responsible for the long
lasting creamy head. However these desirable properties come at a price. The low
solubility of nitrogen also makes it difficult to initiate foaming in stout beers. While
carbonated beers foam (apparently) spontaneously, stout beers will not foam without
an external trigger.

In canned stout beers this trigger takes the form of a widget, a small plastic
ball containing compressed gasses from the headspace of the can. When the can is
opened the headspace depressurises, leading to a pressure imbalance between the
gas in the widget and the headspace. This pressure difference expels the gas in the
widget through a small opening into the beer. The turbulent jet of gas released breaks
up into millions of bubble nuclei which grow by absorbing dissolved gasses in the
beer, rise to the surface and form the head.

Widgets are not required in carbonated beers, which appear to foam sponta-
neously. This foaming is not however truly spontaneous. Careful investigation of
the nucleation sites at glass surfaces shows that foaming in carbonated beer is due
to the presence of cellulose fibres. These fibres contain trapped gas pockets which
release bubble nuclei through a cyclic process first elucidated by Liger-Belair et
al. Experimental and theoretical investigation of this bubble production mechanism
show that it does occur in stout beers, but at a rate too slow to be observable. Rough
estimates do suggest that a large concentration of cellulose fibres could potentially
act as an alternative widget. This new widget design could potentially have a number
of advantages over the current generation of widget technology, for instance being
more environmentally friendly than the plastic widgets.

This new design of widget must be able to generate nuclei of the 108 bubbles
needed to form the head of a pint of stout in the 3 s it takes to pour the can
into a glass. While rough estimates suggest this is possible, there are a number of
significant gaps in our quantitative understanding of the generation of bubble nuclei
by cellulose fibres which make it difficult to design such a widget.

In this paper we report progress towards a quantitative understanding of the
detachment of bubble nuclei from the gas pocket in a cellulose fibre. The remainder
of the paper is arranged as follows. In Sect. 2 we describe the acquisition of the
experimental data used to inform and validate our model. Section 3 describes a key
ingredient of the model, namely the disjoining pressure. A model of the detachment
process is presented in Sect. 4. Our conclusions are presented in Sect. 5.
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2 Experiments

The first observations on bubble growth by gas pockets in cellulose fibres were
carried out Liger-Belair [4]. However, data from stout beer bubbles can be captured
using a much simpler setup. The much more gentle pace of the nucleation of bubbles
in stout beers makes them an ideal system in which to observe the cellulose fibre
nucleation mechanism. The slow rate of formation and small size of bubbles means
that agitation of the fluid—which would affect the quality of the images—is small.
Furthermore bubble formation can be observed from just above the surface of the
fluid. This would be impossible in champagne: the bursting of large champagne
bubble would rapidly coat the objective lens with droplets.

Fig. 1 Experimentally measured gas pocket size [5]

Fig. 2 Cyclic process by which a gas pocket in a cellulose fibre creates bubbles [5]
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The results of these observations are shown in Figs. 1 and 2. As was the case
with champagne experiments we have not been able to systematically observe the
detachment of bubbles. However in one case we were able to observe a bubble
apparently in the act of breaking off, as shown in Fig. 2. This image is suggestive of
a Plateau-Rayleigh mechanism for bubble detachment, a possibility we investigate
in more detail below.

The detachment time would be an important parameter to measure since it
could be used to check our models. As has been noted above, it cannot be
measured directly. It can however be estimated via a statistical argument. The
dataset presented in Fig. 1 contains the detachment of 20 bubbles (the full dataset
is not shown in the graph). In only a single case is the bubble caught in the act
of detaching. A first estimate of the time taken for a bubble to detach would be to
equate the fraction of times a bubble is observed detaching with the ratio of the
detachment time to the interval between frames. Since the time between frames is
40ms this suggests a detachment time of approximately 2ms.

3 Disjoining Pressure

To model the detachment process we need to assemble the ingredients of a model.
The fluid flow can be modelled using the Navier Stokes equations, while the
interface conditions can be modelled using the Young-Laplace law. It is clear from
Fig. 2 that such a model will be incomplete. At the tip of the gas pocket the interface
is approximately spherical, thus by the Young Laplace law the pressure in the gas
pocket must be higher than the fluid pressure by approximately 2�=r where � is the
surface tension and r is the radius. Applying the Young-Laplace law to the pressure
difference in the shaft of the tube gives a pressure difference of �=r. Thus there is
a pressure difference of �=r as yet unaccounted for. The small growth rate of the
gas pocket, We D 10�15 means it is impossible to account for this difference by
dynamic effects.

The most plausible explanation of this discrepancy is the existence of a disjoining
pressure [6] in the thin film of beer between the cellulose fibre and the shaft of the
bubble. In theory the disjoining pressure can be reconstructed from its effect on the
shape of the gas pocket. By extracting the coordinates of the interface and using
finite difference approximations to the derivatives we can roughly extract the form
of the disjoining pressure as shown in Fig. 3. Although this reconstruction fails for
small and large values of the film thickness there is a significant range of viable
data. This is used to estimate an exponential form of the disjoining pressure.

To test the accuracy of this disjoining pressure it is used to reconstruct the original
bubble. A comparison of the actual bubble profile and the reconstructed bubble is
shown in Fig. 4.
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Exponential fit

Data

Fig. 3 Exponential fit to disjoining pressure

Fig. 4 Comparison of experimental gas pocket shape with theoretical reconstruction based on an
exponential disjoining pressure. r and z are scaled by the radius of the fibre

4 Detachment

With the ingredients of the model assembled, we can now proceed with the main aim
of this paper: to determine if the detachment of bubble nuclei from the gas pocket
can be modelled using a Plateau-Rayleigh type instability. We make the following
simplifications

– For simplicity we model only the gas within the gas pocket, which we treat as an
ideal fluid.

– We simplify the geometry to make the system periodic.

Neither of these assumptions is strictly justified by the parameters of the system.
However these are appropriate for an initial investigation.
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The geometry used in this investigation is shown in Fig. 5. A gas tube is contained
with a periodic array of cellulose fibres. The stability of this system is investigated
numerically with Fig. 6 shows the timescales corresponding to the most unstable
eigenvalues as a function of the gap between fibres. One of the eigenvectors is shown
superimposed on the detaching bubble in Fig. 7. The timescales shown in Fig. 6
are comparable with our estimate of the detachment time from experiments (2ms).
This suggests that the Plateau-Rayleigh instability is a viable explanation of the
detachment process and more detailed modelling along these lines is appropriate.

fibre
interface

centreline

Fig. 5 Geometry used to investigate bubble detachment times. The geometry consists of a
periodic array of fibres with period z0 with gaps between the fibres of size L

Fig. 6 Timescale corresponding to most unstable eigenvalue of the system as a function of fibre
separation. Dashed line gives the estimate of the bubble detachment time from experiment
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Fig. 7 Comparison with eigenvector and experiment

5 Conclusions

Stout beer widgets made from cellulose fibres offer an appealing alternative to
current widget designs. However to optimise the design of such widgets a complete
mathematical model of the generation of bubbles by cellulose fibres is needed. Here
we have focused on one aspect of bubble generation: the detachment of a bubble
nucleus from the gas pocked in the cellulose fibre. A simplified model based on
the introduction of a disjoining pressure and the Rayleigh Plateau instability is
consistent with the experimental results.
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Decoupling the Interaction of Solid and Fluid
Mechanics in the Modelling of Continuous
Casting Processes

M. Vynnycky, S.L. Mitchell, B.J. Florio, and S.B.G. O’Brien

Abstract The modelling of the continuous casting of metals is known to involve the
complex interaction of non-isothermal fluid and solid mechanics. However, using
asymptotic methods and an earlier numerical result obtained via computational
fluid dynamics, we demonstrate how the motion of the liquid metal can be
systematically decoupled from the stresses induced in the solidified shell. The
resulting asymptotically reduced model can then serve as a computationally efficient
module for stress mechanics models that aim to predict segregation and crack
formation in the solid metal.

Keywords Computational fluid dynamics • Metal casting • Solid-fluid-
interactions

1 Introduction

Continuous casting has been developed industrially worldwide since the 1950s
as a high throughput method for producing, amongst other things, metal billets,
blooms and slabs. In a continuous casting process, such as the strip casting of
copper, jets of molten metal enter into the top of a water-cooled mould, where
intense cooling causes a solidified metal shell to form; subsequently, the metal is
withdrawn at a uniform casting speed. The industrial importance of the process
has led to interest amongst mathematicians and engineers, with a view to obtaining
an improved understanding of the factors that influence product quality and process
productivity. Central to these is the coupled heat and momentum transfer that occurs
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during solidification, particularly as regards determining the location of the interface
between molten and solidified metal and solid.

Typically, the flow in the molten metal is turbulent, and it is generally believed
that a computational fluid dynamics (CFD) approach, based around the Reynolds-
averaged Navier Stokes equations, is necessary in order to correctly capture the
heat transfer characteristics [1–8, 13–15]. In this contribution, we consider an
asymptotically reduced version of the CFD-based model for the continuous casting
of copper presented in [7, 8] and demonstrate that, even by neglecting the details of
the turbulence in the molten pool, the reduced model gives predictions for the pool
depth, local temperature profiles and mould wall heat flux that agree very well with
the results of the original CFD model.

2 Model Formulation

As in [7, 8], we consider a steady state 2D problem, as shown in Fig. 1, in which
pure liquid metal at temperature Tcast;which is greater than the melting temperature,
Tmelt; enters a mould region via a jet at z D 0; first solidifies at the inner mould
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Fig. 1 Schematic of vertical continuous casting
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surface at z D zmelt and is withdrawn at a casting speed Vcast. For zmelt < z <
L; solidification occurs in the region 0 < y < ym.z/: Eventually, after complete
solidification has occurred at z D zmid; the solid region occupies 0 < y < W: Due
to symmetry, we need only consider the left-hand side of Fig. 1.

Typically, the width of the jet is much less than width of the mould region, 2W;
mass conservation therefore suggests that the velocities in the upper part of the
molten metal region should be much greater than the casting speed. Nevertheless,
the fact that the molten metal velocity must eventually reduce to Vcast in the vicinity
of the, as yet unknown, solid-liquid interface, suggests that its location might be
adequately determined by approximating the liquid velocity by Vcast. Therefore, we
proceed on this basis.

For 0 < z < zmelt and 0 < y < W; and then z > zmelt and ym.z/ < y < W; we
have

�lcplVcast
@Tl

@z
D kl

@2Tl

@y2
; (1)

where kl is the thermal conductivity of the liquid metal, cpl is its specific heat
capacity and �l its density. In Eq. (1), we use the fact that casting geometries are
often slender, which motivates us to assume that @2=@z2 � @2=@y2: For zmelt < z < L
and 0 < y < ym.z/; we have

�scpsVcast
@Ts

@z
D ks

@2Ts

@y2
; (2)

where ks is the thermal conductivity of the solid metal, cps is its specific heat capacity
and �s its density; for simplicity, we will henceforth take �s D �l D �: Typically,
however, �s > �l; but the underlying reason for taking �s D �l is to be able to
assume to a common streaming velocity, Vcast; for both phases; otherwise, we would
be required to solve momentum transfer equations in the liquid phase.

For boundary conditions at y D ym.z/; we have

Ts D Tl D Tmelt; (3)

and the Stefan condition,

ks
@Ts

@y
� kl

@Tl

@y
D �HfVcast

dym

dz
; (4)

where Hf is the latent heat of fusion; this form for (4) also makes use of the fact
that the geometry is slender. However, once solidification is complete, at z D zmid;

we treat y D W as a symmetry axis, so that (3) and (4) are replaced by

@Ts

@y
D 0: (5)
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Fig. 2 (a) Heat transfer coefficient, h, used in the computations; (b) mould temperature, To, used
in the computations

For the mould wall at y D 0,

(
kl
@Tl
@y D h .z/ .Tl � To.z// ; for 0 � z � zmelt;

ks
@Ts
@y D h .z/ .Ts � To.z// ; for zmelt � z � L:

(6)

In (6), To.z/ is an experimentally measured temperature, h .z/ is an experimentally
determined heat transfer coefficient; we take the profiles shown in Fig. 2, which are
very similar to those used in an earlier full CFD model [7, 8].

Since (1) and (2) are both parabolic partial differential equations, initial condi-
tions for Tl and Ts are necessary at z D 0 and z D zmelt, respectively. For Tl, we
take

Tl D Tcast at z D 0; (7)

whereas for Ts, we take

Ts D Tmelt at y D 0; z D zmeltI (8)

in addition, we must have

ym .zmelt/ D 0: (9)

3 Nondimensionalization

We write

Y D y

W
; Ym D ym

W
; Z D z

L
; H D h

Œh�
;

�l D Tmelt � Tl

T
; �s D Tmelt � Ts

T
; �o D Tmelt � To.z/

T
;



Decoupling Solid and Fluid Mechanics in Models for Continuous Casting 269

where T is a temperature scale and Œh� is a heat transfer coefficient scale to be
specified; these can be chosen from To .z/ and h .z/ ; respectively, as

T D Tmelt � min .To.z/j z � 0/; Œh� D max .h.z/j z � 0/: (10)

Equations (1) and (2) then become, respectively,

ePel
@�l

@Z
D @2�l

@Y2
; ePes

@�s

@Z
D @2�s

@Y2
; (11)

where ePel and ePes are reduced Péclet numbers, given by

ePel D �cplVcastL

kl

�
W

L

�2
; ePes D �cpsVcastL

ks

�
W

L

�2
: (12)

The boundary conditions for �l and �s are then: at Y D Ym.Z/;

�s D �l D 0;
@�s

@Y
� K

@�l

@Y
D �

ePes

St

dYm

dZ
, (13)

where K D kl=ks: At Y D 0;

@�l

@Y
D Bi H.Z/

�
�l � �o.Z/

�
for 0 � Z < Zmelt; (14)

@�s

@Y
D Bi K H.Z/

�
�s � �o.Z/

�
for Zmelt � Z < 1; (15)

where Zmelt D zmelt=L; at Y D 1;

@�l

@Y
D 0 at Y D 1 for 0 � Z � Zmid; (16)

@�s

@Y
D 0 at Y D 1 for Zmid � Z � 1: (17)

where Zmid D zmid=L. In addition, St and Bi are the Stefan and Biot numbers,
respectively, and are given by

St D cpsT

Hf
; Bi D Œh�W

kl
: (18)
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The initial conditions (7)–(9) are, respectively,

�l D �cast at Z D 0; (19)

�s D 0 at Z D Zmelt; Y D 0 (20)

Ym.Zmelt/ D 0; (21)

where �cast D .Tmelt � Tcast/ =T:
With typical model parameters as

cpl � 495 J kg�1 K�1; cps � 485 J kg�1 K�1; kl � 165W m�1 K�1;

ks � 335W m�1 K�1; L � 0:38m; Tcast � 1396K; Tmelt � 1356K;

Vcast � 0:018m s�1; W � 0:0135m; � � 8000 kg m�3; Hf � 205;000 J kg�1;

we have

Bi 
 0:14; K 
 0:49; ePel 
 0:21; ePes 
 0:1; St 
 2:31; �cast 
 �0:04:

It now remains to determine a numerical solution of the remaining equations.

4 Results

The numerical solution is not entirely straightforward, because the location of zmelt

is not known a priori, and because the solid is initially of zero thickness; more
details of how to overcome these difficulties are given in [9, 10, 12] and we proceed
instead to a presentation of the key results. Figure 3a compares the location of the
solidification front, as predicted by the two models, whereas Fig. 3b compares the
heat flux Q at y D 0. This is defined as

Q D
(

�kl
@Tl
@y at y D 0, z < zmelt;

�ks
@Ts
@y at y D 0, z > zmelt:

Figure 3c and d compare the temperature profiles at y D W and y D 0, respectively.
Apart from minor differences near the start and end of solidification, the results of
the two models agree very well, indicating that the asymptotic model captures the
key features of the full model.

As a corollary to these results, we note that the form of the reduced model
is similar to that of a recent thermoelastic model for the process that takes into
account the air gap between the solidified metal shell and the mould wall [11, 12];
the air gap arises as a result of shrinkage when the metal solidified. In summary,
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Fig. 3 Comparison of: (a) the location of the solidification front, ym; (b) the heat flux at the outer
edge of the copper strip (y D 0); (c) the temperature at the centreline (y D W); (d) the temperature
at the outer edge of the copper strip (y D 0)

this suggests that solid-mechanical and fluid-mechanical effects can be decoupled,
simply by replacing the molten metal velocity by Vcast; the resulting model can then
be used for more detailed studies on segregation and crack formation within the
solidified metal.
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Mathematical Modelling of the Coffee Brewing
Process

K.M. Moroney, W.T. Lee, S.B.G. O’Brien, F. Suijver, and J. Marra

Abstract The drip filter coffee market is a multi-billion euro industry. Despite this,
although the chemistry of coffee brewing has been investigated in great detail, the
physics of the process has received relatively little attention. In order to explain in
scientific terms correlations between the coffee quality and the process variables,
a physical model is required. In this study, flow through a static, saturated coffee
bed, under the influence of a pressure gradient, is described using a double porosity
model. The model is parametrised using experimentally obtained data from a
cylindrical flow-through cell containing a coffee bed. Mass transfer from the coffee
grains to the interstitial water is modelled using two mechanisms; mass transfer from
the surface of the grains and mass transfer from the interior (bulk) of the grains.
Mass transfer resistances are estimated by fitting experimental data. Initially coffee
extraction is dominated by mass transfer from the grain surface, while transfer from
the kernel of the grain is the rate limiting mechanism once the surface coffee has
been exhausted.

Keyword Coffee brewing

1 Introduction

Coffee, made from the seeds (beans) of the coffee plant, is among the most popular
beverages consumed worldwide. The beans are roasted and ground and then some
of their soluble content is extracted by hot water. The resulting solution of hot water
and coffee solubles is called coffee. Despite its widespread consumption, coffee
quality, even in coffee brewed by professional baristas, is very inconsistent. This
difficulty arises from the dependency of coffee quality on a large number of process
variables. Some of these include brew ratio, grind size and distribution, brewing
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time, water temperature, agitation, water quality and uniformity of extraction [4, 5].
One of the numerous ways of making coffee is to use a drip filter coffee machine. In
this machine coffee is placed in a filter and hot water is poured over it. As the water
percolates down through the bed the solubles are extracted and any undissolved
solids in the solution are filtered out to give the final coffee brew. The aim of this
study is to formulate mathematical models to describe coffee extraction and use
them to investigate the influence of different brewing parameters on coffee quality
with a particular focus on drip filter brewing. This paper outlines the formulation of
a system of equations to model coffee extraction. Numerical solutions of the system
are compared with experimental data. To the best knowledge of the authors, the
model presented here, is one of the first experimentally validated models of coffee
extraction from a coffee bed. This process is covered in much more detail in [3].

1.1 Measuring Coffee Quality

Coffee is composed of over 1800 different chemical components [4]. Such a
complex chemistry makes it very difficult to find correlations between these
different chemical components and the quality of a coffee beverage. In general,
when required, coffee quality is evaluated by professional coffee tasters. A simple,
but useful, alternative measure of coffee quality is defined in terms of the brew
strength and extraction yield percentages of a coffee beverage. The perfect beverage
has the optimum balance of brew strength and extraction yield. Brew strength or
concentration is the ratio of mass of dissolved coffee in the beverage to volume.
Extraction yield is the percentage of dry coffee grind mass that has extracted
as solubles into the water . The desirable ranges of strength and extraction are
specified by coffee associations throughout the world. International standards
consider extraction yields of 18–22 % and brew strength of 1.15–1.55 % optimal.
The difficulty in achieving these, lies in the fact that the extraction process depends
on a number of factors including brew ratio, brewing time, water temperature, grind
size and uniformity, water quality, coffee bed geometry and brewing method. Brew
strength and extraction yield are related by the brew ratio (dry coffee grind mass
to water volume used). Thus, in theory, for a given extraction yield, choosing the
correct brew ratio will allow a given brew strength to be achieved. The ideal ranges
specified by the Speciality Coffee Association of Europe (SCAE) are summarised by
the Coffee Brewing Control Chart in Fig. 1. It should be noted that this measure does
not take into account extraction uniformity within the bed and uneven extraction
can have a negative effect on coffee quality. Given that this is the most widely
accepted coffee quality standard, it will be used in this study. Thus, when focusing
on quality, it seems reasonable to model extraction of coffee as one entity rather
than consider the extraction of its various components, since the quality measure
does not distinguish between them. This will be the approach followed here.
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Fig. 1 Coffee Brewing Control Chart: each brew ratio determines a linear relationship between
brew strength and extraction yield. The final position on the line is determined by the process
parameters

2 Mathematical Modelling

The brewing process consists of three stages. Initially in the filling stage, hot water is
poured on the dry coffee grounds and begins to fill the filter, but doesn’t leave. In the
steady state stage the bed is saturated, water is still entering the filter, but also leaving
at the same rate. Finally in the draining stage no more water enters the bed but still
drains out. Only the steady state stage is considered in this study. In this stage, the
coffee bed is modelled as a static, saturated porous medium with the flow driven by
a pressure gradient, which can be hydrostatic or mechanically applied. The bed is
doubly porous since the coffee grains themselves have a porous cellular structure.
Thus there are three distinct length scales in the coffee bed, the cell diameter, the
(average) grain diameter and the bed depth. Leveraging the techniques of volume
averaging, the transport of coffee solubles and water in the bed can be described
by a system of partial differential equations. At a macroscopic level the coffee bed
can be considered to consist of two phases. A highly permeable phase (h-phase)
consisting of the pores between the coffee grains and a low permeability phase
(l-phase) consisting of the coffee grains. At a microscopic level the coffee grains
consist of two further phases. The pore or void space within the grains is called the
v-phase, while the solid coffee cellular matrix is called the s-phase. Conservation
equations for the h-phase, v-phase and s-phase can be formed at the microscale
and macroscale. Using volume averaging the macroscopic quantities can be written
in terms of the microscopic (measurable) quantities. Thus, at a macroscale, the
system is represented as three overlapping continua, representing the intergranular
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Fig. 2 Macroscopic equations are matched to microscopic equations using volume averaging. At
the macroscopic level the system is represented by three overlapping continua for the intergranular
pores (h-phase), intragranular pores (v-phase) and solid coffee (s-phase)

pores (pores between grains), the intragranular pores (pores within grains) and the
coffee solids. Coffee and water transfers between phases on the microscale appear as
source terms on a macroscale. The volume averaging procedure used here is outlined
in [1, 2]. The complete model derivation is outlined in [3]. The averaging procedure
results in five conservation equations. These represent conservation of coffee and
water in the h-phase and v-phase, and conservation of coffee solid (s-phase). A
schematic of the volume averaging procedure is shown in Fig. 2. The transfer terms
between phases are represented by constitutive relations. A schematic of the transfer
terms in the coffee bed is shown in Fig. 3.

Mass transfer from the coffee grains to the interstitial water is modelled using two
mechanisms; mass transfer from the surface of the grains and mass transfer from the
interior (bulk) of the grains. Transfer from the grains’ surfaces also includes mass
transfer from coffee fines which consist of single cells or broken cell walls. The
two transfer mechanisms are used because coffee extracts from the surface layers
of the grain much faster than from the grain kernel due to surface washing and
proximity to the pores. Surface cells on a coffee grain also tend to be damaged from
grinding, leading to reduced mass transfer resistances. This fast initial extraction
has been observed in other studies such as [6] where 90% of extraction occurred
within 1 min. The volume averaging process and modelling of the transfer terms
lead to Eqs. (1)–(7) . Initial and boundary conditions are specified depending on the
brewing process used.
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Fig. 3 Representation of transfer terms in coffee bed

2.1 Model Equations: Intergranular Pores

The following equations of the model are given below. The model equations assume
isothermal conditions in the coffee bed. They are described in more detail in [3].

Coffee Conservation:

�h
@ch

@t
D k2sv1�

3
h

36��.1� �h/2
r � .ch.r ph C �g//C �

4
3

h Da
hr 2ch

C �hDb
hr 2ch � ˛.1 � �h/�

4
3
v .ch � cv/

C ˇ.1 � �h/.csat � ch/ s � 6.1 � �h/m2

180�ksv2ll

�3v
.1 � �v/2

. ph � pv/ch; (1)

Water Conservation:

k2sv1�
3
h

36��.1� �h/2
r � .r ph C �g/ D 6.1 � �h/m2

180�ksv2ll

�3v
.1 � �v/2

. ph � pv/: (2)
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2.2 Model Equations: Intragranular Pores

Coffee Conservation:

@cv
@t

D ˛�
1
3
v .ch � cv/C 12Dv

m2

.1 � �v/
�v

.csat � cv/.1 � cv
cs
/ v

C 6m2

180�ksv2ll

�2v
.1 � �v/2 . ph � pv/ch; (3)

Water Conservation:

12Dv�c0
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�3v
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. ph � pv/: (4)

2.3 Model Equations: Coffee Solids

Coffee Conservation:
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Fraction of Surface Coffee Remaining:
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�
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�

rs s; (6)

Fraction of Bulk Coffee Remaining:

@ v

@t
D �12Dv�c0

m2

�
csat � cv

cs

�

rv v: (7)

3 Results

The model equations are parametrised and mass transfer resistances fitted using
experimental data obtained by Philips Research, Eindhoven. The data used here is
from a coffee extraction experiment in a cylindrical flow-through cell containing
ground coffee. Fresh water is pumped in at the top at a given pressure and flow rate
and the concentration of coffee at the filter exit at the bottom and in the coffee
pot is measured over the course of the extraction. Assuming that properties are
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Fig. 4 (a) Plot of model numerical solution (solid line) and data (asterisk) for coffee concentration
against mass flowed at filter exit for cylindrical flow through cell. In this experiment, fluid
temperature was 90 ıC, applied pressure was 2:3 bar with a flow rate of 250 ml min�1. (b) Plot
of model numerical solution (solid line) and data (asterisk) for coffee extraction profile for fixed
volume experiment. Fluid temperature was 90 ıC

homogeneous in any cross section allows reduction of the system to one spatial
dimension. The bed porosity is fitted by matching the flow rate with the Kozeny-
Carman equation. Mass transfer resistances are also fitted from batch extraction
experiments where coffee grains are placed in a fixed volume of water and the
coffee concentration of the water is measured at a particular time. This experiment
is repeated for different times to build up an extraction profile. The comparison
between numerical model simulations and experiment is shown in Fig. 4.
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Modelling Particle-Wall Interaction in Dry
Powder Inhalers

Tuoi T.N. Vo, William Lee, Simon Kaar, Jan Hazenberg, and James Power

Abstract Dry powder inhalers deliver drugs in powdered form to the lungs.
The drug is stored within the inhaler bound to an excipient. The drug-excipient
conglomerate is broken apart in a vortex chamber by collisions with the walls and
other conglomerates. During the initial doses, some drug adheres to the wall of the
vortex chamber reducing the amount of drug delivered to the patient. We developed
mathematical models for particle-wall adhesion to investigate why drug particles
adhere to the wall of the vortex chamber. Two different models are developed
to validate our results and a good agreement has been obtained. The first model
describes the motion of particles in a turbulent flow field based on Stochastic
Differential Equations (SDE). The second model is a continuum model of particle-
wall adhesion based on Partial Differential Equations (PDE). This model focuses on
the rate at which drug particles are captured by the wall and the time taken for drug
particles to fill the wall area. Estimates of magnitudes of adhesive forces suggest
that excipient particles do not adhere to the walls, while drug particles bind to the
wall due to van der Waals forces when their velocity is below a critical value.

Keywords Dry powder inhalers • Mathematical modelling • Particle-wall
adhesion

1 Introduction

Dry powder inhalers are devices that deliver solid drugs to the lungs. The powder
particles are irregularly shaped conglomerations consisting of a lactose substrate
with attached drug particles. The conglomerates are too large to enter the lungs and
must be broken apart before they can be inhaled. This is accomplished by a vortex
chamber in which turbulent circulatory flow causes particle-particle and particle-
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wall collisions. These collisions detach drug particles which are small enough to
enter the lungs, i.e. smaller than 5�m. During the initial doses, some drug adheres to
the wall of the vortex chamber, reducing the amount of drug delivered to the patient.
This is thought to be due to the adhesion of particles to the wall of the chamber.
In this paper, we developed mathematical models for particle-wall adhesion to
investigate why drug particles adhere to the wall.

Models of particle-particle and particle-wall collisions were developed and ana-
lyzed in [4–6]. Although the effect of wall roughness was considered, particle-wall
adhesion was not included. Heinl and Bohnet developed a model of particle-wall
adhesion which was simulated with Computational Fluid Dynamics (CFD) [1, 2].
The particle-wall adhesion was achieved when the particle velocity before the
particle-wall collision was smaller than a critical particle velocity, vP,crit, which is
determined from the energy balance of a particle-wall collision. This model included
most of the effects of adhesion which involved van der Waals forces and electrostatic
forces.

Critical Velocity We used an energy balance argument to determine whether
a particle colliding with the wall will adhere [1–3]. It is found that the excipient
particles can leave the wall after impact due to their high kinetic energies. However,
the drug particles may adhere to the wall after impact if their kinetic energies are
not sufficient to overcome the van der Waals energies and energy loss. We have:

vP,crit D
s

12EvdW

��pd3pe2
; (1)

and the condition of adhesion is achieved if the particle velocity is below vP,crit , which
is a critical velocity of particle. Here EvdW is the van der Waals energy, �p is the
particle density, dp is the particle diameter, and e is the coefficient of restitution.
Estimates of the van der Waals force show that, to cause adhesion, a collision needs
to occur at less than 1m s�1.

In the vortex chamber, the particles are dispersed by turbulence, are advected by
flow field and centrifugal forces, collide with the wall, and are delivered to the lungs.
In the flow field, the particles dynamics are influenced by drag forces, centrifugal
forces and Coriolis forces. In this paper, a continuum model was developed to
describe particle-wall adhesion based on partial differential equations (PDE). In this
model, we assumed that drug particles are only released at the wall after collision
and the Coriolis force was neglected. Results from this model predicted the rate at
which drug particles are captured by the wall and the time for drug particles filling
the wall area. However, they did not agree with results from an alternate model based
on stochastic differential equations (SDE), which predicted a much greater particle
density, especially in the centre of the vortex chamber. We demonstrate below that
this is because the Coriolis force plays an important role in particle distribution and
can not be neglected. Therefore the model was adjusted to take into account the
effect of both the centrifugal force and Coriolis force.
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2 The Model

Initially, we developed a SDE model to describe the motion of particles in a
flow field in the vortex chamber. While this model rapidly gave an equilibrium
distribution of particle positions and velocities in the absence of adhesion it was
too computationally intensive to allow simulation of the dynamics on the wall
adhesion timescale. Thus we developed a simple PDE model to describe the same
phenomena. The PDE model focused on the rate at which drug particles are captured
by the wall and the time taken for drug particles to fill the wall area.

2.1 PDE Model

We developed a continuum model to describe particle-wall adhesion based on partial
differential equations (PDE). In this model, we assumed that drug particles are only
released at the wall after collision and neglected the effect of the Coriolis force.

2.1.1 Model Equations

To illustrate particle-wall adhesion, a simple model was considered in one dimen-
sion:

@c

@t
C v

@c

@x
D D

@2c

@x2
; 0 < x < L;

dcw

dt
D Kc.cw0 � cw/; on x D L;

vc � D
@c

@x
D dcw

dt
� Qc; on x D L;

c D 0; on x D 0;

c D 0; cw D 0; at t D 0;

(2)

where x D 0 is at the centre of the vortex chamber and x D L is at the wall; c.x; t/ is
the number of particles per unit volume in the vortex chamber; cw.t/ is the number
of particles per unit wall area; cw0 is the number of particles filling a unit wall area;
v is the centrifugal velocity; D is the diffusion coefficient; K is the rate at which
particles stick to the wall; and Qc is the rate of particle release due to the collision
of conglomerates with the wall. Here, we assumed that v and D are constants. In the
partial differential equations:

(1) v @c
@x represents outward motions of particles due to centrifugal forces;

(2) D @2c
@t2

represents random motions of particles due to turbulent buffeting;
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(3) vc � D @c
@x represents the flux of particles, so the first boundary condition on

x D L describes absorption of particles by the wall;
(4) The second boundary condition represents the removal of particles at the centre,

x D 0.

We can rewrite the system (2) in dimensionless form by using the following non-
dimensional variables:

Nx D x

L
; Nt D t

D=.KQcL/
; Ncw D cw

cw0
; Nc D c

.QcL/=D
;

to obtain (dropping overbars for convenience):

"
@c

@t
C Pe

@c

@x
D @2c

@x2
; 0 < x < 1;

dcw

dt
D c.1 � cw/; on x D 1;

@c

@x
D Pec � ˛c.1 � cw/C 1; on x D 1;

c D 0; on x D 0;

c D 0; cw D 0; at t D 0;

(3)

where

Pe D vL

D
; " D KQcL3

D2
; ˛ D KLcw0

D

are dimensionless constants.
Assuming that " � 1, the system (3) can be solved for c.x; t/ and cw.t/ to obtain:

c.x; t/D ePe x � 1
PeC ˛.ePe � 1/.1� cw.t//

;

cw.t/ D 1� exp

�

�LambertW

�
˛.ePe � 1/

Pe
exp

�
.˛ � t/.ePe � 1/

Pe

��

C .˛ � t/.ePe � 1/
Pe



;

(4)

where the LambertW function satisfies LambertW(t) eLambertW.t/ D t.
The dose release rate is defined as follows:

F.t/ D
�
@c

@x
� Pec

�

xD0
D
�
@c

@x

�

xD0
.c.x D 0/ D 0/;

i.e. the particle flux into the centre. From (4)1, we obtain:

F.t/ D Pe

Pe C ˛.ePe � 1/.1 � cw.t//
: (5)
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2.1.2 Results

Figures 1 and 2 show the analytical solutions of the number of particles per unit
volume c.x; t/, the number of particles per unit wall area cw.t/, and dose released
F.t/ for various values of non-dimensional parameters (Pe; ˛ and ") using Eqs. (4)
and (5). Parameter values used to generate these results are listed in Table 1. We see
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Fig. 1 Analytical solutions of the number of particles per unit volume c.x; t/, the number of
particles per unit wall area cw.t/, and dose released F.t/ in non-dimensional form
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Fig. 2 Analytical solutions of the number of particles per unit volume c.x; t/, the number of
particles per unit wall area cw.t/, and dose released F.t/ in non-dimensional form

Table 1 Parameter values
used to generate results in
Figs. 1 and 2

Parameter Value Description

L 10mm Length scale

V 30 m s�1 Average velocity of air flow

Rp 2:5 � 10�6 m Radius of drug particles

DD LV 0:3m2 s�1 Diffusion coefficient

cw0 D 1
�R2p

5� 1010 m�2 1 active site per unit area
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that there is an increase in particle number density, c, near the wall due to the effect
of centrifugal forces and particle release at the wall after collision. At the time the
wall is filled, cw D 1, we obtain 100 % dose released.

The fraction of drug released in the first dose decreases from 65 % to about 20 %
while increasing ˛ from 0.3 to 3. In Fig. 1, affected doses decrease from 28 to 5 when
" increases from 1:2 � 10�5 to 6 � 10�5. Increasing " corresponds to increasing the
rate of particle release at the wall, Qc, or to increasing delivered doses. This means
that reducing the amount of drug per dose increases the number of affected doses
and the time for the drug to fill the wall area. In Fig. 2, as Pe is reduced from 1:2 to
0:1, the particle number density decreases and the affected doses increase.

The results of this model can be compared to experimental data, if available,
using Pe; ˛ and " as fitting parameters.

2.2 Adjusted PDE Model

2.2.1 SDE Model

In this model, the equation of motion of a particle in a flow field u C w describes its
velocity v and position x:

m
dv
dt

D �.u C w � v/;

dx
dt

D v;

(6)

where u is the average air flow velocity, w is the turbulent air flow velocity modelled
as a Weiner process, m is the particle mass, and � is a friction constant.

The SDE model was solved by Monte Carlo simulation of a cloud of 1000
particles from which averaged quantities were calculated. The number density of
drug particles was displayed in Fig. 3 (blue points).

2.2.2 The Adjusted Model

Although PDE model results could predict the rate at which drug particles are
captured by the wall and the time taken for drug particles filling the wall area,
they did not agree with the SDE model which has much greater particle density,
especially in the centre of the vortex chamber. The explanation for this may be that
the Coriolis effect causes an azimuthal velocity increase near the centre, retarding
the rate at which particles reach the centre and exit the chamber. It means that the
flow field used to derive the PDE model should be adjusted to include the effects of
the Coriolis force.

The following model takes into account the effect of both the centrifugal force
and Coriolis force and the sink term c D 0 at the chamber centre is replaced
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with a reaction term in which the rate of removal of particles is proportional to
the particle concentration. Restricting ourselves to two dimensions and working in
polar coordinates, we have:

dvr

dt
D v2�

r
C �

m
.ur � vr/;

dv�
dt

D �vrv�

r
C �

m
.u� � v� /;

@c

@t
C
�

vr � D

r

�
@c

@r
D D

@2c

@r2
; R1 < r < R2;

dcw

dt
D Kc.cw0 � cw/; on r D R2;

�

vr � D

r

�

c � D
@c

@r
D dcw

dt
� Qc; on r D R2;

c D kc

��

vr � D

r

�

c � D
@c

@r

�

on r D R1:

c D 0; cw D 0; at t D 0;

(7)

where this coordinate system introduces inertial forces: the Centrifugal force,

Fcen D m
v2�
r , and the Coriolis force, Fcor D �m vrv�

r . Notation description and
parameter values used to generate results in Fig. 3 are listed in Table 2.

The system of PDEs was solved numerically using the open source OpenFOAM
libraries [7]. These make use of a finite volume discretisation of the equations.
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Fig. 3 Steady state concentration profile: results of the number density of drug particles, c.r; t/,
from the SDE model (blue) and the adjusted PDE model (red)
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Table 2 Notation used in the models

Notation Unit/values Description

c.r; t/ # m�3 Number density of particles

cw.t/ # m�2 Number of particles per unit wall area

cw0 # m�2 Number of particles filling a unit wall area

m kg Particle mass

vr m s�1 Radial velocity of particles

v� m s�1 Azimuthal velocity of particles

D m2 s�1 Diffusion coefficient

K m3 #�1 s�1 Rate at which particles stick to the wall

Qc # m�2 s�1 Rate of particle release at the wall

kc Proportional constant

Q 60L min�1 Volume flux of an inhalation

H 4:6mm Height of vortex chamber

A 2:93 � 10�5 m2 Area of both tangential inlets

R2 9:5mm Radius of vortex chamber

R1 0:95mm Radius of central exit

Rp 2:5 � 10�6 m Radius of drug particles

� 2� 10�5 kg m�1 s�1 Dynamic viscosity of air

ur �Q=.2�rH/m s�1 Radial velocity of air

u� Qr=.AR2/m s�1 Azimuthal velocity of air

� 6��Rp Particle friction factor

Figure 3 shows a good agreement between results of the number density of drug
particles, c.r; t/, from the SDE model (blue) and the adjusted PDE model (red).

3 Discussion

Our results show that the amount of drug retained by the vortex chamber is
comparable with the amount of drug needed to form a monolayer on the inside
of the chamber. These results suggest that the total amount of drug absorbed will
remain the same irrespective of dose cup size and that only the rate at which this
dose is absorbed depends on the dose cup. Estimates of magnitudes of adhesive
forces suggest that excipient particles do not adhere to the walls, while drug particles
bind to the wall due to van der Waals forces. Drug adhesion is primarily affected
by Hamaker constant, surface roughness and coefficient of restitution. Simplified
simulations of the particle motion in the chamber are consistent with this picture.

Experimental data is not available for the system of interest so a number of
parameters have been extrapolated from similar systems. Measuring the parameters
this paper has identified as being most relevant (i.e., Hamaker constant and
coefficient of restitution) could be useful to improve the models. Combining the
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model of particle adhesion developed in this paper with a full computational fluid
dynamics model of the exact chamber geometry could yield insights into where
exactly particle deposition is taking place. Finally, the existing models, although
simple can be used to estimate the effects of changing various geometrical and
aerodynamic factors.
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Optimising Copying Accuracy in Holographic
Patterning

Dana Mackey, Paul O’Reilly, and Izabela Naydenova

Abstract We propose a partial differential equations model for the formation and
evolution of a holographic grating in a photopolymer system and use perturbation
methods and numerical simulations in order to investigate the dynamical mechanism
by which distortions of the illumination pattern arise during recording. The parame-
ters of interest are diffusion and photopolymerization rates as well as exposure time,
for which we seek to determine regimes which allow for high fidelity copying.

Keywords Holographic patterning • Photopolymerization-diffusion

1 Introduction

Holography has many applications such as holographic displays, optical elements
and sensors, security holograms and holographic data storage. A hologram is
essentially a recording of an interference pattern created by an object beam and
a reference beam in a photosensitive material; in all applications the accuracy
with which this pattern is copied is crucial for the performance of the hologram.
Photopolymers are often the material of choice in holographic patterning because
of qualities such as versatility, self-processing nature, good dynamic range and
relatively low cost. A photopolymer system consists of one or two monomers,
photoinitiator and sensitizing dye, all dispersed in a binder matrix. Following
exposure to an illumination pattern, the monomer polymerizes and the recorded
holographic grating is given by the spatial variation of the refractive index, which
results from changes in the relative density of components.

A mathematical model was introduced in [1] and [2], which generalizes the
standard monomer diffusion equation of [5] by differentiating between mobile
(diffusing) polymer chains and immobile ones. This model supports the “two way
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diffusion theory”, proposed in [4] and [3], which states that the diffusion of some
polymer chains away from bright fringes leads to a reduction in the refractive index
modulation and is one of the processes responsible for the experimentally observed
poor diffraction efficiency at high recording frequencies.

In this paper, we use an improved version of this model to investigate regimes
which allow for high accuracy photopatterning. The main parameters influencing the
copying fidelity are the spatial frequency of recording, which defines the distance
over which the monomer and polymer molecules have to travel, and the intensity of
recording, which determines the concentration of free radicals and thus the rate at
which monomer molecules are converted into polymer chains and the rate at which
the chains are terminated. It has been suggested by experimental and theoretical
observations [4, 5], that distortions of the illumination pattern tend to occur when
the ratio of monomer diffusion to polymerization rate is small and we verify that
our model reproduces this observation.

2 Photopolymerization-Diffusion Model

We study a simple grating recorded by the interference of two coherent beams of
intensities I1 and I2, which create the illumination pattern

I.x/ D I0 .1C V cos.kx//;

where k is the grating wavenumber, I0 D I1 C I2 and V D 2
p

I1I2=.I1 C I2/
are the overall intensity and visibility of the interference pattern, respectively. The
holographic grating formation then proceeds in three steps: initiation, propagation
and termination. Upon illumination, the sensitizing dye absorbs a photon and reacts
with the electron donor to produce free radicals; in the presence of monomer these
free radicals initiate polymerization. During the propagation step, free radicals
and monomer molecules interact and produce growing polymer chains. At the
termination step, two free radicals interact and the polymer chains stop growing.

The photopolymerization and diffusion processes described above can be cap-
tured by the following partial differential equations (see [1, 2])

@m

@t
D Dm

@2m

@x2
�˚.t/F.x/m (1)

@p

@t
D Dp

@2p

@x2
C ˚.t/

	
F.x/m � � p2



; 0 � x � �I t � 0 (2)

@q

@t
D ˚.t/ � p2 (3)

where m.x; t/, p.x; t/, q.x; t/ are the concentrations of monomer, short and long
polymers, respectively,� D 2�=k is the grating period, F.x/ D F0 .1C V cos.kx//
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is the polymerization rate (assumed proportional to the light intensity) and ˚.t/ is a
step function equal to 1 during the light exposure and 0 afterwards. The monomer
and polymer diffusion coefficients, Dm and Dp, are assumed constant, which is a
reasonable simplification for short exposures. The immobilization rate, introduced
in [1], depends mainly on cross-linking of short chains and is now more correctly
described as proportional to p2 (where � denotes the rate constant). The initial
conditions are m.x; 0/ D m0; p.x; 0/ D q.x; 0/ D 0 for all 0 � x � �, and
we assume zero-flux boundary conditions for all species. This model describes
a simple mechanism for monomer and short chain polymer diffusion, coupled
with photopolymerization and immobilization (i.e. transition from the diffusing to
immobile state). Tracking the evolution of polymer chain lengths is beyond our
scope here.

The refractive index of a material consisting of a mixture of components can be
calculated with the well-known Lorentz-Lorenz equation

n2 � 1

n2 C 2
D
X

i

˚i
n2i � 1

n2i C 2

where n is the effective refractive index of the mixture, ni are the refractive indices
of the components (monomer, polymer and binder) determined separately from
spectrophotometric measurements, and ˚i are the normalized concentrations of the
components (e.g. ˚m D m=.b C m C p/, where m, p and b denote concentrations of
monomer, polymer and binder, respectively). See [1] for more details and numerical
values. In what follows, we use the refractive index modulation

n.t/ D nmax.t/ � nmin.t/

as a measure of the grating strength. With the choice of non-dimensional variables
Nx D x

�
Nt D t

t0
, Nm D m

m0
, Np D p

m0
, Nq D q

m0
the system becomes (after dropping bars)

@m

@t
mt D ˛

@2m

@x2
� ˚.t/ ˇf .x/m; (4)

@p

@t
D ˛"

@2p

@x2
C ˚.t/

	
ˇf .x/m � �p2



; 0 � x � 1I t � 0 (5)

@q

@t
D ˚.t/ �p2 (6)

where

˛ D Dmt0
�2

; " D Dp

Dm
; ˇ D t0F0; � D m0t0�; f .x/ D 1C cos.2�x/

We also have m.x; 0/ D 1, p.x; 0/ D q.x; 0/ D 0, as well as zero-flux boundary
conditions at x D 0; 1. The reference time t0 reflects the light exposure timescale.
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3 Perturbation Analysis and Numerical Simulations

We use perturbation methods to study the solutions of this system in the particular
cases when ˛ � ˇ (the diffusion rate is much smaller than the polymerization
rate) and ˇ � ˛ (polymerization rate smaller than diffusion rate). We introduce the
small parameter � D Dp=Dm, as diffusion of short polymers is always much slower
than that of monomers and also assume that the immobilization rate � is slower
than the polymerization rate ˇ (reflected in all subsequent scaling choices). We use
Dm D 10�12 and Dp D 10�14 m2/s, consistent with the values determined in [1, 4].
We first assume infinite light exposure so that˚.t/ 	 1 in (4)–(6) and study the long
term behaviour of monomer, polymer and refractive index (the numerical solutions
are shown in Figs. 1 and 2). The evolution of the refractive index modulationn.t/
is then investigated for different finite exposure periods, te and the graphs are shown
in Fig. 3. In this case we let ˚.t/ 	 0 for t > te so after exposure the model is
governed by diffusion equations with initial conditions given by the concentrations
at the end of exposure, m.x; te/, p.x; te/ and q.x; te/. Since the monomer and mobile
polymer quickly assume spatially homogeneous steady states, the refractive index
spatial variation will be completely determined by that of the immobile polymer.
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Fig. 1 Long term evolution of monomer, polymers and refractive index in the case of continuous
exposure. Here, ˛ D 1, " D ˇ D 0:01 and � D 0:001
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Fig. 2 Long term evolution of monomer, polymers and refractive index in the case of continuous
exposure. Here, ˛ D "D 0:01, ˇ D 1 and � D 0:1
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Fig. 3 The evolution of the refractive index modulation for different exposure times. (a) ˇ � ˛

(� D 10�6 m, F0 D 0:01 s�1). (b) ˛� ˇ (� D 10�5 m, F0 D 1 s�1)
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3.1 Polymerization Rate Less than Diffusion Rate (ˇ � ˛)

Without loss of generality we choose ˛ D Dmt0=�2 D 1 (achieved, for example,
with t0 D 1s, � D 10�6m, which corresponds to a recording frequency of
1000 lines/mm) and scale ˇ D "ˇ0, � D "2� 0, where ˇ0, � 0 are O.1/. Multiple
scales expansions are appropriate since the polymers evolve more slowly than the
monomer and can be used to approximate the initial behaviour for all species. Using
the short time t and long time 
 D "t, we find

m.x; t; 
/ D e�
 C "

�
1

8�2

e�
 C 1

4�2
e�


�
e�4�2t � 1

�
cos.2�x/

�

C � � �

p.x; t; 
/ D p0.x; 
/C � � � D 1 � e�
 C e�
 � e�4�2


4�2 � 1 cos.2�x/C � � �

q.x; t; 
/ D "

Z 


0

p20.x; s/ ds C � � �

These are valid up to t D O.1="/ (although the monomer expansion can be shown
to hold as t ! 1) and on this time scale it can be seen that the leading order spatial
dependence is sinusoidal. This behaviour is confirmed by the numerical simulations
shown in Fig. 1. We also plot the evolution of the refractive index modulation,n.t/,
for different exposure times in Fig. 3a. Note the sharp decrease in n.t/ after the
light exposure is stopped, which confirms the poor response of the photopolymer
system at high recording frequencies, as discussed in Sect. 1.

3.2 Diffusion Rate Less than Polymerization Rate (˛ � ˇ)

When the diffusion rate is much slower than the polymerization rate, we choose
ˇ D t0F0 D 1, ˛ D " � 1 and � D "� 0. (We take � D 10�5 m, which corresponds
to a low frequency of 100 lines/mm.) A standard perturbation approach gives

m.x; t/ D e�.1Ccos.2�x// t C "
2

3
�2t2 e�.1Ccos.2�x// t .t C 3 cos.2�x/ � t cos.4�x//

(7)

which is not valid for large t and x 
 1
2

(the point of zero illumination). This
suggests introducing the variables � D .x � 1

2
/"�1=4, 
 D "1=2t to obtain

@m

@

D @2m

@�2
� 2�2�2 m C "

2�4

3
�4 m; (8)

@p

@

p
 D "

@2p

@�2
C 2�2�2m � "

2�4

3
�4 m � "� 0p2 (9)

@p

@

q
 D "� 0p2 (10)
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with �1 � � � 1, 
 � 0. The leading order solution for the monomer equation is

m0.�; 
/ D
1X

nD0
C2ne

��p2.4nC1/ 
� �
p

2
�2

H2n
�
.2�2/1=4 �

�
; (11)

where Hn are Hermite polynomials and C2n D
p
2

2n.2n/ŠŠ . The inner and outer expan-
sions (11) and (7) accurately describe the behaviour of the monomer concentration
for all times and can be used to determine similar approximations for the polymer
functions; all these approximations match the numerical solutions shown in Fig. 2.
Note that the refractive index profile no longer resembles the sinusoidal illumination
as it develops multiple maxima per grating period. Figure 3b shows the refractive
index modulation in this case can achieve a high saturation value.

4 Conclusions

We have investigated a possible mechanism by which distortions appear in the
holographic grating created by a simple sinusoidal illumination pattern, using the
ratio of diffusion to polymerization as our main parameter. When the polymerization
rate is slower than the diffusion rate, the recorded grating profile resembles the
sinusoidal interference pattern however, the refractive index modulation drops
rapidly after exposure and the system is characterized by poor diffraction efficiency.
When the diffusion is slower than polymerization we observe distortions of the
illumination pattern after long exposure times (t D O.1="/. In this latter case, the
refractive index modulation is much higher and keeps rising even after exposure is
stopped, consistent with experimental observations [1, 4]. A more comprehensive
perturbation analysis is, however, needed in order to study the interplay between
diffusion rate, polymerization rate and exposure time. This study will also be
generalized to more complex two-dimensional gratings produced with multiple
beam holography as well as more complex photopolymer systems containing
nanoparticle dopants.
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Short Description
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ology, focusing on the latest developments and on the new research pathways and
applications.

ECMI motivation/relevance: In silico studies of the cardiovascular system are
very relevant to ECMI since they are a crucial part of the ongoing efforts to bridge
advanced research and clinical applications, as e.g. in the Virtual Physiological
Human (VPH) project. The main goal of these studies is to develop, test and
implement integrative biomedical science and technology-facilitated applications,
as well as to improve current simulation techniques.



Advances in the Mathematical Theory of the
Finite Element Immersed Boundary Method

Daniele Boffi, Nicola Cavallini, and Lucia Gastaldi

Abstract The Immersed Boundary Method (IBM) is an effective mathematical
model and approximation scheme for the discretization of biological systems
which involve the interaction of fluids and solids. The Finite Element IBM (FE-
IBM) proved to be competitive with respect to the original IBM (based on finite
differences and on a suitable approximation of a Dirac delta function) in several
aspects: in particular, the position of the solid can be dealt with in a natural way by
taking advantage of the underlying variational formulation (thus avoiding the use of
the delta function); moreover, the use of finite elements allows for sharp pressure
jumps when discontinuous pressure schemes are adopted. Recently [see Boffi et al.
(Coupled Problems 2013. Computational Methods for Coupled Problems in Science
and Engineering V, Cimne, 2013)], a fully variational approach of the FE-IBM has
been introduced, which can be shown to be unconditionally stable with respect to the
time discretization. The novelty consists in the treatment of the coupling between
the solid and the fluid: in the standard formulation, this is given by a differential
equation stating that the velocity of the solid is equal to that of the fluid, while in the
new formulation this coupling is imposed in a weak form. A rigorous mathematical
analysis shows the stability of the coupling and the unconditional time stability.
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1 Introduction

When Peskin introduced the Immersed Boundary Method (IBM) he was mainly
motivated by the Fluid Structure Interaction problem originated from the blood
flow during the heartbeat. The methodological competition about this method is
devoted to improve its conservation properties, in particular mass preservation is a
key performance indicator, see [14] for a method’s review.

After the introduction of the Finite Elements IBM (FE-IBM) by Boffi and
Gastaldi, [1], several applicative studies explored the performances of the method
(see [2–7, 13]). Moreover several theoretical and applicative works explore the
mass conservation properties of enhanced pressure spaces, [8–11] conservative and
approximation properties of several finite elements schemes.

A Distributed Lagrangian Multiplier (DLM) formulation of the finite element
immersed boundary method has been recently introduced in [11]. This formulation
is characterized by several analogies with the Fictitious Domain method [12] and
shows very good results in terms of mass conservation and CFL stability. In this
paper we will present numerical results for this scheme, which complement the
ones reported in [11]. More precisely, while in [11] the main emphasis was on the
CFL condition and on the mass conservation property, here we focus particularly on
the stability of the scheme. More specifically, Table 1 shows what are the conditions

Table 1 Test cases to compare the CFL stability of IBM and DLM schemes

hs (mesh size of the structure domain)

t 1
64

1
48

1
40

1
32

1
24

1
16

1
8

IBM codimension one

1� 10�2 0.943 0.942 0.942 0.941 0.941 0.941 0.940

2� 10�2 CFL 0.942 0.941 0.941 0.940 0.940 0.940

3� 10�2 CFL CFL CFL 0.941 0.940 0.940 0.939

5� 10�2 CFL CFL CFL 0.795 0.940 0.939 0.938

1� 10�1 CFL CFL CFL CFL CFL 0.574 0.936

DLM codimension one

1� 10�2 inf-sup inf-sup inf-sup 1.023 1.022 1.022 1.023

2� 10�2 inf-sup inf-sup inf-sup 1.022 1.022 1.022 1.022

3� 10�2 inf-sup inf-sup 1.023 1.022 1.022 1.022 1.022

5� 10�2 inf-sup inf-sup inf-sup 1.021 1.021 1.021 1.022

1� 10�1 inf-sup inf-sup 1.021 1.020 1.020 1.020 1.020

The test case is the one where an ellipsoidal structure aims to a circular equilibrium position. The
elastic constant is � D 5, hx D 1=32, the simulated time is T D 2. In these tests we experience
two different instabilities. The DLM scheme is bounded by an inf-sup stability condition. The
IBM scheme experiences a CFL instability. Diffusivity measure is given by initial and final area:
j1� A=A0j < 3%; j1� A=A0j < 10%; j1� A=A0j < 20%; j1� A=A0j � 20%
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linking fluid and solid mesh sizes for the stability of the scheme, both in the case of
FE-IBM and DLM.

2 Problem Setting

The fluid domain is ˝ � R
d, d D 2; 3, the structure domain is denoted by Bt � ˝

and is immersed into the fluid one. The fluid is incompressible and the structure is
viscoelastic, a key assumption in IBM. In fact in IBM we assume that the stress
tensor of an undifferentiated media is the sum of fluid and solid stress tensors.
The fluid stress tensor acts all over ˝ and the structure stress tensor is located on
the structure domain Bt. Fluid and structure are coupled applying the principle of
virtual work.

At a given time t the structure lays on the time dependent domain Bt, having
codimension 0 or 1. We assume that there is no intersection between the structure
and fluid boundary @Bt \ @˝ D ;. Moreover, the current domain Bt is the image
of a reference domain B � R

m, m D d; d �1 through the map X defined as follows:

X W B � Œ0;T� ! Bt so that x D X.s; t/ 8x 2 Bt: (1)

The map X.s; t/ is assumed to be invertible at any time, meaning that the defor-
mation gradient: F˛i WD �r s X.s; t/

�
˛i

D X˛;i.s; t/ D @X˛.s;t/
@si

has rank m. The
incompressibility condition forces jFj D 1 during time evolution. Here jFj is the
determinant of F when m D d. When m D d � 1 we set jFj D j@X=@sj for m D 1

and jFj D j@X=@s1 ^ @X=@s2j for m D 2.
Fluid and solid phases are characterized by piecewise constant densities: more

precisely, � D �f in ˝ nBt and � D �s in Bt. The interested reader can refer to [7]
for a detailed study of stability criteria regarding �s=�f .

As mentioned before the key idea of IBM is in the definition of the Cauchy stress
tensor � . For viscous Newtonian fluid we set: � f D �pI C �.r u C .r u/T/: Then
the Cauchy stress tensor is given by � D � f in ˝nBt and � D � f C � s in Bt.
Hence the fluid stress tensor lays over the whole domain, while the elastic tensor
is associated to the structure position. This assumption is accepted in biological
applications where viscoelasticity plays a key role (see, e.g., [15]).

In the following we shall use the first Piola–Kirchhoff stress tensor which can
be derived from the elastic stress tensor � s using Lagrangian variables as: P.s; t/ D
jF.s; t/j � s.X.s; t/; t/F�T .s; t/: Using the principle of virtual work and the above
definitions we obtain the following formulation of the problem:
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Problem 1 Given u0 2 H1
0.˝/

d and X0 W B ! ˝ such that X0 2 W1;1.B/, for
all t 2 �0;TŒ, find .u.t/; p.t// 2 H1

0.˝/
d � L20.˝/ and X.t/ 2 W1;1.B/, such that

�f
d

dt
.u.t/; v/C b.u.t/;u.t/; v/C a.u.t/; v/

� .r �v; p.t// D h.t/; vi C hF.t/; vi 8v 2 H1
0.˝/

d (2a)

.r �u.t/; q/ D 0 8q 2 L20.˝/ (2b)

hd.t/; vi D �.�s � �f /

Z

B

@2X
@t2

v.X.s; t// ds 8v 2 H1
0.˝/

d (2c)

hF.t/; vi D �
Z

B
P.F.s; t// W rsv.X.s; t// ds 8v 2 H1

0.˝/
d (2d)

@X
@t
.s; t/ D u.X.s; t/; t/ 8s 2 B (2e)

u.x; 0/ D u0.x/ 8x 2 ˝ (2f)

X.s; 0/ D X0.s/ 8s 2 B: (2g)

Here a.u; v/ D �.r u;r v/, b.u; v;w/ D �f

2
..u � r v;w/� .u � r w; v//.

3 Distributed Lagrange Multiplier Formulation

In view of the finite element discretization of Problem 1, we write the kinematic
coupling equation (2e) in weak form as follows:

�

	;u.X.�; t/; t/ � @X.�; t/
@t

�

D 0 8	 2 .H1.B/d/� (3)

where h�; �i denotes the duality pairing between H1.B/d and its dual space
.H1.B/d/� if m D d and between H1=2.B/d and its dual space if m D d � 1.
The notation .�; �/B stands for the L2-scalar product in L2.B/.

Let Vh � H1
0.˝/

d and Qh � L20.˝/ be a pair of finite element spaces stable for
the approximation of the Stokes equations. Let Sh � H1.B/d contain piecewise
linear vector valued functions and �h D Sh. Then we introduce a Lagrange
multiplier associated to the constraint (3), so that we obtain the following fully
discrete Problem 1:

Problem 2 Given u0;h 2 Vh and X0;h 2 Sh, for n D 1; : : : ;N find

.un
h; p

n
h/ 2 Vh � Qh; Xn

h 2 Sh; 
n
h 2 �h;
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such that u0h D u0;h, X0
h D X0;h and

�f

 
unC1

h � un
h

t
; v

!

C b.unC1
h .t/;unC1

h .t/; v/C a.unC1
h ; v/

� .r �v; pnC1
h /C h
nC1

h ; v.Xn
h/i D 0 8v 2 Vh

.r �unC1
h ; q/ D 0 8q 2 Qh

.�s � �f /

 
XnC1

h � 2Xn
h C Xn�1

h

t2
;Y

!

B

C .P.FnC1
h /;r s Y/B

� h
nC1
h ;Yi D 0 8Y 2 Sh

*

	;unC1
h .Xn

h/� XnC1
h � Xn

h

t

+

D 0 8	 2 �h:

4 Numerical Experiments

In the subsequent experiments the Piola stress tensor is assumed to be proportional
to the deformation gradient P D �F, see [6] and references therein. The fluid
convective term is neglected. The velocity and pressure spaces are the enhanced
Bercovier–Pironneau elements, see [9]. In the latter we will call DLM the solution
of Problem 2 and IBM the one obtained by applying the finite element discretization
to Problem 1.

We first consider the scheme performances in terms of CFL stability. In Table 1
we present the results in terms of area conservation for the codimension one elastic
string. We report the ratio between the initial and final internal area A=A0. The area
of the discrete region A is evaluated exactly, using the current structure triangulation
The string initial position is an ellipse, with 1:4 dimensions ratio, which tends
to a circular equilibrium position. IBM and DLM are affected by different nature
instabilities. IBM is affected by a CFL condition extensively explored in [4, 7]. The
DLM scheme needs to satisfy an inf-sup type condition that bounds the structure
mesh to be sufficiently coarse with respect to the fluid one. DLM scheme is stable
regardless the t choice.

In Fig. 1 we present a codimension zero simulation, where a rectangular structure
tends to a square equilibrium position. The simulation parameters are: hx D 1=32

(mesh size of the fluid domain), hs D 1=16 (mesh size of the structure domain),
� D 100, t D 10�3, the viscosity � D 0:01. It is clear that the parameters in this
simulation would require an appropriate advection treatment to recover physical
consistency. Since in the present paper we aim at showing the robustness of the
scheme, this topic is left to further exploration. Figure 1a shows the first time step
evaluated. The rectangle upper right corner generates an infinite vorticity singularity,
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(a) (b)

(c) (d)

Fig. 1 Codimension zero structure. Oscillating square immersed into the fluid. (a) t D 0:001, (b)
t D 0:06, (c) t D 0:25, (d) t D 2

that in this plot is represented by the greatest velocity values. In Fig. 1b the velocities
are arranged to follow the structure motion. The structures oscillates and in Fig. 1c
“rebounds” toward the equilibrium position. It is interesting to notice the inversion
of the velocities. The structure finally gets to the equilibrium in Fig. 1d. The authors
remark that due to space restrictions, the velocity detail are better represented by
zooming in the electronic version of the paper.
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5 Conclusions

In this paper we presented a Distributed Lagrange Multiplier FE-IBM scheme. The
problem setting is improved to be fully variational; a rigorous analysis of the scheme
is going to be objective of future works.

Moreover numerical tests show that there is no CFL restriction for the scheme.
On the other hand an inf-sup condition forces the structure mesh to be coarser then
the fluid one; a rigorous study of this phenomenon is in the authors’ future plans.

The presented codimension zero simulation shows the robustness of the method.
A rectangular structure introduces a singularity in the fluid vorticity. Nevertheless
the scheme is stable and the solution converges to the equilibrium position.
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Impact of Blood Flow on Ocular Pathologies:
Can Mathematical and Numerical Modeling
Help Preventing Blindness?

Paola Causin, Giovanna Guidoboni, Francesca Malgaroli, Riccardo Sacco,
and Alon Harris

Abstract The pathogenesis of many blinding diseases, such as diabetic retinopathy,
glaucoma or retinopathy of prematurity, is thought to be related to retinal tissue
hypoxia. Yet, the mechanisms governing oxygen delivery to the retina are still
poorly understood. Since it is not currently possible to disentangle the influence
of all the concurring factors in retinal oxygenation during experimental and clinical
measurements, mathematical models can serve as virtual laboratories to separately
investigate the individual influence of different parameters. In this contribution,
we propose a mathematical model which describes the oxygen profile along the
whole retinal depth, including sources from blood circulation and tissue metabolic
consumption. An analytical solution for the profile is computed and quantitative
estimates of the sensitivity of retinal oxygen profiles to changes in geometrical and
metabolic parameters of the retinal tissue are provided. In particular, this analysis
highlights the important role played by the thickness of the different retinal layers
and warns of potential issues when using experimental data across species.
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1 Introduction

Eye diseases represent a significant medical and social concern in countries
undergoing population aging. One of the most frequent causes of vision loss is
represented by damage to the retina, the light-sensitive tissue lining the inner surface
of the eye. Alterations of blood circulation and oxygen (O2) delivery to the retina
have been identified as important factors in many retinopathies, but the pathogenic
mechanisms leading to vision loss are still poorly understood [6, 20]. Recently,
several models have been proposed by some of the authors of this paper to investi-
gate the biomechanics/hemodynamics/oxygenation relationship in the retinal tissue,
see [1, 3, 4, 7, 8]. However, several questions remain open. One important question
concerns the relative contribution of different O2 sources to the oxygenation of the
retinal tissue. In the avascular outer region of the retina, also referred to as outer
retina, O2 is mainly provided via diffusion from the choroid, whereas in the inner
portion of the retina, also referred to as inner retina, O2 is mainly provided via
transport from a network of embedded blood vessels. Oxygen profiles have been
recorded in vivo in cats, rats and monkeys via microelectrode measurements (see
[19] and references therein) and the profiles have been successfully fitted in the
outer retina region via 1D diffusion-reaction mathematical models [5, 12, 13]. In
these models, an inner retina portion is sometimes included, without accounting for
blood sources, in order to check that its presence does not disrupt the computed
solution in the outer portion. The inclusion of blood sources in the inner retinal
layers is proposed in [15]. Fixed prescribed blood flow and arterial O2 values from
arterial microcirculation are used to model sources in the diffusion-reaction PDE
system describing the O2 profile. In [15], a numerical solution of the problem is
pursued and the possible effects of retinal detachment are analyzed. The purpose of
the present study is to develop an improved and more physiologically realistic, albeit
still analytically solvable, model of the O2 distribution in the retina, which combines
O2 sources from the choroid and from the retinal blood circulation and to carry out
a sensitivity analysis to assess the relative importance of various physiologically-
relevant factors.

2 Eye Retina Anatomy

In this section, we provide a short description of the retina anatomy useful for
the following discussion. The retina is a complex matrix of neural cells lining the
innermost surface of the eye globe; light travels through the thickness of the retina
before striking and activating the photoreceptors (rods and cones). Histologically,
the retinal tissue complex is composed of multiple layers that subserve its visual
function. From the modeling viewpoint, it is useful to divide the retinal thickness
into two different regions (see Fig. 1): (1) the outer retina (OR), proximal to the
sclera, which is an avascular region that includes the retinal pigmented epithelium,
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Fig. 1 Schematic representation of a portion of eye retina across its thickness. From the modeling
viewpoint, it is useful to distinguish two main regions: the outer retina (including layer 1 to 3),
which is avascular and has high oxygen consumption due to the presence of photoreceptor
mitochondria (layer 2), and the inner retina (layer 4), which is vascularized and has an average
O2 consumption rate that is approximately one-fifth of that of the outer region. Drawing modified
from [17]

the outer and inner segments of the photoreceptors layer and the outer nuclear layer.
The outer part of the retina is mainly nourished by diffusion from the choroid; and
(2) the inner retina (IR), proximal to the vitreous, which is a vascularized region
that goes from the outer plexiform layer up to the nerve fiber/ganglion cell layer.

Oxygen consumption is not uniformly distributed across the retinal thickness.
Nearly 100 % of the O2 consumption of the outer retina takes place in the inner
segment of the photoreceptors layer, which contains most of the photoreceptors
mitochondria. The inner retina, which shares many similarities with other parts of
the central nervous system, has an average O2 consumption rate that is approxi-
mately one-fifth of that of the outer region [14].

3 Mathematical Model of O2 Transport in the Retina

Let us consider a Cartesian coordinate system with the z axis oriented from the
choroid to the vitreous across the retinal thickness (see Fig. 1). General agreement
in the literature exists on the adequacy of a three-layer model to describe the 1D
oxygen dynamics in the OR [2, 12, 13]. Layer 1 extends from the choroid, z D 0 D
L0, to z D L1, layer 2 extends from z D L1 to z D L2 and layer 3 extends from
z D L2 to the interface with the IR, at z D L3 . The thickness L3 of the OR is
assumed to be half of the retinal thickness L (see [13] and references therein for a
similar choice). The IR consists in a single layer, layer 4, which extends from z D L3
to z D L4 D L. The O2 profile in the retinal tissue is studied under the assumption
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that the relevant phenomena are diffusion, metabolic consumption by neural cells
and O2 delivery from blood vessels, so that, in each region z 2 .Lj�1;Lj/ D ˝j,
j D 1; : : : ; 4, the general diffusion–reaction equation holds

� Dk
@2pj

@z2
D fj � Qj; (1)

where pj is the restriction of the O2 tension p W Œ0;L� ! R
C to layer j, D and k

are constant oxygen diffusivity and solubility, respectively, fj is the O2 source term
from blood vessels and Qj the constant O2 metabolic rate. The choice of constant
metabolic rates is a fairly simplified assumption. A more detailed analysis which
considers the more complex Michaelis–Menten kinetics for the metabolic rates will
be the object of a forthcoming paper.

3.1 Solution for the O2 Profile in the Retinal Tissue

Equation (1) holds with fj D 0 for j D 1; 2; 3, due to the absence of oxygen sources
from embedded blood vessels. Moreover, based on the above considerations about
the metabolic activity distribution in the OR layers , we consider Q1 D Q3 D
0 and we confine the whole metabolic consumption in the OR to layer 2, where
photoreceptor mitochondria are located (see Fig. 1). In the IR, Eq. (1) holds with a
nonzero f source, that we assume to be a prescribed constant distributed term. The
following boundary and interface conditions are enforced:

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

p1 D pch; at z D 0;

p1 D p2;
@p1
@z

D @p2
@z
; at z D L1;

p2 D p3;
@p2
@z

D @p3
@z
; at z D L2;

p3 D p4;
@p3
@z

D @p4
@z

at z D L3;

@p4
@z

D 0 at z D L;

(2)

where, at the interface with the vitreous, a homogeneous Neumann boundary
condition has been assumed, according to what done in [16] and to the observations
of [19]. The piecewise polynomial solution, belonging to C 1.˝/, for the oxygen
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tension in the retina is then given by:

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

p1.z/ D ˛1z C ˇ1; z 2 .0;L1/;

p2.z/ D Q2

2Dk
z2 C ˛2z C ˇ2; z 2 .L1;L2/;

p3.z/ D ˛3z C ˇ3; z 2 .L2;L3/;

p4.z/ D Q4

2Dk
z2 C ˛4z C ˇ4; z 2 .L3;L/;

(3)

where:

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

˛1 D Q2
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.L1 � L2/� L

Q4

2Dk
; ˇ1 D pch;

˛2 D �L2
Q2

Dk
� L

Q4

2Dk
; ˇ2 D pch C Q2

2Dk
L21;

˛3 D �L
Q4

2Dk
; ˇ3 D pch C Q2

2Dk
.L21 � L22/;

˛4 D �L
Q4

Dk
; ˇ4 D pch C Q2

2Dk
.L21 � L22/C Q4

8Dk
L2:

(4)

The values of the numerical parameters for the baseline condition are chosen
according to the fitting procedure carried out in [12] in the case of the cat retina and
are specified in Table 1. The value of the source term f4 in this condition is selected
in such a way that the oxygen tension at the OR/IR interface, corresponding to the
value p3.L=2/ D p4.L=2/, is equal to 24 mmHg, according to the experimental
datum found in [12]. The O2 profile corresponding to Eq. (3) is represented in Fig. 2
as a function of the retinal coordinate z 2 ŒL0 D 0;L�. Oxygen distribution decreases

Table 1 Parameters used in the numerical simulations resulting from the fitting procedure carried
out in [12]

Name Definition Value Units

D Oxygen diffusion coefficient in tissue 10�5 cm2/s

f4 Source from retinal circulation 6:15 � 10�3 mlO2 / (mltissue� s)

K0:5 Half saturation constant 2 mmHg

k Oxygen solubility coefficient in tissue 2� 10�5 mlO2 / (mltissue � mmHg)

L Total thickness of the retina 234 �m

L1 Abscissa of the first interface in OR 35 �m

L2 Abscissa of the second interface in OR 50 �m

L3 Abscissa of the interface OR/IR 117 �m

pch Oxygen tension at choroid 80 mmHg

Q2 Metabolic rate in layer 2 4:5 � 106 mlO2 / (mltissue� s)

Q4 Metabolic rate in layer 4 1� 106 mlO2 / (mltissue� s)
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Fig. 2 Oxygen tension profile along the retinal thickness as computed from (3). The choroid is
located at the left side (z D 0), while the vitreous is located at the right side (z D L). The dashed
vertical lines indicate the location of the interfaces between retinal layers

steeply moving away from the choroid towards layer ˝2 because of the heavy O2

consumption by the mitochondria in the photoreceptor layer. On the other hand,
O2 tension returns to appreciably high values in the IR because of a mix between
external supply and moderate consumption (much lower than in the OR). An almost
flat profile in the neighborhood of the vitreous is the result of the homogeneous
Neumann boundary condition at z D L4, whereas an increasing slope of oxygen
tension is visible in the layer of the OR proximal to the IR because of the need of
restoring continuity of oxygen tension and flux at z D L3.

4 Sensitivity Analysis

The analytical solution obtained in Sect. 3 is used here to explore the sensitivity
of the O2 profile in the retina with respect to changes in the thickness of layers
1 and 2, the consumption rates of layers 2 and 4, and the intensity of the O2

blood source. More precisely, we define the set of model parameters P D
fP1;P2;P3;P4;P5g, with P1 D L1, P2 D ı WD L2 � L1, P3 D Q2, P4 D Q4

and P5 D f , and we denote by P� D ˚
P�1 ;P�2 ;P�3 ;P�4 ;P�5

�
the set of the

corresponding baseline values as in Table 1. We define the sensitivity index Sk
p.z/

with respect to the model parameter Pk as

Sk
p.z/ WD @p.zIP/

@Pk

ˇ
ˇ
ˇ
PDP�

k D 1; : : : ; 5:
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Fig. 3 Sensitivity indices of the solution as a function of the coordinate z with respect to different
biophysical parameters evaluated according to the baseline values of Table 1. The dashed vertical
lines indicate the location of the interfaces between retinal layers

Figure 3 reports the indices as a function of the coordinate z along the retinal
thickness.

5 Discussion

From a clinical viewpoint, understanding how changes in parameters influence
retinal O2 is crucial to better understand the pathogenesis of various ocular diseases,
including glaucoma [18, 20], diabetic retinopathy [9] and retinal artery and/or
vein occlusions [11]. Currently, O2 profiles in the retinal tissue can be measured
experimentally by implanting oxygen-sensitive microelectrodes in the retina [5, 13].
However, this technique is extremely invasive and has been performed only on
animals. On human subjects, O2 levels are measured only within the larger retinal
vessels via the non invasive retinal oximetry techniques [10], but these measure-
ments cannot be directly associated with O2 profiles across the retinal tissue layers,
due to the many factors influencing such association, including thickness of retinal
layers and O2 blood sources. Moreover, it is not currently possible to disentangle
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the influence of these factors during experimental and clinical measurements. The
sensitivity analysis presented here and summarized in Fig. 3 constitutes a first
attempt to theoretically weight out the relative contributions of various factors
contributing to the O2 profile in the retinal tissue.

The sensitivity indices experience noticeable variations with z. The O2 levels in
the OR are very sensitive to all parameters in P , whereas the O2 in the IR is most
sensitive to the consumption rate Q4, fairly corresponding to the consumption of
the retinal ganglion cells, and to the O2 source from blood, f4. In addition, it is
important to notice that the geometrical parameters L1 and ı, relative to the outer
retinal layers 1 and 2, strongly influence the O2 profile in the OR. These dimensions
may vary significantly among different species, and therefore this result warns of
potential issues when using experimental data across species. Also worth of notice
is the fact that the retinal O2 profile is extremely sensitive to both changes in the
consumption rates of the photoreceptors in the OR, Q2, and of the retinal ganglion
cells in the IR, Q4, while it is equally sensitive to changes in the consumption rates
of the photoreceptors in the OR, Q2, and of the retinal ganglion cells in the IR, Q4.

In conclusion, despite its numerous simplifications, the model presented in this
paper has provided quantitative estimates of the sensitivity of retinal oxygen profiles
to changes in geometrical and metabolic parameters of the retinal tissue. These
results might help deepening the current understanding of the pathophysiology of
the retina and designing novel, more effective therapeutic approaches.
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Spectral Deferred Correction Methods
for Adaptive Electro-Mechanical Coupling
in Cardiac Simulation

Martin Weiser and Simone Scacchi

Abstract We investigate spectral deferred correction (SDC) methods for time
stepping and their interplay with spatio-temporal adaptivity, applied to the solution
of the cardiac electro-mechanical coupling model. This model consists of the Mono-
domain equations, a reaction-diffusion system modeling the cardiac bioelectrical
activity, coupled with a quasi-static mechanical model describing the contraction
and relaxation of the cardiac muscle. The numerical approximation of the cardiac
electro-mechanical coupling is a challenging multiphysics problem, because it
exhibits very different spatial and temporal scales. Therefore, spatio-temporal
adaptivity is a promising approach to reduce the computational complexity. SDC
methods are simple iterative methods for solving collocation systems. We exploit
their flexibility for combining them in various ways with spatio-temporal adaptivity.
The accuracy and computational complexity of the resulting methods are studied on
some numerical examples.

Keywords Biomedical science • Cardiac electro-mechanical coupling • Cardio-
vascular system • Multiphysics problem • Spatio-temporal adaptivity

1 Introduction

The spread of the electrical impulse in the cardiac muscle and the subsequent
contraction-relaxation process is quantitatively described by a mathematical model
called electro-mechanical coupling. The electrical model consists of the Mono-
domain system (a reduction of the Bidomain model), which is a reaction-diffusion
equation describing the evolution of the transmembrane voltage. The PDE is
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coupled through the reaction term with a stiff system of ordinary differential
equations (ODEs), the so-called membrane model, describing the flow of the ionic
currents through the cellular membrane. The mechanical model consists of quasi-
static finite elasticity, coupled with a system of ODEs modeling the development of
biochemically generated active stress.

The numerical approximation of the cardiac electro-mechanical coupling is a
challenging multiphysics problem, because the space and time scales associated
with the electrical and mechanical models are very different. Therefore, spatial
and temporal adaptivity is a promising approach to reduce the computational
complexity [2, 3]. However, spatial adaptivity by local mesh refinement incurs a
substantial overhead for error estimation, grid manipulation, repeated integration
until spatial accuracy is achieved, and reassembly of mass and stiffness matrices,
which reduces the performance gain.

In this work, we investigate the use of spectral deferred correction (SDC)
methods for time stepping and their interplay with spatial and temporal adaptivity.
SDC methods are simple iterative methods for solving collocation systems. Their
flexibility allows to combine them in various ways with spatio-temporal adaptiv-
ity. We explore interleaving mesh refinement with SDC iterations for improved
convergence and local time stepping. In particular, we develop SDC methods for
strong electro-mechanical coupling including mechano-electrical feedback and their
potential for multi-rate integration. The properties of the resulting methods in terms
of accuracy and computational complexity are discussed at a simple numerical
example.

2 Mathematical Models

2.1 Mechanical Deformation

Let us denote the region occupied by the undeformed myocardium by ˝ . For now
we consider a simple two-dimensional square domain. The myocard undergoes a
time-dependent deformation with displacement u W ˝ � .0;T/ ! R

2, such that
point x 2 ˝ is moved to x C u.x; t/ at time t 2 .0;T/. As usual, F D I C ux denotes
the deformation derivative, C D FTF the Cauchy-Green deformation tensor, and
E D 1

2
.C � I/ the Green-Lagrange strain tensor, with identity matrix I.

The cardiac tissue is modeled as a transversely isotropic nonlinear hyperelastic
material with exponential strain energy function

Wpas.E/ D c1 exp.b1E
2
11 C 4b2E

2
22 C 4b3E

2
12/:

introduced in [11], where the muscle fiber direction is just x1. The near-
incompressibility is modeled by an additive volume change penalization term

Wcom.det F/ D c2..det F/2 C .det F/�2 � 2/;
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which ensures orientation preservation. The contraction of the ventricles results
from the active tension Ta generated by the myofilaments, which are activated by
calcium release. We assume that the generated active stress acts only in the direction
of the fibers [6, 10, 12]. This leads to a third term in the variational functional:

Wact.E;Ta/ D TaE11:

The biochemically generated active stress Ta is modeled as stretch and stretch-rate
independent. Thus, we assume as in [5, 9] that the dynamics of Ta depends only on
the transmembrane voltage v according to a simple twitch-like rule,

@Ta

@t
D �.v/.kTa.v � vr/ � Ta/; (1)

where kTa > 0 controls the saturated value of Ta for a given voltage v and a given
resting voltage vr, see [5, 9] for details.

We assume that the time-dependent inertial term in the governing elastic wave
equation may be neglected, see, e.g., [7, 12]. At any point in time, the myocard
then assumes the stationary minimizer of the internal energy, subject to essential
boundary conditions on the Dirichlet part of @˝:

min
u.t/2H1.˝/2

Z

˝

Wpas.E/C Wcom.det F/C Wact.E;Ta.t// dx s.t. u.t/j@˝D D 0:

(2)

2.2 Electrical Excitation

The electrical excitation is described by the monodomain model using the Aliev-
Panfilov membrane model [1] on the reference cardiac domain˝ [9, 10, 12]. Given
an applied current per unit volume Iapp W ˝ � .0;T/ ! R, and initial conditions
v0 W ˝ ! R, w0 W ˝ ! R, find the transmembrane potential v W ˝ � .0;T/ ! R

and the gating variable w W ˝ � .0;T/ ! R such that

cm
@v

@t
� div.F�1DmF�Trv/C Iion.v;w/ D Iapp in ˝ � .0;T/; (3)

@w

@t
D R.v;w/ in ˝ � .0;T/; (4)

holds. Note that the length changes due to tissue deformation change the diffusion
tensor from Dm to F�1DmF�T , neglecting the impact of volume changes. The
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functions

Iion.v;w/ D �gav.v � a/.v � 1/� vw

R.v;w/ D �1
4

�

�1 C �1w

v C �2

�

.w C gsv.v � a � 1//

are given by the Aliev-Panfilov membrane model [1]. Insulating boundary condi-
tions on v are prescribed.

3 Numerical Methods

3.1 Spatial Discretization: Finite Elements

A pure displacement discretization with P1-elements is used for computing the
tissue deformation in reaction to active stress Ta. A Newton-like method is employed
for minimizing (2). As hyperelastic energies can be nonconvex, the elemental
matrices are modified during assembly to be positive definite. This ensures that
the computed Newton step is a descent direction. Line search is applied to ensure
monotone decrease of the elastic energy.

The transmembrane voltage is less smooth than the displacement, but easier to
solve for. Thus, a finer spatial discretization is used. For implementation simplicity,
we use P3-elements on the same mesh for transmembrane voltage, gating variables,
and active stress generation. The transfer between different spatial discretizations
is done by interpolation at quadrature nodes. Mesh refinement is based on an
embedded energy error estimator for the transmembrane voltage, as this is the
variable with dominating local dynamics.

3.2 Time Discretization: Spectral Deferred Correction Methods

Spectral deferred correction methods [4] are simple iterative methods for solving
ODE collocation systems, where each iteration consists of a sequence of time steps
with a low order scheme, most often an Euler scheme. For simplicity of notation,
we consider an initial value problem Pu D f .u/ with initial value u.0/ D u0 and
exact solution u�. On a time step Œ0; 
� we define a collocation time subgrid 0 D

0 < � � � < 
n D 
 and a polynomial approximate solution u0 2 Pn with values
uk

i D uk.
i/ at the collocation points 
i. The defect u� � uk satisfies the Picard
equation

d

dt
.u� � uk/.t/ D

Z t

sD0
. f .u�/� Puk/ ds: (5)
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Linearizing f around uk, integrating the implicit term in (5) approximately with the
right-looking rectangular rule and the explicit terms by a quadrature rule on the
collocation time grid gives approximate defect values

ıuk
iC1 D ıuk

i C .
iC1 � 
i/

0

@
nX

jD0
Sjf .u

k
j /C f 0.uk

iC1/ıuk
iC1

1

A � .uk
iC1 � uk

i / (6)

at the collocation nodes, which in turn define a polynomial defect approximation ıuk

by interpolation. Note that (6) is a linearly implicit Euler scheme on the collocation
time grid. Updating the approximation by ukC1 D uk C ıuk yields an iteration the
fixed point of which satisfies the collocation condition f .ui/ D Pui. In lack of better
initialization, the starting iterate is the constant initial value: u0i D u0.

3.3 Interleaved SDC and Mesh Refinement

Popular diagonally linearly implicit Runge-Kutta schemes, such as Rosenbrock
methods, can be combined with spatial adaptivity in two different ways. Error
estimation and refinement can be performed either for the final result, or for the very
first stage (essentially a linearly implicit Euler step) only. The first option is more
conservative, but requires the recomputation of all stages from scratch, since order
and accuracy of Rosenbrock schemes deteriorate when the stages are computed on
different spatial grids. The second option is more efficient, as only the first stage
is recomputed on mesh refinement, but assumes a sufficient similarity of Euler step
and final Rosenbrock step to produce suitable meshes for the latter. As demonstrated
in Sect. 4, this assumption can be quite wrong.

In contrast to Rosenbrock methods, SDC methods compute an independent
correction in every sweep, wherever the approximation error originates, may it
be the SDC iteration error or a spatial discretization error. Hence, spatial mesh
refinement can be performed in between any SDC sweeps, creating meshes adapted
to the final SDC step, and nevertheless the previously computed values can be
reused.

Applied to the electromechanical model described in Sect. 2 above, the SDC
iterations are performed for the transmembrane voltage (3), the gating variables (4),
and the active stress generation in turn. After each sweep, the elastic displacement is
updated at all collocation points by a simplified Newton method, followed by error
estimation both for the spatial discretization error and the SDC iteration error. If the
spatial error exceeds the iteration error, adaptive mesh refinement is performed.
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3.4 Multi-rate Integration

As the dynamics in the active stress generation and hence the mechanical displace-
ment is slower than in the transmembrane voltage, a coarser time discretization of
the displacement can be used. We exploit the continuous in time representation of
approximate solutions by polynomial interpolation, using a finer collocation grid
for the transmembrane voltage than for the displacement. Additionally, as after an
SDC sweep the electrical state is still only an approximation, an exact solution of
the nonlinear mechanic model is not required. The number of Newton steps can
therefore be reduced. Finally, less than one Newton step per sweep effort can be
achieved by solving for the elasticity part just every other SDC sweep. The induced
inaccuracy in the displacement will have an impact on the convergence of the
transmembrane voltage due to the mechano-electrical feedback.

4 Numerical Results

We study the effect of the algorithmic variants in detail at a particularly simple
example, the spread of an excitation wave in the 2D domain Ő D �0; 2Œ2 with
an excitation current in Œ0:5; 0:55�2 for 1 ms. For simplicity, the time step size is
fixed to 1.5 ms on a Radau(4) collocation time grid, using cubic finite elements
for the transmembrane voltage and linear FE for the displacement. Errors in uh

are quantified by the norm difference kuhkL2. Ő / � kukL2. Ő / to the space-continuous
collocation solution u, which is closely related to the error in the average conduction
velocity.

First we study the performance impact of interleaving mesh refinement and
SDC iterations. To this extent, we simulate the non-interleaving mode of operation
by initializing the solution at all collocation points to the initial value after mesh
refinement, in effect starting the SDC method only after a suitably refined grid has
been constructed for the Euler solution. This mimics the approach used in some
Rosenbrock schemes [8], where mesh adaptation is performed for the first stage
only.

As shown in Fig. 1 left, the interleaved scheme is more efficient, roughly by a
factor of two for large tolerances. The non-interleaved mode does not achieve high
accuracy at all, independent of the tolerance. Figure 1 right gives an explanation for
this bad performance. It turns out that at the chosen time step size the first sweep
results in a rather poor approximation of the front, in particular a too slow front
speed and a significant overshoot. This leads to mesh refinement behind, and an
insufficient refinement at the actual front position.

Next we turn to multi-rate integration for electromechanical coupling. With a
fixed tolerance for spatial discretization error and SDC iteration error, we reduce the
accuracy of displacement computation in each time step by reducing the collocation
nodes from 4 to 1 (lines a), the number of simplified Newton steps from 10 to 1
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Fig. 1 Left: Wall clock time vs. achieved error for different tolerances. Right: Grid maladaptation
by mesh refinement based on the first sweep. Front position is marked
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Fig. 2 Total error vs. run time for inexact solution of displacement

(lines b), additionally skipping the displacement computation for up to 7 SDC
sweeps (lines c), and report the deviation from the non-reduced reference solution in
Fig. 2. The error of this reference solution is roughly 2�10�3. Apparently, reduction
of Newton iteration count and collocation points for the displacement computation
introduce a coupling error well below the overall error tolerance. Additionally
omitting the displacement computation during the first SDC sweeps exceeds this
limit, without substantial run time reduction. Neglecting the mechano-electrical
feedback completely yields an unacceptably large error (point d).
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The aim of this mini symposium is to discuss the latest research in industry and
academia in energy modelling and energy risk management. It will cover different
modelling approaches for energy prices with particular focus on applications in gas
and electricity markets.



Integrated Forecasting of Day-Ahead Prices
in the German Electricity Market

Christian Hendricks, Matthias Ehrhardt, and Michael Günther

Abstract Since the start of the liberalization of energy markets the energy sector
has undergone major changes. Energy companies now provide electricity at variable
prices and are faced to a competitive market environment. Their trading is subject to
risks and uncertainty about future price developments. In this work we introduce a
regularized regression approach to forecast Phelix Peak prices in the German elec-
tricity market. Additionally we investigate the influence of fundamental price drivers
on the forecasting accuracy. Since the problem complexity grows exponentially with
the dimension of the feature space, the regression problem suffers from the curse of
dimensionality. To cope with this problem we apply the combination technique,
which enables us to reduce the complexity while keeping a high approximation
accuracy.

Keywords Electricity spot price forecasting • Energy markets • Regression
approach • Sparse grid

1 Introduction

During the last two decades the energy sector has undergone major changes. Energy
companies now provide electricity at variable prices and are faced to a competitive
market environment. Their trading is subject to risks and uncertainty about future
price developments. These risks are mainly associated with the volatile nature of
input costs, like coal and gas prices, but also other factors influence energy markets.
The global concern regarding the climate change has led to the introduction of
an emission trading system in the European Union (EU). Today energy suppliers
have to surrender European Emission Allowances (EUA) to offset their emission of
greenhouse gases. As a conventional power plant has to burn fuel and emit CO2 to
produce electricity, these allowances can be interpreted as additional input costs.
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The vastly changing market environment has attracted lots of researchers to
develop forecasting models for electricity markets on different time frames. They
range from ARMA to neural network approaches or models known from game
theory. Regarding energy markets in continental Europe mainly the Spanish and
German market have been focused [2, 3, 10].

In this work we present a non-linear approach to forecast electricity spot
prices in the German electricity market. Additionally the influence of fundamental
price drivers on the spot price and the forecasting accuracy shall be investigated.
The arising high dimensional approximation problems will be solved with the
combination technique on sparse grids [1, 4, 7].

2 The Data Set

The data set consists of electricity spot prices (Phelix Peak) and time series
of coal (ARA coal future, front month with nearest expiry), gas (GASPOOL
Spot), European Emission Allowances and day-ahead forecasts of wind and solar
supplies.1 All time series range from 2011 to 2012. The coal time series is quoted
in USD per t and has been converted to EUR per t.

In order to avoid any perturbation caused by seasonal patterns, we only consider
“business-as-usual” days. With the help of the Augmented Dickey-Fuller test (ADF)
we check for a unit root in each of the time series. Table 1 shows the test results:
the electricity, coal, gas and emission allowance time series exhibit a unit root at
the common confidence level of 5 %. Therefore we differentiate the time series to
eliminate the stochastic trends. To achieve variance stationarity the logarithm of all
price series is taken.

3 The Modelling Framework

In order to forecast electricity prices we apply a regularized regression approach,
which is able to capture non-linear relationships between the input variables and the
desired output.

Table 1 Augmented Dickey-Fuller test results

Electricity Coal Gas EUA Wind supply Solar supply

p-Value 0.1008 0.0973 0.8590 0.1370 0.0010 0.0018

1Provided by www.transparency.eex.com.

www.transparency.eex.com
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3.1 Regularized Regression

In this section we formulate the forecasting problem as a regularized least square
regression. These kind of models have already proven to be useful in data mining
[5], foreign exchange [6] and wind time series forecasting [9]. Let ˝ � R

d denote
a d dimensional feature space, then it is the goal to find a function f W ˝ ! R,
which maps the model’s input xi 2 R

d to the desired output yi 2 R for i D 1; : : : ; n
observations. The unknown function f belongs to some function space V , which we
will specify later on. The resulting regularization problem can be written as

inf
f2V

 
1

n

nX

iD1
. f .xi/ � yi/

2 C � kPf k2L2.˝/
!

: (1)

The second term is a penalty term for non-smooth f . The parameter � > 0 deter-
mines the balance between the accuracy of the fitted function and its smoothness. P
is a regularization operator, we will use P D r. In order to estimate f , a function
space is needed to be specified. We will restrict ourselves to a finite dimensional
space Vm � V and express f with the help of basis functions f�igiD1;:::;m by

f .x/ D
mX

iD1
˛i�i.x/: (2)

Plugging (2) into (1) the approximation reduces to a minimization problem, which
can be rewritten as a linear equation system

�
�C C B BT

�
˛ D By, with matrices

Cj;k D nhr�j;r�kiL2.˝/, j; k D 1; : : : ;m, Bj;i D �j.xi/; j D 1; : : : ;m, i D 1; : : : ; n
and the m dimensional vector ˛. The vector ˛ contains the degrees of freedom and
represents a unique solution if the minimization problem is well-posed.

If the dimension of the feature space increases, the system that has to be solved
grows and the curse of dimensionality shows its effects quickly. On a uniform grid
with mesh size hN D 2�N , and level N 2 N, this would lead to O.h�d

N / degrees of
freedom. To cope with this problem we use the sparse grid combination technique.
In [7] it is shown that the number of grid points can be lowered to an order of
O.h�1N log.h�1N //d�1/. In the following we will briefly recall the fundamentals of
this technique. For a detailed introduction to sparse grids we refer to [1, 7].

The combination technique is based on linearly combining a sequence of
functions. Let ˝ WD Œ0; 1�d be the d dimensional unit cube and let l D .l1; : : : ; ld/ 2
N

d, i D .i1; : : : ; id/ 2 N
d denote multi-indices, then we can define a family of

grids f˝lgl2N on ˝ with mesh sizes hl D .hl1 ; : : : ; hld / D .2�l1 ; : : : ; 2�ld/. Each
grid consists of the points xl;i D .xl1;i1 ; : : : ; xld ;id / with xlt;it D ithkt , it D 0; : : : ; 2lt ,
t D 1; : : : ; d. The d dimension basis functions �l;i are given by the tensor product of
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piecewise linear one dimensional basis functions �lt;it for x 2 ˝

�l;i.x/ D
dY

tD1
�lt;it .xt/:

The one dimensional basis function �lt;it is given by a hat function �lt;it .xt/ D
maxf1� j xt�ithlt

hlt
j; 0g.

With the help of these basis functions the function space Vl D spanf�l;i; it D
1; : : : ; 2lt ; t D 1; : : : ; dg on grid ˝l can be defined. The function fl on ˝l is
represented by

fl.x/ D
2l
1X

i1D1
: : :

2l
dX

idD1
˛l;i�l;i.x/:

If we combine linearly the solution fl from different grids ˝l according to the
formula

fN.x/ D
d�1X

qD0
.�1/q

 
d � 1

q

!
X

jlj1DN�q

fl.x/;

we obtain the function fN , which lives in the sparse grid space with
O.h�1N .log.h�1N //d�1/ grid points. Provided that f fulfills certain smoothness condi-
tions the approximation error is of order O.h2N log.h�1N /d�1/.

3.2 Multivariate ARMA

In order to evaluate the performance quality of the fitted function of the previous
section, we apply ARMA/VARMA models as a benchmark. The model is of the
form

�.B/yt D �.B/et C !.B/ut;

where B is the back shift operator. yt and et are p dimensional vectors of observed
output variables and unobserved residuals. The model order is chosen with the help
of the Akaike Information Criterion and the parameters are calibrated with the R
software package DSE.2

2Dynamic System Estimation (DSE): available at www.cran.r-project.org.

www.cran.r-project.org
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4 Forecasting Methodology and Results

The accuracy of our forecasts is quantified with the help of the following measures,
where Oyi is the prediction and yi the true electricity spot price for values i D 1; : : : ; n:
Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Mean
Squared Error (RMSE).

MAE D 1

n

nX

iD1
jyi � Oyij ; MAPE D 1

n

nX

iD1

ˇ
ˇ
ˇ
ˇ
yi � Oyi

yi

ˇ
ˇ
ˇ
ˇ ; MSE D

v
u
u
t1

n

nX

iD1
.yi � Oyi/

2

To build up our forecasting model, we use half of our data as a training set. The
first half of 2012 works as a validation set to select the model parameters. Based on
the selected model, we compute day-ahead forecasts for the second half of the year
2012 to test the out-of-sample behavior of our fitted models.

4.1 Forecasting Results

The easiest feature space one can think of consists of the time series itself. With the
help of the validation set, we experimentally answer the question how many delayed
values should be included. Experiments turn out that two values are appropriate. The
training procedure of the regularized regression approach is therefore proposed to
find a function f , which matches

yt � yt�1 D f1.yt�1 � yt�2; yt�2 � yt�3/

for all t in the training set. In Table 2 we compare the results of the regularized
regression approach and an ARMA model. The out-of-sample accuracy is slightly
worse than in the validation set. However it can beat the ARMA model in all three
accuracy measures. We now extend the feature space by coal and gas time series.
The resulting six dimensional regression problem is of the form

yt � yt�1 D f2.yt�1 � yt�2; yt�2 � yt�3;

ct�1 � ct�2; ct�2 � ct�3; gt�1 � gt�2; gt�2 � gt�3/;

Table 2 Forecast results RegRegvalidation RegRegout-of-sample ARMA

MAE 4.8914 4.9398 5.0255

MAPE [%] 9.8921 9.7868 9.8946

RMSE 6.3562 6.9317 7.0979
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Table 3 Forecast results
including fuel prices

RegRegvalidation RegRegout-of-sample VARMA

MAE 4:9617 5:0884 5:0950

MAPE [%] 9:9802 10:0623 10:1035

RMSE 6:4023 7:1392 7:1341

Table 4 Forecast results
including EUAs

RegRegvalidation RegRegout-of-sample VARMA

MAE 4:9617 5:0884 5:1013

MAPE [%] 9:9802 10:0436 10:1038

RMSE 6:4023 7:0247 7:1263

Table 5 Forecast results
including wind and solar
production forecasts

RegRegvalidation RegRegout-of-sample VARMA

MAE 3:9290 3:5466 3:5231

MAPE [%] 7:5325 6:6547 6:9041

RMSE 5:7464 5:0532 5:1876

where ct is the coal price and gt the gas price at time t in the training set. Table 3
shows the forecasting results. The introduction of both fuel price series seem to have
an adverse influence on the accuracy. In order to check, whether historical prices of
EUAs can enhance the accuracy, we add them to the feature space and obtain a four
dimensional problem

yt � yt�1 D f3.yt�1 � yt�2; yt�2 � yt�3; et�1 � et�2; et�2 � et�3/:

In Table 4 we compare the forecasting quality of both models. The regression
approach slightly outperforms its benchmark. We see that an addition of EUAs to
the feature space does not improve the forecasting results. Along with coal and gas
fired power plants, renewable energy sources play an important role in the German
electricity market. Since the Renewable Energy Act (EEG) and the preferred feed-in
of green energy, there is a deep impact of production capacities provided by wind
and solar generators on the spot price for electricity [8]. The variable wt denotes the
wind production forecast at time t, while st is the solar production forecast. They
are published by the transmission system operators3 (TSO) and we assume that this
information is available at time level t � 1. The fitting problem reads

yt � yt�1 D f4.yt�1 � yt�2; yt�2 � yt�3;wt � wt�1; st � st�1/:

Table 5 shows the great improvement to the previous feature spaces. The error in
terms of the MAE, MAPE and RMSE can be lowered by 28.20, 32.07 and 27.15 %
compared to the first model.

350Hertz, Amprion, APG, TenneT, TransnetBW.
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5 Conclusion

In this article we investigated the potential of a non-linear regression approach in the
prediction of day-ahead electricity prices in Germany. The out-of-sample tests show
that this model performs better than its benchmark ARMA/VARMA model. The
strength of our technique lies in its ability to capture a big variety of relationships
up to a high order of dimension. Within this work we considered problems up to
dimension 6. In four different tests we evaluated the benefit of important impact
factors on the prediction accuracy. The inclusion of fuel prices and CO2 allowance
prices turned out to introduce more noise. If wind and solar production forecasts are
added to the feature space, the accuracy is greatly improved. These results underline
the strong price effects of renewable energy sources in the German electricity
market.
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Modelling the Electricity Consumption of Small
to Medium Enterprises

T.E. Lee, S.A. Haben, and P. Grindrod

Abstract Estimating the demand on the low voltage network is essential for the
distribution network operator (DNO), who is interested in managing and planning
the network. Such concerns are particularly relevant as the UK moves towards a
low carbon economy, and the electrification of heating and transport. Furthermore,
small to medium enterprises (SMEs) contribute a significant proportion to network
demand but are often overlooked. The smart meter roll out will provide greater
visibility of the network, but such data may not be readily available to the
DNOs. The question arises whether useful information about customer demand
can be discerned from limited access to smart meter data? We analyse smart
meter data from 196 SMEs so that one may create an energy demand profile
based on information which is available without a smart meter. The profile itself
comprises of simply two estimates, one for operational power and another for non-
operational power. We further improve the profile by clustering the SMEs using a
simple Gaussian mixture model. In both cases, the average difference between the
actual and predicted operational/non-operational power is less than 0.15 kWh, and
clustering reduces the range around this difference. The methods presented here out
perform the flat profile (akin to current methods).

Keywords Electricity demand modeling • Energy markets

1 Introduction

Small to medium enterprises contribute a large proportion of the total energy
demand in the UK but are often overlooked in research [2]. Therefore it is essential
that their demand is accurately modelled so that distribution network operators
(DNOs) can manage and plan the network. Such concerns are more immediate with
the increase of low carbon technologies, such as electric vehicles and photovoltaics
(PV), which will impact the low voltage (LV) network [8]. Currently DNOs use
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After Diversity Maximum Demand [5] to model maximum demand for SMEs. This
approach does not account for time-of-day information, and is therefore becoming
increasingly insufficient. For example, as more PV are installed, DNOs require the
time of low demand.

The UK is in the preliminary stages of rolling-out smart meters, which measures
energy demand of millions of customers every 30 min. In the UK, smart meter
data is proprietary, and therefore possibly unavailable to DNOs. Nonetheless, they
do have access to quarterly readings. As such, we ask if a DNO can estimate an
SMEs electricity profile from quarterly readings and publicly available information.
Since SMEs behaviour is regular and predictable (compared to domestic customers),
one should be able to accurately recreate their demand profiles with this limited
information.

In this paper we use preprocessed smart meter data from the Irish smart meter
trial [4]. We consider a years worth of smart meter data for 196 SMEs starting
from midnight 14th July 2009. From this data we demonstrate how one could
accurately estimate customers weekly energy demand profile using only knowledge
of their operating times (potentially public information) and their mean daily
usage (potentially available from their quarterly meter readings available from the
supplier).

We further improve this estimate by using a basic clustering of operational
and non-operational power. The advantage of the method presented in this report
is twofold. Firstly, very little information is required to produce the estimates.
Secondly, any new customers can be assigned to the current clusters, and therefore
can be modelled only knowing their mean daily demand and operational hours.

Along with the smart meter data, there is a survey completed for 138 of
the SMEs. This contains replies for a number of questions including, type of
business, the number of employees, the age of the building, what weekend days
are operational, etc. We consider the relationship between the survey responses and
the clusters.

We begin in by describing how we determine operational and non-operational
times from the smart meter data. In Sect. 3 we describe how we cluster the
customers, and in Sect. 4 we compare our estimates based on clustering and not
clustering. Finally, we summarise in Sect. 5.

2 Identifying Operational Hours

To determine a businesses operational hours we use a data driven approach.
However, potentially this information is publicly available.

We first use the smart meter data to determine operational days. To do this we
state that if the median daily usage for a particular day of the week QxDAY

m is less
than a chosen quantile of the overall daily use, qm, we assume the business is closed
on that day. For example, suppose QxSUN

m < qm (for meter m), then we assume the
business is closed on Sundays. To determine the quantile, we consider quantiles for



Modelling the Electricity Consumption of Small to Medium Enterprises 343

probabilities from 0 to 1 (intervals of 0.01). For each quantile choice, the ‘closed
outcomes’ for Saturday and Sunday is compared to a survey response in which
customers state which days the business is open on weekends. From the F-score [7],
we take the 0.4 quantile since it offers the closest match to the survey responses.
There does not appear to be a distinct pattern for the spread of incorrectly predicted
meters.

To determine whether a business is operational in a half hour we first remove
‘closed’ days. Using the remaining ‘open’ days, the average power is calculated
and compared to the average power for each half hour. If the average power for a
half hour is larger than the average power over all the ‘open’ days, we consider the
business to be operational during this segment.

3 Clustering

In order to group customers with similar attributes we use clustering based on their
operational and non-operational power, and the half hourly standard deviation (as a
measure of variation). We can then use these cluster groups to improve our estimate
(see Sect. 4).

We model our three attributes as a finite mixture model (FMM) of uncorre-
lated Gaussian distributions (reference). The parameters of the mixtures and the
mixing proportions are found easily through an implementation of the Expectation-
Maximisation algorithm, which finds the parameters that maximise the likelihood
function of the model [3]. Traditionally the k-means algorithm has been used for
clustering in power systems. However, this is simply a less versatile model than
the FMM [3]. We use the Matlab function gmdistribution to implement the
algorithm.

As with many clustering algorithms, a disadvantage of the method is that the
number of clusters must be defined before the clustering algorithm is implemented.
A large number of clusters will provide a better fit of each meter to its cluster, but the
number of model parameters increases. There are no definitive ways of choosing the
number of clusters, but there are some indicators and metrics that can be used to help
inform the decision. One metric is to find the maximum loglikelihood log L.�/ for
a model with k parameters fit to N data points. The Bayesian Information Criterion
(BIC) for such a model is �2 log L.�/ C k log.N/, where a smaller BIC indicates
a favourable balance between the number of parameters and the model fit [3]. By
considering how the BIC changes with the number of clusters, we use it to choose
a cluster size which obtains a good model of the observations without an excessive
number of parameters. As shown in Fig. 1a, five clusters is a reasonable choice.

Figure 1c shows our clusters in terms of their usage and normalised standard
deviation. Since the groups form clear partitions of daily mean,�m, an SME without
smart meter data can be placed in a cluster using the quarterly readings alone. It was
found when comparing the clusters that there is no relationship between the survey
responses (such as number of employees, annual turnover, age of building, etc.) and
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Fig. 1 Clustering when the attributes are average operational power, average non-operational
power, and normalised standard deviation. Clusters are numbered by daily mean �m: Cluster 1 has
the lowest daily mean and Cluster 5 has the highest daily mean. (a) The BIC indicates five clusters
is most suitable. (b) The five clusters arranged by operational power and non-operational power.
(c) The five clusters arranged by their daily mean �m and normalised standard deviation 	m=�m

(domestic households have upper bounds of log.	m=�m/	 0:65 and log.�m/ 	 1, see [1])

the clusters (therefore the daily mean). This supports previous research which also
found little correlation between energy consumption and household type [6].

Here we have assumed that the attributes are uncorrelated. Clearly assuming that
operational and non-operational power are not correlated is misleading (see Fig. 1b).
However, clustering the data with correlation provides an optimum model of four
clusters (as opposed to five). This in itself is not a problem; but under this model the
last cluster (which ideally only encapsulates the high end users, say those with log
mean daily use larger than 6, see Fig. 1c) encapsulates users with log mean daily use
as low as 5—making it impossible to differentiate between Cluster 3 and Cluster 4
based on mean daily use alone. We recommend that future SME smart meter data
sets are clustered with correlation where possible.
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4 Predicting Electricity Use

We create an estimated electricity profile for each of the 196 m in our dataset. The
prediction is then compared to the actual data set. For a meter m (m D 1; 2; : : : ; 196)
let us first consider all meters as a single set (not clustered). We estimate the average
operational power Oem;O and average non-operational power Oem;N (for meter m) using
the mean for the corresponding variables from the remaining 195 m. Therefore,
since we know the operational hours for meter m, we estimate the total predicted
energy during an average week, Tm, for meter m, via

Tm D Hm;O

Hm;OX

iD1
Oem;O C Hm;N

Hm;NX

iD1
Oem;N ; (1)

where Hm;O is the number of operational hours and Hm;N is the number of non-
operational hours in a week. Ideally, the estimate (1) matches the weekly energy use
for the meter, Tm D 7�m (obtained for quarterly reading data). Therefore, we adjust
the profile by setting

em;O D 7�m

Tm
Oem;O and em;N D 7�m

Tm
Oem;N ; (2)

where em;O is the adjusted average operational power, and em;N is the adjusted
average non-operational power. Using these adjusted power values for meter m, and
the operational hours (see Sect. 2), we compose the predicted profile. This process is
carried out for all meters. We repeat this process for the clustered data set, using the
mean values for the current meter’s cluster. As expected, the adjustment from T=7�
is larger when the data is not clustered (a maximum adjustment of 16.43 compared
with a maximum adjustment of 3.98). This confirms that the other members of a
cluster have similar weekly usages.

As an example, Fig. 2 compares this predicted average weekly profile with the
actual average weekly profile for a single meter from the dataset. We used the non-
clustered data and the clustered data. The peak behaviour is captured better when
using the data from the cluster (cluster 1, 54 m) compared to the whole data set
(195 m). This is similar for other customers.

To test the accuracy of these two methods (non-clustered and clustered), we
compare them with a flat estimate, which is the daily mean �m divided by 48 half
hours. Two error measures are calculated, one for the operational power and one for
the non-operational power,

Em;O D Nem;O � em;O; Em;N D Nem;N � em;N ; (3)
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Fig. 2 The predicted average week (not clustering and clustering) and the actual average week
for an example meter. The data was clustered according to average operational power, average
non-operational power and normalised standard deviation
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Fig. 3 Comparing the error from a flat estimate, our prediction when not clustering the data,
and our prediction when clustering the data. (a) Average operational power. From left to right, the
medians are 1.13, 0.08 and �0.05 kWh. (b) Average non-operational power. From left to right, the
medians are �2.15, �0.13 and �0.06 kWh

where Nem;O is the actual average operational power, and Nem;N is the actual average
non-operational power. We consider the prediction coming from the whole data
set, from the clustered data set, and from a simple flat prediction (em;O D em;N D
�m=24). Such an estimate comes from only knowing quarterly information and thus
we have no time-of-use information.

Both clustering and not clustering the data outperforms the flat estimate, see
Fig. 3. It is likely that the adjustment stage, Eq. (2), ensures that the non-clustered
and clustered approaches are competitive to each other. To remove the effect of
seasonality, we applied our methods to the first 3 months of the data set. The
difference in results from using 3 months to 1 year is negligible, and hence not
presented here.
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4.1 Peak Usage on an Aggregated Level

We have presented a method that predicts the average weekly profile to a high level
of accuracy. As well as an accurate estimate for an electricity profile, DNOs are
interested in the size of peak electricity demand on an aggregated level. Naturally
peak electricity usage is always underestimated when using the mean. Furthermore,
this underestimation grows as meters are aggregated. We now describe a simple
adaptation to the method so that peak demand is more accurately estimated on an
aggregated level. We compare peak demand for up to 25 m aggregated together,
which is approximately the maximum number of SMEs on a single phase on a
feeder.

The initial estimate for the average operational power Oem;O and average non-
operational power Oem;N (for meter m) is no longer the mean from the cluster (or
whole dataset). Instead, for each meter m in the aggregation, we sample from the
Normal distribution

Oem;O � N.MO; ˙
2
O/;

Oem;N � N.MN ; ˙
2
N/;

where MO is the mean operational power for the appropriate cluster (or whole
dataset), and˙2

N is the variance for the appropriate cluster (or whole dataset). When
the means (M0;MN) and variances (˙2

O,˙2
N) are determined by the cluster, we are

using the Gaussian distributions determined by the finite mixture model.
To avoid unrealistic estimates, if a negative value is sampled, or a value much

larger than the mean (MO C 3˙O or MN C 3˙N appropriately), we discard the value
and re-sample. The initial estimates for an aggregate of meters is simply the sum
of the Oem;O or Oem;N for the meters in the aggregate. From here, the initial estimates
can be adjusted so that the weekly estimates corresponds to the daily mean from
quarterly readings (see (1) and (2)). Note that we are now shifting the operational
power prediction up so as to better match peak demand so that, on average, the
prediction is overestimating. This risk averse practise is common for DNOs.

The estimate more closely matches the actual peak usage as the aggregate size
increases, see Fig. 4a. Conveniently, the estimate converges to a value a little larger
than the actual usage, which (as mentioned above) is preferred by DNOs. Taking
the initial estimates, and not adjusting for the daily mean, provides an even greater
overestimate—should a DNO prefer a larger overestimate, see Fig. 4b.

5 Conclusion

This paper identified when a business is open based upon their electricity use.
With merely the operational hours (publicly available information) and the daily
mean (available from quarterly readings), we have created a good approximation
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Fig. 4 The predicted peak demand compared to the actual peak demand for aggregates of 1–25 m,
where the initial estimates are sampled from a Normal distribution. (a) The difference between
prediction and actual peak usage (with adjustment according to the daily mean). (b) The median
difference where the prediction is adjusted according to the daily mean, and where it is not

of a SME customers weekly energy demand profile. The prediction significantly
outperforms the flat estimate, which is akin to current methods. This approximation
can be further improved by clustering the data before making a prediction. We
used operational power, non-operational power and standard deviation to cluster the
meters into five categories. The operational and non-operational power are related
to the daily mean. Consequently, customers without smart meters can be readily
placed in a cluster when only their quarterly readings are available.

The method is flexible to match a DNOs objective. Should a DNO be more
interested in peak demand on an aggregated level, then the method is easily
accommodated so that peak usage is accurately estimated (or overestimated should
this be favoured). Interesting future work would be examining the distribution of
electricity usage during operational hours, providing DNOs with more information
than simply the mean, or peak usage for a SME (or aggregate thereof).

Counter-intuitively, we did not find any correlation between data attributes (such
operational power, non-operational power, daily mean, and standard deviation) and
non-electricity features of the data (such as number of employees and the type of
business). However, this is in line with earlier work [6].
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required: if too much drug is delivered to the biological system then toxicity can
arise and if too little drug reaches the affected area then it will not have the desired
effect.

This symposium will bring together researchers from across Europe who are
applying mathematical models and techniques, both analytical and numerical, to try
to better understand drug delivery in living systems. The Symposium will provide a
platform for new methodologies and ideas to be discussed. Since the modelling
of drug delivery involves solving a mass transport problem where diffusion,
dissolution, convection and binding often play important roles, it is anticipated that
the techniques and ideas presented may well be complementary and applicable to a
number of different drug delivery systems.



Drug Delivery in Biological Tissues:
A Two-Layer Reaction-Diffusion-Convection
Model

Sean McGinty and Giuseppe Pontrelli

Abstract In this paper we present a general model of drug release from a delivery
device and the subsequent drug transport in biological tissue. Our model consists of
a system of partial differential equations describing the solid–liquid mass transfer
and diffusion in the device coating as well as the drug transport through the
biological tissue via diffusion, convection and reaction. The drug release from the
device depends not only on the properties within the coating and the tissue, but
also on the coupling of the two layers. In order to take this into account, our
model fully couples the two distinct layers through flux and permeable interface
conditions. The model has a wide applicability and we point the reader towards
some solution methods, noting that simplifications may be made depending on the
parameter values in a given system.

Keywords Biomedical science • Drug delivery

1 Introduction

Local drug delivery devices (DDD) have received much attention in recent years,
since they provide a convenient means of targeting drug at the site where it is
needed most. Historically, drugs have been administered either orally, topically or
hypodermically, and often by the patients themselves. The advent of local DDD has
meant that drug delivery can be more controlled, with a prescribed amount of drug
being delivered over the necessary time period, and with less input required from the
patient. Whilst the drug delivery may in principle be monitored, it is often unclear
how the DDD can be designed to achieve the level of control required for a specific
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Fig. 1 Three examples of DDD: the drug-eluting stent (left), the transdermal patch (center), the
therapeutic contact lens (right)

purpose, since there exists complex interplay between biology, polymer chemistry
and pharmacology [1].

Important examples of local DDD include drug-eluting stents for the prevention
of restenosis following percutaneous coronary intervention [2], therapeutic contact
lenses to deliver ophthalmic drugs [3], and transdermal drug delivery [4] (Fig. 1).
In each case, the drug is commonly contained in a polymeric gel platform that is
in direct contact with the biological tissue. The polymeric gel acts as a reservoir of
drug and provides an adjustable level of control over the rate of drug delivery to
the tissue [5]. Both the polymeric gel layer and the interfaced tissue are treated
as porous media from a macroscopic point of view. The therapeutic success is
dependent on the extent of drug elution, the rate of release, accumulation of drug
and binding to components within the tissue [6]. Furthermore, the local drug
concentrations achieved are directly correlated with biological effect and local
toxicity. The pharmacological effects of the drug, tissue accumulation, duration and
distribution could potentially have an effect on its efficacy and a delicate balance
between adequate amount of drug delivered over an extended period of time and
minimal local toxicity should be found [7].

Mathematical modelling can serve as an extremely useful tool for providing
insight into the important parameters in the system, and to give an indication of
how the device may be modified to achieve the desired drug release profile. Many
studies on DDD have been conducted regarding efficacy and optimal design either
with experimental methods, or modelling/numerical simulations, or a combination
of both [8–12]. Nonetheless, many questions remain unanswered for bioengineers
and pharmaceutics developers who continue to explore and evaluate this technology.
In particular, finding the optimum dose to be delivered in a personalized way to a
specific tissue still remains a significant challenge.

In this paper we present a general model of drug release from a delivery device
and the subsequent drug transport in biological tissue. Our model consists of a
system of partial differential equations describing the solid–liquid mass transfer and
diffusion in the device coating as well as the drug transport through the biological
tissue via diffusion, convection and reaction. The controlled drug release from the
device depends not only on the kinetics within the coating and the tissue, but also
on the coupling of the two layers. In order to take this into account, our model
fully couples the two distinct layers through flux and permeable interface conditions.
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The model has a wide applicability and we point the reader towards some solution
methods, noting that simplifications may be made depending on the parameter
values in a given system.

2 The Mathematical Model

2.1 Model Set-Up

In a typical DDD, the mass dynamics occurs across a two-layered system composed
of: (1) a polymeric coating, acting as a reservoir, where the drug is initially stored,
and (2) the biological tissue where the drug is directed, and exerts a therapeutical
effect (Fig. 2). Both layers are treated as porous and for the purposes of this paper
we assume homogeneous properties in each layer. Layer (1) is typically a planar slab
in contact with layer (2) on one side and with an impermeable backing on the other
side. At the interface between the two layers, a rate-controlling membrane (topcoat)
may exist. Due to the impermeable backing of the coating, drug is directed towards
the interface where it then transported to the biological tissue. Mathematically, since
most of the drug transport occurs normal to the tissue surface, we may reasonably
simplify the geometry to that of a one-dimensional system. Let us define the x-
axis to be normal to the surface of the coating and oriented with the positive
direction outwards. We locate the interface at x D 0, with the coating of thickness
l1 occupying Œ�l1; 0/ and the tissue of thickness l2 occupying .0; l2�. Typically the
coating is considerably thinner than the biological tissue such that l2 � l1 (Fig. 2).

In what follows we adopt a continuum mechanics approach, treating the porous
media as homogenous materials with variables averaged over the representative
elementary volume, V . This is taken to be larger that the pore scale, but smaller
than the typical length scale of the phenomenon, and comprises the void volume,
Vf , and the solid volume, Vs, such that V D Vf C Vs. We define porosity, �, as
the ratio of void volume to total volume. To take account of situations where not
all of the void space is accessible to solute, we introduce the partition coefficient,
k, such that k� represents the fraction of the void volume that is available to solute

Fig. 2 Schematic of a typical DDD. The drug is initially contained in the coating layer (of
thickness l1) adjacent to the impermeable backing. After dissolving from its solid form to liquid
form, drug diffuses through the coating before being transported to the adjoining tissue layer (of
thickness l2), driven by the concentration gradient across the interface (located at x D 0)
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transport. It is convenient to introduce ˚ as the ratio of accessible void volume to
solid volume:

˚ D k�

1 � � : (1)

In the literature it is common for concentrations to be defined to as either volume-
averaged or intrinsic volume-averaged. The latter is based on the volume of each
phase contained in V , that is kVf for the accessible fluid-phase1 and Vs for the solid-
phase, while the former is based on averaging over the whole V [13]. The intrinsic
volume-averaged fluid and solid phase drug concentrations, c f and cs (�g/ml), are
related to the fluid and solid phase volume-averaged drug concentrations, c and c�
via:

c D k�c f ; c� D .1 � �/cs: (2)

2.2 Equations of Drug Transport in the Coating

Before implantation, the drug resides in the polymer coating in a biologically
unavailable solid form (cs

1). The drug must undergo a solid–liquid mass transfer
process in order to become available for diffusion out of the coating and into the
tissue. The solid–liquid mass transfer process (dissolution) is initiated by the ingress
of biological fluid into the device. We assume that the rate of transfer of drug from
the solid phase to the biologically available free phase (cf

1) is proportional to the
difference between cs

1 and cf
1. Making the further assumption that the diffusion of

drug in the solid phase is negligible, it can be shown that the equations for the drug
transport in layer (1) in terms of volume averaged concentrations (2) are:

@c�1
@t

D �ı1
�
˚1c
�
1 � c1

� D �ˇ1c�1 C ı1c1 in .�l1; 0/

(3)

@c1
@t

D D1

@2c1
@x2

C ı1
�
˚1c
�
1 � c1

� D D1

@2c1
@x2

C ˇ1c
�
1 � ı1c1 in .�l1; 0/

(4)

The parameter D1 (cm2 s�1) is the effective diffusion coefficient of the solute, ı1
(s�1) is the solid–liquid transfer rate parameter [13] and ˇ1 D ı1˚1.

1Superscripts s and f denote solid and fluid phases, respectively. Subscripts 1 and 2 indicate layers
(1) and (2) respectively.
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2.3 Equations of Drug Transport in the Tissue

The biological tissue is typically comprised of several layers of different thickness
and composition. In what follows, we will consider tissue as a homogeneous single-
layered medium. However, the model may be extended to multi-layers following
the approach of [14]. Within the tissue the free drug undergoes diffusion and, in
many cases, convection due to a pressure difference across the tissue. The drug may
also bind to components within the tissue (association) and either be metabolised
or subsequently unbind (dissociation). We model the binding/unbinding process
as a first order reaction, similarly to the solid–liquid mass transfer in (3) and (4).
Differently from layer (1), we allow for different rates between the forward and
reverse reactions, say ˇ2 and ı2 � 0 ( s�1). The magnitude of these reaction
parameters can be evaluated experimentally through the equilibrium dissociation
constant ı2=ˇ2 . Within the tissue, we denote the free and bound drug concentrations
as cf

2 and cs
2, respectively. Thus, in the biological tissue, the drug transport is

governed by the following coupled linear reaction-convection-diffusion equations
in terms of volume averaged concentrations (2):

@c2
@t

D D2

@2c2
@x2

� v
@c2
@x

� ˇ2c2 C ı2c
�
2 in .0; l2/ (5)

@c�2
@t

D ˇ2c2 � ı2c
�
2 in .0; l2/ (6)

Here v (cm s�1) is the magnitude of the convection while D2 is the effective
diffusivity of unbound drug. The above parameter ı2 includes the effects of porosity
(i.e. it is the unbinding rate multiplied by ˚2), making clear the analogy with
Eqs. (3) and (4). We have also assumed that the drug does not diffuse within the
components to which it is bound. We note that the first order linear reaction model
of the binding/unbinding process in (5) and (6) may not be the most suitable in
all circumstances. In some DDD, such as in drug-eluting stents, a second-order
saturable reversible binding model has been proposed to describe the binding of
limus compound drugs to arterial tissue [6]: this comprehensive model includes a
number of drug dependent parameters which are difficult to measure experimentally
and, nevertheless, does not necessarily apply in all DDD. Even in cases where a non-
linear model is generally more appropriate, the linear model with suitably chosen
parameter values can be shown to suffice in certain circumstances (i.e. at early
times and for sufficiently high initial drug concentrations and binding site density).
Looking more closely at Eqs. (3), (4) and (5), (6) we note that modelling the full
delivery process can be viewed as a set of direct-reverse reactions (local mass
non-equilibrium model) with different coefficients: the drug dissolution-release-
absorption process starts from the coating and ends at the tissue receptors, with
a bidirectional phase changes in a cascade sequence as schematically represented in
Fig. 3.



360 S. McGinty and G. Pontrelli

Fig. 3 A diagram sketching the cascade mechanism of drug delivery in the coating-tissue coupled
system

2.4 Initial, Boundary and Interface Conditions

We assume that the drug is initially contained wholly in the solid phase at some
uniform concentration Ce, leading to the following initial conditions:

c�1 .x; 0/ D Ce c1.x; 0/ D 0 c2.x; 0/ D 0 c�2 .x; 0/ D 0:

At the boundary between the coating and the impermeable backing we impose a zero
flux condition, while at the external tissue boundary we propose a general Robin
boundary condition:

D1

@c1
@x

D 0 at x D �l1,

�D2

@c2
@x

C vc2 D �c2 at x D l2;

where � is a constant. We note that the two limit cases of zero flux and infinite sink
conditions may be recovered by choosing � sufficiently small or large, respectively.
Finally, we must impose two appropriate conditions at the interface to ensure the
coupling between the two layers. We impose continuity of flux

�D1

@c1
@x

D �D2

@c2
@x

C vc2 at x D 0:

and in addition we allow for a concentration jump across the interface:

�D2

@c2
@x

D P

�
c1

k1�1
� c2

k2�2

�

at x D 0;

with P (cm s�1) the overall mass transfer coefficient [14].



Drug Delivery in Biological Tissues 361

3 Model Solution

The model we have presented is very general and may be applied to several
DDD. It is often useful to write a model in non-dimensional form. A typical non-
dimensionalization for a system of reaction-diffusion-convection equations leads to
three important numbers: the Péclet number, the first Damköhler number and the
second Damköhler number. These dimensionless groups define, respectively, the
relative importance of convection to diffusion, of reaction to convection, and of
reaction to diffusion. By examining their size, it is often possible to simplify the
model by neglecting parameters that are unimportant. For example, in the case of
drug-eluting stents, while there exists a small convective flow due to the transmural
pressure gradient across the arterial wall, the Péclet number is often small, meaning
that the convective term can be reasonably neglected. Depending on the particular
DDD, it may also be possible to neglect the solid–liquid mass transfer terms if
the timescale for this process is far shorter than that of diffusion in the polymer.
Similarly, if the timescale for reaction is far shorter than that of diffusion and
convection, then the reaction may be considered instantaneous, in which case the
two phases in the tissue can be assumed to be in dynamic equilibrium. When the
model has been simplified as far as can be, an analytical or semi-analytical solution
may be obtained by using the techniques described in [14–16], or alternatively, an
appropriate numerical procedure can be used. We aim to fully develop a solution
method for a specific example of a DDD in a forthcoming work [17].

4 Parameter Estimation

One of the great difficulties in modelling biological systems is in obtaining reliable
estimates of the various parameters governing the system. In many cases it is not
possible to accurately measure the parameter in question, while in the cases of
those that can be obtained with any degree of certainty, there are often significant
inter-species and inter-sample variations. The advantage of mathematical modelling
is that several different parameter sets can be tested, and the effects on the
solution compared, thereby reducing the need for costly experiments that often
involve animals. Not only is mathematical modelling useful for analysing the effect
of parameter variation, but when coupled with controlled in vitro experiments,
mathematical models can provide a cheap and ethical way of parameter estimation.
For example, the mass of drug released from a DDD placed in an insulated release
medium can be measured at various time points and compared with the solution of
the equations in layer 1 with insulated boundary conditions (after integrating over
the spatial domain to convert concentration to mass). By way of an inverse problem,
the diffusion coefficient, D1 and the solid–liquid mass transfer coefficient, ı1 may be
estimated. A similar procedure can be repeated to estimate the various parameters
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in the biological tissue, by placing the tissue sample in a bath of release medium
at a given initial drug concentration. A more extensive analysis along with several
simulations of the present model is currently being developed [17].

5 Summary

In this paper we have presented a general local mass non-equilibrium model of
drug release from a DDD and the subsequent drug transport in biological tissue.
The model is based on a two-layer two-phase linear system of partial differential
equations describing both the solid–liquid transfer and diffusion processes in the
polymeric layer as well as diffusion, convection and reaction in the tissue layer.
The analytical approach helps to identify and quantify the relevant concurrent
phenomena in DDD and is useful for experimental design and clinical applications,
providing the basis for the optimization of parameters. The model contains several
parameters that need to be identified before it can be used in a predictive way and
provide the significant kinetics. Having done that, the proposed model can be tuned
and used to quantitatively characterize the drug delivery, showing how the release
can be suited to the clinical requirements needed for therapeutical purposes.
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Fast Fault Simulation to Identify Subcircuits
Involving Faulty Components

B. Tasić, J.J. Dohmen, E.J.W. ter Maten, T.G.J. Beelen, H.H.J.M. Janssen,
W.H.A. Schilders, and M. Günther

Abstract Imperfections in manufacturing processes may cause unwanted connec-
tions (faults) that are added to the nominal, “golden”, design of an electronic circuit.
By fault simulation we simulate all situations: new connections and each with
different values for the newly added element. We also consider “opens” (broken
connections). During the transient simulation the solution of a faulty circuit is
compared to the golden solution of the fault-free circuit. A strategy is developed
to efficiently simulate the faulty solutions until their moment of detection. We fully
exploit the hierarchical structure of the circuit in the simulation process to bypass
parts of the circuit that appear to be unaffected by the fault. Accurate prediction
and efficient solution procedures lead to fast fault simulation in which the golden
solution and all faulty solutions are calculated over a same time step. Finally, we
store a database with detectable deviations for each fault. If such a detectable output
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“matches” a measurement result of a product that has been returned because of
malfunctioning it helps to identify the subcircuit that may contain the real fault.

Keywords Electronic circuit • Fault simulation • Micro-and nano-electronics

1 Time Integration of Circuit Equations

The electronic circuit equations can be written as [4, 9]

d

dt
q.x/C j.x/ D s.x; t/: (1)

Here s.x; t/ represents the specifications of the sources. The unknown x D x.t/
consists of nodal voltages and of currents through voltage defined elements. We
assume that q.0/ D 0, and j.0/ D 0.

For time integration in circuit simulation we consider the BDF1, or Euler
Backward method. Assuming time points tkC1 D tk C hk (k � 0) with stepsizes
hk and approximation xn at tn, BDF1 calculates xnC1 by

qnC1 � qn

hn
C jnC1 D snC1: (2)

Here qk D q.xk/, jk D j.xk/, for k D n; nC1, and snC1 D s.xnC1; tnC1/. The system
is solved by a Newton-Raphson procedure. For efficient direct methods to solve the
intermediate linear systems, see [1]. A fixed Jacobian can reduce the number of
LU-decompositions, but, in general, will increase the number of iterations and thus
the number of (costly) evaluations. Also, in case of circuit simulation, the assembly
of the matrices does not need much more effort when compared to the function
evaluations. A fixed decomposed Jacobian can be efficient within some Picard-
iteration [8] in solving a linear system, or, more general, in using it as preconditioner
within GMRES. When changing stepsizes during time integration similar remarks
apply.

In case of an hierarchical linear solver one can profit from hierarchical bypassing
[3], which we will also exploit in this paper. When applying it also in the time
integration, it even supports a first form of multirate time-integration [13].

2 Fault Simulation

We first consider the effect of adding faulty, linear elements to the circuit. F.i., in
[2, 11] we did add linear bridges (resistors) to the circuit. For each fault only one
element is added to the original, golden circuit. It may mean a new connection, while
also different values are considered. In [11] a novel time-integration was involved:



Fast Fault Simulation to Identify Subcircuits Involving Faulty Components 371

during each time-step, first the fault-less, golden solution was determined at the
next time step. Next, all faulty problems were integrated over this time-interval.
Hence, effectively, a parameter loop is placed inside the time integration. Also the
hierarchical structure was enhanced such that the hierarchical solver could deal with
all new elements. This enables to exploit an enhanced form of bypassing.

The golden solution at each new time point provides an estimate for the solution
of a faulty problem (in addition to the one using extrapolation by Nordsieck vectors).
Each faulty problem uses the stepsize of the golden solution as a maximum one.
When the faulty solution really needs a stepsize that is significantly smaller then
used by the golden solution, the traditional time integration is invoked, even without
bypassing, until the time moment of synchronization with the golden solution.

In this paper we enhance the algorithm in also considering the case of adding
linear capacitors. However, in practise, the linear resistor case is by far more
important. Hence, we either have1

j.x.t; p/; p/ D j0.x.t; p//C p uvTx.t; p/; or (3)

q.x.t; p/; p/ D q0.x.t; p//C p abTx.t; p/: (4)

For simplicity, to reduce notation and the amount of partial derivatives further on,
we use p, both in (3) and in (4). Fault Analysis consists of simulations for a large
number of pairs of vectors .u; v/, or .a;b/ and various values of p, and compare the
result xp.t/ of (1) at specific time points with the “golden” solution x.t/ of the fault-
free circuit (corresponding with p D 0). If the deviation exceeds some threshold,
the fault triple .u; v; p/, or .a;b; p/, is marked as detectable and is taken out of the
list.

Clearly, for each fault we have a new contribution p uvTx.t; p/, or p abTx.t; p/,
as low-rank modification to the system of the golden solution, either added to j0 or
to q0, see (3)–(4). Here p � 0 is just a scalar, by which the p-sensitivity ‘matrix’
Oxp.t; p/ D @x.t;p/

@p reduces to a vector.
The golden solution x.t/ used j.x.t; p/; p/ D j0.x.t; p//, and q.x.t; p/; p/ D

q0.x.t; p//.
Let xk

p D xk. p/ 
 x.tk; p/ be the numerical approximations for k D n; n C 1 of

the faulty system and Oxk
p be the corresponding sensitivities. Then with Ck

p 	 @q.xk
p/

@x ,

Gk
p 	 @j.xk

p/

@x (and including the effect of the rank-one term with the factor p) and

Sk
p 	 @s.xk

p;tk/

@x , by sensitivity analysis [6, 10], we obtain

Œ
1

hn
CnC1

p C GnC1
p � SnC1

p �OxnC1
p D � 1

hn
abT.xnC1 � xn/� uvTxnC1

p C 1

hn
Cn

p Oxn
p:

(5)

1Note that for inductors and for voltage-defined resistors we need two rank-one updates to describe
the total contribution.
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For p D 0, (5) gives the limit sensitivity Oxk D Oxk
0 for the golden, fault-free, solution

xk D xk
0 (k D n; n C 1)

Œ
1

hn
CnC1 C GnC1 � SnC1�OxnC1 D � 1

hn
abT.xnC1 � xn/� uvTxnC1 C 1

hn
Cn Oxn;

(6)

where Ck D Ck
0 .k D n; n C 1/, GnC1 D GnC1

0 and SnC1 D SnC1
0 . By Taylor

expansion we additionally have

xk
p D xk C p Oxk C O.p2/ .k D n; n C 1/: (7)

The golden solution satisfies the linearized equations of the fault-free circuit up to
a term R that indicates the deviation from linearity (note that in (1) we did assume
that q.0/ D 0 and j.0/ D 0)

Œ
1

hn
CnC1 C GnC1 � SnC1�xnC1 D r.tnC1; xn; xnC1/; (8)

where r.tnC1; xn; xnC1/ D snC1 C 1
hn

Cnxn C R. With (7) and (6) this gives

Œ
1

hn
CnC1 C GnC1 � SnC1�xnC1

p D

D Œ
1

hn
CnC1 C GnC1 � SnC1�xnC1 C p Œ

1

hn
CnC1 C GnC1 � SnC1�OxnC1 C O.: : :/;

D r.tnC1; xn; xnC1/ � p

hn
abT.xnC1 � xn/� puvTxnC1 C p

hn
Cn Oxn C O.: : :/;

D � p

hn
abT.xnC1 � xn/ � puvTxnC1 C 1

hn
Cn.pOxn/C r.tnC1; xn; xnC1/C O.: : :/;

D � p

hn
abT.xnC1

p � xn/ � puvTxnC1
p C 1

hn
Cn.xn

p � xn/Cr.tnC1; xn; xnC1/CO.: : :/;

in which all O.: : :/ terms are of the form O.p2 C p2

hn
/. Hence

Œ
� 1

hn
CnC1 C GnC1 � SnC1�C p

hn
abT C p uvT �xnC1

p D

D p

hn
abTxn C 1

hn
Cn.xn

p � xn/C r.tnC1; xn; xnC1/C O.p2 C p2

hn
/; (9)

D r.tnC1; xn; xnC1/C O.p2 C p2

hn
C p

hn
/: (10)
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Note that (9) may be a more accurate alternative then (10). However, for simplicity,
we just used (10), after ignoring the O.�/ terms at the right-hand side. This invites
for applying the Sherman-Morrison formula [5]. Let A D �

1
hn

CnC1CGnC1�SnC1�,
and Aw D pu, Ac D p

hn
a, and Ay D p

hn
Cn Oxn. Then the sensitivity predictions for

xnC1
p become

for .3/ W xnC1
p D xnC1 � vTxnC1

1C vTw
w; or (11)

xnC1
p D .xnC1 C y/� vT.xnC1 C y/

1C vTw
w; (12)

for .4/ W xnC1
p D xnC1 � bTxnC1

1C bTc
c; or; (13)

xnC1
p D .xnC1 C y/� bTy

1C bTc
c: (14)

Note that the first term in (9) has a simplifying effect in (14) (when compared to
(12)). In this case one really needs y to get a first estimate that is different from xnC1.
The advantage of the right-hand side in (10) is that it is independent of the solution
xk

p at the previous time steps. Of course, when followed by further Newton-Raphson
iterations, xn

p is still needed. To judge the accuracy of the linear sensitivity prediction
the nonlinear solver evaluates the circuit at the sensitivity solution and updates the
solution. The difference in the initial sensitivity solution and the nonlinear update is
a measure for the truncation error.
If we just stick to the prediction, we may calculate the prediction of the fault at
a few selected time points, which significantly reduces the work load for the fault
sensitivity analysis. We finally remark that in (11), (13) the sensitivity matrix Oxn is
not explicitly calculated.

2.1 Modeling Faulty “Opens”

Next we consider a faulty resistor, with value R, in series with another, linear
resistor, with value r. Clearly, this introduces an extra node ne. If the golden
system used R.n1; n2/ D r, the faulty system uses R.n1; ne/ D R, R.ne; n2/ D r.
The voltage at this new node can be simply eliminated by noting that v.ne/ D
.r v.n1/ C R v.n2//=.r C R/. Doing this directly, the remaining system can be
formulated as in (3) in which p D R=.r.R C r//. If R ! 1 we obtain an “open”
between the nodes n1 and ne and v.ne/ ! v.n2/. In [11] we did introduce an extra
port to model bridges between models. This extra node can also become functional
in providing the extra node.
For modeling a broken joint (or weld) at a node n, it is, mathematically, convenient
to first split the node n into two nodes n1 and n2, with a simple voltage source in
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between for the golden circuit: E.n1; n2/ D 0. Clearly this satisfies our assumption
j.0/ D 0. The faulty system uses R.n1; ne/ D R, E.ne; n2/ D 0. We assume
local coordinates that correspond with v.n1/, v.n2/, i.E/. We deduce that the faulty
system perturbs the golden system with u1vT

1 .R/ C u2vT
2 .R/, in which, in local

coordinates, uT
1 D .1; 0; 0/, vT

1 D .� 1=R; 1=R; 1/, uT
2 D .0; 0; 1/, vT

2 D .1;�1;R/.
This can be treated in a similar way as before.

3 Results

The FFS-algorithm has been implemented in Pstar.2 For fault simulations in DC-
simulations a significant speed-up (> 100) was obtained by exploiting bypassing
and abandoning only, but inclusion of sensitivity analysis appeared essential to
get significant speed up for a broad class of problems during transient simulation.
Table 1 shows the speed-up by including sensitivity prediction for a LIN Converter
IP Block (first part), as well as for a nonlinear control DAC (2nd part). Clearly,
the linear sensitivity estimate offers an interesting speed-up. Following nonlinear
corrections do reduce this effect. For the LIN Converter IP Block the effect of more
iterations remains quite bounded (with 100 iterations still a speed-up of more than
10 was found, see [11]). For the nonlinear control DAC until 5 iterations a speed-up
of 10 was obtained. Further speed-up scenarios are currently considered by initiating
the fault later. If one can simply skip the initial integration of the faults until t1 > 0,
for a large collection of faults no initial simulations have to be made. The scenarios
differ in how the fault is started: suddenly, or using a smooth start-up, similar as
for the source-stepping-by-transient method as described in [11]. Because of the
many faults that are possible, a short start-up is a balance between efficiency and
robustness.

Table 1 Speed-up by including sensitivity prediction

LIN converter IP block Control DAC

#iterations CPU time #iterations CPU time

Analysis Per step t [s] Speed up Per step t [s] Speed up

Standard AS/DOTSS – 100,437 1 – 52,513 1

Linear sensitivity 0 458 219 0 916 58

Nonlinear correction 5 2341 43 1 4808 11

Left: a LIN Converter IP Block, #faults=412. Right: a Control DAC, #faults=100. See also [11]

2Pstar: in-house circuit simulator of NXP Semiconductors.
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4 Relation to Uncertainty Quantification

Interchanging the time integration loop with a parameter-sweep loop for a given
pair of connection nodes, also has an interesting opportunity for Uncertainty
Quantification [7, 12, 14]. F.i., when considering Stochastic Collocation in which
all L2 inner-products in parameter space are replaced by quadrature, a list of
deterministic parameter values pk, k D 1; : : : ;K, is defined for which the solution
x.t; pk/ has to be calculated. Then x.t; p/ D Pm

iD0 vi.t/�i. p/, in which vi.t/ D
PK

kD1 wkx.t; pk/�i. pk/. This expansion is a so-called generalized Polynomial Chaos
expansion, using polynomials �i. p/ that are orthogonal with respect to some proba-
bility density function f in the parameter space for p. For FFS, where parameter
values are positive, one may think about an exponential decay (for an infinite
range; here one generates Laguerre polynomials), or a .˛; ˇ/-density function (when
considering a finite range for p; here one generates Jacobi-polynomials). Now,
first, one can simulate the K deterministic solutions (in which one can exploit
the sensitivity estimate, as described before). Next, the actual FFS is done as a
post-processing action in which one compares x.t; p/ with x.t; 0/, at specific time
moments and at circuit nodes. Note that mean and variance are cheaply provided
by the vi.t/. During the time-integration one also has at each completed time-level t
x.t; p/ and @x.t; p/=@ p available from the expansion.Clearly, FFS is just an example
for varying particular parameters. Also more general, Stochastic Collocation, can
benefit by moving the parameter loop inside the time integration loop.
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Quadrature Methods with Adjusted Grids
for Stochastic Models of Coupled Problems

Roland Pulch, Andreas Bartel, and Sebastian Schöps

Abstract We consider coupled problems with uncertain parameters modelled as
random variables. Due to the largely differing behaviour of subsystems in coupled
problems, we introduce a strategy of adjusted grids defined in the parameter
domain for resolving the stochastic model. This allows us to adapt quadrature
grids to each subsystem. The communication between the different grids requires
global approximations of coupling variables in the random space. Since implicit
time integration methods are typically included, we investigate dynamic iteration
schemes to realise this approach. Numerical results for a thermal-electric test circuit
outline the feasibility of the method.

Keywords Coupled problems • Stochastic modeling • Thermal-electric circuit •
Uncertain parameters

1 Introduction

In many applications, the simulation task addresses a coupled, multiphysical
problem. Often the resulting models consist of differential algebraic equations
together with partial differential equations, see [1]. Due to an inherent multirate or
multiscale behaviour, a co-simulation of a coupled problem can be often efficient.
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Mathematically, this is also referred to as dynamic iteration, see [3]. Our application
is in electrical engineering, where we consider a thermal-electric test circuit.

Physical parameters of a coupled problem may exhibit uncertainties due to
measurement errors, imperfections of an industrial production or other reasons.
We quantify the uncertainties by random variables for the parameters and the
solution becomes a random process. Statistics like the expected value and the
variance can be computed by sampling methods or quadrature rules. Alternatively, a
stochastic Galerkin method or stochastic collocation techniques can be used, see [4–
6]. However, the Galerkin approach results in a much larger coupled system.

We investigate quadrature formulas in this paper. If the parts of the coupled
problem show a different sensitivity with respect to the dependence on the random
parameters, then the usage of quadrature on grids with different refinement levels
becomes favourable. Thus we introduce different grids for the subsystems of a
coupled problem. The application of this approach is straightforward in case of
an explicit time integration scheme. To realise an implicit time integration, we
apply a dynamic iteration to the overall problem, which decouples the subsystems
to some extend. It follows that communications between the different parameter
grids are required in discrete time points. Arbitrary global approximations of the
solution on the random space are feasible for this communication. We use truncated
expansions of the solution with respect to orthogonal basis polynomials depending
on the random variables, i.e., a spectral approach appears in the probability space,
see [6].

Finally, we test this strategy using a problem from [2], where an electric network
is combined with thermal effects. Two different grids are applied for the two parts of
the coupled problem. We test grids of several resolutions and based on a reference
solution we qualitatively compare the achieved accuracies.

2 Problem Definition

We consider a time-dependent coupled problem consisting of two parts

F1
�

y1.t;p/; y
cpl
2 .t;p/; t;p

�
D 0;

F2
�

y2.t;p/; y
cpl
1 .t;p/; t;p

�
D 0;

(1)

where parameters p 2 ˘ � R
Q are included. The operators F1;F2 represent

ordinary differential equations (ODEs), differential algebraic equations (DAEs) or
partial differential equations (PDEs) after a semidiscretisation in space. Hence time
derivatives are involved in each part. The operators Fi comprise ni equations and the
solution of the system (1) is yi W Œt0; tend� � ˘ ! R

Ni for i D 1; 2, where initial
values are given for all p 2 ˘ . The coupling variables are defined as ycpl

i WD Biyi

with constant matrices Bi 2 f0; 1gRi�Ni such that the coupling variables include just
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a subset of yi for each i D 1; 2. Typically, it holds that R1 � N1 and R2 � N2, i.e.,
the coupling variables represent just a small portion of the solution. Furthermore,
it is allowed that just one of two subsystems in (1) includes all the parameters.
Generalisations to more than two subsystems are straightforward.

In many technical applications, implicit time integration schemes have to be
applied, since either DAEs or stiff ODEs are involved. Due to a multirate behaviour,
a co-simulation based on a dynamic iteration becomes efficient in some cases.
Moreover, co-simulation is required if the equations of a subsystem in (1) are not
available directly, i.e., just a software package is given including a numerical solver.
We consider a dynamic iteration, where the total time span is split into windows
with a first window Œt0; twin�. For a fixed p 2 ˘ , the iteration of Gauss-Seidel type
for the coupled system (1) reads as

F1
�

y.�C1/1 .t;p/; ycpl .�/
2 .t;p/; t;p

�
D 0;

F2
�

y.�C1/2 .t;p/; ycpl .�C1/
1 .t;p/; t;p

�
D 0;

for � D 0; 1; 2; : : : (2)

using the starting values y.0/2 .t;p/ 	 y2.t0;p/. However, a numerical method outputs
just the solutions y1; y2 on a discrete set of time points, which may also differ for
the two subsystems. We assume that all coupling variables are interchanged in a few
communication time points Ntj with t0 � Nt1 < Nt2 < � � � < NtJ D twin. Interpolation
yields approximations of the coupling variables ycpl

i .t;p/ for t 2 Œt0; twin� and
i D 1; 2.

Now we suppose that the parameters are not known exactly. To perform an
uncertainty quantification, the parameters are modelled by random variables p W
˝ ! ˘ on some probability space .˝;A ; �/ with a joint density � W ˘ ! R.
Statistical information for a function g W ˘ ! R is obtained by probabilistic
integrals

E.g/ WD
Z

˝

g.p.!// d�.!/ D
Z

˘

g.p/ �.p/ dp (3)

provided that the integral exists. For example, probabilistic integration can be
applied to the solution of (1) component-wise. Crucial information consists of the
expected value and the standard deviation for the solution. Furthermore, higher
moments and failure probabilities also represent integrals of the type (3). Our aim
is to compute statistics of the solution y1; y2 for either the complete time interval or
just at a final time.

A quadrature scheme or a sampling method yields an approximation of a
probabilistic integral (3), see [6] and the references therein. We obtain a finite sum
of the form E.g/

:D w1g.p.1//C� � �C wKg.p.K// with grid points p.1/; : : : ;p.K/ 2 ˘
and weights w1; : : : ;wK 2 R. For g D Qg.y1; y2/ at some final time tend, it follows
that an initial value problem of the system (1) has to be resolved K times for the
different realisations of the parameters.
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3 Quadrature with Adjusted Grids

If the solutions of the subsystems in the coupled problem (1) behave differently
with respect to the random parameters, then the application of different quadrature
formulas might become advantageous. For example, a higher variance within a
subsystem often indicates that a higher accuracy of the quadrature is required. Thus
we introduce two grids Gi WD fp.1/i ; : : : ;p.Ki/

i g with p.k/i 2 ˘ for i D 1; 2 dedicated
to the two parts of the coupled problem (1). In general, any grid is initiated by a
quadrature scheme. The numbers of grid points K1;K2 may differ significantly. The
subsystem for Fi together with its solution yi is integrated in time on the grid Gi for
each i D 1; 2.

Following (2), we have to solve the problems

F1
�

y.�C1/1 .t;p.k/1 /; y
cpl .�/
2 .t;p.k/1 /; t;p

.k/
1

�
D 0 for k D 1; : : : ;K1;

F2
�

y.�C1/2 .t;p.k/2 /; y
cpl .�C1/
1 .t;p.k/2 /; t;p

.k/
2

�
D 0 for k D 1; : : : ;K2;

(4)

in each step of the dynamic iteration. The first iteration step � D 0 in (4) for
F1 can be computed directly using the globally defined initial values. The output
is y.1/1 .Ntj;p.k/1 / for k D 1; : : : ;K1 in the communication time points Nt1; : : : ; NtJ
introduced in Sect. 2. To this end, we need the coupling variables ycpl.1/

1 .Ntj;p.k/2 /
for k D 1; : : : ;K2 and j D 1; : : : ; J. Likewise, the output of F2 is the solution
y.1/2 .Ntj;p.k/2 / for k D 1; : : : ;K2 and thus has to be transformed into the coupling vari-

ables ycpl.1/
2 .Ntj;p.k/1 / for k D 1; : : : ;K1, i.e., the evaluation on the other quadrature

grid is crucial. This strategy repeats in each iteration step. Hence transitions between
the two grids have to be defined for a fixed time point.

For the interchange of information between the two grids, we consider global
approximations in the parameter space ˘ . An arbitrary global approximation
method, which just requires the evaluations in the grid points, is feasible like
an interpolation scheme, for example. Alternatively, we apply an approximation
based on orthogonal basis polynomials with respect to the L2-inner product of
the probability space induced by the integral (3). Hence a truncated sum of the
polynomial chaos expansion is used, see [6]. Let the time Nt be fixed. The global
approximation reads as

Qycpl
i .Nt;p/ WD

MiX

mD0
ui;m.Nt/˚m.p/ (5)

for i D 1; 2 with known basis polynomials ˚m W ˘ ! R satisfying the
orthonormality condition E.˚m˚n/ D ımn. In general, all polynomials up to
a certain degree are involved. The coefficient functions in (5) are determined



Quadrature Methods for Stochastic Coupled Problems 381

approximately by

ui;m.Nt/ WD
Z

˘

ycpl
i .Nt;p/˚m.p/�.p/ dp

:D
KiX

kD1
w.k/i ycpl

i .Nt;p.k/i /˚m.p
.k/
i / (6)

for i D 1; 2, where the values w.k/i 2 R represent the weights of quadrature formulas
on the grids Gi. Thus the sums (5) can be evaluated for an arbitrary p 2 ˘ . In
particular, we obtain approximations of the coupling variables on each grid. Since
the number of coupling variables is relatively low in comparison to the dimension
of the coupled problem, the computational effort for the global approximation is
usually negligible compared to the time integration.

After the convergence of the dynamic iteration in a time window, the same
approach is repeated in the next time window. Therein, initial values can be trans-
formed between the two grids again by the above procedure. If the approximations
have been computed at the final time tend, then we reconstruct statistical data by
quadrature formulas using the same grid points.

4 Simulation of a Test Example

To demonstrate the feasibility of the approach described in Sect. 3, we simulate
a coupled problem introduced in [2], which consists of an electric part and a
thermal part illustrated by Fig. 1. A resistor as well as a diode exhibit a voltage-
current-relation depending on the temperature. The electric network is modelled
by a nonlinear system of DAEs with dimension N1 D 3. In the thermal part, the
temperature of the resistor follows from a one-dimensional linear heat equation,
where a semidiscretisation yields ODEs of dimension N2 D 20. The diode receives
a scalar temperature from the (right-hand) boundary of the PDE. More details can
be found in [2].

The electric network is supplied by a sinusoidal input signal. We compute the
numerical solution in the total time interval Œ0 s; 0:1 s� and apply five time windows
for the dynamic iteration (2). In our example, the solution of the electric part is more
expensive than the thermal part, since smaller step sizes have to be used in time. The
circuit part is solved first in this co-simulation. As communication time points, just

Fig. 1 Electric circuit with
temperature-dependent
resistor and diode

C Rload

u u3 4u2
Au1

( )tv

R(  )T (  )TD
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the final times of each window are involved. The time integration of the subsystems
is done by an implicit multistep method based on numerical differentiation formulas.

We introduce two random variables with independent uniform distributions. In
the DAE part, the (temperature-independent) load resistance is a random parameter
with variations of 10%. In the ODE part, the heat conduction coefficient becomes
random with variations of 40%. Although the PDE and its ODE discretisation are
linear, the dependence of the solution on the parameters is nonlinear in each case. It
follows that the parameter space represents a rectangle˘ � R

2.
As quadrature formulas, we employ the two-dimensional midpoint rule on grids

of size L1 � L2, i.e., L1 nodes discretise the random resistance and L2 nodes are
dedicated to the random heat conduction. Two different quadrature formulas are
considered, which gives a first grid G1 for the circuit part and a second grid G2
for the thermal part. In the communication between the grids, we use the global
approximations defined by (5), (6), where all polynomials up to degree two are
included (M1 C 1 D M2 C 1 D 6 basis functions).

To illustrate some statistics of the coupled problem, we compute the numerical
solution for a combination of a first grid with size 8 � 6 and a second grid with size
6�8. Figures 2 and 3 depict the first and second moment for the output of the circuit
part and the thermal part, respectively, which result from the quadrature formulas
associated to the two grids.

We also tried several other grid sizes for comparison. If two identical grids are
chosen, then the evaluations of the coupling variables are available directly. Never-
theless, we still perform the projections (6) and reconstructions (5) to investigate the
accuracy. A reference solution is computed by the midpoint rule on a single grid with
40� 40 nodes, where no transitions between different grids and thus no errors from
global approximations occur. Table 1 demonstrates the comparison for the expected
values as well as the standard deviations, where the maximum differences have been
calculated for both all involved time points and all components of a subsystem.

expected values standard deviations
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Fig. 2 Expected values as well as standard deviations for output voltage u4 in unit [V] (solid line)
and dissipated energy in unit [J] (dashed line) within circuit part
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Fig. 3 Expected values as well as standard deviations for the resistor’s temperature in unit [K]
(spatial domain is standardised to Œ0; 1�) within thermal part

Table 1 Maximum differences for statistics computed using different grids with respect to
reference solution separately for circuit variables and temperature

Grid sizes Circuit variables Temperature

First grid Second grid Expected value St. deviation Expected value St. deviation

10� 10 10 � 10 4.6e�4 8.0e�3 6.2e�4 2.7e�3

5� 5 10 � 10 1.3e�3 7.1e�3 1.9e�3 1.6e�2

5� 5 5� 5 4.9e�3 4.7e�2 1.1e�2 2.7e�2

8� 6 6� 8 1.3e�3 2.2e�2 2.7e�3 6.8e�3

8� 4 4� 8 2.8e�3 6.1e�2 8.3e�3 2.9e�2

5 Conclusions

We explained the need for coupled quadrature grids in uncertainty quantification
and its algorithmic application within co-simulation. With a multiphysics example
we showed the applicability and the prospect of the method.

Acknowledgements This work is a part of the project ‘Nanoelectronic Coupled Problems
Solutions’ (NANOCOPS) funded by the European Union within FP7-ICT-2013 (grant no. 619166).

References

1. Bartel, A., Pulch, R.: A concept for classification of partial differential algebraic equations
in nanoelectronics. In: Bonilla, L.L., Moscoso, M., Platero, G., Vega, J.M. (eds.) Progress in
Industrial Mathematics at ECMI 2006. Mathematics in Industry, vol. 12, pp. 506–511. Springer,
Berlin (2007)

2. Bartel, A., Günther, M., Schulz, M.: Modeling and discretization of a thermal-electric test
circuit. In: Antreich, K. (eds.) Modeling, Simulation and Optimization of Integrated Circuits.
ISNM, vol. 146, pp. 187–201. Birkhäuser, Boston (2003)



384 R. Pulch et al.

3. Bartel, A., Brunk, M., Günther, M., Schöps, S.: Dynamic iteration for coupled problems of
electric circuits and distributed devices. SIAM J. Sci. Comput. 35(2), B315–B335 (2013)

4. Chauvière, C., Hesthaven, J.S., Lurati, L.: Computational modeling of uncertainty in time-
domain electromagnetics. SIAM J. Sci. Comput. 28(2), 751–775 (2006)

5. Pulch, R.: Stochastic collocation and stochastic Galerkin methods for linear differential
algebraic equations. J. Comput. Appl. Math. 262, 281–291 (2014)

6. Xiu, D.: Numerical Methods for Stochastic Computations: A Spectral Method Approach.
Princeton University Press, Princeton (2010)



MS 14
MINISYMPOSIUM:
MATHEMATICS AND CAGD:
INTERACTIONS AND INTERSECTIONS

Organizers

Costanza Conti1 and Lucia Romani2

Speakers

Hartmut Prautzsch3

Rational Free Form Spline Surfaces with Linear Transitions Maps

Xiaodiao Chen4 and Weiyin Ma5

Geometric Clipping Methods for Efficient Root Finding

Tomas Sauer6

Numeric Evaluation of Geometric Continuity in CAD Systems

1Costanza Conti, Université degli Studi Firenze, Firenze, Italy.
2Lucia Romani, Université degli Studi Milano-Bicocca, Milano, Italy.
3Hartmut Prautzsch, Karlsruhe Institute for Technology, Karlsruhe, Germany.
4Xiaodiao Chen, Hangzhou Dianzi University, Hangzhou, China.
5Weiyin Ma, City University of Hong Kong, Hong Kong, China.
6Tomas Saue, FORWISS (Institute for Software Systems in Technical Applications of Computer
Science), Passau, Germany.

© Springer International Publishing AG 2016
G. Russo et al. (eds.), Progress in Industrial Mathematics at ECMI 2014,
Mathematics in Industry 22, DOI 10.1007/978-3-319-23413-7_51

385



386 MS 14

Christian Arber7

The Unreasonable Effectiveness of Mathematics in the CAD/CAM TopSolid
Software

Costanza Conti1, Lucia Romani2, Virginie Uhlmann8 and Michael Unser9

Active Contours for Biomedical Images Based on Hermite Exponential Splines

Keywords

Computer aided geometric design
Theoretical and applied issues arising from technology and industry

Short Description

Computer aided geometric design (CAGD) concerns itself with the mathematical
description of shapes for use, for example, in computer graphics, manufacturing,
CAD/CAM, scientific visualization, or computer animation. Drawing from many
areas and influencing others, CAGD is inherently interdisciplinary involving geom-
etry, computer graphics, numerical analysis, approximation theory, data structures,
linear and computer algebra. CAGD started in the 1960s, going back to efforts
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Short Description

Nanotechnology is one of the key modern research directions, with billions being
invested by governments throughout the world, and in particular by the US, Europe
and Japan. Nanotechnology is relevant to a vast range of practical applications, such
as in medicine, electronics, biomaterials and energy production. To date the vast
majority of research has focused on the experimental side, with the theory often
lagging behind. However, there are a number of mathematical groups now working
on topics relevant to the nano industry. In this mini-symposium we intend to bring
together a selection of speakers who will discuss a broad range of topics relevant to
nanoscience and who will be able to demonstrate the relevance of mathematics to
this research field.

10Michelle MacDevette, Centre de Recerca Matematica, Barcelona, Spain.



Boundary Layer Analysis and Heat Transfer
of a Nanofluid

T.G. Myers and M.M. MacDevette

Abstract Nanofluids have been hailed as a possible winner in the race to find
sufficiently powerful cooling systems for emerging high-power electronic devices.
There exist numerous experiments demonstrating nanofluids to have remarkable
properties. However, there has been much controversy in the literature with
discrepancies between results concerning the heat transfer and thermal conductivity
of nanofluids. In this paper we analyse a popular model for nanofluid flow which
previously has been employed to demonstrate the improved heat transfer. We find
the opposite result and then move on to explain some of the reasons behind the
discrepancies.

Keywords Boundary layer analysis • Heat flow • Nanofluid

1 Introduction

Modern high-performance electrical devices often produce large amounts of heat,
which must somehow be removed. Nanofluids, which consist of a base fluid and a
suspension of nanoparticles have been shown in many research programmes to be
capable of removing large amounts of heat, even with a remarkably low particle
concentration [3, 5]. However, recently, a small number of authors have questioned
this property of nanofluids. Specifically, the benchmark study carried out in over 30
laboratories around the world seemed to imply no great increase in heat transfer [2].
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In this paper we will analyse one of the standard models for nanofluid flow. This
particular model has been used to show theoretically that nanofluids can increase
heat transfer by a significant amount. By applying standard boundary layer theory
we will find the opposite conclusion. In the final section we discuss three highly
cited papers on this topic and explain why the authors reached a different conclusion
to that of the present work.

2 Nanofluid Heat Transfer

Buongiorno [1] developed a model for nanofluid flow with the following main
assumptions: incompressible flow; negligible external forces; dilute mixture; neg-
ligible viscous dissipation; negligible radiative heat transfer. This leads to the
following set of equations:

r � u D 0; (1)

�nf

�
@u
@t

C u � ru
�

D �rp � r � Q
; (2)

@.�nf T/

@t
C r � .�nf uT/ D r � .knf rT/; (3)

@�

@t
C r � .�u/ D r �

�

DBr� C DT
rT

T

�

; (4)

where u is the velocity vector, T the temperature and � the volume fraction
of nanoparticles. Subscripts bf , nf and np refer to the base fluid, nanofluid and
nanoparticle, respectively. The density, volumetric heat capacity and specific heat
depend on the volume fraction

�nf D ��np C .1� �/�bf ; (5)

�nf D .�c/nf D ��npcnp C .1 � �/�bf cbf ; (6)

knf D kbf

.1 � �1=3/2

�

.1 � �/C �
�npcnp

�bf cbf

�
n � 1

2.n C 1/

�
1C �1=3

2
� 1

n C 1

��1
; (7)

where n D 2:233 [10]. In the boundary layer section of this analysis we will require
only part of the stress tensor, �nf @u=@y, where the viscosities

�nf D .1C 7:3� C 123�2/�bf ; (8)

�nf D .1 � 0:19� C 306�2/�bf ; (9)

are for water and ethylene-glycol based nanofluids, see [8].
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An interesting feature which distinguishes the above system from standard flow
models is the presence of Brownian motion and thermophoresis terms (represented
by DB and DT respectively). Thermophoresis describes a particles motion against a
temperature gradient. Almost all authors who deal with this system use a definition
of the diffusion coefficients that involves T and �. Since these are variables in the
model those authors take some form of average (rather than allowing them to vary).
In [9] a different form is used for the coefficients

CB D DB

T
D kB

3��bf dp
; CT D DT

�
D ˇ�bf

�bf
; (10)

where kB; dp are the Boltzmann constant and particle diameter, so CB;CT are
constant and the T; � dependence is correctly formulated in the governing equations.

2.1 Boundary Layer Analysis

For flow over a flat surface, y D 0, standard boundary layer theory requires a set of
boundary conditions of the following form. At y D 0

knf Ty D �Q u D v D 0 ; (11)

where Q represents the energy input at the boundary. At the inlet x D 0

� D �in T D T1 u D .U; 0/ : (12)

In the far-field conditions y ! 1

u D U v D 0 T D T1 : (13)

The variables are now re-scaled in order to focus close to the boundary and
eliminate negligible terms:

Ox D x

L
Oy D y

L

p
Re OT D T � T1

A
(14)

Ou D u

U
Ov D v

U

p
Re Op D p � p1

�bf U2
; (15)

where U;Re D �bf UL=�bf ;A are the far field velocity, the Reynolds number and
the temperature scale. In [9] the velocity scale is fixed to the base fluid value, this
permits a straightforward comparison of heat transfer coefficients. However, it does
mean that if U is fixed, regardless of the particle loading, then the pressure drop
to drive the flow must increase with the particle loading. This should be taken into
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account when examining the final results. The physical properties of the fluid are
also scaled with the base fluid value:

O�nf D �nf

�bf
O�nf D �nf

�bf

Oknf D knf

kbf

O� D �

�in
O�nf D �nf

�bf
: (16)

The most obvious change to the system under this scaling may be found by
examining the particle concentration equation (after dropping the hat notation)

r � .�u/ D �
@

@y

��

T C T1
A

�
@�

@y
C �

�

T C T1=A

@T

@y

�

: (17)

This involves two non-dimensional groupings � D CBA�bf =�bf and � D
CT=.CBA/. Both these numbers contain the temperature scale A. The temperature
increase is caused by the heat input at the boundary, in non-dimensional form the
boundary condition is

kbf A
p

Re

L

@T

@y
D �Q (18)

which then suggests the choice A D QL=.kbf

p
Re/. In [1, 9] appropriate values are

provided for the physical parameters for water or ethylene-glycol based nanofluids
with Al2O3 particles. For our analysis the appropriate list of values is provided in
Table 1

In particular we note that for EG � D O.10�5/ and for water � D O.10�4/ � 1.
Consequently we may neglect the term involving � in (17) and so, after imposing
the incompressibility condition, find

r � .�u/ D u � r� 
 0 : (19)

This result demonstrates that � is constant along a streamline and so, noting that
�.x D 0/ D 1, we find � D 1 everywhere. That is, the temperature gradient within
the fluid does not act to move particles in any significant way. It also means that
physical parameters such as density, viscosity and conductivity remain constant.
This finding is in contrast with the vast majority of previous studies which find
significant variation in particle concentration and hence parameters values. However

Table 1 Values of coefficients in non-dimensional equations

Quantity Ethylene glycol Water Quantity Ethylene glycol Water

CB 4:3825�10�15 7:0559 � 10�14 CT 3:1918�10�8 5:0721�10�9

Re 68:8696 103 A 4:6705 � 104 5:1926 � 103
� 1:4� 10�5 3:6638 � 10�4 � 155:9362 13:8437
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our findings are in line with those of Evans et al. [4] via a molecular dynamics
simulation.

With the finding that concentration and associated parameter values are approx-
imately constant we are able to apply standard boundary layer theory to the
remaining equations.

The well-known Blasius solution for boundary layer flow over a flat plate
involves first introducing a stream function where u D @ 

@y ; v D � @ 

@x . A similarity

variable � D y=
p
2�nf x is then introduced where, to satisfy the momentum equation

 D p
2�nf xf .�/ and f is an unknown function. The resultant boundary value

problem may be simplified using Töpfer’s transformation f .�/ D rF.r�/, where
r > 0 is a constant and the problem reduces to

F000 C FF00 D 0 (20)

F.0/ D 0 F0.0/ D 0 F00.0/ D 1 ; (21)

The value of r is determined via r D .F0.1//�1=2 
 0:7773.
The above approach allows us to calculate the fluid velocity, which is then

required in the heat equation (the scaled version of (3)). In [9] this is solved
numerically and approximately via the Heat Balance Integral Method. In the
following section we will briefly discuss the heat transfer coefficient, which is
the main focus of the paper, and then show results obtained through the approach
described above.

2.2 Heat Transfer Coefficient

The heat transfer coefficient (HTC) is calculated, with little thought, in many studies
of heat flow and even in basic courses on boundary value problems, yet it is a very
poorly defined quantity. Generally the HTC, h, is defined through the relation

� knf
@T

@y

ˇ
ˇ
ˇ
ˇ
yD0

D hT : (22)

The problem is, what is the definition of the temperature jumpT? In the literature
it may be described as the difference between the wall temperature and the far-field
temperature. Mathematical texts often replace the wall temperature with the fluid
temperature TjyD0C . The problem with both choices is they implicitly assume a
linear temperature change from wall to far-field.

If we wish to find out about the actual transfer of heat energy to the fluid we may
consider what is termed the ‘cup average’, see [9]. This represents the temperature
of the fluid that would occur if it were collected in a cup at the end of the pipe. Say
a fluid enters the system at x D 0, with an initial temperature T1. A distance L
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downstream of the inlet the energy flux above the initial value is given by

Z ıT

0

�cu.T � T1/ dy ; (23)

where ıT.L/ is the thickness of the thermal boundary layer at x D L. The average
temperature rise in the fluid Tav is defined via

.Tav � T1/
Z ıT

0

�cu dy D
Z ıT

0

�cu.T � T1/ dy : (24)

An HTC that actually represents the energy transfer from the substrate to the fluid
is then

h D Q

Tav � T1
D Q

R ıT

0
�cu dy

R ıT

0 �cu.T � T1/ dy
: (25)

In [9] the solution to the boundary layer equations is substituted into (25) for
various values of the particle concentration. The results are presented in Fig. 1. The
base fluid and 5 and 10 % volume fraction fluids are depicted by the circle, dashed
and solid lines respectively. From the results it is quite clear that the HTC decreases
with volume fraction. This directly contradicts the results of hundreds of research
papers. In fact this conclusion should be even more clear. As mentioned earlier
we fix the velocity scale so that as the volume fraction increases we must increase
pumping power, so not only does the HTC decrease with volume fraction but the
energy required to move the fluid increases.
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Fig. 1 Variation of HTC for ethylene glycol and water with alumina nanoparticles. Reprinted with
kind permission from Springer Science+Business Media: [9, Fig. 4]
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2.3 Discussion

Given that so many previous research papers conclude that the HTC increases with
increasing volume fraction, it is worth discussing the source of the differences
between ours and previous results.

In [9] three examples of previous papers are used, those of [1, 6, 7]. They were
chosen due to their high citation count, (together they have almost 1400 citations on
Google Scholar).

Firstly, we note that all of the above papers use the definition for the HTC h D
Q=.Tw�T1/ and so will not accurately capture the heat input into the fluid. The first
paper [1] takes the governing system of equations described at the start of this paper.
To make analytical progress the system is reduced in the style of a lubrication theory
model, which then represents some ‘laminar sublayer’. This sublayer is matched to
the outer turbulent region. However, if we analyse the governing equations it turns
out that the sublayer equations hold in a region three orders of magnitude smaller
than the true laminar sublayer, consequently the matching is invalid. The second
two papers [6, 7] deal with similarity solutions. In general they follow the model of
[1] and use parameter values quoted in that paper, with the exception of the Lewis
number (the ratio of thermal to mass diffusivity). In [1] the parameter values for a
water-alumina system result in Le D O.105/. Both sets of authors of [6, 7] take
Le D 10. If the correct value had been used then the effect of particle motion would
have dropped out of the governing equations, leading to a system similar to that in
[9]. The much lower value, Le D 10, magnifies the particle motion, so implying the
particles have a dramatic effect on fluid properties.

In conclusion then it appears that nanofluids do not greatly enhance heat transfer.
This has been demonstrated through the benchmark experimental study [2]. The
present paper, which summarises the work of [9], provides theoretical confirmation
of this result.
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Dynamics of Bacterial Aggregates in Microflows

Ana Carpio, Baldvin Einarsson, and David R. Espeso

Abstract Biofilms are bacterial aggregates that grow on moist surfaces. Thin
homogeneous biofilms naturally formed on the walls of conducts may serve as
biosensors, providing information on the status of microsystems (MEMS) without
disrupting them. However, uncontrolled biofilm growth may largely disturb the
environment they develop in, increasing the drag and clogging the tubes. To ensure
controlled biofilm expansion we need to understand the effect of external variables
on their structure. We formulate a hybrid model for the computational study of
biofilms growing in laminar microflows. Biomass evolves according to stochastic
rules for adhesion, erosion and motion, informed by numerical approximations of
the flow fields at each stage. The model is tested studying the formation of streamers
in three dimensional corner flows, gaining some insight on the effect of external
variables on their structure.

Keywords Biofilm • Microflows

1 Introduction

As the size of the components of technological devices diminishes, new procedures
to measure their inner variables without disturbing the system must be developed.
For some microdevices, cheap and environmentally friendly monitoring might be
achieved exploiting the bacteria that live in them. Bioremediation policies already
benefit from microorganisms. Bacteria feeding on a wide variety of toxic pollutants
are deliberately released to clean up oil spills or to purify underground water in
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farming land and mines [13]. For technological purposes, the ability of bacteria
to emit optic signals is more appealing. Microorganisms naturally occurring in the
environment fluoresce in response to the presence of certain chemicals or certain
processes. Such is the case of bioluminiscence phenomena in the southern seas.

Many bacterial species survive in moist environments forming aggregates called
biofilms. Microorganisms adhere to surfaces, forming colonies and changing their
phenotype to produce extracellular polymeric matrix (EPS). This matrix shelters
them from antibiotics, disinfectants, flows and external aggressions. Biofilms may
be considered biological materials, whose properties are governed by environmental
factors affecting cellular behavior. Recent attempts to engineer devices out of
biofilms successfully produced electrooptical devices [2]. The advancement of
synthetic biology is paving the way for the use of biofilms as bioindicators or
biosensors in the environment [10]. There are efforts to use biofilms emitting optic
signals as microsensors in microdevices. Bacteria can be genetically engineered to
change their color in response to variations in the environment. Properly modified,
bacteria growing in the devices could give local information of the temperature
or other variables, without perturbing the internal flow, since the typical size of
bacteria is of the order of microns. To indicate the magnitude of variables on the
surfaces they attach to, biofilms should be homogeneous and thin. Pattern formation
may largely disrupt the environment they grow in. To be able to exploit bacteria
in a controlled way, we must understand the influence of external factors on their
collective dynamics.

Biofilms are a mixture of living cells embedded in an exopolysaccharide matrix
which contains different kinds of metabolic by-products, that can be generically
considered as ‘biomass’. In fact, the formation of biofilms in flows may be included
in a more general group of physical processes where adhesion mechanisms drive
agglomeration of matter to create different geometries. The mechanical behavior of
the biomass (EPS, cells, debris) and its interaction with the flow seem to be relevant,
allowing for growth of structures that do not align with the streamlines of the flow,
but may cross the mainstream or wrap around tubes forming helices instead [11, 12].

In this paper, we propose a computational framework to study the growth of
biological aggregates in flows triggered by adhesion of particles, much faster than
growth due to nutrient consumption. The biofilm is considered a biomaterial with
known average cohesive properties formed by a soft sticky matrix of EPS, debris,
and other substances secreted by the cells included in it or floating around. We
formulate stochastic rules for biomass adhesion, erosion and motion informed by
the continuous flow fields around the expanding aggregate, that are approximated
by a finite difference discretization strategy using a fixed mesh to reduce the com-
putational cost. The resulting model is tested studying biofilm streamer formation
in laminar corner flows.

The paper is organized as follows. In Sect. 2, we describe the general framework
and collect the rules for biomass behavior. Section 3 illustrates the numerical results
and discusses the insight gained on the dynamics of the aggregates.
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2 Hybrid Description of Biofilms in Microflows

Hybrid models combine continuous descriptions of some relevant fields, such as
concentrations, flow fields or EPS matrix production, with discrete descriptions
of the cells [1, 5, 6]. The situation we examine here fits better as interaction of
the surrounding fluid with a elastic biofilm structure whose growth is mediated by
adhesion processes. From a computational point of view, biomass is considered as
a mixture of bacteria and organic matter allocated on a grid which may behave in
different ways in response to external conditions with a certain probability.

Let us denote by ˝f the region occupied by fluid and by ˝b the region occupied
by biofilm. The whole computational region is divided in a grid of tiles. Each tile
may be filled with either substratum, fluid, or biomass, as illustrated in Fig. 1. Since
we have in mind applications to microflows, we choose the size of each tile to be of
the order of the average size of one bacterium, about 1-2�m.

The fluid surrounding the biofilm is governed by the incompressible Navier-
Stokes equations:

�ut � �u C u � ru C rp D 0; x 2 ˝f ; t > 0 (1)

div u D 0; x 2 ˝f ; t > 0

where u.x; t/ is the velocity and p.x; t/ the pressure. � and � stand for the density
and viscosity of the fluid. The non-slip condition on the velocity holds at the
biofilm/fluid interface � . A low cost prediction of the evolution of the velocity and
pressure fields is provided by second order slight artificial compressibility schemes
[3]. Approximated velocities and pressures can be improved using second order
implicit gauge schemes [16], if necessary, at a higher cost.

Flow effects are felt by a biofilm on much shorter time scales (s) than growth
effects (h) [4]. Biomass attaches, detaches and moves according to the flow fields at
each location. Floating bacteria are carried by the fluid. The flow geometry selects
preferential adhesion sites on the walls where biofilm seeds may be nucleated [12].
Biofilm nucleation may be successful or not depending on the surface nature and
the bacterial strain. The flow also determines the strength of the biofilm [9, 15].
Once a biofilm seed is formed, biomass accumulation is a balance between biomass
increase due to adhesion or cellular processes, and loss of bacteria due to erosion
[14]. We describe below basic stochastic rules for adhesion, erosion and motion
processes, having in mind the model case of bacterial streamers in laminar corner
microflows, that will serve as a test later. We focus on fast processes. Growth due to
nutrient consumption is neglected here.

Two main adhesion processes are taken into account:

• Adhesion of floating cells to walls. In laminar regimes, nucleation of biofilm
seeds on the walls is often driven by the geometry. Corners or narrowings may
produce secondary flows that drive cells and particles to the walls. Continuous
adhesion of bacteria at preferential adhesion sites is taken care of by attaching Ns

cells at each step. They distribute on the seed, inside a limited region where the
secondary flow is expected to be relevant.
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3
2

1

Fig. 1 Initial status of a central slice z D z0 of the tubes: (a) Computational grid with biofilm seed
(green), fluid (blue) and substratum (black). (b), (c), (d) Velocity components around the initial
biofilm seed. (e) Pressure field. (f) Shear rate

• Once a biofilm seed sticks out from the wall, bacteria and particles swimming
with the flow may hit it, and stick to it at a certain rate. Additional Nb biomass
blocks are distributed between the tiles located at the biofilm/fluid interface.

Ns and Nb depend on the density of biomass floating in the fluid. Ns is affected
by the likeliness of the specific bacterial strain selected to adhere to the walls.
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Biomass tiles C located on the surface of the biofilm detach due to shear forces
exerted by the flow [14]. A probability for biomass detachment is proposed in [8]:

Pe.C / D 1

1C �


.C /

D 
.C /


.C /C �
: (2)

� is a measure of the biofilm cohesion. We assume it to be known and constant.

.C / measures the shear force felt by cell C . Here, we use the magnitude of the
shear force due to the flow at the cell location 
f .C /, modified by a geometrical
factor f .C / that accounts for the local sheltering role of neighboring cells, see [6].
In our numerical experiments, 
f .C / is usually set equal to the shear rate at location
C multiplied by the fluid viscosity �. The shear rate is defined as the spatial rate
of change in the fluid velocity field [7]. As for the geometrical factor, it varies
according to the main component of the flow, see [6]. In practice, we check erosion
in the three directions. At each step and for each biomass tile C on the biofilm
boundary, we detach biomass with probability Pe.C /. Erosion due to the flow may
occur as detachment of single blocks or of whole clusters of biomass with a thinning
connection to the rest of the biofilm.

Shear forces exerted by the flow on the biofilm surface detach biomass. Normal
forces on biofilm surfaces may move them. The motion of a biofilm block may be
seen as the result of the collective motion of small fragments of the aggregate.

The probability for biomass motion in the x directions is defined as:

Px.C / D 1

1C �

jFx.C /j
D jFx.C /j

jFx.C /j C �
: (3)

Similar expressions are used in the y and z directions. � is again a measure of the
biofilm cohesion. Fx is the force exerted by the flow in the x direction (on cell
walls normal to the x direction) weighted with a geometrical factor accounting for
neighbor protection similar to the one used in (2) [6]. Fy and Fz are its counterparts
in the y and z direction. The forces are calculated using the values of the fluid stress
tensor 	 at the cell location: 	 � n for the chosen normal vector n.

At each step and for each occupied tile on the biofilm boundary, the biomass
moves in the x direction with probability Px.C / pushing its neighbors in that
direction too. Motion is in the positive or negative sense depending on the sign
of Fx. Similar rules are applied in the y and z directions.

3 Numerical Results

We will fix as a model case of study the growth of streamers in corner microflows,
that is well documented experimentally [12]. The computational region is described
in Fig. 1a. A pressure driven flow circulates through the ducts with maximum
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(a) (b)

Fig. 2 Streamer grown for � D 15Pa at step 12; 600 of the adhesion-erosion-motion process.
Ns D 1 around the initial seed and Nb D 4 along the biofilm body. The biofilm is merging with
another seed growing at the opposite corner, which has been ignored in the plot: (a) front view, (b)
side view

velocities of about 1 mm/s. The structure of the flow is represented in Fig. 1b–f. The
density of the liquid is 103 kg=m3 and its viscosity � D 10�3 Pa s. The bacterial
size, and the tile size thereof, is taken to be 2�m. The dimensions of the central
straight fragment are N �M �L �m. Streamers grow mostly in the N=3�M �L �m
region between corners. In real experiments, usual values for N; M and L are 600,
200 and 100. In the numerical tests selected here, we have divided those sizes by 2
to reduce the computational cost.

An initial biofilm seed is placed on the left corner at the bottom, see Fig. 1a.
According to [12], the presence of secondary vortices in that area favors adhesion of
particles to the wall, becoming a preferential adhesion site. Biomass will be attached
to that seed, eroded and moved according to stochastic rules described above.

Numerical tests of biofilm growth are performed using this geometry, see Fig. 2.
� is a measure of the biofilm cohesion estimated from the biofilm Young modulus.
Reference [12] gives values in the range 70–140 Pa. To reduce the computational
cost, we adjust it so that our biofilms involve a small number of tiles. Images in
Ref. [12] yield estimates for the adhesion time 
 of 1 block of biomass per second.
Each step of the adhesion-erosion-motion process occurs in a time scale 
 .

Provided enough biomass attaches to the seed (to avoid streamer detachment)
and to the biofilm body (to resist increasing erosion while crossing the current), the
aggregate grows into the current, elongates with it, bends when it reaches the curve,
approaches the opposite corner, and eventually merges with the additional biofilm
seed that should be growing there. The observed effective growth rate is the balance
between the biomass that attaches and detaches at each step, and varies during the
spread process. It is usually larger before the thread tries to cross the main stream
and decreases as it tries to reach the opposite corner while changing its shape.
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(c)(b)(a)

Fig. 3 Reducing the number of attached biomass blocks, streamers detach without reaching the
opposite corner. (a) Decreasing Nb to 2, the streamer elongates, bends, detaches and regrows.
The image corresponds to step 42; 600, just before the fourth detachment, with 1373 blocks. (b)
Decreasing Nb to 3, the streamer becomes too thin and the top part encounters resistance to join the
corner. It finally breaks off at step 15; 600, with 2151 blocks. (c) Decreasing Ns to 0:5 (one block
attached each two steps), the connection of the streamer to the seed breaks off after step 9700 with
4792 blocks. Other parameter values as in Fig. 2. Distance between grid lines is always 40�m

The aggregate grows into the region of minimum shear rate, that joins the two
corners. Once formed, pressure variations move the filament downstream, curving it
in a similar way to the experimentally observed threads, and leaving a thin joint with
the seed. It reaches the opposite corner from behind, as observed in experimental
photographs.

The number of biomass blocks to be attached depends on the selected biofilm
cohesion. Too large values of Nb produce expanding balls. Too small adhesion rates
to the biofilm Nb produce an elongated thread close to the wall, that eventually feels
the corner flow and starts to gain biomass on the top, but may not receive enough
biomass to resist the increased erosion and detaches, see Fig. 3a, b. For small values
of Ns the connection between the streamer and the seed breaks off, see Fig. 3c. Too
large adhesion rates to the seed Ns favor expansion parallel to the bottom substratum.
If Nb is not large enough for the selected cohesion, the biofilm reaches the rightmost
wall as shown in Fig. 4a. Increasing Nb, the biofilm may cross to the opposite corner
sustained by a wider basis. If the initial adhesion rates are large enough for the
considered cohesion, a sort of fan expands into the main stream. The fan becomes
narrower as we reduce the adhesion rates.

Depending on the ratio Nb=Ns for the selected � , we see narrower or wider
streamers. If we increase the cohesion parameter � , we must reduce the compu-
tational adhesion rates Nb and Ns to see similar behaviors. The failed streamer in
Fig. 4a reaches successfully the opposite corner sustained by a wider basis when we
slightly increase � in Fig. 4b, c. If the biofilm cohesion is too small, the biofilm seed
is eroded and eventually washed out. No thread is formed.
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(c)(b)(a)

Fig. 4 (a) Increasing Ns to 2 the streamer remains parallel to the substratum until it reaches the
wall at step 3200 with 3242 biomass blocks, for � D 15Pa and Nb D 3. Increasing � to 20Pa, the
thread widens and crosses the current. (b) and (c) show the front and lateral views at step 15; 000,
with 4702 blocks

These tests provide insight on the way these structures are formed. Threads
experimentally observed [12], however, look more like thin jets and may require
a different description. Streamers joining opposite corners appear to be attractor
shapes that may be formed under different dynamics.
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Short Description

Cost control, production efficiency, cycle time and yield are critical quality bench-
marks for nano-electronics productions. An increasingly important downside of
nano-CMOS technology scaling is the fact that the scaling of feature sizes cannot
be accompanied by a suitable scaling of geometric tolerances. In addition, when
getting into deep miniaturized dimensions, phenomena like edges or surfaces
roughness, or the fluctuation of the number of doping atoms within the channels
are becoming increasingly significant. As a result, the figures of merit of a circuit,
such as performance and power, have become extremely sensitive to uncontrollable
statistical process variations (PV).

To ensure stable manufacturability and secure high manufacturing yield, it is
mandatory to manage complete design flows and to link traditional methods for
design with Technology CAD models. In this context, multi-objective optimization
algorithms and statistical analysis are essential on device and behavioural levels
to secure high yielding by modelling the impact of inevitable process variations
and doping fluctuations on IC performances. Statistical circuit modelling is a viable
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solution to nano-electronics production quality, on which the European Community
is already investing.

The CAD and Design Services group, part of the IPG R&D in STMicroelec-
tronics, has created a consortium in order to develop, test and implement innovative
“Methods for Advanced Multi-Objective Optimization for eDFY of complex Nano-
scale Circuits”: the MAnON Project.

The scope of the research activity has been to create “Process Variation”-aware
and “Process Variation”-robust circuit design techniques, tools and models in the
frame of the analogue and mixed-signal circuit industrial design.

The project has also been recognized to be relevant by the European Union which
under the Marie Curie Action for the Industry-Academia Partnership, call 2009, has
selected the MANON project and is co-funding the researchers directly involved in
it, under the grant agreement FP7-MCA-IAPP 2009-251380. One hundred person
months effort is directly funded by the European Union between Experienced and
More Experienced Researchers.



How to Include Pareto Front Computation,
Discrete Parameter Values and Aging into
Analog Circuit Sizing

Helmut Graeb

Abstract Analog circuit sizing has strongly focused on the optimization of nominal
performance and of the yield in the past. Recently, more topics in analog sizing have
come up. These are Pareto optimization, optimization with discrete parameter values
and consideration of aging effects in addition to manufacturing and operating tol-
erances. This contribution will illustrate these tasks and give problem formulations
and solution approaches.

Keywords Analog circuit sizing • Multi objective optimization

1 Introduction

When talking about analog circuits, it should be noted that the described methods
do not refer to analog circuits only, but to any type of circuit that is described
with continuous signals and modeled with differential equations or netlists of
compact circuit elements. Figure 1 gives examples of such circuits, as for instance,
operational amplifiers, phase-locked loops, RF circuits, receiver frontends, and even
digital gates or MEMS elements.

1.1 Parameter, Performances, Simulation

The core method to analyze such analog circuits is a numerical, SPICE-like
simulation. We partition the descriptive variables of an analog circuit into simulator
input variables, which we call

parameters x 2 R
nx (1)
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Fig. 1 Examples for circuits and systems that are designed on the abstraction level of analog
circuits

and simulator output variables, which we call

performances f 2 R
nf (2)

Hence, simulation maps parameters onto performances

x 7! f (3)

Performances are for instance gain, slew rate, delay, power. Parameters are parti-
tioned into three types,

• design parameters xd 2 R
nxd , as for instance transistor geometries,

• statistical parameters xs 2 R
nxs , as for instance threshold voltages, which model

the statistical manufacturing variations with probability density functions, and
• range parameters xr 2 R

nxr , as for instance temperature, which model the
operating fluctuations with given intervals of values for which the circuit is
specified to work properly.

Circuit simulation of analog circuits has two characteristics:

• It allows the abstraction from the physical level of description to a mathematical
level.

• It is extremely expensive in terms of CPU time.

Hence application-specific optimization methods for circuit optimization need to be
developed that specifically reduce the number of function evaluations during the
optimization process.
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1.2 Circuit Sizing, Constraints, Design Centering

Circuit sizing consists in optimizing the performance values (optimization objec-
tives) by tuning the design parameters (optimization variables) while keeping
constraints satisfied:

min f.xd/ subject to c.xd/ � 0 (4)

Here, we have assumed without loss of generality that performance should be
minimal and constraints should be non-negative. Constraints are capturing basic
design knowledge in form of requirements on geometries and voltages of transistors
and specific transistor groups [3–5, 7, 10]. They are also representing minimum
requirements on the performance values of a circuit. Sizing constraints are crucial
for successful analog sizing.

Circuit sizing is a multicriteria optimization (MCO) problem, and it is a nonlinear
optimization problem. One example of a practicable scalarization of the MCO
problem is a least-squares approach, which aims at given target values, which are
eventually updated during the optimization process:

min
nfX

iD1

�
fi.xd/ � ftarget;i

�2
s.t. c.xd/ � 0 (5)

Manufacturing and operation tolerances can be included by replacing the perfor-
mances in Eqs. (4), (5) with so-called worst-case distances [1, 2, 6], which provide
an x-sigma robustness and yield indicator for each performance and for the whole
circuit. Analog sizing in this case becomes design centering, or, yield optimization.

Figure 2 shows the situation of an operational amplifier before and after
optimization. We can see that the worst-case distances have been improved to at
least 4-Sigma, which is the overall robustness of the circuit.

Several new requirements have emerged in analog sizing. Three of them are
Pareto optimization, discrete parameter values, and aging.

Fig. 2 Design centering of an operation amplifier. Performance, worst-case distance and yield
values before and after optimization
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2 Pareto Optimization

Circuit sizing leads to exactly one optimal trade-off between competing perfor-
mances. Optimal trade-off means that one objective cannot be improved without
degrading another one. However, often a whole set of possible trade-offs is required.
This is illustrated in Fig. 3 (left). Each polytope corner represents one specific sizing
run to one specific Pareto point. Three performances are shown. We can see that and
how the folded-cascode structure of an operational amplifier yields better slew rate
and that and how the Miller structure results in better gain values. Performance space
exploration by means of Pareto optimization thus can contribute to selecting suitable
circuit structures. Another application example is hierarchical sizing, where bottom-
up Pareto optimization provides constraints for higher-level design parameters. This
prevents top-level system optimization from producing unrealistic requirements on
low-level implementations.

We have developed a method for analog Pareto optimization [8, 9, 11–15, 30–33]
that has the following features:

• Pareto front is built successively, first all individual minima, then all two-
dimensional fronts, then all three-dimensional fronts, and so on (Pareto fronts
of dimension n � 1 form borders of Pareto front of dimension n);

• deterministic optimization approach, which combines a goal attainment formu-
lation with a minmax formulation, concurrent search threads exchange interme-
diate solutions, specific SQP solution;

• yield optimization/design centering is included by replacing performance values
with worst-case performance values that refer to a required yield, increased eval-
uation effort is counteracted by a specific “lazy” worst-case analysis approach.

Fig. 3 Left: Comparison of performance spaces of two types of operation amplifiers. Right:
examples of discrete parameters
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3 Discrete Parameter Values

Discrete parameter values are frequently occurring in analog design. Figure 3 (right)
illustrates four examples. For manufacturing reasons, the transistor shapes must lie
on a grid. That means that the values have to be from a discrete set of values.
New technologies like FinFETS just like the usual layout of transistors in terms
of multipliers are discrete in that the sizing refers to a discrete number of fins or
multipliers, not to a continuous space of values. The same holds for integrated
inductors, where the sizing refers to a discrete number of turns or sides.

In fact, any analog sizing parameter is discrete. It is known that continuous
optimization with subsequent rounding does not provide the optimal solution. We
have developed a method for analog optimization with discrete parameters [23–29]
with the following features:

• smooth objective function aiming at satisfying specification bounds;
• solution algorithm combining feasible SQP and Branch-and-Bound approach,

reducing simulation cost by means of SQP model;
• two approaches depending on whether simulation can be done continuously or

only discretely;
• yield optimization/design centering is included by replacing performance values

with worst-case performance values that refer to a required yield, increased eval-
uation effort is counteracted by a specific “lazy” worst-case analysis approach.

4 Aging

Aging is becoming a critical issue in the ultradeep submicron era, even for analog
circuits. We have developed a concept for aging that is based on the concept of
lifetime yield [Fig. 4 (left)], where we analyze the percentage of circuits that work
not only after production (test, fresh yield) but also for a certain age. Our solution
approach [16–22] has the following features:

• fresh yield optimization for given area constraint;
• aging analysis during optimization only for sizing constraints (DC simulation);
• trade-off curve lifetime yield vs. required area [Fig. 4 (right)].

Fig. 4 Left: Yield degrades over lifetime. Right: Area vs. 10-years yield
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Statistical Variation Aware ANN and SVM
Model Generation for Digital Standard Cells

C. Vicari, M. Olivieri, Z. Abbas, and M. Ali Khozoei

Abstract Progressive CMOS technology scaling leads to high increase in statistical
variations, whose impact on circuit performances must be taken into account
already in the design phase. Reliable surrogate models can replace expensive circuit
simulations to statistically characterize the figures of merit of a circuit with a
reduced computational effort. We implemented a software framework which allows
the automatic generation of surrogate models based on machine learning techniques
such as Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs).
These methodologies have been used to generate statistical variation aware models
for leakages and propagation delays of a set of digital standard cells.

Keywords Artificial neural networks • Digital standard cells • Support vector
machines

1 Introduction

Model generation for the circuit behavior is used to speed up analyses or opti-
mizations by performing them on models instead of running circuit simulations.
However, this speed-up is normally obtained at the penalty of less accurate
analysis or optimization results. This error in accuracy depends on the model error.
Generation of reliable models with reduced effort, ensuring model accuracy as high
as possible is one of the challenging tasks especially with the enormous increase in
statistical variations due to technology scaling [5].
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Transistors in circuits behave and interact in a complex manner and make circuit
performances such as propagation delays and power dissipation more and more
sensitive to these process variations [2, 8]. Furthermore, for the generation of a
reliable model, the impact of both the local (mismatch) and global process variations
must be considered thoughtfully. Global variations (e.g. oxide thickness) are chip-
to-chip, wafer-to-wafer or batch-to-batch variations, while local variations (e.g.
threshold voltages) may affect every device in a chip individually [1, 5].

In general, it is difficult to predict the relationship between process variations and
circuit performances whose statistical distributions can be estimated via computa-
tionally expensive Monte Carlo simulations. The huge number of circuit simulations
needed to perform a Monte Carlo analysis can be reduced by creating surrogate
models which approximate the performances of a circuit as function of the statistical
parameters. In these cases, Machine Learning techniques, such as Artificial Neural
Networks (ANNs) [3] and Support Vector Machines (SVMs) [9], are promising
approaches for building surrogate models with a reduced computational effort. The
generation of such kind of models is not trivial and requires several tasks to obtain
satisfactory results.

We have implemented a software framework which simplifies and automatizes
the generation of surrogate models based on ANNs and SVMs for integrated
circuits. We have used these methodologies to generate statistical variation aware
models for leakages and propagation delays of a set of digital standard cells.

2 Model Generation

Figure 1 shows the architecture of the software framework used for the generation
of surrogate models. It is based on WiCkeDTM[7], a widely used EDA software tool
for circuit analysis, modeling and optimization.

Fig. 1 The architecture of framework used to generate the models
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The model generation flows starts from the left upper corner of Fig. 1. Here
WiCkeDTMreceives two primary inputs: (1) a set of transistor level netlists of the
circuits to be modeled and (2) fabrication process information usually contained in a
process design kit (PDK). Each netlist represents a specific analysis to be performed
in order to measure the circuit performances of interest.

WiCkeDTMallows the selection of global and local process parameters and
provides a set of application programming interfaces (APIs) to the other modules
of the framework to execute different actions: running circuit simulations, getting
parameter and performance information, executing sensitivity analyses to remove
the process parameters which have a negligible influence on the performances of
interest. It constitutes a common access to circuit information independently of the
PDKs and simulators used.

The Data sampling module is a collection of methods whose main goal is to
select the points which are representative of the process parameter space and obtain,
for each point, the corresponding values of circuit performances from computer
simulations. Different algorithms can be chosen for sampling the parameter space:
random, regular grid and Latin Hypercube Sampling (LHS) [10] methods. Sample
points and the corresponding simulation results are put together in unique objects
that are used in the model generation phase as training, validation and test data sets.

The Model generation module implements a set of algorithms for the actual
generation of surrogate models. A model can be seen as a black box which
approximates the relationship between a set of input parameters (which in general
are process parameters, but can be also design or operating parameters) and a set of
outputs represented by circuit performances.

For each performance to be modeled a set of SVMs or ANNs are trained with the
same (or eventually different) training set and the generalization error is calculated
by using different error measures (i.e., mean relative error, max relative error, max
absolute error and others). The model showing the lowest error is automatically set
as favorite approximating function for the given performance.

To improve the accuracy, the framework allows the generation of a set of local
models, each valid in a sub-region of the parameter space. When the model is used
to predict the value of a performance corresponding to a point in the parameter space
that falls in a sub-region where a local model exists, the framework automatically
uses the local model for calculating the value of the performance.

Input and output parameters can be transformed using appropriate mathematical
functions to simplify the learning process and a set of model parameters can be
fine tuned to avoid phenomena such as overfitting or underfitting. Transformation
functions, error types and thresholds, model parameters and other settings can be
specified via a configuration module. The type of SVMs and ANNs used are briefly
described in the following sections.
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2.1 Type of Support Vector Machines Used

SVMs are mostly commonly used for binary classifications but there is one branch
of SVM, SVM regression or SVR, which is able to fit a continuous function. We
use �-SVR [11], a support vector formulation for SVM regression. In a regression
problem an SVM is trained with a set of points, .xi; yi/; i D 1; : : : ; l being l the
number of training samples, xi 2 R

N the feature vector and yi 2 R the target output.
The approximate function y D f .x/ is computed as follows:

y D f .x/ D
lX

iD1
. O��i C ��i /k.x; xi/C b�

where ( O��i , ��i ) is the solution of the following quadratic optimization problem:

min
�;O�

� .�; O�/ D min
�;O�

1

2

lX

iD1

lX

jD1
. O�i � �i/. O�j � �j/k.xi; xj/

�
lX

iD1
. O�i � �i/ yi C �

lX

iD1
. O�i C �i/

lX

iD1
. O�i � �i/ D 0; 0 � � � C; 0 � O� � C; i D 1; : : : ; l

where � > 0 and C > 0 are given parameters and k.x; z/ D e.���jx�zj2/ is a radial
basis kernel function. In our work we have set � D 0:0001 and we have determined
the values of C and � via a fivefold cross validation technique. For the training and
evaluation of SVM models we use the library LIBSVM [4].

2.2 Type of Artificial Neural Networks Used

We create ANNs models by using feed-forward neural networks whose structure
is depicted in Fig. 2. In this kind of networks the input signal moves in only one
direction and the output of the network, given by the output of the last layer neurons,
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Fig. 2 The structure of the Artificial Neural Network used

is computed as showed in (1)

y D f .x; �/ D �0 C
HX

hD1
�h˚.x wh/ (1)

where � D .w1; : : : ;wH ; �0; : : : ; �H/ is the vector of network weights, with
wh D .woh; : : : ;wdh/

T for h D 1; : : : ;H and H denotes the number of neurons
in the hidden layer and is a number proportional to the number of training
samples and inputs of the model. x D .1; x1; : : : ; xd/ is the vector of inputs and
˚.x/ D 1 � 2

e2xC1 is the activation function of each hidden unit and vector. Given a
training set, the weights of the networks are estimated via the Levenberg-Marquardt
back propagation method [6].

3 Digital Standard Cells Modeling

We have used the framework to statistically characterize a set of digital standard
cells. We have estimated propagation delays and pattern dependent leakage powers
of a NOT, and 2-inputs NOR and NAND cells as a function of the statistical vari-
ations. Each cell includes nine global process parameters and five local parameters
per single transistor. All the models have been created for a fixed size of the digital
cells and at nominal values of the operating parameters. The fabrication process
information has been accessed from a 40 nm low power (LP) standard threshold
voltage (SVT) CMOS PDK. ANNs and SVMs models have been compared to
Response Surface Models (RSM), a widely used methodology for surrogate model
generation.
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Training data have been generated by using the Latin Hypercube Sampling
algorithm. The total number of process parameters taken into consideration are
19 for the NOT gate and 29 for NOR and NAND cells. Only for leakage models
we have performed a parameter screening by removing all the process parameters
having an influence less than 1 %. In addition a log transformation of leakages has
produced a considerable improvement of models accuracy.

In the following we report the modeling results for each standard cell. We denote
with Ntrain the total number of training samples used to create a given model and
with � error and 	 error the relative errors on the mean and standard deviation of a
test set of 1000 samples.

The terms leakage0 and leakage1 denote the leakage power of the NOT gate
when its input is 0 and 1 respectively, while tPHL and tPLH denote the high-to-low
and low-to-high propagation delays, as shown in Table 1.

Similarly leakage00, leakage01, leakage10 and leakage11 corresponds to input
patterns 00, 01, 10 and 11 in respective 2-input cells, while tPHLA , tPHLB , tPLHA , tPLHB

represent the high-to-low and low-to-high propagation delays for inputs A and B.
Tables 2 and 3 show the results of NOR and NAND cells respectively.

It is obvious from reported results, that ANN and SVM models are able to predict
with sufficient accuracy the given performance figures of digital cells especially
leakages, where RSM models are not accurate enough.

4 Conclusions

We have presented a framework for the generation of statistical aware models
based on machine learning techniques such as ANNs and SVMs. The implemented
methodologies have been used to statistically characterize a set of digital standard
cells from a reduced number of circuit simulations. The obtained models show a
good accuracy for different performances such as propagation delays and leakage
powers.
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The MAnON Project

Methods for Advanced Multi-Objective Optimization
for eDFY of Complex Nano-scale Circuits

Giuliana Gangemi, Carmelo Vicari, Angelo Ciccazzo, and Salvatore Rinaudo

Abstract The nano-CMOS technology scaling makes the figures of merit of a
circuit, such as performance and power, extremely sensitive to uncontrollable
statistical process variation (PV). In this context, multi-objective optimization
algorithms and statistical analysis are essential to ensure stable manufacturing and
secure high foundry yields. The CAD and Design Services group, part of the IPG
R&D in STMicroelectronics, has created a consortium in order to develop, test
and implement “Methods for Advanced Multi-objective Optimization for eDFY of
Complex Nano-scale Circuits”: the MAnON Project. The contribution presents
the industrial and scientific project challenges, the research results, and consequent
methodology enhancements and their implementation into a software prototype in
order to be usable inside a nanoelectronics industrial design environment.

Keywords Multiobjective optimization • Nanoscale circuits

1 Introduction: The MAnON Project

The project MAnON is the joint venture between academies, University La Sapienza
in Rome, the Fraunhofer ITWM (Fraunhofer Institute for Industrial Mathematics)
in Kaiserslautern, one leading edge EDA (Electronic Design Automation) Software
House, which is MUNEDA GmbH, and the semiconductor company STMicroelec-
tronics industry so to create a Transfer of Knowledge between the organizations
in order to pass the mathematical knowledge on multi-objective optimization,
symbolic techniques and numerical statistical simulation on one side, the industrial
design experience, real test cases availability and EDA software modeling skills on
the other.
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The aim of the design activity is to optimize the performances of a circuit,
such as gains, leakages and propagation delays, under all operating conditions and
taking into account the statistical process variations (eDFY). Such an optimization is
done simulating circuit models which are also PV aware. The creation of PV-aware
models with traditional Monte Carlo techniques is very costly and time consuming,
for this reason different methods are used to create such PV aware models.

The Consortium has been built in order to have the necessary multidisciplinary
composure of knowledge and expertise. The activities have been carried as standard
industrial EDA development project.

We have divided the entire research activities in four phases where theoretical
activities of research have been followed by concrete and applied activities making
the researchers exercise the acquired knowledge and skills (learning by doing).
Phase I has included a preliminary study dedicated to the know-how acquisition,
knowledge exchange and training activities of the researchers, these leading to the
specification of the methodological developments. Phase II has started the develop-
ment of the new specific methods and specified their implementation in a prototype
tool and demonstrator, prerequisite of the Phase III where a prototype/demonstrator
has been realized including provision of the test benches. To conclude, in Phase IV,
the verification and validation of the prototype tools and methods is executed. At the
time the present paper is being written the project has completed the development
of the prototype and has begun its validation and benchmarking.

1.1 Methods, Tool and Test Specification

1.1.1 Simulation Challenge

The challenge of the project is to develop behavioral models for the selected test
cases reducing the number and the duration of the simulations necessary to develop
PV aware models (criteria number 2 and 3 in the following “Success Criteria” table)
without having to reduce the number of variables to handle (criterion number 1) or
neglecting the accuracy (criterion number 5), and maintaining the complexity of the
process as much simple as possible (criterion number 4). The Measure of success
set to evaluate the methodology enhancements are summarized in Table 1.

1.2 Methodology Enhancement: Research Development

Academic and industrial state of the art optimization and methods to generate
circuits’ behavioral models have been studied and analyzed on selected industrial
test cases. The research activities started from the analysis of what is currently
the state of art in the industrial design flow for the generation of e-DFY models
and from its limitations. The cases presented, circuit and PDK do not allow the
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Table 1 MAnON success criteria table

Success criteria table

NUM Field of application Target (%)

1 Number of variables managed >20

2 Time requirement <20

3 HW requirement <20

4 Number or steps of complexity <10

5 Accuracy >10

generation of accurate e-DFY models with the EDA tool Wicked which is based
on the Response Surface Methodology (RSM) with an adequate accuracy to meet
nowadays requirements of the design and optimization phase. For this reason, three
new different methodologies have been investigated in this project and the different
pros and cons are reported below. The methodologies taken into account are:

1. A combination of Support Vector Machine (SVM) surrogate models and a
Derivative-free mixed-integer black-box optimization algorithm to be used for
faster circuits yield estimation.

2. The usage of Symbolic Model Order Reduction (SMOR) techniques and Neural
Networks (NN) for reducing the complexity of the system of differential equa-
tions describing the behavior of an integrated circuit, thus reducing drastically
the simulation time.

3. Enhance the RSM models accuracy using RBF (radial basis functions) with
automatic width variation, per function and/or input parameter. In addition,
research into table-based models enabling:

• Run-time check of coverage.
• Incremental model updates.
• Global Process Variation (PV) using interpolated sensitivity matrix.
• Mismatch using interpolated covariance matrix and new performance distri-

butions.

A summary of the new methodologies is shown in Table 2.
We developed the enhancements able to manage a greater number of design

variables (MOS widths and lengths etc. etc.), environment variables (bias Voltage,
temperature, etc. etc.) and process variables (statistically described through Gaus-
sian or uniform distribution), and better performing in terms of time requirements
and maybe in term of needed hardware resources in order to complete the extraction
of the behavioral models. The results of these new methodologies have been
implemented in a SW prototype and demonstrator and is currently being validated
on selected industrial test cases.
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Table 2 Methodology features at a glance

UNIRM ITWM MUNEDA

Method • SVM (Support Vector
Machine)

• Derivative-free
mixed-integer
black-box
optimization
algorithms

• SMOR (Symbolic
Model order
reduction
techniques)

• NN (Neural
Network)

• RBF (radial basis
functions) with automatic
width variation, per
function and/or input
parameter

Benefit • Yield Analysis
Optimization

• Timing enhancements

• Timing
• HW costs
• Extended analysis

by symbolic
handling

• Improved fitting

Longer
term

• Research to extend to
the standard cell
digital flow by
including yield
optimization criteria

• Include dynamics
to data driven
models

• Research into table-based
models enabling:

• Run-time check of
coverage

• Incremental model updates
• Global PV using

interpolated sensitivity
matrix

• Mismatch using
interpolated covariance
matrix and new
performance distributions

With the results obtained on the selected test cases we can state that:

1. the new methodologies are able to manage a greater number of design variables
(MOS widths and lengths etc. etc.), environment variables (bias Voltage, temper-
ature, etc. etc.) and process variables (statistically described through Gaussian
or uniform distribution).

2. the new methodologies are better performing in terms of time requirements and in
terms of necessary hardware resources, in order to complete the behavior models
extraction.

1.2.1 Foreword: Correct Interpretation of the Present Results

For sake of readability we have used the success criteria listed in Table 1 as a
guideline but the information in the current phase of the project has to be interpreted.
The table was made to set up front, at the beginning of the project, some objectives
and tangible measures of success that could also drive the research activities.

In the present paragraph these criteria are used to give a rough measure of the
goodness of the innovative methodologies and to justify the implementation in the
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prototype but its final purpose will be to measure the exercise of the enhanced
methodologies on a large number of tests, activity that will only be possible at
the end of the fourth phase of the project. The main result obtained, up till now, is
that we demonstrated in the documented tests that the NN and SVM methodologies
are as much as accurate as the reference RSM (currently available) and that, case by
case, topology by topology, circuit by circuit each of them offers some advantages
either in time or number of variable that can be taken into account with respect
to the generation time. Said the accuracy is maintained, all these trade-offs taken
into account are enough to justify the implementation of the methodologies in a
prototype, WiCkeD based, that will give the end user, the designer, the combined
and increased advantage to have the possibility to choose the method to generate
the models, according to the circuit or the case study need, altogether reusing the
training set computation time for both methodologies (main gain of time).

1.2.2 Support Vector Machines

The results indicate that the proposed method is able to find a solution for the yield
optimization problem comparable with the solution obtained by the benchmark
WiCkeD, with a reduction in computational effort of the order of 25 % and
fulfilling the success criteria number 2, 3, 4 while we partially enhanced the
number of variables managed, to some extent achieving the success criteria
number 1. Overall it represents a reasonable success which justifies the implemen-
tation in a prototype.

1.2.3 Neural Network

The results of this methodology have been slightly different depending on the test
circuit on which it has been applied. Depending on the shape of the function which
relates the independent variables (design, operating and process parameters) to the
circuit performances, the Neural Networks have performed in some cases better
and in other cases worse than the other modeling technologies. In general we have
noticed that it has shown enhancements with respect to the success criteria
2, 3 reducing the simulation time and with respect to the criteria number 4
maintaining the accuracy with respect the reference methodology. Overall it
represents a reasonable success which justifies the implementation in a prototype.
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1.2.4 Response Surface Model (Behavioral Models Enhancements)

The RSM methodology seems to have reached its limit in term of the MAnON
success criteria, but remains the industrial reference and it has been enhanced by
using RBF (radial basis functions) with automatic width variation, per function
and/or input parameter.

1.2.5 Conclusions: Methodologies Comparison Table

Although our experiments have shown incremental improvements with respect
the reference benchmark, we believe that approaches based solely on a modified
Response Surface Model implementation, or replacing it with Support Vector
Machines (SVM) and Artificial Neural Network (ANN), are not sufficient to
guarantee acceptable results over a large set of industrial test cases. In other words,
improvements on behavioral models algorithms are still useful, but pursuing this
single “attack front” has little chance of practical success. This is mainly due
to the high-dimensionality of the space of input parameters. For this reason, we
have proposed another solution focusing on workflow mechanisms to enable using
behavioral models optimized for speed and flexibility as local interpolators. Local
behavioral models can be created by using the most performing technique, chosen
between RSM, SVM and ANN, for each specific test case.

Table 3 summarizes, with the clauses explained in the foreword the pros and
cons of the different methods that will be made available to the designers within the
MAnON prototype and why we consider valuable to implement such methods in
the prototype. As said above at the end of the project the real enhancement to
the design flow will be provided by the tool itself that shall offer the designer
the possibility to choose the best solution offered by each method according to
the circuit and the question to be solved, reducing the training time.

Table 3 Methodologies success comparison; refer to the foreword for interpretation

Success criteria table

NUM Field of application Target (%) NN SVM

1 Number of variables managed >20 �a

2 Time requirement <20 � �

3 HW requirement <20 � �

4 Number of steps of complexity <10 � �

5 Accuracy >10 b b

aPartially
bMaintained the accuracy of the state of the art methodology used as benchmark
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1.2.6 Additional Methodological Investigation and Test Cases

During the project activities it has been judged valuable by the consortium to add
some investigations to what originally planned. On one side some effort has been
dedicated to the possibility of using Neural Networks for modeling a transient
analysis and on the other side the consortium has looked at extending the MAnON
eDFY methodologies to the digital domain and build a CMOS library as additional
test cases.

Using Neural Networks for Modelling a Transient Analysis
A novel approach based on the combined usage of Neural Networks and Bézier
curves to approximate circuit waveforms obtained from transient analyses of
analogue circuits has been investigated. The proposed methodology allows the
generation of behavioral models that can be used to speed-up the large number of
transient simulations needed for circuit analyses and optimization. The outputs of
such models are not just numerical values of measured performances (spike, settling
time, Vout stabilized) but time dependent functions. The results are very promising
and will set the basis of future research and development activities.

Development of Additional Test Cases
The design of a CMOS standard cell library has been pursued as alternative test
bench for optimization and modelling. The design of the library from scratch has
been chosen to have full control over transistor sizing and technology parameter
variations, for optimization and modelling experiments. The target of this activity
was to set up a circuit test case with strong non-linearity for optimization and
modelling in the context Design for Yield. The circuits have been characterized
in 45 nm technology. Experiments on the optimization of digital standard cells (flip-
flop) taken from the library have been conducted leading to partially successful
results. The application of surrogate model development techniques to the case of
leakage power and propagation delay in the digital standard cell library is currently
in progress.

2 Conclusions

The project is in good shape to achieve the planned final objective and has also
achieved further results:

• The research activities have led to the implementation of the SW prototype that
will offer the end user, the designer, the combined and increased advantage to
have the possibility to choose the method to generate surrogate models, according
the circuit or the case study need, altogether reusing the training set computation
time for both methodologies (main gain of time).
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• Additional research work has demonstrated the Neural Network methodology
can be used to create a circuit model within the time domain still reducing the
simulation time. The results are very promising and will set the basis of future
research and development activities.

• We have extended the MAnON eDFY methodologies to the digital domain
and built a CMOS library as additional test cases with strong non-linearity for
optimization and modelling in the context of Design for Yield. The circuits have
been characterized in 45 nm technology and experiments on the optimization and
modeling of digital standard cells (flip-flop) taken from the library have been
conducted leading to partially successful results.



Waveform Modelling in Order to Speed Up
Transient SPICE Simulations

Mohammed Ali Khozoei, Matthias Hauser, and Angelo Ciccazzo

Abstract The production of semiconductor integrated circuits is very complex and
expensive. Therefore, it is essential to verify the designed circuits before they are
fabricated. Due to the process variations, nanoscale circuits have to be simulated
many times during the design flow. This kind of analysis can be very expensive
because of their complexity and the high number of simulations. For this reason
the semiconductor industry is deeply interested in using less complex but accurate
models to speed up time consuming SPICE simulations.

This contribution presents a method that creates a compact model, which replaces
a semiconductor integrated circuit or sub circuit to significantly reduce the transient
simulation time.

Keywords Nanoscale circuits • Semiconductor integrated circuits simulations

1 Introduction

The simulation of semiconductor integrated circuits can be very challenging [5, 7].
Depending on development status of the circuit in the design flow, there exist
different targets. Without loss of generality, we consider here the following two
cases:

1. In the design centering [2] step, analogue circuits are simulated many times
during their design flow, e.g. to find the design parameter values that optimize
the production yield. In such situations the values of several circuit parameters
are adapted and the resulting waveforms of some circuit outputs are verified. Here
a speed up of the simulation can be realized by replacing the analogue circuit by
approximations of these waveforms.

M.A. Khozoei • M. Hauser
Fraunhofer ITWM, Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany
e-mail: mohammed.ali.khozoei@itwm.fraunhofer.de; matthias.hauser@itwm.fraunhofer.de

A. Ciccazzo (�)
STMicroelectronics Srl, Stradale Primosole 50, 95121 Catania, Italy
e-mail: angelo.ciccazzo@st.com

© Springer International Publishing AG 2016
G. Russo et al. (eds.), Progress in Industrial Mathematics at ECMI 2014,
Mathematics in Industry 22, DOI 10.1007/978-3-319-23413-7_59

437

mailto:mohammed.ali.khozoei@itwm.fraunhofer.de
mailto:matthias.hauser@itwm.fraunhofer.de
mailto:angelo.ciccazzo@st.com


438 M.A. Khozoei et al.

2. In case that the circuit contains a set of sub circuits, the complexity of each sub
circuit has a lasting effect on the simulation time. Replacing some of the sub
circuits with simplified models that approximate the sub circuit’s output signals
also leads here to a significant speed up.

In this paper we will present a method to create simplified models of non-linear
dynamic systems with the use of artificial neural networks and Bézier curves.
These models are able to approximate the time domain behaviour of the non-linear
dynamic systems and reduce the effort for their simulations.

First of all a short introduction in Bézier curves is given. Then the field of
application of the method is defined. And finally the method itself and its application
to a modern analogue circuit is presented.

2 Quadratic Bézier Curves

A quadratic Bézier curve [6] is a parametric function defined by three control
points P0, P1 and P2:

B.t/ D .1 � t/2 P0 C 2t.1 � t/ P1 C t2 P2; t 2 Œ0; 1� (1)

In the case B.t/ is given, the points P0 D B.0/ and P2 D B.1/ are the endpoints of
the curve while P1 is unknown. Considering its derivative

B0.t/ D 2.1� t/.P1 � P0/ C 2t.P2 � P1/; t 2 Œ0; 1� (2)

we can conclude that P1 is the intersection of the tangents at the endpoints P0 and
P2. Hence, any quadratic Bézier curve is uniquely defined if all the three control
points or if the endpoints and their corresponding tangents are given (Fig. 1).

Fig. 1 The Bézier curve that represents the graph of the function f .x/ D x � 3
4
x2; x 2 Œ0; 4

3
� is

defined by the control points P0; P1 and P2. P1 is the intersection of the tangents T0.x/ and T1.x/
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3 Modelling

Given an analogue circuit, its transient output signals depend on several circuit
parameters, like supply voltages or resistor values. We call these parameters input
variables. The goal is now to find a simplified model for the functions that map
the input variables to the corresponding transient output signals. Therefore we first
define these functions and their approximations.

Definition 1 Let Qn be the number of input variables and X � R
Qn be the set of their

values. Then f .t; Xk/ is the continuous function of the transient output signal of
the circuit for a given set of the input variables Xk 2 X in the time range ŒT0; T1�.

Definition 2 For a function f .t; Xk/ and an approximation error "0 > 0, S f
k is the

set of On 2 N quadratic Bézier curves Bi.
/ given by the control points fPi
0; Pi

1; Pi
2g:

S f
k WD fBi.
/ j 
 2 Œ0; 1�; i 2 f1; : : : ; Ong; Bi.0/ D f .ti�1; Xk/;

Bi.1/ D f .ti; Xk/; ti 2 ŒT0; T1�; t0 D T0; tOn D T1g
for all Xk 2 X.

such that for the parametrization functions 'i W Œti�1; ti� ! Œ0; 1� hold that

j f .t; Xk/ � G.Bi.'i.t/// j < "0; Bi.
/ 2 S f
k ; t 2 Œti�1; ti�

G W R
2 ! R

G.Œx; y�/ D y

Furthermore C f
k is the set of control points of S f

k :

C f
k D ffPi

0; Pi
1; Pi

2g j control points of Bi.
/ 2 S f
k g

Note that S f
k approximates a function f .t; Xk/ piecewise by Bézier curves. The

output signal of an analogue circuit can be approximated if it can be described by a
function f .t; Xk/ so that the set S f

k exists.

Definition 3 Let FQX D f f .t;Xk/jXk 2 QX � Xg be given. We call FQX a qualified
set if there exists an 0 < " 2 R and a function g W C � X ! C such that for any
functions f .t;Xk/; f .t;Xl/ 2 FQX the following conditions are valid:

1. jS f
k j D jS f

l j
2. k g.C f

k ;X
l/ � C f

l k � "

with C D S
C f

k for all Xk 2 X. Furthermore, we call the functions f .t;Xk/ and
f .t;Xl/; t 2 ŒT0;T1� similar.
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Fig. 2 Diagram of the model generation and its application for transient simulation

3.1 Modelling Assumptions

For modelling the transient behaviour of an output signal of an analogue circuit,
we assume that the input variables are known and the corresponding output
function f .t; Xk/ can be approximated by a set S f

k , as defined in Definition 2.
Furthermore we assume that the set f f .t; Xk/ j 8 Xk 2 Xg can be split into

n qualified sets so that for each subset a separate model can be created and combined
afterwards.1 Without loss of generality, we assume in the next sections that the
waveforms of a circuit’s output are similar for all Xk 2 X.

3.2 Generation of the Neural Network

Figure 2 shows an overview of the algorithm of the model generation presented in
this section and its application.

The goal of the developed algorithm is the generation of a set of Bézier curves S f
k

for any given input set Xk 2 X that approximates f .t; Xk/ sufficiently accurate. The
idea is to use a neural network [3, 8, 9] that generates the set of control points C f

k ,
which defines S f

k .
To train the neural network, a training set is needed. It should contain a learning

plan and the corresponding neural network’s output values, which will be evaluated
by the neural network for any valid inputs.

A learning plan L contains informative samples L D fXkj k 2 f1; : : : ; nTgg � X
from the input space X. There are different methods like latin hypercube [4] to
generate a meaningful sampling of the input space X. The choice of such a sampling
method strongly depends on the demands of the machine learning method [10].
To evaluate the learning plan, the analogue circuit has to be simulated nT times to
determine the set of the transient curves FL D f f .t; Xk/ j Xk 2 L; t 2 ŒT0;T1�g.

1This is used in the example presented in Sect. 4.
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3.2.1 Definition of the Training Set

We already assumed that the waveforms of the circuit’s output are similar for all
inputs Xk 2 X. Now, we need to define the neural network so that the segments of
S f

k for all Xk 2 X can be generated from its outputs. First of all, we need to know
how many Bèzier segments are contained in S f

k and where the endpoints of these
segments are located. Therefore, one of the output functions f .t; Xp/ 2 FL, that has
the typical shape for the functions in FL, is chosen as a pattern. This function
f .t; Xp/ is then approximated by a set of Bézier curves with their control points
C f

p for a predefined error "p
0. The fitting itself is done by a trial and error method.

The characteristic of the set S f
p defines the number of Bézier segments On, and other

degrees of freedom, e.g. the locations and tangents of the control points.
If the neural network is trained so that its outputs estimate the coordinates of the

control points, the neural network has up to 4On C 2 outputs. Since the control points
Pi

1 are not on the Bézier curves, their estimation and verification is difficult.
Instead of this we use the tangents of the endpoints to evaluate the control

points Pi
1, as described in Sect. 2. Therefore, we determine the endpoints of the

segments such that the gradients of their tangents have the minimal variation over all
functions in FL. In this case the neural network has up to 3On C3 outputs. Especially,
note that the gradients of the tangents will not change if the corresponding Bézier
segment is only shifted for all Xk 2 L. Finally the training set will be created by
saving the samples L, the endpoints of Bézier segments and the gradient of their
tangents for all S f

k ;X
k 2 L. In some cases the effort of training the network can

be reduced if the training set contains an output parameter that is constant over all
Xk 2 L. In these cases, the corresponding value can be imported from the pattern
during the waveform approximation for any input Xl 2 X. With this, the neural
network’s training set is defined.

3.2.2 Training of the Neural Network and Further Improvements

The neural network is trained by the described training set. Please note that the
pattern has a significant influence on the accuracy of the model. If the created model
is not sufficiently accurate, choosing a new pattern may increase the model perfor-
mance considerably. Fortunately this can be done without any new simulations of
the original circuit and depending on the output function’s complexity the training
of the new model is run in a short time.

Furthermore depending on the considered waveforms, it is sufficient to use linear
Bèzier curves to model certain segments. This reduces the degrees of freedom and
thus the number of the outputs of the neural network.

Please note that the model for the endpoint Pi
2 of the segment i can be enhanced,

if we use Pi
0 as additional input of the neural network. Adding more already known

points as inputs is also possible, but then more training samples and consequently
more simulations of the circuit are needed to train this extended neural network.
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In general, other characteristics of the original output curves can be used for
increasing the quality of the approximating Bèzier curves. This means, if there is a
function h mapping the characteristics D f

k to the control points C f
k , it can be used to

recover S f
k by its control points C f

k D h.D f
k /, where D f

k is the result of the neural
network for a given input set Xk.

4 Application of the Method on an Industrial Analogue
Circuit

In this section, we present the application of the described method in the industrial
environment. Therefore, STMicroelectronics Catania provides a voltage reference
device, which has four different output voltage levels (0, 4, 4.5 and 5 V). The output
voltage can be switched between the levels after a settling time. Except for 0 V,
switching the output voltage to other levels causes an overshoot or undershoot,
which has to be approximated by the model. Therefore the output levels 4 and 4.5 V
are approximated by two models each and the output level 5 V can be approximated
by one model. To generate these five models, the program Design [8] provided by
Fraunhofer ITWM [1] is used to train the neural networks. The training plan contains
200 samples of the parameters’ space given in the Table 1. For the simulation within
the Spectre Circuit Simulator, the device is replaced by a Verilog-A code, which
computes the respective Bèzier segments. Table 2 shows the number of the segments
and neural network outputs for each model.

Table 1 Parameters ranges for the training of the neural network

Load capacity C0 Biasing current Ipp Biasing voltage Vpp

Lower boundary 10 pF 1.75�A 6.8 V

Upper boundary 40 pF 2.25�A 7.2 V

Table 2 Models’ information

Level Segments Endpoints (neural network) Slopes (neural network)

5 V overshoot 15 16 (32a, 26b) 16 (16a, 4b)

4.5 V undershoot 16 17 (34a, 27b) 17 (17a, 7b)

4 V overshoot 19 20 (40a, 34b) 20 (20a, 5b)
aThe maximum number of the required outputs of the neural network
bThe actual number of neural network’s outputs. The pattern will be used to define the values that
are not given by the neural network
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Fig. 3 Using Bézier segments to approximate the output waveforms of a voltage reference device

To compute the waveform in a given time range, De Casteljau’s algorithm2 is
used. Figure 3 compares the generated output waveforms of the models with the
transient simulation results of the analogue circuit.
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Yield Optimization in Electronic Circuits Design

Angelo Ciccazzo, Gianni Di Pillo, and Vittorio Latorre

Abstract In this work we propose an approach that combines a Support Vector
learning Machine with a Derivative-Free black box optimization algorithm in order
to maximize the yield in the production of electronic circuits. This approach is
tested on a circuit provided by ST-Microelectronics, to be employed in consumer
electronics. The results of the approach are compared with the results of WiCkeD,
a commercial software largely used for integrated circuits analysis.

Keywords Derivative-free optimization • Electronic circuits • Support vector
machines

1 Introduction

In recent years there is a great increase in the complexity of digital integrated
circuits, with the number of components in a single circuit doubling every year.
Therefore the issues coming from scaling the devices dimensions to nanometer
size become more and more difficult to handle. Some major challenges in the
manufacturing process come from parametric variations such as intra and inter
die variation of channel length, oxide thickness and doping concentration. These
variations have a deep impact on the circuit performances which must satisfy given
specifications.

A circuit model must be tested in several ways during the design phase so
that there is an high probability that the final manufactured circuits satisfy the
specifications. These tests are generally performed with time-consuming circuit
simulations. Therefore there is a great interest in developing methods capable of
performing reliable analysis with the use of less simulations as possible.
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In this paper we use a particular kind of learning machine, the Support Vector
Machines (SVM) as surrogate model for the circuit simulations [3] and an efficient
derivative free (DF) mix-integer optimization algorithm [6] in order to perform
this analysis. Surrogate models have been used to approximate circuit performance
evaluations [1, 4, 5], and in this work the SVM is used to perform a Montecarlo
(MC) analysis that can be used, for a specific design choice, to calculate the yield,
that is the probability that a circuit satisfies its specifications. Then the DF algorithm
is used in order to maximize the yield. A similar approach has been used in [2] where
instead of a MC analysis a robust design using a different derivative free algorithm
has been implemented. Our results are compared with the results obtained by using
the commercial software WiCkeD,1 widely popular in the electronic industrial
sector. The comparison is performed using as a test case an actual DC-DC converter
circuit designed and produced by ST-Microelectronics.

2 Problem Definition

Circuit variables can be divided into three different classes:

• Design Variables xd: these variables represent the geometrical dimensions of the
components in the circuits (e.g. channel widths and lengths);

• Operating Variables xo: these variables model operating conditions (e.g. supply
voltage and temperature);

• Statistical Variables xp: these variables are usually subject to uncertainty due to
fluctuations in the manufacturing process and are generally modeled by Gaussian
or Uniform Distributions (e.g. oxide thickness, threshold voltage and channel
length reduction).

The variables xd; xo; xp are vector variables of suitable dimensions.
In the manufacturing processes the electronic devices are produced in series,

but each device is not the same in terms of electrical performances. This brings
to the uncertainty in the circuit manufacturing process modeled by the Statistical
Variables xp. Another source of uncertainty are the conditions in which the circuit
should operate after the production. These conditions as the working temperature
and the supply voltage, are considered in the Operating Variables xo. During the
yield optimization process the Operating Variables xo are set to their worst cases,
that is the most unfavorable values of these variables for the circuit performances.

The Statistical and Operating Variables are not under the control of the circuit
designer. The only variables that can be manipulated in order to improve the circuit
performances are the Design Variables xd. Therefore these variables are manipulated
during the optimization process. The Design Variables have some lower and upper

1MunEDA inc, WiCkeD, a Tool Suite for Nominal and Statistical Custom IC Design.
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bounds that they cannot exceed, and that are modeled with box constraints in the
optimization process:

lkxd
� xk

d � uk
xd

for k D 1; : : : ; n;

where n is the number of design variables.
The outputs of the circuit design process are the Performance Features

pi.xd; xo; xp/ for i D 1; : : : ;m, where m is the number of performances. The
Performance Features are quantities that represent the behavior of the circuits such
as: delay, gain, phase, margin, slew rate, etc. The Performance Features must satisfy
given constraints for a circuit to be in full working order. Usually these constraints
are upper and lower bounds on the values of the performances:

li � pi.xd; xo; xp/ � ui for i D 1; : : : ;m: (1)

The problem we aim to solve is the Performance Centering Problem for Yield
Optimization. For the Performance Features, we aim to manipulate the Design
Variables so that there is an high probability that the produced circuits are in full
working order with the Operating Variables at their worst cases and despite the
variations of the Statistical Variables.

3 Proposed Methodology

We assume that before the optimization process the values of the Operating
Variables xo are given at the worst cases. From Eq. (1) it is possible to notice that
there are 2m constraints on the Performances. The worst cases conditions for the
Operating Variables are associated with the constraints on the Performances, that
is a worst case for every constraint on the performances. Therefore there are 2m
worst case conditions in the yield optimization problem. It is assumed that if the
Performance Specifications are satisfied at the worst cases, they are satisfied for any
other values of the Operating Variables.

As we said in the introduction, the goal of the Yield Optimization is to maximize
the yield (i.e. the percentage of manufactured circuits that satisfy the Performance
Specifications when varying Statistical Variables).

Given the Design Choice Qxd and the values of the Operating Variables at the worst
cases Qxo, let:

Ap D fxp j l � p.Qxd; Qxo; xp/ � ugI

then the yield Y can be formally defined as:

Y D
Z C1

�1
: : :

Z C1

�1
ı.xp/ � pdf .xp/ � dxp D Efı.xp/g
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where

ı.xp/ D
(
1; xp 2 Ap

0; otherwise;

and pdf .xp/ denotes the probability density function of the Statistical Variables.
An estimator for the expectation value is:

OY D OEfı.xp/g D 1

ns

nsX

�D1
ı.x.�/p / D nok

ns
;

with x.�/p ; � D 1; : : : ; ns normally distributed sample elements. Therefore,
the estimator is given by the number of the sample elements which satisfy the
specifications nok divided by the total number of elements in the sample ns.

One approach to maximize the yield consists in randomly generating a certain
number of circuits simulations through a MC analysis varying the values of the
statistical variables and minimizing the violation of the specifications in all the
considered operating cases. In particular l D 1C2m cases are considered, that is the
worst cases conditions plus the typical condition (temperature 27 ıC, supply voltage
2:3V). For each of these l working conditions a Montecarlo analysis is generated.
Therefore the problem that is solved is:

min
xd

nsX

�D1

lX

jD1

mX

iD1

˚
maxf0; li � pi.xd; Nxo;j; Nx.�/p /g C maxf0; pi.xd; Nxo;j; Nx.�/p /� uig

�

s:t: lkxd
� xk

d � uk
xd

for k D 1; : : : ; n:
(2)

The main drawback of this approach is that a large number of time consuming
simulations must be performed in order to realize a reliable MC Analysis on the
Statistical Variables.

Our approach consists in using the SVM as surrogate model for the simulations
in the MC Analysis. In detail, every time the objective function has to be evaluated,
the simulator generates a set of input-output samples used as training set for the
SVM. Once the SVM has been generated, it is used as surrogate model to generate
a Montecarlo with a large number of points that approximates the yield.

The generation of the surrogate model via SVM is explained in detail in [3].
Furthermore it can be easily noticed that the objective function in (2) is non-smooth,
therefore it is approximated by a zero-norm type of objective function and the
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following DF problem is solved:

min
xd

nsX

�D1

lX

jD1

mX

iD1

n
log

�
maxf0; li � pi.xd; Nxo;j; Nx.�/p /g C �

�C

log
�
maxf0; pi.xd; Nxo;j; Nx.�/p /� uig C �

� o

s:t: lkxd
� xk

d � uk
xd

for k D 1; : : : ; n;

(3)

where � is a positive parameter close to zero.

4 Results

We present the results obtained using as a test case the DC-DC converter for
AMOLED display panels shown in Fig. 1. In this circuit it is relevant the delay
between the time the signal to turn on/off the circuit is sent and the time the circuit
is actually turned on/off. The longer the difference between these delays is, the more
the power losses increase. Hence, this circuit has three performances, Delay 1 (on),
Delay 2 (off) and Delay S (symmetry). The performance we are most interested in
is the Delay S that represents a measure of the overall efficiency of the circuit. The
problem has eight Design Variables, nine Statistical Variables and two Operating
Variables, the supply voltage and the temperature. The worst cases for Delay 1 and
Delay 2 coincide both at the upper bound and the lower bound. This means that
there are a total of l D 5 values for the Operating Variables, one at typical condition
and four for the worst case conditions.

The tests have been performed at ST-Microelectronics headquarter in Catania on
a computational grid with more than 800 processors. This brings a further challenge
in measuring the goodness of the results. As a matter of facts the processors used
for the simulation are chosen according to the load on the grid and the different
processors cannot be expected to have the same performances. Consequently using
the time needed for a run to be completed to measure the speed of the computation
is not a viable option. Therefore we will use the total number of simulations needed
in a run to measure the speed of the computation, as the simulations are considered
the principal computational load of the procedure.

Once the optimization procedure is completed, we test the obtained optimal
values for the Design Variables with four 250 points Montecarlo generated through
simulations in every worst conditions, for a total of 1000 points. In Table 1 we report
the yield for the final Montecarlo analysis obtained in the worst cases for the three
performances, using WiCkeD and the proposed method, together with the values of
the operational parameters in the worst cases. The total yield is calculated as the
percentage of circuits that satisfy all the three performances at the same time. From
these results we observe that, as concerns the yield, the two methods are able to get
comparable results. WiCkeD is substantially superior for what concerns the Delay 1
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Table 1 Comparisons of the results between the proposed method and Wicked

Specification Temp. Voltage Yield wicked (%) Yield SVM-DF (%)

Delay 1 lower 120 2.3 100 100

Delay 1 upper 120 4.8 94.30 89.50

Delay 2 lower 120 2.3 99.20 100

Delay 2 upper 120 4.8 96.20 94.90

Delay S lower �40 2.3 100 100.00

Delay S upper �40 4.8 96.60 100.00

Total yield 91.40 89.30

Total simulations 11,000 8600

Upper and a has slightly better performance for the Delay 2 Upper, while SVM-DF
fares better for the Delay 2 Lower and the Delay Symmetry Upper. The difference
in performance between the two methods in the Delay 1 Upper case influences the
total yield making WiCkeD superior. On the other side, the performance we are most
interested in is the Delay Symmetry. Therefore the solution obtained by the SVM-
DF is better from a design point of view because it reaches the 100% of Delay
Symmetry.

From the point of view of computational burden, the proposed method generates
100 circuit simulations every iteration in order to train the SVMs and the stopping
condition for the optimization algorithm occurs after 86 function evaluations, for
a total of 8600 simulations. On the other hand WiCkeD takes 11,000 simulation
to find the results in Table 1. All simulations are done using the ELDO simulation
software [7].

In conclusion these preliminary results indicate that the proposed method is able
to find a solution for the yield optimization problem comparable or even slightly
superior with the solution obtained by the benchmark WicKeD, with only the 75%
of computational cost.
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Numerical Sensitivity Analysis for an Optimal
Control Approach in Semiconductor Design
Based on the MEP Energy Transport Model

Concetta R. Drago and Vittorio Romano

Abstract An optimal control approach based on the adjoint method for the design
of a semiconductor device is considered. A consistent energy transport model, free
of any fitting parameters, formulated on the basis of the maximum entropy principle
(MEP) is used as mathematical model. The robustness of the optimal control
approach is verified by a numerical sensitivity analysis, performed by introducing a
Gaussian noise in the reference doping profile.

Keywords Maximum entropy principle • Optimal control • Semiconductor
design • Sensitivity analysis

1 Introduction

One of the main objectives in optimal semiconductor design is to get an improve-
ment in the current flow at a specified Ohmic contact of the device, for a fixed
applied voltage, via a modification in the doping density profile. Recently the
problem of optimal control in semiconductor design was tackled by using the adjoint
calculus, see [1–4], where an optimal control approach have been presented for the
drift diffusion model. In [5–8] the same optimal control approach was extended
to the classical Stratton energy transport model. Energy-transport models [9] take
into account also the thermal effects of the electron flow inside the semiconductor
devices. Usually they are based on phenomenological constitutive equations for the
particle flux and the energy-flux, depending on a set of parameters which are fitted
to homogeneous bulk material Monte Carlo simulations. In [10–12] a model free
of any fitting parameters has been developed for the electron transport in silicon,
where the parameters appearing in the constitutive laws are directly related to the
collision operators of the semiclassical Boltzmann transport equation for electrons
in semiconductors. Such an approach, based on the maximum entropy principle
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(hereafter MEP), takes into account all the relevant scattering mechanisms in silicon,
i.e. scattering of electrons with acoustic and non-polar phonons and with impurities.

The extension to MEP energy transport model of the optimal approach was
investigated in [13] (for an approach based on evolutionary algorithms see [14]). In
this paper a sensitivity numerical analysis is performed by introducing a Gaussian
noise in the reference doping profile. The results show the robustness of the method.

2 MEP Energy Transport Model

The energy transport model, obtained for semiconductor in [12] starting from the
hydrodynamical model based on the maximum entropy principle [10, 11], is given in
the stationary case by the following set of balance equations for the electron density
n and energy W, coupled with the Poisson equation for the electric potential �:

div.nV/ D 0; div.nS/ D nqV � r� C nCW (1)

div."r�/ D q.n � C/: (2)

C is the doping profile, which depends only on the position x, q is the (positive)
elementary charge, � is the dielectric constant. The system is closed with the
following constitutive relations for the velocity V and the energy-flux S [15, 16]

J D nV D c22
D

r.nU/� c12
D

r.nF/� q�Wnr�
hc22

D
U � c12

D
F
i
; (3)

H D nS D c11
D

r.nF/� c21
D

r.nU/� q�Wnr�
hc11

D
F � c21

D
U
i

(4)

where J is the electron current density and H the energy-flux density. Here D D
c11c22 � c12c21. All the coefficients cij and the functions U, F depend on the
energy W. We define ˛.W/ D c22

D U � c12
D F and ˇ.W/ D c11

D F � c21
D U: The

energy production term has a relaxation form CW D � W�W0


W
, where 
W is the

energy relaxation time, which depends also on W, and W0 D 3
2
kBTL is the energy

at equilibrium. TL is the lattice temperature, here assumed to be constant. The
expression of U, F, CW , cij have been obtained in [10, 11] both for the parabolic band
and Kane’s dispersion relation. Finally �W is the Lagrangian multiplier associated
to the energy W. For more details regarding the model we refer to [10–12, 17].

System (1) and (2) has to be supplemented with suitable boundary conditions.
We assume that the boundary @˝ of the domain ˝ splits into two disjoint parts �D

and �N , where �D represents the Ohmic contacts of the device and �N represents
the insulating parts of the boundary. Let � denote the unit outward normal vector



Numerical Sensitivity Analysis for an Optimal Control Approach 457

along the boundary. We will consider the following mixed boundary conditions:

n D nD; rW � � D 0; � D �D on �D; (5a)

rn � � D rW � � D r� � � D 0 on �N : (5b)

Here nD and �D are the H1.˝/-extensions of fixed functions defined on �D.

3 Design Problem and Analytical Setting

The design objective we investigate consists in adjusting the current I D R
�0

J � d�
at some given Ohmic contact �0 � �D via a change in the reference doping profile
NC. At the contact �0 the desired current Ig is prescribed and deviations of the doping
profile from NC are allowed in order to achieve this current flow. In other words the
minimization of cost functionals of the form

F�1;�2.n;W; �;C/ D �1

2

�Z

�0

J � d� � Ig

�2
C �2

2

Z

˝

jr.C � NC/j 2dx; (6)

is considered, where �1 and �2 are nonnegative balance parameters. C enters as
a source term in the MEP energy transport model, which can be interpreted as
a constraint to the minimization problem, determining the current I by the state
variables .n;W; �/. In the following we set Ig D 1:5 � NI.

We can rewrite (1) and (2) as f .n;W; �;C/ D 0, where the nonlinear mapping
f W X � C ! Z� is defined by

f .n;W; �;C/
defD
0

@
div J

divH � qJ � r� � nCW

div.�r�/� qn C qC

1

A : (7)

Altogether, this yields the constrained minimization problem

min
X�C F�1;�2 .n;W; �;C/ subject to f .n;W; �;C/ D 0 and the boundary condition (5):

Here X D .n;W; �/ D yD CX0 is the state space with yD
defD .nD; 0; �D/ denoting the

boundary data, and X0 D H1
0.˝[�N/�H1

0;@˝.˝[@˝/��H1
0.˝ [ �N/ \ L1.˝/

�
,

equipped with the norm kykX0
defD knkH1.˝/ C kWkH1.˝/ C k�kH1.˝/ C k�kL1.˝/.

Z
defD ŒH1.˝/�3 is the set of the co-states while C is the set of the admissible controls

given by C D fC 2 H1.˝/ W C D NC on �Dg.
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4 First-Order Optimality System

The first-order optimality system is derived by using the Lagrangian L W X � C �
Z ! R associated to the minimization problem

L .n;W; �;CI�1; �2; �3/ defD F�1;�2 .n;W; �;C/C
Z

˝

�1 divJ dx C
Z

˝

�2 divH dx

�q
Z

˝

�2 J � r� dx �
Z

˝

�2 nCW dx C
Z

˝

�3 div.�r�/ dx � q
Z

˝

�3 .n � C/ dx

where � D .�1; �2; �3/ 2 Z are the lagrangian multipliers arising from the
constraints (1) and (2) . Thus the first order optimality system is given by

r.y;C;�/L .y;C; �/ D 0: (8)

The variations of L with respect to � yield the state equations f .y;C/ D 0 itself,
while the variation with respect to the state variable y D .n;W; �/ leads to the
co-state equations (see [13] for the details) subject to the boundary conditions:

�1 D �1

�

�
Z

�0

J � � C Ig

�

on �0I �1 D 0 on �D n�0I r�1 �� D 0 on �N

(9)
�2 D �3 D 0 on �D and r�2 � � D r�3 � � D 0 on �N (10)

Moreover taking variation of L w.r.t the control C 2 C leads to the optimality
condition given by:

�24.C � NC/ D q�3 (11a)

along with the boundary conditions

C D NC on �D; rC � � D r NC � � on �N : (11b)

Thus the first-order necessary optimality condition (8) consists of the state equations
(1) and (2), the adjoint system and the optimality conditions (11).

5 Numerical Method

For the solution of (3), we will adopt the following steepest descent gradient
algorithm: (1) choose C0 2 C ; (2) for k D 1; 2; : : : compute Ck D Ck�1 �
�k OF0.Ck�1/. OF.C/ defD F.y.C/;C/ denotes the reduced cost functional, where y D
.n;W; �/ stands for the state variables and OF0.C/ is the Riesz representative of its
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first variation. The evaluation of OF0.C/ requires the solution of the nonlinear state
system (1) and (2) for the state variables .n;W; �/, as well as a solution of the linear
adjoint system for �, and finally solve a linear Poisson problem (11) to get the
correct Riesz representative.

In the following simulations we have used a constant value for the parameter �k,
which has revealed promising for the overall performance of the algorithm.

In [13] numerical results are shown for the one-dimensional nC-n-nC diodes.
The semiconductor domain is given by the interval ˝ D .0;L/, with L > 0. As
reference doping profile a step–wise function is taken

NC.x/ D
8
<

:

NCD x 2 Œ0; .L � Lc/=2�

ND x 2�.L � Lc/=2; .L C Lc/=2Œ

NCD x 2 Œ.L C Lc/=2;L�

where Lc is the channel length and NCD D 1018 cm�3, ND D 1016 cm�3 are the high
and low doping concentrations, respectively. The length of the nC-regions is 0.1�m.
For the channel length the following cases were considered: 0.4 and 0.2�m.

As boundary conditions we imposed that the density equals the doping and set
the voltage equal to zero and to the bias voltage on the right and left boundaries,
respectively. Concerning the energy we impose homogeneous Neumann condition
at the edges of the device [16]. We set the parameters �1 D 1V ps and �2 D
10�20 eV�m5/ ps and take a constant step-size �k D 10�3. The iteration stops when
the difference of two consecutive iterates over the last iterate is below some specified
threshold we have taken equal to 0:001.

The state system has been discretized by a variant of the well-known exponen-
tially fitted Scharfetter–Gummel scheme [16]. The computation has been performed
on a uniform grid of 120 and 96 intervals, respectively for the 0.4�m and the 0.2�m
channel length case. The numerical values of the physical parameters used in the
numerical simulations are those in [16].

6 A Sensitivity Analysis

In order to assess the robustness of the proposed optimization method even in the
case where there may be a loss of regularity, we introduce a Gaussian noise in the
reference doping profile with zero mean and standard deviation equals to 0:1.

In Figs. 1 and 2 we report the results obtained for the 0.4 and 0.2�m channel
length cases. Although the irregularity in the doping profile, the numerical approach
has proved very efficient and stable. Moreover also a diffusive effect has been
included, by replacing the stepwise function used in the previous section for C.x/
with the following regularization

C.x/ D C0 � d0
�

tanh
x � x1

s
� tanh

x � x2
s

�
;
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Fig. 1 Optimized doping profile, evolution of the cost functional, electron mean velocity, electron
density, energy and electric field for a biasing voltage of 1 V and a channel of 0.4�

where C0 D C.0/, d0 D C0

�

1 � ND

NC

D

�

=2, x1 D 0:1�m, x2 D x1 C Lc. The

parameter s gives a measure of the diffusion of the dopants into the crystal and
produces a change of the channel length, influencing the values of the current.

The value s has been randomly generated according to a Gaussian distribution
in samples of 20 elements. In Table 1 we report the results obtained for a channel
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Fig. 2 Optimized doping profile and electron density. The qualitative behavior of the other
variables are as in Fig. 1

Table 1 Current mean values and standard deviations for Gaussian noise introduced into the
reference doping profile

Noise mean Noise standard deviation Current mean value Current standard deviation

0:001 0:001 1;268;949:2178 2867:4900

0:001 0:01 1;345;523:8898 78;239:9692

0:001 0:1 15;245;077;447:3599 123;470:9579

length of 0.25�m, by varying the mean and the standard deviation. As expected the
larger is the standard deviation, the larger is the spread of the current.
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Short Description

Coupled problems usually arise in electrical engineering problems, if multiphysical
effects have to be addressed. These problems consist of systems of ordinary differ-
ential equations, differential-algebraic equations and partial differential equations,
which are linked via source terms and boundary conditions. To be feasible, the
simulation has to be tailored to the coupled structure of the problem, exploiting
the different activity levels in the different sub systems. One idea, discussed in the
contribution by Hachtel et al., is to combine the ideas of model order reduction
with multirate time integration. This work is part of structured research program
KoSMos: Model reduction based simulation of coupled PDAE systems funded by
the German ministry on research and technology.

The second contribution by Koliskina et al. deals with the simulation of eddy
current problems for quality testing of conducting materials, which demand for
modelling both electromagnetic and electrical effects. Here the authors propose a
semi-analytical approach.

5Valentina Koloskina, Andrei Kolyshkin, Olev Martens, Rauno Gordon, Raul Land and Andrei
Pokatilov, Riga Technical University, Latvia.
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Raul Land, and Andrei Pokatilov

Abstract Eddy current method is widely used in practice for quality testing of
conducting materials (examples include determination of electrical conductivity,
thickness of metal coatings, identification of flaws in a conducting medium). In the
present paper a semi-analytical method for solution of direct eddy current problems
for the case of a conducting medium of finite size is considered. The method is
applied to several eddy current problems with cylindrical symmetry. The following
problem is analyzed in detail. Consider a coil with alternating current located above
a conducting medium in the form of a circular cylinder (such a model can be used for
design of coin validators which are based on the estimation of electrical conductivity
of a coin). We assume that the electromagnetic field is exactly zero at a sufficiently
large distance from the coil (the distance can be chosen on the basis of the required
accuracy of the solution). The solution is constructed using the method of separation
of variables which includes two steps where numerical calculations are necessary:
(a) computation of complex eigenvalues without good initial guess for the roots and
(b) solution of a system of linear algebraic equations. Computations of the change in
impedance of the coil for different frequencies with the semi-analytical method are
in good agreement with experimental data and results of numerical simulation with
finite element method. Solution of other problems with cylindrical symmetry is also
discussed (a flaw in the form of a circular cylinder in a conducting half-space or a
plate). Such models can be used for the analysis of quality of spot welding (in case
of a volumetric flaw) and estimation of the effect of corrosion (for surface flaws).
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1 Introduction

Mathematical models of eddy current testing problems are usually based on the
assumption that a conducting medium is infinite in one or two spatial dimensions
[1, 2, 6]. Analytical solutions of the corresponding systems of equations for the
vector potential can be obtained in such cases by the method of integral transforms
(for example, Fourier or Hankel integral transforms).

Recently a quasi-analytical approach for the solution of eddy current testing
problems is suggested in [3]. The main idea of the method is that the vector potential
is assumed to be exactly zero at a sufficiently large distance r D b from eddy current
coil. Recommendations on the selection of the value of b are given in [3].

The main advantage of the proposed method (called the TREE method by the
authors in [3]) in comparison with analytical methods used for infinite domains
is that with the TREE method one can construct quasi-analytical solutions for the
cases where a conducting medium has a finite size. Such models are important in
applications since with the TREE method it is possible to model the presence of
inhomogeneities (or flaws) in the conducting medium.

In the present paper we construct quasi-analytical solutions for the case where a
cylindrical coil with alternating current is located above a conducting medium which
is either in the form of a circular cylinder of finite height and radius or contains a
flaw of cylindrical shape whose axis coincides with the axis of the coil. The solution
of the first problem is discussed in detail. Such a model can be used for design of
coin validators which are based on the estimation of electrical conductivity of a coin.

2 Problem Solution

Consider a coil with alternating current of frequency f .! D 2�f / located above a
conducting cylinder of radius c and height d. The axis of the coil coincides with the
axis of the cylinder. The inner and outer radii of the coil are r1 and r2, respectively,
z1 is the lift-off and z2�z1 is the height of the coil. The number of turns in the coil is
denoted by N. The starting point (as usual in such type of problems) is the solution
for a filamentary coil of radius r0 located at a distance h from the cylinder.

We introduce a system of cylindrical polar coordinates .r; '; z/ centered at the
axis of the coil (the plane z D 0 coincides with the top surface of the cylinder).
Due to azimuthal symmetry the vector potential has only one non-zero component
in the '-direction. Let us denote by R0, R1 and R2 the regions in space where z > 0,
�d < z < 0 and z < �d, respectively. The amplitudes of the vector potential in
regions R0, R1 and R2 are denoted by A0, A1 and A2, respectively. Since region R1 is
not homogeneous in the radial direction we use the notations Acon

1 and Aair
1 in regions

0 < r < c and c < r < b, respectively. The system of equations for the amplitudes
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of the vector potential in regions R0, R1 and R2 has the form

@2A0
@r2

C 1

r

@A0
@r

� A0
r2

C @2A0
@z2

D ��0Iı.r � r0/ı.z � h/; (1)

@2A1
@r2

C 1

r

@A1
@r

� A1
r2

� j!	.r/�0A1 C @2A1
@z2

D 0; (2)

@2A2
@r2

C 1

r

@A2
@r

� A2
r2

C @2A2
@z2

D 0; (3)

where j D p�1, 	.r/ D 0 if c < r < b and 	.r/ D 	 if 0 < r < c. The current in
the coil is assumed to be of the form

Ie D Iej!te': (4)

The functions A0, A1 and A2 are equal to zero at r D b:

Ai jrDbD 0; i D 0; 2; Aair
1 jrDbD 0: (5)

Interface conditions at r D c have the form

Acon
1 jrDcD Aair

1 jrDc;
@Acon

1

@r
jrDcD @Aair

1

@r
jrDc : (6)

The conditions at z D 0 and z D �d are

A0 jzD0D A1 jzD0;
@A0
@z

jzD0D @A1
@z

jzD0; (7)

A1 jzD�dD A2 jzD�d;
@A1
@z

jzD�dD @A2
@z

jzD�d : (8)

Using the method of separation of variables and superposition principle, the
solution in region R0 is obtained as follows

A0.r; z/ D
1X

iD1
D1ie

��izJ1.�ir/C �0Ir0
b2

1X

iD1

J1.�ir0/

�iJ20.�ib/
e��ijz�hjJ1.�ir/; (9)

where �i D ˛i=b and ˛i; i D 1; 2; : : : are the roots of the equation J1.˛/ D 0.
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The solution in region R1 can be written in the form

Acon
1 .r; z/ D

1X

iD1
ŒD2ie

piz C D3ie
�pizJ1.qir/; (10)

Aair
1 .r; z/ D

1X

iD1
Œ.D4iJ1.pir/C D5iY1.pir//e

piz C .D6iJ1.pir/C D7iY1.pir//e
�piz;

(11)

where pi are unknown eigenvalues and pi D
q

q2i C j!	�0. The solution in region
R2 is

A2.r; z/ D
1X

iD1
D8ie

�izJ1.�ir/: (12)

It can be shown that eigenvalues pi are the complex roots of the equation

piJ1.qic/T
0.pic/ D qiJ

0
1.qic/T.pic/; (13)

where T.pir/ D J1.pir/Y1.pib/ � J1.pib/Y1.pir/. The unknown coefficients in (9)–
(12) are determined from boundary and interface conditions (5)–(8). The resulting
formulas for the coefficients are bulky and are not presented here. The details of the
derivation for similar problems can be found elsewhere [4, 5]. It can be shown that
the induced vector potential in air due to the presence of the conducting cylinder is
given by the formula

Aind
0 .r; z; r0; h/ D

nX

iD1
D1ie

��izJ1.�ir/; (14)

where the series are truncated at i D n.
The induced vector potential in air due to currents in the whole coil is given by

Aind
0coil.r; z/ D

Z r2

r1

Z z2

z1

Aind
0 .r; z; r0; h/dr0dh: (15)

Using (15) and the following formula for the computation of the change in
impedance of the coil over the volume, V , of the coil

Zind D i!

I2

•

V

Aind
0coil � I dV
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we obtain

Zind D 2j!��0N2

.r2 � r1/2.z2 � z1/2

nX

mD1

.e��mz2 � e��mz1 /

�3m

Z �mr2

�mr1

�J1.�/ d�

�
nX

iD1
Ymi

.e��iz2 � e��iz1 /

�3i

Z �ir2

�ir1

�J1.�/ d�: (16)

The elements of the matrix Y are bulky and are not shown here for brevity.

3 Numerical Results and Discussion

Formula (16) is used to compute the change in impedance of the coil. Calculations
are performed with “Mathematica”. The following values of the parameters are used
for calculations: 	 D 9:6Ms/m, b D 60mm, d D 1:93mm, r2 D 6mm, r1 D 3mm,
z2 D 0:39mm, z1 D 0:06mm, N D 100. The results of calculations are shown
in Fig. 1. The calculated points (from top to bottom) correspond to the following
values of the frequency f : 1125, 1598, 2270, 3224 and 4579 Hz. The smaller points
of the graph represent theoretical calculations while larger points correspond to
numerical simulations by finite element method. The upper limit of the summation
index in (16) is fixed at n D 68. Comparison of the computational results obtained
for other values of n showed that the chosen value is quite satisfactory in terms of
computational accuracy.

Several computational steps are necessary in order to calculate the change in
impedance. First, the set of eigenvalues �i has to be calculated. This can easily
be done in “Mathematica” using the built-in routine BesselZeros. Second, a set of
complex eigenvalues pi should be calculated. The computational procedure is based

0.2 0.4 0.6 Re z

-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

Im z

Fig. 1 Comparison of theoretical calculations with numerical simulations
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on the method described in [7, 8]. Third, several systems of linear equations have
to be solved numerically in order to determine expansion coefficients. Details of the
numerical aspects of the procedure are given in [9].

In addition, the problem is solved by means of a finite element method. The
details of numerical simulation can be found in [10]. As can be seen from Fig. 1,
good agreement is found between theory (semi-analytical method presented in the
paper) and finite element method.

The problem is also analyzed experimentally. Experiments are performed at
Tallinn University of Technology as a part of the work on the SAFEMETAL project
“Increasing EU citizen security by utilizing innovative intelligent signal processing
systems for euro-coin validation and metal quality testing” in the framework of
FP7 program for the period from 2010 till 2012. Experimental results related to
the project are published in [11].

The approach presented in the paper can be used for other axisymmetric
problems in eddy current testing. In particular, quasi-analytical solutions for the
case of cylindrical flaws (either in the form of a cylindrical inclusion in half-space
or surface flaws in a half-space or plate) are constructed in [4, 5, 9].

Acknowledgements This work was partially supported by the grant 623/2014 of the Latvian
Council of Science.
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Model Order Reduction for Multirate
ODE-Solvers in a Multiphysics Application

Christoph Hachtel, Michael Günther, and Andreas Bartel

Abstract Given a multiphysics problem with components of different dynamical
behaviour reduction-multirate methods start with a model order reduction of the
slow part system and apply than a multirate ODE-integration to the whole system.
This approach lets us profit as much as possible from properties of the given system
related to computational efficiency. In this paper we present the motivation and the
idea behind this reduction-multirate approach.

Keywords Model order reduction • Multirate ODE-solvers

1 Introduction

In general, the modeling of a multiphysical setting leads to a coupled system with
largely differing dynamical behaviour. Possibly after a semi-discretization of the
spatial variables, these models are often given by coupled systems of ODEs. Now,
the existence of stiff parts suggests which type of time domain method should be
applied. Furthermore the most active part, i.e., the part with the highest frequencies,
determines the step size to be used.

Multirate ODE-solvers allow us to use different step sizes for each subsystems.
The use of inherent step sizes for the subsystems with different dynamical behaviour
gives us potential to enhance the numerical efficiency (the performance concerning
computation time). The crucial part of a multirate solver is the coupling of the
different scales, i.e., the computation of the coupling variables. We follow the idea
of compound-step methods, which was first presented in [7]. Often the physics of
the underlying systems justifies the usage of a certain coupling type. Although one
saves computation time due to larger step sizes for latent components (macrostep),
usually a large and stiff system remains to be solved in each macrostep.
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In the last years, model order reduction has been developed to a reliable technique
to solve high dimensional systems of differential equations efficiently [1]. Until now
there has been no work on combining model order reduction with multirate ODE-
solvers. We present related ideas and concepts of the reduction-multirate methods
and a suitable multiphysics example.

2 Mixed Multirate Methods

Multirate integration schemes are interesting for systems of differential equations
with parts of very different dynamic behaviour. As in most of the previous works
about multirate methods we consider a system with very fast dynamic changes, the
so-called active part, and a considerable slower part, the so-called latent behaviour,
both parts depend on each other. In an ODE-framework that reads

PyA D fA

�
yA; yL

�
yA.t0/ D yA;0 (1)

PyL D fL

�
yA ; yL

�
yL.t0/ D yL;0: (2)

The coupling is illustrated by the boxes around the coupling terms. There are
several approaches how to get such a partition. While [5] or [8] deal with a
given monolithic system and partition it dynamically we are following the setting
of a given partition like in [7] or [2]. This is justified since we are considering
multiphysics problems and usually the underlying physical behaviour defines a
certain dynamical behaviour. The idea of a mixed multirate integration scheme is
given in [2] and is based on the idea of multirate compound step Runge-Kutta
methods first presented in [7]. In the latter the coupling is realized by integrating
the latent and the active component coupled together but with different stepsizes:
The latent component with a large macrostep H, the active one with a small
microstep of size h D H=m. The remaining m � 1 microsteps are computed with
interpolating the latent component. Günther and Rentrop presented ROW-methods
for multirate integration schemes in [6] and Bartel and Günther developed W-
methods for compound-step multirate integrators in [3]. Here compound-step and
remaining micro-steps are computed with the same integration scheme. In mixed
multirate methods different schemes can be used for compound and micro-steps.
That can be reasonable if the dimension of the active part is small compared to the
whole system and a high accuracy is desired so a method of higher order can be
applied to the remaining microsteps. This is exactly the case for the here presented
topic so we follow [2] and apply a 2(3)-ROW-scheme for the compound step and a
3(4)-ROW-scheme for the remaining micro-steps. A set of coefficients can be also
found in [2].
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3 Model Order Reduction with Balanced Truncation

In multirate context we deal very often with a high-dimensional slow part of the
ODE-system and only few active components. The question is whether we can gain
efficiency not only by adapting stepsize but also to consider the dimension of the
slow part: The idea is to apply a model order reduction before integrating the system.
We assume a linear ODE-system for the slow part system so we can use the methods
of linear model order reduction. We now present briefly the method of balanced
truncation as it can be found in [1]. For a given linear time invariant (LTI) system

Px D A � x C B � u.t/ x.t0/ D x0 2 R
n (3)

y.t/ D C � x (4)

model order reduction computes rectangular biorthogonal projection matrices
Vr; Wr so that the dimension r of reduced system matrices WT

r AVr; WT
r B; CVr

is relevantly smaller than of the original system (r � n). While the output of the
reduced system yr.t/ shall approximate the original output as good as possible. The
idea of balanced truncation is now to keep all important states and truncate all states
who need a lot of energy to be reached and to be observed. Truncating states that
are difficult to reach and to observe become equivalent if the system is balanced.
One gets such a balanced system by solving Lyapunov-Equations and construct
a suitable transformation matrix. Balanced truncation has many advantages over
other MOR methods, e.g. (1) the input and the output matrix are considered in the
computation of projection matrices and (2) an efficient error estimate is available:

kH � HrkH1
� 2

nX

iDrC1
	i (5)

while H denotes the transfer function, 	 the eigenvalues of the Gramian matrices of
the balanced system and r is the dimension of the truncated system. Due to the fact
that for this method the Lyapunov-Equations have to be solved, the method is less
efficient for high dimensional problems.

4 A Multiphysics Application: An Electric-Thermal Problem

Benefits from multirate ODE-solvers can only be expected if applied to a system
with differing dynamic behaviour. Here we consider an electric circuit in where
the thermal behaviour of a resistor is included. This results in a coupled system
of the network equations and the heat equation. While voltages change very fast,
heating or cooling of devices is a much slower process. So this example suits for
using multirate integration methods. Before applying the time integration, a semi-
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Fig. 1 Circuit diagram
u2 u3

RL

u4

i di

A R (T )

v(t )

C1 C2

Table 1 Parameters of the
electric circuit

Decide Parameter Decide Capacity

Amplification A D 300 Capacity 1 C1 D 1F

Load resistance RL D 0:3 k� Capacity 2 C2 D 100 �F

Pulsed voltage source v.t/ D(
0:5 sin.� t=.2:5 � 10�5 s// ŒmV� if t < 2:5 � 10�5 s

0 ŒV� otherwise

discretisation of space is performed for the heat equation. High accuracy demands
as well as fine structures may lead to a large scale system. Therefore a model order
reduction of the slow components will improve efficiency. The presented model is
adapted from [4] with some modifications.

Circuit Modeling The electric part is represented by the circuit diagram in Fig. 1.
It is obvious that the corresponding nodal equations describe a relative stiff system
of differential equations. So the mixed multirate ROW-method presented in Sect. 2
is not a natural choice. To be able to apply this method to this circuit we use
some unphysical parameters amongst others for the capacitances. Table 1 shows
all relevant parameters. The ODE model reads

C1 Pu3 D .u2 � u3/=R.T/� idi.u3 � u4;Tdi/ (6)

C2 Pu4 D idi.u3 � u4;Tdi/� u4=RL (7)

with the node voltages u3, u4 and u2 D Av.t/, the resistors’s temperature T
and the diode’s temperature Tdi. Between node two and three we consider a
copper wire of length l and model it as a 1-D thermal dependent resistor. Let
a.x/ D a0 � 1=.1C .2=l/2.l � x/x/ denote the cross section of the wire while x
represents the spatial coordinate; so at half of the length of the wire the cross section
is half of the cross section at the ends. So we expect higher temperatures in the
middle of the resistor. We assume a local resistance of the following type:

�.T/ D r0.1C ˛.T � Tmeas// (8)

with thermal coefficient ˛ and specific resistance r0 at temperature Tmeas. We get the
total resistance R.T/ by integrating the local resistance over the length of the wire l
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with respect to the cross section

R.T/ D
Z l

0

�.s;T.t; s//

a.s/
ds D

Z l

0

Q�.s;T.t; s//ds: (9)

The diode is also temperature dependent and has a strong nonlinear behaviour, for
the characteristic curve and more details see [4].

Thermal Modeling and Coupling The starting point of the thermal model is
the 1-D heat equation for diffusive heat transport, which we use for the copper wire
(resistor):

M0W PT D @

@x

�

�.x/
@T

@x

�

C sources (10)

with thermal mass of the wire M0W and local 1-D conductivity�.x/ D �.x/�a.x/. The
sources term is comprised of two effects: (a) Local self heating due to the electric
current. In fact, the dissipated power PW D u2R=R of the resistor results in heating
the wire; (b) Cooling to the ambient temperature Tenv, which is given by Newton’s
cooling C D ��S0.T � Tenv/ with surface S0. For further details see [4].

To be able to apply the multirate ODE-integration scheme presented in Sect. 2,
we discretise space in the parabolic PDE (10) first (method of lines). We equip the
wire with an equidistant grid Ih W Xi D i � h; i D 0; : : : ;N with XN D N � h D l and
use a finite volume approach. For that we sub-divide the wire in cells of length h in
the inner and h=2 at the boundaries. A schematic representation is given in Fig. 2.
The heat conduction over one single cell can be described by means of its inflow
minus outflow. So we get the approximation

M0W;i PTi D �
TiC1 � 2Ti C Ti�1

h2
C P0W;i � �S0W;i.Ti � Tenv/ (11)

for the inner cells while i denotes the property of the i-th cell, i D 1; : : : ;N � 1. For
the boundary cells we have

M0W;0 PT0 D �.T1 � T0/=h C P0W;0 � �S0W;0.T0 � Tenv/ (12)

M0W;N PTN D �.TN�1 � TN/=h C P0W;N � �S0W;N.TN � Tenv/: (13)

Fig. 2 Finite volume
discretised resistor

resistor

X0=0 l=XN
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The diode is temperature dependent but without own thermal mass. So we just set
the temperature at the end of the copper wire to be the temperature of the diode.

The coupling terms have been given indirectly in the above models.
(1) Circuit to thermal: Joule’s law gives the dissipated power at the resistor. By

adding an additional differential equation to the circuit equations,

Pe D ur � ir D .u2 � u3/
2=R.T/ (14)

total energy e is computed in each time step. And PW D e=t gives us the required
power for some time step t.

(2) Thermal to circuit: Since the resistance R.T/ depends on the temperature
profile T we need the temperature distribution in the resistor to compute it, for a
given distribution we use Eq. (9) to compute the total resistance. In addition the
diode’s current depends on the wire temperature of the last cell.

Numerical Results To the coupled thermal-electric problem we apply the mixed
multirate ODE-integration scheme from Sect. 2. The active part is given by the
circuit equations (6)–(7) and (14) while the latent part is given by the semi-
discretised heat equation (11)–(13). The coupling is realised in the compound step
of the multirate scheme and in the off-diagonal Jacobian matrices. Core of this work
is the combination of the multirate integration with a model order reduction for the
latent part given for example in Sect. 3. In a early stage of research we restrict the
setting to linear MOR. A thermal model is a priori non-linear, due to a relative short
simulation time (0.1 s) and an even shorter timespan where voltage is applied in the
circuit and several small assumptions like in Eq. (8). We can linearise the thermal
behaviour of the resistor so that we get a linear system of the form

PT D A � T C B � ŒTenv; PW � (15)

ŒR.T/; TN � D C � T: (16)

To get an impression of the electric behaviour of the system Fig. 3 shows the
resulting voltage u3 at node three. First we are investigating the influence of the
linearisation of the thermal components. Figure 4 shows the temperature of the
central cell in the resistor and of the diode in a linear and a nonlinear model. As
we see the influence of the linearisation is negligible.

For this results the resistor was discretised in n D 10 cells. If we consider a
more detailed discretisation the dimension of the system and the computation time
would increase. For this case a model order reduction promises more efficiency in
computation time. Due to that we will focus on model order reduction performed
in a pre-processing step and the influences on the simulation results in the future
research.
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5 Conclusions and Outlook

Combining a model order reduction with a multirate integration scheme can increase
the efficiency of the broad algorithm. Since the multirate problem already provides
a partitioning relating to the dynamics of the system we already know that there
is no fast change in the latent component so that the error due to the model order
reduction might be controllable. Especially for linear latent components the wide
theory of linear model order reduction gives efficient and reliable error information.
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The influence of the model order reduction on the multirate integrator is not yet
considered so it is desirable to have all-in-one multirate-MOR error bounds. After
all in real-world multiphysics problems a latent linear component is not available so
the question is whether a linearisation following linear MOR or a nonlinear MOR
gives better results.
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A Reduced Nonlinear Model for the Simulation
of Two Phase Flow in a Horizontal Pipe

Matteo Pischiutta, Gianni Arioli, and Alberto Di Lullo

Abstract In the last 10 years many 3D numerical schemes have been developed
for the study the flow of a mixture of liquid and gas in a pipeline (Frank, Numerical
simulation of slug flow regime for an air-water two-phase flow in horizontal pipes.
In: The 11th international topical meeting on nuclear reactor thermal-hydraulics
(NURETH-11), Avignon, 2005; Vallée et al., Nucl Eng Des 238(3):637–646,
2008; Höhne, Experiments and numerical simulations of horizontal two-phase flow
regimes. In: Proceeding of the seventh international conference on CFD in the
minerals and process industries, Melbourne, 2009; Bartosiewicz et al., Nucl Eng
Des 240(9):2375–2381, 2010) but although they offer a very good accuracy, they are
rarely fit for modelling a long pipe, due to the high computational costs. Then one is
usually led to consider 1D models, see e.g. the works of Issa and his group (Issa and
Kempf, Int J Multiphase Flow 29(1):69–95, 2003). Such models offer much faster
simulations than 3D schemes, on the other hand they almost completely miss the
dynamics in the transversal direction. Here we present a model able of representing
the full 3D dynamics, but with the computational cost typical of 1D simulation.
The main feature of our model consists in describing the dynamical variables in the
direction transversal to the pipe by means of a family of functions depending on a
set of parameters. The model is then solved by a standard finite volume scheme.

Keywords Reduced nonlinear models • Reynolds-averaged Navier-Stokes equa-
tions • Two phase flow

1 Introduction

A common starting point for the simulation of the flow of a two phase fluid in a
pipeline is provided by the Reynolds-averaged Navier-Stokes equations (RANS)
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[4, 8], which for the k-th phase read:

@

@t
.�k˛k/C r � .�k˛kUk/ D 0 ; (1)

@

@t
.�k˛kUk/C r � .�k˛kUk ˝ Uk/C r � .˛kReff

k / D �˛krpk C �k˛kg C Mk ;

(2)

where k denotes the phase (k D g; l), ˛k is the fraction of volume occupied by
the phase such that ˛g C ˛l D 1, Uk is the velocity, pk is the pressure, Reff

k D
��k�

eff
k

�rUk C .rUk/
T
�

is the strain tensor, which takes into account both viscous

and turbulent effects, �eff
k D �k C �t;k is the effective viscosity, and Mk describes

the exchange of momentum between the phases. Respective 3D numerical schemes
have been developed in [2, 3, 5, 9]. Although they offer a very good accuracy, they
can rarely be used for long pipe simulations because of the high computational
costs. Our main purpose is the development of an efficient numerical scheme that
can simulate a full 3D flow fast and accurately.

2 Equation Reduction

We partition the length of the pipeline x D Œ0;L� in N uniform cells and we set
xi; i D 1; : : : ;N to be the centres of the cells. Consider a cell V , that is a cylinder
bounded by the disks Ain;Aout and the wall W . Assuming constant densities,
integrating Eqs. (1) and (2) in V and using Gauss’ theorem we get:

@

@t

Z

V
�k˛k C

Z

@V
�k˛kUk � nD 0; (3)

@

@t

Z

V
�k˛kUk C

Z

@V
�k˛k.Uk ˝ Uk/ � nC

Z

@V
.˛kReff

k / � nD �
Z

V
˛krpk C

Z

V
�k˛kgC

Z

V
Mk ;

(4)

where @V D Ain [ Aout [ W e n is the normal vector to the surface. We assume
that the transversal components of the velocity are zero, Uk D .uk; 0; 0/

T , where
uk D uk.x; y; z/, and constant densities. Then Mk D .Mk; 0; 0/. We enforce the no-
slip boundary condition on the wall, ukjW D 0, so that the conservation equations
become:

@

@t

Z

V
˛k C

�Z

A
˛kuk

�out

in
D 0; (5)

@

@t

Z

V
˛kuk C

�Z

A
˛ku2k

�out

in
�
�Z

A
2˛k�

eff
k
@uk

@x

�out

in
D �

Z

V

˛k

�k

@pk

@x
C
Z

W
˛k�

eff
k
@uk

@n
C
Z

V

Mk

�k
;

(6)
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where
	R

A  

out

in
D R

Aout
 �RAin

 . Our model consists in describing the transverse
profile of the unknown variables ˛k and uk at each point in space through given
functions depending on some parameters which in turn vary in the longitudinal
direction. Our choice for ˛g.x; y; z/ is as follows:

˛g.x; y; z/ D

8
ˆ̂
<̂

ˆ̂
:̂

0 y � ˇ.x/;
y � ˇ.x/
ı.x/

ˇ.x/ < y < ˇ.x/C ı.x/;

1 y � ˇ.x/C ı.x/;

(7)

where ˇ.x/ is related to the level of the liquid and ı.x/ is the width of the interface.
Concerning the velocity, as a first simple attempt to model the flow, we choose a
profile parabolic in z:

uk.x; y; z/ D Uk.x; y/
R2 � y2 � z2

R2 � y2
; (8)

where R is the (constant) radius of the pipe. We also choose a linear dependence on
y for the liquid phase linear on the plane z D 0:

Ul.x; y/ D y C R

ˇ.x/C R
�.x/; y � ˇ.x/C ı.x/ ; (9)

and a quadratic dependence for the gas phase:

Ug.x; y/ D #.x/.y � R/. ˇ.x/� y/C �.x/
y � R

ˇ.x/� R
; y � ˇ.x/ : (10)

The graphs of the center line profiles of the variables are reported in Fig. 1.
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Fig. 1 Left: graph of ˛k, right: graph of Uk. In solid line, the graphs relative to the liquid phase,
in broken line, the graphs relative to the gas phase. The parameter are: ˇ D 0:2, ı D 0:3, � D 1,
# D 5
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We assume that the pressure of the gas is constant in the transversal directions,
while the liquid is subject to the hydrostatic pressure:

pg.x; y; z/ D P.x/ ; pl.x; y; z/ D P.x/C �lg. ˇ C ı=2� y/ ; (11)

which leads to a term proportional to the slope of the free surface @. ˇ C ı=2/=@x
in the momentum equation of the liquid phase. As a first simple approximation, we
adopt a zero-equation model for the computation of the turbulent viscosity [1], that
is �k D NUk lk

Rek
, where NUk is the maximum phase velocity, lk is a geometric length

scale and Rek D 1000 is a free parameter.

3 Numerical Integration

We assume that all the unknowns are constant in the cell and located in the centres
of the cells. Hence, all integrals in (5) and (6) can be computed explicitly, obtaining
functions of the parameters ˇ, ı, � e #. We set the following notation:

Hl. ˇ; ı/ WD
Z

A
˛l ; Hg. ˇ; ı/ WD

Z

A
˛g ; (12)

�Fl. ˇ; ı/ WD
Z

A
˛lul ; #Fg;1. ˇ; ı/C �Fg;2. ˇ; ı/ WD

Z

A
˛gug ; (13)

Gl. ˇ; ı; �/ WD
Z

A
˛lu

2
l ; Gg. ˇ; ı; �; #/ WD

Z

A
˛lu

2
g ; (14)

Wl. ˇ; ı; �/ WD
Z

W
˛l
@ul

@n
; Wg. ˇ; ı; �; #/ WD

Z

W
˛g
@ug

@n
: (15)

Time is discretized with explicit Euler method. Equation (5) reads (subscripts denote
the cells, superscripts denote time):

Z

V
˛nC1

i D
Z

V
˛n

i Ct
h Z

A
˛n

i�1=2un
i�1=2 �

Z

A
˛n

iC1=2un
iC1=2

i
: (16)

The width of the interface should be dictated by some closure equation, ınC1
i D

B. ˇn
i ; ı

n
i ; �

n
i ; #

n
i /, but our current choice is to keep it constant. We found an optimal

value at ı D 10�2 mm. We remark that the width of the interface affects the drag
between the phases. We use the mass conservation equation of the liquid phase to
update the free surface level ˇ:

Hl. ˇ
nC1
i ; ı

nC1
i / D Hl. ˇ

n
i ; ı

n
i /C t

x

h
�n

i�1=2Fl

�
ˇn

i�1=2; ı
n
i�1=2

�� �n
iC1=2Fl

�
ˇn

iC1=2; ı
n
iC1=2

�i
;

(17)
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that is a non-linear equation in ˇnC1
i which is solved in every cell with standard

Newton method. The conservation of the gas phase is used to obtain an equation for
the pressure. To compute the interface values �n

i�1=2, ˇn
i�1=2 and ın

i�1=2 we have to
interpolate. Since we are considering only positive velocities we chose the upwind
interpolation (e.g.: ˇn

i�1=2 D ˇn
i�1). We discretize the equation for the conservation

of momentum for the liquid phase as follows:

@

@t

Z

V
˛lul ' x

@

@t

�
�iFl. ˇi; ıi/

� ' x

�
�iFl. ˇi; ıi/

�

t
; (18)

�Z

A
˛lu

2
l

�out

in
' Gl. ˇiC1=2; ıiC1=2; �iC1=2/�Gl. ˇi�1=2; ıi�1=2; �i�1=2/ ; (19)

�
Z

V

˛l

�l

@pl

@x
D �

Z

V

˛l

�l

@P

@x
�
Z

V
˛lg

@. ˇC ı=2/
@x

' �xHl. ˇi; ıi/

�
1

�l

@P

@x

ˇ
ˇ
ˇ
ˇ
i
C g

@. ˇC ı=2/
@x

ˇ
ˇ
ˇ
ˇ
i

�

:

(20)

The gradient of the pressure will be discussed later, while the slope of the free
surface is handled with a centred scheme. Since the viscosity is constant in the
section of the tube, we have:

Z

W
˛l�

eff
l

@ul

@n
' �

eff
l;i Wl. ˇi; ıi; �i/: (21)

The drag force between the phases is computed with [4, 8]:

Ml D 3

4
˛l˛g

�

˛l
CD;l �g

dl
C ˛g

CD;g �l

dg

�

jurj ur ; (22)

where dl and dg are the typical diameters of the drops/bubbles of the phases, ur D
ug �ul is the relative velocity and CD;l, CD;g are coefficients computed with Schiller-
Naumann formula. Since ˛l˛g ¤ 0 only at the interface ˇ < y < ˇ C ı, we have:

Z

V

Ml

�l
' x

Z ˇCı

ˇ

 Z �
p

R2�y2

�
p

R2�y2

Ml

�l
dz

!

dy D x

�l
Ml. ˇi; ıi; �i; #i/ : (23)

The integrals are computed with a quadrature scheme. We compute the diffusion
term using the average velocities:

Nul D
R
A ˛lul
R
A ˛l

D �
Fl. ˇ; ı/

Hl. ˇ; ı/
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approximating @ul=@x with @Nul=@x (i.e. a term that does not depend on y and z). Then
we define:

�Z

A
2˛l�

eff
l

@Nul

@x

�out

in

'
�

2
@Nul

@x
�

eff
l

Z

A
˛l

�out

in

WD 	
Dl. ˇiC1=2; ıiC1=2; �iC1=2/� Dl. ˇi�1=2; ıi�1=2; �i�1=2//



:

(24)
Finally, the momentum equation for the liquid phase reads:

x

�
�iFl. ˇi; ıi/

�

t
C 	

Gl. ˇiC1=2; ıiC1=2; �iC1=2/� Gl. ˇi�1=2; ıi�1=2; �i�1=2//



� 	
Dl. ˇiC1=2; ıiC1=2; �iC1=2/� Dl. ˇi�1=2; ıi�1=2; �i�1=2//


 D

�xHl. ˇi; ıi/

�
1

�l

@P

@x

ˇ
ˇ
ˇ
ˇ
i

C g
@. ˇ C ı=2/

@x

ˇ
ˇ
ˇ
ˇ
i

�

C �
eff
l;i Wl. ˇi; ıi; �i/C x

�l
Ml. ˇi; ıi; �i; #i/;

(25)
which is a linear equation for the unknown �nC1

i . The gas phase is handled similarly,
leading to a linear equation for the unknown #nC1

i .
The equations are integrated according to the following scheme:

1. Mass conservation: the free surface is updated solving (17) for each cell.
2. Velocity predictor: the auxiliary values �� and #� are computed with an explicit

Euler iteration of the momentum equations.
3. Pressure correction: the updated values �nC1 and #nC1 must satisfy the conti-

nuity equation
	R

A .˛
nC1
l unC1

l C ˛nC1
g unC1

g /

out

in
D 0; which reads:

	
�nC1

Fl. ˇ
nC1; ınC1/C #nC1

Fg;1. ˇ
nC1; ınC1/C�nC1

Fg;2. ˇ
nC1; ınC1//


out

in
D 0:

(26)
A manipulation of Eq.(26) leads to:

	
��i Fl. ˇ

nC1
i ; ınC1

i /C #�i Fg;1. ˇ
nC1
i ; ınC1

i /C ��i Fg;2. ˇ
nC1
i ; ınC1

i /

out

in D

t

" 
Hl. ˇ

nC1
i ; ınC1

i /

�l
C Hg. ˇ

nC1
i ; ınC1

i /

�g

!
@P

@x

ˇ
ˇ
ˇ
ˇ

�

i

#out

in

(27)
which is the equation for the pressure correction: @P

@x

ˇ
ˇ�
i

D @P
@x

ˇ
ˇnC1
i

� @P
@x

ˇ
ˇn
i
.

4. Velocity correction: once @P
@x

ˇ
ˇ�
i

is known, we can compute �nC1 e #nC1.
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Fig. 2 Snapshots (left) and flow map (right), where the solid boundaries of the different flow
regimes are provided by Mandhane et al. [7], and the mark are the results of our model

4 Results

Figure 2 represents some results of our simulations. The picture on the left displays
some snapshots of the free surface in slug flow at different instants in time; the
curves are represented each 0.2 s and are shifted relative to each other with respect
to time. The liquid superficial velocity is LSV D 0:7m/s and the gas superficial
velocity is GSV D 6m/s, in a pipeline with 4 cm of diameter and 10 m long. We can
clearly observe that our model can reproduce the continuous generation of slug in
the pipe.

The picture on the right compares our results for different regimes to the
benchmark given by the flow map provided in [7]. We observe that our model is able
to reproduce a good transitions between the elongated bubble and the slug regimes,
whereas the exact transition between the stratified/wave flow and the slug flow is
more difficult to be captured. Moreover, we cannot distinguish the stratified from
the wave regime. Nevertheless, the comparison with the experimental data show
that our model is able to predict the flow map with an acceptable accuracy.

5 Conclusions

These are the main features of the scheme that we introduced: The numerical
algorithm is very fast, it is comparable with 1d schemes, cf. [6]. The results are
in quantitative and qualitative accord with experimental data. The model is very
flexible. The transversal profiles can be changed, while keeping the basic structure
of the model and its numerical implementation. The numerical algorithm is stable, it
does not pose any problem in the slug regions. The model has been implemented for
horizontal pipelines. It could be easily adapted to moderate slopes, but it requires
serious modifications to handle vertical pipelines.
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In conclusion, we proved the feasibility of a reduction scheme for the two phase
fluid dynamics in a pipeline, consisting in choosing a specific shape for the dynamic
variables in the transversal directions depending on parameters.
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Mathematical Characterisation of a Heat Pipe
by Means of the Non-isothermal Cahn-Hilliard
Model

Melania Carfagna, Filomena Iorizzo, and Alfio Grillo

Abstract The aim of this contribution is to provide a thorough description of
a heat pipe. This is a particular type of heat exchanger used in a variety of
industrial applications, such as the cooling of electrical devices and solar cells,
the temperature equalisation in spacecrafts, or the reduction of local heat gains in
reactors and air-conditioning systems. Usually, lumped parameter models are used
to study the behaviour of heat pipes and the thermal ranges in which they work
optimally. In the following analysis, a quite comprehensive thermo-fluid dynamic
model of the liquid/vapour pair operating in a heat pipe is developed. The model,
which accounts for several phenomena taking place in this kind of devices, has
the purpose of predicting the optimal thermal range of a given heat pipe, and
preventing the occurrence of off-design conditions. The present investigation is
done by considering a heat pipe working in zero-gravity conditions, to be used for
Aerospace applications.

Keywords Heat pipe • Non-isothermal Cahn-Hilliard model

1 Problem Statement: Mathematical and Numerical Issues

A heat pipe is a thermal device used to transport and drain heat from a hot zone to
a cold one. It can be differently structured. The one considered here is a metallic
tube, filled with a small amount of fluid, and then welded at the ends. One of its two
ends is placed in contact with a heat source, while the other one is refrigerated. The
thermodynamic conditions of the fluid inside the pipe are such that the liquid and
vapour phases of the fluid coexist. The liquid phase evaporates in the hot zone of
the tube, while the vapour condenses in the cold one. The processes of evaporation
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and condensation form a cycle, which takes place at saturation temperature. Usually,
this temperature is lower than the one at the atmospheric pressure. More precisely,
the thermodynamic cycle experienced by the fluid in the heat pipe consists of the
following stages:

• Evaporation of the liquid at the hot end;
• Flux of the produced vapour from the evaporator to the condenser by means of a

pressure gradient induced by the thermal difference between the hot and the cold
end of the pipe;

• Condensation of vapour at the cold end;
• Reflux of the condensed liquid at the evaporator zone due to a capillary structure

that covers the internal wall of the tube.

When the heat pipe works in nominal conditions, the latent heat Hlv, which
is supplied during evaporation and subtracted during condensation, balances the
heat sources and sinks applied from the outside. In principle, this thermal balance
maintains the whole heat pipe at almost the same temperature. Nevertheless, in order
to control and predict the occurrence of off-design conditions, a non-isothermal
model of the heat pipe is required [2].

The Cahn-Hilliard model is widely used to model phenomena such as capillary
waves and moving contact lines [1] between two fluids as well as near-critical point
phenomena, such as the spinodal decomposition and phase transitions. It describes
the interface between two fluid phases as a thin transition layer in which the two
phases coexist and form, thus, a mixture. To model the coupling that occurs at the
interface between these two weakly miscible [7] (and often weakly compressible)
fluids in contact with each other, it is postulated that the system possesses a
Helmholtz free energy density of the type

F.';r'/ D 1
2
�jr'j2 C U.'/; U.'/ D 1

4
�"�2.1 � '2/2: (1)

Here, the term 1
2
�jr'j2 describes a weak interaction between the two phases (this

interaction is often referred to as “non-local” in the literature), whereas U.'/ is a
globally non-convex, double-well potential vanishing at ' D ˙1. The field ' is
sometimes referred to as “colour function”. In this work, it is defined as an affine
function of the mass fraction c of one of the two phases, i.e. ' D 2c � 1. The
parameters � and " are quantities related, respectively, to the chemical potential of
the system at the interface, i.e., the surface tension force 	t, and the thickness of the
layer.

The thermodynamic consistency is fulfilled by constitutive relations that ensure
the non-negativeness of the entropy production of the system. In particular, this
requirement yields a characterisation of the total stress tensor 			 , entropy flux qqqs,
and diffusive mass flux vector JJJd:

			 D 


 � pIII � KKK; (2)
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Tqqqs D qqq � P'
�

r:
�
@F

@r'
��

; (3)

JJJd D �%�r�: (4)

In (2)–(4), 


 represents the viscous part of the overall stress 			 , p is pressure, KKK
is known as Korteweg stress tensor, qqq is the heat flux vector, � is the motility of
the liquid/vapour pair, % is the mass density of the mixture, and � is the chemical
potential, which reads

%� D 2
�

"2

��"2' C .'2 � 1/'
�� 2 @%

@'

1

%
. p C F/: (5)

The superimposed dot denotes the substantial derivative, i.e. P' D @t'C r':uuu, with
uuu being the velocity of the two-fluid system. For a quasi-immiscible pair, as the
one considered in this discussion, the Korteweg stress tensor KKK is usually related
to the surface tension force [5]. By substituting (5) into (4), and considering the
balance laws of mass, linear momentum and energy, the following system of partial
differential equations is obtained

r � uuu D %l � %v

%l%v
%

�

r �
�

�2�r
�
�

"2
 

��

C �v

%

�

; (6)

P' D �2r �
�

�2�r
�
�

"2
 

��

� 2
�v

%
; (7)

 D �"2' C .'2 � 1/'; (8)

%Puuu D r � .


 � pI/ � FFFst; (9)

%Cp PT D r � .krT/C 


 W ddd C P'�' C Hlv�v: (10)

Here, %l and %v denote, respectively, the mass densities of the liquid and vapour, �v

is the evaporation/condensation mass flow rate, which has been modeled by means
of the Knudsen relation for the liquid/vapour phase change:

�v D C

r
M

2�R

�
psat.Tl/p

Tl
� pvp

Tv

�

; (11)

with M being the molar mass of the liquid and R the Universal Gas Constant. The
subscripts “l” and “v” indicate, respectively, whether a given physical quantity is
evaluated in the liquid or in the vapour phase. The term C is an accommodation
coefficient to be adapted to the considered fluid [3, 6]. The saturation pressure psat

appearing in Eq. (11), also known as vapour tension of the substance, is evaluated
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punctually in the interior of the heat pipe by means of the Clausius-Clapeyron
formula[6]

psat.T/ D p0 exp

�
MHlv

R

�
1

T
� 1

T0

��

: (12)

The term FFFst D r:KKK, under appropriate assumptions, can be written as

FFFst D � �

"2
 r':

The parameters, which refer to the two-fluid system as a mixture, i.e., the specific
heat at constant pressure Cp, the thermal conductivity k, uuu and %, are defined as
usually done for a two-constituent mixture in the framework of Mixture Theory.
The term ddd D sym.ruuu/ is the symmetric part of the velocity gradient.

Equations (6)–(10) are considered hereafter to model the two-fluid system in the
heat exchanger. Equation (6) represents the mass balance law of the liquid/vapour
system as a whole. It states that the velocity flux of the system’s centre of mass is
not solenoidal. This differs from many other models (cf., e.g., [4, 8]), which rely
on the constraint that the velocity field is divergence-free. Equation (7) represents
the modified concentration balance law of one of the two phases. Equation (8) is an
auxiliary equation, introduced to eliminate the fourth order derivative of the colour
function ', which would otherwise arise in the first term on the right-hand-side of
Eq. (7). Finally, Eqs. (9) and (10) are, respectively, the local forms of the balance
laws of linear momentum and energy of the system as a whole.

The weak form of (6)–(10) has been implemented in a commercial Finite
Element Software, by modifying an already existing model, in which the non-
standard terms, i.e., the ones linked to the presence of a thermal field, the phase
change and the weak miscibility, are not included. For numerical purposes, in (6)–
(10) the contributions of compressibility have been neglected. The parameters ", �
and � in Eq. (1) are defined as in [8]. The parameters %l, %v, Hlv, 	t, Cp, and k,
which define the nature of the chosen working fluid, are here defined as polynomial
functions of the temperature. Depending on which requirements the heat exchanger
has to satisfy, any working fluid can be chosen (e.g., liquid metals, water, ammonia,
acetone, alcohol, nitrogen and helium) and, in principle, it can be characterized
by the same set of parameters. In this contribution, the chosen working fluid is
covered by a non-disclosure agreement. Finally, the geometric setting employed in
the performed numerical simulations is schematically shown in Fig. 1a.
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Fig. 1 (a) Axially symmetric geometry of the system considered in the numerical simulations. (b)
The experimental apparatus. The red dots correspond to the positions of the thermocouples (Color
figure online)

2 Validation and Results

The numerical model was validated by experimental data provided by Argotec s.r.l.
that designed the heat pipe and the experimental apparatus and performed the test
campaign. The pipe was heated at one of its two ends (where an imposed heat flux
is prescribed) by means of resistors, and cooled down at the other end, which was
inserted in a cooling jacket. The latter one was connected with a thermal bath via a
bundle of tubes in which a refrigerating fluid was conveyed. The remaining part of
the pipe was thermally insulated and, thus, referred to as “adiabatic zone”.

The output data were obtained by positioning thermocouples (with a precision of
1 K) along the pipe, as shown in Fig. 1b. The temperature at each thermocouple
position was measured at different instants of time until the system reached
stationary working conditions. The system described above, and the experiments
conduced on it, were simulated for different values of the thermal power supplied
to the evaporation zone. The results obtained by the model presented in this
contribution were validated by comparison with the experimental outputs referred
to the system’s stationary working conditions. The experimental and simulated
outcomes are reported in Fig. 2, and refer to the values of temperature on the outer
wall of the heat pipe, evaluated with respect to a reference temperature.

In the adiabatic zone, the relative percentage of error between the measured
temperature and the simulated one is below 1% for all the performed simulations.

After validating the model, it has to be assessed whether or not the heat pipe
works in nominal conditions. This investigation is carried out by analysing the
temperature, pressure and velocity fields as well as the chemical potential in
different zones of the pipe.

The first result presented here (see Fig. 3a) refers to the evaluation of the
discrepancies between the saturation state . psat;Tsat/ and the output state of the
system . p;T/. Hereafter, . pl;Tl/ and . pv;Tv/ represent the output states taken
at the bottom of the liquid film and on the symmetry axis of the numerical
representation of the heat pipe, respectively. If the pair . pv;Tv/, especially in those
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Fig. 2 Validation of the model: numerical and experimental thermal outputs on the outer wall of
the pipe. Diamonds and triangles correspond to the positions of the thermocouples

Fig. 3 (a) Relative discrepancy (%) between the computed saturation temperature and Tv and Tl,
respectively. (b) Longitudinal trend of the pressure field in the vapour and in the liquid core

points corresponding to the adiabatic zone, exhibits strong deviations from the
saturation state . psat;Tsat/, then the heat pipe could fail to work on-design. Indeed,
this undesired occurrence implies that Hlv does not match the heat that is supplied
and subtracted from the outside, leading to a overheating of the device. Therefore,
a good estimate of the departure of the thermodynamical state of the system from
the saturation one is useful to evaluate a posteriori one of the possible operating
limits, which is a critical supplied power, above which the heat pipe fails and,
consequently, to forecast this failure. For this purpose, Tsat is determined with the
aid of the Clausius-Clapeyron formula (12), and then compared with the output
temperature Tv.

In the present case study, the absolute difference jTv � Tsat. p/j remains less
than 1K almost everywhere in those numerical tests that reproduce a successful
experiment. For instance, in the case reported in Fig. 3a, the relative difference,
expressed as a percentage, is very small and presents a peak in the two ends of
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the pipe (jT � Tsatjmax 
 7K in the evaporation zone, and jT � Tsatjmax 
 3K in the
condenser).

Another failure of the heat pipe is represented by a loss in capillary pressure
of the liquid film. This occurrence can be produced by the high viscosity of the
chosen fluid, or a too small capillary pressure, which instead should guarantee
the liquid reflux to the evaporator. The velocity field of the liquid phase must
be counter-current to the vapour flux in this device, since the former one has to
reach the evaporator, whereas the latter one must flow towards the condenser. In
Fig. 3b, the counter-current nature of the velocity in each phase can be deduced
from the longitudinal trend of the pressure. In fact, the pressure drop is positive in
the vapour and negative in the liquid. Moreover, the pressure jump jpl � pvj rising
at the evaporator should be as high as possible. This difference is a measure of
the capillary pump that acts on the liquid, thereby allowing for its reflux. In the
model presented in this work, however, the wick structure is absent. Nevertheless,
the pressure difference jpl � pvj gives an estimation of the capillary pressure that is
sufficient to ensure the reflux of the liquid to the evaporator. This capillary action
is partially ascribable to the contribution of the Korteweg stress to the overall stress
tensor defined in (2).

As an outcome of the analysis of the results illustrated in Fig. 3a and b, the
considered experimental protocol and the performed simulations correspond to the
on-design working condition of the device.

3 Conclusions

The purpose of this work is to support a conscious industrial design of the optimal
heat pipe by providing a mathematical model conceived to be rigorous and efficient,
but also manageable and implementable on in-house machines.

A two-phase computational fluid dynamic model for estimating the liquid and
vapour thermodynamic state inside a heat pipe is developed. For this purpose, the
dissipative aspects of the studied problem have been taken into account, and the
model has been elaborated in such a way that the Helmholtz free energy density of
the two-fluid system depends both on the phase field and on the first gradient of this
order parameter, as is the case in the Cahn-Hilliard theory. As a consequence, the
Cahn-Hilliard model for phase transitions is generalised to the non-isothermal case.
As obtained from the comparison of the numerical outcomes with the experimental
data, provided by Argotec s.r.l., the developed numerical model describes effectively
some features of the complicated behaviour of a heat pipe.

After validating the model, particular attention is paid to checking the tempera-
ture and pressure fields of the liquid and the vapour phases. All the obtained results
can be also used for evaluating a posteriori the operating limits of the heat pipe.
Indeed, it seems important to comprehend with an adequate amount of confidence
in which way off-design conditions may arise. A useful application of the present
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model could be put into practice, to refine the design and the industrial production
of this particular heat exchanger.

Further characterisations and particularisations of the present mathematical
model are the object of current investigations, which aims at suiting the present
model to the demands of the company, which busily cooperates in the model
development by providing new ideas, new test cases, and new related experimental
data.
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Short Description

Ordered randomness is ubiquitous in nature. Every single biological system, from
molecular motor dynamics in intracellular processes, multicellular organisms to
human social behaviour, from micro- to macro-scale, is susceptible to arbitrary
events, which did not have to happen in a certain way, but which did, and
completely defined the final system. Interestingly, despite the inherent complexity
of many interacting individual agents, order and structure may arise naturally,
producing robust global behaviours with emergent properties that qualitatively
differ from those of its individual units. In this mini-symposium, we will explore
how mathematical modelling can be utilized to predict and interpret the different
facets of self-organization and collective behaviour in biology, establishing what
is known and identifying further challenges. The proposed mini-symposium will
additionally highlight that this is a fertile and challenging area of inter-disciplinary
research for applied mathematicians, while demonstrating the importance of future
observational and theoretical studies in understanding the underlying mechanisms
of self-organization and collective behaviour.
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Convergence Analysis and Numerical
Simulations of Anisotropic Keller-Segel-Fluid
Models

Georges Chamoun, Mazen Saad, and Raafat Talhouk

Abstract In order to study the dynamics of anisotropic chemotaxis-fluid models,
a detailed numerical analysis is established in this paper. To discretize this type
of models, a monotone combined scheme is proposed as a compromise between
the nonconforming finite elements, enabling in particular the use of general
meshes and the discretization of anisotropic diffusion tensors, and between the
finite volumes enabling to avoid spurious oscillations in the convection-dominated
regime. Moreover, this monotone scheme ensures the discrete maximum principle
and therefore the confinement of the density of cells and the positivity of the
chemical concentration. Finally, a test is given to illustrate the numerical study.

Keywords Anisotropic chemotaxis-fluids • Anisotropic Keller-Segel-fluid models

1 Introduction

Chemotaxis, movement toward or away from chemicals, is a universal attribute of
motile cells and organisms. In a large variety of ecological systems, cells often live
in a viscous fluid so that cells and chemical substrates are also transported with the
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fluid, and meanwhile the motion of the fluid is under the influence of gravitational
forcing generated by aggregation of cells. For example, E. coli cells often swim
towards amino acids and sugars. Nevertheless, the mathematical modelling of cell
movement which goes back to Patlak [12], (see [10]) do neglect the surrounding
fluid and would fail to predict the dynamics of cells influenced by the fluid.
Thus, it is interesting and important in biology to study some phenomenon of
chemotaxis on the basis of the coupled cell-fluid model. This paper is devoted to
the numerical analysis of the following system of Keller-Segel equations coupled to
Stokes equations,

8
ˆ̂
<

ˆ̂
:

@tN � r � .S.x/a.N/rN/C r � .S.x/�.N/rC/C u � rN D 0;

@tC � r � .M.x/rC/C u � rC D ˛N � ˇC;
@tu � �u C rP D �Nr�;

r � u D 0;

(1)

where ˝ is an open bounded domain in R
d (d D 2; 3) with smooth boundary @˝ .

The system is supplemented by the following boundary conditions on @˝ � .0;T/,

S.x/a.N/rN � � D 0; M.x/rC � � D 0; u D 0; (2)

where � is the exterior unit normal to @˝ . The initial conditions on ˝ are given by,

N.x; 0/ D N0.x/; C.x; 0/ D C0.x/; u.x; 0/ D u0.x/: (3)

The fluid flow is governed by the incompressible Stokes equations with velocity
field u, pressure P and viscosity �. Both, the chemical concentration and the density
of cells are denoted by C and N, respectively. Anisotropic and heterogeneous
tensors are denoted by S.x/ and M.x/. The function �.N/ is usually written in
the form �.N/ D N Qh.N/ where Qh is commonly referred to as the chemotactic
sensitivity function. The cross diffusion term namely : r � .S.x/�.N/rC/ can be
view as a convective term of the flux �.N/ according to the sign of gradient of rC.
Furthermore, if �.N/ is positive then we observe the chemoattractant mechanism
and in the other case we observe the chemorepellent mechanism. Moreover, the
density-dependent diffusion coefficient is denoted by a.N/.

The function h.N;C/ D ˛N � ˇC describes the rates of production and
degradation of the chemical signal (chemoattractant). It can be seen in the model
(1) that the fluid is coupled to the chemotaxis equations through both the transport
of cells and chemical substrates u � rN, u � rC and the external gravitational force
g D �Nr� exerted by a cell onto the fluid along the upwards unit vector z.
The question of global existence of weak solutions of the degenerate model (1)
has been answered in [2, 4] and hence it is well-posed. Interested by experiments
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able to predict the dynamics of cells influenced by a viscous fluid through transport
and gravitational force and motivated by results described in [3, 5] which explain
the dynamics of anisotropic chemotaxis models in a fluid at rest .u D 0/, we
extend in this paper the numerical analysis of Chamoun et al. [5] to the model (1).
To our knowledge, there are only a few numerical results given for related systems
(see [6, 11]). For example, the finite element method has been used to illustrate
the behavior of the elliptic-parabolic Keller-Segel-Stokes system with numerical
examples in [11].

2 Setting of the Problem

We assume first that �.0/ D 0 and the chemotactical sensitivity �.N/ vanishes
when N � 1. This threshold condition has a clear biological interpretation called
the volume-filling effect (see [9]). The main assumptions are:

� W Œ0; 1� 7�! R is continuous and �.0/ D �.1/ D 0 ; (4)

a; f W Œ0; 1� 7�! R
C are continuous, a.0/ D a.1/ (5)

D f .0/ D 0 and a.s/ > 0 for 0 < s < 1 :

Next, we require

r� 2 .L1.˝//d and � is independent of time. (6)

The permeabilities S, M: ˝ �! Md.R/ where Md.R/ is the set of symmetric
matrices d � d, verify:

Si;j 2 L1.˝/; Mi;j 2 L1.˝/; 8i; j 2 f1; ::; dg ; (7)

and there exist cS 2 R
�C and cM 2 R

�C such that a.e x 2 ˝; 8� 2 R
d,

S.x/� � � � cSj�j2; M.x/� � � � cMj�j2 : (8)

Finally, we introduce basic spaces associated to the Stokes equation,

} D fu 2 D.˝/;r � u D 0g; V D N}H1
0.˝/ and H D N}L2.˝/ ; (9)

where V and H are the closure of } in H1
0.˝/ and L2.˝/ respectively.
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3 Combined Finite Volume-Nonconforming Finite Element
Scheme

This section is devoted to the formulation of a combined scheme for the anisotropic
chemotaxis-fluid model (1) which has been recently proposed and studied for
parabolic equations in [8] and for anisotropic Keller-Segel models in [5].

3.1 Space and Time Discretization of˝

We consider a family Th of meshes of the domain ˝ , consisting of disjoint
closed simplices. The size of the mesh Th is defined by h:=maxK2Th diam.K/.
We also make the following shape regularity assumption: 9kT > 0 such that
minK2Th

jKj
.diam.K//d

� kT ; 8h > 0 : We also use a dual partition Dh of disjoint

closed simplices called control volumes of ˝ such that N̋ D [D2Dh
ND. There is

one dual element D associated with each side 	D D 	K;L 2 Eh. We construct it by
connecting the barycenters of every K 2 Th that contains 	D through the vertices
of 	D. The point PD is referred to as the barycenter of the side 	D. For all D 2 Dh,
denote by jDj the measure of D, by N .D/ the set of neighbors of the volume D,
by 	D;E the interface between a dual volume D and E and by �D;E the unit normal
vector to 	D;E outward to D (see Fig. 1).

Fig. 1 Dual volumes associated with edges of the primal mesh
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Next, we define the following finite-dimensional spaces:

Xh WD f'h 2 L2.˝/I 'hjK is linear 8K 2 Th; 'h is continuous at the points PD, D 2 D int
h g ;
(10)

X0h WD f'h 2 XhI 'h.PD/D 0; 8D 2 Dext
h g :

The basis of Xh is spanned by the shape functions 'D, D 2 Dh, such that
'D.PE/ D ıDE; E 2 Dh, ı being the Kronecker delta. We equip X0h with the
scalar product ..Nh;Vh//h D P

K2Th

R
K rNh � rVhdx and the seminorm jjNhjj2Xh

WD
P

K2Th

R
K jrNhj2dx which becomes a norm on X0h :

Let us consider a constant time stept 2 Œ0;T�. A discretization of Œ0;T� is given
by QN 2 N

� such that tn D nt; for n 2 f0; : : : :; QN C 1g. The discrete unknowns are
denoted by

˚
wn

D; D 2 Dh; n 2 f0; : : : ; ; QN C 1g� where w D N; C or u.

3.2 Combined Scheme for the System (1)

Due to the incompressibility condition r �u D 0, it was shown in [7, 13] that it is not
possible to approximate the space V defined in (9) by the most simple finite elements
where the results, even for the Stokes equations, are less general and vary according
to the dimension since no basis of the approximate space Vh is available. For
this reason, the approximation by means of nonconforming finite element methods
chosen in this subsection is certainly very useful for Stokes problems.

Let us denote the approximation of the flux S.x/rC � �D;E (resp. u � �D;E) on
the interface 	D;E by ıCD;E (resp. uD;E). Then, we approximate the numerical
flux S.x/�.N/rC � �D;E by means of the values ND;NE and ıCD;E through a
numerical flux function G.ND;NE; ıCD;E/ satisfying classical properties given in
[5]. Similarly, for �.N/ D N and S.x/ D Id, we approximate the flux Nu � �D;E

as an upwind convection function G1.ND;NE; uD;E/ D uCD;END � u�D;ENE ; where
uCD;E and u�D;E denote the positive and negative parts of uD;E. Moreover, for all
Nh D P

D2Dh
ND'D 2 Xh, we define a discrete function of A.Nh/ as Ah.Nh/ DP

D2Dh
A.ND/'D :

Finally, a combined finite volume-nonconforming finite element scheme for the
discretization of the model (1) is given by the following iterative algorithm: Suppose
that the solution . QNn

h ;
QCn

h; u
n
h; p

n
h/ at time tn is known, then we compute the solution

. QNnC1
h ; QCnC1

h ; unC1
h ; pnC1

h / at time tnC1 through two steps.
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• First step: (Computation of unC1
h and pnC1

h )
Let Vh be a subspace of the preceding space Xh such that

Vh D fuh 2 Xh; divh.uh/ D 0g where the discrete divergence, (11)

divh.uh/ D
X

K2Th

�K1K I �K D 1

jKj
Z

K
r � uh dx :

The practical computation of unC1
h in Vh is not easy (see [13]). For that, we

interpret our problem as a variational problem in Xh with linear constraints.
We define the space of piecewise constant functions

Yh D fph D
X

K2Th

�K1K dxI 1K is the characteristic function of Kg

and we compute practical solutions unC1
h 2 Xh and pnC1

h 2 Yh using the classical
Uzawa’s algorithm, as the limits of two sequences of elements

unC1;r
h 2 Xh and pnC1;r

h 2 Yh; r D 0; 1; ::;C1 :

We start the algorithm with an arbitrary element pnC1;0
h . When unC1;r

h is known,
we define unC1;rC1

h and pnC1;rC1
h by

1

t
.unC1;rC1

h � un
h; vh/C �..unC1;rC1

h ; vh//h � . pn;rC1
h ; divhvh/ D .gn; vh/; 8vh 2 Xh ;

(12)

where gn D � QNn
h r� 2 L2.˝/:

. pnC1;rC1
h � pn;r

h ; qh/C �
�
divh.u

nC1;rC1
h /; qh

� D 0; 8qh 2 Yh : (13)

The existence and the uniqueness of the solution unC1;rC1
h follow from the

projection theorem. Regarding the convergence of this algorithm, we have the
following Proposition proved in [13, Chap. VII, Proposition 6.7],

Proposition 1 If 0 < � < 2�
d then, as r ! C1, unC1;rC1

h converges to unC1
h in

Xh and pnC1;rC1
h converges to pnC1

h in Yh=R .
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• Second step: Given unC1
h from the first step, we compute QNnC1

h and QCnC1
h by:

jDjNnC1
D � Nn

D

t
�
X

E2Dh

SD;EA.NnC1
E /C

X

E2N .D/

G.NnC1
D ;NnC1

E I ıCnC1
D;E / (14)

C
X

E2N .D/

G1.N
nC1
D ;NnC1

E I unC1
D;E / D 0 ;

jDjCnC1
D � Cn

D

t
�
X

E2Dh

MD;ECnC1
E C

X

E2N .D/

G1.C
nC1
D ;CnC1

E I unC1
D;E / D h.Nn

D;C
nC1
D / :

(15)

The diffusion matrix S (resp. M ) of elements SD;E (resp. MD;E) for
D;E 2 Dh is the stiffness matrix of the nonconforming finite element method.
So that,

SD;E D �
X

K2Th

.S .x/r'E;r'D/0;K and MD;E D �
X

K2Th

.M.x/r'E;r'D/0;K :

Otherwise, ıCnC1
D;E D SD;E

�
CnC1

E � CnC1
D

�
and unC1

D;E D
Z

	D;E

unC1
h � �D;E d� :

Now, we state a convergence result of the combined scheme under the assumption
that all transmissibilities coefficients are positive:

SD;E � 0 and MD;E � 0; 8D 2 Dh; E 2 N .D/ : (16)

Theorem 1 (Convergence of the Combined Scheme) Assume (4). . . (9). Con-
sider 0 � N0 � 1, C0 � 0, u0 2 L1.˝/ and r � u0 D 0. Under the assumption (16),
one has:

1) There exists a solution . QNh;t; QCh;t/ of the discrete system (14) and (15).
2) Any sequence .hm/m decreasing to zero possesses a subsequence such that
.Nhm ;Chm ; uhm/ converges a.e. on QT to a solution .N;C; u/ of the system (1).

Remark 1 If assumption (16) is not satisfied, one can use a nonlinear technique
inspired from [1] to correct the diffusive flux blocking the discrete maximum
principle and to maintain the monotonicity and the convergence of the corrected
numerical scheme. One can see [5, Sect. 4] for more details.
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4 Numerical Experiment

The driven cavity flow is one of the most studied fluid problems in computational
fluid dynamics field. The fluid in this problem is contained in a square domain with
Dirichlet boundary conditions on all sides, with three stationary sides and one upper
moving side (with velocity .1; 0/ tangent to the side). In this section, we present
a numerical test to show the dynamics of solutions of the system (1) in a driven
cavity flow discretized by the combined method along the algorithm detailed in the
Sect. 3.2 with a.N/ D N.1� N/, �.N/ D cN.1� N/2 and c D 0:1. First, we choose
dt D 0:0005, ˛ D 0:01, ˇ D 0:05, D D 0:001, d D 2 � 10�4 (diffusion coefficient
of C), � D 5 � 10�3, c2 D 0, c1 D 1 and r� D .0; 1/. Next, we consider the
tensors: S D Œ8;�7I �7; 20� and M D Id. Simulations of this test are done on the
mesh given in Fig. 2a and initial conditions are defined by regions in Fig. 2b. We see
in Fig. 3 the anisotropic chemotaxis attitude of cells transported at the same time by
the fluid. We can also remark that the cells split into several parts due to the velocity
of the fluid which accelerates a part of cells towards the chemoattractant.

(a) (b)

Fig. 2 The initial density is defined by N0.x; y/ D 0:1 in the square .x; y/ 2 f0:6; 0:7g�f0:6; 0:7g
and 0 otherwise. The initial concentration of chemo-attractant is defined by C0.x; y/ D 20 in the
square .x; y/ 2 f0:25; 0:35g � f0:25; 0:35g and 0 otherwise. A constant speed (1,0) is imposed on
the upper wall of the space domain and the pressure is neglected in the whole domain. (a) Dual
mesh of the space domain (352 diamonds). (b) Initial conditions
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Fig. 3 Evolution in time of the cell density via a chemo-attractant in a fluid. (a) 0 � N.t D
4/ � 0:01, 0 � C.t D 4/ � 8:35. (b) 0 � N.t D 25/ � 0:028, 0 � C.t D 25/ � 0:46.
(c) 0 � N.t D 40/ � 0:03852, 0 � C.t D 40/ � 0:1852. (d) 0 � N.t D 50/ � 0:04591,
0 � C.t D 50/ � 0:06134
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This minisymposium aims at bringing together researchers in computational cardi-
ology, focusing on the latest developments and on the new research pathways and
applications.

ECMI motivation/relevance: In silico studies of the cardiovascular system are
very relevant to ECMI since they are a crucial part of the ongoing efforts to bridge
advanced research and clinical applications, as e.g. in the Virtual Physiological
Human (VPH) project. The main goal of these studies is to develop, test and
implement integrative biomedical science and technology-facilitated applications,
as well as to improve current simulation techniques.



On a Spatial Epidemic Propagation Model

István Faragó and Róbert Horváth

Abstract Most of the models of epidemic propagations do not take into the
account the spatial distribution of the individuals. They give only the temporal
change of the number of the infected, susceptible and recovered patients. In our
presentation we present a spatial epidemic propagation model and give some of its
qualitative properties both in the continuous and the finite difference numerical case:
boundedness, nonnegativity preservation, the condition of forming epidemic waves.
Some of the results are demonstrated on numerical tests.

Keywords Biomedical science • Spatial epidemic propagation model

1 Introduction

Most of the living populations have to cope with different diseases. Some of these
diseases are communicable and can decrease the size of the population dramatically.
This is why people are eager to understand the mechanism of epidemics and try
to prevent their outbreak and propagation by efficient and affordable means (e.g.
hygiene, vaccination).

One of the tools of the investigation of epidemics may be the construction of
mathematical models and the analysis of the solutions of these models [1–3]. In
1927, Kermack and McKendrick [4] created an epidemic model (also known as SIR
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model) in the form of a system of ordinary differential equations

S0 D �aSI;

I0 D aSI � bI;

R0 D bI;

(1)

where I D I.t/, S D S.t/ and R D R.t/ denote the number of infective, susceptible
and removed (by immunity or death) individuals as a function of time t, respectively.
The contact rate a and recovery coefficient b are positive known numbers. This
model has been improved several times taking into the account also births, deaths,
latent periods, reinfections, incubations etc. [1, 2]. These models assume that the
population is homogeneous, that is do not handle the different spatial positions of
the individuals. There are several methods to bring also spatial dependence into
the picture. For example, it is possible to investigate subpopulations inside the
original population that are connected somehow into a network. Other possibility
is to allow the motion of the individuals in the population [3]. We will consider
a third model. We assume that the speed of the motion of the individuals can be
neglected compared to the speed of the disease and the infection is localized in that
sense that a member of the population can infect only members in its well defined
neighbourhood. This property is brought into the model by integral coefficients.

Based on the above considerations, we arrive at a modified SIR model (see e.g.
[3]) in the form of a system of partial differential equations equipped with suitable
initial and boundary conditions

S0t.x; t/ D �
�Z

N.x/
W.jx0 � xj/I.x0; t/ dx0

�

S.x; t/;

I0t .x; t/ D
�Z

N.x/
W.jx0 � xj/I.x0; t/ dx0

�

S.x; t/ � bI.x; t/;

R0t.x; t/ D bI.x; t/;

(2)

where now S D S.x; t/, I D I.x; t/ and R D R.x; t/ depend also on the spatial
position and give the densities of the corresponding parts of the population. The
nonnegative weighting function W is supposed to depend only on the distance of
the points x0 and x, and N.x/ denotes a prescribed neighbourhood of the point x.

The model (2) can be simplified further. Let us suppose that the spatial dimension
of the problem is one, and that N.x/ D Œx � ı; x C ı� is a symmetric interval around
any fixed point x. Let us approximate I with its second order spatial Taylor series.
In this way we arrive at the system [3]

S0t D �S
�
�I C �I00xx

�
;

I0t D S
�
�I C �I00xx

� � bI;

R0t D bI;

(3)
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where

� D
Z ı

�ı
W.juj/ du; � D 1

2

Z ı

�ı
u2W.juj/ du (4)

are positive constants that can be computed from the model (namely from N.x/ and
W) directly.

2 Properties of the Simplified Model

It is a natural requirement for the mathematical and numerical models of any
real life phenomenon that the solutions of the models must possess some basic
qualitative properties of the original process. In the present case such qualitative
properties are as follows. We formulate them simultaneously with the properties of
the mathematical model (3).

[P1 ] The size of the population at a given spatial position cannot change in time.
This means that S C I C R must be constant at any given spatial position.

[P2 ] The number of the susceptibles cannot grow and the number of the recovered
cannot decrease. That is S is a nonincreasing and R is a nondecreasing
function of time at any fixed spatial point.

[P3 ] The number of the susceptible, infective and recovered members must be
nonnegative. S, I and R must be always nonnegative if S > 0, I � 0 and
R 	 0 are satisfied at the initial time instant.

Remark 1 Let us notice that property [P2] does not follow from the model directly.
If S is positive and �I C�I00xx is negative in the initial state at a certain point, then the
time derivative of S would be positive, according to the first equation in (3). This is
qualitatively incorrect.

The validity of the qualitative properties [P1]–[P3] can be guaranteed by the
following theorem.

Theorem 1 If the condition

�I C �I00xx � 0 (5)

is satisfied then properties [P2] and [P3] are true for the solution of problem (3).
Property [P1] is true without any restrictions.

Proof Property [P1] follows after the addition of the three equations in (3). Let us
turn to the proof of properties [P2] and [P3]. Let us divide the first equation in (3)
by S, and integrate from 0 to t? with respect to time t (the spatial position is kept
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fixed). We obtain

log.S.x; t?// � log.S.x; 0// D �
Z t?

0

.�I.x; t/C �I00xx.x; t// dt;

and reformulating it we have

S.x; t?/ D S.x; 0/ exp

 Z t?

0

�.�I.x; t/C �I00xx.x; t// dt

!

:

Based on (5), the monotone decrease in time and the nonnegativity of S can be seen.
From the second equation of (3) we obtain that, because S.�I C �I00xx/ � 0,

the solution function I.x; t/ satisfies the inequality I.x; t/ � I.x; 0/ exp.�bt/. This
means that I is also nonnegative.

Because I is nonnegative, R is monotone increasing in time, thus it is nonnega-
tive. This follows from the third equation in (3).

We also see that I goes to zero as t tends to infinity, because if I.x; t/ � I0 > 0

satisfied for some appropriate value I0 then R would go to infinity (third equation in
(3)) but this would contradict to property [P1]. This completes the proof.

Remark 2 Condition (5) depends on the values of the solution I in the whole
solution domain of system (3). We cannot give requirements for the initial and
boundary conditions that would guarantee the validity of the condition a priori.
Despite of this, we found that in the numerical examples (see later) the fulfilment of
the condition at the initial state was enough to its validity at later time instants.

Remark 3 Condition (5) guarantees the monotone decrease of the number of the
susceptibles [first equation in (3)]. Theorem 1 can be formulated alternatively as
follows: If the number of the susceptibles is decreasing in time then the other
qualitative properties also hold.

Now we turn to the question whether system (3) can possess travelling wave
solutions. This would make it able to mimic epidemics. Thus, following [3], we are
looking for solutions in the form

S.x; t/ D QS.x � ct/; I.x; t/ D QI.x � ct/; R.x; t/ D QR.x � ct/; (6)

where c is a constant that denotes the wave speed, and the univariate functions QI and
QS have the properties

lim
�!˙1

QI.�/ D 0; lim
�!˙1

QI0.�/ D 0; lim
�!1

QS.�/ D QS1 > 0: (7)

These expressions formulate the fact that there are no infected members at the time
instants t D ˙1 and the density of the susceptible members is a positive constant
at the time instant t D �1.
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Inserting functions (6) into the system (3) and integrating the equations from
� to 1 and taking into the consideration the assumptions (7), after some simple
manipulations we obtain the system of ordinary differential equations

QI0 D c

�
log.QS=QS1/� �c

b�
.QI C QS � QS1/;

QS0 D b

c
QI � c

�
log.QS=QS1/C �c

b�
.QI C QS � QS1/;

QR0 D �b

c
QI:

(8)

Let us consider the first equation in (8) at � D �1. Based on the assumptions
(7), the equality can be true if and only if

QS�1
QS1 D exp

 QS1�
b

 QS�1
QS1 � 1

!!

;

where QS�1 D lim�!�1 QS.�/. The equality is trivially true if QS�1 D QS1. If
QS1�=b � 1 then this is the only solution. In this case, however, the number of the
susceptible members does not change, that is no epidemic occurs. Thus the condition

QS1 > b=� (9)

(the initial density of the susceptible members must be sufficiently large) is a
necessary condition for the propagation of the disease. In this case QS�1 < b=� ,
that is the epidemic wave does not leave enough susceptible members back to be
able to sustain a new wave.

It is possible to gain a lower bound for the speed of the epidemic. One of the
critical points of the first two equations in (8) is .QS; QI/ D .QS1; 0/. Linearising the
system at this critical point, the eigenvalues of the coefficient matrix are

�1;2 D
�c ˙

q

c2 C 4QS1b� � 4.QS1/2��
2QS1� D

�c ˙
q

c2 � 4QS1�.b � QS1�/
2QS1� :

If (9) is satisfied then the critical point is either a stable spiral point or a stable
node. Because around a spiral point QS would take greater values than QS1 (more
susceptible than at the starting instant) the critical point must be a stable node. That
is only epidemic waves with speed

c � 2

q
QS1�.QS1� � b/

can exist.
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3 Numerical Solution of the Simplified Model
and Its Qualitative Properties

We solve (3) numerically by the finite difference method on a finite spatial interval
Œ0;L�. At the two ends of the interval homogeneous Neumann boundary conditions
are applied.

We define a uniform spatial grid !h D fxk 2 Œ0;L� j xk D kh; k D 0; : : : ;N; h D
L=Ng and a time step 
 > 0. The functions S; I and R are approximated respectively
by the grid functions sn; in and rn at the nth time level t D n
 . For n D 0, the grid
functions are known from certain initial conditions.

Let us consider the discretization scheme

snC1
k � sn

k



D �sn

k

�

� ink C �
ink�1 � 2ink C inkC1

h2

�

;

inC1k � ink



D sn
k

�

� ink C �
ink�1 � 2ink C inkC1

h2

�

� bink ;

rnC1
k � rn

k



D bink;

(10)

for the indices k D 0; : : : ;N, where we define the values with the spatial indices �1
and N C 1 to be the values with indices 1 and N � 1, respectively (homogeneous
Neumann boundary).

The discrete versions of the qualitative properties [P1]–[P3] can be easily
formulated for the numerical solution simply changing the functions S; I and R to
the mesh functions sn; in and rn.

Theorem 2 The finite difference scheme (10) satisfies the discrete version of [P1]
and if the relation

0 � � ink C �
ink�1 � 2ink C inkC1

h2
(11)

is true for all possible indices k and n, and the time step satisfies the condition


 � min

�
1

M.� C 4�=h2/
;
1

b



; (12)

where M D maxx2Œ0;L�fS.x; 0/C I.x; 0/C R.x; 0/g, then the discrete versions of the
properties [P2] and [P3] are also satisfied.

Proof The proof can be carried out analogously to the proof of Theorem 1. The first
part of the statement follows again after adding the three equations in (10).
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Let us introduce the notation

jnk D
�

� ink C �
ink�1 � 2ink C inkC1

h2

�

� 0;

and define C0 as the maximum of the values jnk . Then, from the first equation of (10),
we have snC1

k D .1 � 
 jnk/s
n
k : If 
 � 1=C0 then sn

k is monotonically decreasing in n
and remains nonnegative.

From the second equation in (10), based on the nonnegativity of the first term on
the right hand side, we obtain that ink � .1 � 
b/ni0k � 0: This implies that rn

k is also
nonnegative, and that all grid functions are bounded by M from above. This gives
that C0 D M.� C 4�=h2/ is a good choice. This completes the proof.

Remark 4 Based on the proof of the previous theorem, we can state that the
numerical scheme is stable in maximum norm provided that the condition of
Theorem 2 is satisfied.

We turn to the numerical verifications of the results of the previous section. We
have seen that epidemic waves can occur for special parameter choices. We are
going to demonstrate this effect on some numerical test examples. We are also going
to check the validity of the properties [P1]–[P3] for the numerical solution.

We set L D 10, ı D 7=100 and b D 5=100. The weighting function is defined to
be W.juj/ D 1 � juj=ı for juj 2 Œ0; ı� and zero otherwise (Fig. 1). With this choice,
formulas in (4) give � D ı and � D ı3=12. The spatial step size is set to h D 1=30

and the time step is chosen as 
 D 1 according to the upper bound (12) 
 � 5:7837

(M D 1, see the initial conditions later).
The first initial condition can be seen on the left panel of Fig. 2. In the middle of

the interval Œ0; 10� 80 % of the individuals are infected, the others are susceptible.
Because QS1 D 1 > b=� D 0:7142, the necessary condition of the birth of
an epidemic wave is satisfied. There are enough susceptibles to sustain the wave.
Albeit, the condition is only necessary, the numerical test shows that now it is also
sufficient. The density functions are plot at the time instant t D 1500 (right panel
of Fig. 2). The left hill on the dashed curve (infected part) moves as a wave to the
left and the right one to the right. After the epidemic wave passed the density of

Fig. 1 Graph of the
weighting function W
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Fig. 2 Epidemic case: the initial conditions (left panel) and the states at the time level t D 1500

(right panel). The left hill on the dashed curve (infected part) moves to the left and the right one to
the right

Fig. 3 Non-epidemic case: the initial conditions (left panel) and the states at the time level t D 800

(right panel)

susceptibles drops down to around 0.5 which is not enough to generate a new wave
later.

The value b=� D 0:7142 shows that if more than 28.58 % of the population is
immunized before the disease starts (left panel of Fig. 3) then an epidemic wave
is not able to develop. The disease localized only around its starting position. The
capture of the densities at t D 800 is seen on the right panel of Fig. 3. In this way, we
are able to obtain an immunization strategy. We can give that how many individuals
must be immunized before the epidemic wave reaches a given region and we can
stop the propagation of the disease.

Regarding the fulfilment of the qualitative properties, we can state that all the
properties [P1]–[P3] were satisfied in the numerical tests. Executing several models
with different initial conditions and parameters, we surmise that it is enough to
guarantee (11) only for the initial state (n D 0) provided that the time step is
sufficiently small. In this way the qualitative properties may be guaranteed a priori.
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phenomena and for making predictions when systems are perturbed. Moreover, in
many cases, numerical models play an important role in the design of early warning
system for natural disasters like tsunami or storm/hurricane alert systems.

The main goal of the mini-symposium will be the discussion and presentation
of state-of-the-art computational and numerical methods for the next generation of
geophysical flow models for environment, natural hazards, and risk evaluation with
a focus on finite volume discretizations and HPC techniques for faster than real time
simulations.

Motivation/Relevance to ECMI This minisymposium fits in one of the specific
topics of the Congress: ‘Mathematical methods in environment’. Mathematical
models for environment, natural hazards, and risk evaluations are useful tools for
public and private companies in different fields such as civil protection, hydraulic
engineering, assurances, etc. Therefore, the thematic of this minisymposium also
fits in one of the main goals of ECMI: to promote the use of mathematical models
in activities of social or economic importance.



The Randomized Level Set Method
and an Associated Reaction-Diffusion Equation
to Model Wildland Fire Propagation

Gianni Pagnini and Andrea Mentrelli

Abstract Front propagation can be studied by two alternative approaches: the
level set method and the reaction-diffusion equation. When a front propagates
in a random environment it gets a random character and these two approaches
can indeed be considered complementary and reconciled. In fact, if the level set
contour is randomized accordingly to the probability density function of the front
particle displacement, the resulting averaged process emerges to be governed by
an evolution equation of the reaction-diffusion type. This approach turns out to
be useful to simulate random effects in wildland fire propagation as those due to
turbulent heat convection and fire spotting phenomena.

Keywords Geophysical flow • Randomized level set method • Reaction-diffusion
equations • Wildland fire propagation models

1 Introduction

Wildland fire propagation is a complex multi-scale, as well as a multi-physics and
multi-discipline process, strongly influenced by the atmospheric wind. Wildland
fire is fed by the fuel on the ground and displaced, beside meteorological and
orographical factors, also by the hot air that pre-heats the fuel and aids the fire
propagation. Heat transfer is turbulent due to the Atmospheric Boundary Layer and
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the fire-induced flow. Moreover, fire generates firebrands that when land on the
ground are further sources of fire. Both turbulence and jump-length of firebrands
are random processes that affect the fireline propagation.

Fire propagation has been mainly modelled in the literature by using reaction-
diffusion type equations, see e.g. [1, 4], and the level set method, see e.g. [3, 5]. Here,
an approach based on the level set method is proposed to model the global random
effects on fire front propagation due to turbulence and fire spotting. Actually, a
reaction-diffusion equation associated to the level-set method is derived.

2 Model Formulation

Let � .t/ be the fire line contour then, in a two dimensional domain, it can be
represented as an isoline of an auxiliary function �.x; t/, i.e. � .t/ D fx; t W �.x; t/ D
�0 D constantg. The evolution equation of the isoline �0 is given by

D�

Dt
D @�

@t
C dx

dt
� r� D D�0

Dt
D 0 : (1)

Let the motion of the surface points be directed towards the normal direction then

dx
dt

D V.x; t/ D V .x; t/bn ; bn D � r�
jjr� jj ; (2)

and (1) becomes

@�

@t
D V .x; t/ jjr� jj ; (3)

which is the ordinary level set equation. Let '.�.x; t// be an indicator function such
that

'.�.x; t// D
8
<

:

1 ; �.x; t/ > �0 ; x 2 ˝.t/ ; burned area ;

0 ; �.x; t/ � �0 ; x 62 ˝.t/ ; unburned area :
(4)

The boundary of ˝.t/ is � .t/, that is the front line contour of the wildland fire.
QuantityV .x; t/ is identified with the so-called Rate Of Spread (ROS) [3, 5]. Several
determinations of the ROS have been proposed, see e.g. [2, 3, 9]. The present
formulation holds for any determination of the ROS.
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Let the burning fireline be embodied by a large number of active flame holders.
Let the motion of each active flame holder belonging to the fireline be random due
to turbulence and fire spotting effects. For any realization indexed by !, the random
trajectory of each active flame holder is stated to be X!.t; x0/ D xROS.t; x0/ C
�! C �! , where � and � are two random noises that reproduce the randomness
of turbulence and fire spotting. The deterministic component xROS corresponds to
the motion obtained by literature determination of the ROS [2, 3, 9]. The trajectory
of a single active flame holder is marked out by the one-particle density function
f !.xI t/ D ı.x � X!.t; x0//, where ı.x/ is the Dirac-delta function. The random
trajectory X!.t; x0/ has the same fixed initial condition X!.0; x0/ D xROS.0; x0/ D
x0 in all realizations. Let �.x0; 0/ be the initial fixed fireline contour, the evolution
in time of the fireline according to the !-realization of the trajectories of the active
flame holders follows to be

�!.x.t// D
Z

�0

�.x0; 0/ ı.x � X!.t; x0// dx0 ; (5)

where �0 D fx W �.x; 0/ D �0g.
Denoting by h�i the ensemble average, the average trajectory hX!.tI x0/i D

x.t; x0/ is driven by the deterministic velocity field dx=dt D V.x; t/. Then, trajectory
x.t; x0/ emerges to be time-reversible and the Jacobian of the transformation follows
to be J D dx0=dx ¤ 0. To study the potentialities of the proposed approach,
the working hypothesis J D 1 is made. Finally, by time inversion and ensemble
averaging, from (5) the effective fire front contour emerges to be in terms of the
indicator function '.x; t/ as follows

h'!.x.t//i D h
Z

R2
'.x; t/ ı.x � X!.t; x// dxi D

Z

R2
'.x; t/ hı.x � X!.t; x//i dx

D
Z

R2
'.x; t/ f .xI tjx/ dx D 'e.x; t/ ; (6)

where f .xI tjx/ D hı.x � X!.t; x//i is the probability density function (PDF) of the
distribution of the particles of the fireline contour around the average front location
x and the definition of '.x; t/ stated in (4) has been used.

Field variable 'e.x; t/ is computed from formula (6) where indicator function
'.x; t/ follows from solving the level set equation driven by an average front
velocity.

By applying the Reynolds transport theorem to (6), the evolution equation of the
effective fire front 'e.x; t/ is [6]

@'e

@t
D
Z

˝.t/

@f

@t
dx C

Z

˝.t/
rx � ŒV.x; t/ f .xI tjx/� dx ; (7)

that is the reaction-diffusion equation associated to the level set equation (3).
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Since the effective fireline contour 'e.x; t/ is a smooth function continuously
ranging from 0 to 1, a criterion to mark burned points have to be stated. Here points x
such that 'e.x; t/ > 0:5 are marked as burned and the effective burned area emerges
to be ˝e.t/ D fx; t W 'e.x; t/ > 0:5g. However, beside this criterion, a further
criterion associated to an ignition delay due to the pre-heating action of the hot
air or to the landing of firebrands is introduced. Hence, in the proposed modelling
approach, an unburned point x will be marked as burned when one of these two
criteria is met.

This ignition delay, due to a certain heating-before-burning mechanism, can be
depicted as an accumulation in time of heat [7], i.e.

 .x; t/ D
Z t

0

'e.x; �/
d�



; (8)

where  .x; 0/ D 0 corresponds to the unburned initial condition and 
 is a
characteristic ignition delay. Since the fuel can burn because of two pathways, i.e.
hot-air heating and firebrand landing, the resistance analogy suggests that 
 can be
approximatively computed as resistances acting in parallel, i.e.

1



D 1


h
C 1


f
D 
f C 
h


h
f
; (9)

where 
h and 
f are the ignition delays due to hot air and firebrands, respectively.
The amount of heat is proportional to the increasing of the fuel temperature

T.x; t/, then

 .x; t/ / T.x; t/ � T.x; 0/
Tign � T.x; 0/

; T.x; t/ � Tign ; (10)

where Tign is the ignition temperature. Finally, when  .x; t/ D 1 the ignition
temperature is assumed to be reached, so that a new ignition occurs in .x; t/ and,
with reference to (6), the modelled fire goes on by setting '.x; t/ D 1.

3 Discussion and Conclusions

The present analysis constitutes a proof-of-concept and it needs to be subjected
to a future validation. Hence, numerical results showed in Figs. 1, 2, 3, 4, 5 are
understood as explorative exercises to investigate the potentialities of the approach.
From comparison of the level set method against the proposed model when only
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Fig. 1 Time evolution of the firefront in absence (on the left, a) and presence (on the right, b) of
two fire-break zones (grey stripes). The results are obtained by adopting the level set method (top
row), by the present modelling approach when only turbulence is taken into account (middle row),
and when both turbulence and fire spotting are considered (bottom row). The labels on the contour
lines represent the propagation time (expressed in minutes). Following [8], turbulence has been
parameterized with a Gaussian PDF and fire spotting with a stationary log-normal distribution for
jump-length of embers with mean stated equal to� D 1:32 I0:26f U0:11

t �0:02 and standard deviation
s D 4:95 I�0:01

f U�0:02
t �3:48, where Ut is the modulus of the mean wind, assumed constant both

in value (6:70m s�1) and direction (x-axis), and If D I C It where I D 10;000 kW m�1 is the
fire intensity and It D 0:015 kW m�1 is the tree torching intensity. Other simulation parameters
are: VROS D I=.Hw0/ where H D 22;000 kJ kg�1 is the fuel low heat of combustion and w0 D
2:243 kg m�2 is the oven-dry mass of fuel, D D 0:04m2 s�1, 
h D 600 s, 
f D 60 s and the width
of fire-breaks is 60m in the windward sector and 90m in the leeward sector
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Fig. 2 The same as in Fig. 1 but when Ut D 6:70m s�1 and I D 30;000 kW m�1

turbulence and when both turbulence and fire spotting are taken into account, it
emerges the suitability of the proposed approach to simulate a fire that overcomes
a fire-break zone, in contrast to the level set method. Moreover, it emerges also
that the inclusion of turbulence allows for simulating fire flank and backing fire
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Fig. 3 The same as in Fig. 1 but when Ut D 17:88m s�1 and I D 10;000 kW m�1

and the inclusion of hot air preheating and ember landing enhances the frontline
propagation. This richness of model behaviours supports the proposed formulation
as a promising approach to simulate the complex phenomenology of real wildland
fire propagation.
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Fig. 4 The same as in Fig. 1 but when Ut D 17:88m s�1 and I D 20;000 kW m�1
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Fig. 5 The same as in Fig. 1 but when Ut D 17:88m s�1 and I D 30;000 kW m�1
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Short Description

Near shore hydrodynamics involves very complex processes involving the transfor-
mation and dissipation of ocean waves, as well as their impact on the shore. This
is a domain with enormous impact in the field of near-shore engineering (design of
harbours, coastal defence structures, etc.), offshore engineering (platforms design,
pipelines, etc.), naval engineering (design of vessels with optimized properties), and
environmental management (morphodynamic evolution, pollutant transport, etc.).

Due to the multi-scale nature of this phenomena, the coastal engineering
community has turned long ago to approximate, asymptotic, depth averaged models,
often referred to Boussinesq-type equations. These partial differential systems are
obtained from the incompressible Euler equations under some assumptions on wave
length and wave amplitude. The resulting partial differential equations are very
complex due to the appearance of nonlinear high order differential terms modelling
wave dispersion, wave shoaling an steepening. The derivation of improved variants
of these models, having properties closer to those of the Euler system, is a challenge
in itself. The numerical discretization of the resulting equations is another challenge.

This symposium aims at providing an overview of these aspects. The topics
covered in the talks range from the choice of the form of the PDEs, to their
dispersion optimisation, to their discretization with appropriate very high resolution
numerical methods. Additional topics include the treatment of wave breaking and
of moving shorelines, which are phenomena of paramount importance for the
hydrodynamics in the near shore region.
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Advanced Numerical Simulation of Near-Shore
Processes by Extended Boussinesq-Type Models
on Unstructured Meshes

A.I. Delis and M. Kazolea

Abstract A numerical code that employs a higher-order finite volume scheme
on unstructured meshes for approximating enhanced Boussinesq-type equations is
presented. The objective of this study is to further investigate wave propagation over
complex bathymetries using the developed code and to present an approach for the
parallelization of the resulted code, along with preliminary numerical results.

Keywords Boussinesq-type models • Near-shore hydrodynamics • Unstructured
meshes • Wave propagation

1 Introduction

Accurate simulations of water wave’s propagation is of fundamental importance to
marine and coastal engineering. Over the last decades, Boussinesq-type equations
(BTEs) have been widely used to describe wave transformations in coastal regions,
[2]. The success of the BTEs is mainly due to the optimal blend of physical
adequacy, in representing all main physical phenomena, and to their relative
computational ease. However, the accurate and efficient numerical approximation
of BTEs is still in the focus of on-going research especially in terms of higher-order
numerics and the adaptive mathematical/numerical description of the flow.

Recently the Finite Volume (FV) method has become the numerical approach of
choice for BTMs. This can be attributed to the significantly less computational effort
required, compered to other methods (such as the Finite Element). For both 1D and
2D computations, classical FV schemes have been modified to solve enhanced BTEs
using the Finite Difference (FD) approach for the discretization of the dispersive
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terms, [4, 11, 12, 15], on structured meshes. Very recently, and for the first time, a
higher-order FV approach on unstructured meshes was introduced in [5]. Along
these lines, the TUCWave model, [5, 6], is briefly presented here. The model
employs a novel well-balanced FV scheme for approximating the BTEs of Nwogu
[8]. The objective of the present study is to further investigate wave propagation
over complex three-dimensional bathymetries. Furthermore, a first approach for
the parallel realization of the TUCWave code is also given along with preliminary
results.

The BTEs of Nwogu describe accurately weakly non-linear/weakly dispersive
waves, i.e. with Stokes number S D �=�2 D O.1/, where � WD A=h with A the
wave’s amplitude and h the still water level, and �2 WD h2=L2 the water depth to
wave length (L) ratio. Following [5], the conservative-like form of the equations
reads as:

@tU C r � F .U?/ D S on ˝ � Œ0; t� � R
2 � R

C; (1)

where U? D ŒH;Hu;Hv�T are the physically conservative variables, U is the vector
of the actual solution variables, with H D h C � being the total water depth and

U D
2

4
H
P1
P2

3

5 ; F D ŒF;G� D
2

4
Hu Hv

Hu2 C 1
2
gH2 Huv

Huv Hv2 C 1
2
gH2

3

5 ;

where, solving at an optimized distance za D �0:531h from the still water level,

P D
�

P1
P2

�

D H ŒC C u� ; with C D z2a
2

r.r � u/C zar.r � hu/: (2)

The source term vector, S D Sb C Sf C Sd, includes the bed topography’s (b) slope
Sb, the bed friction effects Sf, given in this work in terms of the Manning coefficient
nm, and the dispersive terms Sd. These terms read as

Sb D Œ0; �gH.r � b/�T ; Sd D Œ� c; u c C M�
T ; Sf D 	

0; �gn2mujjujjh�1=3

T

with

 c D r �
��

z2a
2

� h2

6

�

hr.r � u/C
�

za C h

2

�

hr.r � hu/
�

;  M D @tHC :

(3)

Equations (1) have flux terms identical as those in the Nonlinear Shallow Water
equations (NSWE) and P contains all time derivatives in the momentum equations,
including part of the dispersion terms. Vector Sd contains only spatial derivatives
since @tH is explicitly defined by the mass equation. The NSWE are recovered when
the dispersive terms in P and Sd are vanishing.
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2 The Numerical Scheme and Parallelization Strategy

To numerically solve equations (1) we use a Godunov-type FV scheme [5, 6]. The
FV approach is of the node-centered median-dual type where the control volumes
are elements dual to the primal triangular mesh. The FV integration of (1) over each
computational cell, CP, leads to the semi-discrete form of the scheme as:

@UP

@t
D � 1

jCPj
X

Q2KP

˚PQ � 1

jCPj˚P;� C 1

jCPj
“

CP

Sd˝; P D 1; : : : ;N (4)

where UP is the volume-averaged value of U at a given time, KP is the set of
the neighboring nodes to P, � is the boundary of the computational domain ˝
and ˚PQ; ˚P;� are the numerical flux vectors across each internal and boundary
face, respectively. The numerical fluxes are evaluated solving a Riemann problem
at cell interfaces using the approximate Riemann solver of Roe [10]. To reach
higher-order spatial accuracy an extension of the MUSCL methodology of Van Leer
[16] is used. Each component of the physical variables and bed topography, b, is
extrapolated using solution gradients obtained using a combination of centered and
upwind gradients. In this way a third-order well-balanced scheme is obtained for the
advection part of the models while consistent FV approximations are implemented
for the gradient and divergence operators in the dispersive terms [5]. Details on the
numerical model for wet/dry front treatment, boundary conditions and discretization
of the dispersive terms, can be found in [5, 6].

For the time discretization an optimal third-order explicit Strong Stability
Preserving Runge-Kutta (RK) scheme is utilized. In the RK scheme the velocity
field u D Œu; v�T must be recovered from the computed values of the new solution
variable P D ŒP1 P2� at each node. Discretizing P in (2), a linear system AV=C
occurs with V=Œu1;u2; : : : uN �

T and C D ŒP1;P2; : : : ;PN �
T. Matrix A 2 R2N�2N

is sparse, structurally symmetric and mesh depended. The properties A depend on
the physical conditions of the problem to be solved and is stored in a compressed
sparse row (CSR) format. The system is solved using the Bi-Conjugate Gradient
Stabilized method(BiCGStab). The ILUT pre-conditioner from SPARSKIT package
is implemented and the reverse Cuthill–McKee (RCM) algorithm is also employed
to reorder the matrix elements as to minimize its bandwidth. Convergence to the
solution was obtained in one or two iterations for the test problems considered.

A new wave breaking technique is also incorporated in TUCWave code. It is
based on a hybrid BT/NSWE approach [6, 12, 15]. Once a wave breaking interface
occurs, BTEs are turned into NSWE by switching off the dispersive terms. In
this way, the wave breaking interface is treated as a bore by the NSWE and the
shock-capturing FV scheme. Using a new set of physical criteria we first estimate
the location of breaking waves and then the NSWE are solved in the breaking
regions and BTEs elsewhere. We briefly describe the new methodology below:
(1) Computation of wave breaking criteria for each computational cell: two phase
resolving criteria are used, [6]: (a) the surface variation: j@t�j � �

p
gh, with
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� 2 Œ0:3; 0:65� and (b) the local slope angle: jjr�jj2 � tan.�c/, where �c 
 30ı
is the critical front face angle at the initiation of breaking. (2) If at least one of
the criteria is satisfied: we flag the relative nodes as breaking ones. (3) Distinguish
different breaking waves: creating a dynamical list that contains the breaking nodes
of such a wave and different breaking waves are treated individually. The wave front
of each breaking wave is then handled as a bore by the NSWE dissipating energy. (4)
Switch back to BTEs for non-breaking undular bores as characterized based on their
Froude, Fr, number, i.e. Fr � 1:3 [6, 14]. (5) For each breaking wave an extension
of the computational region governed by the NSWE is performed, as to avoid non-
physical effects that may appear at the interface between a zone governed by the
BTEs and a zone governed by NSWE [6].

For the parallelization approach an explicit partition of the global solution
domain (˝) into overlapping subdomains (˝s; s D 1; 2; : : : ;Pr), each being
attributed to a single processor, is performed. The amount of overlap between the
subdomains is always one layer of shared computational cells. For the partitioning
we use an unstructured strategy based on the METIS software package and the sub-
domains have approximately the same number of nodes. The implementation of the
resulting parallel algorithm employs the commonly used Message Passing Interface
(MPI) library. Each subdomain solver is responsible for finding the solution of (1)
in˝s. The main differences between the single and the parallel approach is the area
of the discretization and the solution process for the recovery of the velocity field
in each subdomain. More precisely, the result of the parallel discretization is that
the global sparse matrix A is distributed as a set of subdomain matrices As. Each
processor s constructs its own matrix As in the preprocessing stage. As such, first
its structure is stored in the CSR format and reordered using the RCM reordering
technique. Then the pre-conditioner (ILUT) of the reordered matrix As is computed
at this pre-processing stage and subsequently utilized to solve the linear system at
each time step. Like the global matrix A, the properties of each matrix As vary
depending on the physical situation of the problem solved, the type of the grid used
and additionally the (sub)domain’s, (˝s), structure. To solve the sparse linear system
among the subdomains, we use an additive Schwarz iteration technique [3]. More
precisely and during each time step, each linear system AsVk

s D Pk�1
s is solved for

k=1,2,. . . times until global convergence of the solution is achieved. The global
solution Vk

g exists only logically and it is composed by the intermediate subdomain
solutions Vk

s . Appropriate local and global-type monitors are used [3, 7].

3 Numerical Tests and Results

3.1 2D Solitary Wave Propagation in a Channel

In an h D 10m deep channel with .x; y/ 2 Œ�100m; 2400m� � Œ�5; 5m� an A D
2m high solitary wave, i.e. � D 0:2, is initially positioned at x D 200m and the
asymptotically analytical solution for � and u can be found in [17]. A triangular
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Fig. 1 Solitary wave profiles along a channel of constant depth

mesh consisting of equilateral triangles, with edge size hN D 0:75m, was used,
leading to a mesh of N D 53;304 nodes. The CFL number used was set equal to
0.6. Figure 1 shows the initial solitary wave and the computed waveform along the
channel for y D 0 at t D 180 s. The computed permanent waveform maintains
its symmetry and phase speed which are very close to the (asymptotic) analytical
solution.

3.2 Wave Propagation Over an Elliptic Shoal

Berkhoff et al. [1] carried out an experiment to study the refraction and diffraction
of 2D monochromatic waves over a complex bathymetry, which has been used for
validation of BTMs, e.g. [9, 17]. The topography consists of an elliptic shoal, over
an inclined slope of 1=50. The depth is h D 0:45m at the wave maker. The incoming
waves have period T D 1 s and A D 0:0232m and S D 1:13. An internal source
function [17] was used to generate the waves. Surface elevation was measured at
sections xm D 0 and ym D Œ1:0; 3:0; 5:0; 7:0; 9:0� and the mean wave height
is computed using the zero-up crossing technique. The grid consists of triangles
with edge size of hN D 0:1m and has been refined in the region of the shoal with
hN D 0:05m and a CFL value of 0.3 was used. The simulation period is 50 s and
the ten last waves are employed to estimate the wave height. Results are reported
in Fig. 2. The agreement between the numerical results and the experimental data
is quite satisfactory and comparable to others found in the literature e.g. [9, 17].
Wave’s focusing behind the shoal, due to refraction, is well reproduced. In section 5
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Fig. 2 Comparison of the computed and experimental wave heights in sections 1–3 and 5

the maximum amplification factor is well predicted compared to other results in the
literature, e.g. in [17], where it is usually underestimated.

3.3 Solitary Wave Propagation Over a Three-Dimensional Reef

In [13] a laboratory experiment to study phenomena such as wave shoaling,
refraction and breaking was presented. Bathymetry information, positions of wave
gauges (WGs) that measure the free surface elevation and position of Acoustic
Doppler Velocimeters (ADVs) can be found in [11, 13]. An unstructured mesh
refined along the shelf with N D 87; 961. WGs 1 � 7 are located along y D 0m,
gauges 8 � 13 along y D 5m and gauges 14 � 17 along x D 25m. A solitary wave
of 0:39m in height is placed along x D 5m. Figure 3 shows series of snapshots of
the wave propagating over the shallow shelf, creating a strongly plunging breaker.
Initially, the wave propagates unchanged since the topography is flat. As the wave
approaches the shelf apex, breaking begins along the center-line. The bore front
propagates onshore while the wave along the sides shoals. Up to time t D 8 s a
plunging wave has been developed along, the entire length of the reef edge, and a
new bore has been developed at the apex of the shelf, which propagates over and
away from the sill. At t D 16 s a third bore-front is visible further onshore and it is
a portion of the first bore which has been reflected off the top of the planar beach
generating an offshore flow. Five seconds later the third bore-front converges at the
apex of the shelf as a refraction phenomenon, while the flow at the top continues to
move forward. Figure 4 shows the computed and recorded elevation time series at
WGs 1, 5, 10 and 13. Figure 5 shows the same for the wave gauges located at the



Numerical Simulations by Boussinesq-Type Models on Unstructured Meshes 549

Fig. 3 Water surface for solitary wave propagation on a 3D reef at different times

Fig. 4 Propagation on a 3D reef for WGs along the centerline (top) and along y D 5m (bottom)

Fig. 5 Propagation on a 3D reef, WGs at the edge of the reef flat (top) and of the velocity (bottom)

edge of the reef flat and compares also recorder and computed velocity components
in the x-direction for two WGs. The numerical results agree very well with the
measurements at the presented wave gauges.

3.4 Regular Wave Propagation Over a Submerged Bar

A regular wave propagation over a submerged bar test is implemented using
the parallel version of TUCWave code to investigate the frequency dispersion
characteristics and nonlinear interactions. The dimensions of the computational
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Fig. 6 Time series of surface elevation for periodic wave propagation over a submerged bar

domain were set to .x; y/ 2 Œ�10; 30m� � Œ0; 0:8m�. A fine mesh of N D 170; 194

nodes was used in Pr D 10 processors. Regular waves with A D 0:01m; and
T D 2:02 s was generated at x D 0m. The free-surface elevations are recorded at
WGs over and behind the bar as in the laboratory experiment, placed along the flume
at x D 10:5; 12:5; 13:5; 14:5m. The time series of the free surface elevation at the
wave gauges along the center-line are sown in Fig. 6. The generated waves propagate
without changing their shape, until they reach the front slope where the waves shoal
since nonlinear effects cause the waves to steepen. The wave amplitude grows and
the surface profile becomes asymmetric. The back slope causes the waves to breakup
into independent waves traveling at their own speed. The numerical results provide
good agreement with the experimental data for WGs 4 and 5 and maintain relatively
good agreement with the experimental data at WGs 6 and 7 over the crest and the
lee-slope.
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On Devising Boussinesq-Type Equations
with Bounded Eigenspectra: Two Horizontal
Dimensions

Claes Eskilsson and Allan P. Engsig-Karup

Abstract Boussinesq-type equations are used to describe the propagation and
transformation of free-surface waves in the nearshore region. The nonlinear and
dispersive performance of the equations are determined by tunable parameters.
Recently the authors presented conditions on the free parameters under which a
Nwogu-type equations would yield bounded eigenspectra (Eskilsson and Engsig-
Karup, J Comput Phys 271:261–280, 2014). This leads to a global conditional CFL
time-step restriction which is shown to not be affected by the discretisation method
and in this sense the CFL condition is tamed to impose a minimal constraint. In
this paper we extend the previous study and provide numerical experiments which
confirms the theoretical results also is valid in two horizontal dimensions.

Keywords Boussinesq-type equations • CFL condition • Free-surface waves

1 Introduction

In coastal engineering application the use of classical FEM for low-order spatial
discretisation of wave equations has been used to describe complex geometries by
using graded meshes. An immediate advantage of graded meshes is the ability to
significantly decrease the total number of unknowns in the discretisation making
it possible to improve the computational efficiency by spatially only resolving
geometry or features of the solution where it is needed [11]. The use of flexible mesh
discretisation methods is gaining more popularity since with this basis it becomes
more straightforward to describe wave-structure interactions in complex settings
(e.g. harbour and coastal areas), cf. recent review given in [1]. The downside for
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most wave models is that the use of such graded meshes may impose more severe
time-stepping restrictions due to global condition CFL stability constraints. From
an algorithmic perspective remedies to this problem is found in local time-stepping
algorithms, semi-implicit temporal integration, or the use of only low-order and less
accurate simulation resulting from artificial dispersion and dissipation errors. High-
order discretisation have the potential to address all of these downsides, however,
is known to often have operator eigenspectra which grow fast and therefore CFL
conditions often become to severe for practical use. Thus, state-of-the-art techniques
such as the high-order spectral element/hp method (SEM) have still not caught much
interest in coastal engineering applications [6] despite that it offer good and flexible
opportunities for balancing work effort and accuracy.

In this work, we consider the extension [5] and device a Boussinesq-type
model in two space dimensions, which is amendable to use high-order SEM and
unstructured meshes. As in [2–4], we demonstrate that graded meshes does not pose
a significantly challenge for an implicitly-implicit formulations for wave-structure
problems since the global CFL condition is governed by bounded eigenspectra and
in this sense can be tamed [13].

2 Boussinesq Equations

Consider the weakly nonlinear and dispersive Boussinesq-type equations due to
Nwogu [10]. In the original form, the set of equations—with unbounded operator
spectrum—can be stated in two horizontal dimensions as

�t C r � .du/C �r � .�u/C �2�20 D O.�2; �2�; �4/; (1a)

ut C r�C �.u � r/u C �220 D O.�2; �2�; �4/; (1b)

where the dispersive terms read

�20 D r � Œa1d3r.r � Qu C a2d
2r.r � .du//�; (2a)

20 D b1d
2r.r � ut/C b2dr.r � .d Qut//: (2b)

Here �.x; t/ is the free surface elevation, u.x; t/ is the horizontal velocity at the
reference level z˛ and d.x/ is the still water depth. The constants .a1; a2; b1; b2/
govern the dispersive properties of the equations.

Using the enhancement technique [9] additional free parameters are introduced
to the equations. This approach exploits that the Boussinesq-type equations are
derived by a truncation procedure, and as long as modification are on the size of the
magnitude of the truncation errors, the approach is feasible. The resulting equations
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read [9]:

�20 D r � 	a1d3r .r � u/C .a2 � ˇ1/d2r .r � .du//� ˇ1
�
d2r�t

�

; (3a)

20 D .b1 � ˛1/d
2r .r � ut/C b2dr .r � .dut// � ˛1d2r

�r2�
�
; (3b)

where an optimum choice—with regard to linear dispersion characteristics—of
the free parameters is .b1 C b2; ˛1; ˇ1/ D .�0:395; 0:011; 0:039/. The equations
exhibit an unbounded eigenspectrum and we will hence refer to this setting as
unbounded Boussinesq equations (UBE). However, as shown in [5], under certain
conditions on the free parameters this set of equations will exhibit a bounded
eigenspectrum. This observation was numerically supported by simulations in one
horizontal dimension. Using the setting .b1 C b2; ˛1; ˇ1/ D .�0:400; 0; 0:015/
gives a bounded eigenspectrum while retaining good dispersion characteristics. We
will refer to this setting as bounded Boussinesq equations (BBE).

3 Numerical Discretization

To develop a high-order spectral/hp element method [8] that works on unstructured
meshes we use the Method of Lines, where a semi-discrete system of equations is
formed by spatial discretisation using a Galerkin method.

We introduce approximate solutions, e.g., uı to u, where uı 2 � with � D fuju 2
H1.˝/; u.x/ D g.x/; x 2 @˝g is the trial space and V D fvjv 2 H1.˝/; v.x/ D
0; x 2 @˝g is the set of all test functions.

We partition the domain ˝h � ˝ to obtain a tessellation Th which consists of
Nel non-overlapping elements Te such that [Nel

eD1Te D Th. We approximate the
solutions .�; u; v;w; q/ 2 V � C0.˝/ with piece-wise continuous P’th order
polynomial approximations .�ı; uı; vı;wı; qı/ 2 Vı where the discrete space is
given as Vı D fv 2 H1.Th/ W vjTe 2 PP.Te/ 2 Thg. Each element Te is filled
with NP local nodes.

In two space dimensions, we can represent the approximate solutions in the form
of a nodal expansion

�ı.x; t/ D
NelX

eD1

NPX

nD1
O�e

n.t/ln.�
�1
e .x//; .x/ 2 Th; t � 0 (4)

in which O�e
n.t/ are local expansion coefficients and ln.x/ is the multivariate n’th

Lagrange polynomial with cardinal property ln.xi/ D ıni defined from the set of
unique vertices .xi/ D �e.ri/ defining the local nodes on element e. �e W r ! x
is a local affine co-ordinate mapping from a standard element Tst to an elemental
region Te D fxjx 2 �e.r/g. For a straight-sided reference triangle, we have Tst D
fr D .r; s/j.r; s/ � �1I r C s � 0g. On the standard triangular element one can use
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the symmetric and optimized node distribution generated by an explicit warp and
blend procedure described in [12]. In a similar way, for a straight-sided reference
quadrilateral, we have Qst D fr D .r; s/j � 1 � .r; s/ � 1g and we use the nodes
defined by a tensor product of Gauss-Lobatto-Legendre points in the two directions.

For brevity we present the method for the constant depth case. The weak
formulation of (1) and (3) can be stated as

“

Th

vıŒ
�
1 � �2ˇ1d

2r2
�
�t C r � ..d C ��/ u/

C �2
�

˛ C 1

3
� ˇ1

�

d3r2w�dx D 0; (5a)

“

Th

vıŒut C �2 .˛ � ˛1/ d2rwt C r�C �.u � r/u � �2rq�dx D 0 (5b)

where ˛ D b1Cb2 and having neglected all O.�2; �2�; �4/-terms. Further, we have
introduced the auxiliary variables w D r � u and q D ˛1d2.r2�/ to resolve the
third-order spatial derivatives. Applying the Divergence theorem gives

“

Th

Œ
�
vı C �2ˇ1d

2rvır
�
�t � rvı � ..d C ��/ u/

� �2
�

˛ C 1

3
� ˇ1

�

d3rvırw�dx D 0;

(6a)
“

Th

Œvıut C �2 .˛ � ˛1/ d2vırwt C vır�C �vı.u � r/u � �2vırq�dx D 0

(6b)

and

“

Th

vıw dx D
“

Th

Œ� .rvı � u/� dx; (7a)

“

Th

vıq dx D
“

Th

vı
	�˛1d2.rvı � r�/
 dx; (7b)

where all arising boundary terms have been omitted as we in this study are only
concerned with periodic and impermeable vertical wall boundaries. For periodic
domains the boundary terms naturally cancels out. For the slip wall condition the
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zero net flux conditions in the normal direction of the walls corresponds to

u � n D 0; r� � n D 0 rw � n D 0; x 2 @˝; (8)

giving that all arising boundary terms are zero.
In the simulations presented we integrate in time using the explicit third-order

Adams-Bashforth scheme. The resulting linear system is solved with GMRES with
an ILU preconditioner. We note that it is well-known that equal-order simulations
give rise to stability problems. However, rather than using different order for the
free surface and the velocity variables we here apply a weak exponential filter [7]
on interior bubble modes, if needed, in order to stabilize the solution.

4 Eigenvalue Analysis

Writing the equations in semi-discrete form A@tU D BU we are interested in
the eigenvalues, �i, of the operator A�1B, in order to understand the stability of
the scheme. In Fig. 1 we present numerically obtained maximum eigenvalues as
function of the polynomial order. The eigenvalues are purely imaginary and, as
expected, the BBE equations remain bounded while the UBE equations grows as
P2. It is stressed that the magnitude of the bounded eigenvalues do not depend
on the numerical discretization, but is a property of the governing equations. This
is illustrated in Fig. 1 where the magnitude of the eigenvalue for the BBE is the
same on both periodic structured quadrilaterals and unstructured triangles with wall
boundaries. Please note that the computed eigenvalues for the BBE coincide with
the analytic value given in [5].
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Fig. 1 Numerically observed eigenvalues. (a) Structured quadrilateral elements with periodic
boundaries and (b) unstructured triangular elements with wall boundaries
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5 Numerical Example

A frequently used test case for Boussinesq-type equations is the run-up of a solitary
wave on a cylinder. This case highlights the typical situation where the geometry
are represented with sufficient accuracy by generating an unstructured mesh with a
significantly higher mesh density around structures and topological features.

The size of the wave tank is Œx; y� 2 Œ�33; 25� � Œ�19:2; 19:2�m with a
depth of 1 m. We utilize the symmetry of the set-up and simulate only the lower
half of the domain. All boundaries are treated as wall/symmetry boundaries. The
computational domain is decomposed into two different meshes with (a) 269 and
(b) 116 triangular elements, see Fig. 2. Both meshes resolve the cylinder with
approximately the same number of boundary edges.

The initial condition is given by Laitone’s first order solitary wave solution,
centered at x D �17m, and we integrate the solution for 12.5 s. Figure 3 shows
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Fig. 2 Illustration of used meshes: (a) 269 elements (Mesh A) and (b) 116 elements (Mesh B)

Fig. 3 Solitary wave impinging on a vertical cylinder. Simulation using mesh A with P D 6. At
time: (a) 4.5 s, (b) 6.5 s, (c) 8.5 s and (d) 12.5 s
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Table 1 Maximum allowed time step (in seconds) for a solitary wave impinging on a cylinder

BBE UBE Rel. diff.

Mesh A P D 4 6.25E�02 5.21E�02 1.20

P D 5 6.25E�02 4.03E�02 1.55

P D 6 6.25E�02 3.21E�02 1.95

Mesh B P D 6 6.25E�02 3.68E�02 1.70

P D 7 6.25E�02 3.05E�02 2.05

P D 8 6.25E�02 2.50E�02 2.50

the simulated run-up and subsequent scattering of the solitary wave. For mesh A we
need P � 5 and for mesh B we need P � 7 in order to get acceptable results.

In Table 1 we present the influence of the polynomial order on the maximum
allowed time step. Again, a novel feature is that the maximum stable time step
for BBE simulations are not dependent on the choice of h and p. Thus it is
possible to have large differences in element size as illustrated by mesh B. As a
result, from Table 1 it can be seen that for practical computations it is possible to
obtain significant speed up by taking advantage of high-order elements compared to
standard BE settings without compromising accuracy.

6 Conclusion

We have analysed and demonstrated that an implicitly-implicit formulation of a
Nwogu-type equation in two spatial dimensions can be made accurate and effi-
cient without compromising robustness by using unstructured high-order spectral
element/hp methods. This work opens the road towards robust mesh-adaptive
solutions considered in ongoing work.
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On Nonlinear Shoaling Properties of Enhanced
Boussinesq Models

A.G. Filippini, S. Bellec, M. Colin, and M. Ricchiuto

Abstract In this paper, we investigate the nonlinear properties of Boussinesq
models. In particular, we consider the wave shoaling obtained in physical regimes
which go from linear to weakly nonlinear, to the wave breaking limit. For a given
asymptotic accuracy in terms of dispersion and nonlinearity, we consider two
families of models: the first depending on derivatives of the velocity, the second
on derivatives of the volume flux. We show that, while linear dispersion and linear
shoaling characteristics are strongly dependent on the type of dispersive terms
introduced, when approaching the nonlinear regime the only influencing factor is
whether the model is in amplitude-velocity of amplitude-flux form. We investigate
these two alternative formulations of several known models, and propose a new
model with a compact differential form, and the same linear characteristics of the
model of Nwogu. The nonlinear shoaling properties of the models are investigated
numerically showing that inside one given family, all the models have almost
identical behaviour.

Keywords Boussinesq-type models • Wave shoaling

1 Introduction

This paper deals with Boussinesq-Type (BT) models for wave propagation and
transformation. In the near shore region one has to deal with both nonlinear
and dispersive effects which make the task of accurate modelling very difficult.
Accounting for genuinely nonlinear effects is a research topics of high priority
[4]. The simplest depth averaged model, the nonlinear shallow water equations
system (NLSW), while capable of describing the energy dissipation in breaking
regions [14], does not account for wave dispersion. In this work, we consider weakly
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nonlinear and dispersive BT models obtained by adding linear differential terms to
the NLSW system. These terms account for non hydrostatic effects, they improve
the linear frequency dispersion, however, they do not include any dissipative effects.
These effects can be recovered by locally reverting to the NLSW equations in
properly detected regions, or by explicitly adding eddy viscosity terms [4, 9, 14].
In this case, the BT equations are required to accurately predict wave shapes and
amplitudes to allow the breaking process to be triggered at the right time and place.
In particular, they should provide an accurate description of the shoaling process.
Differently from linear dispersion and shoaling, which can be studied analytically
[5], nonlinear shoaling can only be investigated numerically. There exist several
types of BT models with different linear dispersion and shoaling properties. For a
given linear dispersion relation, and within the same asymptotics in terms of the
nonlinearity � D a=d and dispersion 	 D d=� parameters (a the wave amplitude, d
the mean water level, � the wavelength), one can find at least two different models.
These two systems of PDEs differ in the fact that the dispersive terms contain either
derivatives of the velocity, or of the volume flux; thus we refer to them as to models
in wave amplitude-velocity or wave amplitude-volume flux form.

The aim of this paper is to assess the nonlinear shoaling properties of BT models
which have the same linear properties, but different non-linear PDE structure.
We consider in our analysis the models of Peregrine (P) [12], Beji-Nadaoka
(BN) [3], Madsen-Sørensen (MS) [10] and Nwogu (N) [11]. For all of them,
we manipulate the differential equations adding terms which, keeping the same
asymptotic accuracy, allow to obtain a wave amplitude-velocity model, for those
systems written in wave amplitude-volume flux form (e.g. the MS model), and vice
versa for models in wave amplitude-velocity form (e.g. the P, BN, N models). We
show that, when approaching the nonlinear regime, only the nonlinear structure of
the PDE has an influence on the shoaling effects.

Fig. 1 Sketch of the free surface flow problem, main parameters description
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2 Presentation of the Models

The most common BT model is perhaps the one of Peregrine [12]. Starting from the
incompressible Euler equations (see Fig. 1), considering asymptotic expansions in
terms of the nonlinearity and dispersion parameters, � and 	 , and depth averaging
the resulting expressions, one can show that for � D O.	2/

8
<̂

:̂

�t C Œ.h C ��/u�x D 0

ut C �uux C �x C 	2
�

h2

6
uxxt � h

2
Œhu�xxt

�

D O.�	2; 	4/
(1)

We refer to the Peregrine (P) model as the dimensional version of (1). Denoting the
NLSW flux by FSW D uq C gd2=2, for the P model the volume flux q D du verifies

qt C FSW
x � gdhx C dPt D 0 ; P D P.u/ D h2

6
uxx � h

2
Œhu�xx ; (2)

Assuming ht D 0, and since in non-dimensional form d D h C ��, we have

.h C ��/	2
�

h2

6
uxxt � h

2
.hu/xxt

�

D 	2
�

h3

6

�q

h

�

xxt
� h2

2
qxxt

�

C O.�	2; 	4/ :

Thus, in the same asymptotics, we can replace (2) by

Qt C FSW
x � gdhx D 0 ; Q D Q.q/ D q C h3

6

�q

h

�

xx
� h2

2
qxx (3)

leading to the model presented in Abbott (A) [1]. Even if the P and A models are
identical in the linear limit, they are substantially different in the nonlinear case.
In particular, these are not the same PDEs written in terms of different unknowns;
they actually include different differential terms. The difference between these terms
allows to express the dispersive operators in terms of q instead of in terms of u; in
such sense the P and A model represent respectively the amplitude-velocity and the
amplitude-flux form of the same linear dispersion relation.

As for the P and the A systems, two set of PDEs exist for a given couple linear
dispersion relation-linear shoaling parameter. All dispersion enhanced BT models
admit a amplitude-velocity form, and an amplitude-flux equivalent. Details on the
derivation are given e.g. in [6] and in the second volume of [5], and are left out due
to space limitations. Here we apply this theory to four linear dispersion relations,
corresponding to the P model above and to the enhanced models of BN, MS and N.
In total 8 models are considered. Three of them are new variants of existing models,
so we speak of the amplitude-flux form of the BN model as the Beji-Nadaoka-Abbott
(BNA) model, of the amplitude-velocity form of the MS model as the Madsen-
Sørensen-Peregrine (MSP) model, and of the amplitude-flux form of the N model as
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Nwogu-Abbott (NA) model. They can be generally recast as

(
ht C Kx D 0

Qt C FSW
x � ghdx C hPt C gR C u� D 0

: (4)

For the definition of the differential operators K, Q, P, R and � for each specific
model we refer to [6] and [3, 10, 11]. Here we observe that for models P, BN, MSP
and N, written in wave amplitude-velocity form, Q D q and P is structurally similar
to P(u) in (2); instead for models A, BNA, MS and NA, written in wave amplitude-
volume flux form, Q is an elliptic operator structurally similar to Q(q) in (3), and
P D 0. Only for the BN and MS models R ¤ 0, in particular R has the structure of
P.�/; likewise, � ¤ 0 only for the N model, assuming the structure of P(u). Finally,
K ¤ q only for the N model, with K D q C dP.u/ in the wave amplitude-velocity
case, while K D Q.q/ in the wave amplitude-volume flux case. For each model,
we will consider the standard dispersion/shoaling optimised values of the constants.
Note that, among the 8 BT models taken into account, two of them present the
following very simple structure:

(
ht C Kx D 0

Qt C FSW
x � ghdx D 0

(5)

The first is the A system defined by (3) and K D q, the other one is the NA model
taking in (5) K D q C A1h2qxx C A2h3.q=h/xx and Q D q C B1h2qxx C B2h3.q=h/xx

[6]. This system is the only enhanced BT model we know of sharing a compact
structure very close to that of the NLSW equations.

3 Numerical Experiments: Shoaling Tests

The numerical tests discussed hereafter have been repeated with two different
discretizations and on several meshes, to ensure scheme and mesh independent
results. The scheme used are the finite difference scheme proposed by Wei and
Kirby, which discretizes the shallow water terms using fourth-order formulas and
the dispersive terms to second order accuracy [15], and a P1 continuous finite
element method based on a standard Galerkin solution of the elliptic sub-problems
defining K, Q, P, etc, plus a Galerkin projection for the first order PDEs (4) or
(5). This procedure has been recently used in [13] for the MS equations, and shown
analytically and numerically to have accuracy close to a fourth order finite difference
scheme, and to that of the scheme of [15]. As in [13] high order implicit time
integration is used to allow the choice of the time step based on physical arguments.
In all the tests the two discretizations have given virtually indistinguishable results.
Due to space limitations, we will not show this comparison, but only report the main
findings.
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3.1 Linear Shoaling Test

As discussed in Sect. 2, we consider BT equations which, in couples, reduce to the
same four linearized systems. In particular the P together with the A model, the
BN together with the BNA model, the MSP together with the MS model and the
N together with the NA model degenerate to the same linear systems. We refer
the interested reader to the references given in Sect. 2. These systems, thus, should
manifest the same linear dispersion and linear shoaling behaviour.

To verify that our implementation correctly reproduces the linear shoaling, and in
particular that indeed different models collapse onto one another for small amplitude
waves, we perform an experiment proposed in [10] : a monochromatic wave of
amplitude a D 0:05m and period T D 4 s, propagating over a depth h0 D 13m,
and shoaling over a slope of 1W50 starting 50m from the inlet. These data give
a nonlinearity parameter � 2 Œ0:0038; 0:25�, which is in the linear range. The
generation of the periodic signals is performed adding a source to the mass equation
(see [13] for details on this aspect, and [10] for further details on this test).

The results of the test are summarized on Fig. 2 where we have reported the
distribution of the wave amplitude for all the models. It can be observed that the
implemented schemes well reproduce the theoretical linear behaviors expected for
all models. In fact Fig. 2 shows that the schemes of N and NA give nearly identical
results, as well as the models MSP and MS and the models BN and BNA do.
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Fig. 2 Linear shoaling of a periodic wave from deep to shallow water: envelope of the maximum
elevations computed by the several models and comparison w.r.t. the theoretical results
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Fig. 3 Shoaling of a solitary wave. Left: computational set-up. Right: comparison between
computed and measured maximum value of the relative wave height

3.2 Nonlinear Shoaling Test

We compare now the nonlinear properties of the models on the shoaling test of Grilli
et al. in [7] : a solitary wave of amplitude A=h0 D 0:2m propagating on a depth
h0 D 0:44m, and shoaling on a slope of 1W35. In this test � D a0=h 2 Œ0:45; 1:7�

which is in the nonlinear range � � 1. A sketch of the test is given on the left of
Fig. 3, also showing the position of the gauges where wave height measurements are
available.

We present the results on Figs. 3, 4, and 5, in terms of evolution of the wave
maximum in space, and of temporal evolution of the wave height in the gauges. In
both cases, the experimental data of [7] are reported as well. Looking at the figures
we see clearly that only two main behaviors are observed. All the models derived in
terms of amplitude-velocity (Fig. 5) quickly over-shoal. The evolution of the peak
height is quite independent of the linear dispersion relation of the models which all
give almost the same curves. The same is true for the models derived in terms of
amplitude-volume flux (Fig. 4), which however give a shoaling height closer to the
experimental ones.

In particular, it is reported in [7] than the breaking point is gauge 9. We can see
from Fig. 4, and 5 that models obtained in terms of velocity all have already given
higher waves already in gauge 5, while the models obtained in terms of volume flux
under-shoal and never reach this height. This means that very early breaking will
be likely to occur if one uses one family of models, while late or no breaking will
be observed with the others. Note that here no breaking modeling is considered, so
velocity based models keep on shoaling giving very tall and steep waves in the last
gauges. The same figures show that the steep front of the waves are generally better
described by models with dispersive terms written in terms of the velocity, while the
tail of the wave is much better approximated by models in volume flux form.
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Fig. 4 Shoaling of a solitary wave up to breaking: comparison between computated and measured
data for relative wave height at gauges 1, 3, 5, 7 and 9 and for the BT model of Abbott, Madsen
and Sørensen, and Nwogu-Abbott
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Fig. 5 Shoaling of a solitary wave up to breaking: comparison between computated and measured
data for relative wave height at gauges 1, 3, 5, 7 and 9 and for the BT model of Peregrine, Nwogu,
and Beji and Nadaoka
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4 Conclusions and Perspectives

We have discussed the nonlinear behaviour of weakly nonlinear Boussinesq models.
Under the same asymptotic accuracy, a linear dispersion relation/shoaling coeffi-
cient define at least two models written either in terms of velocity or volume flux
derivatives. This has allowed in this paper to reformulate existing models, propose
new ones, and studied their linear and nonlinear properties. The results show that
in the nonlinear case only the amplitude-velocity form or amplitude-volume flux
form counts: models with different linear shoaling and dispersion relations give
practically the same results.

Future works will involve the study of the coupling of these models with wave
breaking criteria to assess the impact of these properties on the behavior of breaking
models, and the extension of this study to genuinely nonlinear equations and to
the set of equations recently developed in [2] and [8] which couples the dispersive
properties of BT models and the dissipative features of the NLSW equations.

Acknowledgements Work partially funded by the TANDEM contract, reference ANR-11-RSNR-
499 0023-01 of the French Programme Investissements d’Avenir.
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In proposing the ECMI Minisymposium “Numerical Methods in Volcano Geo-
physics”, our motivation is to bring geophysics and volcanology problems into focus
and highlight the complexity in modelling the involved processes. Mathematical
sciences play a central role in the effort to solve several challenges posed in volcano
geophysics both at the modeling and computational level. The minisymposium will
address themes with specialists presenting the theory and implementation of various
numerical approaches applied to advance our knowledge of volcanic processes and
quantitatively assess the volcanic hazards.



Fictitious Domain Methods for Fracture Models
in Elasticity

Olivier Bodart, Valérie Cayol, Sébastien Court, and Jonas Koko

Abstract In this paper we are interested in a linear elasticity system modeling
the presence of a crack inside a volcano. The traction force on this crack induces
discontinuities of the displacement field. The computation of the latter is carried
out with a finite element method for which the boundary of the crack is taken into
account with a fictitious domain approach; It means that the mesh we consider does
not fit to the crack. The interest of this approach lies in a framework where the
position and the shape of the crack is lead to evolve, and in that case no re-meshing
is required.

Keywords Fictitious domain approach • Fracture models

1 Introduction

Cracks (or fractures) play a major role in crustal deformations, whether acting in
tensile mode or in shear mode. As a consequence, the simulation of displacements
produced by inside cracks is an important issue for geological applications.
However, when the position and the shape of a crack have to be updated from
a step to the next, for instance when studying the propagation of a crack or
when inverting surface deformation, such computations are expensive, making the
modeling challenging.
This study presents a method that efficiently addresses the modeling of cracks, using
a fictitious domain approach such that the cracks do not have to fit the mesh. The
literature in this field of research is more and more abundant; Let us just cite the
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original article of the eXtended Finite Element Method [8] for taking into account
cracks, or [6] in the context of fluid mechanics. The method we use is inspired
from XFEM, but no enrichment of basis functions by singular functions is required
near the crack region. The principles of our method are more comparable with the
ones of [7] or [3], with the originality that we have to tackle here discontinuous
fields of displacement. An other advantage of our method is the simplicity of the
implementation.
The paper is divided as follows: In Sect. 2 we set the theoretical problem, and
transform it into a variational problem. Next in Sect. 3 we explain the discretization
we develop here, in particular the way the fictitious domain method is carried out.
In the last Sect. 4 we provide numerical experiments, namely convergence tests and
also physical experiments.

2 Setting of the Problem

Given a domain ˝ of R2, and a crack �T �� ˝ represented by an injective curve,
we consider a steady linear elasticity model governed by the following system:

8
<

:

�div 	L.u/ D f in ˝;
u D 0 on @˝;

	L.u/n D pn on �T :

In this system the displacement of the solid is denoted by u, some external forces
(like the gravity) by f, and 	L.u/ D 2�".u/C �.div u/iR2 denotes the Lamé stress
tensor, with ".u/ D 1

2

�ru C ruT
�
. The coefficients � and � can be related to the

Poisson coefficient � and the Young modulus E by the formulas below:

� D E�

.1 � 2�/.1C �/
; � D E

2.1C �/
:

The traction force of value p > 0 is applied on the both sides of the crack �T , so
we have to make precise the outward normal n on �T . Moreover, for giving a sense
to the both sides of the crack, we have to be able to determine whether a point of
the domain lies on one side or the other of the crack. For that, the most convenient
way we have found consists in uncoupling the problem by setting two unknowns
displacements instead of a global one (Fig. 1).
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Fig. 1 Splitting of the
domain according to the crack

2.1 Uncoupling the Problem from the Discontinuities
of the Displacement Field

We extend the crack �T to � , as represented below:

The global domain˝ is now split into two sub-domains˝C and ˝�. We have:

� D �0 [ �T ; ˝ D ˝C [ � [˝�:

Let us now denote uC D uj˝C and u� D uj˝C . On the artificial boundary �0—
which is not connected—we have to ensure the continuity of the displacement, that
is to say uC � u� D 0. The system we are now interested in is the following1:

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

�div 	L.u/ D f in ˝C [˝�;
u D 0 on @˝;

.	L.u/n/
˙ D pn˙ on �T ;

Œu� D 0 across �0 D � n �T ;

Œ	L.u/�nC D 0 across �0:

(1)

The notation Œ®� refers to the jump of a function ® across �0. Of course, the
homogeneous Dirichlet condition on @˝ can be replaced by non-homogeneous data
mixing Neumann conditions and Dirichlet conditions.

2.2 Continuous Formulation

Consider the following functional spaces:

VC D ˚
v 2 H1.˝C/ j v D 0 on @˝ \ @˝C� ;

1The symbol ˙ represents the fact that we consider both formulations involving the symbols C
and �, in a sake of concision. The outward normal of domain ˝˙ is denoted by n˙.
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V� D ˚
v 2 H1.˝�/ j v D 0 on @˝ \ @˝�

�
;

W D H�1=2.�0/ D �
H1=2.�0/

�0
:

We choose to impose the jump condition on �0 by a multiplier œ. A weak solution
of system (1) can be seen as the stationary point in VC � V� � W of the following
Lagrangian:

L.uC;u�;œ/ D 1

2

Z

˝C

	L.uC/ W ".uC/d˝C C 1

2

Z

˝�

	L.u�/ W ".u�/d˝�

�
Z

˝C

f � uCd˝C �
Z

˝�

f � u�d˝� �
Z

�T

uC � pnCd�T

�
Z

�T

u� � pn�d�T

C ˝
œI .uC � u�/

˛
H�1=2.�0/IH1=2.�0/

:

In this expression 	L.u/ W ".u/ D trace
�
	L.u/".u/T

�
denotes the classical

inner product for matrices. Recall that the bilinear form bilinear form .u; v/ 7!
	L.u/ W ".v/ is symmetric. Note that in the expression of L the jump condition
Œ	L.u/� nC D 0 across �0 is no longer taken into account. Indeed, the first-order
optimality conditions for L give for all test function v 2 V˙ the following equality

Z

˝˙

	L.u˙/ W ".v/d˝˙ ˙ hœI viW;W0 D
Z

˝˙

f � vd˝˙ C
Z

�T

v � pn˙d�T ;

On the other hand, taking the inner product by v of the first equation of (1) yields,
after integration by parts

Z

˝˙

	L.u˙/ W ".v/d˝˙ � ˝
	L.u˙/n˙I v

˛
W;W0

D
Z

˝˙

f � vd˝˙ C
Z

�T

v � pn˙d�T :

Thus we can deduce œ D �	L.uC/nC and œ D 	L.u�/n�.

The variational problem derived from this functional L is then

Find .uC;u�;œ/ in VC � V� � W such that (2)
�
A ˙..uC;u�;œ/I v/ D L˙.v/ 8v 2 V˙;
B..uC;u�;œ/I/ D 0; 8 2 W;

(3)
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where we set

A ˙..uC;u�;œ/I v/ D
Z

˝˙

	L.u˙/ W ".v/d˝˙ ˙ hœI viH�1=2.�0/IH1=2.�0/
;

L˙.v/ D
Z

˝˙

f � vd˝˙ C
Z

�T

v � pn˙d�T ; (4)

B..uC;u�;œ/I/ D ˝
I uC

˛
H�1=2.�0/IH1=2.�0/

� hI u�iH�1=2.�0/IH1=2.�0/
:

3 Discrete Formulation

The discrete formulation we develop in this paper is similar to the ones given in [7]
and [3]: It is a fictitious domain method, in which the degrees of freedom for the
multiplier on the boundary � are independent of the mesh. Let us first explain how
we proceed for taking into account degrees of freedom which do not lie on the edges
of the mesh originally.

3.1 Discretization

The fictitious domains for the unknowns are first considered on the whole domain
˝ . Let us consider some discrete finite element spaces, QVh � H1.˝/ and QWh �
L2.˝/. These spaces can be defined on the same structured mesh of ˝ , that can be
chosen Cartesian. We set for the displacement

QVh D ˚
vh 2 C.˝/ j vhj@˝ D 0; vhjT 2 P.T/; 8T 2 Th

�
; (5)

where P.T/ is a finite dimensional space of regular functions such that P.T/ �
Pk.T/ for some integer k � 1. See [4] for more details. The mesh parameter
stands for h D max

T2Th

hT , where hT is the diameter of the triangle T. The set QWh

can be defined similarly, with the difference that the degree of the polynomial base
functions chosen for QWh has to be lower than the one chosen for the displacement,
in order to satisfy an inf-sup condition. We define

VCh WD QVhj˝C ; V�h WD QVhj˝� ; Wh WD QWhj�0 ;

which are natural discretization of VC, V� and H�1=2.�0/ respectively. This
approach looks like the eXtended Finite Element Method [8], but here the standard
basis functions near the boundary � are not enriched—by singular functions—but
only multiplied by the Heaviside function (H.x/ D 1 for x 2 ˝˙ and H.x/ D 0 for
x 2 ˝ n˝˙), and the products are substituted in the variational formulation of the
problem. This kind of strategy is also adopted in [5] and [2] for instance.
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3.2 Matrix Formulation

An approximation of problem (3) is given as follows

Find .uCh ;u
�
h ;œh/ in VCh � V�h � Wh such that

8
<

:

aC.uCh ; v
C
h /C b.�h; vCh / D L C.vCh / 8vCh 2 VCh ;

a�.u�h ; v�h /� b.�h; v�h / D L �.v�h / 8v�h 2 V�h ;
bC.h;u

C
h /� b�.h;u

�
h / D 0; 8h 2 Wh;

where

aC.uCh ; vCh / D
Z

˝C

	L.uCh / W ".vCh /d˝C; a�.u�h ; v�h / D
Z

˝�

	L.u�h / W ".v�h /d˝�;

(6)

bC.h;u
C
h / D

Z

�0

�h � uCh d�0; b�.h;u
�
h / D

Z

�0

�h � u�h d�0: (7)

Note that the duality product between H�1=2.�0/ and H1=2.�0/ has been turned
into the scalar product of L2.�0/. We could avoid this by using a Laplace-Beltrami
operator, but for a sake of simplicity (and under stronger regularity assumptions) we
proceed like this. In matrix notation, this formulation gives

0

B
@

AC 0 BCT

0 A� �B�T

BC �B� 0

1

C
A

0

@
UC
U�
�

1

A D
0

@
FC
F�
0

1

A ;

where UC, U� and� are the degrees of freedom of uCh , u�h and œh respectively. The
matrices AC, A�, BC and B� are the discretization of (6)–(7). If we denote by

˚
®Ci

�
,

˚
®�i
�

and f§ ig the basis functions of the spaces VCh , V�h and Wh respectively, we
have:

�
AC
�

ij
D
Z

˝C

	L.®
C
i / W ".®Cj /d˝C; .A�/ij D

Z

˝�

	L.®
�
i / W ".®�j /d˝�;

�
BC
�

ij
D
Z

�0

§ i � ®Cj d�0; .B�/ij D
Z

�0

§ i � ®�j d�0:

The vectors F˙ are the discretization of (4).
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4 Numerical Experiments

For illustrating the implementation of our method, we first make computations
for artificial data corresponding to a given exact solution. Next, given a physical
situation, we represent the computational domain ˝ deformed by the computed
displacement.

4.1 Convergence Rates

Given a square˝ D Œ0I 1�� Œ0I 1�, we consider for � a straight line splitting˝ into
two parts. Since the main difficulty of our problem lies in the implementation of the
jump condition, we only take a look at �0, and so �T D ;. Tests with a non-trivial
crack �T are given in Sect. 4.2, or in [1] for instance. The imposed jump .D1;D2/

on �0 is chosen to be constant. We consider the following exact solution:

uex.x; y/ D
�
.x C y/ cos.x/
.x � y/ sin.y/

�

if y > 0:53;

uex.x; y/ D
�
.x C y/ cos.x/ � D1

.x � y/ sin.y/ � D2

�

if y � 0:53:

In the figures below we compute the relative errors on the displacement, between the
exact solution above and the computed one, for different choices of finite elements,
and we deduce an approximation of the order of convergence (Figs. 2, 3, 4, and 5).

4.2 Physical Tests

For a rectangle Œ0I 100� � Œ0I 50� with a mesh size h D 1, we consider a crack
whose position and shape—a segment- can be guessed on the pictures below. In
the first test the crack is vertical, in the second one it is inclined, and in the third
test it is inclined and touching the surface. On the surface we consider a Neumann-
type homogeneous condition: 	L.u/n D 0. The intensity p > 0 of the traction
applied on the both sides of the crack is chosen to be constant. After computation
of the displacement, we deform the initial rectangle according to the effects of the
displacement, by amplifying the effects of the deformation (Figs. 6, 7, and 8).
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Fig. 2 L2.˝/-relative error
(in %)
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Fig. 3 H1.˝/-relative error
(in %)
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Fig. 4 L2.˝/-relative error
(in %)

10−2 10−1
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

 h 

 L
2 

re
la

tiv
e 

er
ro

r (
in

 %
) o

n 
th

e 
di

sp
la

ce
m

en
t

P3/P0: 2.75

P3/P1: 3.77

Q3/Q0: 2.34

Q3/Q1: 2.63

Fig. 5 H1.˝/-relative error
(in %)
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Fig. 6 Displacement due to a vertical inside crack applying traction forces

Fig. 7 Displacement due to an inclined inside crack applying traction forces

Fig. 8 Displacement due to an inclined crack intersecting the surface and applying traction forces

5 Conclusion

We have solved numerically a crack problem in an elastic medium by a finite
element method relying on a fictitious domain approach. Rates of convergence have
been computed and physical tests have been performed for underlying the accuracy
of our approach.
The direct problem we have considered is the first step toward the study of an inverse
problem: The goal is to recover information on the crack (position, shape, stress)
from surface measurements. The interest of the fictitious domain approach lies in an
algorithmic framework in which the position of the sought crack would have to be
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updated; In that case no re-meshing would be needed, only local re-assembling of
stiffness matrices would be required, and so we hope to obtain a gain of efficiency
in terms of computation time and resources.

Acknowledgements This research was financed by the French Government Laboratory of
Excellence initiative no. ANR-10-LABX-0006, the Région Auvergne and the European Regional
Development Fund. This is Laboratory of Excellence ClerVolc contribution number 139.

References

1. Bodart, O., Cayol, V., Court, S., Koko, J.: Xfem based fictitious domain method for linear
elasticity model with crack. SIAM J. Sci. Comput. 38(2), B219–B246 (2016). http://arxiv.org/
abs/1502.03148

2. Choi, Y.J., Hulsen, M.A., Meijer, H.E.H.: Simulation of the flow of a viscoelastic fluid around
a stationary cylinder using an extended finite element method. Comput. Fluids 57, 183–194
(2012). doi:10.1016/j.compfluid.2011.12.020. http://dx.doi.org/10.1016/j.compfluid.2011.12.
020

3. Court, S., Fournié, M., Lozinski, A.: A fictitious domain approach for the stokes problem based
on the extended finite element method. Int. J. Numer. Methods Fluids 74(2), 73–99 (2014).
doi:10.1002/fld.3839. http://dx.doi.org/10.1002/fld.3839

4. Ern, A., Guermond, J.L.: Theory and Practice of Finite Elements. Applied Mathematical
Sciences, vol. 159. Springer, New York (2004)

5. Gerstenberger, A., Wall, W.A.: An extended finite element method/Lagrange multiplier based
approach for fluid-structure interaction. Comput. Methods Appl. Mech. Eng. 197(19–20), 1699–
1714 (2008). doi:10.1016/j.cma.2007.07.002. http://dx.doi.org/10.1016/j.cma.2007.07.002

6. Girault, V., Glowinski, R., Pan, T.W.: A fictitious-domain method with distributed multiplier for
the Stokes problem. In: Applied Nonlinear Analysis, pp. 159–174. Kluwer/Plenum, New York
(1999)

7. Haslinger, J., Renard, Y.: A new fictitious domain approach inspired by the extended finite
element method. SIAM J. Numer. Anal. 47(2), 1474–1499 (2009). doi:10.1137/070704435.
http://dx.doi.org/10.1137/070704435

8. Moës, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without
remeshing. Int. J. Numer. Methods Eng. 46(1), 131–150 (1999). doi:10.1002/(SICI)1097-
0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J

http://arxiv.org/abs/1502.03148
http://arxiv.org/abs/1502.03148
http://dx.doi.org/10.1016/j.compfluid.2011.12.020
http://dx.doi.org/10.1016/j.compfluid.2011.12.020
http://dx.doi.org/10.1002/fld.3839
http://dx.doi.org/10.1016/j.cma.2007.07.002
http://dx.doi.org/10.1137/070704435


Geophysical Changes in Hydrothermal-Volcanic
Areas: A Finite-Difference Ghost-Point Method
to Solve Thermo-Poroelastic Equations

Armando Coco, Gilda Currenti, Ciro Del Negro, Joachim Gottsmann,
and Giovanni Russo

Abstract We propose a finite-difference ghost-point method for the numerical
solution of thermo-poroelastic equations. The method is applied to evaluate defor-
mation, gravity and thermomagnetic changes in Campi Flegrei area caused by
hydrothermal fluid circulation during an unrest.

Keywords Finite differences • Hydrothermal fluid circulation

1 Introduction

The increasing combined use of satellite and ground-based geophysical observations
in volcanic areas has dramatically enhanced our ability to detect and track complex
and multifaceted volcanic processes that are often difficult to reconcile using
models of elastic mechanical behavior of Earth’s upper crust [4]. Usually, magma
accumulation and intrusion are modelled as volume and pressure changes within
the crust. However, the interaction between magma and host rocks such as the
heating and expansion of hydrothermal fluids may also induce measurable changes
in geophysical signals [6, 10, 11, 14]. A thermo-poroelastic numerical model is
proposed to jointly evaluate ground deformation, magnetic and gravity changes
caused by hydrothermal fluid circulation in complex media with surface topography
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and mechanical heterogeneities. The aim is to provide a numerical framework for a
more realistic assessment of geophysical observations associated with sub-volcanic
processes.

2 Thermo-Poroelastic Model

The mathematical model is based on the governing equations of the thermo-poro-
elasticity theory, which describe the elastic response of a porous medium to the
propagation of hot fluid through pores. Assuming that the deformation occurs
slowly, the rock is in static equilibrium and the displacement can be found by
solving the equations of equilibrium coupled with thermo-poroelastic extension of
the Hooke’s law [8], giving the following set of equations [5]:

r�� D 0; � D �tr.�/IC2��C˛PICKˇTI; � D 1

2

�ru C .ru/T
�

(1)

where � and � are the stress and strain tensors, respectively, u is the deformation
vector and � and � are the Lame’s elastic medium parameters and K the bulk
modulus. To the elastic stress tensor of the Hooke’s law for elastic media, two
terms are added: the P pore-pressure change from poroelasticity theory through
the ˛ Biot-Willis coefficient and the T temperature change from thermo-elasticity
theory through the volumetric thermal expansion coefficient ˇ. Fluid circulation,
temperature and pore-pressure changes necessarily alter the density distribution and
the magnetization of the porous media, which, in turn, affects the gravity and the
magnetic fields, respectively. The gravity change g can be calculated by solving
the following boundary value problem for the gravitational potential �g [3]:

r2�g D �4 � G�; �g D 0 at infinity, g D �@�g

@z
(2)

where G is the gravitational constant and � is the density distribution change.
As for the magnetic field changes, thermomagnetic effect due to thermal demag-
netization/remagnetization is considered, since it generally yields larger magnetic
changes with respect to piezomagnetic and electrokinetic effects, which may be
also associated with volcanic activity. The thermomagnetic field can be described
through the scalar potential formulation [12]:

r2�m D 4 � r � J;
@�m

@n
D 0 at infinity, B D �r�m (3)
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where �m is the thermomagnetic scalar potential, J the thermal magnetization
change, B the magnetic field. Pressure, temperature and density changes induced
by hydrothermal fluid circulation are computed using the HYDROTHERM numer-
ical code [7]. Starting from these quantities, ground deformation, gravity and
thermomagnetic changes are solved through Eqs. (1)–(3). In this work we do not
take into account the effects of displacements back to the hydrological properties
(permeability and porosity), though its implementation is under consideration.

2.1 Numerical Method

Equations (1)–(3) are discretized by the finite-difference ghost-cell approach for
unbounded domains and complex geometries [1, 2]. The ground surface is implicitly
described by a level-set function, computed as the minimum (signed) distance
between each node of the Cartesian grid and the nodes defining the topography.
Using a coordinate transformation method, the unbounded domain is mapped into a
bounded one Œ�1; 1�2:

.r; z/ �! �
��1.r/; ��1.z/

�
; with �.x/ D cx

.1 � x2/

where r and z are the radial and vertical coordinate, respectively, and c is a parameter
regulating the length scale of the computational grid. The bounded domain is
then discretized by uniform Cartesian grid, which automatically results in a quasi-
uniform grid for the original domain, with a finer resolution close to the axis
of symmetry, smoothly decreasing toward infinity. In this way we avoid artefact
introduced when using artificial truncation of the domain. The original equations
are transformed as well, following the transformation of differential operators
@x D .�0/�1@X ; where x and X are the general coordinate in the unbounded and
bounded domain, respectively. The transformed equations are then discretized in
the bounded domain by finite-difference method. Discretization on a generic grid
node requires to know the values on surrounding grid nodes. Some of these grid
nodes may lie outside the computational domain (ghost point) and a suitable value
must be defined on it. Referring to Fig. 1, we define the value in the ghost point
G in such a way the biquadratic interpolation on the nine-point stencil matches the
boundary condition on the projection point B, which is computed by the signed
distance function.
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Fig. 1 Nine-point stencil
used to compute the
extrapolation value in G of
the boundary condition on B

3 Hydrothermal Model

The hot fluid circulation in the hydrothermal system is simulated by the
HYDROTHERM software, which solves the mass and energy balance equations for
a multiphase ground-water flow [7]. The equations can be resumed as follows:

@Q˛

@t
C r � F˛ � q˛ D 0; (4)

where Q is the accumulation term, F the flux and q the source (or sink) term, while
the subscript ˛ D M or E refers to the mass or energy balance equation. The
accumulation term for mass balance equation is described by QM D �

P
ˇ �ˇSˇ,

where the subscript ˇ D l or g refers to the liquid or gas phase, � is the porosity,
�ˇ the density and Sˇ the saturation. The fluid flux is described by the Darcy’s

law, so that FM D P
ˇ Fˇ, with Fˇ D KKrˇ�ˇ

�ˇ
.rPˇ � �ˇ Og/, where K and Krˇ

are the absolute and relative permeability, �ˇ the viscosity, Pˇ the fluid pressure,
Og the gravitational vector. For the energy balance equation, the accumulation term
is QE D �

P
ˇ.�ˇhˇSˇ/ C .1 � �/�rhr, where hˇ is the specific enthalpy of the

phase ˇ, while �r and hr are the density and specific enthalpy of the porous-matrix
solid phase, respectively. The heat flux is FE D ��rT CP

ˇ hˇFˇ, where � is the
thermal conductivity of the bulk porous medium and T the temperature.

4 Campi Flegrei Unrest Simulation

The method is applied at the Campi Flegrei area to simulate an unrest caused
by a deep injection of hot fluid in the caldera [10, 11, 14]. Without loosing
generality the multiparametric model is designed in axi-symmetric formulation. The
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Fig. 2 Left: digital elevation model from the 90m Shuttle Radar Topography Mission data. Right:
axis-symmetric model geometry and elastic medium heterogeneity of the Campi Flegrei area

computational domain is a vertical section (Fig. 2), and for the hydrothermal model
(Sect. 3) it extends up to a radial distance of 10 km and a depth of 1.5 km computed
from the intersection between the ground surface and the axis of symmetry. It
consists of 2400 cells, with a horizontal resolution of 61.33 m along the axis of
symmetry, which decreases as the radial distance increases. The vertical resolution
is 45.5 m in the whole domain. The computational nodes are cell-centered. In
the thermo-poroelastic model and for the gravity (Eq. (2)) and magnetic (Eq. (3))
problems (Sect. 2) the domain extends toward infinity, as described in Sect. 2.1, with
a resolution of 38.76 m close to the axis of symmetry. The computational grid is
vertex-centered.

Firstly, HYDROTHERM is run to simulate the fluid injection into the system
for 3 years at a constant rate of 70 kg/s and at a temperature of 350 ıC from a
point source located in the lower part of the caldera (r D 0 km; z D �1:5 km).
Initial conditions are obtained by simulating a 10 thousands year long quiet phase
with a deep injection of hot fluids in the same area at the same temperature but
at a lower constant rate of 27 kg/s. The ground surface is at atmospheric pressure
(0.1 MPa) and temperature (20 ıC) during the whole simulation. Right and bottom
boundaries are assumed to be impervious and adiabatic. Values of the hydrological
and thermal properties of rocks are defined on the basis of literature data [10, 14]
(Table 1). During the simulation of the unrest, temperature, pressure and density
variations with respect to their initial distributions are computed and fed into the
thermo-poroelastic solver. Due to the different grids adopted, these quantities are
interpolated from the HYDROTHERM grid to the thermo-poroelastic solver nodes.
The elastic medium properties are defined on the basis of tomographic studies [15],
which depict the heterogeneity of the shallow structure of Campi Flegrei (Table 2).
Following [13], the shallow area of the medium is divided into three horizontal
layers having a thickness of 1 km. The inner caldera is modelled as a 3 km wide
cylinder, coaxial with the axis of symmetry, with an internal variation of the elastic
parameters. A further layer extends from 3 km depth to the bottom of the (infinite)
computational domain (Fig. 2). The thermal expansion coefficient ˇ is 10�5K�1 and
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Table 1 Rock properties
used in calculations of the
hydrothermal model

Density 2000 kg/m3

Permeability 10�14 m2

Conductivity 2.8 W m�1 K�1

Porosity 0.2

Specific heat 1000 J kg�1 K�1

Table 2 Elastic properties of
the medium

Region Rigidity [GPa] Poisson ratio

L1 4 0.25

C1 2:3 0.33

L2 5 0.25

C2 3:6 0.33

L3 6:5 0.25

C3 5 0.33

L4 20 0.25

Fig. 3 Time evolution of the horizontal (right) and vertical (left) deformations at the ground
surface during the unrest phase. Deformations increase over time

the Biot-Willis coefficient ˛ is 1 � K=Ks, where K is the isothermal drained bulk
modulus (5 GPa) and Ks is the bulk modulus of the solid constituent (30 GPa). The
deformation pattern (Fig. 3) computed solving Eq. (1) is in agreement with the one
obtained in [10, 11]. The contribution of the thermo-elastic term is negligible for
this simulation (Fig. 4).

To solve Eq. (2), density changes in the medium are computed with respect to the
initial density distribution� D �i � �0, where �i D �.�liSli C �si.1� Sli// with �
the porosity, S the saturation, �s and �l the density of the steam and liquid phases.
The gravity changes expected at the ground surface over time (Fig. 5, right) reach
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Fig. 4 Percentage of the temperature contribution to the vertical deformation, computed as
.vT=v/ � 100, where vT is the vertical displacement computed taking ˛ D 0 in Eq. (1)

Fig. 5 Gravity (left) and thermomagnetic (right) changes computed at the ground surface in r=0

about 210�Gal in 3 years in agreement with those obtained in [11] for the half space
domain. Rock magnetization in Eq. (3) is related to temperature changes on the basis
of laboratory experiment on rock sample [9]. Magnetic changes reach about 14 nT
in 2 years. Future investigations, mainly concentrated on a full coupling between
the thermo-poroelastic and the hydrothermal solvers is currently underway, with the
aim to extend the simulation to more realistic case of multi-component fluids.
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Numerical Simulation Applied to the
Solfatara-Pisciarelli Shallow Hydrothermal
System

A. Troiano, M.G. Di Giuseppe, A. Fedele, R. Somma, C. Troise,
and G. De Natale

Abstract The Solfatara-Pisciarelli area represents the most active zone within the
Campi Flegrei caldera (CFc) in terms of hydrothermal manifestations and local
seismicity. Periodic injections of hot CO2-rich fluids at the base of a relatively
shallow hydrothermal system has already been correlated to ground uplift in a wide
range of numerical modelling of the CFc unrests, that highlight a strong correlation
between chemical composition of the Solfatara and Pisciarelli fumaroles, seismicity
and ground movements. In particular, a new simulation has been realised via the
coupling of TOUGH2©and Comsol Multiphysics©. Recent uplift episodes in the
in the centre of Pozzuoli Bay have been reconstructed imposing fluid flows in
the system as experimentally recorded. Numerical studies, geochemical data and
Magnetotelluric (MT) survey have been integrated, to guess the main features of the
shallower part of the hydrothermal system of the Solfatara-Pisciarelli area.

Keywords Multiphysics • Volcano geophysics

1 Solfatara and Pisciarelli Settings

Campi Flegrei caldera (CFc) has been formed by huge eruptions, occurred 39 and
15 Ky B.p., which have been the largest ones occurred in the Mediterranean since
the beginning of mankind [19]. Up and down ground movements with rates from
centimetres to meters per year characterize the dynamics of this area also during
quiescent periods [10] Since 1969, the area started a new phase of uplift after
several centuries of subsidence dating back to 1538 AD, when the last eruption
occurred in the area. Recent studies on the interpretation of such uplift episodes
point out the active role played by the geothermal system, which is characterized
by hydrothermal manifestations such as distributed degassing zones and fumaroles
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[3, 9]. The Solfatara-Pisciarelli area represents the most active zone within the
CFc in terms of hydrothermal manifestations and nowadays local seismicity. The
Solfatara volcano is located inside the CFc, about 2 km east-northeast of the town
of Pozzuoli. It is a tuff cone formed about 3.7–3.9 Ky B.p., which generated in
1198 AD a low-magnitude hydromagmatic explosive eruption that ejected tephra
over a small area (<1 km2). The crater has a roughly elliptical shape with the two
axes of 580 and 770 m, and a maximum elevation of 199 m asl. The Solfatara crater
is located very close to the area of maximum ground uplift during the last unrest
crises. It hosts large and spectacular fumarole vents, with maximum temperatures in
the range 150–160 ıC at the Bocca Grande (BG) and Bocca Nuova (BN) and about
100 ıC at Le Stufe (LS) and La Fangaia (LF) ones [5] . Systematic measurements
of the gas fluxes from the soil evidenced up to 1500 tonnes/day of CO2 emission
which are well aligned with the main fault system and temperature up to 95 ıC far
from the fumaroles [7, 13]. During the first 16 years of systematic monitoring of
the geochemical composition of the BG and BN fumaroles, spanning from 1984
to 2000, the CO2/H2O has shown three clear anomalous ratios, occurred in 1986,
1991 and 1995–1996, with molar ratio respectively of 0.30, 0.26 and 0.34 over a
background average value of 0.17, peaked about 1 year later from the corresponding
unrest ground deformation. Since 2000 the CO2/H2O has progressively increased
with a nearly linear trend from the background value of 0.17 up to about 0.32
[6]. The Pisciarelli area is located outside the south-east side of the Solfatara
crater. It extends from the eastern slopes of the Solfatara volcano to the western
margin of the nearby Agnano crater. The Pisciarelli area is characterised by a
fumarole field, which is affected by near-surface secondary processes of seasonal
character that seem to mask the deeper signals related to the temperature-pressure
changes occurring in the hydrothermal system, clearly observed, instead, inside
the Solfatara crater at the BG and BN fumarole vents [7]. Starting from 2003,
the Pisciarelli field has experienced an evident increase of activity, which has
been marked by a sequence of temperature peaks of the fumaroles above the
average background temperature of 95 ıC, each lasting up to half a year until
early 2011, and exceptionally about 1 year, from mid 2011 to mid 2012, the last
recorded peak. Furthermore, a nearly linear trend of the peak temperatures, from
about 97 ıC up to around 112 ıC, has been recorded from 2003 up to date. The
increase of activity has also been marked by the opening of new vigorous vents and
degassing pools, also accompanied by intense local seismic activity. Continuous
monitoring of such phenomena is on-going, by permanent networks for seismic,
ground deformation and geochemical measurements. Geophysical surveys have so
far allowed a quite good knowledge of the subsurface structure of the CFc volcanic
system.
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2 Electromagnetic Evidences

A 1 km long, nearly W-E directed CSAMT-MT profile crossing the fumaroles field
was realised [21], carried out with the aim of deducting an EM model of the
structural setting of the hydrothermal system in the first 3 km depth of the Solfatara-
Pisciarelli area. The results allow us to identify three EM zones (Fig. 1).

The first EM zone (A) is characterized by a very shallow, electrically conductive
body localized beneath the westernmost segment of the profile, which, within a
short distance of about 100 m, dips westwards from near surface down to some
hundred metres depth. This shallow zone has been ascribed to a water-saturated,
high-pressurized geothermal reservoir. The second EM zone (B), which has been
localized below the west-central portion of the EM transect, appears as a composite
body made of a nearly vertical plume-like structure arising from about 2 km depth
to the top edge of the east side of a presumably horizontal plate-like body. Such
plume-like structure, centered in correspondence of the Solfatara fumaroles field,
rises up to the free surface whereas the plate-like structure deepens at least down
to the 3 km of maximum EM exploration depth. The plume-like portion is likely
associated with a steam/gas-saturated column and the plate-like portion to a high
temperature (>300 ıC), over-pressurized, gas-saturated reservoir. Finally, a third
EM zone (C), which has been localized beneath the eastern half of the EM transect,
corresponding to the Pisciarelli area, is also characterized by the lowest resistivity
values (1–10�m) from about 1.2 km down to about 3 km of depth. As it is known,
in a volcano- geothermal coastal environment a highly conductive body can indicate
either a hydrothermally mineralized, clay-rich layer [23], or a cold seawater-bearing
layer [12], or a highly hydrothermalized water-bearing rock [18]. In order to decide
which of this hypothesis is the most reliable, we consider that in all of the deep
wells drilled by AGIP, during the eighties, at the west border (Mofete area) and
north border (San Vito area) of the caldera, the effects of a strong hydrothermal
paragenesis have been detected. Abundance of semi- conducting minerals (e.g.
pyrrhotite, pyrite, magnetite) and presence of thick argillitic layers, are, in fact,
documented at temperatures ranging between 250 and 350 ıC, in the depth range
between 1 and 3 km, which was the maximum depth reached by the wells [4].
Therefore we are tentatively allowed to associate the very low resistivity zone
(C), under the Pisciarelli area, with a hydrothermally mineralized, clay-rich body.
Alternatively, we cannot exclude the presence of a deep hydrothermal aquifer,
although we know from previous drillings that critical temperature is reached in
the whole caldera at depths higher than 3 km. Further consideration arise from the
analysis of the seismic P-wave velocity (vP) and the P-wave/S-wave velocity ratio
(vp=vs) in the same zones [1]. The conductive C-zone almost completely coincides
with a low vp=vs area (vp=vs � 1:73). The reason for assuming vp and vp=vs

as test parameters resides in the relationship existing between their variations and
reservoir fluid phases. In detail, low vp=vs values are related to a decrease of vp in
areas with low pore pressure, high heat flow, fracturing and steam/gas saturation in
reservoirs, while high vp=vs values are found in liquid-saturated high-pressure fields
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Fig. 1 Top: aerial view of the Solfatara crater and surrounding urbanized areas. The white area
inside the crater is the vegetation-free degassing area. BG, BN, LS and LF indicate the Bocca
Grande, Bocca Nuova, Le Stufe and La Fangaia main fumaroles, respectively, located inside the
Solfatara crater. PI indicates the Pisciarelli main fumaroles, located outside the crater. Red and
green circlets indicate the CSAMT and combined CSAMT-MT sounding stations, respectively.
Bottom: resistivity model obtained from the 1D inversion of the MT data, along the Solfatara-
Pisciarelli profile. A common logarithmic scale is used for the resistivity. Black and green triangles
along the distance scale indicate the CSAMT and combined CSAMT-MT stations, respectively
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[15]. It is well established, in fact, that the presence of steam/gas in rocks generally
changes the rock compressibility with a vp decrease, whereas waters in rock voids
do not sustain shear stress and decrease the vs without any vp variation [22]. It
has also been ascertained that the vp=vs ratio increases with pressure increase and
temperature decrease from vapour-saturated to liquid-saturated conditions [14], and
that vp is affected by the degree of water saturation [16, 17] . The lowest resistivity
values that characterize this zone, combined with the seismic evidences, allow us to
exclude a water-saturated reservoir, but very likely to admit the presence of a dry
and impermeable hydrothermally mineralized, clay-rich body.

3 Geochemical Evidences

An important issue for further discussion is the implication that this EM model,
correlated with the evidences emerging from geochemical analysis, can have on the
understanding of the fluids up- lift in the Solfatara-Pisciarelli area. According to [2]
the peaks of the CO2=H2O concentration ratio, occurred in 1986, 1991 and 1995–
1996 at the Solfatara crater a few months later an uplift of the ground [6], reflect
the increased component of magmatic gases in the composition of the fumaroles,
probably due to episodes of intense degassing of magma at depth. The Pisciarelli
area is also characterized by emission of gases and fluids through fractures mostly
trending N110-120E and mainly NWSE and NE-SW. The main component of the
fumaroles is H2O followed by CO2 and H2S and with a range of temperature
between 100–110 ıC [6]. Fedele [11] During field surveys in the Pisciarelli made
during the year 2006 were observed, compared to similar surveys conducted in
the past (the year 2005), changes emission style of gases and fluids. Particularly
the first are characterised by several point sources of emission while, along the
eastern side of the small hill to the east, it is a mud boiling characterised by a
diffuse and active degassing zone. A on-line gas monitoring station was localised
close the fumaroles field (100 m) during the period May 16–30th 2012, June 1st–
5th, 2012. The main relationships of good tracer of magmatic fluids injection such
us CO2=CH4 and H2S=CO2 was reconstructed due to this continuous monitoring
[11]. In particular, the CO2=CH4 is a good tracer of magmatic fluids injection
because CO2 concentration increased, due to its the higher content of the magmatic
component, and CH4, a gas species formed within the hydrothermal system, is
lowered both by dilution and by the more oxidizing, transient conditions caused
by the arrival of SO2 into the hydrothermal system [6, 8]. This opposite behaviour
causes rapid increases of the CO2=CH4 ratio in fumarolic fluids like it showed by
the Fig. 2. This trend seems to be confirmed by the data of GPS ground deformation
that show a general tendency to uplift with an acceleration of the phenomenon
in the period spanning from June to August 2012 (25 mm/month in average) and
increasing during the last month beginning on December 2012 (10 mm/month), as
also shown in Fig. 2.
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Fig. 2 On the left CO2=CH4 ratio from 16/05/2012 to 05/06/2012 measured by Quadrupole Mass
Spectrometer. On the right ground deformation (from Osservatorio Vesuviamo website)

4 Discussion and Conclusion

In effect, periodic injections of hot CO2-rich fluids at the base of a relatively
shallow hydrothermal system has been correlated to ground uplift in a wide range of
numerical modelling of the CFc unrests, that highlight a strong correlation between
chemical composition of the Solfatara and Pisciarelli fumaroles, seismicity and
ground movements [20]. In particular, a new simulation has been realised via the
coupling of TOUGH2©and Comsol Multiphysics©. Recent uplift episodes in the
in the centre of Pozzuoli Bay have been reconstructed imposing fluid flows in the
system as experimentally recorded. The comparison between numerical simulation,
geochemical data and EM survey highlight the main features of the shallower
part of the hydrothermal system of the Pisciarelli area. The high CO2=CH4 ratio
indicate a plausible magmatic component. For such magmatic origin, the plume
identified in the MT imaging below the Solfatara crater seems to contribute also
to fluid flow uplift below Pisciarelli. The low resistivity values under Pisciarelli,
that indicate a strong local fluid circulation, support this kind of hypothesis.
The fluid flow patterns reconstructed by our numerical simulations enforce this
interpretation (Fig. 3). Fluids migrate, in the upper part of our model, from its
central part, ideally placed below the Solfatara crater, toward an area localised some
hundreds of meters away, fitting the Pisciarelli zone. The clear evidence that the
thermodynamic condition of the system in the shallower part results compatible with
the presence of convective cells enforce the idea that the degassing of the magma
batch localised under the Solfatara crater contribute also to fluid circulation under
Pisciarelli.
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Fig. 3 Fluid flows patterns as reconstructed by numerical simulation. Black arrows show the CO2

fluxes migrating from the injection point, placed below the Solfatara crater, towards the surface,
ending in the Pisciarelli area. Colour contours shows the CO2 mass fraction

References

1. Battaglia, J., Zollo, A., Virieux, J., Iacono, D.D.: Merging active and passive data sets in
traveltime tomography: the case study of Campi Flegrei caldera (Southern Italy). Geophys.
Prospect. 56(4), 555–573 (2008)

2. Caliro, S., Chiodini, G., Moretti, R., Avino, R., Granieri, D., Russo, M., Fiebig, J.: The origin
of the fumaroles of la solfatara (Campi Flegrei, South Italy). Geochim. Cosmochim. Acta
71(12), 3040–3055 (2007)

3. Carlino, S., Somma, R., Troise, C., De Natale, G.: The geothermal exploration of Campanian
volcanoes: historical review and future development. Renew. Sust. Energ. Rev. 16(1), 1004–
1030 (2012)

4. Chelini, W., Sbrana, A.: Phlegraean Fields. Subsurface Geology, vol. 9. Consiglio Nazionale
Delle Ricerche, Roma (1987)

5. Chiodini, G., Frondini, F., Cardellini, C., Granieri, D., Marini, L., Ventura, G.: CO2 degassing
and energy release at Solfatara volcano, Campi Flegrei, Italy. J. Geophys. Res. Solid Earth
(1978–2012) 106(B8), 16213–16221 (2001)

6. Chiodini, G., Caliro, S., Cardellini, C., Granieri, D., Avino, R., Baldini, A., Donnini, M.,
Minopoli, C.: Long-term variations of the Campi Flegrei, Italy, volcanic system as revealed
by the monitoring of hydrothermal activity. J. Geophys. Res. Solid Earth 115(B3), 2156–2202
(2010)

7. Chiodini, G., Avino, R., Caliro, S., Minopoli, C.: Temperature and pressure gas geoindicators
at the Solfatara fumaroles (Campi Flegrei). Ann. Geophys. 54, 151–160 (2011)

8. Chiodini, G., Caliro, S., De Martino, P., Avino, R., Gherardi, F.: Early signals of new volcanic
unrest at Campi Flegrei caldera? Insights from geochemical data and physical simulations.
Geology 40(10), 943–946 (2012)

9. De Natale, G., Pingue, F., Allard, P., Zollo, A.: Geophysical and geochemical modelling of
the 1982–1984 unrest phenomena at Campi Flegrei Caldera (Southern Italy). J. Volcanol.
Geotherm. Res. 48(1–2), 199–222 (1991)



602 A. Troiano et al.

10. Dvorak, J.J., Mastrolorenzo, G.: The mechanism of recent vertical crustal movements in Campi
Flegrei caldera. Southern Italy, Geological Society of America, Special Papers 263 (1991)

11. Fedele, A.: Continuous geochemical monitoring by mass-spectrometer in the Campi Flegrei
geothermal area. An application at Pisciarelli-Solfatara (diffuse and fumarolic gases) and at
the mud gases during drilling of the CFDDP pilot hole. Ph.D. thesis, Alma Mater Studiorium
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Computational Aspects of Optimization-Based
Path Following of an Unmanned Helicopter

Johann C. Dauer, Timm Faulwasser, and Sven Lorenz

Abstract This paper considers the path following of unmanned helicopters based
on dynamic optimization. We assume that the helicopter is equipped with a flight
control system that provides an approximation of its closed-loop dynamics. The
task at hand is to compute inputs for this flight control system in order to track a
geometrically specified path. A concise problem formulation and a discussion of an
efficient implementation are presented. The implementation achieves computation
times below the flight duration of the path by exploiting differential flatness
properties of parts of the dynamics. Finally, we present quantitative results with
respect to convergence and required iterations for a challenging nonlinear path. We
show that the proposed optimization based approach is capable of tackling nonlinear
path following for unmanned helicopters in an efficient and practicable manner.

Keywords Approximation of closed-loop dynamics • Dynamic optimization •
Flight control • Path following

1 Introduction

In this contribution the problem of path following of small unmanned helicopters
such as the one shown in Fig. 1 is considered. Here, path following is defined as
the task to fly along a geometrically specified space curve. The time-wise progress
on the path is not a priori known or specified. Rather, we allow mission based
requirements such as, for instance, a desired velocity along the path. It is assumed
that a mathematical representation of a path is available, provided either directly in
the mission specification or by a path planner, as presented e.g. in [1]. Furthermore,
we assume that there exists a flight control system handling the stabilization of the
helicopter and allows to derive an approximation of the closed-loop dynamics.
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Fig. 1 Automated helicopter midiARTIS of the German Aerospace Center, maximum-take-off-
weight 14 kg, rotor-diameter 2 m

Fig. 2 Simplified block diagram of the optimization-based generation of inputs for the flight
control system

Our task is to find suitable inputs for the flight control system, which steers the
helicopter along the desired path. These inputs have to satisfy dynamic constraints
of the vehicle as well as limitations of the control system implementation which
would otherwise cause path deviations. These aspects are shown in the simplified
block diagram of Fig. 2, where the block considered here is called “Optimization
Based Input Generation”. As shown in [3], a problem formulation like this can be
tackled by dynamic optimization using a receding horizon approach. The closed-
loop dynamics of the figure is not known exactly. However, the control concept
presented in [11] is based on a reference model, which can be regarded as an
approximation of the closed-loop. A good starting point for a literature review of
alternative approaches can be found in the surveys [2, 9].

In the present paper, the results of [3] are extended by details of the numerical
implementation of the problem. We present an implementation capable to solve this
kind of path following problem. The implementation is based on the open-source
project ACADO Toolkit [8]. A nonlinear representation of the closed-loop behavior
of the helicopter is considered as well as nonlinear paths that do not correspond to
paths created by trimmed trajectories.
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2 Problem Formulation

This section gives an overview on the problem formulation of path following for an
unmanned helicopter. A space curve is defined, which the helicopter is supposed to
track. An optimal control problem (OCP) is formulated afterwards.

The closed-loop approximation of the flight control system considered here can
be represented in state space by

Px.t/ D f.x.t/;u.t//; x.0/ D x0 (1a)

y.t/ D h.x.t//; (1b)

where the state vector x contains position and velocity of the helicopter, as well as
rotational and engine states. The inputs u are the input channels of the flight control
system. They contain a velocity command uv and a command for a desired scalar
azimuth u . The azimuth is the third component of an Euler representation of the
helicopter’s attitude corresponding to the nomenclature defined in ISO 1151. The
outputs are defined by the position of the helicopter (r) in Cartesian north-east-down
(NED) frame and the azimuth ( ), thus

u.t/ D .uv.t/T ; u .t//T 2 R
4; (2a)

y.t/ D .r.t/T ;  .t//T 2 R
4: (2b)

Representations (1) and (2) result in a consistent problem formulation for
missions in obstacle occupied environments for short distance missions. Alternative
formulations can also be considered, for example velocity in respect to wind as well
as the sideslip angle, which partly defines the attitude of the helicopter with respect
to aerodynamic inflow.

In this paper we focus on the structure of the problem. The information needed
to reconstruct the complete set of equations can be found in [3]. For brevity, the
following paragraphs are limited to the general idea and the required links to [3]
by providing the physical meaning of some of the variables. The state vector can
be subdivided into four sub-vectors: the translation dynamics xt 2 R

6, states of the
engine xe 2 R

2, states for the rotational rates xr 2 R
6 and states of the quaternion

based representation of the attitude xq 2 R
4. The closed-loop dynamics can be

represented under the following structure

Px D

0

B
B
@

Pxe.t/
Pxr.t/
Pxq.t/
Pxt.t/

1

C
C
A D

0

B
B
@

Aexe.t/C ge.x.t/;uv.t//
Arxr.t/C gr.x.t/;uv.t/; u .t//

fq.xq.t/; xr.t//
ft.x.t//

1

C
C
A ; x.0/ D x0 2 R

18: (3)
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Note that the two components xe and xr have linear state mapping and nonlinear
input functions, the components xq and xt have nonlinear dynamics but are not
directly influenced by the inputs. The optimization problem can be simplified by
exploiting the fact that the engine dynamics xe are differentially flat with the thrust
of the main rotor as flat output if the remaining states are considered as parameters;
see [7] for details on differential flatness. Thus it is possible to calculate the input uv
if a sufficiently smooth thrust trajectory and its derivatives are given. An equivalent
argumentation holds for the dynamics of xr considering the remaining states and uv
as parameters. The flat outputs in this case are the body-fixed rotation rates.

Thus, these flat subsystems allow to define simple integrator chains of sufficient
order with new inputs for the thrust uT and rotation rates u! , in the following
represented using the sparse system matrices A1;2 and input matrices B1;2 containing
only a small number of ones. It is thus possible to derive the state trajectories for xe

and xr only by integration of the new inputs and using the algebraic relations of the
flat outputs, which results in modifications of fq and ft. The original system inputs
can be calculated in the same way. Finally a modified structure is obtained

Pxm D

0

B
B
@

Pxe;m.t/
Pxr;m.t/
Pxq.t/
Pxt.t/

1

C
C
A D

0

B
B
@

A1xe;m.t/C B1ut.t//
A2xr;m.t/C B2u!.t/

fq;m.xq.t/; xr;m.t//
ft;m.xm.t//

1

C
C
A ; xm.0/ D xm;0 2 R

18: (4)

The control system also imposes constraints on the optimization problem. These
constraints are defined by the so-called envelope protection. We omit details here
and represent the constraint sets of the states as X and of the inputs as U. The details
can be found in [3], where constraints for accelerations, velocities, in both body-
fixed as well as in NED frame, and actuator deflections are introduced.

The path that has to be tracked by the helicopter is a four dimensional parametric
curve depending on a scalar parameter � . It is defined in the output space of (1)

P D
n
p.�/ 2 R

4 j � 2 Œ�0; �1� 7! �
rT.�/;  .�/

�T
o
: (5)

For the time-wise evolution of the position on the path, we introduce artificial
dynamics with an input v which augment the dynamics of the system [5] and is
chosen to be a double integrator

Pz.t/ D
�Pz1

Pz2
�

D
�
0 1

0 0

�

z.t/C
�
0

1

�

v.t/ DW l.z.t/; v.t//; z.0/ D z0; (6a)

�.t/ D z1.t/: (6b)

Higher degrees of the path-dynamics would increase the smoothness of the evolu-
tion along the path. It would, however, increase the computational burden as well.



Computational Aspects of Path Following of an Unmanned Helicopter 611

The second order integrator allows us to specify a desired velocity along the path
later on.

Now, the optimal control problem can be defined: Given the closed-loop
approximation according to (1) and a path of the form (5), calculate the evolution
� W t 2 Œt0; t1� 7! �.t/ 2 Œ�0; �1� and the inputs u, such that (a) the constraints
are satisfied, (b) the helicopter moves forward on the path ( P� > 0) and (c) a cost
function is minimized:

minimize
u!.�/;ut.�/;v.�/

Z tkCT

tk

�
�.eT.t/; PeT.t//

�
�2

Qe„ ƒ‚ …
path deviation

C kz.t/ � zr.t/k2Qz„ ƒ‚ …
reference behavior

C �
�.uT.t/; v.t//

�
�2

R„ ƒ‚ …
regularization

dt;

(7a)

subject to the dynamics and constraints

Pxm.t/ D fm.xm.t/; uT.t/;u!.t//; xm.0/ D xm;0 2 R
18 (7b)

Pz.t/ D l.z.t/; v.t//; z.0/ D z0 2 R
2 (7c)

Pe.t/ D @h
@xm

fm.xm.t/; uT.t/;u!.t// � @p
@�

P�; e.0/ D e0 2 R
4 (7d)

x.t/ 2 X;u.t/ 2 U: (7e)

The path error e leads to tracking of the reference path and its derivative
avoids solutions oscillating around it. The reference behavior term in (7a) allows
us to specify dynamic requirements like a desired velocity along the path and
finally the regulation enforces certain smoothness on the derived state trajectories.
Optimization on a whole path can be very computational extensive. In order to limit
the computation time we thus apply a receding horizon approach with prediction
horizon T, i.e. for each point in time tk D ık; k 2 N we solve (7) over the horizon
Œtk; tk C T�.

3 Implementation and Computational Results

The path optimization described in the previous section has been carried out
with the help of the open-source project ACADO Toolkit [8]. An advantage of
this project is what the authors refer to as code generation. A piece of self-
contained code is generated based on the mathematical problem formulation. This
code contains an efficient implementation of the optimization problem based on
a tailored discretization. This code can then either be used separately, interfacing
with MATLAB or directly integrated into another piece of software for the desired
application.
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The optimization is performed using a direct multiple shooting approach [12].
The length of the prediction horizon T is chosen taking the computation time and
a minimal stopping distance into account. The minimal stopping distance can be
transferred into a minimal prediction horizon using the velocity maximally allowed
and the deceleration limits which are implemented in the flight control system.

The prediction horizon is subdivided into equal shooting intervals. The solution
of the differential equations over these multiple-shooting intervals is normally per-
formed using adaptive step size integration algorithms. Using adaptive integrators
has the advantage that the integration grid does not have to be specified a priori.
However, it comes at the cost of non-deterministic discretization. This is why in
[8] the use of fixed-step size integrators is proposed. The integration algorithm
and its step-size has to be determined a priori, e.g. heuristically. By doing so, it is
possible to tailor a discretization that is deterministic in calculation time and allows
the generation of efficient code exploiting aspects like static memory allocation.

By these means, a nonlinear program (NLP) is formulated for each shift of the
prediction horizon that, if feasible, directly solves the optimization problem. The
NLP is solved in an iterative process known as sequential quadratic programming
(SQP). In each sequential step a quadratic approximation of the cost function is
created as well as affine approximations of the constraints thus creating a quadratic
program (QP). There exist powerful methods to solve QP. Here, the qpOASES
Package [6] is used for that purpose. Using the solution of the QP, the original
NLP is approximated again and this process is repeated until a certain residual of
the KKT-conditions is sufficiently small. A comprehensive tutorial on this process
can be found in [4].

At the beginning of the path an initial guess is used, which corresponds to
the hover states of the helicopter. These conditions can be determined by trim
calculations [10] or simulation experiments. Using this initial guess, the first NLP is
solved over the prediction horizon T D 2:5 s. Each prediction horizon is subdivided
into 25 shooting intervals, of which each is solved using an implicit Runge-Kutta
integrator of second order with three discretization steps. The number of SQP
formulations that are required to achieve residuals of the KKT-conditions that we
define to be less than 10�4 are referred to as SQP iterations in the following. Each
SQP iteration requires the solution of a QP that again is solved iteratively and is
called QP iterations in the following. After convergence, the inputs on the first
shooting interval is used for the final solution trajectory. The remaining intervals
serve as initial guess after shifting the prediction horizon by one shooting interval.

The path shown in Fig. 3 shall serve as an example. It is a clover leaf with a
height profile, which is generated using

rp D
0

@
Or cos

�
3� � 3

2
�
�

cos.�/
Or cos

�
3� � 3

2
�
�

sin.�/
Oh sin.4�/

1

A ; Or D 25m; Oh D 3m; (8)
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Fig. 3 Example path: clover leaf with sinusoidal height profile. The arrows indicate the start and
direction of flight, while the left shows the top-view and right the height over north direction

Fig. 4 Calculation characteristics of the example path

where Or is the clover leaf’s radius and Oh the amplitude of the height profile. The
fourth component of the path, the azimuth, has been defined such that the helicopter
is always oriented tangential to the movement resulting in flight without sideslip
angle in the wind-free case.

Figure 4 shows the computation characteristics of the optimization; correspond-
ing input and state trajectories can be found in [3] for similar paths. The upper
left plot presents the required computation time over the timeline of the solution
trajectory. The plot shows how long it takes to compute one NLP that is to
optimize once over the prediction horizon. Additionally, the computation time of
the preparation is shown, which contains the discretization and the setup of the QP
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Problem. The feedback time refers to the time needed to solve the QP. The lower left
plot depicts how many QP approximations are necessary in total to solve each NLP.
The lower right plot shows the number of iterations necessary to solve a certain QP,
which is the only graph not having the trajectory time as abscissa. As for each NLP
multiple QP have to be solved the number of iterations for each SQP step are shown.

From the achieved KKT values (upper right plot) it appears that the formulated
problem is always feasible since the maximum value allowed is never exceeded.
The desired velocity was set to be 8 m/s resulting in a duration of less than
40 s flight time. The overall computation on a standard desktop computer without
parallelization takes around 10 s. This alone is a good result, as it means that the
optimization over the complete path takes less than a third of the time it takes to
fly it.

There are several regions of higher computational burden that can be seen in
the of the upper left plot. These increase in computational cost is caused by an
increased active set of constraints. Most of these regions are significantly influenced
by the number of SQP iteration. However, one region is created by the QP iterations
alone. The discretization of the problem thus gives a lower bound on the needed
computation time, which is in this case around 0.02 s for an prediction horizon of
2.5 s. Nevertheless, the solution of the QP problems has significant impact on the
overall computational burden as well and lies around the same order of magnitude.

4 Conclusion

The proposed approach is well capable to tackle the problem of path following
for unmanned helicopters where an approximation of the closed-loop dynamics is
available. It is shown that trajectories can be generated faster than it would take to
fly them. This fact makes the presented approach very powerful as a great variety
of paths and reference variations can be solved in reasonable time. Applications can
be mission planning purposes or generation of controller inputs that can be stored
in a maneuver database. However, an upper bound of the time needed for prediction
is not guaranteed. Future work will thus investigate possibilities to enable any-time
capability which would render the approach also applicable for online purposes. The
results of this paper show that an adaption has to consider both, the SQP iterations
and QP iterations as both have significant impact on the computation time.
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Model Predictive Control of Residential Energy
Systems Using Energy Storage and Controllable
Loads

Philipp Braun, Lars Grüne, Christopher M. Kellett, Steven R. Weller,
and Karl Worthmann

Abstract Local energy storage and smart energy scheduling can be used to flatten
energy profiles with undesirable peaks. Extending a recently developed model
to allow controllable loads, we present Centralized and Decentralized Model
Predictive Control algorithms to reduce these peaks. Numerical results show that
the additional degree of freedom leads to improved performance.

Keywords Centralized model predictive control • Decentralized model predictive
control • Model predictive control

1 Introduction

Widespread uptake of local electricity generation technologies such as solar photo-
voltaics and wind turbines are leading to undesirable voltage swings in electricity
distribution networks. Large variations in the grid profile, resulting from periods
of high local energy generation followed by periods of high power demand require
significant network infrastructure and can lead to a degradation of power quality and
even outages. In response to these challenges local energy storage is increasingly
considered to reduce the peak demand [4, 5]. Additionally, a recent study [1]
suggests that up to 60 % of the consumption of a household, in the form of
appliances such as air conditioners and refrigerators, is elastic or schedulable.
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Therefore, an alternate, but complementary, approach to the use of energy storage
devices to reduce the grid variations involves energy consumption scheduling [3, 7].

We consider a small, neighborhood-level, electricity network consisting of
several residences. Each residence comprises a Residential Energy System (RES),
consisting of a residential load, a local energy storage element, and solar photo-
voltaic panels. Each RES is connected to the wider electricity network. For the
sake of simplicity, we refer to the storage element as a battery though fuel cells
also satisfy our proposed energy storage model and constraints. The important
contribution with respect to our previous work [8] is the extension of the model
to handle controllable or elastic loads. While the extension of the model is trivial,
the resulting constraints are not obvious.

The paper is organized as follows. The extended model is introduced in Sect. 2
together with two performance metrics. Section 3 introduces two Model Predictive
Control algorithms and shows how to incorporate controllable loads in a receding
horizon algorithm. The paper concludes with numerical results in Sect. 4.

2 The Residential Energy System

Let I 2 N be the number of RESs connected in the local area under consideration.
A simple model of the RES of user i 2 f1; : : : ;I g is:

xi.k C 1/ D xi.k/C Tui1 .k/;
zi.k/ D wi.k/C ui1 .k/C ui2 .k/

(1)

where xi is the state of charge of the battery in kWh, ui1 is the battery
charge/discharge rate in kW, ui2 is the controllable load in kW, wi is the static
load minus the local generation in kW, and zi is the power supplied by/to the grid in
kW. Here, T represents the length of the sampling interval in hours; e.g., T D 0:5

corresponds to 30min. The RES network is then defined by the following discrete-
time system

x.k C 1/ D f .x.k/; u.k//; (2)

z.k/ D h.u.k/;w.k// (3)

where x;w 2 R
I , u 2 R

2I , and the definitions of f and h are obvious from (1). We
assume constraints on the battery capacity and charge/discharge rates are given by
Ci; ui 2 R>0 and ui 2 R<0 so that for each RESs i, i 2 f1; : : : ;I g:

0 � xi.k/ � Ci and ui1
� ui1 .k/ � ui1 8k 2 N0: (4)

Note that this model adequately captures elements of fuel cells as energy storage
devices since the conversion of electricity to hydrogen, and vice versa, is rate-limited
and fuel cells have a fixed storage capacity.
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We assume that the load can be split into two parts: controllable and static load.
The static load is included in w. The controllable loads fwc.k/gk2N � R

I must
be scheduled during a certain time window. More precisely wci.k C N � 1/ can be
scheduled during the time interval from maxf0; kg to k C N � 1 for a given N 2 N.
This leads to the time-dependent constraints

kX

jD0
wci. j/�

k�1X

jD0
ui2 . j/ � ui2.k/ �

kCN�1X

jD0
wci . j/�

k�1X

jD0
ui2 . j/ 8k 2 N0 (5)

for each RES i 2 f1; : : : ;I g. Observe that at time k, ui2. j/ is fixed for all j < k,
rather than a control variable, since it is a control action that was already applied.
We introduce upper and lower bounds on ui2 reflecting the fact that only a certain
amount of the controllable load can be scheduled in one time step, i.e., for each RES
i, i 2 f1; : : : ;I g, and given wci

; wci 2 R,

wci
� ui2 .k/ � wci 8k 2 N0: (6)

We assume that the wci
; wci are chosen such that conditions (5) and (6) can be

simultaneously satisfied.
Our goal is to flatten the performance output z. We introduce two relevant

performance metrics. The average power demand at time k defined as ˘.k/ WD
1
I

PI
iD1 zi.k/ and let N denote the simulation length in number of samples. The

performance metric of peak-to-peak (PTP) variation of the average demand of all
RESs is given by

�

max
k2f0;:::;N g

˘.k/

�

�
�

min
k2f0;:::;N g

˘.k/

�

: (PTP)

The second performance metric is the root-mean-square (RMS) deviation from the
average; i.e., the average‡ WD 1

N I

PN �1
kD0

PI
iD1.wi.k/Cwci.k// is calculated and

the respective deviations are quadratically penalized:

v
u
u
t 1

N

N �1X

kD0
.˘.k/ � ‡/2: (RMS)

3 Model Predictive Control Approaches

We present two Model Predictive Control (MPC) algorithms for the control of a
network of RESs. The first approach is a Centralized MPC algorithm. This scheme
requires full communication of all relevant variables for the entire network as well
as a known model of the network. The second approach is a Decentralized MPC
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approach where each RES implements its own local MPC controller. This requires
no communication or cooperation between RESs. Both schemes use a receding
horizon controller.

MPC iteratively minimizes an optimization criterion with respect to predicted
trajectories and implements the first part of the resulting optimal control sequence
until the next optimization is performed (see, e.g., [6] or [2]). We propose such a
predictive controller for (1). In order to do this, we assume that we have predictions
of the residential load and generation some time into the future that is coincident
with the horizon of the predictive controller. In other words, given a prediction
horizon N 2 N, we assume knowledge of wi. j/; wci. j/ for all j 2 fk; : : : ; k CN �1g,
where k 2 N0 is the current time.

Before defining the cost function for the MPC approaches, we rewrite the
constraints (5) in a receding horizon fashion. The constraints on ui2 . j/ in the
prediction horizon are captured by

�
q
i .k/ WD

kCqX

jD0
wci. j/�

k�1X

jD0
ui2 . j/ �

kCqX

jDk

ui2 . j/ (7a)

�
q
i .k/ WD

kCminfqCN;Ng�1X

jD0
wci. j/�

k�1X

jD0
ui2 . j/ �

kCqX

jDk

ui2 . j/ (7b)

for q 2 f0; : : : ;N � 1g and i 2 f1; : : : ;I g. The term minfq C N;Ng reflects that
we predict only N steps ahead and therefore only controllable load with a deadline
during the prediction horizon is considered. Observe that the bounds can be easily
updated by �q

i .k C 1/ D �
q
i .k/C wci.k C q C 1/� ui2 .k/ and�q

i .k C 1/ D �
q
i .k/C

wci.k C minfq C N;Ng/ � ui2 .k/.

3.1 Centralized Model Predictive Control

Define the predicted average power usage for the ith RES as

#i.k/ WD 1

N

 

�0i .k/ � wci.k/C
kCN�1X

jDk

.wi. j/C wci. j//

!

: (8)

To implement the Centralized MPC algorithm, we compute the overall average on
the prediction horizon by N#.k/ WD 1

I

PI
iD1 #i.k/ and then minimize the joint cost

function

min
Ou.�/

kCN�1X

jDk

� N#.k/� 1

I

IX

iD1
.wi. j/C Oui1 . j/C Oui2 . j//
„ ƒ‚ …

Ozi. j/

�2
(9)
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with respect to the predicted control input Ou.k/; Ou.k C 1/; : : : ; Ou.k C N � 1/ with
Ou.�/ D .Ou1.�/; Ou2.�/; : : : ; OuI .�//T subject to the system dynamics (1), the current
state x.k/ D .x1.k/; : : : ; xI .k//T , and the constraints (4), (6), and (7) for all i 2
f1; : : : ;I g.

Here, and in what follows, we denote predicted controls and outputs in the MPC
algorithm by hats; i.e., for the ith RES at time j the predicted control is Oui. j/ and the
predicted performance output is Ozi. j/.

3.2 Decentralized Model Predictive Control

The Centralized MPC approach presented above requires a significant amount of
communication overhead. A further drawback of the Centralized MPC approach is
that the central entity requires full knowledge of the network model, in particular
(4), (6), and (7) for each i 2 f1; : : : ;I g. Therefore, any change in the network
such as the addition of new generation or storage resources requires an update of
the central model. As a remedy we propose a decentralized control approach that
alleviates the communication and computation difficulties.

A straightforward option in order to flatten the energy profile of the ith RES is
to penalize deviations from its (anticipated) average usage defined in (8). With a
quadratic cost function, this leads to the finite-horizon optimal control problem

min
Oui.�/

kCN�1X

jDk

.#i.k/ � .wi. j/C Oui1 . j/C Oui2 . j//
„ ƒ‚ …

Ozi. j/

/2

subject to the system dynamics (1), the current state of charge xi.k/ of the energy
storage, the constraints (4), (6), and (7) corresponding to the controllable loads.
With each RES solving its own optimization problem with no reference to the rest
of the network, the aforementioned communication and computation difficulties of
Centralized MPC are not present in the Decentralized MPC algorithm.

4 Numerical Results

In this section, we compare the discussed controllers and the impact of controllable
load in the model by considering the load and generation profiles for a group of
20 customers drawn from the Australian electricity distribution company Ausgrid.
The data from these customers was collected as part of the Smart Grid, Smart City
project. We use 2 weeks starting on 1 March 2011. As already mentioned in the
introduction, motivated by Barker et al. [1], we split the given load profile into
60 % static load and 40 % controllable load. Figure 1 visualizes the impact of the
energy storage and the controllable loads on the uncontrolled grid profile. Table 1
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Fig. 1 Australian data for 20 systems. Flattened aggregated grid profile using an energy storage
and controllable loads with N D 12. (a) Centralized MPC: aggregated grid (left) and battery (right)
profiles. (b) Decentralized MPC: aggregated grid (left) and battery (right) profiles

Table 1 Australian data: Peak-to-peak variation and RMS deviation from the average for 20 RESs
and a simulation length of 2 weeks. Results without Controllable Load (C.L.) and for differing
controllable load horizons N

Without C. L. N D 12 N D 24 N D 36

PTP RMS PTP RMS PTP RMS PTP RMS

No battery storage 1:5621 0:2506

Decentralized MPC 1:0986 0:1663 0:6050 0:0845 0:5555 0:0777 0:5555 0:0777

Centralized MPC 0:9621 0:0952 0:2401 0:0609 0:2915 0:0594 0:2915 0:0594

summarizes the results with respect to the introduced metrics. All simulations use
the prediction horizon N D 48; T D 0:5 and initial battery state xi D 0:5 for
all i 2 f1; : : : ;I g. For simplicity we assume that all systems have the same box
constraints which for the simulations means �ui D ui D 0:3, Ci D 2, wci

D 0 and
wci D 1:25 for all i 2 f1; : : : ;I g.
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The addition of controllable loads yields the expected improvement in the defined
performance metrics. Additionally Centralized MPC outperforms Decentralized
MPC due to the lack of global coordination in the decentralized setting. N seems
to play a minor role (assuming that N is big enough to call the loads controllable).
In the centralized setting we obtain the smallest PTP variation for N D 12, an
observation that requires further investigation.

5 Conclusion

In this paper we have extended our earlier Residential Energy System (RES) model
introduced in [8] by adding controllable loads. Numerically we have shown that the
additional degree of freedom leads to the expected improvements with respect to the
grid profile.
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Particle Swarm Optimization Applied
to Hexarotor Flight Dynamics

Valeria Artale, Cristina L.R. Milazzo, Calogero Orlando,
and Angela Ricciardello

Abstract In this work, results obtained by the flight control simulations of a pro-
totype of hexarotor Unmanned Aerial Vehicle (UAV) are shown. The mathematical
model and control of the hexacopter airframe are presented. To stabilize the entire
system, Linear Quadratic Regulator (LQR) control is used in such a way to set both
Proportional Derivative (PD) and Proportional Integral Derivative (PID) controls.
Particle Swarm Optimization has been used to set the optimal coefficient matrices
of the LQR control algorithm. The simulations are performed to show how LQR
tuned PD and PID controllers lead to zero the error of the position along gravity
acceleration direction, stop the rotation of UAV around body axes and stabilize
the hexarotor. Moreover, the obtained LQR-PD and LQR-PID controllers have
been tested by comparing the response to impulse disturbances of the nonlinear
dynamical system with the response of the linearized one.

Keywords Flight control • Linear quadratic regulator control • Particle swarm
optimization

1 Introduction

In this work a prototype of Unmanned Aerial Vehicle (UAV) is considered in
agreement with the design requirements of a Project supported by the PO. FESR
2007/2013 whose objective is the realization of a multirotor system for the
environmental survey. The peculiarity of UAV consists in its versatility and therefore
in its use in missions with different aims, from surveying to the rescue, from
inspection in inaccessible areas to emergency action [1]. Nevertheless of the
configuration, the UAV should be equipped with a robust control system in order
to autonomously manage its flight and to achieve and steadily maintain a desired
position [2, 3]. With this aim two control algorithms are investigated in this work,
namely the Proportional-Derivative (PD) and the Proportional-Integral-Derivative
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(PID) controls. Both control schemes are written as Linear Quadratic Regulator
(LQR) problems by properly defining the state space vector of the linearized model.
Particle Swarm Optimization (PSO) is used to compute the optimal coefficients of
the LQR problem for the chosen objective function. Results are presented for the
linear and the non-linear models stabilized by means of the both the LQR-PD and
the LQR-PID controllers.

2 Hexarotor Dynamics

The hexacopter considered is assumed as a rigid body and it is equipped with six
fixed pitch propellers; the structure of the UAV is symmetrical with respect to the
body reference frame. In this formulation gyroscopic moments as well as aerody-
namic drag forces are not taken into account. The equations of the motion of the
hexarotor are deduced from Newton-Euler equations [4] which allow to decompose
the motion into translational and rotational components. Let .0; XE; YE; ZE/ be the
reference frame fixed to the inertial space and .G; XB; YB; ZB/ be the body frame
fixed to the hexacopter and centered in the body center of mass G. Both ZE and
ZB axes point downward while �; � and  are the Euler angles that determine the
orientation of the body frame with respect to the inertial one. As the translational
kinematic concerns, the total force acting on the aircraft takes into account the
gravitational action mg along the ZE direction, where m is the constant mass and
g the gravitational acceleration, and the total thrust T along the ZB axis; on the
other hand, the external torques acting on the drone are 
�; 
� and 
 and are
generated by the six propellers. The non-linear model that describes the dynamics
of the hexacopter is

2

4

RXE
RYE
RZE

3

5 D
2

4
T .cos. / sin.�/ cos.�/C sin. / sin.�// =m
T .sin. / sin.�/ cos.�/ � cos. / sin.�// =m

g � T cos.�/ cos.�/=m

3

5 (1)

2

4
Pp
Pq
Pr

3

5 D
2

4
.Iyy � Izz/ q r=Ixx

.Izz � Ixx/ p r=Iyy

.Ixx � Iyy/ p q=Izz

3

5C
2

4

�=Ixx


�=Iyy


 =Izz

3

5 (2)

in which Ixx; Iyy; Izz are the inertial moments with respect to XB; YB and ZB. In
Eq. (2) p; q and r are the angular velocity components of the hexarotor about the
body axes and are related [5] to the Euler angle velocities as

2

4
p
q
r

3

5 D
2

4
1 0 � sin �
0 cos� cos � cos�
0 � sin � cos � cos�

3

5

2

4

P�
P�
P 

3
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3 Hexarotor Control

In this section the LQR-PD and LQR-PID controller are presented, then PSO
algorithm is briefly introduced to compute the LQR coefficients on the basis of
the chosen objective function. The LQR is a feedback control technique that can be
applied to linear system of the form

PX D AX C BU (3)

where X and U are the state and input vectors, respectively, while A and B are the
dynamic and input matrices. The LQR algorithm requires that the optimal control
input U D �KX should be computed in such a way to minimize a chosen cost fun-
ction J defined as

J D lim
t!C1

Z t

0

�
XT Q X C UT R U

�
(4)

in which Q and R are positive definite matrices, set by the user to amplify or
reduce the influence of the entries of the X and U vectors. The gain matrix K is
obtained by solving the associated Lurie-Riccati equation [6, 7] which depends on
A; B; Q and R. On the other hand, both of PD and PID control techniques are
based on the minimization of the error value e.t/ D xd.t/ � x.t/, relative to a
specific variable to be controlled x.t/ with respect to a desired target xd.t/ [8, 9].
The PD control assumes that control signal u.t/ is the sum of a term proportional
to e.t/, that accounts for the current error, plus a term proportional to the error time
derivative Pe.t/, which accounts for a prediction of future errors. In the PID case a
term proportional to the integral of the error is also added to the control input and
accounts for the accumulation of past errors. Both of PD and PID controller can be
written as a state feedback LQR problem. This is obtained by suitably defining the
state space problem Eq. (3) representing Eq. (1) linearized around the equilibrium
point. In this work the equilibrium point is the hovering configuration and represents
the desired state. More particularly, let x D Œz � �  � be the vector that collects the
heave, roll, pitch and yaw deviation from the hovering configuration to be zeroed,
in the LQR-PD control problem the state vector is defined as X D Œx Px�T while in
the PID-LQR case it writes as X D 	R

xdt x Px
T
. The input vector is defined as

U D 	
T 
� 
� 
 


T
independently of LQR-PD or LQR-PID control. The dynamic

and input matrices A and B are defined accordingly to the state vector X but are not
reported here for the sake of conciseness. It follows that the optimal control vector
for the LQR-PD and for the LQR-PID specify as

ULQR�PD D �KX D � 	KP KD



X D �KPx .t/ � KD Px .t/

ULQR�PID D �KX D � 	KI KP KD



X D �KPx .t/ � KI

R t
0

x .Qt/ dQt � KD Px .t/
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where KP, KI and KD are 4 � 4 diagonal matrices whose entries represent the
proportional, integral and derivative gains associated to the components of the vector
x, i.e. to the heave, roll, pitch and yaw deviation from hovering configuration.
The last point to be addressed is the computation of the optimal Q and R
coefficients of the LQR control problem. This is achieved by using the Particle
Swarm Optimization technique, an evolutionary computational scheme based on
simplified social model [10]. Each individual (Particle) has a number of qualities,
called position variables, and represents an n-dimensional vector in problem space,
i.e. a candidate problem solution. The position of a set of particles (Swarm) is
initialized randomly at first. Then the performance of each particle is evaluated on
the basis of the objective function. At successive steps particles tend to emulate
the success of neighboring individuals, i.e. particles accelerate toward the objective.
More in details, in this work both of the matrices, namely Q and R, are assumed to
be diagonal and their entries are the position variables of particles. This implies that
the number of particles’ qualities is n D 12 for the LQR-PD problem; otherwise, the
number of variables of each particle is n D 16 for the LQR-PID case. In particular,
being hi; i D 1 : : : n the particle’s variables, the Q and R matrices write as

Q D diag fh1 � � � hn�4g I R D diag fhn�3 � � � hng : (5)

Each position component of a particle is initialized randomly at the iteration step
� D 1 and is then updated as

hi.�C 1/ D hi.�/C dhi.�C 1/ (6)

where dhi represents the velocity of the i-th particle’s variable on a unitary step
increment and is computed as [10]

dhi.�C 1/ D �dhi.�/C c1r1.hib � hi.�//C c2r2.hb � hi.�//; (7)

in which � is a coefficient called inertia weight, c1 and c2 are the acceleration
coefficients, called cognitive and social constant, respectively, r1; r2 2 Œ0; 1�

randomly. In Eq. (7), hpb represents the previous personal best position of a particle
while hgb is the global best position of the entire swarm. In details, the inertia weight
varies as

� D �max � �max � �min

�Max
� (8)

with �min and �max the minimum and maximum value that � might assume and
�Max the maximum number of iterations.
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4 Numerical Results

In this section results obtained by using PSO-LQR-PD and PSO-LQR-PID methods
are discussed and, in particular, they have been tested and compared in both linear
and non linear model. As presented in previous section, the goal of this paper is
to control z; �; �;  variables. At this aim, in the implementation of the PSO
algorithm, the time settling of controlled variables, denoted by tsz; ts�; ts� ; ts ,
are minimized. With other words, the objective function has been chosen as

fOBJ D tsz C ts� C ts� C ts : (9)

Thus, the control of the overshoot of variables as well as the control of input actions
are neglected in this formulation. Nevertheless, in the non linear model the total
thrust and the roll, pitch and yaw moments are adjusted by means of saturation
function. This guaranties that values of acting forces could be actually achieved by
the propulsive system. The parameters for the PSO problem are: number of swarm
set to 1; number of particles set to 50; cognitive constant c1 D 2:05; social constant
c2 D 4:05; minimum of inertia weight �min D 0:05; maximum of the inertia weight
�max D 0:995; maximum number of iterations �Max D 50. As discussed in previous
section, the PSO algorithm has been used in order to estimate the Q and R matrices
of the LQR technique and then the parameters of PD and PID regulators. The values
obtained by simulations are reported in Table 1. In order to validate the presented
method, a test with the presence of a disturbance moving the drone far from its
hovering position has been carried out with the scope of evaluating the time settling
of each controlled variables. The disturbance is an impulse function characterized by
a unitary amplitude and a pulse width 0:2 s that influences the hexarotor altitude and
attitude rates, i.e. Pz; P�; P�; P . The trend of heave, roll, pitch and yaw motion versus
time is depicted in Fig. 1, as linearised model concerns, and in Fig. 2 the non linear
case. In each figure the LQR-PD regulator (continuous) and LQR-PID regulator
(dashed) can be distinguished. Linear model time histories, see Fig. 1, show that
overshoot of variables controlled via the LQR-PID is less than that obtained using
the LQR-PD scheme. This behavior is confirmed by the non linear results shown
in Fig. 2. Moreover, it is worth noting that linear and non linear results are mostly

Table 1 Parameters of LQR-PD and LQR-PID control obtained by means of PSO algorithm

– i Ki;P Ki;I Ki;D

LQR-PD z �70711 – �1518:1
� 70711 – 365:73

� 70711 – 365:73

 70711 – 491:11

– i Ki;P Ki;I Ki;D

LQR-PID z �105 �1 �1805:3
� 105 1 434:93

� 105 1 434:93

 105 1 584:03
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Fig. 1 Linear model time history: (a) heave motion; (b) roll motion; (c) pitch motion; (d) yaw
motion

comparable for the attitude time history, however it stems from Fig. 2a that the non
linear heave transient behaviour is one order of magnitude lower than the linear
one, see Fig. 2a. This appears to be a consequence of the fact that in the linear
model the total thrust increases unbounded while the saturation function in the non
linear model bounds the total thrust in Œ�180; 0�N and the roll, pitch, yaw moment
in Œ�60; 60�N/m. Furthermore, for sake of clarity, the time settling of depicted
quantities are summarized in Table 2. This latter shows that in the linear case the
LQR-PID method minimizes the objective function faster than the LQR-PD, both
in linear and non linear model. Here again, it can be noticed that the time settling
associated with altitude decreases of one order of magnitude from linear model to
non linear one, whether or not LQR-PD or LQR-PID are taken into account. It also
appears to be a consequence of the reduction of the z overshoot due to the bounds
of total thrust T.
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Fig. 2 Non-Linear model time history: (a) heave motion; (b) roll motion; (c) pitch motion; (d)
yaw motion

Table 2 Time settling of controlled variables

Linear model Non linear model

PD z 0.1216 0.049

� 0.0376 0.0358

� 0.0376 0.0358

 0.0466 0.0695

Linear model Non linear model

PID z 0.1041 0.0434

� 0.029 0.04

� 0.029 0.04

 0.0418 0.066

5 Conclusions

In this paper the PSO algorithm has been introduced in order to estimate the
parameters of LQR-PD and LQR-PID regulators with the aim of stabilizing the
altitude and attitude of a hexacopter around its hovering (equilibrium) configuration,
by minimizing the time settling of controlled variables. The different approaches
applied on both linearised and non linear dynamical model are able to control the
hexacopter dynamics also in presence of the considered disturbances.
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Multiobjective Optimal Control Methods
for the Development of an Intelligent Cruise
Control

Michael Dellnitz, Julian Eckstein, Kathrin Flaßkamp, Patrick Friedel,
Christian Horenkamp, Ulrich Köhler, Sina Ober-Blöbaum, Sebastian Peitz,
and Sebastian Tiemeyer

Abstract During the last years, alternative drive technologies, for example electri-
cally powered vehicles (EV), have gained more and more attention, mainly caused
by an increasing awareness of the impact of CO2 emissions on climate change and
by the limitation of fossil fuels. However, these technologies currently come with
new challenges due to limited lithium ion battery storage density and high battery
costs which lead to a considerably reduced range in comparison to conventional
internal combustion engine powered vehicles. For this reason, it is desirable to
increase the vehicle range without enlarging the battery. When the route and the
road slope are known in advance, it is possible to vary the vehicles velocity within
certain limits in order to reduce the overall drivetrain energy consumption. This
may either result in an increased range or, alternatively, in larger energy reserves for
comfort functions such as air conditioning.
In this presentation, we formulate the challenge of range extension as a multi-
objective optimal control problem. We then apply different numerical methods to
calculate the so-called Pareto set of optimal compromises for the drivetrain power
profile with respect to the two concurrent objectives battery state of charge and mean
velocity. In order to numerically solve the optimal control problem by means of a
direct method, a time discretization of the drivetrain power profile is necessary. In
combination with a vehicle dynamics simulation model, the optimal control problem
is transformed into a high dimensional nonlinear optimization problem. For the
approximation of the Pareto set, two different optimization algorithms implemented
in the software package GAIO are used. The first one yields a global optimal
solution by applying a set-oriented subdivision technique to parameter space. By
construction, this technique is limited to coarse discretizations of the drivetrain
power profile. In contrast, the second technique, which is based on an image space
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continuation method, is more suitable when the number of parameters is large while
the number of objectives is less than five. We compare the solutions of the two
algorithms and study the influence of different discretizations on the quality of the
solutions.
A MATLAB/Simulink model is used to describe the dynamics of an EV. It is based
on a drivetrain efficiency map and considers vehicle properties such as rolling
friction and air drag, as well as environmental conditions like slope and ambient
temperature. The vehicle model takes into account the traction battery too, enabling
an exact prediction of the batterys response to power requests of drivetrain and
auxiliary loads, including state of charge.

Keywords Cruise control • Multiobjective optimal control • Pareto set

1 Introduction

Electrically powered vehicles (EV) have gained more and more attention during
the last years due to an increasing awareness of the impact of CO2 emissions on
climate change and the limitation of fossil fuels. New research challenges arise
due to limited battery storage densities, high battery costs and a considerably
reduced range in comparison to conventionally powered vehicles. Therefore, range
increasing driving strategies play an important role in electromobility (cf. e.g. [8]).

Different control and optimization strategies have been suggested for vehicle
applications in the past, see [16] for an overview [7, 9] for model predictive control
for trucks [5] for an application of dynamic programming [13] for indirect or [4] for
direct optimal control methods.

In this paper, an “intelligent cruise control” is developed by taking into account
topographic data of a given travel route. We formulate the challenge of range
extension as a multiobjective optimal control problem, transforming it into a
multiobjective optimization problem by using a direct approach. We then use
numerical methods to compute the so-called Pareto set of optimal compromises
between the concurrent objectives “maximize battery charge” and “maximize driven
distance”. Pareto optimal accelerator pedal position profiles of the EV are computed
by using two different multiobjective optimization methods.

The paper is organized as follows: In Sect. 2, the mathematical problem formu-
lation and solution methods for multiobjective optimal control problems are given.
The EV model and computational results are presented in Sect. 3 followed by a
conclusion in Sect. 4.
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2 Multiobjective Optimal Control

Searching for a control strategy of an EV which maximizes the driving distance
is an example of an optimal control problem. In general, the technical system is
represented by a model, typically of the form Px.t/ D f .x.t/; u.t//. Further, the
objectives subject to optimization have to be modeled. By convention, we always
consider minimization problems. Typically, objective functionals are of the form

J.x; u/ D
Z T

0

C.x; u/dt C �.x.T// (1)

with running costs C.�; �/ depending on the system’s states x and controls u and
a final cost �.�/ depending on the final state x.T/. Finally, there might be different
kinds of constraints, e.g. boundary conditions g.x.0/; x.T// D 0 and box constraints

bl �
�

x.t/
u.t/

�

� bu for all t 2 Œ0;T�.
In many applications, there arise several objective functionals that have to

be minimized simultaneously. This leads to vector-valued objective functionals,
denoted by J.x; u/ with J D .J1; : : : ; Jk/, k � 1 and, for all i 2 f1; : : : ; kg, Ji as
in (1). Altogether, we obtain a multiobjective optimal control problem (MOCP)

min
u

J.x; u/ w.r.t. Px D f .x; u/; g.x.0/; x.T// D 0; bl �
�

x.t/
u.t/

�

� bu 8t 2 Œ0;T�:

The minimization of the vector valued functional J.x; u/ is understood w.r.t. the
partial order <p on R

k, defined as follows: Let v;w 2 R
k, then the vector v is

less than w (v <p w), if vi < wi for all i 2 f1; : : : ; kg. The relation �p is defined
analogously. By this relation, we can introduce the concept of dominance and Pareto
optimality (cf. [6], for instance).

Definition 1 (Dominated and Pareto Optimal Solutions) Let .x; u/ and .x�; u�/
be admissible points, i.e. they satisfy the restrictions of the MOCP.

a) The point .x; u/ is dominated by the point .x�; u�/ w.r.t. J.x; u/, if J.x�; u�/ �p

J.x; u/ and J.x; u/ ¤ J.x�; u�/, otherwise .x; u/ is non-dominated by .x�; u�/.
b) The point .x�; u�/ is called Pareto optimal if there exists no admissible .x; u/

which dominates .x�; u�/.
c) The set of all Pareto optimal points .x�; u�/ is called the Pareto set and its image

under J the Pareto front.

For classical, i.e. single-objective optimal control problems, direct methods have
shown to be well suitable in many applications (cf. [1], for instance). Such methods
transform the control problem into a high dimensional optimization problem by
a time discretization. For solving MOCPs, multiobjective optimization techniques
have to be applied to the discretized problem, cf. e.g. [10, 12, 15]. A number of
methods exist for the computation of single Pareto points (cf. [6] for an overview).
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To approximate the whole Pareto front, methods such as evolutionary algorithms
(cf. [2]), set-oriented techniques, or path following methods (cf. [3, 14, 15] and the
short overview given below) can be applied.

To transform the MOCP into an optimization problem with multiple objectives,
we introduce a discrete time grid t D ft0 D 0; t1; : : : ; tN D Tg. The control u is
approximated by a discrete control ud D fukgN�1

kD0 with uk being an approximation
of u on the interval Œtk; tkC1� for k D 0; : : : ;N � 1. A discrete state trajectory
xd D fxkgN

kD0 with xk 
 x.tk/ can be obtained by a numerical integration scheme,
xkC1 D ˚

tkC1
tk .xk; uk/ with x0 D x.0/ and for k D 0; : : : ;N � 1. Together with

an approximation of all objective functionals on the discrete time grid, we obtain a
multiobjective optimization problem

min
ud

Jd.xd; ud/ D
N�1X

kD0
Cd.xk; uk/C �d.xN/; (2)

w.r.t. xkC1 D ˚
tkC1
tk .xk; uk/;8 k < N; gd.x0; xN/ D 0; bl �

�
xk

uk

�

� bu8 k � N:

(3)

2.1 Set-Oriented Subdivision

The aim of the subdivision method is to approximate the Pareto set by a successive
refinement and selection of boxes, cf. [3, 15]. The procedure starts with a box
that covers the admissible set of optimization parameters. Then, subdivision and
selection steps are applied alternatingly. In a subdivision step, all active boxes
are subdivided into smaller boxes. For the selection, a number of test points are
chosen in all boxes and the objective functions are evaluated. Then, all boxes not
containing any non-dominated test points are deleted and one proceeds with the next
subdivision step (cf. Fig. 1, left). This a gradient-free sampling technique which,
amongst other set-oriented algorithms, is implemented in the software package
GAIO [3, 15].

2.2 Scalarization by Reference Point Techniques

A discretization with a fine time grid t leads to a high number of optimization
parameters ud D fu0; : : : ; uN�1g in the transformed MOCP (2), (3). In this case,
scalarization techniques have shown to be well suitable, cf. e.g. [10, 14]. More
concretely, we apply a reference point method which defines auxiliary scalar
optimization problems. To this aim, nonadmissible target points P in image space



Multiobjective OC Methods for the Development of an Intelligent Cruise Control 637
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Fig. 1 Left: Subdivision method. Alternatingly, dominated boxes are removed and non-dominated
boxes are subdivided. Right: Image space continuation method. If two points are known (say yi�1

and yi), a target TiC1 is calculated. Then, the scalar minimization problem with initial guess xp
iC1

yields yiC1

are defined, and the distance to the image of the admissible set is minimized,

min
ud

kJd.xd; ud/� Pk w.r.t. constraints as in (3):

As a result, single Pareto points on the boundary of the admissible set can be
found. The target points are defined iteratively by a continuation method in image
space as depicted in Fig. 1 to the right. These points are not necessarily Pareto
optimal. However, dominated points can be easily eliminated by a subsequent non-
dominance test. The auxiliary optimization problems can be efficiently solved by
sequential quadratic programming (SQP) methods (cf. e.g. [1, Sect. 5.4] and the
references therein).

While the set-oriented subdivision method works globally but it is restricted to
moderate dimensions of the parameter space, SQP methods are suitable for high
numbers of optimization parameters.

3 Application to the Electric Vehicle

A Matlab/SIMULINK model is used to describe the EV dynamics. It is based on
a drivetrain efficiency map and considers vehicle properties such as rolling friction
and air drag, as well as environmental conditions like slope and ambient tempera-
ture. The model holds several state variables such as position, velocity and state
of charge. These variables depend on the input variables accelerator pedal position
profile u and the inclination profile ˛. For a more detailed model description, we
refer to [4, 11].

Since we aim to compute the Pareto set for the objectives “final state of charge
SOC.T/” and “driven distance s.T/” with a fixed final time T, we set the vector of
objective functionals (cf. Eq. (1)) to J.x; u/ D �.x.T// D .SOC.T/; s.T//. As an
example scenario we choose a track with a periodic inclination profile superimposed
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by a linear increase:

˛.s/ D 4ı sin
�
360ı

s

2000 m

�
C 1ı

s

2000 m
:

This defines the height profile h. In this way, we ensure that most of the Pareto points
(except for the solutions with very short driven distances) are computed for tracks
with both uphill and downhill sections.

To compute the Pareto set we apply the algorithms presented in Sect. 2. The two
solutions u.t/ D 0 and u.t/ D 100, respectively, correspond to the two endpoints
of the Pareto front, where one objective becomes minimal while the other becomes
maximal. To improve numerical accuracy, these values have been used to normalize
both objectives to the interval Œ0; 1�with the optimum being 0. For the results shown
in the following, the normalization has been reversed. In this case, a maximization
of both objectives is desired.

We start the subdivision algorithm with a box of dimension n (number of
parameters) with the center at 50 and a radius of 50 so that it covers the whole pedal
position profile ui 2 Œ0; 100�; i D 1; : : : ; n. We then apply 4n subdivision steps.
Figure 2 shows the resulting Pareto front for different pre-image dimensions on the
left and one EV simulation with a Pareto optimal pedal position profile and the
resulting velocity profile on the right. As has been observed before (cf. [4]), a high
engine torque on positive slopes but lower torque on negative slopes is beneficial to
the energy consumption.

It is obvious that solutions with a higher pre-image space dimension always have
to be at least as good as the lower dimensional solutions (cf. Fig. 2). Additionally,
the difference between the solutions is largest in the middle section. This is due to a
higher variability in this part while near the ends of the front, the pedal position has
to be close to the maximal or minimal value at all times.

When looking at the Pareto points around SOC.T/ 
 0:745 (as well as SOC 

0:725 for u 2 R

10), one observes a gap which is caused by the EV’s recuperation
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Fig. 2 Left: Pareto front computed by the subdivision algorithm for different pre-image dimen-
sions (boxes represented by their center points). Right: EV simulation with a Pareto optimal pedal
position profile (u 2 R

10, SOC.T/ D 0:6914, s.T/ D 5800m)
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technique. The last point at the low distance part of the Pareto front corresponds to
a stop at the top of a hill. Increasing the pedal position profile only slightly results in
a final position with a negative inclination ˛.s.T//. Since the EV can roll down the
slope and recharge its battery via recuperation, a slight reduction of the objective
SOC.T/ leads to a huge increase of the second objective s.T/ which then results in
a gap in the front. The varying inclination of the Pareto front is a result of the track
slope alternating between positive and negative values.

It should be mentioned that due to the relatively long EV simulation time (
1 s),
the number of testpoints for each box was set to a comparably low value of 30which
may cause boxes to be either eliminated or identified as non-dominated by mistake.
The first case leads to spurious gaps in the Pareto front (cf. e.g. the Pareto front of
u 2 R

10 in Fig. 2 for SOC.T/ 
 0:68) while the second case leads to boxes apart
from the Pareto front.

A comparison of the results of the subdivision and the image space continuation
algorithm (cf. Fig. 3, left) shows good agreement for the case u 2 R

10, indicating
that the image space continuation method also yields good results despite its local
nature. Having shown the continuation algorithm’s applicability, Pareto sets of
higher dimension are computed (cf. Fig. 3, left).

To improve the simulation time and convergence rate, each Pareto point from
a lower pre-image space dimension serves as the initial guess for the next higher
dimensional solution. As can be seen in Fig. 3, the resulting improvements become
smaller quickly. The choice of the pre-image space dimension should be consid-
ered carefully since computation time increases significantly with the number of
optimization variables. This effect is even strengthened by an observed decreasing
convergence rate for high-dimensional cases, presumably caused by inaccuracies in
the numerical differentiation of the EV model required for the SQP method.
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Fig. 3 Left: Pareto front computed by the image space continuation algorithm for different
dimensions of pre-image space. Right: EV simulation with a Pareto optimal pedal position profile
(u 2 R

50, SOC.T/ D 0:6934, s.T/ D 5750m)
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4 Conclusion

In this paper, we apply two MOCP algorithms for the development of an intelligent
cruise control. Pedal position profiles can be chosen as optimal compromises
between energy consumption and travel distance.

For future work, it will be interesting to compute the Pareto set with a constant
travel distance instead of a constant driving time. Moreover, Model Predictive
Control methods can be applied to realize real time optimization.
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Short Description

In recent years, Parameterized Model Order Reduction (PMOR) methods have
attracted a lot of attention from several scientific and industrial communities (e.g.
electrical, chemical and biomedical engineering) as a powerful tool to significantly
speed up analysis and design of complex systems. Several analysis and design tasks,
such as design optimization, sensitivity and variability analysis, require multiple
simulations of the system behavior for multiple values of the design parameters
(e.g. layout features of an electronic system).

Using physics-based solvers (e.g. electromagnetic solvers to solve Maxwell’s
equations and fluid dynamic solvers to solve Navier-Stokes equations) for these
tasks becomes very computationally expensive. PMOR methods are advanced
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modeling and mathematical tools that allow a very significant reduction of the
computational cost of crucial analysis and design tasks, without compromising the
accuracy of the results.

This mini-symposium is focused on PMOR methods for complex multidimen-
sional systems. The talks of this mini-symposium discuss state-of-the-art PMOR
methods in different domains: chemical processes, nonlinear electronic systems,
fluid dynamic systems and delayed differential systems.



Reduced Basis Method for the Stokes Equations
in Decomposable Parametrized Domains Using
Greedy Optimization

Laura Iapichino, Alfio Quarteroni, Gianluigi Rozza, and Stefan Volkwein

Abstract In this paper we present a reduced order method for the solution of
parametrized Stokes equations in domain composed by an arbitrary number of
predefined shapes. The novelty of the proposed approach is the possibility to
use a small set of precomputed bases to solve Stokes equations in very different
computational domains, defined by combining one or more reference geometries.
The selection of the basis functions is performed through an optimization greedy
algorithm.

Keywords Parameterized model order reduction • Reduced basis method •
Stokes equation

1 Introduction

Flow simulations in pipelined channels and several kinds of parametrized configu-
rations have a growing interest in many life sciences and industrial applications.
Applications may be found in the analysis of the blood flow in specific com-
partments of the circulatory system that can be represented as a combination
of few deformed vessels from reference ones, e.g. pipes. We propose a solution
approach that is particularly suitable for the study of internal flows in hierarchical
parametrized geometries. The main motivation is for applications requiring rapid
and reliable numerical simulations of problems in domains involving parametrized
complex geometries. The classical reduced basis (RB) method is very effective to
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address viscous flows equations in parametrized geometries (see, e.g., [10]). An
interesting alternative foresees a combination of RB with a domain decomposition
approach. In this respect, preliminary efforts to reduce the global parametrized
problem to local ones have led to the introduction of the so-called reduced basis
element method to solve the Stokes problem [6], and more recently to the reduced
basis hybrid method [3] and to the static condensation method [7]. In general, we
are interested in defining a method able to maintain the flexibility of dealing with
arbitrary combinations of subdomains and several geometrical deformations of the
latter. A further new contribution to this field is the computation of the reduced basis
functions through an optimization greedy algorithm [11].

2 Problem Setting

The method we present is a model order technique for solving a parametrized Stokes
problem in a domain ˝ defined by an arbitrary non-overlapping union of one or
more predefined smaller geometries. For instance, we consider the geometry �
depicted in the left plot of Fig. 1 representing a stenosis of the longitudinal section
of an artery. This geometry can be interpreted as a two-dimensional model of a
pipe and its deformation defined through the Boundary Displacement Dependent
Transfinite Map T.	/ introduced in [4]. In particular we fix the size of the pipe as
well as the position and the length of the occlusion or the dilatation of the pipe.
We consider D D 4, L D 1, S D 1, C D 2:5, T D 1, H D 1:5. The parameter
vector 	� D .�1; �2/ allows to either “inflate” or “compress" the pipe, where 	�
belongs to a closed and bounded subset D� � R

2. We consider the computational
domain of interest ˝ as a network representing a channel with curved upper and
bottom walls and composed by an arbitrary finite number of stenosed geometries
˝i D T.	i/�, i D 1; : : : ;K, for instance K D 4 in the right plot of Fig. 1. In
this example the network is parametrized through eight parameters, two for each
stenosed subdomain, 	 D .	1I	2I	3I	4/ with 	i D .�i

1; �
i
2/ for i D 1; : : : ; 4.

We impose homogeneous Dirichlet boundary conditions (BC) on both the upper and
bottom walls of the domain, homogeneous Neumann BC on the outflow boundary
(on the left) and non-homogeneous Neumann BC on the inflow boundary of the
channel (on the right). Let us consider the following steady Stokes problem for a
fluid of constant density [8] in the domain˝ � R

2 with mixed boundary conditions

Fig. 1 Stenosis geometry � (left) and geometrical scheme for the curved channel ˝ (right)
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on � D �in [ �out [ �w:

� �u C rp D f in ˝; r � u D 0 in ˝; u D 0 on �w;

� in
n WD �

@u
@n

� pn D 1 on �in; �
out
n WD �

@u
@n

� pn D 0 on �out;
(1)

where u D u.x/ 2 R
2 is the fluid velocity, p D p.x/ the pressure, f D f.x/ 2 R

2 a
force field (e.g. gravity), � > 0 a kinematic viscosity and n D n.x/ 2 R

2 the normal
outward unit vector to the domain boundary; �in and �out represent the inflow and
outflow, respectively, while �w is a boundary-wall. On ˝ we introduce the velocity
space and the pressure space, respectively, as QY D ˚

v 2 .H1.˝//2 W v j�wD 0
�
, QM D

L2.˝/. Now, (1) in weak formulation reads: find .u; p/ 2 QZ D . QY � QM/:

Qa.u; vI	/C Qb.v; p/ D Qf .vI	/; Qb.u; qI	/ D 0 8.v; q/ 2 QZ: (2)

As shown in [6], the continuously differentiable parametric map T.	i/ and its
Jacobian Ji allow the definition of the bilinear and linear forms on the deformed
subdomains, ˝i D T.	i/�, through the evaluation of the corresponding forms in
the reference domain� � R

2:

Qa.v;wI	/ D
KX

iD1
�

Z

˝i

rv W rw d˝i D
KX

iD1
�

Z

�

J�>i rv W J�>i rwjJij d�;

(3a)

Qb.v; qI	/ D �
KX

iD1

Z

˝i

qr � vd˝i D �
KX

iD1

Z

�

qr � .J�1i v/jJijd�; (3b)

where jJij denote the determinants of Ji, i D 1; : : : ;K. For the right-hand-side let

Qf .vI	/ D
KX

iD1

Z

�

f � vjJijd Ő C
Z

O� in
i [ O� out

i

� n � vjJijd O� Ő i ; (3c)

where O� in
i and O� out

i stand for the inflow and outflow boundary, respectively, of
the transformed domain Ő D [K

iD1T�1.	i/˝i. Since the bilinear forms Qa.�; �I	/,
Qb.�; �I	/ are continuous and Qa.�; �I	/ is coercive, problem (2) admits a unique
solution; see, e.g., [9]. We collect the contributions from the transposed inverse Jaco-
bians and the Jacobian determinants in the tensors Q� and Q�, for viscous and pressure
terms, respectively, and use the elements of these tensors as the parameter dependent
functions: Q�.Ox;	i/ D J�1i .Ox/J�>i .Ox/jJi.Ox/j and Q�.Ox;	i/ D J�1i .Ox/jJi.Ox/j. Since the
tensors Q�, Q� and the determinants jJij are non-affine (due to the use of a transfinite
map) for i D 1; � � � ;K, we apply the empirical interpolation procedure [1] in
order to approximate them into affine functions defined as sums of some parameter
dependent coefficients �m.	/, ˚m.	/, �m.	/ and functions �m, �m, jm depending
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only on spatial coordinates [10], e.g. Q�.Ox;	/ 
 PMa
mD1 ˚m.	/�m.Ox/. Thanks to

these interpolations, we can approximate (3a) with

a.v;wI	/ D
KX

iD1

MaX

mD1
�m.	i/�

Z

�

�mrv W rw d�: (4)

The forms b.v; qI	/ and f .vI	/ approximating Qb.v; qI	/ and Qf .vI	/ are defined
similarly. These recovered affine decompositions are crucial even for a classical
discretization technique, e.g. finite element (FE) method. Once the FE scheme
is defined, this decoupling allows to split all the computations not involving the
parameters (concerning discretization) in an offline stage. In the online stage we
can easily assemble the forms a.v;wI	/; b.v; qI	/ and f .vI	/ by summing the
fast evaluations of the parametric functions and the integrals already computed;
see (4). Once the computations of all the integrals are done, for every new 	

and for any number K of stenosed subdomains in the network ˝ , we define the
correspondent reference domain Ő as non-overlapping union of the K reference
domains Ő D [K

iD1T�1.	i/˝i and the Stokes problem can be efficiently assembled
and written as: find .u.	/; p.	// 2 Z D Y � M such that

a.u.	/; v;	/C b.v; p.	/;	/ D f .v;	/; b.u.	/; q;	/ D 0 8.v; q/ 2 Z;
(5)

where we set Y D fv 2 .H1. Ő //2 W v j O�w
D 0g, M D L2. Ő / and O�w denotes the

boundary-wall of the transformed domain Ő . Even if some computations can be
performed in one offline parameter independent stage, the solution of (5) for a many
different parameters using a classical numerical technique (e.g. FE) requires many
solutions of a typically large linear systems.

3 The Reduced Basis (RB) Method for Decomposable
Domains

The reduced scheme we propose in this paper consists in approximating the spaces
Y and M with small dimensional spaces YN and MN (the so called RB spaces) where
the solution of system (5) is looked for. In particular, the RB spaces YN and MN

are generated by the direct sum of the subspaces Yi
L D spanfwi

j; j D 1; : : : ;Lg and
Mi

N D spanfqi
j; j D 1; : : : ;Ng for i D 1; : : : ;K, respectively, representing small sets

of basis functions with support on the subdomains�i D T�1.	i/˝i of Ő (compare
(7)): YL D Y1L ˚ � � � ˚ YK

L and MN D M1
N ˚ � � � ˚ MK

N . The RB approximation of
problem (5) reads: find .uL.	/; pN.	// 2 ZLN D YL � MN such that

a.uL.	/; v;	/C b.v; pN.	/;	/ D f .v;	/; b.uL.	/; q;	/ D 0 8.v; q/ 2 ZLN :

(6)
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In terms of computational effort, the method consists in defining, during the offline
stage, for i D 1; : : : ;K, the reduced basis functions wi

j, j D 1; : : : ;L and qi
j, j D

1; : : : ;N and the	 independent part of system (6). The latter consists in assembling
the matrices containing the evaluations of the integrals of the linear and bilinear
forms involving the functions wi

j and qi
j; see [2]. During the offline stage of the

method, we store K small matrices each one of dimensions L � L, L � N and L �
1, respectively. In the online stage, we sum up these matrices, with the respective
parametric function and we solve a system that is much smaller the ones needed for
a classical numerical discretization, precisely K.L C N/ � K.L C N/.

Basis Functions Computations In this section we illustrate the procedure to
compute for i D 1; : : : ;K the basis functions wi

l and qi
j, for l D 1; : : : ;L and

j D 1; : : : ;N. They are defined as follows:

wi
lj�i D � l; wi

lj Ő n�i
D 0 and qi

jj�i D �j; qi
jj Ő n�i

D 0: (7)

As we are considering the simplified case with only one reference geometry (the
stenosis of Fig. 1), such that T�1.˝i;	i/ D � for every i D 1; : : : ;K, the functions
�l and �j are the same for every i D 1; : : : ;K and are defined through only one local
problem. We consider the following Stokes problem defined in �:

� �v.
/C rq.
/ D f in �; r � v.
/ D 0 in �; v.
/ D 0 on �w;

�
@v.
/
@n

� q.
/n D 
in on � �
in ; �

@v.
/
@n

� q.
/n D 
out on � �
out;

(8)

where � and f are the same as in (1) and � �
in and � �

out denote the inflow and

outflow boundary of �, respectively. Furthermore, 
in.x/ D PNin

iD1 �in
i �j.x/ and


out.x/ D PNout

iD1 �out
i

Q�j.x/ are distributed parameter functions in L2.� �
in / and

L2.� �
out/ defining the BCs of the problem. Problem (8) is a parametrized Stokes

problem, whose parameter is 
 D .	�;	
in;	out/ and the correspondent parameter

space D D f
 D .	�;	
in;	out/;	� 2 D�;	

in 2 Œ	in
a ;	

in
b � � R

Nin
;	out 2

Œ	out
a ;	out

b � � R
Nout g. Upon introducing the velocity space and the pressure space,

respectively, as V D ˚
v 2 .H1.�//2 W v j�wD 0

�
, Q D L2.�/, the weak formulation

of (8) reads: find .v.
/; q.
// 2 X D V � Q:

A .v.
/;wI
/C B.w; q.
/I
/ D F .wI
/; B.v.
/; qI
/ D 0 8.w; q/ 2 X;
(9)

where the linear and bilinear forms are defined as done in the previous section.
We use (9) to define the reduced basis spaces and select of small set of param-
eter values (described in the next section), SN D f
1; : : : ;
Ng. The solutions
.v.
j/; q.
j//, j D 1; : : : ;N of (9) found by using a classical numerical technique
(e.g. FE) and in correspondence of the parameter values of set SN will represent
the first sets of basis functions needed. In order to guarantee the approximation
stability of the reduced basis scheme, we need to fulfill the inf-sup condition [10].
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This is achieved by enriching the velocity subspace with some additional basis
functions as follows. For every pressure solution q.
j/, we introduce w.
j/ D
arg supv2V B.v; q.
j/I
j/=kvkV . Now we define the basis functions �l and �j,
l D 1; : : : ;L D 2N, j D 1; : : : ;N of (7) as the orthonormal bases of the two spaces
VN D span fv.
j/;w.
j/; j D 1; : : : ;Ng and QN D span fq.
j/; j D 1; : : : ;Ng.

Selection of the Parameter Set Using Greedy Optimization We suppose that
we have defined the first N parameter values, the corresponding basis functions
and the initial reduced basis spaces VN and QN . We define now the local reduced
approximation of problem (9): find vN.
/ 2 VN , qN.
/ 2 QN such that

(
A .vN.
/;wI
/C B.w; qN.
/I
/ D F .wI
/ 8w 2 VN ;

B.vN.
/; qI
/ D 0 8q 2 QN :
(10)

Thus, we can define the space XN D VN � QN , its dual X0N D V 0N � Q0N and operators
K .�; � I
/ 2 L.XN � XN ;X0N/, R.� I
/ 2 L.XN ;X0N/ so that (10) can be written in
the compact form: find zN.
/ D .vN.
/; qN.
// 2 XN

K
�
zN.
/; I
� D R. I
/ 8 2 XN : (11)

The next parameter to add to the parameter set SN will be the solution to (see [11]):

min OJ.
/ subject to 
 2 D ; (12)

where the cost functional is OJ.
/ D �kK .zN.
/; � I
/ � R.� I
/k2X0=2 and zN.
/

denotes the solution to (11) defined with the already selected basis functions. Of
course, the space X has to be discretized to evaluate the dual norm in our numerical
realization. We have not introduced a high dimensional (truth) approximation to
simplify the presentation of the reduced basis approach and the greedy optimization
algorithm. Since the transfinite map T is continuously differentiable, the cost J is
continuously differentiable as well. Thus, we can characterise a local solution to
(12) by first-order necessary optimality conditions; see, e.g., [11]. Therefore, we
apply the projected gradient method combined with a line search based on the
Armijo rule (see [5, Sect. 5.4]). The gradient of OJ at a given � 2 D is OJ0.
/ D
K
.zN.
/; rN.
/C pN.
/I
/�R
.rN.
/C pN.
/I
/, where pN D pN.
/ 2 XN

is the unique solution to the adjoint equation

K . ;pN I
/ D �K . ; rN.
/I N
/ 8 2 XN :

and rN D rN.
/ 2 X denotes the Riesz representant of the residual RN D
R.� I
/ � K .zN ; � I
/ 2 X0. As a stopping criterion for the gradient projection
method we use kOJ0.
.k//kRd � 
abs C 
relkOJ0.
.0//kRd . We note that (12) may
have several local minima (specially for large N), so that a good choice of the
initial point is fundamental to reach the global minimum parameter value. In order
to define a suitable starting value 
.0/, we consider a very coarse training set
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$train � D and we define the starting value of the gradient projection method by

.0/ D arg min
2$train

OJ.
/.
Numerical Results In this section, we present some numerical results obtained by
solving problem (1) in the domain ˝ introduced in Sect. 2. The FE computations
are performed by using Taylor-Hood elements, in particular, in every stenosed
subdomain we have 6538 P2 elements for velocity and supremizer, 850 P1 for
pressure, respectively. Moreover the parameters values are �i

1 2 Œ�0:2; 0:5�; �i
2 2

2Œ�0:2; 0:3� and the parameters defining the local BCs considered for problem (8)
are defined between 	out

a D 0;	in
a D 0 and 	out

b D 1;	in
b D 1; the functions

�j.x/; Q�j.x/; j D 1; : : : ; 5 are the Fourier basis functions defined along � �
in and � �

out.
In Fig. 2, we show the error decay between the RB solution and the FE one, by
increasing the number of basis N used in the reduced scheme (we note that in this
test L D 2N;K D 4). In Fig. 3, the RB solution for a particular parameter set is
plotted and in Table 1 the computational times needed for the online FE and RB
solutions are compared, by considering an increasing number of subdomains in ˝ .
We note that the proposed RB scheme allows to compute accurate solutions at a
very low computational times and in many different computational domains.

Fig. 2 Errors between the RB solution and the FE one and CPU RB times by increasing N

Fig. 3 The reduced basis solution (velocity field on the top, pressure on the bottom) corresponding
to K D 4 and 	 D .0:5; 0:3I 0:5;�0:2I�0:2; 0:3I 0:3; 0:3/, by using N D 40
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Table 1 Computational online times (in seconds) needed for the solution computed with the FE
method and the RB one (by using N D 20) by varying the number of subdomains in ˝

Method K D 6 K D 9 K D 12 K D 15 K D 18 K D 20

FE online 2:93 4:46 6:64 7:91 10:00 11:14

RB online 0:13 0:20 0:34 0:53 0:70 0:79
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Short Description

In recent years, numerous variable-structure approaches have been developed for
control of nonlinear dynamic systems and for the model-based estimation of
non-measurable states and parameters. These approaches typically make use of first-
order as well as higher-order sliding mode techniques and related procedures. One
of their main advantages is the inherent proof of asymptotic stability. This stability
proof is either performed offline during the corresponding controller as well as
estimator design or online by the real-time evaluation of a suitable candidate for
a Lyapunov function.

The methodological framework for variable-structure control and estimation
approaches is quite well developed in the case of systems, for which process models
are accurately known. Nevertheless, research efforts are still necessary to make the
corresponding procedures applicable when only worst-case bounds are available
for specific parameters (e.g. due to non-negligible manufacturing tolerances).
Moreover, significant stochastic disturbances (e.g. as a result of measurement noise)
may act as further system inputs in such applications. To enhance robustness in
such cases, it is possible to combine techniques which are for instance based on
interval analysis, stochastic differential equations, or linear matrix inequalities with
variable-structure approaches. Verified stability analysis is a challenging task for
finite-dimensional dynamic systems which are affected by bounded uncertainty.
Finally, the adequate consideration of both actuator and state constraints represents
a challenging task that is currently intensively investigated.

4Piotr Lésniewski, University of Łódź, Poland.
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In this Minisymposium, ongoing research activities in the field of robust variable-
structure control and estimation are presented. Novel methodological aspects as well
as the use of variable-structure techniques in industrial applications including their
efficient (software) implementation on hardware for real-time control are explained.
Numerical verification and experimental validation for industry-motivated applica-
tions in control of fuel cell systems, automotive applications and mechanics as well
as mechatronics show the applicability of the mentioned techniques.



Experimental Validation of State and Parameter
Estimation Using Sliding-Mode-Techniques
with Bounded and Stochastic Disturbances

Luise Senkel, Andreas Rauh, and Harald Aschemann

Abstract Uncertainties—more precisely bounded and stochastic disturbances—
play a major role in control and estimation tasks in general. Examples for bounded
uncertainty are lack of knowledge about specific parameters and manufacturing
tolerances. Moreover, stochastic disturbances have a large influence on dynamic
systems, especially on sensor measurements. These issues make it difficult to control
a system such that robustness and stability are guaranteed if system parameters are
not exactly known and system states cannot be measured with high accuracy due
to process and measurement noise. Sliding mode techniques are known for their
robustness, so that an extension of classical approaches is presented that accounts for
uncertainties and estimates non-measurable states as well as unknown parameters.

Keywords Parameter estimation • Sliding mode control and estimation • Uncer-
tainty

1 Introduction

The principle of sliding mode techniques in control theory is to affect a nonlinear
dynamic system such that it tends to a user-defined stable operation mode and
always stays in its near surrounding area (called sliding surface). Often, the
nonlinear system is divided into a linear part and a (sometimes hardly mathe-
matically describable) nonlinear one including unknown disturbances. Then, the
task of sliding mode approaches is to compensate the second part by including a
switching term into the control law (for trajectory tracking purposes) or into the
observer part (for estimating non-measurable system states or identifying uncertain
parameters). That is why, the advantage of existing sliding mode techniques is
their finite-time convergence while reaching predefined sliding surfaces [1]. Since
technical applications need to be controlled in a robust and stabilizing way, the
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estimation of non-measurable states and unknown parameters is necessary for
control procedures. Therefore, a sliding mode observer that copes with uncertain
parameters as well as with noisy measurements is proposed for a combined state
and parameter estimation [7]. The advantage of the presented observer is robustness
against uncertainty based on the usage of suitable candidates for Lyapunov functions
as it is usually also done in existing sliding mode approaches to guarantee the
system’s stability [1]. In contrast to existing sliding mode observers, the presented
approach, firstly, is not restricted by matching conditions leading to a more general
applicability of the observer to different systems. Secondly, interval descriptions
are used for uncertain states and parameters. Finally, not fully known nonlinearities
that inevitably influence the stability of the system—as for example friction, wear
of mechanic components or remanence of a brake—can be included as stochastic
disturbances. Interval arithmetic is helpful to consider unknown influences on
the system dynamics. Therefore, intervals for uncertain parameters, inaccurate
measurements, and for estimation errors are taken into account. Additionally, the
number of switching amplitudes of the presented sliding mode observer is equal
to the number of measurements which enables an individual computation of this
variable structure part gain. The switching amplitude is evaluated by using a suitable
candidate of a Lyapunov function and the Itô differential operator for stochastic
processes. Moreover, Pontryagin’s maximum principle improves the parameter
estimation in terms of an optimal input design.

2 Sliding Mode Techniques for State and Parameter
Estimation

In general, state and parameter estimation is always necessary for good trajectory
tracking in control purposes. In fact, the principle of estimation by so-called
observers is to reconstruct unknown states by the simulation of the mathematically
described real system (set ordinary differential state equations (ODEs)) in a parallel
way to the real system. Then, the non-measurable states result from minimization
of the difference between measurements and the corresponding estimates from the
observer by choosing observer gain matrices. This standard procedure is extended
in the following by a switching amplitude matrix that compensates additionally
the non-modeled unknown influences (e.g. friction) in order to reconstruct the
true system states in good accuracy. Parameter estimation is applied in a similar
way because the parameters are interpreted as states under the assumption that
the time derivatives of the parameters are close to zero. Consequently, the system
parameters are assumed to be nearly constant or change only within tolerance
bounds (intervals). Therefore, a dynamic system is taken into consideration which
is given by the ODEs

f .x.t/;p;u.t// D Px.t/ D A �x .t/CB�u.t/CS�� .x.t/;u.t// ; y.t/ D C �x .t/ (1)
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where the system, input and output matrices belong to the interval expressions A WD
A.x.t/;p/ 2 ŒA�, B WD B.x.t/;p/ 2 ŒB� and C WD C.x.t/;p/ 2 ŒC�. In (1), the state
vector x.t/ includes also uncertain but bounded parameters p.t/ 2 Œp.t/�. The control
input vector is denoted by u.t/. A-priori unknown as well as nonlinear terms are
represented by S � � .x.t/;u.t// with S 2 R

n�q where the condition k� .x;u/k � �

with a fixed upper bound of the vector norm � has to be fulfilled [5, 6]. For system
(1), a classical sliding mode observer can be formulated as it is derived in [5, 6].
Based on this, the modified observer ODEs considering uncertainty become

OQf.Ox .t/ ; Œp�;u.t// DOf.Ox .t/ ; Œp�;u.t// C PCŒ OC�T � Hs � sign.em C Œym�/

WDŒ OA� � Ox .t/C Œ OB� � u .t/C Hp � Œem�C PCŒ OC�T � Hs � sign.em C Œym�/

Oym WDŒ OC� � Ox .t/ (2)

with the component-wise defined measurement error interval vector em.t/ 2 Œem� D
ym � Oym C Œym�. It accounts for deviations between measured and estimated system
outputs described by bounded uncertainty with the measurement error interval
Œym�. Equation (2) can be interpreted as the combination of a locally valid linear
system model denoted by Of.x .t/ ; Œp�;u.t// and a variable structure part that handles
uncertainty and nonlinearities without destabilizing the error dynamics (see [5]).
Moreover, uncertainty in parameters and measurements can be considered instead of
their nominal values during design and implementation using interval arithmetic [2].
Therefore, the nominal system, input and output matrices become interval matrices
Œ OA�, Œ OB� and Œ OC� denoting the interval evaluations OA.Ox .t/ ; Œp�/ 2 Œ OA�, OB.Ox .t/ ; Œp�/ 2
Œ OB� and OC.Ox .t/ ; Œp�/ 2 Œ OC�, respectively. In addition, interval specifications for
control, estimation and measurement errors Œxc�, Œxe� and Œym� are included.
Then, the switching amplitudes of the variable structure observer, and hence,
chattering as well as actuator wear in closed-loop control can be reduced efficiently.
Besides the usage of intervals and the consideration of process and measurement
noise, states and parameters are estimated simultaneously even if they are coupled
in a multiplicative way in the system model. Parameter estimation is especially
useful if these values are not constant, e.g. velocity dependent friction coefficients.
The task of the observer gain matrix Hp is to stabilize the error dynamics of the
linear part in an underlying way. This matrix can be determined, for example,
using pole assignment, linear matrix inequalities or by minimizing a quadratic
cost function (see [7]). The matrix P results from solving the Lyapunov equation
QA � P C P � QAT C Q D 0 with QA D OA � Hp � OC of the linear observer part. In classical
sliding mode approaches, the switching amplitude needs to be defined in advance.
This often leads to unnecessarily large chattering. Here, this issue is replaced by
an online evaluation of the switching amplitudes in each time step. To consider
stochastic disturbances, the Itô differential operator (V D 1

2
.x � Ox/TP.x � Ox/)

L.V.t// D @V

@t
C
�
@V

@e

�T

�
�

f � OQf
�

C 1

2
trace

�

GT @
2V

@e2
G


(3)
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with f WD f.x .t/ ; Œp�;u .t// and OQf WD OQf.Ox.t/; Œp�;u .t// is used under consideration
of Eqs. (1) and (2). Moreover, the standard deviation of both process as well as
measurement noise is denoted by G D ŒGp � HpGm� which aims at the simulation
of neglected nonlinear phenomena as well as inaccurate sensor measurements.
Introducing worst-case estimation errors Œxe� prevents the observer from switching
in regions, where the positive or negative sign of em.t/ cannot be determined—
usually in regions around zero—as it is described in [5]. Normally, sliding mode
techniques show chattering of the sliding variable (here em) around zero caused
by noise, discretization errors, etc. Taking into account the additional interval,
chattering can be reduced. Using an element-wise non-negative defined stability

margin q � 0, the switching amplitude can be calculated by L.V.t//
Š
< �qT jŒem�j.

Applying this condition to Eq. (2), the matrix Hs follows as a diagonal matrix from
Hs D diag.hs/ 2 R

ny�ny (number of measured system states ny). Substituting all

terms into (2), the condition Œ PVa��Œe�T �PPC OCT
Hs �sign .Œem�/C 1

2
trace

n
GT @2V

@e2 G
o
<

�qT jŒem�j with Œe� D Œx� � ŒOx�, Œx� D x C Œxc�, ŒOx� D Ox C Œxe�, Œem� D
ym.t/ � Oym.t/ C Œym�, and Œ PVa� D Œe�T P � .Œf� � ŒOf� � H.k/

p � e.k/m / is obtained (time
arguments are omitted). Then, the switching amplitudes are determined component-
wise according to

hs D
(

0; if Œı� � Œem�
T Œem�

sup
�
jŒem�jC �

�
Œ PVa�C 1

2
� trace

n
GT @2V

@e2 G
o�

C qT
�
; else

(4)

where sup denotes the upper bound of the corresponding interval. In (4), a small
interval Œı� around zero is used to prevent a division by zero [7] and to reduce, both,
the value of the calculated switching amplitudes and chattering. Additionally, the

interval pseudo inverse jŒem�jC D
�
jŒem�jT jŒem�j

��1 � jŒem�jT is taken into account.

Here, the absolute value of the difference between measured and estimated states
jŒem�j and the definition of the sign function are given by

ˇ
ˇ
	
em;i


ˇ
ˇ D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

h
�em;i I �em;i

i
for em;i � 0

h
em;i I em;i

i
for em;i � 0

h
0 I maxfjem;ij; jem;ijg

i
else :

; sign.Œem;i�/D
8
<̂

:̂

1 if inf.Œem;i�/ > 0

�1 if sup.Œem;i�/ < 0

0 else :

(5)

for each vector component i. The stability proof (only in simulation) is successful,
if the evaluation of Eq. (3) is less than zero which corresponds to the negative
definiteness of the time derivative of the Lyapunov function. The presented sliding
mode observer considers bounded and stochastic uncertainty simultaneously. It is
illustrated in the following by a cascaded structure for a simplified model for the
longitudinal dynamics of a vehicle in simulation and experiment.
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3 Application Scenario: Simulative and Experimental
Validation

In this section, the described sliding mode strategy is validated in simulation and
experiment for a simultaneous state and parameter estimation at a test rig available
at the Chair of Mechatronics, University of Rostock as it is depicted in Fig. 1. This
nonlinear system can be described by the state-space model

f.x .t/ ; Œp�;u.t// WD
�Px1.t/

Px2.t/
�

D
�

x2.t/
˛ � x2.t/C ˇ � u.t/

�

and y.t/ D x1.t/ (6)

with the two not a-priori known parameters ˛ D � d
J 2 Œ˛� and ˇ D 1

J 2 Œˇ� (mass
moment of inertia J and velocity-proportional friction coefficient d). System (6)
is nonlinear due to the multiplicative coupling between parameters and the time-
varying system state x2 (angular velocity) as well as the input u (motor torque).
In general, it is assumed that the system parameters are located in the intervals
˛ 2 Œ˛� D �3 � Œ0:5; 1:5� and ˇ 2 Œˇ� D 60 � Œ0:5; 1:5�. The sliding mode
observer is implemented using s-functions in Matlab/Simulink with Intlab [4] and
the C++ library C-XSC [3] for interval arithmetics. The considered stochastic
noise, on the one hand, simulates inaccurate measured data and, on the other
hand, can be interpreted as a random disturbance. Such influences play a role
due to discretization errors and friction, which both cannot be quantified easily
but have to be taken into account to implement later on robust control strategies
that also require knowledge about system parameters [7]. For the input trajectory,
Pontryagin’s maximum principle is used to calculate an optimal input torque that
improves the parameter estimation [6]. The cascaded structure depicted in Fig. 1 is
used due to the multiplicative coupling of states and parameters in (6). Because of
the assumption that system states change faster than parameters, S1 estimates the

  

Fig. 1 Test rig and cascaded structure of the interval sliding mode observers (ISMO)
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angle x1.t/ and its four time derivatives using an integrator chain. Both models f.S1/

and Of.S1/ are given by

f.S1/ D

2

6
6
6
4

Px1
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Pz1

3

7
7
7
5

D
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6
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Œ˛� Œx2�C S.Œ˛�; u; 0/
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3

7
7
7
5
; Of.S1/ D

2

6
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POx1POx2POx3POx4POz1
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D

2

6
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ŒOx3�
ŒOx4�
ŒOz1�
Œ$�

3

7
7
7
5

(7)

with Œx2� D x2;d C
h
x.S1/c;2

i
, where the desired trajectory for the second system

state x2;d is used (the real state x2 is not directly measured). Moreover, ŒOxj� D Oxj Ch
x.S1/e;j�1

i
for j D 1; : : : ; 3, the model error ŒOz1� D Oz1C

h
x.S1/e;4

i
, Œ$� D 0C

h
x.S1/e;5

i

and S.Œ˛�; u; n/ WD Œˇ� �
nP

iD0
Œ˛�n�i � u.i/, where .i/ denotes the i-th derivative and the

powers n�i of the interval Œ˛� are included. The outputs are y.S1/m D x1 and Oy.S1/m D Ox1.
The estimates for the two system parameters ˛e 2 Œı˛� and ˇe 2 Œıˇ� (point-values)
are determined in S2, where the estimated states (velocity and acceleration) provided
by S1 are used as virtual measurements. Analogously, subsystem S2 is defined by

f.S2/ D

2

6
6
6
6
6
4

Œ˛�Œx2�C Œˇ�uC Œz2�
Œ˛�2Œx2�C Œ˛�Œˇ�uC Œˇ�Pu

0C
h
x.S2/c;3

i

0C
h
x.S2/c;4

i

0C
h
x.S2/c;5

i

3

7
7
7
7
7
5

; Of.S2/ D

2

6
6
6
6
6
4

Œı˛� � ŒOx2�C Œıˇ�uC ŒOz2�
Œı˛�

2 � ŒOx2�C Œı˛�Œıˇ�uC Œıˇ�Pu
0C

h
x.S2/e;3

i

0C
h
x.S2/e;4

i

0C
h
x.S2/e;5

i

3

7
7
7
7
7
5

(8)

with f.S2/ D 	Px2 Px3 P̨e
P̌
e Pz2


T
, Of.S2/ D

h
POx2 POx3 PǪe

PǑ
e

POz2
iT

. The interval definitions are

for the velocity Œx2� D
�

x2 C
h
x.S2/c;1

i�
, for the model error Œz2� D

�
z2 C

h
x.S2/c;5

i�
,

for the estimated velocity ŒOx2� D .Ox2 C Œx.S2/e;1 �/, for the estimated model error

ŒOz2� D
�

Oz2 C
h
x.S2/e;5

i�
(assumed to be slowly varying). The enlarged intervals

for the estimated parameters are Œı˛� D
�
Œ˛� C

h
x.S2/e;3

i�
as well as Œıˇ� D

�
Œˇ�C

h
x.S2/e;4

i�
. The output vectors of S2 are defined as y.S2/m D Œx2; x3; z2�

T and
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Oy.S2/m D ŒOx2; Ox3; Oz2�T . Then, the ISMOs for both subsystems k D fS1; S2g are given by

POx.k/ D A.k/
O � x.k/ C b.k/O � u C H.k/

p � em C .P.k//C.C.k//TH.k/
s � sign.Œe.k/m �/ ; (9)

with A.S1/
O D

2

6
6
6
6
6
4

0 1 0 0 0
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and the defined working points Ox2;w, ˛e;w, Puw. Note, H.S1/
p becomes a vector

and the switching term H.S1/
s � sign.Œe.S1/m �/ D H.S1/

s � sign.Œe.S1/m �/ in Eq. (9) is
scalar. The input vectors for S1 and S2 are given by b.S1/O D Œ05x1� and b.S2/O D
	
ˇe; ˛e � ˇe; 0; 0; 0


T
. The matrix P.S2/ can be determined as for subsystem S1

and stabilizes together with H.S2/
p the linear observer part where a working set

point is chosen for the matrix A.S2/
O . Here, the switching term H.S2/

s � sign.e.S2/m C
Œy.S2/m �/ is a vector with 3 components. Note, the switching amplitude matrices
for both subsystems are calculated separately according to Sect. 2. Simulative and
experimental results are depicted in Fig. 2, where one driving cycle takes 8 s. that is
repeated periodically. It can be seen, that both, simulation and experiment, are able
to estimate the system parameters with good accuracy. The experimental results
using the cascaded ISMO structure, where the adaptation of parameters and states
takes place at each discretization step, are much better than the results of a least-
squares parameter identification, where the estimates are constant for time intervals
of 8 s. This can be seen from Table 1, where the root mean square errors are
compared. Therefore, system (6) was evaluated separately including the estimated
parameters of both, the ISMO structure and the least squares estimation.
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Table 1 Results: standard deviations of the estimation errors compared to the simulated mea-
surement noise (left) and comparison to least-squares (LS) parameter identification (right)

Measurement noise x1;d � Ox1 x2;d � Ox2
0.005 0.0080 0.2362

LS ISMO Improvement

x1 x1;LS D 2730 x1;ISMO D 261:36 90:43%

x2 x2;LS D 4:79 x2;ISMO D 4:51 5:85%

4 Conclusions and Outlook

In this paper, an interval sliding mode observer considering bounded and stochastic
disturbances for a simultaneous state and parameter estimation has been described
and validated in experiment. In future work, the ISMO will be applied to other test
rigs with an equivalent interval sliding mode control.
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Interval-Based Sliding Mode Control
for High-Temperature Fuel Cells Under
Actuator Constraints

Andreas Rauh, Luise Senkel, and Harald Aschemann

Abstract Interval-based sliding mode controllers can be used efficiently for a
robust stabilization of systems with bounded uncertainty. The real-time implementa-
tion of these procedures makes use of software libraries that provide functionalities
for interval analysis and algorithmic differentiation. This paper gives an overview
of possible extensions of such control procedures for the reliable stabilization of the
thermal behavior of high-temperature solid oxide fuel cell systems. During the real-
time stabilization, limitations of the range of state and control variables are treated
by constraints implemented in a barrier Lyapunov function approach.

Keywords Interval-based sliding mode control • Lyapunov function • Real-time
stabilization • Uncertainty

1 Introduction

In previous work, different approaches have been derived by the authors for the
reliable control of the thermal behavior of high-temperature solid oxide fuel cell
stacks (SOFC stacks) under consideration of uncertain parameters and a-priori
unknown load variations. These approaches comprise model-predictive, feedback
linearizing, and sliding mode techniques. It was shown that both predictive and
sliding mode techniques can be applied successfully to systems with interval
parameters [4].

In contrast to the predictive control approach, state and actuator constraints
cannot be handled directly within a classical sliding mode design for this type of
application. However, the sliding mode-type control design provides an inherent
stability proof, which is not directly available for the predictive technique. For these
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reasons, this contribution removes the before-mentioned drawback concerning the
handling of constraints by a reformulation of the stability conditions resulting from
the variable structure control design. This reformulation is based on a stability-
preserving gain adaptation. It becomes active as soon as saturation limits are
reached for the control inputs. For that purpose, actuator limits are treated as hard
constraints that must not be exceeded, whereas state limitations are described by
soft constraints. These are introduced as penalty terms inspired by the concept of
barrier Lyapunov functions [6]. While handling the actuator constraints, it becomes
possible to adapt the gain value of the variable-structure control part as well as the
parameters characterizing the sliding surface during system operation [5]. These
adaptations directly lead to a modification of the system dynamics during the
transient reaching phase. This phase describes the system dynamics as long as the
operating conditions do not fully comply with those system states for which the
sliding condition is fulfilled.

The prerequisite for the design of the before-mentioned control strategies is the
modeling of the thermal behavior of the SOFC stack. In previous work, a spatial
semi-discretization of the temperature distribution in the interior of the SOFC stack
has been performed. It is based on the assumption that temperature variations can be
described by a set of ordinary differential equations (ODEs), where the temperature
is piecewise homogeneous in each finite volume element. This model is coupled
with the lag dynamics of the gas preheaters (providing preheated air (CG) to the
cathode and a mixture of hydrogen (H2), nitrogen (N2) and water vapor (H2O) to
the anode) according to Fig. 1. Here, the time constants of the preheaters have to be
accounted for during the control design to avoid undesired chattering [4].

According to [3, 4], a set of ODEs is obtained in the input-affine form

Px.t/ D f .x.t/;p; vd.t// D  1 .x.t/;p/C � 2 .x.t/;p/ � vd .u.t// (1)

with the input vector vd.t/ D 	
vH2;d.t/ vN2;d.t/ vH2O;d.t/ vCG;d.t/


T
of the anode

and cathode gas. This vector consists of products of the corresponding gas mass
flows Pm¦.t/ D Pmffl;d.t/ D Pmffl;in.t/ for each � 2 fH2;N2;H2O;CGg and the

Fig. 1 Semi-discretization of the fuel cell stack module with gas preheaters
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desired preheater temperatures #CG;d.t/ as well as #AG;d.t/ D #H2;d.t/ D #N2;d.t/ D
#H2O;d.t/.

If it is assumed that the time constants for changes in the gas mass flows are

significantly smaller than those for the thermal behavior, the relation d Pm¦.t/
dt D

d Pmffl;d.t/
dt D d Pmffl;in.t/

dt D 0 can be substituted into Eq. (1). Assuming additionally that
the anode gas properties are predefined by a subsidiary controller, the ODEs (1) turn
into

Px.t/ D �1 .x.t/;p/C˚2;AG .x.t/;p/ �
2

4
vH2;d.t/
vN2;d.t/
vH2O;d.t/

3

5

„ ƒ‚ …
DW f1 .x.t/;p/

C�2;CG .x.t/;p/ � vCG;d.t/
„ ƒ‚ …
DW f2 .x.t/;p/ � vCG;d.t/

(2)

with 1 .x.t/;p/ D �1 .x.t/;p/ and the state-dependent term f1 .x.t/;p/. Moreover,

the system input is characterized by f2 .x.t/;p/ D
h
01�9 1

TCG
0 0 01�nx

iT
, where

0i�j is a zero matrix of dimension i � j (nx: number of finite volume elements in the
SOFC stack). Due to the above-mentioned simplifying assumptions, the equality
@f1.x.t/;p/
@vCG;d

D 0 holds for all operating points. Choosing vCG;d.t/ as the primary

input justifies the use of d
dt

	
vH2;d.t/; vN2;d.t/; vH2O;d.t/


T 
 0 during control
synthesis. Errors introduced by this simplification can be taken into consideration
by an additive disturbance variable in the following state-space transformation. This
transformation replaces the ODEs (2) by a nonlinear controller canonical form.
According to [4], it is reasonable to perform the transformation by computing
the required Lie derivatives in the following section by means of algorithmic
differentiation [1]. This significantly reduces the complexity that results from the
excessive lengths of the symbolic expressions for the state transformation that arise
if larger dimensions (typically nx � 3 volume elements) are used for the semi-
discretization approach.

2 Interval-Based Sliding Mode Control Design

Assume that the system output is defined by y.t/ D h.x.t// D #I� , x.t/ 2 R
N ,

as the stack temperature in the segment I�. This segment temperature should
be controlled by means of vCG;d.t/. Then, a successive computation of the Lie
derivatives

dry.t/

dtr
D y.r/.t/ D Lr

f h.x.t// D Lf
�
Lr�1

f h.x.t//
�
; r D 1; : : : ; ı (3)
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is performed up to the system’s relative degree ı, which is defined as

@Lr
f h.x.t//
@vCG;d

	 0 for all r D 0; : : : ; ı � 1 with
@Lıf h.x.t//
@vCG;d

¤ 0 : (4)

Using the new state vector �.t/ D 	
h.x.t//; Lfh.x.t//; : : : ; Lı�1f h.x.t//


T 2 R
ı

with �1.t/ D y.t/ D h.x.t// DW h.x/, the ODEs (2) can be transformed into

h
P�T
.t/ P�T

.t/
iT D 	

Lfh.x/; : : : ; Lı�1f h.x/; Lıf h.x/ LıC1f h.x/; : : : ; LN
f h.x/


T

D 	
�2.t/; : : : ; �ı.t/; Qa.x.t/;p; d.t// a˙.x.t/;p; d.t//


T
(5)

C 	
0; : : : ; 0; Qb.x.t/;p/ � vCG;d.t/ b˙.x.t/;p; d.t/; vCG;d.t/; PvCG;d.t/; : : :/


T

with the interval parameters p 2 Œp� and the additive disturbance d.t/ 2 Œd� D	
d I d



in Qa.x.t/;p; d.t// WD Lıf h.x.t// � Qb.x.t/;p/ � vCG;d C d.t/. As shown in [4],

the original and transformed states x.t/ as well as �.t/ and �.t/, respectively, can be
estimated by different model-based techniques as well as by algebraic or low-pass
filtered derivative approximations.

During the design of the sliding mode control strategy, the input vCG;d.t/ is
determined in such a way that asymptotic stability of the closed-loop dynamics is
guaranteed despite interval parameters Œp� and Œd�. This requires that the tracking
errors of all components of �.t/ converge to zero with certainty. The corresponding
error signals are given by Q�.r/1 .t/ D �

.r/
1 .t/ � �

.r/
1;d.t/ with r D 0; : : : ; ı � 1 and

#I�.t/ DW �1.t/ D �
.0/
1 .t/. These error signals are summarized in the vector

Q�.t/ D
h
�1.t/ � �1;d.t/; �

.1/
1 .t/ � �

.1/
1;d.t/; : : : ; �

.ı�1/
1 .t/ � �

.ı�1/
1;d .t/

iT 2 R
ı;

(6)

where the desired trajectory is denoted by �1;d.t/ with the time derivatives �.r/1;d.t/.
According to [3, 4], perfect trajectory tracking corresponds to states that are located
on the sliding surface

s WD s
� Q�.t/

�
D Q�.ı�1/1 .t/C ˛ı�2 � Q�.ı�2/1 .t/C : : :C ˛0 � Q�.0/1 .t/ D 0 : (7)

To guarantee asymptotic stability for s D 0, the parameters ˛0; : : : ; ˛ı�2 have to
be chosen as coefficients of a Hurwitz polynomial of the order ı � 1. Furthermore,
stabilization of �.t/ towards the sliding surface is required if s ¤ 0 holds. In
this case, called reaching phase, a variable structure control is employed. It can
be derived from the Lyapunov function candidate V D 1

2
s2 > 0 with PV D s � Ps < 0

for s ¤ 0. Replacing PV by a linear convergence rate in s leads to PV D s � Ps � �� � jsj,
� > 0.
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Then, the stability requirement can be satisfied by the interval-based control law
(time arguments are omitted for brevity)

ŒvCG;d� WD �Qa .x; Œp�; Œd�/C �
.ı/
1;d � ˛ı�2 � Q�.ı�1/1 � : : : � ˛0 Q�.1/1 � Q� � signfsg

Qb .x; Œp�/
(8)

with Q� > � > 0 and the interval evaluation of Qa .x.t/;p; d.t// and Qb .x.t/;p/ for all
p 2 Œp� and d.t/ 2 Œd�. In a real-time environment, the expression (8) is evaluated

by means of C-XSC [2] with Q�.r/.t/ 2
h Q�.r/

i
.t/. According to [3], point values

Od.t/ for the term d.t/ can be estimated by a suitable observer. To express the level of
confidence in these values, they are inflated to the interval Œd� WD Od.t/Cd �Œ�1 I 1�
with d > 0. To specify the final control law in such a manner that it can be
applied regardless of the sign of Qb.x.t/;p/, 0 62 Qb.x.t/; Œp�/, a stabilizing point-
valued control vCG;d.t/ is chosen by checking the sign of PV for all candidates from
the set

VCG;d WD ˚
vCG;d.t/ � �; vCG;d.t/C �; vCG;d.t/� �; vCG;d.t/C �

�
(9)

with the control infimum vCG;d.t/ WD inffŒvCG;d.t/�g, the supremum vCG;d.t/ WD
supfŒvCG;d.t/�g and some small � > 0.

For the control of the SOFC towards a fixed maximum stack temperature, the
output temperature y.t/ D #I�.t/ is determined in each time step according to
I� D arg maxIf#I.t/g, where #I.t/ denotes the temperatures in all stack segments.

3 One-Sided Barrier Lyapunov Function Constraints,
Offline Trajectory Planning and Online Gain Adaptation

To prevent large overshoots of the output y.t/ D #I�.t/ over the desired temperature
�max, the safety margin�max > 0 is introduced with N�max WD �max C�max. Using
the value N�max, a one-sided barrier Lyapunov function candidate

QV D V C �V �
X

i2fIg
ln

 N�max

N�max � #i

!

> 0 for s ¤ 0 with V D 1

2
s2 ; �V > 0 ;

(10)

can be defined, which serves two purposes. On the one hand, the term V stabilizes
the dynamics of the uncertain SOFC model. On the other hand, the additive second

term introduces a soft constraint #I
Š� �max by means of a strict barrier #I < N�max.

Here, the factor �V has to be chosen so that control constraints are not violated and
that the term V has dominating influence in a neighborhood of the desired trajectory,
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corresponding to s D 0. Computing the time derivative PQV D PV C�V � P
i2fIg

� P#iN�max�#i

�

of the extended Lyapunov function candidate leads to the modified interval control

Œ QvCG;d� WD ŒvCG;d� � s

s2 C Q� � �V � 1

Qb .x; Œp�/ �
X

i2fIg

 P#i

N�max � #i

!

; Q� > 0 ; (11)

where the term s
s2CQ� is an approximation of the expression 1

s for s ¤ 0. This latter

modification guarantees that violations of the constraint #I
Š� �max are penalized

by the modified control law, while the adaptation becomes inactive for s D 0

and simultaneously avoids singularities at s D 0. Point-valued control signals are
again chosen as in (9). Note that the denominator term Qb .x; Œp�/ in (11) remains
unchanged by the introduction of the logarithmic barrier function if the derivatives
P#I do not explicitly depend on the system input vCG;d. This is true as long as the
preheater dynamics are included in the ODEs (2). If their dynamics were neglected,

the denominator term had to be adjusted by solving the inequality PQV � �� � jsj in a
rigorous way.

To make sure that the guaranteed stabilizing control strategy can be evaluated
on a real test rig, it is important to account for hard actuator constraints. For that
purpose, the control variable vCG;d (or QvCG;d, resp.) is decomposed into a product of
admissible gas mass flows and desired preheater temperatures as described in [3].
This decomposition relies on an online optimization procedure, which penalizes
high-frequent variations of both system inputs as well as deviations from their
desired set-points. To make this optimization routine applicable, it is necessary that
the system input is compliant with the actual actuator constraints of the system with
both nominal (i.e., point-valued) and uncertain (i.e., interval) parameters.

First of all, a nominal output �1;d.t/ is determined for a fixed output segment (as a
time-dependent polynomial) with a predefined composition and temperature of the
anode gas mixture. This trajectory (or resp. steady-state operating point) has to be
selected in such a manner that it does not exceed any of the input saturations.

In a second stage, the interval control signals ŒvCG;d� and Œ QvCG;d� are split up into
continuous and variable structure parts according to

ŒvCG;d� D ŒvCG;d;I�C Q� � ŒvCG;d;II� � ŒvCG;max� and

Œ QvCG;d� D Œ QvCG;d;I�C Q� � Œ QvCG;d;II� � ŒvCG;max� ;
(12)

where the choice between ŒvCG;d� and Œ QvCG;d� is made depending on whether
state constraints should be handled or not. Here, a suitable set of asymptotically
stable eigenvalues is selected for the dynamics on the sliding surface. With these

eigenvalues and intervals Q�.r/.t/ 2
h Q�.r/

i
.t/ for the operating range, the intervals

ŒvCG;d;I� and Œ QvCG;d;I� are evaluated offline such that both are true subsets ŒvCG;d;I� �
ŒvCG;max� and Œ QvCG;d;I� � ŒvCG;max� of the maximum possible input range ŒvCG;max�.
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Fig. 2 Interval-based sliding mode control without (a–c) and with barrier Lyapunov function (d–
f). (a) Stack module temperatures. (b) Mass flow (cathode) PmCG. (c) Desired temperature #CG;d.
(d) Stack module temperatures. (e) Mass flow (cathode) PmCG. (f) Desired temperature #CG;d

Finally, the parameter Q� is chosen according to the desired dynamics during
the reaching phase. This value is kept as long as the input is compliant with the
actuator constraints. Otherwise, the positive value Q� is adapted so that the point-
valued control lies (in the interior or) on the boundary of the possible input range [5].

Figure 2 contains a comparison of the simulation results of the dynamic system
without and with the extension by the one-sided barrier Lyapunov function. The
interval evaluation of the control law was performed for the same parameters that
were used for the unconstrained case in [4]. It can be shown numerically that using
saturation values for the input until t 
 2200 s leads to a guaranteed stabilization of
the system towards �max D #d D 880K D const. After this point of time, the use of
the extended control procedure helps to reduce the overshoot over this set-point and
hence improves both the efficiency and practical usability of the control strategy.

4 Conclusions and Outlook on Future Work

In this paper, a robust sliding mode procedure has been presented and extended
by a one-sided barrier Lyapunov function approach to prevent the violation of
state constraints. The implementation of this control procedure in rapid control
prototyping environments makes use of interval analysis. In such a way, it can
be guaranteed that the considered dynamic system is robustly stabilized despite
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bounded uncertainty in parameters as well as in measured and estimated state
variables.

Future work will extend the presented gain scheduling approach towards a real-
time modification of the parameters ˛i of the sliding surface. In addition to the
presented control parameterization, this provides a further degree of freedom in the
choice of the variable structure gain if the sum of the control parts (I) and (II) in (12)
is not yet equal to one of the saturation limits. Besides the requirement that input
constraints must not be violated, criteria for robustness against measurement noise
and non-modeled, but bounded, disturbances will be taken into consideration.
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Sliding Mode Data Flow Regulation
for Connection-Oriented Networks
with Unpredictable Packet Loss Ratio

Piotr Lesniewski and Andrzej Bartoszewicz

Abstract In this paper we propose a discrete time sliding mode congestion con-
troller for a single virtual circuit in connection-oriented communication networks.
The circuit is characterized by the non-negligible propagation delay, the maximum
link capacity and unknown, time-varying data loss rate. The proposed controller
generates non-negative and limited transmission rates, ensures upper bounded queue
length in the bottleneck link buffer and may guarantee full utilization of the link
capacity. In order to ensure fast reaction to the unpredictable data loss and unknown
changes of the available bandwidth, the controller employs the dead-beat sliding
hyperplane. However, straightforward application of the dead-beat paradigm could
lead to unacceptably big transmission rates. Therefore, the controller is designed
using the concept of the reaching law, which helps to attenuate the excessive
magnitude of control signal at the beginning of the transmission process.

Keywords Connection-oriented communication network • Dead-beat • Sliding
mode control and estimation • Virtual circuit

1 Introduction

Congestion control in connection-oriented data transmission networks is an impor-
tant and up to date research topic [1, 2, 4–7]. The difficulty of the congestion control
is caused by long propagation delays, rapidly changing bandwidth and unpredictable
packet losses. When congestion of a specific link is detected, an appropriate
communique must be sent to all the sources transmitting data through this link.
Delivery of this communique involves feedback propagation delays. Then data
sources adjust their flow rates in order to counteract the congestion, however, the
adjusted rates begin to affect the congested link after the forward propagation delay.
Therefore, in the modern data transmission networks characterized by significant
bandwidth and delays the need for the proper flow regulation cannot be ignored.
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In this work, we design a discrete time sliding mode congestion controller
for connection-oriented networks. In the design process not only we take into
account propagation delays and inevitable bandwidth changes, but also we explicitly
consider unpredictable data losses. Therefore, we propose a controller which
ensures robustness of the closed loop system with respect to the a priori unknown
and time-varying packet losses.

2 Network Model

We consider a virtual circuit of a connection-oriented network, that consists of a
data source, some intermediate nodes and a destination. We assume that there is a
single bottleneck in the network. A congestion controller is placed at the bottleneck
node, and it generates a signal (denoted by u) that determines the transmission rate
of the source. The source receives this signal after the backward delay TB, and sends
the requested amount of data, which is passed from node to node, until it reaches
the bottleneck after the forward delay TF . It is assumed, that during transmission
some data packets are lost so that only ˛u data arrives at the congested node,
where 0 < ˛min � ˛ � ˛max � 1: The delay between generating the control
signal and the requested data arrival at the bottleneck node, known as the round trip
time (RTT), can be expressed as the sum of the forward and backward propagation
delays, RTT D TB CTF:We denote the discretization period by T and the bottleneck
queue length at time kT is represented by y.kT/. The buffer is empty prior to data
transmission, i.e. y.kT < 0/ D 0. We assume, that the round trip time is a multiple of
the discretization period, i.e. RTT D mT, where m is a natural number. The control
signal at time kT is represented by u.kT/. The first data arrives at the queue after
RTT, therefore y.kT � RTT/ D 0.

The bottleneck link available bandwidth is modeled as a non-negative, a priori
unknown function of time d.kT/. We assume, that only the maximum value of this
function, dmax is known. We also introduce a function h.kT/, that corresponds to the
amount of data actually leaving the buffer at time kT. This value cannot exceed the
available bandwidth, but it can be smaller if there is not enough data ready to send
in the congested node. Therefore, 0 � h.kT/ � d.kT/ � dmax for any k � 0

The queue length can be represented as the difference between incoming and
outgoing amounts of data, i.e.

y.kT/ D ˛

k�1X

jD0
u. jT � RTT/�

k�1X

jD0
h. jT/ D ˛

k�mRTT�1X

jD0
u. jT/�

k�1X

jD0
h. jT/: (1)
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We can also express the system using the standard state space notation

xŒ.k C 1/T� D Ax.kT/CAx.kT/C bu.kT/C oh.kT/

y.kT/ D rTx.kT/; (2)

where x.kT/ D Œx1.kT/ x2.kT/ � � � xn.kT/�T is the state vector, y.kT/ D x1.kT/
is the queue length, and the remaining state variables are the delayed values of the
control signal, i.e. xi.kT/ D uŒ.k � n C i � 1/T�, for i D 2; : : : ; n. A is a n x n state
matrix and b, o, r are n x 1 vectors

A D

2

6
6
6
6
6
4

1 ˛max 0 0

0 0 1 � � � 0
:::

: : :
:::

0 0 0 � � � 1
0 0 0 0

3

7
7
7
7
7
5

; b D

2

6
6
6
6
6
4

0

0
:::

0

1

3

7
7
7
7
7
5

; o D

2

6
6
6
6
6
4

�1
0
:::

0

0

3

7
7
7
7
7
5

; r D

2

6
6
6
6
6
4

1

0
:::

0

0

3

7
7
7
7
7
5

: (3)

A is a n x n model uncertainty matrix where a12 D ı˛ 2 Œ˛min � ˛max; 0�, and
the remaining elements of A are equal to zero. The desired state of the system is
denoted by xd D Œyd 0 � � � 0�T , where yd is the demand bottleneck queue length.

3 Non-switching Reaching Law Based SM Controller

In this section we design a non-switching reaching law based sliding mode
controller. We begin by selecting the sliding variable as

s.kT/ D cTe.kT/; (4)

where e.kT/ D xd � x.kT/ denotes the closed loop system error. With this choice
of variable s the sliding hyperplane is determined by the equation s.kT/ D 0. The
elements of vector c are selected so that cTb ¤ 0 and the closed loop system has
the desired performance. As we want to obtain finite time error convergence to zero,
we choose the vector c in such a way, that the closed loop system exhibits dead-beat
dynamics. We begin by calculating the control signal that satisfies sŒ.k C 1/T� D 0

and substitute it into (2). In this way we obtain the closed loop system matrix Ac D
ŒIn � b.cTb/�1cT �A. The matrix Ac has the following characteristic polynomial

det.z In � Ac/ D zn C cn�1 � cn

cn
zn�1 C � � � C c2 � c3

cn
z2 C ˛maxc1 � c2

cn
z: (5)
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In order to ensure dead-beat characteristics, polynomial (5) must have the form
det.z In � Ac/ D zn. We find, that this is achieved with the following choice of c

c D Œ1=˛max 1 1 � � � 1�T : (6)

We assume, that the aim of the controller is to decrease the value of js.kT/j until it
reaches a band around s.kT/ D 0, further in the paper called the quasi-sliding band.
After reaching this band, the sliding variable should remain inside it. In contrast
to some previous works [3], in our definition crossing the hyperplane during the
quasi-sliding mode is allowed but not required.

Having calculated the appropriate sliding hyperplane parameters we now propose
the following reaching law, that describes the desired sliding variable evolution

sŒ.k C 1/T� D f1� qŒs.kT/�gs.kT/ � QF.kT/� QS.kT/C F1; (7)

where

QF.kT/ D cToh.kT/ D �h.kT/=˛max (8)

is the influence of the disturbance (in our case the amount of outgoing data) on the
sliding variable, and

QS.kT/ D cTAx.kT/ D ı˛x2.kT/=˛max (9)

represents the effect of the model uncertainty (the unknown and varying transmis-
sion losses). The term F1 D � dmax

2˛max
is used to compensate the mean value of QF.kT/.

Contrary to some previous works [3] we omit the term S1 used to compensate the
mean value of the model uncertainty, as it could lead to generating a negative control
signal, which is not feasible in the considered system. The term qŒs.kT/� is given by

qŒs.kT/� D s0=Œs0 C js.kT/j�; (10)

where s0 >
dmax.2˛max�˛min/

˛max˛min
is a design parameter, that allows to tune the controller

so that it exhibits fast convergence to the vicinity of s.kT/ D 0, while not exceeding
the maximum transmission rate of the source.

We now derive the control signal, that ensures, that the sliding variable evolution
is indeed described by (7). We begin by using (2) to rewrite (4) as

sŒ.k C 1/T� D cTxd � cT ŒAx.kT/CAx.kT/C bu.kT/C cToh.kT/�: (11)



SM Data Flow Regulation for Networks with Unpredictable Packet Loss Ratio 679

Comparing (7) and (11) we arrive at

u.kT/ D .cTb/�1fqŒs.kT/�s.kT/C dmax=2˛max � cT.A � In/x.kT/g: (12)

We now observe, that by selecting c according to (6) we have obtained cT.A�In/ D
Œ0 : : : 0�. This, together with (3) and (10) allows us to express (12) as

u.kT/ D s0s.kT/=Œs0 C js.kT/j�C dmax=2˛max: (13)

This completes the design of the reaching law based sliding-mode flow controller.

4 Properties of the System

In this section we demonstrate important properties of the considered system, that
are guaranteed with the application of our controller. We start by showing, that once
the value of s.kT/ reaches the quasi-sliding band, it never leaves it again.

Theorem 1 Once the following inequalities are satisfied, they remain true for the
remainder of the control process

�dmaxs0
2˛maxs0 � dmax

� s.kT/ �
s0
h
.˛max � ˛min/

�
yds0

s0˛maxCyd
C dmax

2˛max

�
C dmax

2

i

˛maxs0 �
h
.˛max � ˛min/

�
yds0

s0˛maxCyd
C dmax

2˛max

�
C dmax

2

i :

(14)

In the next theorem we show, that the proposed controller always generates data
requests that are non-negative and upper bounded by some a priori known value. As
the transmission rate of the source cannot exceed the bandwidth of its outgoing link
(and evidently cannot be negative), these properties are important for application in
a real network.

Theorem 2 The control signal, for any k � 0, satisfies the following inequalities

0 � u.kT/ � yds0
s0˛max C yd

C dmax

2˛max
: (15)

Buffer overflows lead to data losses and therefore are undesirable in communi-
cation networks. In the next theorem we calculate the value, which the bottleneck
queue length never exceeds. If the bottleneck buffer capacity is equal to or greater
than this value, then the risk of overflows is completely eliminated.
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Theorem 3 The queue length is always upper bounded by the following value

y.kT/ � yd C dmaxs0
2s0 � dmax=˛max

: (16)

An efficient flow control algorithm should ensure the greatest possible network
throughput. In the last theorem, we derive the minimum value of the demand queue
length that ensures, that the queue length never drops to zero, after the first data
reach it. This is equivalent to 100 % utilization of the available bandwidth.

Theorem 4 If the demand queue length satisfies

yd >
˛maxs0dmax.2˛max � ˛min/

2˛max˛mins0 � dmax.2˛max � ˛min/
C ˛maxdmax.n � 1/

˛min
; (17)

then the queue length is strictly positive for any k � n.

5 Simulation Results

In order to verify the properties of the proposed control strategy, computer sim-
ulations were performed. The discretization period T D 1ms and the round trip
time RTT D11ms. Therefore, m D 11 and n D 12. The bounds of the packet loss
ratio are ˛min D 0:8 and ˛max D 0:98. The actual transient of the loss ratio is as
follows: ˛ D 0:8 for kT 2 Œ0; 0:05/s, ˛ D 0:92 for kT 2 Œ0:05; 0:1/s, ˛ D 0:98

for kT 2 Œ0:1; 0:15/s, ˛ D 0:86 for kT 2 Œ0:15; 0:2�s. Parameter dmax D 30 kb,
and d.kT/ D 30 kb for kT 2 Œ0; 0:05/s, d.kT/ D 8 kb for kT 2 Œ0:05; 0:1/s,
d.kT/ D 0 kb for kT 2 Œ0:1; 0:15/s, d.kT/ D 22 kb for kT 2 Œ0:15; 0:2�s.
We assume, that the source can send a maximum of 40 kb of data in a single
discretization period. Therefore, we select s0 D 25:8 kb and yd D 562 kb, as
this combination satisfies condition (17), ensures convergence to the vicinity of
s.kT/ D 0 and guarantees generating a control signal which will never exceed
40 kb. The simulation results are shown in Figs. 1, 2, and 3. Figure 1 depicts the
control signal. As predicted by Theorem 2, it is always non-negative and never
exceeds 40 kb. The bottleneck queue length is shown in Fig. 2. It never exceeds the
value of 599 kb predicted by Theorem 3 and never drops to zero, after the first data
reach it. Therefore, the risk of overflow is eliminated and full bandwidth utilization
is ensured. Figure 3 depicts the sliding variable. As we can observe, once it enters
the quasi-sliding mode band calculated in Theorem 1 (shown with dashed lines) it
never leaves it again.
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Fig. 3 Sliding variable evolution

6 Conclusions

In this paper a robust sliding mode control strategy for a single virtual circuit
in connection oriented communication networks has been proposed. The strategy
is designed using the dead-beat sliding mode control paradigm and the reaching
law approach. It ensures favorable performance of the circuit even when the
available bandwidth and the actual loss rate ratio change with time and are highly
unpredictable.
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Short Description

The field of nanoelectronics has entered every pore of our everyday life starting from
cell-phones and computers to complicated medical equipment. Indeed, in the last
twenty years, the progress in nanotechnology has revolutionized the medical field in
terms of the development of very sophisticated diagnostic tools. The development
of nanotechnology has been made possible with the application of Moore’s law and
transistor scaling into shorter and shorter channel lengths that have allowed more
functions to be put on a single chip. Unfortunately, nanotechnology is getting to a
point at which further miniaturization of transistors has become more difficult. This
is due to the fact that nanoscale feature sizes can not be successfully achieved using
standard optical lithography processes. To reduce the cost of arriving at optimal
device designs, simulation is becoming more and more of a essential avenue to be
pursued in both Industry and Academia. Simulation offers possibilities that are not
attainable via experiments, such as looking into internal variables, like the electric
field profile, that can not be measured experimentally but definitely has significant
impact on the operation of a device. Also, simulation is cheaper and allows one to
use a range of simulation models starting from compact models to semi-classical
transport approaches to quantum-mechanical density matrix, Wigner Function and
Green’s function approaches.

This special session contained papers with topics that range from compact mod-
eling and fluctuations in device characteristics down to fully quantum mechanical
and atomistic modeling needed for describing the operation of the nanostructure
devices of today. The papers are written by leading experts in the field and the
Session Organizer is thankful for their invaluable contribution.



Advanced Numerical Methods for Semi-classical
Transport Simulation in Ultra-Narrow Channels

Zlatan Stanojević, Oskar Baumgartner, Markus Karner, Lidija Filipović,
Christian Kernstock, and Hans Kosina

Abstract In this work we present a semi-classical modeling and simulation
approach for ultra-narrow channels that has been implemented as part of the Vienna
Schrödinger-Poisson (VSP) simulation framework (Baumgartner, J Comput Elec-
tron 12:701–721, 2013; http://www.globaltcad.com/en/products/vsp.html (2014))
over the past few years. Our research has been driven by two goals: maintaining
high physical accuracy of the models while producing a computationally efficient
and flexible simulation code.

Keywords Device design • Semi-classical transport • Ultra-narrow channels

1 Introduction

The first commercialization of the FinFET sparked interest in non-planar, ultra-
narrow channels among researchers and manufacturers alike. Questions as to what
are the design parameters of such a device or whether the existing FinFET process is
optimal have arisen. The influence of strain and usage of materials other than silicon
are also hotly debated. As a consequence, the interest in advanced modeling and
simulation tools, that could help understand the physics of ultra-narrow channels,
is rising. But CMOS is not the only application. There are other fields of research
that are investigating the benefits of ultra-narrow channels in various applications,
such as silicon thermoelectrics, photovoltaics, or nano-electromechanical systems.
These too profit from a sound modeling and simulation framework that can help
understand effects and guide experimental efforts.

In novel device designs it is important to fully capture the effects of geometry,
crystal orientation, material composition, doping, and strain [11]. To do so, we
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developed a simulation work-flow consisting of a electronic structure calculation
based on k�p-theory, self-consistently coupled with electrostatics, semi-classical
modeling of scattering processes, and transport modeling based on the linearized
Boltzmann transport equation, which allows extraction of channel mobility and
transconductance. The novelty of our approach is that we mostly rely on numerical
solutions to each of the subproblems in the work-flow, thereby gaining flexibility. On
the one hand, a numerical treatment allows to avoid some analytical approximations,
such as the momentum relaxation time approximation [4], but on the other hand
results in a generally increased computational workload. This is mitigated through
several innovations that allow us to use computational resources more economically.
The particular innovations for each of the sub-problems will be addressed in the
following sections.

2 Electronic Structure

Our electronic structure model is based on k�p theory, although the methods shown
here also apply to other electronic structure models, such as tight binding. Rather
than focusing on a particular k�p Hamiltonian, we formulate a generic n-band
effective Hamiltonian [1],

H D

0

B
@

H11 H12 � � �
H22 � � �

c:c:
: : :

1

C
A ; Hlm D „2

2
k � m�1lm � k C „vlm � k C Ulm C D��

lm"
��: (1)

The model parameters are the coupling mass tensors mlm, Fermi velocities vlm,
coupling potentials Ulm, and deformation potentials D��

lm for each strain component
"��. Using this template we can construct a variety of different k�p Hamiltonians,
such as the 3�3 and 6�6 Dresselhaus-Kip-Kittel [3] (DKK) Hamiltonian for valence
bands in diamond and zinc-blende crystals, the 4�4 Hamiltonian due to Kane [6],
the 2�2 Hensel-Hasegawa-Nakayama Hamiltonian for electrons in silicon [5], or
the 4�4 Hamiltonian for lead-salts due to Dimmock and Wright [2].

To obtain the electronic structure of nano-structures the effective k�p Schrödinger
equation is solved by separating the wave function into a confined state and a
plane wave. To compute the confined state, we replace the k-vector by the operator
�ir? C kk, discretize the Schrödinger equation on an unstructured mesh [1], and
calculate its eigenenergies and eigenstates. Thus we obtain the E.kk/-relation, i.e.
the subband dispersion.

The number of required subbands is not known beforehand and generally
depends on the nano-structure geometry, size, and electrostatic potential. However,
a cut-off energy can be defined beyond which the occupation numbers of the
states are negligible. This energy is conveniently placed several kBT away from
the Fermi energy. The task is now to find all electronic states between the band
edge and the cut-off energy. Standard packages for iterative eigenvalue algorithms,
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0(H)
(1)

Emax

(H−Eshift)
(2)

Emax −Eshift

(P1(H−Eshift))
(3)

(P2(H−Eshift))
(4)

Fig. 1 Searching for eigenvalues up to Emax; the spectrum of the Hamiltonian H is shifted to
the left by Eshift > Emax and a subspace solver is invoked to find the first few eigenenergies. A
projection matrix selectively shifts the found eigenenergies to 0. The process is repeated until all
eigenenergies Ei < Emax are found

such as ARPACK [7], cannot provide all the eigenvalues in an interval, so we
developed a search algorithm that can be used on top of an iterative eigenvalue
solver. The algorithm, shown in Fig. 1, shifts the spectrum of the Hamiltonian to the
left by Eshift > Emax and the first nev eigenenergies are computed by a subspace
solver (e.g. ARPACK). A projection matrix P1 D I � vivH

i is then constructed
from the eigenstates vi. The subspace solver is invoked again on the projected
system P1.H �Eshift/. The projection selectively shifts the found eigenenergies to 0,
preventing the solver to converge on already found eigenenergies, which calculates
the next nev eigenenergies instead. The process is repeated until all eigenenergies
Ei < Emax are found. Since subspace solvers do not require matrices to be provided
explicitly, relying instead on matrix-vector multiplications performed externally, the
operation Pn.H � Eshift/ can be done implicitly, which results in little computational
overhead.

3 Carrier Scattering

The electronic states are used to evaluate the transition rates due to scattering,
which are needed for any kind of semi-classical transport simulation in nano-
structures. Here, we give the expressions for non-polar phonon scattering, Coulomb
scattering and surface roughness scattering in a dimension-independent way, i.e. all
expressions are valid for one and two-dimensional carrier gases (1DEG, 2DEG),
and, of course, also for bulk (3DEG).

For acoustic phonon scattering the squared matrix element for a transition from
state (n;k) to (n0;k0) reads

jHn;n0Ik;k0 j2 D �kBTD2
A

„�mclLd

Z

j n;k.r/j2j n0 ;k0.r/j2ddr; (2)
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where d is the dimension of the channel cross-section implying a carrier gas of
dimension .3� d/ [9]. For Coulomb scattering, the squared matrix element reads

hjHn;n0Ik;k0 j2i D q20

Z

jUn;n0Ik;k0.r/j2Nimp.r/ddr; (3)

with the matrix element for a single point charge,

Un;n0Ik;k0.r/ D q0

Z

 �n;k.r0/ n0 ;k0.r0/Gk�k0.r; r0/ddr0: (4)

Gk�k0.r; r0/ is the reduced electrostatic Green’s function which already contains a
linearized screening term.

Providing a squared matrix element for surface roughness scattering is more
involved. The Prange-Nee squared matrix element [8],

hjHn;n0Ik;k0 j2i D C.q/
A

jFn;n0Ik;k0 j2; (5)

is extended to obtain [10]

˝jHn;n0Ik;k0 j2˛ D 1

2�L

Z

R

jQfn;n0Ik;k0.q?/j2C.q/dq?; (6)

,k

′,k′
s

fn,n′;k,k′ (s)

s

fn,n′;k,k′ (s)

q⊥

| f̃n,n′;k,k′ (q⊥)|2

k‖

En,En′

q⊥

| f̃n,n′;k,k′ (q⊥)|2,C(
√
q2
‖+q2

⊥)

q‖

q‖ = k′
‖ − k‖

∫
dq⊥

extract form
functions

resample

FF
T

integrate

Fig. 2 Two wavefunctions  n;k and  n0;k0 in a fin-cross-section interact through surface rough-
ness. The corresponding form-function fn;n0

Ik;k0 .s/ is computed and interpolated onto an equidistant
s-grid. The spectral form-function Qfn;n0

Ik;k0.q?/ is then computed using the fast Fourier transform
(FFT). For a given energy the difference of axial k-vectors is evaluated which represents the axial
momentum transfer qk. The roughness power spectrum C.q/ is offset using

q
q2

k
Cq2

?
and its product

with the spectral form-function Qfn;n0
Ik;k0 .q?/ is integrated to obtain the square matrix element
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where C.q/ is the roughness power spectrum, and Fn;n0Ik;k0 are form-factors. The
function Qfn;n0Ik;k0.q?/ is called a spectral form-function. It is the Fourier transform
of the form-function, i.e. the form-factor dependent on the position along the curve
C which represents the ideal channel surface in the cross-section plane. The squared
matrix element is obtained by integrating the product of the squared spectral form
function and the in-plane component of the roughness power spectrum, which is
dependent on qk D k0k�kk. For planar channels the spectral form function is reduced

to jQfn;n0Ik;k0.q?/j2 D 2�=Lı.q?/jFn;n0Ik;k0 j2 reproducing the Prange-Nee expression
(Fig. 2).

4 Low-Field Transport

The linearized Boltzmann transport equation for a small homogeneous driving field
F D �q0E and elastic or quasi-elastic scattering processes,

X

n0;k0

Sn;n0.k;k0/
	
f 1n .k/� f 1n0.k0/


 D �F � vn.k/
df 0

dE
;

is discretized in k-space, giving

X

�0

S�;�0w�;�0

	
f 1� � f 1�0


 D �F � v�
df 0

dE
Wk;

where � represents the global index of a state .n;k/, w�;�0 is a coupling weight
between state � and �0, and Wk is the k-grid cell volume. The weights are
computed by piecewise integration of the density-of-states product, g.E/�g.E/�0 ,
along the equi-energy lines for a 2DEG, or points for a 1DEG (see Fig. 3). Due to
energy conservation, most of the weights are zero, and square matrix elements are
computed for the non-zero ones only. Sorting all states � by their absolute energy
produces a symmetric skyline matrix, allowing dense date storage and efficient
memory access. In a realistic device the number of non-zero elements can still reach
several millions and most computation time is spent in the evaluation of the square
matrix elements for each transition. Fortunately, this task can be parallelized very
effectively.

Having evaluated the elements of the scattering operator’s matrix, the linearized
Boltzmann transport equation is readily solved in k-space using iterative methods.
The resulting linear distribution responses for a p-type Si MOS and 5 nm thick p-
type Si nanowire are shown in Fig. 4.



692 Z. Stanojević et al.

Fig. 3 Left: calculation of the coupling weights for an elastic scattering operator; w�;�0 is obtained
by integrating the product of the density of states of state � and �0 over the energy interval where �
and �0 overlap. Multiplied by a scattering rate it gives the probability flux between � and �0. Right:
the resulting non-zero pattern of the discretized scattering operator; sorting all states by absolute
energy produces dense symmetric skyline matrix, thus eliminating storage overhead
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Fig. 4 Left: calculated k-space hole distribution response for a Si p-type MOS channel at 1 MV/cm
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p-type Si nanowire for different growth orientations; bottom right: the influences of phonon and
roughness scattering on the hole response distribution for the f100g-nanowire
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5 Conclusion

We presented several improvements to the numerical calculation of electronic
structure, scattering rates, and low-field transport in planar and non-planar
semiconductor channels. The improvements target to increase computational
efficiency while avoiding any sacrifice of accuracy within the semi-classical
theory. The presented modeling framework provides great flexibility with respect
to dimensionality, the form of the Hamiltonian, and the cross-section geometry
of the channel, effectively providing a physics-based TCAD simulation tool for
semi-classical carrier transport.
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Electron Momentum and Spin Relaxation
in Silicon Films

D. Osintsev, V. Sverdlov, and S. Selberherr

Abstract Semiconductor spintronics is promising, because it allows creating
microelectronic elements which are smaller and consume less energy than present
charge-based devices. Silicon is the main element of modern charge-based
electronics, thus, understanding the peculiarities of spin propagation in silicon
is the key for designing novel devices. We investigate the electron momentum and
the spin relaxation in thin (001) oriented SOI films using a k � p-based approach
with spin degree of freedom properly included. We demonstrate that shear strain
routinely used to enhance the electron mobility can boost the spin lifetime by an
order of magnitude.

Keywords Charge-based electronics • Semiconductor • Silicon films

1 Introduction

Growing technological challenges and soaring costs are gradually bringing MOS-
FET scaling to an end. This intensifies the search of alternative technologies and
computational principles. The electron spin attracts attention as a possible candidate
to be used in future electron devices for complementing or even replacing the
charge degree of freedom employed in MOSFETs. The spin state is characterized
by the two spin projections on a given axis and it thus has a potential in digital
information processing. In addition, only a small amount of energy is needed to
flip the spin orientation. Silicon is an ideal material for spintronic applications
due to the long spin lifetime in the bulk. The spin lifetime is determined by spin-
flip scattering between the valleys located on different crystallographic axes [1, 2].
This mechanism is suppressed in thin films; however, large spin relaxation in gated
silicon structures was observed [3]. Understanding the spin relaxation mechanisms
and identifying ways to boost the spin lifetime in confined electron systems is
urgently needed.
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2 Model and Results

We investigate spin relaxation in (001) silicon structures by taking into account
surface roughness and electron-phonon interaction induced momentum scattering
and spin relaxation. The two interfaces of the film are assumed to be independent.
The surface roughness scattering matrix elements are proportional to the product of
the corresponding subband wave functions’ derivatives at each interface [4]. To find
the wave functions and matrix elements we use the effective k�p Hamiltonian written
at the X-point for the two relevant valleys along the OZ-axis with shear strain and
the spin degree of freedom included [5]. We generalize the deformation potential
based electron-phonon scattering theory to include the shear strain deformation
potential and the deformation potential due to spin-orbit interaction responsible for
spin relaxation in confined systems [6].

In the two valleys’ plus two spin projections’ basis the subband wave functions
possess four components. These wave functions are written as (kx D 0)

�1 D

0

B
B
@

�1;1
�1;2
��1;1

���1;2

1

C
C
A �2 D

0

B
B
@

��1;2
�1;1
��1;2
��1;1

1

C
C
A �3 D
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�2;2
�2;1

���2;2
��2;1

1

C
C
A �4 D

0

B
B
@

��2;1
�2;2

���2;1
���2;2

1

C
C
A ; (1)

where�1.3/ and�2.4/ are the up- and down-spin wave functions for the first (second)
subband. Wave functions with opposite spin in the same valley are orthogonal. The
dominant components are �1;1 and �2;2 for �1.2/ and �3.4/, respectively. Thus, �1
and�3 are considered as up-spin wave functions, while�2 and�4 are the down-spin
wave functions. The small components of the wave functions are the result of the
spin-orbit interaction taken into account with the 
y ˝SO.kx	x �ky	y/ term, where
SO D1.27 meVnm [2, 5], 
y is the y-Pauli matrix in the valley degree of freedom,
and 	x and 	y are the spin Pauli matrices.

Without spin-orbit interaction included the wave function conserves the spin
projection which is assumed along the OZ-axis. The large components of the wave
functions are well described by �1;1.2;2/ D eik0z sin

�
�z
t

�
(Fig. 1) and their con-

jugates. This expression corresponds to the usual envelope quantization function.
Under shear strain "xy the degeneracy between the two unprimed subbands is lifted
which results in slightly different envelope functions �1;1 and �2;2 (Fig. 2).

The small components of the four-components’ wave function are proportional
to the spin-orbit interaction strength. The amplitude of these components shown
in Fig. 3 for an unstrained film of 4 nm thickness for kx D 0 strongly depends on
the value of ky. For ky D 1 nm�1 the small components of the wave functions are
pronounced, while decreasing ky value makes the small components vanish.
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Fig. 1 The large component
of the wave function of the
lowest unprimed subband in
an unstrained film located in
the valley centered at k0
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Shear strain "xy greatly suppresses the small components as shown in Fig. 4.
�1;2 for the strain value of 1 % is almost vanished, while for the film the wave
function component is significant (Fig. 4). Vanishing values of the small components
decrease the spin mixing between the states with the opposite spin projections,
which results in longer spin lifetime.

Surface roughness limited spin lifetime and momentum relaxation time as a
function of temperature are shown in Fig. 5. For the chosen electron concentrations
the spin and momentum relaxation times decrease with temperature [1]. As a
confirmation of the Elliot-Yafet spin relaxation mechanism, the spin lifetime
remains proportional to the momentum relaxation time (Fig. 5).

Under shear strain the spin lifetime is enhanced much stronger than the momen-
tum relaxation time (Fig. 6) due to the small components’ suppression (Fig. 4). An
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Fig. 4 The small components are considerably suppressed by tensile shear strain

extensive code parallelization and optimization allowed us to extend the method [6]
for a larger set of parameters, including the film thickness and the electron
concentration. The ratio of the spin to the momentum relaxation time (inset in Fig. 6)
demonstrates the significant enhancement.
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3 Conclusion

We have used a k � p approach to evaluate the momentum relaxation time and the
spin lifetime in strained thin silicon films. We have shown that the small components
of four-component wave functions vanish with strain. Thus, the spin lifetime is
enhanced much stronger by shear strain than the momentum relaxation time. Tensile
shear strain boosts both the electron mobility and the spin lifetime in silicon films.
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Neumann Series Analysis of the Wigner
Equation Solution

I. Dimov, M. Nedjalkov, J.M. Sellier, and S. Selberherr

Abstract The existence and uniqueness of the electron transport Wigner equation
solution, determined by boundary conditions, is analyzed in terms of the Neumann
series expansion of the integral form of the equation, obtained with the help of
Newton’s trajectories. For understanding of the peculiarities of Wigner-quantum
electron transport in semiconductor structures such mathematical issues can not be
separated from the physical attributes of the solution. In the presented analysis these
two sides of the problem mutually interplay.

The problem is first formulated from a physical point of view, where the
stationary solution is considered as the long time limit of the general evolution
problem posed by both initial and boundary conditions. The proof of convergence
relies on the assumption for reasonable local conditions which may be specified
for the kernel and on the fact that the Neumann series expansion corresponds to an
integral equation of Volterra type with respect to the time variable.

Keywords Electron transport • Neumann series analysis • Semiconductor •
Wigner equation

1 Introduction

The existence and uniqueness of the solution of the Wigner equation (WE) is
subject of an active research interest [1–3] since the rising importance of a quantum
description of the electron transport in the novel semiconductor nanoelectronics. An
analysis of the regularity of the Wigner function and the existence and uniqueness of
the solution of the by initial conditions posed evolution problem relevant for single-
dimensional nanostructures is presented in [1] and used to proof the convergence of
the suggested operator-splitting method. The analysis has been further augmented
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to account for the existence of boundary conditions characterizing the contacts
of such structures. The well posedness of the transient problem, associated with
time-dependent inflow boundary conditions has been shown in a mathematically
rigorous way [2]. The integral form of the Wigner equation based on classical New-
tonian trajectories for transient (posed by an initial condition, (IC)) and stationary
(posed by boundary conditions, (BC)) problems has been used to investigate the
corresponding Neumann expansion of the solution in connection with convergence
proofs of the developed quantum Monte Carlo methods [4, 5]. In both cases the
equation is of Volterra type with respect to the evolution time or the time to the
boundary, so that the trajectory approach is straightforwardly generalized to the
typical multidimensional structures of modern nanoelectronics. In a recent work [6]
it has been shown that the stationary Wigner equation can be expressed as a Volterra
type integral equation with respect to the spatial variable. It is argued that moving
the boundaries arbitrary close, or imposing arbitrary inflow BCs on them, may lead
to non-unique and unphysical solutions [6]. However, another recent work shows the
well-posedness of the problem within the interval of periodicity˝ D Œ�l=2; l=2� of
a certain class of periodic potentials, under arbitrary inflow BCs specified at �l=2
(v > 0) and l=2 (v < 0) [3]. Thus under certain physical settings the solution of
the stationary Wigner equation is well defined by the boundary conditions, while in
other circumstances the physical soundness of the problem becomes questionable.
Alternatively stated, there circumstances where the stationary Wigner equation
is of practical importance, while in other occasions the equation is of academic
importance only.

Here we present an analysis, in which mathematical and physical aspects of the
problem mutually interplay. This imposes a rather physical way of presentation
with an accent on the application aspects of the results, on the expense of the
mathematical rigor. The single-dimensional Wigner equation is considered, however
the analysis holds for three-dimensional transport as in the case of classical transport
[7, 8].

The problem is first formulated from a physical point of view, where the
stationary solution is considered as the long time limit of the general evolution
problem posed by both ICs and BCs. This implies the existence of a generic solution,
determined partially by the ICs and partially by the BCs. The latter are interpreted
in this scheme as a known part of the generic solution, which is complementary to
the part corresponding to the IC’s. If the contribution from the IC’s does not vanish
with time and only BCs are considered, the problem remains not well formulated
already from a physical point of view. It follows that the time-dependent component
of the field-less Liouville operator can not be neglected a priori, so that a restriction
to the stationary WE can be relevant only after existence of physical arguments
for that. As a matter of fact, physically relevant models in the Wigner formulation
are the stargenvalue problem and the time-dependent Wigner equation, thoroughly
discussed in [9–11].
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These considerations are apart from the practical aspects of Wigner transport.
Boundary conditions are known explicitly only in rare cases,. An exception is the
equilibrium Wigner function, which is well known. Thus equilibrium conditions are
routinely assumed at the boundaries. However, then the domain of the equation must
be extended to infinity to avoid correlations with the non-equilibrium central region
of the structure, where the electron flow occurs.

2 Integral Representation

The presented analysis is dimension-independent, so that for the sake of simplicity
the single- dimensional formulation of the problem is considered. The equation for
the Wigner function f reads:

@f .x; k; t/

@t
C v.k/

@f .x; k; t/

@x
D
Z

dk0Vw.x; k � k0/f .x; k0; t/; (1)

where v.k/ D „k=m and m are the electron velocity and effective mass, and Vw is
the Wigner potential:

Vw.x; k/ D 1

i„2�
Z

dse�iks.V.x C s=2/� V.x � s=2//; (2)

with V.x/ the electric potential of the structure determining the kernel of the
equation. The differential component of (1) is given by the Liouville operator, whose
characteristics are the field-less Newton trajectories.

x.t0/ D x � v.k/.t � t0/I k.t0/ D k (3)

The trajectory (3) is initialized by x;m; t and parameterized backwards in time by
t0 < t. An important property of Newton trajectories is that they do not cross in the
phase space, so that (3) is uniquely determined by the initialization point.

The Liouville operator becomes a full time differential over given characteristics,
so that it is now possible to rewrite Eq. (1) as a set of equations parametrized by t0,
which can be furthermore integrated on t0 in the limits Œ0; t�, giving rise to:

f .x; k; t/ D
tZ

0

dt0
Z

dk0Vw.x.t
0/; k.t0/� k0/f .x.t0/; k0; t/ (4)

Cfi.x.0/; k.0//�˝.x.0//C fb.x.tb/; k.tb//�.tb/:

Here the domain indicator �˝ is unity, if the argument belongs to the closed interval
˝ , and is zero otherwise, tb is the time needed for x.t0/ to reach the boundary.
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Finally (3) has been used to set x.t/ D x, k.t/ D k. The solution is sought in the
interval ˝ , where the initial condition (IC) fi.x; k/ is known at time t D 0 and the
BCs fb.�l=2; k; t/, k > 0, fb.l=2; k; t/, k < 0 are known at any time t > 0 (and
zero at t D 0). Here we assume stationary physical conditions, in particular the BCs
and the potential profile V are time independent. Furthermore boundaries, usually
associated with certain physical interfaces, have now the meaning of points, where
the function f , the unique solution of a generic evolution problem, is known.

3 Convergence

The second kind Fredholm integral equation (1) has a free term given by the IC and
BCs. The solution can be presented as a Neumann series of the consecutive iteration
of the kernel on the free term and is uniquely determined by the latter provided
the series converges. The proof of the convergence relies on the fact that (1) is of
Volterra type with respect to the variable t. This allows to rewrite the equation as

f .x; k; t/ D
tZ

t0

dt0
Z

dk0Vw.x.t
0/; k.t0/� k0/f .x.t0/; k0; t/C f1.x; k; t0/; (5)

where itself the free term

f1.x; k; t0/ D f .x.t0/; k.t0/; t0/ (6)

of (5) satisfies Eq. (4) at t0 D t �t1, which is a time of the past with respect to the
initialization time, t > t0. Under the assumption that f1 is known, reasonable local
conditions may be specified for the kernel, in order to guarantee the convergence
of the series. In [7] the necessary conditions for the convergence of such a
kind of iterative expansion are given. These conditions concern the kernel of the
equation Vw. We consider a typical condition for Vw after the following remark.
Frequently authors use the term mild conditions. However, since one is interested in
computational convergence, we also need to have a mild condition number. If the
solution convergence is mild, then the solution can be confidently declared as non-
singular. Since the convergence behavior and the condition number can be affected
by poor scaling, the definition of mild is problem dependent. Simply speaking,
mildness means confidence in the convergence to the true non-singular solution [12].
Now, one sufficient condition for convergence is the boundedness of the Wigner
potential, jVwj < C, where C is a constant. Indeed, if t1 is small enough, the
iterative terms have an upper limit given by the corresponding terms of a geometric
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progression defined by

Ct1 < 1: (7)

In this way the solution f of (5) is uniquely determined by the free term f1.
The procedure can be repeated for f1, which introduces the free term f2 and so on,

giving a decomposition of the backward evolution into the time intervals ti. It is
important to show that these intervals can cover the whole evolution interval, which
ensures that the initial time is reached. The next estimation addresses this problem.
By assuming that the Fourier transform QV of the electric potential V is bounded by
a constant „C=4 and using the definition (2) it may be shown that:

jVw.x; k/j < C; (8)

Thus, it is sufficient to request that the potential V is an absolutely integrable
function, as the Fourier transform of such a function is bounded and continuous.
The result (8) used in (7), shows the existence of an infimum of the set ti, which
can be used as a global decomposition time t.

Finally, this procedure links f to the free term in (4): the initial and the boundary
conditions, which uniquely determine the solution of the equation.

4 Physical Analysis

The physical aspects of this proof may be associated to the Markovian character of
the Wigner evolution. Furthermore we note that the solution has two complementary
contributions from the IC and the BCs. In general, for small evolution times t the
main contribution to the solution in an internal point of ˝ is given by the IC. For
large times (3) encounters the boundary, so that the BCs determine the solution.
Moreover, since the trajectory evolves backward in time, the function f outside ˝
contributes to the solution inside ˝ by these values of k only, which guarantee the
injecting character of fb.

An important conclusion follows from this analysis: In the case when the
initial condition ‘leaks’ through the boundaries: fi D 0 after given time ts, the
electron system enters into a stationary regime and it is legitimate to consider
the stationary equation as physically relevant. However, from a physical point of
view it is clear that if there are electronic states which remain insulated away
from the boundaries, they can not be controlled by the boundaries and the time
dependent factor in the Wigner equation can not be neglected. Such are the
bound eigenstates of the Hamiltonian related e.g. to periodic in time solutions or
electrons with zero momenta. From a mathematical point of view, states which
commute with the system Hamiltonian give rise to the ‘bound state problem’ for
the von Neumann or Wigner equations [13]. The particular manifestation of this
problem within the developed approach, is the fact that such states can not be
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associated with trajectories which reach the boundaries: the wave vector of bounded
states is undefined. In particular, zero momentum electrons are routinely neglected
in the mathematical approaches. Indeed they have zero contribution to certain
physical mean values like velocity, energy, and current, however, they affect the
electrostatics.

The requirement for V to be an absolute integrable function is satisfied by a large
class of potentials. Indeed the physical quantities are usually assumed to be smooth
functions of their variables. In particular the existence of the first derivative, the
electric force, guarantees the continuity of V almost everywhere, besides the fact
that discontinuities are considered as convenient for the mathematical treatment of
limiting cases. Furthermore one must assume that V approaches zero far away from
the structure, which correctly accounts for the recovery of the equilibrium [14].

Finally almost everywhere continuous functions which become zero at infinity
are absolutely integrable, showing that this condition does not restrict, but rather
characterize the physically relevant potentials.

We conclude with a remark concerning the fact that boundaries are considered
as a part of a global Wigner function. There are conditions for both pure and
mixed states, which, if satisfied, allow to interpret a phase space function as a
physically acceptable quasi-distribution, or Wigner function [13]. In this respect, an
inconsistent change of the values at the boundaries will lead to unphysical results.
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Short Description

Appropriate descriptions of electron transport in semiconductor micro and nano
devices are crucial for many current and future technologies able to generate great
industrial and economic activity. This minisymposium will explore a wide variety
of topics in modern electron transport including numerical and stochastic methods
for electron transport equations, thermal effects, sub-band models, quantum dots,
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An Algorithm for Mixed-Mode 3D TCAD
for Power Electronics Devices, and Application
to Power p-i-n Diode

D. Cagnoni, M. Bellini, J. Vobecký, M. Restelli, and C. de Falco

Abstract Cutting edge semiconductor devices for power electronic applications,
such as Phase Control Thyristors (PCTs) or Bimode Insulated Gate Transistor
(BIGTs), present large area and complex 3D geometry, thus requiring full scale
3D models for their simulation. Moreover, sensitivity to temperature variations and
complex loading conditions call for mixed mode simulation of distributed devices
coupled to external controlling circuits. In this work, we describe a strategy for
coupled simulation of 3D devices and lumped circuit networks, with particular
emphasis on efficient iterative solution strategies for nonlinear equations. The
algorithm presented is tested on a p-i-n power diode, for which quasi-static on-state
and transient switching (reverse recovery) simulations are performed.

Keywords Power electronic devices • p-i-n power diode • Semiconductor

1 Introduction

Using numerical simulation of power devices is becoming more and more common
in the semiconductor industry because of the need to analyze both performance
[4, 8, 10] and failures [5, 9, 13, 16], while avoiding expensive prototyping and
testing. The design of state of the art devices uses complex, three-dimensional
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structures and doping profiles in an attempt to minimize both on-state and switching
losses [12] and to improve high-voltage and high-temperature operation capability
[18]. Such complex devices require full 3D simulations [4, 8, 10]. Mainstream
commercial 3D TCAD simulators [7, 14, 15] are focused on the accurate physical
modeling of nanoscale CMOS devices, rather than on providing the computational
efficiency required for the simulation of large devices with complex geometries.
This study is part of an ongoing effort to develop a specialized simulator, targeting
the peculiar needs of large scale TCAD in the power electronics industry. In addition
to size and geometric complexities, challenges posed by the simulation of 3D power
devices are due to extremely high doping densities, and by the wide range of
temperatures under which correct operation has to be guaranteed, both of which
must be taken into account when choosing material parameter models. Finally,
as accurate lumped parameter models are often unavailable for power electronic
devices, mixed mode simulation of devices coupled to both electrical [1, 2] and
thermal [3, 6, 9] networks is often needed.

The focus of the present work is two-fold: on one hand we describe the algorithm
being used in our simulator for time stepping and nonlinear iterations, while on
the other hand we verify the accuracy of the temperature dependent coefficient
models on a relevant benchmark problem. This work is structured as follows:
Sect. 2 introduces the mathematical model and the employed algorithm, while in
Sect. 3 simulation results for an irradiated power diode, both in quasi-static and fast
transient switching regime, are presented to benchmark the simulator performance.
The effect of adjusting carrier lifetimes to account for deep levels created via the
irradiation process (see [3]) is discussed. In Sect. 4 conclusions are drawn and future
perspectives discussed.

2 Equations for the Coupled Model

In order to introduce the system of Partial-Differential-Algebraic equations model-
ing a semiconductor device coupled with an external controlling circuit, let˝ � R

3

be the device domain, let � N � @˝ denote insulated or artificial boundaries, and let
� D

i � @˝ denote each of the Nc contacts. Denote by Fi the voltage applied at the
i-th contact. Assume that the lumped circuit network, modeled via Modified Nodal
Analysis (MNA), has Nc pins, and that its state vector x consists of Nf degrees of
freedom. Charge transport within the device is described by the following system of
conservation laws

� r � ."r�/C q .n � p � D/ D 0

Pn C r � Jn C R.n; p;r�/ D 0I Pp C r � Jp C R.n; p;r�/ D 0 (1)

Jn D ��n .Vthrn � nr .� C �BGN// I Jp D ��p .Vthrp C pr .� � �BGN// I J D Jp � Jn
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� being the electrostatic potential, n and p electron and hole densities, and D the
doping density. R.n; p; �/ is the net recombination rate, Jn, Jp are the electron and
hole fluxes, �n and �p are the mobilities, Vth is the thermal voltage, and �BGN

accounts for bandgap narrowing. The set od PDEs (1) is usually called drift-diffusion
approximation and may be derived by moment expansion of Boltzmann transport
equation. At the boundaries the following conditions are enforced:

� � Fi D �built-in.D/I D C p � n D 0I pn � n2i D 0 on � D
i (2)

r� � � D 0I Jn � � D 0I Jp � � D 0 on � N (3)

� being the outward normal unit vector. The device-circuit coupling conditions read

APx C C.x/C rI D 0I F D rT xI Ii D
Z

� D
i

.�@.�r�/=@t C qJ/ � �D
i d�; (4)

where the matrix A and the vector valued nonlinear function C may be assembled
via standard MNA modelling of the controlling circuit network, while I D
ŒIi�

T ; i D 1 : : :Nc and F D ŒFi�
T ; i D 1 : : :Nc are vectors of device currents and

corresponding voltages, respectively; the incidence matrix r accounts for attaching
each device contact to a circuit node by adding the corresponding current to the
correct KCL equation in the MNA system. To solve the system comprised of (1)–
(4) a suitable numerical method consisting of a mix of different ingredients has to be
employed. For spatial discretization of a strategy based on the OSC [11] algorithm
and on the well known exponential fitting stabilization method is employed, in order
to guarantee a discrete maximum principle with weak regularity requirements on the
3D mesh. For time discretization an implicit Euler method is then used, so that the
problem of solving (1)–(4) is reduced to that of solving a sequence of nonlinear-
algebraic problems, one for each time step t, of the form:

G.t/.S.t// D 0I (5)

Where S.t/ D Œ�.t/;n.t/;p.t/;F.t/; I.t/�T denotes the system state vector at time t and
G.t/.S.t// D ŒG.t/

� .S
.t//;G.t/

n .S.t//;G
.t/
p .S.t//;G

.t/
F .S

.t//;G.t/
I .S

.t//�T .

In order to initialize the quasi-Newton algorithm for the nonlinear problem solution,
an initial guess is constructed by extrapolating data at previous time steps. Such
extrapolated guess is also used for truncation error estimation, and for time step
control. As a termination criterion for quasi-Newton iterations, we consider the
convergence reached if either the residual G.S/ or the increment dS satisfy:

kGu.S/k1 < 	u
u or kduk1 < .kuk1 C �u/�u

where u D �;F; I represents the generic field in the state vector, 
u; �u are the
respective tolerances, while 	u; �u are suitably chosen reference values. For u D n; p
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a slightly different criterion is employed, namely

kGu.S/k1 < 	u
u or kdVth log.u=ni/k1 < .kVth log.u=ni/k1 C �u/�u

so that all reference values are dimensionally consistent. The outline of the solution
algorithm is provided in Algorithm 1.

Algorithm 1 Outline of the time-adaptive implicit Euler modified quasi-Newton solution
algorithm

procedure CGDD(S.0/J ; S.�1/
J ; S.�2/

J ; t.0/; t.�1/; t.�2/; dt.1/)
k 1

repeat F Time loop
j 0; t.k/ t.k�1/ C dt.k/

S
.k/
0  EXTRAPOLATE.S

.k�3/
J ; S

.k�2/
J ; S

.k�1/
J ; dt.k//

while j < Jmax do F Fix maximum qN iterations
C COEFFICIENTS_UPDATE.S.k/j /

GjC1  RESIDUAL_UPDATE.S
.k/
j ; S

.k�1/
J ;C; dt.k/; t.k//

J JACOBIAN_UPDATE.S.k/j ;C; dt.k/; t.k//
dSjC1  SOLVE_LINEAR_SYSTEM.J;�GjC1/

˛ D COMPUTE_DAMPING_FACTOR.S
.k/
j ; dSjC1/ ; S

.k/
jC1  S

.k/
j C ˛dSjC1

if kf .S.k/0 � S.k/jC1/k1 >  or .kGjC1k1 > kGj�ak1 and kdSjC1k1 > kdSj�ak1/

then
DECREASE_DT.dt.k//, BREAK_Q-N./

else if kGjC1k1 < .kS.k/jC1k1 C 	/
 or kdf .S.k/jC1/k1 < .kf .S.k/jC1/k1 C �/� then

S.k/J  S.k/jC1, dtkC1  ESTIMATE_DT.S.k/0 ; S
.k/
J /, k kC 1 , BREAK_Q-N./

end if
l 0,Sl  S.k/jC1

while j < JM
max do FModified qN iterations

C COEFFICIENTS_UPDATE.Sl/

Gl  RESIDUAL_UPDATE.Sl; S
k�1
J ;C; dt.k/; t.k//

dSlC1  SOLVE_LINEAR_SYSTEM.J;�Gl/

SlC1  SlC1 C dSl

if kGjk1 > kGj�ak1 or kdSjk1 > kdSj�ak1 then
BREAK_MODIFIED_QUASI-NEWTON./

else if kGlk1 < .kSlk1 C 	/
 or kdf .Sl/k1 < .kf .Sl/k1 C �/� then
S.k/J  Sl, dtkC1 ESTIMATE_DT.S.k/0 ; S

.k/
J /, k kC 1, BREAK_Q-N./

end if
l lC 1 F Next modified quasi-Newton step

end while
j jC 1; S.k/jC1 Sl F Accept modified Newton result

end while
until t.k/ < Tmax F Fix time range

end procedure
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3 Benchmark

As a benchmark test case, we consider the power diode studied in [3]. Such diodes
are irradiated with 1–5MeV electrons at a dose between 5 and 20 kGy and 5–
12MeV He at doses ranging between 1010–1011 cm�2 and annealed at a temperature
below 300 ıC. In these conditions the dominant deep levels are the vacancy-oxygen
pair (V-O) at ' EC � 0:16 eV and the divacancy (V-V) at ' EC � 0:42 eV.
As a result, an accurate modeling of the generation-recombination processes via
these deep levels is necessary, in order to precisely reproduce the reverse recovery
characteristics of the diode. Complete deep levels models are computationally
expensive and degrade convergence; thus, an effective carrier lifetime profile was
obtained via optimization with a commercial simulator [15], and introduced within
the conventional SRH framework. The schematic of testing circuit used for reverse
recovery measurements is shown in Fig. 1. The inductance is tuned to match the
dI=dt of the measurements. The simulations are performed over a wide temperature
range (300–413 K), and the switch is modeled as a time varying resistor, with the
conductance ramping smoothly from 10�3 to 103 S in 10�s (the time derivative of
conductance is continuous). Figure 2 shows the computed discharge profiles. The
effect of lifetime controlling results in a prolonged and increased discharge of the
power diode, at all temperatures, due to an increased charge buildup.

Fig. 1 Up: schematic
structure of the simulated
circuit. Down: the diode and
switch models used for the
nonlinear circuit simulation
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Fig. 2 Reverse recovery characteristics at 27, 80, and 140 ıC. Up, without lifetime optimization.
Down, with optimized lifetimes

Figure 3 shows a detailed view of the computed forward IV characteristic,
both with and without the computed lifetimes. The importance of introducing the
optimized lifetimes is particularly evidenced in high-injection regime, where the
crossing of characteristic curve typical of irradiated devices is correctly reproduced
by the optimized carrier lifetimes. Low injection regime characteristics, visible in
the log-scale graphs, do not present substantial differences.
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Fig. 3 Direct current characteristic in 0–2V bias range. Left, locally optimized lifetimes; right,
standard doping-dependent model [17]; top, logarithmic scale, bottom, linear scale

4 Conclusions and Perspectives

In this work, a complete strategy for the coupled simulation of 3D semiconductor
devices and lumped circuit elements has been presented. Even being as simple as
reasonably possible, the simulated model features all the characteristics also present
in more complex models: steep variations in spatial input data as well as in the
solution, complex physical models of nonlinear effects, abruptly fast transients are
successfully dealt with. The p-i-n power diode benchmark results demonstrate the
proposed algorithm’s ability to correctly reproduce the device behavior over a wide
range of operation temperature and conditions.

Striving for a successful use of TCAD in the simulation of more geometrically
and operationally complex power electronic devices, in turn leading to bigger
and stiffer problems, future goals include: the intertwining of the linear and
nonlinear solvers in Newton-Krylov-like methods, to increase solver efficiency, the
application of domain-decomposition to enable parallel solution, the introduction
of the heat equation and a thermal circuit, to relax the assumption on temperature
uniformity and achieve more precise simulation results.

Acknowledgements Carlo de Falco’s work was partially funded by the “Start-up Packages and
PhD Program project”, co-funded by Regione Lombardia through the “Fondo per lo sviluppo e la
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An Electro-Thermal Hydrodynamical Model
for Charge Transport in Graphene

V. Dario Camiola, Giovanni Mascali, and Vittorio Romano

Abstract A hydrodynamical model for the charge and the heat transport in
graphene is presented. The state variables are moments of the electron, hole and
phonon distribution functions, and their evolution equations are derived from the
respective Boltzmann equations by integration. The closure of the system is obtained
by means of the maximum entropy principle and all the main scattering mechanisms
are taken into account. Numerical simulations are presented in the case of a
suspended graphene monolayer.

Keywords Charge transport • Electro-thermal hydrodynamical model • Maxi-
mum entropy principle

1 Introduction

Graphene is among the most promising materials for future applications in nano-
electronics devices. It is two dimensional and consists of a single layer of carbon
atoms arranged into a honeycomb hexagonal lattice. Graphene has very good
mechanical properties and is an excellent heat and electricity conductor. In order
to formulate comprehensive transport models it is necessary to take into account the
electronic and phonon bandstructure and the most relevant scattering mechanisms
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between electrons and phonons. The case of a suspended sheet of graphene is
considered here.

2 Kinetic Description

Electrons which contribute to the charge transport in graphene are those in the
conduction and valence band, and it is preferable to treat the latter as holes
for insuring integrability of the distribution function. Electrons and holes mostly
populate the states near to the K and K0 Dirac points situated at the boundary of
the first hexagonal Brillouin zone, the respective neighborhoods being called K and
K0 valleys. In these valleys, the energies �i, i D e; h; (e and h respectively stay for
electrons and holes) are, with a good approximation, linear in the wave vector k:
�i D „vF jkj; k 2 R

2; i D e; h; „ being the reduced Planck constant, and vF the
Fermi velocity. K and K0 valleys will be treated as equivalent.

A semiclassical kinetic description of the charge transport in graphene is based
on the two Boltzmann equations for electrons and holes (approaches which make
use of the Wigner transport equations are also present in the literature, for example,
see [1])

@fi
@t

C vi � rrfi C ei

„ E � rk fi D Ci; i D e; h; (1)

where fi.r;k; t/, i D e; h, represent the state occupation numbers of electrons and
holes at position r, time t and with wave-vector k. rr and rk are the gradients
with respect to the position and the wave vector respectively, ei, i D e; h, are the
particle charges (negative for electrons and positive for holes), and E is the electric
field obtained by the Poisson equation, which must be coupled with the above

system. The group velocity v is related to the band energy by v D 1

„rk"i D vF
k

jkj :
Ci, i D e; h, are the scattering operators representing both the intra and inter-
band interactions of electrons and holes with acoustic and optical phonons. Its
complete expression is rather involved, here, for simplicity, we report only the
generic contribution relative to the intra-conduction band scattering and refer the
interested readers to [2, 3]

Ce.k/D 1

.2�/2

Z

R2

h
wee.k0;k/fe.k0/ .1 � fe.k//„ ƒ‚ …

gain

�wee.k;k0/fe.k/
�
1 � fe.k0/

�

„ ƒ‚ …
loss

i
dk0;

where wee.k0;k/ is the transition rate from the state k to the state k0. In this case,
the detailed balance principle implies wee.k;k0/ D e."�"0/=kBTwee.k0;k/, with kB the
Boltzmann constant and T the lattice temperature.

We consider interactions with acoustic phonons, longitudinal optical phonons
(� -LO), transversal optical phonons (� -TO), and K-phonons.
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In the elastic approximation, the production term relative to acoustic phonon
(intraband) transitions simplifies into

Ci.k/ D 1

.2�/2

Z

R2

A.ac/.1C cos � 00/ı."0i � "i/
�

fi.k0/ �fi.k// dk0:

where A.ac/ can be found in [4–6] and � 00 is the angle between k and k0.
For the optical and the K-phonons, in the Einstein approximation („! D cost,

with ! phonon frequency), one has

ws
ee.k

0;k/ D ss
ee.k

0;k/

2

6
4
�
g�s C 1

�
ı
�
"e � "0e C „!s

�

„ ƒ‚ …
emission

C gCs ı
�
"e � "0e � „!s

�

„ ƒ‚ …
absorption

3

7
5 ;

s D LO;TO;K;

with sK
ee.k
0;k/ D AKD2

K .1 � cos � 00/ for the K-phonons and s�ee.k
0;k/ D A� D2

�

�
1

� cos.� C � 0/
�

respectively for the LO and TO phonons. AK and A� can be found
in [5, 6], and � and � 0 respectively denote the angle between k and k0 � k and that
between k0 and k0 � k.

If phonons are considered as a thermal bath at the constant temperature TL

gṡ 

h
e„!s=kBTL � 1

i�1
; equilibrium Bose-Einstein;

otherwise gṡ D gs.r; t;q˙/, with the phonon wave vector given by q˙ D ˙.k0�k/,
in agreement with the momentum conservation.

Moreover, if we consider the phonon dynamics, the evolution of the phonon
occupation number is governed by the following Boltzmann equations

@gs

@t
C rq!s.q/
„ ƒ‚ …
	0

�rrgs D Cs; s D LO;TO;K;

@gac

@t
C rq!ac.q/ � rrgac D Cac;

Cs D�
�
gs � g0s

�


OA
C
X

ij

C ij
s ; i; j D e; h; s D LO;TO;K;

Cac D � 3


OA

�
gac � g0ac

�C
X

i

C i
ac; i D e; h;

where 
OA is the relaxation time for the decay of an optical phonon into two acoustic
phonons, and g0s , s D LO; TO; K, g0ac are the equilibrium occupation number of the
optical and acoustic phonons corresponding to the temperature they would have if
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they were at the local equilibrium relative to their total average energy [7]. In the
acoustic phonon scattering, normal and umpklapp types of intra-mode interactions
as well as interactions with defects/impurities should also be considered.

Direct simulations based on the above-written semiclassical kinetic equations
have been performed by MC methods, see e.g. [5], or with suitable numerical
schemes [6], but they, even if very accurate, are too heavy from a computational
point of view. Therefore models based on integrated quantities are preferable for
computer aided design (CAD) purposes in view of a possible use of graphene in
electron devices like MOSFETs or DG-MOSFETs.

3 Carrier Moment Equations

Macroscopic quantities can be defined as moments of the distribution functions with
respect to some suitable weight functions  .k/, assuming a sufficient regularity
for the existence of the involved integrals. In particular for electrons and holes
we propose a set of moment equations consisting of the balance equations of the
quantities (i D e; h)

average density �i D 4

.2 �/2

Z

R2

fi.r;k; t/ dk;

average velocity �iVi D 4

.2 �/2

Z

R2

fi.r;k; t/ v dk;

average energy �iWi D 4

.2 �/2

Z

R2

fi.r;k; t/ " dk;

average energy-flux �iSi D 4

.2 �/2

Z

R2

fi.r;k; t/ "v d k;

where the factor 4 arises from taking into account both the spin states and the two
equivalent valleys.

By integrating the Boltzmann equations with respect to k, one has the following
balance equations for the above-defined macroscopic quantities

@

@t
�i C rr � .�i Vi/ D �i Ci;

@

@t
.�i Vi/C r r �

�
�i F.0/i

�
� ei �iG

.0/
i � E D �iCVi ;

@

@t
.�iWi/C rr � .�i Si/� ei�iE � Vi D �iCWi ;

@

@t
.�i Si/C r r �

�
�iF

.1/
i

�
� ei�iG

.1/
i � E D �iCSi ;
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where the G’s and F’s are extra-fluxes and the terms at the right hand sides are
productions [3].

4 The Phonon Moment System

Similarly for each type of phonons we have

@

@t
Wp C rr � Qp D CWp ; energy balance equation;

@

@t
Qp C rr � Tp D CQp ; energy-flux balance equation;

where for each phonon mode

Wp D
Z

B
„!pgp dq; average energy;

Qp D
Z

B

„!pvpgp dq; average energy-flux;

B is the hexagonal Brillouin zone and p D LO;TO;K; ac, the T’s are extra-fluxes,
and the terms at the right hand sides are productions [3]. More general moment
systems can be considered, that we consider here is the minimal one for a reasonable
description of the thermo-electrical effects.

5 The Closure Problem

The extra fluxes and the production terms are additional unknown quantities. For
them constitutive relations in terms of the fundamental variables are needed in order
to get a closed system of balance equations. A well theoretically founded way to get
the desired closure relations is to resort to the Maximum Entropy Principle (MEP)
[8], according to which the electron, hole and phonon distribution functions can
be estimated by the distributions fe;MEP; fh;MEP, gp;MEP which solve the following
problem:

. fe;MEP ; fh;MEP ; gp;MEP/D max
fe;fh ;gp2L1.R2/

SŒ fe; fh; gp�;
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under the constraints

�
�i

�iWi

�

D 2

.2 �/2

Z

R2

�
1

"

�

fi.r;k; t/ dk;

�
�iVi

�iSi

�

D 2

.2 �/2

Z

R2

fi.r;k; t/
�

v
"v

�

dk;

Wp D
Z

R2

„!pgp dq; Qp D
Z

R2

„!pvpgp dq;

where SŒ fe; fh; gp� is the total entropy of the system given by

�kB

�
4

.2�/2

Z

R2

Œ f e ln f e C .1 � f e/ ln .1 � f e/� d k C 4

.2�/2

Z

R2

	
f h ln f hC

�
1� f h

�
ln
�
1 � f h

�

d k C

X

p

yp
Z

B

�

1C gp

yp

�

ln

�

1C gp

yp

��

dq

)

;

yp being the phonon densities of states and L1.R2/ the usual Banach space.
By solving the above maximization problem we get

fi D 1

1C exp .�i C �Wi"i C vi � .�Vi C "i�Si//
; gp D 1

exp
�
�Wp"p C "p vp � �Qp

� � 1 :

As in [9–12] we linearize the distributions around their anisotropic part, obtaining

fi
 1

e�iC�Wi "i C 1

"

1 � e�iC�Wi "i

e�iC�Wi "i � 1
vi � .�Vi C "i�Si /

#

; i D e; h;

gp 
 1

e�Wp "p � 1

"

1 � e�Wp "p

e�Wp "p � 1 �p vp � �Qp

#

; p D LO;TO;K; ac;

where the �’s are Lagrange multipliers which have to be expressed as functions of
the state variables by taking into account the constraints.

After that, these distributions are inserted into the kinetic definitions of the
additional variables, so closing the system of the balance equations. For example,
for the optical phonons we obtain CWs D P

ij Cij
Ws

C Cac
Ws
; where the sum is for
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.i; j/ 2 f.e; h/; .e; e/; .h; h/g; and

Ceh
Ws

D 2D2
s

2�2�„3v4F

Z �s

0

".�s � "/�eh
s

��s � "

"

�
g0.�s/

�F e
FD."/F

h
FD.�s � "/

"

e�s�Ws � e�eC�hC�We " e�Wh .�s�"/
#

d";

Cee
Ws

D 1

�2�„3v4F
D2

s

Z 1

0

"."C �s/�
ee
s

��s C "

"

�
g0.�s/

�F e
FD."/F

e
FD."C �s/

"

e�s�WsC�eC�We " � e�eC�We" e�We �s

#

d";

Cac
Ws

D A �s


OA

"

g0
�
�s;

1

kBTOA

�
�g0

�
�s; �Ws

�
#

;

� being the area density of graphene, A the area of the first Brillouin zone, FFD

the equilibrium Fermi-Dirac occupation number, TOA the phonon local equilibrium
temperature, �s the optical phonon energy, while the functions �ij

s ; i; j D e; h; s D
LO;TO;K; and the relaxation time 
OA can be found in [3]. Neglecting the acoustic
phonon dynamics, the simplest way to study the effect of lattice heating is to use a
temperature T which empirically depends on the total current, that is T D TL C� IU

L ,
where I is the total current, U the applied voltage bias, L the device length, and �
can be found in [6].

6 Numerical Simulations

In the literature there are several values for the coupling constants entering into the
collision terms. For example for the acoustic deformation potential one can find
values ranging from 2.6 to 29 eV. Similar degree of uncertainty is found for the
optical and K phonon coupling constants as well. We have performed numerical
simulations of a suspended graphene monolayer by considering the parameters used
in [13], see Figs. 1 and 2.

For moderate applied fields the asymptotic value of the electron velocity
increases with the applied field, while for high electric fields the velocity decreases
(negative differential conductivity) but there is no velocity saturation. The results
are consistent with the Monte Carlo simulations presented in [14].
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Fig. 1 Average velocity for the electric fields E D 1 kV/cm, E D 2 kV/cm, E D 4 kV/cm,
E D 10 kV/cm, E D 20 kV/cm by using the same values of the scattering parameters as in [13],
by considering a constant lattice temperature of 300 K and a carrier density equal to 1012 cm�2
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Fig. 2 Average energy for the electric fields E D 1 kV/cm, E D 2 kV/cm, E D 4 kV/cm, E D
10 kV/cm, E D 20 kV/cm by using the same values of the scattering parameters as in [13], by
considering a constant lattice temperature of 300 K and a carrier density equal to 1012 cm�2
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Derivation of a Hydrodynamic Model
for Electron Transport in Graphene via Entropy
Maximization

L. Barletti

Abstract In this contribution, which is based on the results published in Barletti
(J Math Phys 55:083303, 2014) and Barletti et al. (Tr Inst Mat 11:11–29, 2014),
we apply the maximum entropy closure technique in order to derive equations
of hydrodynamic type for a system of particles with spin-orbit interaction, with
particular focus on the case of electrons on a graphene sheet.

Keywords Electron transport • Hydrodynamic model • Maximum entropy
closure technique

1 Phase-Space Description of Spin-Orbit Particles

Let us consider a rather general spin-orbit Hamiltonian of the form

H.x;p/ D Œh0.p/C V.x/� 	0 C h.p/ � 	; (1)

where x 2 R
d, p 2 R

d, 	 D .	1; 	2; 	3/, and

	0 D
�
1 0

0 1

�

; 	1 D
�
0 1

1 0

�

; 	2 D
�
0 �i
i 0

�

; 	3 D
�
1 0

0 �1
�

:

Hamiltonians of this kind describe, among others, the Rashba spin-orbit interaction
[2], the two-band K�P model [3, 4], Dirac massless particles [9] and electrons in
graphene [1, 6].

The main semiclassical quantities associated with (1) are the the two energy
bands

E˙.p/ D h0.p/˙ jh.p/j

L. Barletti (�)
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(eigenvalues of H with V D 0), the corresponding eigenprojectors

P˙.p/ D 1

2
.	0 ˙ �.p/ � 	/; �.p/ D h.p/

jh.p/j ;

the semiclassical velocities

v˙.p/ D rpE˙.p/

and the effective-mass tensor

M
�1˙ .p/ D rp ˝ v˙.p/ D rp ˝ rpE˙.p/:

The phase-space description of a statistical population of electrons with Hamiltonian
(1) is provided by the Wigner matrix [4]

F.x;p; t/ D
3X

kD0
fk.x;p; t/	k;

which has the fundamental property that the expected value of an observable with
symbol A D P3

kD0 ak.x;p/	k is given by the classical-looking formula

EFŒA� D
Z

tr.FA/dx dp D 2

Z 3X

kD0
ak.x;p/ fk.x;p; t/ dx dp:

When applying it to the band projectors P˙.p/ we obtain

EFŒP˙� D
Z

.f0 ˙ � � f/ dx dp

and it is therefore natural to interpret the functions

f˙ D f0 ˙ � � f (2)

as the phase-space densities of electrons having energies, respectively, in the upper
and lower band.

Following [1, 3] (see also [5] where additional moments are considered), we shall
write equations for the hydrodynamic moments

n˙ D h f˙i; (band-densities),

n˙u˙ D hv˙ f˙i (average velocities),
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where we put

h f i.x; t/ D 1

.2�„/d
Z

f .x;p; t/ dp:

The (semiclassical) dynamics of F is provided by the Wigner equation for the
Hamiltonian (1) [4], from which the following equations for the band-Wigner
functions fC and f� is obtained:

�
@t C v˙ � rx � rxV � rp

�
f˙ D �rx � f? ˙ � � .rxV � rp/f?;

where the terms containing f? WD .��f/�� are responsible for quantum interference
between the two bands [7].

2 Maximum Entropy Closure

We assume that the system is in a state Fme of maximum entropy, according to the

Maximum Entropy Principle (MEP) Fme is the most probable microscopic state
with the observed macroscopic moments n˙ and u˙.

For an electron population in thermal equilibrium with a phonon bath, at constant
temperature T > 0, the most probable microscopic state Fme minimizes of the free-
energy

E .F/ D
Z

R4

tr ŒkBT s.F/C HF� dp dx;

where s.F/ D F log F C .1 � F/ log.1 � F/ is (minus) the Fermi-Dirac entropy
function. Moreover, Fme is subject to the macroscopic constraints

h f me˙ i D n˙; hv˙ f me˙ i D n˙u˙:

It can be proven that

f me
˙ D 1

1C exp
�

1
kBT E˙.p/� v˙.p/ � B˙ � A˙

� ; f me
? D 0:

where A˙ and B˙ D .B1; : : : ;Bd/˙ are Lagrange multipliers (functions of x
and t). Thus, the MEP state corresponds to two local and independent Fermi-
Dirac distributions in the two energy bands with no interference terms. Substituting
F 7! Fme in the equation for f˙ yields the decoupled equations

�
@t C v˙ � rx � rxV � rp

�
f me
˙ D 0: (3)
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Notation Since the upper-band and lower-band equations are decoupled, we can
suppress the ˙ labels and use them exclusively for those terms that are different in
the two equations.

Taking h�i and hv˙�i both sides of Eq. (3) we obtain the moment equations

8
<

:

@tn C @i.nui/ D 0;

@t.nui/C @jPi̇j C Qi̇j @jV D 0;
(4)

where @t D @=@t, @i D @=@xi and

Pi̇j D hvi̇ vj̇ f mei; Qi̇j D h @v˙

i
@pj

f mei D h.M�1˙ /ij f mei: (5)

Thanks to the MEP, the moment system is implicitly closed by the relations

h f mei D n; hv˙ f mei D nu; f me D 1

1C exp
�

1
kBT E˙.p/ � v˙.p/ � B � A

� ;

(6)

linking the Lagrange multipliers .A;B/ to the moments .n;u/.
It can be proven that the mapping .A;B/ 7! .n;u/, provided by Eq. (6), is

globally invertible [1, 3], which implies that the MEP states f me˙ can be viewed as
being parametrized by .n;u/, instead of .A;B/, and this means that the moment
equations (4) is a closed system in the unknowns n and u. Such system shares many
properties with other models obtained by entropy minimization, the most relevant
being the existence of a local entropy and the consequent hyperbolicity [1].

3 The Case of Graphene

Electrons in a single-layer graphene sheet are described by the Hamiltonian (1) with

d D 2; h0.p/ D 0; h.p/ D cp

(where c 
 106 m=s is the Fermi velocity). Therefore, the energy bands, the
eigenprojections, the semiclassical velocities and the effective-mass are given by

E˙.p/ D ˙cjpj; P˙.p/ D 1

2
.	0 ˙ �.p/ � 	/

v˙.p/ D ˙c �.p/; M
�1
˙ .p/ D c

jpj �?.p/˝ �?.p/
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where

�.p/ D p
jpj ; �? D .��2; �1/:

Note that ˙�.p/ is the electron direction. The energy bands are the well-known
Dirac cones and, since the lower band is unbounded from below, we have to change
a little the theory developed in the previous sections and describe the lower-band
population in terms of electron vacancies, i.e. holes. This is achieved by means of
the substitution

f�.x;p; t/ 7�! 1 � f�.x;�p; t/;

which brings the transport equation, Eq. (3), into

�
@t C c � � rx � rxV � rp

�
f me D 0:

Note that the only difference between electrons and holes is the charge sign.
Moreover, the MEP-states for electrons and holes have now the same form

f me D 1

1C exp
�

c
kBT jpj � �.p/ � B � A

� ;

(note that both upper-cone electrons and lower-cone holes have positive energies).
Moreover, we slightly change the definition of u to be the average direction

nu D h�f i; 0 � juj � 1;

which differs from average velocity just for the constant factor c (in fact, for both
electrons and holes in graphene vC D v� D c�). The inequality juj � 1 is a direct
consequence of Jensen inequality.

The moment equations (4), in the specific case of graphene, read as follows:

(
@tn C @i.nui/ D 0;

@t.nui/C @jPij ˙ Qij@jV D 0;
(7)

where Pij D h�i�j f mei and Qij D h 1
jpj�
?
i �
?
j f mei.

We now intend to find an (as much as possible) explicit expression for the
dependence of the Lagrange multipliers A and B D .B1;B2/ in terms of the moments
n and u D .u1; u2/, as resulting from the constraint equations

h f mei D n; n h�f mei D u: (8)
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To this end we recall the Fermi integral of order s > 0:

�s.z/ D 1

� .s/

Z 1

0

ts�1

et�z C 1
dt

and introduce the following functions:

I s
N.A;B/ D 1

�

Z �

0

cos.N�/ �s.A C B cos �/ d�;

where A 2 R, B � 0, s > 0 and N is an integer. From the constraint equations (8) we
obtain that B has the same direction as u and, as far as A and the modulus B D jBj
are concerned, we have

I 2
0.A;B/ D n

nT
;

I 2
1.A;B/

I 2
0.A;B/

D juj (9)

where nT D .kBT/2=2�„2c2. In [1] the following result is proven, showing that the
tensors Pi̇j and Qi̇j can be expressed in terms of the moments n and u, and of the
two scalar Lagrange multipliers A 2 R and B � 0 through the functions I s

N .

Theorem 1 The following equalities hold:

Pij D n

juj2
�
P uiuj C P? u?i u?j

�
; Qij D c

kBT

n

juj2
�
Q uiuj C Q? u?i u?j

�
; (10)

where the scalar functions P.A;B/, P?.A;B/, Q.A;B/, Q?.A;B/ are given by

P D I 2
0 CI 2

2

2I 2
0

; P? D 1 � P; Q D I 1
0 �I 1

2

2I 2
0

; Q? D I 1
0 CI 1

2

2I 2
0

:

4 Asymptotic Regimes

The expressions (10) of Pi̇j and Qi̇j are still not explicit, as functions of n and u.
Nevertheless, we can say more in some particular regime of physical interest. Such
regimes correspond to different asymptotic regions [1] in the half plane .A;B/ 2
R � Œ0;1/.
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4.1 Diffusive Regime

The diffusive limit corresponds to completely spread directions, i.e. to juj ! 0,
which is equivalent to B ! 0. In order to obtain nontrivial limit equations, we have
to rescale the time by putting u 7! 
0u and t 7! t=
0, and adding a relaxation term
�nu=
0. As 
0 ! 0, we obtain the nonlinear drift-diffusion equation

@tn D 
0c2

2
r �

�

rn ˙ nT

kBT
�1

�
��12

� n

nT

��
rV

�

: (11)

4.2 Maxwell-Boltzmann Regime (T ! C1)

The limit T ! C1 corresponds to A2 C B2 ! 1 with A < �B. In this case, we
can use the approximation [1]

I s
N.A;B/ � eA IN.B/; (12)

where IN are the modified Bessel functions of the first kind. The constraint equations
(9) become

eAI0.B/ D n

nT
;

I1.B/

I2.B/
D juj;

from which we finally get the explicit form of the tensors Pij and Qij:

Pij D n

juj2
	
X.juj/ uiuj C .1 � X.juj// u?i u?j



;

Qij D c

kBT

n

juj2
	
X.juj/ u?i u?j C .1 � X.juj// uiuj



;

(13)

where

X.juj/ D I0.B/C I2.B/

2I0.B/
; B D

� I1
I0

��1
.juj/:

If we perform the diffusive limit juj ! 0 within the Maxwell-Boltzmann regime,
we obtain a linear (although nonconventional) drift-diffusion equation:

@tn D 
0c2

2
r �

�

rn ˙ 1

kBT
n rV

�

: (14)
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4.3 Collimation Regime

On the opposite side with respect to the diffusive limit, the collimation limit
corresponds to the absence of spread in the particle directions, i.e. to juj ! 1.
It can be shown that this corresponds to A2 C B2 ! 1 with A=B ! �1.
However, there is a completely different behavior when the critical line A D
�B is approached from below (Maxwell-Boltzmann collimation) of from above
(degenerate-gas collimation). In the first case, the hydrodynamic system reduces to

@tui C cuj@jui ˙ c

kBT
u?i u?j @jV D 0: (15)

This equation reveals that collimated electrons in graphene have the properties of a
geometrical-optics system, with “refractive index” N.x/ D exp

� � 1
kBT V.x/

�
(see

Refs. [1] and [8] for a detailed discussion).
The second case (degenerate-gas collimation) yields the “trivial” equation

8
<

:

@tn C c@i.nui/ D 0;

@t.nui/C c@j
�
nuiuj

� D 0;

since Q ! 0 and Q? ! 0, as .A;B/ approaches the critical line from above.

4.4 Degenerate Gas Regime (T ! 0)

This limit corresponds to A2 C B2 ! 1 with A > �B, in which case we can use
the approximation [1]

I s
N.A;B/ � 1

�� .s C 1/

Z C.A;B/

0

cos.N�/.A C B cos �/sd�;

where

C.A;B/ D
(

arccos .�A=B/ ; if �B < A < B;

�; if A � B:

The tensors Pij and Qij for a degenerate gas are therefore given by

Pij D n

juj2
	
Y.juj/uiuj C .1 � Y.juj// u?i u?j



;

Qij D
p

n

„p
�juj2

	
Z.juj/uiuj C Z?.juj/u?i u?j



;

(16)
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where

Y.juj/ D F 2
0 . /C F 2

2 . /

2F 2
0 . /

; Z.juj/ D F 1
0 . / � F 1

2 . /

2

q
2F 2

0 . /

;

Z?.juj/ D F 1
0 . /C F 1

2 . /

2

q
2F 2

0 . /

;  D
�F 2

1

F 2
0

��1
.juj/;

and we put F s
N. / � R�s I s

N.R cos ;R sin /.
If, moreover, we perform the diffusive limit juj ! 0 we obtain the nonlinear

drift-diffusion equation

@tn D 
0c

2
r �

�

crn ˙ 1

„ p
�

p
n rV

�

: (17)
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Deterministic Solutions of the Transport
Equation for Charge Carrier in Graphene

Armando Majorana and Vittorio Romano

Abstract The aim of this work is to use a numerical scheme based on the
discontinuous Galerkin method for finding deterministic (non stochastic) solutions
of the electron Boltzmann transport equation in graphene. The same methods has
been already successfully applied to a more conventional semiconductor material
like Si (Cheng et al., Comput Methods Appl Mech Eng 198(37–40):3130–3150,
2009; Cheng et al., Boletin de la Sociedad Espanola de Matematica Aplicada 54:47–
64, 2011). A n-type doping or equivalently a high value of the Fermi potential is
considered. Therefore we neglect the inter band scatterings but retain all the main
electron-phonon scatterings. Simulations in graphene nano-ribbons are presented
and discussed.

Keywords Charge carrier • Discontinuous Galerkin method • Electron Boltz-
mann equation • Electron transport

1 The Mathematical Model

Graphene is a gapless semiconductor made of a sheet composed of a single layer
of carbon atoms arranged into a honeycomb hexagonal lattice [1]. In view of
application in graphene-based electron devices, it is crucial to understand the basic
transport properties of this material.

A physically accurate model is given by a semiclassical transport equation whose
scattering terms have been deeply analyzed recently [2–4]. Due to the computa-
tional difficulties, the most part of the available solutions have been obtained by
direct Monte Carlo simulations. A different approach has been employed in [5].
Macroscopic models can be found in [6–8].

The aim of this work is to use a numerical scheme based on the discontinuous
Galerkin method for finding deterministic (non stochastic) solutions of the electron
Boltzmann equation in graphene. The same methods has been already successfully
applied to a more conventional semiconductor material like Si [9, 10].
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The electron energy in graphene depends on a two dimensional wave vector k
belonging to a bi-dimensional Brillouin zone which has an hexagonal shape. The
most part of electrons are in the valleys, around the vertexes of the Brillouin zone,
called Dirac points or K and K0 points. Usually the three K-valley are treated as a
single equivalent one and similarly the three K0-valleys.

In a semiclassical kinetic setting, the charge transport in graphene is described
by four Boltzmann equations, one for electrons in the valence (�) band and one for
electrons in the conductions (��) band, that in turn can belong to the K or K0 valley,

@f`;s.t; x;k/
@t

Cv`;s �rxf`;s.t; x;k/� e

„E �rk f`;s.t; x;k/ D df`;s
dt
.t; x;k/

ˇ
ˇ
ˇ
ˇ
e�ph

; (1)

where f`;s.t; x;k/ represents the distribution function of charge carriers in the valley
` (K or K0), band � or �� (s D �1 or s D 1) at position x, time t and wave-vector k.
We denote by rx and rk the gradients with respect to the position and wave vector,
respectively. The microscopic velocity v`;s is related to the energy band "`;s by

v`;s D 1

„ rk "`;s :

With a very good approximation [1] a linear dispersion relation holds for the energy
bands "`;s around the equivalent Dirac points; so that "`;s D s „ vF jk � k`j, where
vF is the (constant) Fermi velocity, „ the Planck constant divided by 2 � , and k`
is the position of the Dirac point `. The elementary (positive) charge is denoted
by e, and E is the electric field obtained by the Poisson equation, which must
be coupled with the above system. The right hand side of Eq. (1) is the collision
term representing the interaction of electrons with acoustic, optical and K phonons.
Acoustic phonon scattering is intra-valley and intra-band. Optical phonon scattering
is intra-valley and can be longitudinal optical (LO) and the transversal optical (TO);
it can be intra-band, that is leaves the electron in the same band, or inter-band
pushing the electron from an initial band to the other one. Scattering with optical
phonon of type K pushes electrons from a valley to a neighbor one (inter-valley
scattering). We assume that phonons are at thermal equilibrium. Hence, the general
form of the collision term can be written as

df`;s
dt
.t; x;k/

ˇ
ˇ
ˇ
ˇ
e�ph

D
X

`0 ;s0

�Z

S`0;s0;`;s.k0;k/ f`0 ;s0.t; x;k0/ .1 � f`;s.t; x;k// dk0

�
Z

S`;s;`0;s0.k;k0/ f`;s.t; x;k/
�
1 � f`0 ;s0.t; x;k0/

�
dk0
�

where the total collision term is given by the sum of the contributions of several
types of scatterings

S`0;s0;`;s.k0;k/ D
X

�

ˇ
ˇ
ˇG

.�/

`0;s0;`;s.k
0;k/

ˇ
ˇ
ˇ
2 	�

n.�/q C 1
�
ı
�
"`;s.k/ � "`0;s0.k0/C „!.�/q

�

C n.�/q ı
�
"`;s.k/ � "`0;s0.k0/� „!.�/q

�

: (2)
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The index � labels the �th phonon mode, G.�/

`0 ;s0;`;s.k
0;k/ is the scattering rate, which

describes the scattering mechanism, due to phonons �, between electrons belonging
to valley `0 and band s0, and electron belonging to valley ` and band s. The symbol
ı denotes the Dirac distribution function, !.�/q the �th phonon frequency, n.�/q is the
Bose-Einstein distribution for the phonon of type �

n.�/q D 1

e„!
.�/
q =kBT � 1

;

kB is the Boltzmann constant and T the constant graphene lattice temperature. When,
for a phonon ��, „!.��/

q � kBT, then the scattering with the phonon �� can be

assumed elastic. In this case, we eliminate in Eq. (2) the term „!.��/
q inside the

delta distribution and we use the approximation n.��/
q C 1 
 n.��/

q .

1.1 The Model with Only One Distribution Function

In this paper we consider a numerical no stochastic technique, based on the
discontinuous Galerkin method, for solving the kinetic model described in Sect. 1.
In this first application, we study the case of a single distribution function f . This
corresponds to a physical case, where a n-type doping or equivalently a high value of
the Fermi potential is considered, and the electrons, belonging to a conduction band,
do not move to the valence band. Moreover K and K0 are considered equivalent. A
reference frame centered in the K-point will be used. Of course, we simplify the
notation, omitting the indexes s and `. Now, we write the scattering rates used in our
simulations, explicitly.

For acoustic phonons, usually one considers the elastic approximation, and

2 n.ac/
q

ˇ
ˇG.ac/.k0;k/

ˇ
ˇ2 D 1

.2 �/2
� D2

ac kB T

2„ 	m v2p
.1C cos#k ;k0/ ; (3)

where Dac is the acoustic phonon coupling constant, vp is the sound speed in
graphene, 	m the graphene areal density, and #k ;k0 is the convex angle between k
and k0.

There are three relevant optical phonon scatterings: the longitudinal optical (LO),
the transversal optical (TO) and the K (K) phonons. The scattering rates are

ˇ
ˇG.LO/.k0;k/

ˇ
ˇ2 D 1

.2 �/2
� D2

O

	m !O
.1 � cos.#k ;k0�k C #k0 ;k0�k// (4)

ˇ
ˇG.TO/.k0;k/

ˇ
ˇ2 D 1

.2 �/2
� D2

O

	m !O
.1C cos.#k ;k0�k C #k0 ;k0�k// (5)

ˇ
ˇG.K/.k0;k/

ˇ
ˇ2 D 1

.2 �/2
2� D2

K

	m !K
.1 � cos#k ;k0/ ; (6)
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where DO is the optical phonon coupling constant,!O the optical phonon frequency,
DK is the K-phonon coupling constant and !K the K-phonon frequency. The angles
#k ;k0�k and #k0 ;k0�k denote the convex angles between k and k0 � k and between k0
and k0 � k, respectively.

2 The Numerical Method

We look for spatially homogeneous solutions to Eq. (1) with a constant electric field.
Now, the Boltzmann equation reduces to

@f .t;k/
@t

� e

„ E � rkf .t;k/ D
Z

S.k0;k/ f .t;k0/ .1 � f .t;k// dk0

�
Z

S.k;k0/ f .t;k/
�
1 � f .t;k0/

�
dk0 : (7)

We take a Fermi-Dirac distribution, as initial condition,

f .0;k/ D 1

1C exp

�
".k/� �

kB T

� ;

where T D 300K, and � is the chemical potential, that is determined by choosing
the initial charge density

�.0/ D 2

.2 �/2

Z

f .0;k/ dk : (8)

Equation (7) is discretized by adopting a discontinuous Galerkin scheme. We choose
a bounded domain˝ � R

2 such that f .t;k/ 
 0 for every k … ˝ and t > 0, and we
introduce a finite decomposition fC˛g of˝ , with C˛ appropriate open set, such that

C˛ \ Cˇ D ; if ˛ ¤ ˇ; and
N[

˛D1
C˛ D ˝ :

We assume that the distribution function is constant in each cell C˛ . If we denote
by �˛.k/ the characteristic function over the cell C˛ , then the approximation of the
distribution function f is given by

f .t;k/ 
 f ˛.t/ 8 k 2 C˛ ” f .t;k/ 

NX

˛D1
f ˛.t/ �˛.k/ 8 k 2

N[

˛D1
C˛ :
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This assumption replaces the unknown f , which depends on the two variables t and
k, in a set of N unknowns f ˛ , which depend only on time t. In order to obtain a set
of N equations for the new unknowns f ˛, we integrate Eq. (7) with respect to k over
every cell C˛ and replace f with its approximation. The derivative of f with respect
to the time is treated easily. We have

Z

C˛

@f .t;k/
@t

dk 
 M˛

d f ˛

dt

where M˛ is the measure of the cell C˛ . It is clear that the numerical method yields
a system of ordinary differential equations. This is achieved by discretizing the
collision operator and the drift term.

2.1 Discretization of the Collision Operator

Since, for each k 2 C˛ , we have

Z

S.k0;k/ f .t;k0/ .1 � f .t;k// dk0 �
Z

S.k;k0/ f .t;k/
�
1 � f .t;k0/

�
dk0



NX

ˇD1

"Z

Cˇ

S.k0;k/ f ˇ.t/ .1 � f ˛.t// dk0 �
Z

Cˇ

S.k;k0/ f ˛.t/
�
1 � f ˇ.t/

�
dk0
#

D
NX

ˇD1

"

f ˇ.t/ .1 � f ˛.t//
Z

Cˇ

S.k0;k/ dk0 � f ˛.t/
�
1 � f ˇ.t/

�
Z

Cˇ

S.k;k0/ dk0
#

:

Now, if we define

A˛;ˇ D
Z

C˛

"Z

Cˇ

S.k;k0/ dk0
#

dk ; (9)

then we obtain
Z

C˛

�Z

S.k0;k/ f .t;k0/ .1 � f .t;k// dk0 �
Z

S.k;k0/ f .t;k/
�
1 � f .t;k0/

�
dk0
�

dk



NX

ˇD1

	
Aˇ;˛ .1 � f ˛.t// f ˇ.t/� A˛;ˇ f ˛.t/

�
1� f ˇ.t/

�

:

So, the integral collision operator is replaced by quadratic polynomials. We note that
the numerical coefficients A˛;ˇ depend only on the scattering terms and the domain
decomposition.
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2.2 Discretizaton of the Force Term

We must approximate the term

� e

„ E �
Z

C˛

rkf .t;k/ dk D � e

„ E �
Z

@C˛

f .t;k/ n d	

where n is the normal to the boundary @C˛ of the cell C˛ . Since, due to the Galerkin
method, the approximation of f is not defined on the boundary of the cells, we
must introduce a numerical flux, that furnishes reasonable values of f on every @C˛ ,
depending on the values of the approximation of f in the nearest neighborhood of
the cell C˛ and on the sign of E � n. In Fig. 1 we show a simple picture of the cells
that can be involved to find the numerical flux. The simplest numerical flux is given
by the upwind rule, that use only four nearest adjacent cells.

3 Numerical Simulations

We consider a circle as domain ˝ . We used the same physical parameters of [3].
The charge density is taken equal to 1012 cm�2. A TVD third Runge-Kutta scheme
is used to solve the resulting ODE system. The numerical scheme is very similar
to [11]. We remark that the numerical scheme guarantees the mass conservation.
We solve Eq. (7) for different value of the applied electric field. In Fig. 2 we show
the macroscopic velocity and energy, defined by

2

.2 �/2 �.0/

Z

f .t;k/ vF
k

jkj dk ;
2

.2 �/2 �.0/

Z

f .t;k/ ".k/ dk :

Fig. 1 Cells employed for
the numerical flux in the case
of a simple rectangular grid

Cα
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Fig. 2 Left figure: the mean velocity in 107 cm/s versus time (in ps). Right figure: the mean energy
in eV versus time (in ps)
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Fig. 3 Left figure: The distribution function (electric field equal to 50 kV/cm) at 1 ps. Right figure:
the section at ky D 0 of the distribution function (electric field equal to 50 kV/cm) at the initial
time and at 1 ps

We note that the asymptotic mean velocity and energy increase by increasing the
applied voltage. In Fig. 3 we show the distribution function f for the highest electric
field.
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Modulated Bloch Waves in Semiconductor
Superlattices

M. Alvaro, L.L. Bonilla, and M. Carretero

Abstract We show that in a semiconductor superlattice with long scattering times,
damping of Bloch oscillations due to scattering is so small that nonlinearities may
compensate it and Bloch oscillations persist even in the hydrodynamic regime. In
order to demonstrate this, we propose a Boltzmann-Poisson transport model of
miniband superlattices with inelastic collisions and we derive by singular pertur-
bation methods hydrodynamic equations for electron density, electric field, and the
complex amplitude of the Bloch oscillations. Numerical solutions of these equations
show stable Bloch oscillations with spatially inhomogeneous field, charge, current
density, and energy density profiles. These Bloch oscillations disappear as scattering
times become sufficiently short. For sufficiently low lattice temperatures (70 K),
Bloch and Gunn type oscillations mediated by electric field, current, and energy
domains coexist for a range of voltages. For larger lattice temperatures (300 K),
there are only Bloch oscillations with stationary amplitude and electric field profiles.

Keywords Bloch oscillations • Modulated Bloch waves • Semiconductor •
Semiconductor superlattices

1 Introduction

Bloch oscillations (BOs) are coherent oscillations of the position of electrons
inside energy bands of a crystal under an applied constant electric field �F. Their
frequency is !B D eFl=„ (l lattice constant), and therefore it can be tuned by an
applied voltage. BOs were predicted by Zener in 1934 [1]. To observe BOs, their
period has to be shorter than the scattering time 
 , and therefore the applied field
has to surpass the value „=.el
/, which is too large for most natural materials,
in which l is of Ångström size. In 1970, Esaki and Tsu suggested to create an
artificial crystal, called superlattice (SL) [2]. Damped Bloch oscillations were first
observed in 1992 in semiconductor SLs [3]. Besides their interest for theoretical
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physics, BOs have attracted the attention of many physicists and engineers because
of their potential for designing infrared detectors, emitters or lasers which can be
tuned in the THz frequency range simply by varying the applied electric field [4].
However no electrically driven devices based on BOs have been realized, because
their applications are severely limited by scattering which rapidly damps BOs and,
for a dc voltage biased SL, favors the formation of electric field domains (EFDs)
whose dynamics yields self-sustained oscillations of lower frequency (GHz) [5, 6].
To understand the role of EFD formation in the observation of BOs we propose
a model in which BOs and EFDs are both possible solutions of the governing
equations. Therefore, we consider materials with long-lived BOs corresponding
to almost elastic collisions, and, also, we consider that the local equilibrium in
the Boltzmann-BGK kinetic theory depends on electron density, electron current
density and mean energy and the collision term preserves charge but dissipates
momentum and energy [7], which is the crucial feature if we want to derive a
hydrodynamic regime that allows BOs.

2 Model

The model equations are [8]:

@t f C v.k/ @x f C eF„�1@k f D QŒ f � 	 ��. f � f B/; (1)

" @xF D el�1.n � ND/; (2)

f B.kI n; Jn;E/ D n � eQuklC Q̌ cos kl
R �
0 e Q̌ cos K cosh.QuK/ dK

; (3)

n D l
2�

R �=l
��=l f .x; k; t/dk D l

2�

R �=l
��=l f Bdk: (4)

Here n, ND, ", �e < 0, m�, �, and �F are the 2D electron density, the 2D
doping density, the permittivity, the electron charge, the effective mass of the
electron, the constant collision frequency and the electric field, respectively. v.k/ D
l sin.kl/=.2„/ is the group velocity corresponding to the miniband tight binding
dispersion relation E .k/ D .1 � cos kl/=2. We have assumed a Boltzmann local
equilibrium (3). The distribution functions f and f B have the same units as n and
are 2�=l-periodic in k (the function Qukl in (3) is extended periodically outside
�� < kl � �).

The dimensionless multipliers Q̌.x; t/ and Qu.x; t/ depend on Jn=e
R �=l
��=l v.k/ f

dk=.2�/ (electron current density) and on E=l
R �=l
��=lŒ=2� E .k/� fdk=.2�n/ (mean

energy). They are found by solving

e
2�

R �=l
��=l v.k/ f B dk D .1 � ˛j/Jn;

l
2�n

R �=l
��=l

�

2

� E
�

f Bdk D ˛eE0 C .1 � ˛e/E: (5)
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The restitution coefficients ˛j and ˛e take values on the interval Œ0; 1� and measure
the dissipation due to collisions in current density and energy, respectively. For
˛e;j D 0 the collisions conserve energy and momentum (elastic limit). To simplify
matters, we shall assume that ˛j and ˛e are constant. E0 is the mean energy at
the lattice temperature of the global equilibrium which will be reached in the
absence of bias and contact with external reservoirs. At the lattice temperature,
T0 D =.2kB

Q̌
0/, Qu D 0, E D E0, and (5) yields 2E0= D I1. Q̌

0/=I0. Q̌
0/, where

Is.x/, s D 0; 1, are modified Bessel functions.

3 Hydrodynamic Equations

In the hyperbolic limit in which the collision and Bloch frequencies are comparable
and dominate all other terms in (1), it is possible to derive closed equations
for nondimensional n, F and A (the complex envelope of the BO solution),
provided the collisions are almost elastic. The small dimensionless parameter
ı D e2NDl=.2"„2�2/ is the ratio between the scattering time and the dielectric
relaxation time and the restitution coefficients are assumed to scale with it, ˛e;j D
ı�e;j. fj.x; �; tI ı/ are the Fourier coefficients of f .x; k; tI ı/ D P1

jD�1 fjeijk and f1 is
given by

f1 D nE � iJn D A.x; t/e�i� C f1;S.x; t/ ; (6)

where � D 1
ı

R t
0

F.x; s/ ds is the rapidly varying phase of the BO. The nondimen-
sional equations are

@F

@t
C ı

F2 C ı2�j�e

"

�eE0nF C F

2

@

@x
Im

f B.0/
2;0

1C 2iF

� ı�e

2

@

@x

 

n � Re
f B.0/
2;0

1C 2iF

!

� FRe hS C ı�eIm hS� D J.t/; (7)

@F

@x
D n � 1; (8)

@A

@t
D ��e C �j

2
A C 1

2i

@

@x

 
f B.0/
2;�1

1C iF

!

; (9)

hS D f1;Su

n
@Imf1;Su

@x C .J C Imf1;Su/
@f1;Su

@F ; (10)

f1;Su D ı�enE0.ı�j�iF/
ı2�e�jCF2

;
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f1;S D nES � iJn;S

D ı
F2Cı2�j�e

	
�enE0.ı�j � iF/ � .ı�j � iF/RehS � .F C iı�e/ImhS

C FCiı�e
2

@
@x

�

n � Re
f

B.0/
2;0

1Ci2F

�

C ı�j�iF
2

Im @
@x

�
f

B.0/
2;0

1Ci2F

��

: (11)

The dimensionless multipliers Q̌ and Qu in f B are functions of the rapidly varying
BO phase � due to (6) and therefore, we can expand f B in (3) in powers of ı, f B �
f B.0/ C ıf B.1/. The f B.m/ (m D 1; 2/ are now 2�-periodic functions of � and k. Then
we have the Fourier coefficients

f B.0/
j;m D

Z �

��

Z �

��
f B.0/.kI n; f1/ e�ijk�im� dk d�

.2�/2
; (12)

in which we set f1 D A e�i� ignoring O.ı/ terms in (6).
To derive (7)–(9), we start from the equations for the moments fj which can be

obtained from (1) by integration over k [7]:

@f0
@t

� Im
@f1
@x

D 0; (13)

�

ı
@

@t
C iF

�

f1 D ı

�

�ef0E0 � �e C �j

2
f1 � �e � �j

2
f �1 � 1

2i

@

@x
.f0 � f2/

�

; (14)

where f0 D n, f1 D nE � iJn, and there are similar equations for higher moments.
From (13) and the Poisson equation @F=@x D n � 1, we find Ampère’s law for F:
@F=@t D J.t/ � Jn, where J.t/ is the total current density. We shall assume that
the second moment f2 is a known function of f0 and f1, f2 D g.f0; f1/. Then we find
equations for n, F and A in (6) by a method of nonlinear multiple scales with time
scales � and t. To obtain the function g, we carry out a Chapman-Enskog expansion
[9] for (1) with a time derivative given by F @f=@� C ı @f=@t, according to (6). The
distribution function is supposed to be periodic in k and in � . This procedure gives
approximate formulas for g D f2 from which (7)–(9) are obtained.

The hydrodynamic equations (7)–(9) have the spatially uniform solutions, n D 1,
J D ı�eE0nF=.ı2�e�j C F2/, and A D A0e�.�eC�j/t=2. Inserting the latter formula
in (6), we see that this corresponds to a damped BO whose amplitude relaxes to 0.
Even when we manage to prepare the initial state with a coherent BO of complex
amplitude A0, ignoring space dependence will lead to disappearance of the BOs after
a relaxation time 2=.�e C �j/. Stabilization of the BOs may be caused only by the
spatially dependent second term on the right hand side of (9).
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4 Results

We now solve numerically the hydrodynamic equations with the boundary condi-
tions [6]

@F

@t
C 	0F

ˇ
ˇ
ˇ
ˇ
xD0

D J;
@F

@t
C 	1nF

ˇ
ˇ
ˇ
ˇ
xDL

D J; (15)

1

L

Z L

0

F.x; t/ dx D �; (16)

@A

@x
D 0; at x D 0. (17)

Initially, the mean energy density is E0 D 0:5501 and the profiles of A and F are
uniform, taking on values of A0 D 0:5501 and � D 0:05, respectively. We use a
small parameter ı D 0:0053, and in order to obtain undamped BOs, we have used
�e;j D 1:1269 so that .�e C �j/=2 < �crit. We consider a 50-period dc voltage
biased GaAs-AlAs SL with lattice temperature 70 K and dimensionless contact
conductivities 	0 D 1 and 	1 D 0:25.

For a voltage bias � D 0:05 (V D 0:166V) and after a short transient that
depends on the initial conditions, we observe coexisting BOs of frequency 0.36 THz
and Gunn type oscillations of frequency 11 GHz. BOs are stable because .�e C
�j/=2 < �crit and Gunn type oscillations are a consequence of the periodic recycling
and motion of electric field pulses from the cathode to the anode. Figure 1 illustrates
the total current density of the coexisting 0:36THz Bloch and 11GHz Gunn type
oscillations, respectively. For each lattice temperature, there is a critical curve in the
plane of restitution coefficients such that, for .�e C �j/=2 > �crit, BOs disappear
after a relaxation time but they persist for smaller values of .�e C �j/. Figure 2
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Fig. 1 (a) Total current density vs time during coexisting Bloch and Gunn type oscillations at
70 K. (b) Fourier transform of the total current density showing two peaks corresponding to
coexisting Bloch (0.36 THz) and Gunn type (11 GHz) oscillations
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Fig. 2 (a) Total current density vs time during Bloch oscillations at 300 K. (b) Fourier transform
of the total current density showing only one peak corresponding to BOs (0.26 THz). The zero-
frequency constant corresponding to the time average of the total current density has been
subtracted

depicts the total current density at temperature 300 K, with E0 D 0:1529, for the
same values of �e;j and the other parameters. We find BOs but not the slower Gunn
type oscillations. Whether Bloch and Gunn type oscillations coexist depends on the
lattice temperature. There is a critical temperature below which the electric field
pulses are periodically recycled when they reach the anode, originating the Gunn
type oscillations. For larger temperatures, Bloch and Gunn type oscillations cannot
occur simultaneously: When the electric field pulse reaches the anode, it remains
stuck there and the electric field profile becomes stationary. Note that the largest
peak in the current spectrum in Fig. 2b occurs at a lower frequency (0.26 THz) than
in the case of lower lattice temperature shown in Fig. 1b.

5 Conclusions

We have analyzed the Boltzmann-BGK-Poisson equations with local equilibrium
depending on the electron density, current density and energy density in the
hyperbolic limit in which the BO period is much shorter than the dielectric
relaxation time and collisions are almost elastic. In the long-time scale, there is
a hydrodynamic regime described by coupled equations for the electric field, the
electron density and the BO complex amplitude. When the restitution coefficients
(equivalently the inverse of the scattering times) are sufficiently small and the
initial state has been prepared so that there is a nonzero Bloch oscillation, there
are undamped BOs coexisting with Gunn-type oscillations for low temperatures.
For larger temperatures the only persisting oscillations are undamped BOs.
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Short Description

Statistical Shape Analysis and Stochastic Geometry deal with the geometrical
information of families of objects in presence of stochasticity. Thanks to the
development of information technologies, the last decades have seen a considerable
growth of interest in the statistical theory of shape and its application to many and
diverse scientific areas.

Often the diagnosis of a pathology, or the description of a biological process
mainly depend on the shapes present in images of cells, organs, biological systems,
etc., and mathematical models which relate the main features of these shapes with
the correct outcome of the diagnosis, or with the main kinetic parameters are often
still not present.

In material sciences, and industrial applications optimization for quality control
requires mathematical models from Stochastic Geometry and the related statistical
estimation procedures, and methods of Statistical Shape Analysis for comparison of
different random geometrical patterns.

From the mathematical point of view, Shape Analysis and Stochastic Geometry
use a variety of mathematical tools from differential geometry, geometric measure
theory, stochastic processes, etc., dealing with both direct and inverse problems.

As far as applications are concerned, in this minisymposium topics which are
relevant in biomedicine and material sciences will be emphasized.



Mathematical Morphology Applied to the Study
of Dual Phase Steel Formation

Alessandra Micheletti, Junichi Nakagawa, Alessio A. Alessi, Vincenzo
Capasso, Davide Grimaldi, Daniela Morale, and Elena Villa

Abstract Dual Phase steel (DP steel) has shown high potential for automotive and
other applications, due to its remarkable combined properties of high strength and
good formability. The mechanical properties of the material are strictly related to
the spatial distribution of the two steel phases, ferrite and martensite, and with
their stochastic geometry. Unfortunately the experimental costs to obtain images
of sections of steel samples are very high, so that one important industrial problem
is to reduce the required number of 2D sections in order to either reconstruct the
3D geometry of the material, or to simulate realistic ones. In this work we will
present a germ-grain statistical model which can be used for a best fitting of the main
geometric characteristics of the martensite phase. The parameters of the model are
estimated on the basis of morphological characteristics of the images of about 150
tomographic sections taken from a real sample. After optimization or tuning of the
relevant parameters, the statistical model can then be used to identify the minimum
number of sections of the sample which are needed to estimate the parameters in a
reliable way.

Keywords Dual phase steel • Germ-grain model • Mathematical morphology
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1 Introduction

Dual Phase steels (DP steels) have shown high potential for many applications due to
their remarkable property combination between high strength and good formability.

Here we consider a sample of steel formed by martensite and ferrite. The relative
position and geometric structure of the two phases is responsible of the mechanical
properties of the material, thus it is particularly important to provide statistical
models which may reproduce the main geometric characteristics of the two phases.
Our results are based on images of about 150 tomographic sections taken from a lab
sample of steel.

The formation of the two phases of the material starts after a cooling phase of
the melted alloy of iron and carbon, during which austenite is formed, followed by
a rolling phase, transforming slabs of steel into thin metal foils.

A further cooling phase follows the rolling; during this phase the formation of
ferrite starts. Crystals of ferrite nucleate mainly from the interfaces of the rolled (and
thus deformed) austenite, and grow up to impingement with other crystals of ferrite,
driven by the evolving field of carbon concentration. After a fixed time interval the
formation of ferrite is stopped by a sudden quenching, during which the material
still not transformed into ferrite becomes martensite. The final result is a dual phase
steel formed by ferrite and martensite, having a stochastic geometric structure.

In order to define a dynamical model able to reproduce the complete geometric
structure of the material, a stochastic birth and growth process coupled with the
evolution of the carbon field should be used (see [1] for a similar model applied to
polymer crystallization). A first model which goes in this direction, though facing
the problem at only a macroscopic scale, has been studied in [4].

In the following we will introduce a germ-grain model which may reproduce the
main mean geometric characteristics of the martensite contained in the real sample.

As from a confidentiality agreement with Nippon Steel & Sumitomo Metal, who
provided the real data, the images of the real sample will not be shown.

2 Structure of the Austenite Phase

First of all we studied the geometric structure of the interfaces of austenite after
rolling, since nucleation of ferrite happens mainly on such interfaces, so that the
location of the final ferrite and martensite crystals depends on the location of such
interfaces.

The shape of the crystals of austenite before rolling is quite close to a 3D Voronoi
tessellation. The rolling reduces the thickness of the rolled slab to 1/50 of the
original thickness, but preserving the width and the total volume. The result is a
long thin foil (see Fig. 1).
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Fig. 1 Deformation applied to the cube containing the 3D Voronoi tessellation formed by austenite
crystals

Fig. 2 Voronoi tessellation of the 3D space with 3000 crystals in a cube. On the left: before rolling,
on the right: after rolling. The different axes scales in the two images evidentiate the deformation
along the three axes, due to rolling

If we apply a deformation to a 3D Voronoi tessellation, maintaining the propor-
tions used in the real experimental situation, we obtain the results shown in Fig. 2.

Since the real sample is composed by a very small portion of the rolled metal foil,
extracted from the middle of the foil, we sectioned a small cube of the deformed
tessellation, with dimensions proportional to the real sample, to look at its internal
geometric structure. Two sections in the x1x3 and x2x3 direction, respectively, are
reported in Fig. 3.

It is evident that, at the scales relevant for our application, the effect of rolling is
to transform the interfaces of the 3D Voronoi tessellation into approximately parallel
planes, having random quotes along the x3 axis. The distribution of the quotes looks
quite regular. This is in accordance with the images of sections of austenite after
rolling, which shows a typical pancake structure (see Fig. 4).

We thus modelled the interfaces of austenite as parallel horizontal planes, i.e.
parallel to direction x1x2, with randomly distributed quotes along the x3 axis. The
quotes have been distributed according to a 1-dimensional hard core process [3,
Sect. 5.4], that is a point process with an inhibition distance between points. Figure 4
on the right shows a simulated realization of such a process.
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Fig. 3 Two sections of the deformed Voronoi tesselation on the right of Fig. 2, taken in the center
of the parallelepiped. On the left: section parallel to the x1x3 plane; on the right: section parallel to
the x2x3 plane. Different colours correspond to different crystals
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Fig. 4 On the left: pancake structure of austenite after rolling and before the birth and growth of
ferrite; on the right: simulated random parallel planes, with an inhibition distance, from which the
nucleation of ferrite starts

In Fig. 5 a simulated sample of the two phases which resembles the real one
is reported. The black region, occupied by martensite, can be represented as the
free space between different crystals of ferrite at the moment of quenching. Since
the crystals of ferrite nucleate on the parallel planes representing the interfaces of
austenite, martensite will have a tendency to concentrate in between two adjacent
parallel planes.
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Fig. 5 A simulated sample of the two phases: the region occupied by martensite is depicted in
black, while ferrite is in white

3 A Germ-Grain Model

In order to set up a statistical model able to reproduce the mean geometric structure
of martensite, we have defined a germ-grain model with spherical grains, depending
on a small set of unknown parameters.

A germ-grain model is a random closed set $ � R
d defined as

$ D [i2N�i ˚ xi

where fxig are points in R
d forming a locally finite point process, called germs;

�i are i.i.d. uniformly bounded random closed sets (usually containing the origin)
called grains, and ˚ denotes the Minkowski sum between sets, thus �i ˚ xi D
fy C xijy 2 �ig (for more details see [2, 3]).

We modelled the point process of germs as a Neyman-Scott clustered point
process, taking into account that martensite is formed in between the nucleation
planes of ferrite, and also observing that martensite in the real sample exhibits a
cluster structure.

The Neyman-Scott point process [3, Sect. 5.3] is formed by generating a spatial
Poisson point process of parents having intensity �p.x/ and then surrounding
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the parents by a random number of daughter points, scattered independently and
identically distributed around the parents. The parents are then removed and the
Neyman-Scott process is formed just by the daughter points.

The germs in our model have thus been generated according to the following
algorithm:

Algorithm 1
Input:
nplanes = Number of parallel planes,
	vert= standard deviation of the daughters’ distribution in vertical direction,
	hor=standard deviation of the daughters’ distribution in horizontal direction,

1. randomly generate a set of parallel planes, as in Fig. 4, from which ferrite nucleates;
2. build up a set of “virtual” parallel planes, from which martensite originates, each located in the

middle of two adjacent planes of the previous set;
3. distribute the parent germs uniformly on the “virtual” parallel planes;
4. distribute the daughter germs around the parents according to a 3-variate normal distribution

having diagonal covariance matrix given by

˙ D diag.	2hor; 	
2
hor; 	

2
vert/:

The grains have been modeled as independent spheres of random radius R D L��,
where L is a constant representing the maximum possible radius of the spheres and
� is a random variable distributed as a Beta.2; b/ with b > 2. The reason of this
choice is that in this way smaller spheres are privileged, providing to the germ grain
model an aspect closer to the real sample.

The number of germs in the model is random, and has been generated according
to the following procedure. Since the volume fraction occupied by martensite in the
real sample is 0:027, we generated iteratively new germs and grains up to when
the volume fraction occupied by the germ-grain model overcame 0:027. We made
this choice since usually the percentage of martensite contained in steel is a known
parameter, which can be measured even without sectioning the material.

In order to avoid edge effects, the simulation of the model has been performed
in a window of observation enlarged by L on each side, and then only the central
portion of the window with dimensions equal to the real sample has been considered.
All the simulations have been performed in Matlab.

Thus our germ grain model is based on the following five parameters:

.nplanes; 	hor; 	vert;L; b/ 2 N � RC � RC � N � Œ2;C1/ (1)



Mathematical Morphology for Steel Formation 765

4 Parameters Estimate

In order to estimate the parameters of the model we considered the 2D images of
the about 150 sections of the real sample and for each section we computed the
following geometric characteristics:

1. A D the area of the region occupied by martensite, measured in pixels;
2. P D the perimeter of the region occupied by martensite, computed by calculating

the distance between each adjoining pair of pixels around the border of the
region;

3. Ahull D area of the convex hull of martensite;
4. D D diameter of a circle with the same area of martensite;
5. E D Euler number i.e. the number of connected components of martensite in the

region minus the number of holes in the components;
6. O D orientation, i.e. the angle between the x-axis and the major axis of the ellipse

that has the same second-moments as the region occupied by martensite;
7. M D length (in pixels) of the major axis of the ellipse that has the same

normalized second central moments as the region occupied by martensite;
8. m D length (in pixels) of the minor axis of the ellipse that has the same

normalized second central moments as the region occupied by martensite.

For each set of the parameters (1) we performed 30 simulations of the germ
grain model, and we sectioned the simulated images into the same number of parts
of the real sample. On each simulated section we computed the eight geometric
characteristics listed above.

The parameters can be estimated by minimizing a suitable distance between the
values of the geometric characteristics measured on the real sample and the mean
geometric characteristics of the simulated germ-grain model. Since we measured
8 variables for each section, resulting in a huge number of variables, we reduced
the dimension of the problem by applying a principal component analysis to the
8 � .n: of sections/ variables, retaining only the first three principal components,
which explain about the 40% of the total variance of the simulations.

Let us denote by Greal � R
3, the first three PC’s computed on the real sample, by

NGsim. p/ � R
3 the means, over 30 simulations, of the first three PC’s computed on

the simulated samples, and by S the sample covariance matrix of the first three PC’s
computed on the simulations.

For minimizing with respect to the parameters p D .nplanes; 	hor; 	vert;L; b/; we
have adopted the Mahalanobis distance

.Greal;
NGsim. p// D

q
.Greal � NGsim. p//TS�1.Greal � NGsim. p//; (2)
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Table 1 Optimal values of the parameters. The corresponding computed Mahalanobis distance is
0.09. The simulations have been performed in a parallelepiped formed by 160� 200� 240 voxels,
where the side of each voxels is 0:25�m long. The unit of measure of the parameters is a voxel
side length

Parameter Optimal value

nplanes 32

	hor 14.69

	vert 70.33

L 9

b 3.8

since it weights the distance from the mean of the simulations with the variance,
taking thus into account the variability related with each set of parameters. Note that
the distance (2) is stochastic, being based on the outcomes of random simulations.

Since both parameters nplanes and L are integers (the maximum side of the spheres
has been defined in the simulation program in terms of number of voxels), we
needed to apply an optimization algorithm to a function which is not expressed
in algebraic form and depending upon mixed integer and real parameters, so that we
have decided to apply a genetic algorithm for the best fitting

Op D arg min
p
.Greal;

NGsim.p//:

The estimated parameters are reported in Table 1.
In Fig. 6 the following results obtained by simulating the germ grain model are

reported: the top figure represents a “cloud” of 50 points with coordinates equal to
the first three principal components of Gsim, each computed on a different simulation
performed with the optimal parameters. The black bold dot represents the first three
principal components of Greal, it is almost in the center of the cloud and very close
to the mean of the principal components of the simulated patterns, showing thus a
good agreement between the fitted model and the real data. The two bottom figures
visualize the results of one single simulation of the germ grain model performed
with the optimal parameters, and a section of the simulated pattern in direction
orthogonal to the Z axis. These images must be compared with the corresponding
ones of the real sample. At a first visual inspection, we may observe a rather
good agreement between the simulation and the real sample, thus confirming the
effectiveness of the adopted method.
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Fig. 6 Top figure: the first three PC’s of 50 simulations performed with the optimal parameters
(red dots), their mean (red bold dot), and the first three PC’s of the real sample (black bold dot);
bottom left: a simulation of the germ grain model with the optimal parameters; bottom right: a
section orthogonal to Z direction of the simulation
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Short Description

Solar towers use many flat mirrors to concentrate sun light on the absorber, which is
mounted on a tower. The simulation of solar tower power plants play an important
role in the planning stage of a project. The goal is to find the most efficient
arrangement of mirrors that balances power production against construction costs.

Unfortunately, the high computational costs associated with accurate enough
simulation tools has in the past made optimizations impractical in most settings.
However, recent advances in computer resources and numerical algorithms are
making optimization processes possible. The trend of using more and more
simulation/optimization tools in the field of solar thermal power plants is expected
to continue in the future.

The purpose of this mini-symposium is to report on the continuing progress
of simulation and optimization strategies for solar tower plants. It brings together
researchers from applied mathematics, computational science, physics, and engi-
neering communities and is designed specifically as a forum for researchers in
earlier stages of their career to discuss their work and exchange ideas.



Multi-Objective Optimization of Solar Tower
Heliostat Fields

Pascal Richter, Martin Frank, and Erika Ábrahám

Abstract We introduce a model to compute the annual performance of a heliostat
field. We take into account topography, tracking errors, and the position and
intensity of the sun. An approach is introduced, which improves on the otherwise
expensive pairwise comparison to calculate shading and blocking. Because the com-
putational time is reduced significantly, the presented implementation is sufficiently
fast to allow for heliostat field layout optimization within a couple of hours. The
optimization is executed via a genetic algorithm, which optimizes the heliostat
positioning parameters as well as other design parameters, e.g. receiver tilt angle.
A novel approach is used to reduce the search domain. Because the search domain
delivers several local optima with comparable values of the objective function, the
objective function is augmented. We use smoothing functionals to disperse the local
optima. A field layout is optimized on a hilly ground in South Africa, with additional
constraints on the heliostat positions.

Keywords Heliostat fields • Multiobjective optimization • Solar towers

1 Introduction

Solar tower plants generate electric power from sunlight by focusing concentrated
solar radiation on a tower-mounted receiver, see Fig. 1. The collector system uses
hundreds or thousands of sun-tracking mirrors called heliostats, to reflect the
incident sunlight onto the receiver where a fluid is being heated up. Today’s receiver
types use water/steam, air or molten salt to transport the heat. Usually, the heat of
the fluid is exchanged into steam which powers a turbine to generate electricity.
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Fig. 1 Solar tower plant PS10, 11 MW in Andalusia, Spain [source: flickr]

Solar tower plants are not yet cost-competitive [6]. Therefore, concentrating
solar thermal power plant markets and projects today only evolve where a political
framework ensures financial incentives. For commercial solar tower project devel-
opments, a conceptual plant design has to be determined in an early planning stage.
Designing commercial power plants aims always at finding the most economic plant
design under a given set of constraints.

In this paper a model and optimisation algorithm for heliostat field layout is
introduced. The underlying solar tower model is presented in Sect. 2. Because the
model is used in an optimisation process, a computationally efficient calculation of
insolation with enough accuracy is needed.

2 Ray-Tracing Model

A solar field is given by N heliostats Hi, each with an area Ai. For the time-
dependent solar angles �solar and �solar, and the direct normal irradiation IDNI, the
ray-tracing model computes the received optical radiation over a year, while taking
cosine effects �cos, shading and blocking �sb, heliostat reflectivity �ref, atmospheric
attenuation �aa and spillage losses �spl into account. For each heliostat Hi the time
dependent received optical radiation is defined by

Pi.t; d/ D Ai � IDNI.t; d/ � �cos;i.t; d/ � �sb;i.t; d/ � �ref;i.t; d/ � �aa;i.t; d/ � �spl;i.t; d/;
(1)
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at time t of the day d. At the end of this section the annual received radiation of the
full plant is computed, which depends on the sunrise and sunset of every day in the
year. We essentially use the same model as [7], the main difference being that we
use a hierarchical ray-tracing method, and speed-up the computation of shading and
blocking effects.

2.1 Hierarchical Ray-Tracing Method

The rays have their origin in the sun, hit the surface of a heliostat and are reflected
in direction of the receiver. We are interested in the reflected power of a heliostat,
which is hitting the receiver. To detect the optical flux over the heliostat’s surface
we are using a hierarchical approach of ray-tracing methods [1, 7], where the
complete flux is computed by numerical integration with the use of Gauss-Legendre
quadrature rule. Thus, the surface is partitioned in a number of regions, each with
a representative ray. The influence on the reflection by shading, blocking and ray
interception at the receiver is determined just for this single ray as representative
for the whole region. Each area is weighted by the irradiance of its representative
ray. Finally all values are summed to get the power of the heliostat. The number
of representative rays per heliostat is given by the selected order of the Gaussian
quadrature rule.

2.2 Shading and Blocking

For each representative ray of a heliostat, shading and blocking effects by neigh-
bouring heliostats or the tower must be detected. This is the most expensive part
of a simulation. The brute-force approach of a pairwise comparison of each ray
with all heliostats is computationally expensive. The computational complexity can
be reduced by only considering a subset of heliostats that can potentially shade or
block a heliostat [1]. To determine this subset, a data structure is needed which is
fast in nearest-neighbour search and in range-search.

Therefore, for better performance, a two-dimensional bitboard index structure is
used. The idea is to cover the two-dimensional x-y space with an equidistant grid
such that the space is sub-divided in distinct quadratic cells. Inside those cells the
information is stored if nearby is a heliostat.

For a nearest-neighbour search, just the surrounding cells around a cell have to
be checked, instead of all heliostats. The same holds for a range-search, where e.g.
all heliostats in one direction are wanted. Just the containing cells of the range have
to be checked. In some test cases we could accelerate the simulation by factor 100.
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2.3 Annual Received Optical Radiation

The annual received optical radiation of the whole power plant is given by the sum
of the annual received optical radiation of all heliostats Hi,

Eyear D
NX

iD1
Ei

year D
NX

iD1

365X

dD1

�Z sunset

sunrise
Pi.t; d/ dt

�

; (2)

with power Pi given in Eq. (1). The sunrise and the sunset depend on the day d. The
value of the received optical radiation over a year Eyear, is the basis for each objective
function in the optimisation process, see Sect. 3. For each different configuration of
the solar field, this value has to be computed by a simulation.

The time integral from sunrise to sunset in (2) is solved numerically. In common
practice, an iteration with constant time step [3, 5, 10] is used. Noone et al.
[7] propose an iteration with constant solar angle step, which allows the same
accuracy but needs fewer iterations. Both approaches approximate the time integral
with midpoint rule. For higher accuracy other numerical quadrature rules are
recommended. The herein proposed Gauss-Legendre quadrature rule uses non-
constant time (or solar angle) steps:

Z bWDsunset

aWDsunrise
Pi.t; d/ dt 
 b � a

2

nX

iD1
wi � f

�b � a

2
ti C a C b

2

�
; (3)

with n Gaussian time-abscissas ti and Gaussian weights wi. Additionally the sum
of the days can be approximated by using a sort of trapezoidal rule with just m 2
f1; 2; : : : ; 365g days.

3 Optimisation

Various effects—cosine effects, shading and blocking of heliostats (presented in
Sect. 2)—reduce the efficiency of the solar tower. An objective of an optimisation
is to discover an optimal positioning of the heliostats in the field. In the literature,
the general structure of the heliostat arrangement is predefined by assumptions, e.g.
radial staggered, circles or spirals [7–10]. In these cases, an optimisation means to
find an assignment of about two to four parameters which define the structure, e.g.
radius or angle of a spiral. However, the assumption of the structure leads to many
comparable local optima [9]. In addition, these optimisations generate a regular or
symmetric structure which could be suitable for nearly flat areas but not for a hilly
topology.

In this work, we introduce an approach where the heliostats’ alignment does
not depend on any structure. Namely, the heliostats obtain the highest amount of
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freedom in order to find their optimal position. For that purpose, we use a genetic
algorithm [2, 4] with a novel genotype-representation which reduces the search
domain of the algorithm. The only restriction of the approach is that neighbouring
heliostats must be separated by a minimum distance in order to prevent a collision.

3.1 Genetic Algorithm

The functionality of a genetic algorithm is inspired by the biological evolution. A
population of candidate solutions, called individuals, evolves in order to provide
better solutions for an optimisation problem. Each individual has a set of properties,
called genotypes or genomes. Usually, a genotype is represented as an array of
several genes such that a unique assignment of gene and property exists. Two or
more individuals are combined by mixing the genotypes gene by gene in order to
generate a new population. Using this approach for the position of heliostats, the
sets of heliostats from different heliostats are “ordered” by an artificial identifier.
This identifier is defined by the position of the corresponding gene in the array. To
generate a new population of individuals from a set of evaluated individuals, four
main operations are used by the genetic algorithm: First, two or more individuals
are randomly selected by roulette-wheel method from the old population according
to their fitness values. The properties of the selected individuals are combined
according to the fitness value of their heliostats. Therefore the heliostats of all parent
individuals are sorted in descending order according to this value. Successively the
best heliostats are picked for the new individual. If any selected heliostat causes a
conflict, it is neglected and the next best heliostat is picked. In case that there are
no more heliostats, the remaining heliostats are generated by random. Afterwards,
the heliostats are mutated by locally change their position. The whole population is
simulated to get the fitness values for the new individuals. The algorithm terminates
if a stop criterion is satisfied, e.g. maximum simulation time or maximum number
of generations.

3.2 Objective Functions

The purpose of our optimisation is to find an individual which has a high efficiency.
But additionally we aim to reward a solution which looks “nice”, which means, that
the distribution of the heliostat positions are somehow smooth. We scalarise our
objective function, i.e. we look for a solution

max
I2P F.I / D max

I2P

0

@
nX

jD1
wj �

fj.I /� min
I2P fj.I /

max
I2P fj.I / � min

I2P fj.I /

1

A ; (4)
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All objective functions fj are normalised by the minimum and maximum value of
the whole population P , so that the normalised value lies in the range between 0
and 1. The weights of the objectives wj > 0, with

Pn
jD1 wj D 1, are the parameters

of the scalarisation. Every objective function fj has to be maximised. If there is an
objective function Ofj that should be minimised, we set the corresponding objective
function as fj WD �Ofj which is maximised.

The model described in Sect. 2 delivers in Eq. (2) the annual received optical
radiation, which is used as objective function

f1.I / WD Eyear.I /: (5)

To reward solutions, which are looking “nice”, additional smoothing functionals are
created. The variance of the k-nearest-neighbour distance is given by,

f2.I / D �
“

jrKNNj2 dx dy 
 �
X

T2T
AT �

�
@KNN.T/

@x
C @KNN.T/

@y

�2
;

(6)

T denotes the triangulation of the heliostats Hi in the x-y plane. AT is the area of a
triangle T 2 T . For each heliostat Hi the k-nearest-neighbour distance is given by

KNNi D
X

H`2Nk.Hi/

jpi � p`j (7)

where Nk.Hi/ is the set of the k nearest neighbours of Hi and pi and p` are the
positions of the heliostats. By linear interpolation the k-nearest-neighbour distance
is piecewise defined for each triangle T 2 T which is denoted by KNN.T/.

Another smoothing functional is the density distribution, which is given by

f3.I / D �
“

jr�j2 dx dy 
 �
X

T2T
AT �

�
@�r.T/

@x
C @�r.T/

@y

�2
: (8)

For each heliostat Hi the density is given by

�r
i D ˇ

ˇ fH` 2 I j jpi � p`j � rg ˇˇ (9)

where �r
i is the number of Hi-neighbouring heliostats inside a defined radius r.

Again by linear interpolation the density is piecewise defined for each triangle
T 2 T which is denoted by �r.T/.

The variance of the kNN distance and the density distribution functionals aim
to create a field of equally distributed or dense heliostats. The importance of the
smoothing functionals can be adjusted by using the weights described in Eq. (4).



Multi-Objective Optimization of Solar Tower Heliostat Fields 777

energy: 76.67 GWh energy: 76.64 GWh energy: 74.98 GWh
wenergy = 1 wenergy = 0.8 wenergy = 0.6
wknn = 0 wknn = 0.1 wknn = 0.2

wdensity = 0 wdensity = 0.1 wdensity = 0.2

Fig. 2 Comparison of the best power plant configurations after optimisation with different weights
for the density and kNN functional. The color gradient from green to red shows the annual received
optical radiation for each heliostat

3.3 Testing the Genetic Algorithm

By combining the three functionals of energy, kNN and density, different results
are reached, see Fig. 2. The produced energy is high for all combinations. By taking
kNN and density into account, the optimisations yields a field in which the heliostats
stand closer together and are evenly distributed. The single outliers that occur due
to mutation could be eliminated during a post-processing step.

Using the smoothing functionals, it is possible to create “nicer looking” solutions
that result in comparable energy production. For further fine-tuning one could
also try to gradually adjust the weight of the functional during the course of the
optimisation.

4 Application

With the above introduced optimisation algorithm a solar power plant can be
optimized. To optimize the heliostats alignment of a planned pilot plant in South
Africa we had to extend the model in such a way, that the heliostats can be grouped
by a joint pod system, where they are positioned on an arbitrary truss construction.
So, instead of positioning single heliostats, groups of heliostats with fixed relative
positions are placed on the field. The pod systems are not allowed to touch each
other, this includes all heliostats and the truss construction. Figure 3 shows the
distribution of the heliostats before and after the optimisation.
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Initial configuration After 100 optimization steps

Fig. 3 Optimisation of a solar power plant with pod systems
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Short Description

Large networks for fluid flow of water and gas can consist of rivers or channels,
gas and water supply or sewer systems. The flow in one single network element
is usually modelled by hyperbolic conservation laws or some simplifications. All
single flow reaches must be coupled by appropriate coupling and boundary condi-
tions. This approach leads to PDAEs (partial differential algebraic equations) and
requires very robust and efficient numerical methods for their solution. Moreover,
the optimization of the network operation with respect to the security of supply
or energy consumption is of importance. Suitable optimization methods for these
requirements are an active field of research.

This symposium will brought together researchers from across Europe who
develop and apply mathematical models and numerical solution techniques in this
context. The Symposium provided a platform for new methodologies, ideas and
applications.



From River Rhine Alarm Model to Water
Supply Network Simulation by the Method
of Lines

Gerd Steinebach

Abstract In this paper an overview on modelling techniques and numerical
methods applied to problems in water network simulation is given. The considered
applications cover river alarm systems (Rentrop and Steinebach, Surv Math Ind
6:245–265, 1997), water level forecast methods (Steinebach and Wilke, J CIWEM
14(1):39–44, 2000) up to sewer and water supply networks (Steinebach et al.,
Mathematical Optimization of Water Networks Martin. Springer, Basel, 2012).

The hyperbolic modelling equations are derived from mass and momentum
conservation laws. A typical example are the well known Saint-Venant equations.
For their numerical solution a conservative semi-discretisation in space by finite
differences is proposed. A new well-balanced space discretisation scheme is
presented which improves the local Lax-Friedrichs approach applied so far. Higher
order discretisations are achieved by WENO methods (Kurganov and Levy, SIAM
J Sci Comput 22(4):1461–1488, 2000).

Together with appropriate boundary and coupling conditions this method of lines
approach leads to an index-one DAE system. Efficient solution of the DAE system
is the topic of Jax and Steinebach (ROW methods adapted to network simulation for
fluid flow, in preparation).

Keywords Method of lines • River alarm systems • Water supply networks

1 Introduction to Water Network Simulation

Many practical problems exist where simulation of water networks is a key issue.
These problems cover questions concerning water quality and water quantity. At first
a water quality problem is considered, which became important after an accident in
a chemical plant at river Rhine in 1986, the so called Sandoz accident. The aim
was to develop a river alarm model in order to compute the transport and diffusion

G. Steinebach (�)
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of chemical substances released to the river or its tributaries. In order to set up a
mathematical model, information about the flow velocity of the river system and the
diffusion and decay of the substances must be known. The latter parameters were
estimated from tracer experiments which took place in rivers Rhine, Moselle and
Elbe in the early nineties [6]. One possibility to compute flow velocities is to set
up a separate water quantity model. A suitable modelling approach is to consider
mass and momentum conservation in one space dimension for the whole river
system. This approach leads to the well know Saint-Venant equations [4]. Beside
the computation of flow velocities these equations can be applied to water level
forecast models as well. Such forecast models are important for flood warning or
low water situations, where navigation is suffering from [14].

These concepts for river system simulation can be transferred to sewer and water
supply networks. In contrast to free surface flow in rivers, in water supply pipes
pressure flow is dominating. In Sect. 2 a modelling approach covering both flow
types according to [5] is presented. A suitable numerical solution strategy is given
in Sect. 3. This solution approach is an improvement of the successfully applied
methods in river alarm models and water level forecast models of rivers Rhine,
Danube and Odra of the German Federal Institute of Hydrology [11, 17].

In order to preserve steady state solutions of the conservation equations a new
well-balanced enhancement of the local Lax-Friedrichs method is proposed. Finally,
in Sect. 4 numerical examples are presented.

2 Modelling Equations

River alarm models rely on the convection-diffusion-reaction equation for concen-
tration c.x; t/ of the chemical substance. Tracer experiments suggest an improve-
ment through the coupling with dead-zones, where no transport takes place. These
assumptions lead to the model equations [7]

@tc D �u@xc C 1

A
@x.DA@xc/ � Kc C A0

A
QK.m � c/ ; (1)

@tm D QK.c � m/ ; (2)

with flow velocity u, flooded cross sections A in the main stream and A0 in the dead
zones, diffusion coefficient D, linear decay rate K, dead zone concentration m.x; t/
and exchange coefficient QK.

In order to compute the velocities u.x; t/ and flooded cross sections A.x; t/ the
Saint-Venant equations [4] are considered:

@tA C @xQ D 0 ; (3)

@tQ C @x

�
Q2

A

�

C gA@xz D �gASf : (4)
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Q.x; t/ D u � A denotes the flow discharge, z.x; t/ the water surface elevation above
some reference level, g the gravitational constant and expression Sf is called friction
slope. An empirical formula (by Manning-Strickler) reads Sf D u�juj

K2Sth
4=3

with water

depth h and friction coefficient KSt. The surface level z must be computed from A
and the river bed elevation S0.x/ and thus is a function of A and x, i.e. z.x; t/ D
fz.x;A.x; t//.

For free surface flow the density � of water is constant. To consider pressure
flow in a pipe, a non constant density �.x; t/ is assumed. Furthermore, flooded
cross sectional area A does not depend on time and is identical to the whole pipe
cross section denoted by NA, which may vary with space (A D NA.x/). The idea of
Bourdarias and Gerbi [3] is to consider pressure p as a combination of hydrostatic
and overload pressure due to the assumed compressibility of water:

p D �gh C 1

ˇ

� � �0

�0
:

ˇ denotes isothermal compressibility and �0 density of water under free flowing
conditions. It is assumed that �0 D 1000 and ˇ D 5 � 10�10 [1].

With these assumptions the equations for pressure and free surface flow read [16]

@t.�A/C @x.�Q/ D 0 ; (5)

@t.�Q/C @x

�
.�Q/2

�A

�

C g�A@xz C A

ˇ�0
@x� D �g�ASf : (6)

If .�A/
�0

> NA, pressure flow exists with density � D .�A/
NA . Otherwise free surface flow

is assumed with cross sectional area A D .�A/
�0

. Therefore, the computation of A and
� from state variable .�A/ leads to the non smooth functions

� D
(

.�A/
NA if .�A/

�0
> NA

�0 otherwise
I A D .�A/

�
: (7)

Depart from the diffusion term in (1), systems [(1), (2)], [(3), (4)] and [(5), (6)]
can be expressed as a mixture of a conservative and a quasi-linear system of type

@tq C M.q/
d

dx
f .x; q/ D S.x; q/ : (8)

For (5), (6) q D .�A; �Q/T , f .x; q/ D .�Q; .�Q/2

�A ; z; �/T , M.q/ D
 
1 0 0 0

0 1 g�A A
ˇ�0

!

,

S.q/ D .0;�g�ASf /
T .
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3 Numerical Solution Approach

The considered hyperbolic systems of type (8) must be completed with initial values
(IVs) and boundary conditions (BCs):

@tq C M.q/
d

dx
f .x; q/ D S.x; q/ I x 2 ŒxL; xR� ; t > t0 ; (9)

BC: g.t; q.xL; t/; q.xR; t// D 0 I IV: q.x; t0/ D q0.x/ : (10)

3.1 Conservative Finite Difference Space Discretisation
and DAE Solver

In the common method of lines (MOL) approach with a conservative finite
difference space discretisation, at first the space interval is discretised into N cells
according to xL D x1=2 < x3=2 < : : : < xNC1=2 D xR with constant width
x D xiC1=2 � xi�1=2 and cell centers xi D 1

2
.xi�1=2 C xiC1=2/.

For each cell center i D 1; : : : ;N the variable qi.t/ D q.xi; t/ is defined and
Eq. (9) leads to the ODE system

d

dt
qi C M.qi/

1

x
. fiC1=2 � fi�1=2/ D S.xi; qi/ : (11)

The numerical fluxes fi˙1=2 are approximations to h.xi˙1=2; t/ of a function h.x; t/.
This function h is implicitly defined by

f .x; q.x; t// D 1

x

Z xCx
2

x�x
2

h.�; t/d� ; (12)

which leads to

d

dx
f .x; q.x; t// D 1

x
.h.x C x

2
; t/ � h.x � x

2
; t//:

The values fi˙1=2 
 h.xi˙1=2; t/ can be computed via the common recovery method
which is used in finite volume methods, see [9, 12]. The cell means Nhi of function h
coincide with the cell center values of f :

Nhi.t/ D 1

x

Z xiC1=2

xi�1=2

h.�; t/d� D f .xi; q.xi; t//:



Water Network Simulation 787

Therefore the numerical fluxes fi˙1=2 can be recovered from cell means Nhj, j D
i � k1; : : : ; i C k2 by polynomial interpolation. The choice of k1, k2 defines the
stencil. For hyperbolic problems a stable numerical scheme should propagate its
information in direction of the characteristics [12]. This upwinding is discussed
later.

Finally, all unknowns are collected in a new vector YD.q1=2; q1; : : :; qN„ ƒ‚ …
Y1

; qNC1=2/T

of dimension 2N C 4. The semi-discretised PDE (11) together with the boundary
conditions from (10) yields a semi-explicit DAE system assumed to be of index
one:

Y 01 D F.t;Y/ ; (13)

0 D G.t;Y/ : (14)

Usually, the physical BCs must be complemented by some artificial numerical
conditions. The most simple idea is a linear extrapolation of the interior values
q1; : : : ; qN to the boundaries x1=2 and xNC1=2. Physical BCs and artificial conditions
are summarised in function G of dimension 4.

The formulation of the BCs as algebraic equations allows conveniently to
implement the coupling of several single pipe or channel sections [15]. As an
example, assume the junction of two channels 1 and 2 into channel 3, see Fig. 1.
Then, for the boundary variables q1R D q1N1C1=2, q2R D q2N2C1=2, q3L D q31=2 three

x 2
L

x 3
L x1

R x2
R

x3
R

x1
L

2

1 3

Fig. 1 Junction of two channels
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coupling and three numerical boundary conditions are required:

.�Q/1R C .�Q/2R D .�Q/3L ;

h1p;R D h3p;L ;

h2p;R D h3p;L ;

.�Q/3L D 3

2
.�Q/31 � 1

2
.�Q/32 ;

h1p;R D 3

2
h1p;N1 � 1

2
h1p;N1�1 ;

h2p;R D 3

2
h2p;N2 � 1

2
h2p;N2�1 :

The physical conditions are mass conservation and identities of piezometric heads

hp.x; t/ D S0.x/ C p.x; t/

�0g
. Possible numerical conditions are obtained by the

forementioned extrapolation of these quantities.
The solution of (13), (14) can then be performed by an appropriate DAE solver

and is discussed in [8] in more detail.

3.2 Local Lax-Friedrichs and Well Balanced Upwind
Technique

It remains to compute the inner fluxes fiC1=2, i D 0; : : : ;N. Considering a
conservative system @tq C @x f .q/ D 0 the flux function is splitted into a positive
and a negative part according to

f .q/ D 1

2
. f .q/C j��jq/

„ ƒ‚ …
fup

C 1

2
. f .q/� j��jq/

„ ƒ‚ …
fdo

: (15)

Choosing constant �� as largest absolute eigenvalue of J D f 0.q/ ensures only
positive eigenvalues of the Jacobian of fup and only negative eigenvalues of the
Jacobian of fdo. This leads to the upwind approximation fiC1=2 D f�up;iC1=2CfCdo;iC1=2.
In the local Lax-Friedrichs or Rusanov approach,�� D ��iC1=2 is chosen only locally
around xiC1=2 [2].

Here, upwind reconstruction of a function h is denoted by h�iC1=2 using a

stencil with one more point to the left and downwind reconstruction is hCiC1=2
using a stencil with one more point to the right [12]. A first order approximation
h�iC1=2 D hi, hCiC1=2 D hiC1 yields fiC1=2 D 1

2
.fi C fiC1 � j��j.qiC1 � qi//. The term
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� 1
2
j��j.qiC1 � qi/ can be interpreted as a flux correction to the system proportional

to @xxq.
In order to get space discretisations higher than order one, the values hCiC1=2,

h�iC1=2 of function h in (12) must be interpolated from its cell averages Nh1,. . . ,Nhn.
Weighted essentially non-oscillatory (WENO) schemes use a linear combination of
interpolation polynomials such that weights are chosen according to its smoothness.
A third order approximation according to [10] is applied.

Splitting of flux function (15) can be applied to system (8), too:

M.q/
d

dx
f .x; q/ D 1

2

�

M.q/
d

dx
f .x; q/C j��j@xq

�

C1

2

�

M.q/
d

dx
f .x; q/� j��j@xq

�

:

In order to get the desired eigenvalues, �� has to be chosen as largest absolute
eigenvalue of M � @qf .x; q/.

This local Lax-Friedrichs (LLF) approach does not preserve stationary solutions
of (5), (6) with @x.�Q/ D 0 in general. The reason is that the flux correction in
mass conservation equation @t.�A/ C @x.�Q/ D 0 corresponds to a term of size
� �@xx.�A/, which will not be zero, especially near a discontinuity due to a change in
flow conditions. This non-balanced property can be observed in the numerical tests
of Sect. 4.

To avoid this disadvantage, an additional splitting approach (WBLLF) for
Eqs. (5), (6) is introduced:

M.q/
d

dx
f .x; q/ D 1

2
Mup.q/

d

dx
Qf .x; q/C 1

2
Mdo.q/

d

dx
Qf .x; q/ ; (16)

with Qf .x; q/ D .�A; �Q; .�Q/2

�A ; z; �/T ,

Mup D
 

0 up 0 0 0

� up�um

2
j��j2 2j��j 1 g�A A

ˇ�0

!

;

Mdo D
 

0 um 0 0 0
up�um

2
j��j2 �2j��j 1 g�A A

ˇ�0

!

:

and locally chosen constants up D .1 C sign.u//, um D .1 � sign.u//. The
eigenvalues of Mup.q/@qQfup.x; q/ are non-negative and those of Mdo.q/@q Qfdo.x; q/
are non-positive. Moreover, the splitting (16) preserves stationary solutions with
@x.�Q/ D 0, since a term like � � @xx.�A/ does not appear in the mass conservation
equation.
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4 Numerical Examples

In order to show the well balanced property of the WBLLF splitting a steady free
surface flow problem with constant non zero mass flow is considered. A channel
consisting of two flat parts connected by one steep part of total length L D 2200

and constant width B D 2 is discretised into N D 220 cells. Figure 2 shows the
initial values and the final solutions computed with LLF and WBLLF splitting. The
BCs have been chosen according to Q.0; t/ D 5, z.2200; t/ D �6:5 and friction
coefficient is KSt D 50. Obviously, LLF splitting is not able to get the right volume
flow Q 	 5 near the transition points from sub- to supercritical flow. Splitting by
WBLLF delivers the exact solution Q 	 5.

In a second example pressure flow is considered. A pipe of length L D 1000 and
bottom elevation S0.x/ D 10 � x

100
is assumed. The diameter of the pipe is given

by D.x/ D 1 for x � 400 or x � 600 and D.x/ D 1
2

for x 2 Œ410; 590�. In the
range x 2 .400; 410/ and x 2 .590; 600/ D.x/ is obtained by linear interpolation.
A simplified friction formula Sf D 10�3u

gA has been used and the number of cells
is N D 200. At both ends the pipe is connected to a storage basin, each of cross
sectional area AS D 200. The coupling of the storage basins to the pipe ends left and
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Fig. 2 Initial and final solutions computed with LLF (left) and WBLLF splitting (right)
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Fig. 3 Water elevation in storage basins and final volume flow in the pipe

Table 1 Number of successful (NSUC) and failed (NFAIL) time steps, function evaluations
(NFCN) and CPU-time

NSUC NFAIL NFCN CPU

Channel flow LLF 404 56 8764 115

Channel flow WBLLF 380 50 8230 103

Pipe flow LLF 45 4 1055 10.3

Pipe flow WBLLF 48 4 1124 10.5

right are modelled by:

d

dt
hS;1.t/ D �QL.t/

AS;1
;

0 D hS;1.t/ � hp;L.t/ ;

d

dt
hS;2.t/ D QR.t/

AS;2
;

0 D hS;2.t/ � hp;R :

hS;1, hS;2 denote the water elevation in the storage basins and QL, QR, hp;L, hp;R the
left and right boundary values of volume flow and piezometric heads in the pipe.
Initial conditions are chosen as hS;1.0/ D 15, hS;2.0/ D 16. The initial piezometric
heads in the pipe are obtained by linear interpolation between these values and the
initial volume flow is zero. During simulation time t 2 Œ0; 1800� the water movement
through the pipe oscillates between the basins with a decreasing amplitude caused
by friction. Figure 3 shows the water elevation in the storage basins and the
volume flows Q.x; tend/ in the pipe at final time obtained by the LLF and WBLLF
approaches. Again it can be seen that the LLF discretisation produces oscillations
in the neighbourhood of the contraction of the pipe and WBLLF is preferable.

Finally Table 1 shows that the numerical efforts for solving the final DAE system
are comparable for both approaches. All computations have been performed with
relative and absolute tolerance of 10�4 by the integrator rodasp[13].
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MOR via Quadratic-Linear Representation
of Nonlinear-Parametric PDEs

Yi Lu, Nicole Marheineke, and Jan Mohring

Abstract This work deals with the model order reduction (MOR) of a nonlinear-
parametric system of partial differential equations (PDEs). Applying a semidis-
cretization in space and replacing the nonlinearities by introducing new state
variables, we set up quadratic-linear differential algebraic systems (QLDAE) and
use a Krylov-subspace MOR. The approach is investigated for gas pipeline model-
ing.

Keywords Gas networks • Krylov-subspace method • Model order reduction •
Quadratic-linear differential algebraic system

1 Quadratic Linearization and Krylov-Subspace MOR
for QLDAE

MOR for large-scale systems is a recent topic in research [1, 2]. For nonlinear
differential algebraic systems (DAE), quadratic linearization and Krylov subspace
MOR for the resulting QLDAE have been investigated, see e.g. [3]. The basic idea to
get rid of the nonlinearities is the polynomialization and quadratic linearization
of the system by taking derivatives or adding polynomial algebraic equations
for new state variables. Depending on the choice of the new variables, various
quadratic-linear representations can be obtained that are equal in the phase (state)
space, but differ in the frequency space. In view of MOR via a Krylov subspace
method that approximates the transfer function and the moments, this difference in
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the frequency space effects the outcome of the reduced models. Hence, in modeling,
the set-up of an appropriate quadratic-linear representation is crucial and problem-
dependent. Considering the QLDAE that is quadratic in the states x.t/ 2 R

n and
bilinear in the input u.t/ 2 R for t 2 R with Kronecker product ˝ and coefficient
matrices E, G1, D1 2 R

n;n, G2, D2 2 R
n;n2 and b 2 R

n

E
d

dt
x D G1x C G2x ˝ x C .D1x C D2x ˝ x C b/ u;

the Krylov-subspace MOR provides a reduced model in the sense of moment
matching. The quality of the reduced model is thereby determined by two errors
coming from (a) the asymptotic expansion of the QLDAE in m linear subsystems
and (b) the approximation of the transfer functions and moments up to order `.

(a) Set-up of Linear Subsystems Consider a small input ˛u, ˛ < 1 and assume
that the response x of the QLDAE can be expanded in a regular power series
in ˛, i.e. x D P1

iD1 ˛ix.i/. Plugging this expansion into the QLDAE yields
homogeneous subsystems with the responses x.k/ in the different orders O.˛k/

(variational approach [6]). The subsystems can be solved iteratively. In every order
it is a linear time invariant system with known input (being determined from the
lower orders),

E
d

dt
x.k/ D G1x.k/ C R.x.1/; : : : ; x.k�1/; u/:

In an expansion up to O.˛mC1/, we deal consequently with m subsystems. For
example, in case m D 2 they are

E
d

dt
x.1/ DG1x.1/ C bu; E

d

dt
x.2/ D G1x.2/ C G2x.1/ ˝ x.1/ C D1x.1/u:

(b) Approximation of Transfer Functions and Moments To the m subsystems an
associated Krylov space K m

`C1, ` 2 N can be set up, if G1 is regular. Projecting the
QLDAE in the Krylov space yields the reduced model that matches the moments
of the m subsystems up to order `, e.g. K 2

`C1.G�1E;G�1.Œb;G2;D1�//. Since the
dimension of the Krylov space exceeds the dimension of the underlying QLDAE,
a minimization is aimed for. Therefore, a multi-variable Laplace transformation is
applied, i.e. for any f W Rk�0 ! R

n

Qf.s1; : : : ; sk/ D
Z

R
k
�0

f.t1; : : : ; tk/
kY

iD1
e�siti dt1 � � � dtk:
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Defining Nx.k/.t1; : : : ; tk/ D x.k/.t/jt1D���DtkDt for the subsystem responses, the
Laplace transformation gives for the derivative

Z

R
n
�0

d

dt
x.k/.t/

kY

iD1
e�siti dt1 � � � dtk D

kX

iD1
si Qx.k/.s1; : : : ; sk/:

Furthermore, the Kronecker products transform to arithmetic averages for the terms
of all possible permutations over the frequency variables s D .s1; : : : ; sk/ in the
Kronecker product [5]. So, the subsystems k D 1; : : : ;m become

 
kX

iD1
siE � G1

!

Qx.k/ D QR.Qx.1/; : : : ; Qx.k�1/; Qu/; Qx.k/ D H.k/
kY

iD1
Qu.si/

if .
Pk

iD1 siE � G1/ is regular. The transfer functions H.k/ W Rk ! R
n for k D 1; 2

are

H.1/.s/ D .sE � G1/
�1b

H.2/.s1; s2/ D ..s1 C s2/E � G1/
�1 1
2

h
D1

�
H.1/.s1/C H.1/.s2/

�

C G2

�
H.1/.s1/˝ H.1/.s2/C H.1/.s2/˝ H.1/.s1/

� i

The `-th moments associated to the transfer functions of the m subsystems are
the coefficients of the term

Qm
iD1.si C s0/ji ,

P
ji D ` for H.1/; : : : ;H.m/ that can

be computed by performing a Taylor expansion around the frequency s0. They
yield the desired subspace S m

`C1 for the reduced model. Using the Neumann series

.
Pk

iD1 siE � G1/
�1 D P1

jD0 Aj
k.�G.k/

1 /
�1.
Qk

iD1.si � s0//j with Ak D .G.k/
1 /
�1E,

G.k/
1 D G1 � ks0E and r D .�G.1/

1 /
�1b we particularly obtain for the subspace

S 2
`C1 to H.1/ and H.2/

S 2
`C1 D ˚

Ai
1r; i � `

�[
n
Ai
2.�G.2/

1 /
�1D1A

j
1r; i C j � `

o

[
n
Ai
2.�G.2/

1 /
�1G2.A

j
1r/˝ .Ah

1r/; i C j C h � `; h � j
o
:

The dimension of S m
`C1 is smaller than the dimension of the Krylov space K m

`C1 if
` < n (n dimension of the QLDAE). Let V be an orthonormal basis of S m

`C1. Then
the projected QLDAE (reduced model)

OE d

dt
z D OG1z C OG2z ˝ z C

� OD1z C OD2z ˝ z C Ob
�

u; z D VTx (1)
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with Ob D VTb, OE D VTEV, OG1 D VTG1V, OG2 D VTG2V ˝ V, OD1 D VTD1V and
OD2 D VTD2V ˝ V matches the moments of the m subsystems up to the order ` [3].

2 Application to Nonlinear PDE for Gas Pipeline Modeling

Gas flowing in a horizontal pipeline of length L and diameter D can be described
in terms of the pressure p and the flow rate q by the one-dimensional conservation
laws (instationary Euler equations) [4], i.e. for x 2 Œ0;L�, t 2 Œ0; 
�

1

RT

@

@t

p

z
C @

@x
q D 0;

@

@t
q C RT

@

@x

zq2

p
C @

@x
p C RT

2D

�zqjqj
p

D 0

with temperature T, gas constant R, Darcy friction � and the gas compressibility
given by z.p/ D 1 C czp, p D 0:257=pc � 0:533Tc=.pcT/ with the pseudo-critical
pressure pc and temperature Tc. To study the MOR approach for the hyperbolic
system and avoid shocks (or flow inversions), we assume a strictly monotonic
pressure along the pipe. We prescribe the outflow pressure at x D L as P D const
and treat the higher inflow pressure as time-dependent input u. The system is
initialized with the stationary solution ps and Q D const.

Using the reference quantities L, 
 , P and Q, the dimensionless system is hence
given by—note that we keep the original terminology—

@

@t
p C ız2

@

@x
q D 0; ˇ

@

@t
q C ˛

qz

p

@

@x
q C

�

1 � ˛ q2

p2

�
@

@x
p C �

zq2

p
D 0

p.0; t/ D u.t/; p.1; t/ D 1; u.t/ > 1; p.x; 0/ D ps.x/; q.x; 0/ D 1

with parameters ˛ D RTQ2=P2, ˇ D QL=.P
/, � D ˛�L=.2D/ and ı D ˛=ˇ.
We transfer the PDE system into a nonlinear DAE by applying a spatial semi-

discretization with central differences on a staggered grid: midpoints xi D ix,
i D 0; : : : ;N and edges xjC1=2 D xj C x=2, j D 0; : : : ;N � 1 with x D L=N,
N 2 N number of cells. We consider the pressure p and the first PDE at the midpoints
xi and the gas flow rate q and the second PDE at the edges xiC1=2. We use a second
order interpolation to evaluate p and q at the respective other positions, yielding a
second order approximation for the differential operators @

@x Œ��. Consequently, we
obtain the parametric nonlinear input system

� d

dt
pi D ı

x
z2i .qiC1=2 � qi�1=2/;

�ˇ d

dt
qi�1=2 D 1

x

"
˛qi�1=2Ozi

Opi

Oıqi�1=2 C
 

1 � ˛q2i�1=2
Op2i

!

.pi � pi�1/
#

C � Oziq2i�1=2
Opi
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Oıqi�1=2 D

8
ˆ̂
<

ˆ̂
:

�3qi�1=2 C 4qiC1=2 � qiC3=2 i D 1

qiC1=2 � qi�3=2; i D 2; : : : ;N � 1

qi�5=2 � 4qi�3=2 C 3qi�1=2; i D N

Opi D
(
1
8
.3pi�1 C 6pi � piC1/; i D 1; : : : ;N � 1 Ozi D z.Opi/

1
8
.6pN�1 C 3pN � pN�2/; i D N

with the states x D .p1; : : : ; pN�1; q1=2; : : : qN�1=2/ 2 R
2N�1 and the input u D p0.

We perform the quadratic linearization by applying the following substitutions
v1;i D p2i , v2;i D qi�1=2=Opi and v3;i D v22;i in two different ways. The resulting two
quadratic-linear representations (QLDAE1) and (QLDAE2) have the same size and
just differ in the sign of one of the additional equations. However, this difference
effects the reduced models as we will see.

� d

dt
pi D ı

x

�
1C 2czpi C c2zv1;i

�
.qiC1=2 � qi�1=2/

�ˇ d

dt
qi�1=2 D 1

x

	
˛.v2;i C czqi�1=2/ıqi�1=2 C .1 � ˛v3;i/ .pi � pi�1/




C �.v2;i C czqi�1=2/qi�1=2

v1;i � pi D 0; v3;i � v22;i D 0

qi � v2;i Opi D 0 (QLDAE1) v2;i Opi � qi D 0 (QLDAE2)

In the gas QLDAEs we have D2 D 0. Moreover, the coefficient matrix G1 is
singular, therefore we use one of the 10 % smallest modes of the stationary solution
as expansion point s0 for the transfer functions in MOR.

Figure 1 shows the results for a Krylov-space MOR with m D 2 subsystems and
moment order ` D 1; 2; 9. The relative error of the gas pressure and the flow rate in
comparison to the original nonlinear DAE (after semi-discretization) is visualized.
As expected, QLDAE1 and QLDAE2 yield equivalent results that coincide with the
reference solution. The approximations of the respective reduced models of order
` D 9 are very well. In lower order the reduced models of the two quadratic-linear
representations behave differently. Mostly, the reduced models to QLDAE1 show
better results. However, for q D 1; 2 the errors are not acceptable in both cases.
This emphasizes the difficulty in substituting the nonlinearities and setting up an
appropriate quadratic-linear representation, already a sign can change the outcome.
Considering the computational effort, the reduced models q D 9 require one-third of
the time of the nonlinear DAE system in the online modus. The respective projection
matrix V is computed offline. The results are promising, in particular in view of
larger systems.
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Fig. 1 Relative error for gas pressure p (top) and flow rate q (bottom) at t D 1 – comparison of
QLDAE1, QLDAE2, associated reduced models of order ` D 1; 2; 9 with the original nonlinear
DAE. Simulation set-up: ˛ D 6:8�10�4 , ˇ D 2:0�10�3 , � D 24, u.t/ D 1:5�0:0625.1�cos.� t//,
N D 4, size of the reduced models d` and QLDAE d? .d1; d2; d9; d?/ D .3; 4; 11; 18/. Simulations
are performed with MATLAB using the DAE-solver ode15s.m
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ROW Methods Adapted to Network Simulation
for Fluid Flow

Tim Jax and Gerd Steinebach

Abstract Simulating free-surface and pressurised flow is important to many fields
of application, especially in network approaches. Modelling equations to describe
flow behaviour arising in these problems are often expressed by one-dimensional
formulations of the hyperbolic shallow water equations. One established approach
to realise their numerical computation is the method of lines based on semi-
discretisation in space (Steinebach and Rentrop, An adaptive method of lines
approach for modeling flow and transport in rivers. In: Vande Wouwer, Saucez,
Schiesser (eds) Adaptive method of lines, pp 181–205. Chapman & Hall/CRC,
Boca Raton, London, New York, Washington, DC, 2001; Steinebach and Weiner,
Appl Numer Math 62:1567–1578, 2012; Steinebach et al., Modeling and numerical
simulation of pipe flow problems in water supply systems. In: Martin, Klamroth,
et al. (eds) Mathematical optimization of water networks. International series of
numerical mathematics, vol 162, pp 3–15. Springer, Basel, 2012). It leads to index-
one DAE systems as algebraic constraints are required to realise coupling and
boundary conditions of single reaches.
Linearly implicit ROW schemes proved to be effective to solve these DAE systems
(Steinebach and Rentrop, An adaptive method of lines approach for modeling flow
and transport in rivers. In: Vande Wouwer, Saucez, Schiesser (eds) Adaptive method
of lines, pp 181–205. Chapman & Hall/CRC, Boca Raton, London, New York,
Washington, DC, 2001). However, under certain conditions an extended partial
explicit time-integration of the shallow water equations could be worthwhile to
save computational effort. To restrict implicit solution by ROW schemes to stiff
components while using explicit solution by RK methods for remaining terms, we
adapt ROW method ROS34PRW (Rang, J Comput Appl Math 262:105–114, 2014)
to an AMF and IMEX combining approach (Hundsdorfer and Verwer, Numerical
solution of time-dependent advection-diffusion-reaction equations. Springer, Berlin,
Heidelberg, New York, 2003). Applied to first test problems regarding open channel
flow, efficiency is analysed with respect to flow behaviour. Results prove to be
advantageous especially concerning dynamical flow.
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Keywords Network simulation • ROW methods • Water supply systems

1 Introduction

Simulating fluid flow in large networks is relevant to numerous fields in industry
and environment. Applications cover free-surface flow in open channels as well as
pressurised flow in closed pipes that arise for instance when planning water supply
and sewerage in urban infrastructure [10]. Significant parameters in these appli-
cations often reduce to space and time dependent water surface elevation, volume
flow and pressure distribution in one single direction. Hence, modelling equations
are generally expressed by the one-dimensional shallow water equations (SWEs).

Considering network simulation, one established approach to solve the system of
hyperbolic partial differential equations (PDEs) given by the SWEs is the method
of lines (MOL). Based on semi-discretisation in space, it approximates space
derivatives by appropriate discretisation schemes while time derivatives remain.
That way the SWEs are converted into a system of differential-algebraic equations
(DAEs), as in networks regarding fluid flow boundary and coupling conditions of
single reaches are generally expressed by additional algebraic constraints [8, 10].

DAEs can be interpreted as infinitely stiff ordinary differential equations (ODEs).
Moreover, friction is assumed to introduce some stiffness to the SWEs [9]. So the
resulting DAE system is finally solved by implicit schemes for time-integration.
These are more efficient regarding stiff problems than explicit schemes due to
stability reasons. In this context, linearly implicit Rosenbrock-Wanner (ROW)
methods are among the schemes that prove to be effective solving the SWEs after
space-discretisation [8, 10].

However, in contrast to explicit methods implicit schemes show an increased
effort when applied to non-stiff problems. Regarding the SWE system, components
assumed to be stiff reduce to algebraic constraints and friction terms. Even more,
frictional effects might be too small to affect stiffness properties significantly.
Therefore, restricting implicit schemes to stiff parts while applying explicit methods
to remaining non-stiff terms might improve computational efficiency.

Methods combining implicit and explicit time-integration are known as implicit-
explicit (IMEX) schemes. In this paper, IMEX schemes are realised by adapting
the ROW method ROS34PRW [6]. Their implementation is related to approximate
matrix factorisation (AMF) that enables to solve non-stiff parts by explicit Runge-
Kutta (RK) schemes using approximations to the given Jacobian [2, 3]. Although
applying additive splitting of the DAE system’s right hand side, the resulting
schemes consider additional separation of unknowns into stiff and non-stiff compo-
nents. Particularly as given equations of mass conservation are regarded as non-stiff.

In order to analyse efficiency of this AMF-IMEX approach in terms of flow
behaviour, we simulate test problems of open channel flow. To investigate frictional
effects on stiffness and thus time-integration in more detail, explicit and implicit
solution of different friction parameters is tested.
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In the following, Sect. 2 defines SWE modelling equations, Sect. 3 describes
the AMF-IMEX approach, Sect. 4 shows numerical results and Sect. 5 gives a
conclusion.

2 SWE Modelling Equations

We consider the SWEs for simulating free-surface flow, given by an adapted
formulation of the Saint-Venant equations:

zt C 1

B
qx D 0 (1)

qt C
�

q2

A

�

x

C gAzx D �gASf : (2)

Equations (1) and (2) describe a nonlinear, hyperbolic PDE system based on
conservations of mass and momentum. Here, z denotes water surface elevation and
q equals volume flow. Further parameters are width of water surface B, flooded
cross-sectional area A as well as gravitational constant g.

Parameter Sf denotes friction slope that describes effects due to turbulence,
viscosity and friction. According to empirical formula by Manning-Strickler it is
expressed by

Sf D ujujk�2St r�4=3hydr (3)

with mean velocity u, hydraulic radius rhydr and Strickler coefficient kSt. Hydraulic
radius rhydr defines ratios of flooded cross-sectional area to wetted perimeter. The
Strickler coefficient kSt describes a friction parameter with values ranging from
20m1=3=s for rough surfaces to 80m1=3=s for smooth surfaces [1].

Due to their nonlinear hyperbolic character, the SWEs tend to generate dis-
continuous solutions in the form of shock waves. Therefore, solution by MOL
requires specific schemes for space discretisation that ensure accuracy even at
discontinuities. One efficient approach are finite volumes with numerical fluxes
according to local Lax-Friedrichs or Harten, Lax and van Leer, supplemented by
a central third-order WENO interpolation as introduced by Kurganov and Levy
[4, 5, 10].

In order to realise coupling and boundary conditions without perturbing con-
servative properties of the SWE system, linear and nonlinear algebraic constraints
are applied. Semi-discretisation in space combined with these algebraic constraints
yields a DAE system assumed to be of index one. Restricting to autonomous
problems, it can be expressed by

My0.t/ D f .y.t// (4)

where M denotes a singular mass matrix.
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3 AMF-IMEX Approach

DAE systems are generally solved by implicit time-integration, due to their stiff
properties. Regarding the SWEs after space-discretisation, linearly implicit ROW
schemes proved to be effective [8, 9]. In autonomous formulation they read [8]:

y1 D y0C
sX

iD1
biki ;

�
M � h� fy

�
ki D hf

0

@y0 C
i�1X

jD1
aijkj

1

AChfy

i�1X

jD1
�ijkj : (5)

Here, parameters ki denote stage values. Weights bi and coefficients aij, �ij (with
�ii D � ) for i D 1; : : : ; s, j D 1; : : : ; i � 1 are defined in corresponding sets
of coefficients. Expression fy D fy.y0/ denotes the Jacobian. It mainly determines
computational effort of ROW schemes that can be reduced using sparse structures.

Every linearly implicit ROW scheme includes an underlying explicit RK method.
Related to IMEX approach, this enables to combine both methods in order to restrict
implicit solution to stiff components while applying explicit solution to remaining
non-stiff terms. For this purpose, function f of DAE system (4) is assumed to be
split into a stiff part fS and a non-stiff part fN , such that f D fN C fS [3].

This splitting of f yields a corresponding splitting of the Jacobian given by fy D
.fN C fS/y. By neglecting the Jacobian’s non-stiff parts as related to AMF approach
[2, 3], standard ROW method (5) leads to an adapted scheme given by:

y1 D y0 C
sX

iD1
biki ;

�
M � h� fSy

�
ki D hf

0

@y0 C
i�1X

jD1
aijkj

1

AC hfSy

i�1X

jD1
�ijkj :

(6)

Regarding computation of stage values ki, this formulation applies a ROW
method to stiff terms but reduces to a RK method for non-stiff terms. Hence,
stiff components are evaluated implicitly while non-stiff components are calculated
explicitly. As there is just one stiff and one non-stiff part of the Jacobian considered,
AMF and IMEX can be assumed to be equivalent [3]. Hence, we refer to the adapted
ROW method as AMF-IMEX approach.

This approach corresponds to ROW methods with approximated Jacobians. As
standard ROW methods require exact Jacobians, realising the described scheme
demands coefficients of W methods that fulfil special order conditions enabling to
use non-exact matrices [7]. In addition, supplemental constraints must be considered
to evaluate DAE problems. For this reason, we applied coefficients of third-order
ROW method ROS34PRW given in [6] that satisfies these conditions (see Table 1).

As implicitly solved stiff components are defined by entries of the Jacobian fSy ,
the AMF-IMEX approach enables to adapt time-integration to stiffness properties
and special requirements of a problem. In this context, we generally considered
algebraic constraints of the resulting DAE system to be stiff. However, in order
to analyse frictional effects on stiffness, two different schemes were applied



ROW Methods Adapted to Network Simulation for Fluid Flow 805

Table 1 Coefficient set for ROS34PRW [6]

� = 4:3586652150845900E � 1
˛21 = 8:7173304301691801E � 1 �21 = �8:7173304301691801E � 1
˛31 = 1:4722022879435914E C 0 �31 = �1:2855347382089872E C 0
˛32 = �3:1840250568090289E � 1 �32 = 5:0507005541550687E � 1
˛41 = 8:1505192016694938E � 1 �41 = �4:8201449182864348E � 1
˛42 = 5:0000000000000000E � 1 �42 = 2:1793326075422950E � 1
˛43 = �3:1505192016694938E � 1 �43 = �1:7178529043404503E � 1
b1 = 3:3303742833830591E � 1 Ob1 = 2:5000000000000000E � 1
b2 = 7:1793326075422947E � 1 Ob2 = 7:4276119608319180E � 1
b3 = �4:8683721060099439E � 1 Ob3 = �3:1472922970066219E � 1
b4 = 4:3586652150845900E � 1 Ob4 = 3:2196803361747034E � 1

concerning the given friction term by Manning-Strickler: One solves friction
implicitly as additional stiff component, referred to as AMIEs. Another one solves
friction explicitly as non-stiff component, referred to as AMIEn. In both schemes,
all remaining terms of (1) and (2) are evaluated explicitly by the underlying RK
method.

4 Numerical Results and Discussion

In this section, the adapted ROW methods were applied to test problems dam
break and shallow water flow as introduced in [9]. Both describe open channel
flows characterised by different flow behaviour (see Fig. 1): Dam break considers
dynamical discontinuous solutions with propagating shock waves. Shallow water
flow considers stationary smooth solutions, given after a dynamical transition phase.

Our aim is to analyse efficiency of the presented AMF-IMEX approach in terms
of this different flow behaviour and to investigate frictional effects on stiffness and
thus time-integration. For this purpose, both test problems were simulated using
friction slope according to Manning-Strickler, considering Strickler coefficients
kSt D 80m1=3=s (low friction) and kSt D 20m1=3=s (high friction). We expect
rising friction to increase stiffness within the system. Thus, solving friction terms
implicitly by AMIEs and explicitly by AMIEn should be superior regarding higher
and lower friction, respectively.

To compare efficiency of AMF-IMEX schemes AMIEn and AMIEs based on
coefficient set ROS34PRW to standard ROW schemes, the same set of coefficients
was also applied as ROW method with exact Jacobian. In addition, fourth-order
ROW method RODASP [8] was taken into account that is proven to be quite
efficient and robust solving the SWEs [9, 10]. Efficiencies were analysed plotting
error against CPU-time on logarithmic scales. Errors were evaluated as defined
in [9], comparing numerical solutions that consider absolute and relative tolerances
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Fig. 1 Initial and final profile of dam break (left) and shallow water flow (right)
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Fig. 2 Efficiencies of dam break

tol D 10�3; : : : ; 10�6 for step-size control with more accurate numerical reference
solutions determined by MATLAB integrator ode15sand tol D 10�12.

We regard dam break problem first. Efficiency plots for friction parameters kSt D
80m1=3=s and kSt D 20m1=3=s are given in Fig. 2. They show that both AMF-IMEX
schemes based on ROS34PRW are more effective than standard ROW formulation
realised by the same set of coefficients for low as well as high friction. The applied
third-order schemes based on AMF-IMEX approach even catch up with efficiency
of fourth-order ROW method RODASP, performing better results for low accuracy.
However, contrary to our expectations, solving friction implicitly by AMIEs and
explicitly by AMIEn shows no significant differences even for high friction.

Advantages of the AMF-IMEX approach are due to exploiting properties of
explicit schemes and sparser Jacobians, saving effort computing small-step sizes
required for dynamical problems. Missing differences solving friction implicitly and
explicitly even for high friction might indicate that the considered friction slope has
no significant effect on stiffness of the SWEs within the applied range.
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Fig. 3 Efficiencies of shallow water flow

Simulating shallow water flow, different time-intervals were considered to
analyse efficiency and frictional effects with respect to dynamical transition phase as
well as subsequent stationary smooth solution. In Fig. 3 results for kSt D 20m1=3=s
with respect to time-intervals t D Œ0; 100� and t D Œ0; 1000� are compared. For
t D Œ0; 100�, results prove to be similar to dam break problem: Again, AMF-IMEX
approaches are superior to ROW schemes based on ROS34PRW and RODASP.
However, for t D Œ0; 1000� the AMF-IMEX schemes offer a significant loss in
efficiency, consequently being inferior to standard ROW formulation.

A possible explanation for this behaviour is given by the dynamical transition
phase before finding the stationary solution. For kSt D 20m1=3=s stationary solution
seems to be found within t D Œ0; 1000� but not within t D Œ0; 100�. As dynamical
problems require small step-sizes that are performed advantageously by explicit
integration, applying the AMF-IMEX approach seems to be superior in transition
phase. However, step-sizes can become nearly arbitrarily large simulating stationary
solutions such that linearly implicit ROW schemes become advantageous. The fact
that standard ROW methods are more efficient solving stationary cases indicates that
the AMF-IMEX schemes considered have step-size restrictions similar to explicit
RK methods.

Further experiments with kSt D 80m1=3=s showed that loss of efficiency
for AMF-IMEX approaches occurs significantly when simulating time-intervals
beyond t D Œ0; 1000�. Therefore, duration of transition phase depends on friction
parameters, being more abbreviated the higher frictional effects become.

Regarding implicit and explicit solution of friction, the AMF-IMEX schemes
show almost no differences within transition phase. But for stationary case, solving
friction implicitly by AMIEs is superior to AMIEn for small tolerances. However,
these differences were less distinct for kSt D 10m1=3=s. So there seem to be no
general frictional effects on stiffness within the considered range of parameters.
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5 Conclusion

We adapted ROW method ROS34PRW to stiffness properties of DAEs describing
the one-dimensional hyperbolic SWEs. For this purpose an AMF and IMEX based
approach was used to combine ROW and RK methods in order to implement
the partial implicit and explicit integration required. The resulting AMF-IMEX
schemes led to increased efficiencies simulating dynamical problems. However,
for stationary solutions standard ROW schemes proved to be more effective. The
findings indicate that adjusting time-integration to flow behaviour within single
reaches of network approaches by adaptive methods can be worthwhile. Our results
showed no general frictional effects on stiffness, notably for dynamical problems.
So we assume that friction terms of the SWEs could be just mildly-stiff within the
range of parameters considered.
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Automatic Generation of Reduced-Order
Models for Linear Parametric Systems

Lihong Feng, Athanasios C. Antoulas, and Peter Benner

Abstract Parametric modeling as well as parametric model order reduction
(PMOR) of parametric systems are being widely researched in many micro- and
nano-electrical(-mechanical) problems as well as in coupled micro- and nano-
electro-thermal problems. We propose an adaptive technique for automatically
implementing PMOR, so as to automatically construct the reduced-order models.
The adaptive technique is based on a posteriori error estimation and is realized
through a greedy algorithm which uses the error estimation as a stopping criteria.

Keywords Model order reduction • Multi-moment-matching • Parametric model
order reduction

1 Introduction

Geometrical and physical variations are becoming unavoidable in many micro-
and nano-electrical(-mechanical) problems as well as in coupled micro- and nano-
electro-thermal problems. For design purposes, it is desired to extract a parametric
model, where geometrical or physical variations appear as parameters in the system.
For very large-scale parametric systems, parametric model order reduction (PMOR)
attracts more and more attention due to its great potential of reducing the simulation
time. Through PMOR, all the parameters are preserved in the reduced-order models
as symbolic quantities. The goal is that a single reduced-order model is capable of
replacing the original large-scale systems.

PMOR methods are often the extensions of standard model order reduction
methods for non-parametric systems. Till now, there have been various PMOR
methods proposed, such as multi-moment-matching PMOR methods [3], methods
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based on H2-optimal interpolation [1], methods based on proper orthogonal
decomposition (POD) and interpolation [4], the Loewner approach to parametric
model reduction [6], as well as the reduced basis methods (RBM) [7].

In micro- and nanoelectronics and MEMS design, the multi-moment-matching
PMOR methods for linear parametric systems are still the most popular approaches
used in practical applications since they are easy to implement and require few
assumptions on system properties. However, constructing the reduced-order models
using the multi-moment-matching PMOR method is still not automatic, for exam-
ple, the expansion points need to be heuristically determined before implementation.
How to automatically construct the reduced-order models for parametric systems,
especially using the multi-moment-matching PMOR method, is rarely discussed
by far. In this paper, we propose a technique of adaptively implementing the
multi-moment-matching PMOR method. As a result, it automatically generates the
reduced-order model, which is desired in design automation in real applications.
The basic idea of the technique is to use an a posteriori output error bound for
the reduced-order model as a stopping criteria in a greedy algorithm, which finally
enables adaptive implementation of the multi-moment-matching PMOR method.

The paper is organized as follows. In Sect. 2, we review the basic idea of multi-
moment-matching PMOR methods. Section 3 proposes an a posteriori output error
bound for the transfer function of the reduced-order model. Section 4 presents an
algorithm for adaptively implementing the multi-moment-matching PMOR method.
In Sect. 5, a reduced-order model is automatically obtained for a parametric model
of a silicon-nitride membrane. Conclusions are given in the end.

2 Multi-Moment-Matching PMOR

In this section multi-moment-matching PMOR methods for model order reduction
of linear parametric systems are discussed. Especially, the robust multi-moment-
matching PMOR method in [3] is reviewed. A linear parametrized system can be
written as,

E. Q�/ dx
dt D A. Q�/x C Bu.t/;

y.t; Q�/ D Cx;
(1)

where x.t/ 2 R
n is the vector of unknowns, u.t/ 2 R

m1 is the input signal and
y.t; Q�/ 2 R

m2 is the output response. E 2 R
n�n;A 2 R

n�n;B 2 R
n�m1 ;C 2 R

m2�n

are the system matrices. Q� 2 R
p�1 is a vector of parameters. The number of degrees

of freedom n is usually very large.
Through PMOR, a reduced-order model is obtained as

OE. Q�/ dz
dt D OA. Q�/z C OBu.t/;

Oy.t; Q�/ D OCz;
(2)



Automatic Generation of Reduced-Order Models for Linear Parametric Systems 813

where OE D VTE.�/V , OA D VTA.�/V , OB D VTB, OC D CV , and z 2 R
r, with r � n.

For multi-moment-matching PMOR methods, the matrix V 2 R
n�r is computed

based on the series expansion of the state vector x in the frequency domain.
Applying the Laplace transform to the original system in (1), and taking the
input u.t/ as the impulse input, we get the following system in frequency domain
(assuming x.�/jtD0 D 0)

G.�/x.�/ D B;
y.�/ D Cx.�/:

(3)

Here G.�/ D sE. Q�/ � A. Q�/, and � D . Q�; s/ DW .�1; : : : ; �p/ is the vector of
parameters in the frequency domain. The variable s 2 C is the Laplace variable
with imaginary part Im.s/ D 2�f , f being the frequency in Hz.

Assume that G.�/ 2 C
n�n has the following affine form with respect to the

parameters, i.e.

G.�/ D E0 C �1E1 C : : :C �pEp;

where Ei are constant matrices and are independent of the parameters. Given an
expansion point 	0 D Œ�01; �

0
2; � � � ; �0p�, x.�/ in (3) can be expanded as

x D ŒI � .	1M1 C : : :C 	pMp/�
�1BM

D
1P

iD0
.	1M1 C : : :C 	pMp/

iBM;
(4)

where 	i D �i � �0i , BM D ŒG.�0/��1B, and Mi D �ŒG.�0/��1Ei, i D 1; 2; : : : ; p.
When the number of the parameters p in a parametrized system is larger than 2,

it is desired that multiple point expansion is used, such that the size of the reduced-
order model can be kept small. Given a group of expansion points �i; i D 0; : : : ; k,
a matrix V�i can be computed for each �i as

rangefV�ig D spanfR0;R1; : : : ;Rqg�i :

Here Rj D ŒM1; : : : ;Mp�Rj�1, j D 1; : : : ; q, and R0 D BM. For each �i, Mi, and
BM are defined as above by replacing �0 with �i. The final projection matrix V is a
combination (orthogonalization) of all the matrices V�i ,

V D orthfV�0; : : : ;V�k g: (5)

The question of how to properly select the expansion points �i is still open in
general, and will be addressed in this paper. An algorithm for adaptively selecting
the expansion points is proposed in Sect. 4, where the a posteriori error bound.�/
plays a crucial role. In the next section we propose an a posteriori error bound for
the transfer function of the reduced-order model in (2).
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3 A Posteriori Error Bound

In order to derive the error bound for the transfer function OH.�/ of the reduced-
order model (2), we need to define a primal system and a dual system. The primal
system is defined as in (3). Its output y.�/ is exactly the transfer function H.�/ of
the original system in (1), since the system (3) is derived using the impulse input
u.t/ D ı.t/, where ı.t/ is the ı function. The dual system is defined as

G�.�/xdu.�/ D �CT ;

ydu.�/ D BTxdu.�/:
(6)

Here, G�.�/ is the conjugate transpose of G.�/. We also need the residuals caused
by the reduced-order models for the primal and the dual systems. The reduced-order
model of the primal system is obtained using V from (2) by

VTG.�/Vz.�/ D VTB;
Oy.�/ D CVz.�/;

(7)

where Ox.�/ D Vz.�/ approximates x.�/. It can be easily seen that the transfer
function OH.�/ of the reduced-order model in (2) equals Oy.�/. The reduced-order
model of the dual system is

.Vdu/TG�.�/Vduzdu.�/ D �.Vdu/TCT ;

Oydu.�/ D BTVduzdu.�/;
(8)

where Oxdu.�/ D Vduzdu.�/ is the approximation of xdu.�/. The two residuals are
rpr.�/ D B � G.�/Ox.�/ and rdu.�/ D �CT � G�.�/Oxdu.�/.

Notice that the matrix Vdu can be computed similarly as in (5), only by replacing
the matrices G.�i/ with G�.�i/, i D 0; : : : ; k, B with �CT , and Ei with ET

i , i D
0; : : : ; p. More specifically, defining, CM D �ŒG�.�i/��1CT , we compute

rangefVdu
�i g D spanfRdu

0 ;R
du
1 ; : : : ;R

du
q g�i ;

where Rdu
j D ŒMdu

1 ; : : : ;M
du
p �

jRdu
j�1, j D 0; : : : ; q. Here Mdu

i D �ŒG�.�i/��1ET
i and

Rdu
0 D CM .

Defining two new variables e.�/ D .Oxdu.�//�rpr.�/ and Qy.�/ D Oy.�/ � e.�/
and assuming that G.�/ satisfies

inf
w2Cn

w¤0
sup
v2Cn

v¤0

w�G.�/v
jjwjj2 jjvjj2 D ˇ.�/ > 0;

(9)

we have the following theorem.
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Theorem 1 For a single-input single-output (SISO) linear parametric system as

in (1), if G.�/ satisfies (9), then jy.�/ � Qy.�/j � Q.�/, Q.�/ WD jjrdu.�/jj2jjrpr.�/jj2
ˇ.�/

.
As a result,

jH.�/� OH.�/j D jy.�/� Oy.�/j � .�/;

where .�/ WD Q.�/C je.�/j.
Remark The proof of the theorem and the analysis of the error bound, as well as the
extension to multiple-input multiple-output (MIMO) system cannot be presented
here due to space limitations, but is detailed in [5].

Remark By simple calculation, it can be seen that ˇ.�/ is the smallest singular
value of G.�/, so that the error bound .�/ is computable. When G.�/ is very
large, the smallest singular value of the projected matrix VTG.�/V could be a
heuristic approximation of ˇ.�/.

By combing a greedy algorithm proposed for the reduced basis method [7] with
the robust PMOR algorithm in [3], one can use the error bound to adaptively
select the parameters, so as to automatically construct the reduced-order model.
The algorithm of automatic generation of the reduced-order model is described in
the next section.

4 Automatic Generation of the Reduced-Order Models

The algorithm in this section follows the idea of the greedy algorithm widely used
in the reduced basis community. A large sample space $train of the parameters �,
covering the whole interesting parameter domain, must be initially given. During
each step of the algorithm, a point O� in $train, which causes the largest error
[indicated by the error bound .�/], is chosen as the next expansion point. The
process continues until the error bound is smaller than an acceptable error tolerance
�tol.< 1/. The matrix V is used to construct the reduced-order model in (2). The
matrix Vdu only aids the computation of the error estimation .�/, and is not used
in the final reduced-order model.

5 Simulation Results

We use a thermal model of a silicon-nitride membrane to illustrate the process of
automatically generating the reduced-order model according to Algorithm 1. The
physical description of the model can be found in [2]. One can also refer to the
MORwiki (www.modelreduction.org) for the details of the model. It is a system

www.modelreduction.org


816 L. Feng et al.

Table 1 V�i D span
fBM;R1g�i , �re

tol D 10�2,
n D 60; 020, r D 8

Iteration "re
true re.�i/

1 1� 10�3 3:44

2 1� 10�4 4:59� 10�2

3 2:80 � 10�5 4:07� 10�2

4 2:58 � 10�6 2:62� 10�5

with four parameters as described in (10),

.E0 C �cpE1/dx=dt C .K0 C �K1 C hK2/x D bu.t/
y D Cx;

(10)

where � 2 Œ3000; 3200�, cp 2 Œ400; 750�, � 2 Œ2:5; 4�, h 2 Œ10; 12�. Here the mass
density � in kg=m3, the specific heat capacity cp in J=kg=K, the thermal conductivity
in W=m=K, and the heat transfer coefficient h in W=m2=K. The size of the system
is n D 60; 020.

In Table 1, the true relative error is defined as "re
true D max

�2$train

jH.�/ �
OH.�/j=jH.�/j. We use the error bound for the relative error defined as re.�/ D
.�/=j OH.�/j, to estimate the true relative error. In the table, we show that after four
iteration steps in Algorithm 1, a reduced-order model satisfying the error tolerance
"re

tol D 10�2 is finally derived. The error bound in the final step is very close but
above the true error, which is to be expected from a rigorous error bound.

For the train sample space $train in Algorithm 1, we have used three samples for
�, ten samples for the frequency. In Fig. 1, we use 16 samples for �, and 51 samples
for the frequency to further check the accuracy of the reduced-order model. The plot
shows that the error of the reduced-order model at every sample is below the error
tolerance. The size of the reduced-order model is also very small, r D 8, showing
that the automatically derived reduced-order model meets both the requirements of
accuracy and compactness.

Algorithm 1 Automatic generation of the reduced-order model by adaptively
selecting expansion points O� for parametrized Linear time-invariant (LTI) systems
1: V D Œ�IVdu D Œ�;
2: � D 1; �tol: acceptable error of the reduced-order model;
3: Initial expansion point: O�;
4: $train: a large set of samples of �, taken over the interesting domain of the parameters;
5: while � > �tol do
6: range.V O�/ D spanfR0;R1; : : : ;Rqg O�;
7: range.Vdu

O�
/ D spanfRdu

0 ;R
du
1 ; : : : ;R

du
q g O�;

8: V D orthfV;V O�g;
9: Vdu D orthfVdu;Vdu

O�
g;

10: O� D argmax
�2$train

.�/;

11: � D . O�/ ;
12: end while.
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Fig. 1 Relative error of the final ROM over a fine space of samples

6 Conclusions

In this paper we have proposed an a posteriori error bound for reduced-order
modeling of linear parametric systems. Guided by the error bound, reduced-
order models can be automatically derived by the multi-moment-matching PMOR
method. The simulation results show that the proposed algorithm automatically
constructs the reduced-order models according to the given accuracy requirement.
This provides a promising way of design automation for compact modeling of
parametric problems.
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Fast and Reliable Simulations of the Heating
of Bond Wires

David Duque and Sebastian Schöps

Abstract We present an extended analytic formulation for the determination of
the temperature distribution along a bond-wire within a package in order to extract
the maximum allowable current to not exceed a specific temperature. The closed-
form formula involves the essential physical parameters that define a package, i.e.,
moulding compound material and dimensions, bond-wire characteristics, etc. This
is very important if one wants to assess the influence of (randomly distributed)
parameter variations on the current capacity of the wire by means of uncertainty
quantification methods.

Keywords Bond wires • Moulding compound • Temperature distribution

1 Introduction

Among the several available techniques to provide electric connection between the
chip and the lead frame (or pins) during device assembly, wire-bonding is still
the most cost-effective one [2–6]. This techniques uses fine aluminium, copper, or
gold wires to establish an electric path between the chip and its package. As chip
miniaturisation becomes inevitable, the wire diameter must also decrease. Since the
electric power for the chip has to be supplied through the wires, these are heated
up and their temperature can increase substantially because high current densities
may occur. As a matter of fact, fusing or melting of wire-bonds is one potential
source of failure in integrated circuit (IC) devices [5]. From the afore-described
situation, one would like to have available a simple formula that enables to predict
the safe operation range of a given bond-wire in a particular application. This
calculation should be done in a expedient manner and must involve the important
physical parameters defining a package. Several simplistic analytic formulations
for the estimation of current capacities in bond-wires have already been proposed
[2–6]. Nonetheless, in their attempt to simplify the resulting partial differential
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equation (PDE) so as to cope with the non-linearities introduced by the thermal
dependence of the wire parameters, the resulting formulations end up lacking the
variables that define a package as a geometrical shape.

In this paper, we address these typical deficiencies by developing an analytic
formulation for the determination of the wire temperature which involves the
essential physical parameters that define a package, i.e., moulding compound
material and dimensions, bond-wire characteristics, etc., by using an appropriate
set of heat transfer boundary conditions (BCs).

2 Problem Formulation

We show a simple diagram of a classic IC lead-frame package in Fig. 1a. Because
of the often complicate geometric arrangement of the conductors within the
package, simplifications are necessary in order to formulate the relevant heat transfer
problem. In Fig. 1b, we depict a suitable bond-wire thermal problem, which

consists of a rectangular piece of moulding compound of height Hm and width
Wm that encapsulates the bond-wire. The compound is characterised by a thermal
conductivity �m, specific heat ceIm, and mass density �m. Similarly, the bond-wire of
length Lw is characterised by its specific heat ceIw, mass density �w, and linearised
thermal conductivity and electrical resistivity

�w.eTw/ WD �o
�
1C ˛�eTw

�
; and ¡e;w.eTw/ WD ¡e;o

�
1C ˛¡eTw

�
; (1)

respectively, with eTw D Tw � To, where Tw denotes the wire temperature,
To the reference (ambient) temperature, ˛� the thermal conductivity temperature
coefficient, and ˛¡ the electrical resistivity temperature coefficient.

The wire is heated up, during a time tp, by the action of an electric current i.t/ D
I0. We want to determine the temperature Tw as function of time. We impose suitable
BCs on the domain boundaries, i.e., On the rightmost wall, we assume that heat

(a)

(b)

Bond Wire

IC

Lead

Fig. 1 Diagram of a classic IC lead-frame package and bond-wire heat transfer problem configu-
ration. (a) IC lead-frame package. (b) Heat transfer problem configuration
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flux mainly occurs through the wire, thus we require the vanishing of the heat flux
throughout the moulding compound section of this wall, while the wire remains at
the lead temperature Tld, viz.

��m
@

@y
Tm .x;Lw; z; t/ D 0; Tw .x;Lw; z; t/ D Tld; (2)

where Tm is the compound temperature. On the leftmost wall, we assume a constant
chip temperature Tch, viz.

Tm .x; 0; z; t/ D Tch; Tw .x; 0; z; t/ D Tch: (3)

On the remaining lateral walls, we assume convective heat transfer [1], viz.

��m
@

@z
Tm

�

x; y;˙Hm

2
; t

�

D hc

�

Tm.x; y;˙Hm

2
; t/ � To/

�

; (4)

��m
@

@x
Tm

�

˙Wm

2
; y; z; t

�

D hc

�

Tm.˙Wm

2
; y; z; t/ � To/

�

; (5)

where hc is the convective heat transfer coefficient [1]. Finally, on the wire surface,
we assume that thermal radiation takes place, viz.

�
Z

Sw

�wrTTw � dS D
Z

Sw

�w¢
�
T4w � T4o

�
dS; (6)

where rTTw is the temperature transverse gradient, that is along the xz-plane, Sw

is the wire surface, �w is the wire emissivity [1], and ¢ is the Stefan-Boltzmann
constant [1].

3 Bond-Wire Heat Transfer Problem

The heat equation for the stationary and incompressible wire of constant mass
density reads [1]

�wceIw
@Tw

@t
D r � .�wrTw/C Pqi; (7)

where Pqi is the impressed volume thermal power density generated within the wire,
which is

Pqi D I20¡e;o

A2w
C I20¡e;o˛¡eTw

A2w
; (8)
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where Aw is the cross-section area of the wire. The wire heat equation is obtained
by using (6), expanding the gradient operator as r D @yay C rT, and assuming that
the wire Biot number [1] is small along the xz-plane, viz.

�wceIw
@

@t
Tw .y; t/ D @

@y

�

�w
@

@y
Tw .y; t/

�

��w¢
�
T4w .y; t/ � T4o

� Cw.y/

Aw.y/
C Pqi; (9)

where Cw is the cross-section perimeter of the wire. We linearise (9) by first
expanding the radiation term as follows

T4w � T4o D �
T3w C T2wTo C TwT2o C T3o

�
.Tw � To/ Š �w .y; t/ .Tw � To/ ; (10)

where �w .y; t/ is a linearising function whose formal calculation entails the solution
of an integral equation that ensues from the continuity of temperature and heat flux
across the wire-mould interface. Since, we are aiming at a simple and fast method
for determining the wire temperature, we deem it convenient to regard �w .y; t/ 	
�w a constant in keeping with the observation that temperature continuity along the
interface cannot be rigorously imposed. This approximation is reasonable insofar
as thermal radiation is not the heat transfer dominant term. Next, we employ the
following transformation

Q�w
�
eTw
� WD 1

�o

Z eTw

0

�w .s/ ds; (11)

which entails that Q�w D eTw C ˛�=2eT2w, and @y
Q�w D �w=�o @yeTw. Additionally, to

keep the transient term in (9) linear, we employ @t
Q�w D @teTw as an approximation.

These steps yield

�wceIw
@

@t
Q�w D �o

@2

@y2
Q�w � Fo;w;r

Q�w C Go;w C 1

2
Ho;w;r; (12)

with

Go;w D I20¡e;o

A2w
; Fo;w;r D �w¢�w

Cw

Aw
; Ho;w;r D 2I20¡e;o˛¡eTw;e

A2w
C �w¢�w

Cw

Aw
˛�eT

2
w;e;

(13)

whereeTw;e is the wire effective temperature. We solve (12) by assuming Q�w.y; t/ D
Q�wI1.y; t/C Q�wI2.y/, thus yielding

Q�w.y; t/ D
X

k

Ct
wIkIre

� �o
�wce;w

�2yIw;kte�
Fo;w;r
�wce;w

t sin
�
�yIw;ky

�C Cs
1IyIw;r cosh

 s
Fo;w;r

�o
y

!

C Cs
2IyIw;r sinh

 s
Fo;w;r

�o
y

!

C 1

2

Ho;w;r

Fo;w;r
C Go;w

Fo;w;r
I �yIw;k D k�

Lw
; k > 0:

(14)
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The set fCt
wIkIr;Cs

1IyIw;r;C
s
2IyIw;rg is determined by means of the initial condition

Tw D To at t D 0, and BCs (2) and (3), respectively. Thus, we finally arrive at

eTw .y; t/ Š
q

2˛� Q�w.y; t/C 1

˛�
� 1

˛�
: (15)

We observe in (15) that if j˛� j � 1, then eTw Š Q�w; moreover, we still need to
determineeTw;e and �w.

4 Moulding Compound Heat Transfer Problem

The moulding compound heat equation can be expressed as

�mce;m
@

@t
Tm D �mr2Tm C �w¢�weTwCwı.x/ı.z/; (16)

with ı.:/ a Dirac delta. Equation (16) is the heat equation of a homogeneous
compound with an impressed heat source, whose solution involves the relevant heat
kernel (Green’s function). If the impressed source were zero in (16), the temperature
Tm would be established by the chip. Once, the impressed source is activated,
another temperature component originates. We solve for the first component by
defining eTm 	 Tm � To, assuming eTm .x; y; z; t/ 	 eTmI1 .x; y; z; t/ CeTmI2 .x; y; z/,
and using BCs (2)–(5). The heat kernel is obtained by defining eGm 	 Gm � To,
assuming eGm .x; y; z; t/ 	 eGmI1 .x; y; z; t/ C eGmI2 .x; y; z/, and using similar BCs.
Subsequently, we can express Tm as

Tm .x; y; z; t/ D To C
X

n

X

p

Cs
mIn;pe�yImIn;py

�
1C e2�yImIn;p.Lw�y/

�
cos .�xIm;nx/

cos
�
�zIm;pz

�C
X

n

X

m

X

p

Ct
mIn;m;pe�

�m
�mceIm .�

2
xIm;nC�2yIm;mC�2zIm;p/t

cos .�xIm;nx/ sin
�
�yIm;my

�
cos

�
�zIm;pz

�

C �w¢�wCw

Z t

0

Z

y0

Gm
�
x; y; z; t � 
; y0

�
eTw

�
y0; 


�
dy0d
;

(17)
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with �xIm;n tan .�xIm;nWm=2/ WD hc=�m, �zIm;p tan
�
�zIm;pHm=2

� WD hc=�m,
�yIm;m WD .2m C 1/�=2LwI m � 0, �2yImIn;p WD �2xIm;n C �2zIm;p, and

Gm
�
x; y; z; t; y0

� D To C
X

n

X

p

Cs
gIn;pe�yImIn;py

�
1C e2�yImIn;p.Lw�y/

�
cos .�xIm;nx/

cos
�
�zIm;pz

�C
X

n

X

m

X

p

Ct
gIn;m;p

�
y0
�

e�
�m

�mceIm .�
2
xIm;nC�2yIm;mC�2zIm;p/t

cos .�xIm;nx/ sin
�
�yIm;my

�
cos

�
�zIm;pz

�
:

(18)
The constant function �w is calculated by imposing

Z tp

0

Z Lw

0

lim
z!0 lim

x!0
eTm .x; yo; z; t/ dydt D

Z tp

0

Z Lw

0

eTw .yo; t/ dydt; yo 2 Œ0;Lw� :

(19)

Above, the moulding and wire average temperatures should be equal at the interface
point yo. It now becomes evident why the constant �w does not allow for a
rigorous temperature continuity across the moulding-wire interface. The answer
is that a constant does not provide enough variability. The formal calculation of
�w .y; t/ in (10) requires it within the convolution in (17), thus stating an integral
equation via (19). Yet, by assuming a constant �w, we facilitate the estimation
of the influence of the moulding in Tw by means of the radiation term. We can
make the following observations about �w. (1) It is not unique. As matter of fact,
it depends on the point yo; (2) it exhibits a maximum (minimum) where Tw is
maximum (minimum); (3) it can be chosen as the average value of these maximum
and minimum. Thus, we estimate �w by means of (17) and (19), and approximating
eTw with its linear1 counterpart Q�wI0, where the subscript 0 denotes (14) when
�w;e;0 D � NT3w;e C NT2w;eTo C NTw;eT2o C T3o

�
, with NTw;e D eTw;e C To, is used to compute

the terms in (13).

5 Numerical Results

We have implemented our approach in a Mathematica
TM

package, and have per-
formed several test for wires of Gold (Au), Copper (Cu), and Aluminium (Al) with
diameters Dw D f0:8; 1:0; : : : ; 1:8; 2:0g mil, and length Lw D 2:5mm. The current

1The linear adjective comes from the fact that Q�w is the solution of the linearised wire heat transfer
equation.
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Fig. 2 Steady temperature component (a), transient temperature component (b), heat kernel
temperature component (c) and moulding compound temperature (d)

pulse amounts to I0 D f0; : : : ; 6g A with tp D 50ms, and the moulding compound,
with dimensions Wm D 4:45mm and Hm D 1:48mm, is made of an Epoxy resin
with �m D 0:870W=.m K/, ceIm D 882 J=.kg K/, and �m D 1860 kg=m3.

To check the correctness of the approach, we have computed (17) at z D 0 by
considering an Au-wire of Dw D 2mil carrying a current I0 D 3:7A during 50ms.
We have assumed Tch D 80 ıC, Tld D 40 ıC, To D 20 ıC, and hc D 25W=.m2 K/.
Figure 2 shows each component in (17) at to D 50ms. Figure 2a and b show
the steady (first) and transient (second) component of (17). By looking at the
temperatures values along the x-axis, which are eTmI2 D 60 ıC and eTmI1 D 0 ıC,
we infer that BCs are satisfied. Figure 2c shows the heat kernel (third) component
of (17). This component has been computed with a �w obtained by imposing (19)
at yo D Lw, where Tw D Tld is minimum. Consequently, thermal radiation is
underestimated, and yet the maximum heat flux occurs at the wire mid-point and
decreases towards the extremes. Figure 2d shows Tm; we can see that Tm D Tch D
80 ıC along the x-axis, and exhibits a minimum that equals To D 20 ıC. Here,
we must recall that Tm in Fig. 2d should be interpreted as a figure of merit which
accounts for the compound effect on the wire temperature, and not as the real
compound temperature.

Figure 3 shows the current capacity (Tw vs I0) of the Al-, Au-, and Cu-wires
before melting temperature is reached. Tw is calculated at the wire mid-point where
maximum temperature is reached. The results in Fig. 3 are in the ballpark range
with results from literature [6] under similar settings. Figure 3a–c demonstrates the
capabilities of the approach to provide a safe range of operation for the bond-wires
before melting temperature or moulding deterioration is reached. The approach is
also capable of delimiting the wire current capacity by computing the wire mid-
point temperature, for a given current amplitude, with the maximum and minimum
constant �w.
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Fig. 3 Bond-wire current capacities for diameters Dw D f0:8; 1:0; : : : ; 1:8; 2:0gmil and Lw D
2:5mm: (a) Al-wire; (b) Au-wire; (c) Cu-wire

6 Conclusions

We have developed a simple analytic model for the evaluation of current capacities
in bond-wires. The model uses suitable BCs which permit to take into account all
parameters defining the heat transfer problem while still retaining the geometric
shape of the package. The model permits to determine a safe range of operation for
the bond-wires to not exceed a predefined temperature
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Fully-Coupled Electro-Thermal Power Device
Fields

Wim Schoenmaker, Olivier Dupuis, Bart De Smedt, and Peter Meuris

Abstract This paper presents a new solution method to deal with thermal effects in
power designs. The new ingredients are: (1) the treatment of the electric and thermal
fields are done fully self-consistent, (2) the dealing with (fragments of) the transistor
fingers by using table models.

Keywords Coupled problem • Electric and thermal fields • Power device

1 Introduction

Power devices are very challenging from a designer’s perspective. Whereas their
basic operation principles are rather straightforward, numerous complications can
arise due to less than optimal balancing of the current distributions, local heating
effects and ultimately failure due to positive feed back loops. Until now thermal
issues have been usually addressed by adding a ‘thermal verification cycle’ to the
electrical design flow. This way of working has been ‘justified’ by the conviction that
the thermal response takes place on a much larger time scale than the electrical one.
As a consequence, the thermal variation is only noticeable at a much larger length
scale and as a consequence, if we want an impression of the thermal field, a coarse-
grain thermal mesh suffices to characterize the thermal response. However, we have
found (using in-depth and detailed electro-thermal field solving) that this picture
can not be sustained. In particular, there are fine-grained variations observed in the
thermal plots, thereby falsifying above view point that thermal variations need to be
incorporated only on a coarse-grain level. Moreover, the local variations not only
impact the local current densities because the electrical conductance depends on the
local temperature, but the thermal fields must be determined in a self-consistent
way with the electric field intensities, since the latter directly provide the local
heat generation. To summarize: power device characterization is only complete if
the thermal response is incorporated in a fully consistent way with the electrical
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response. Popular means to address different problem areas (here: electrical and
thermal) is by performing co-simulation. The basic idea is that through an iterative
process one visits a series a simulation tools and feeding the latest finding of
the prior sub-system simulation into the next one. This process is repeated until
convergence (no noticeable updates) is found. Unfortunately, this approach is only
applicable if the feedback of one tool on (one of) the other tool(s) is limited. In
other words: if the physical coupling is weak. The latter is the case for long range
correlations, but as we have argued, the electrical and thermal interfere on quite a
local scale. The correlations are short-range and as a consequence co-simulation
requires many cycles in order to reach convergence provided it is reached at all
and not hooked up a limit cycle or divergence. Therefore, we propose (and present)
an alternative to co-simulation, which we may view as a “holistic” or integrated
simulation approach. The key idea is to deal with all the degrees of freedom
at an integrated level. The cross coupling between sub groups of the degrees of
freedom (electrical and thermal) are fully included. These couplings induce flow
patterns is the state space which are not reachable in the co-simulation approach
and thereby the number of iterations towards the solution is much smaller than in
the co-simulation approach. Of course the holistic approach is less generic than
the co-simulation approach because the data structures inside 3rd party software
tools are usually not accessible. Therefore the couplings can not be determined and
prohibiting a holistic solution strategy. As a consequence, the holistic solver must
be constructed from scratch. This will be done in the next section.

2 The Integrated ET Solver

2.1 Electric Field Solver

The electrical part of the holistic field solver addresses the current-continuity
equation

r � J C @�

@t
D 0; J D 	E; E D �rV; � D �r .�rV/ (1)

In the present modeling, we will not consider local charging effects, since the
electrical time response scale is assumed to several order of magnitude smaller than
the thermal time constant. Therefore, the current-continuity equation reduces to a
Poisson problem for conductive domains, being interconnects and active devices,
i.e. the fingers of the power transistors. On the scale of the die, these fingers are
truly microscopic and solving the current continuity equation in a detailed manner
inside the device channel (TCAD) would require meshes with a prohibitively large
number of nodes. Therefore, one must refrain from addressing sub-micron device
details in the modeling and replace the transistor fingers (or fragments there off)
by compact models as far as there current–voltage response in concerned. This
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approach is common in power transistor modeling, where the active channels are
replaced by an on-resistance Ron. Provided that local heating is not a major concern,
this approach suffices. However, it should be remembered that the conductance,
	 D 	.T/, is a temperature-dependent material parameter and if the temperature
varies over position and time, T=T(x,t), this will effect the solution of (1). So it
becomes mandatory to determine T(x,t).

2.2 Thermal Field Solver

The thermal part of the holistic field solver addressed the heat equation

r � Q C @w .T/

@t
D
X

H
; Q D ��rT; w .T/ D CT

�
T � Tref

�
(2)

In here, Q is the heat flux, � is the thermal conductance and w the local energy
storage characterized by the thermal capacitance CT and Tref is a typical reference
(operational, environment) temperature.

The solution of this equation provides the desired temperature information to
be fed into (1). However, the solution is only computable, provided that the heat
source is known. The source may consist of several contributions. Energy may be
converted to heat by radiative absorption. The boundaries of the simulation domain
may contain heat-injecting or extracting properties. Besides these sources the Joule
self heating is of particular interest.

X

SH
D E � J (3)

Note that this term is determined by (1) and therefore, is it mandatory to solve (1)
and (2) simultaneously. Just as for the active devices in the electrical part of the
system, we also apply a compact model for the self heating of the devices. For
transistor structures, the self heating is determined as a function of the source-drain
voltage, the gate-source voltage and the local temperature. Here we assume that to
each gate finger fragment we may assign a unique temperature value, which may
vary in going from one fragment or finger to another.

Xdevice

SH
D VDSIDS .VDS;VGS;T/ (4)

The detailed current–voltage–temperature characteristic (4) is obtained from trans-
mission line pulse (TLP) measurements or TCAD device characterization.

This (almost) completes the definition of our holistic electro-thermal approach.
In the present stage we have implemented two kinds of boundary conditions: at
metallic contacts we can select electrical voltage boundary conditions or current
boundary conditions or a (primitive) circuit may be selected from a build-in library
of circuits. The metallic contacts also serve as heat sinks/ sources meaning that fixed
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temperature boundary conditions can be selected. Alternatively, one may option for
thermal-current boundary conditions. The side walls of the simulation domain are
dealt with using Neumann boundary conditions. This corresponds to ideal thermally
and electrically insulating walls.

Finally we note that the boundary conditions can be time-dependent. Even when
the voltages adapt instantaneously to the time-dependent contact voltage: no charge
effects are considered in Eq. (1), we still deal with a transient problem because of
the thermal capacitive term in Eq. (2). Thus our solver will be able to explore in a
fully self-consistent way the occurrence of thermal runaway. Of course, predictive
simulation requires the availability of accurate compact models over a sufficiently
wide temperature range.

2.3 Compact Device Representation

Despite the fact that we address the electrical and thermal variables from a field
perspective we do not sustain this practice all the way down into the active devices.
Doing so, would mean imply that the field solving approach not only must be applied
at a much smaller length scale (sub micron) but moreover, new degrees of freedom
(the electron and hole Fermi levels) must be considered. The purpose of underlying
scheme is not to contribute to progress in process and device technology but to
provide an EDA tool suitable optimize designs. Just because the active devices are
very limited size, we may replace them by entities with negligible volume. The
active devices are then only ‘visible’ through their contacts to which we may assign
compact models.

3 Simulation of Self Heating in Power Switches

In the section we will apply our self-consistent ET solver to a multi-finger power
transistor. The simulation confirms our statement made in the introduction that
temperature variations appear at a true micro-scale (e.g. at a scale between different
transistor fingers). On this power device, a step function with rise time of 1�s is
applied. The voltages and temperatures are calculated self-consistently over a period
of 1 ms. Simulation time is 1000 s using a state-of-the art single-core simulation
server. In the middle of the active area, the maximum temperature as a function of
time is given in Fig. 1. The overall temperature rise can hide local differences, as
shown in Fig. 2. In particular, this figure shows that the finger sections give rise to
local temperature differences.

The dependence of electric and thermal conductivity on the local temperature
is taken into account, by using a power law model, valid over the full temperature
range.

� D �0T
�a; 	 D 	0T

�b (5)
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Fig. 1 Time dependence of maximum temperature inside the device

Fig. 2 Cross section, local temperature variations (left) and local temperatures in active area
(right)

The power is dissipated in the different transistor fingers. However we can and
have included the dissipation as well as in metalization. The transistor fingers are
modeled by using a table model that describes the nonlinear I–V characteristics of
the device. The table is created from the dedicated compact model net list model for
the device. A successful use of the table is possible provided that it can be used over
a sufficient wide range for the input parameters. The reason for this is that the self-
consistent solver is using an iterative method for finding the solution and therefore
may wander in the search space temporarily into the wrong direction. finding the
solution and therefore may wander in the search space temporarily into the wrong
direction.
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4 Conclusions

The default TCAD [1] approach is not feasible for realistic powerMOS designs
containing up to several thousands of device fingers. We presented a new method for
dealing with electro-thermal simulation. In this approach all device meshing details
that come with computing the junction physics, are avoided. The CPU resources
are now fully available for the meshing of the back-end. The self consistency is
restricted to merely two degrees of freedom per mesh node. We also demonstrated
that self consistency is a necessary aspect for dealing with self heating since local
temperature is variable at a very local scale.
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1 Introduction

Designs in nanoelectronics often lead to large-size simulation problems and include
strong feedback couplings. Industry demands the provisions of variability to
guarantee quality and yield. It also requires the incorporation of higher abstraction
levels to allow for system simulation in order to shorten the design cycles, while at
the same time preserving accuracy. The nanoCOPS project addresses the simulation
of two technically and commercially important problem classes identified by the
industrial partners:

• Power-MOS devices, with applications in energy harvesting, that involve cou-
plings between electromagnetics (EM), heat, and stress, and

• RF-circuitry in wireless communication, which involves EM-circuit-heat cou-
pling and multirate behaviour, together with analogue-digital signals.

To meet market demands, the scientific challenges are to:

• create efficient and robust simulation techniques for strongly coupled systems,
that exploit the different dynamics of sub-systems and that allow designers to
predict reliability and ageing;

• include a variability capability such that robust design and optimization, worst
case analysis, and yield estimation with tiny failures are possible (including large
deviations like 6-sigma);

• reduce the complexity of the sub-systems while ensuring that the parameters can
still be varied and that the reduced models offer higher abstraction models that
are efficient to simulate.

Our solutions are

• to develop advanced co-simulation/multirate/monolithic techniques, combined
with envelope/wavelet approaches;

• to produce new generalized techniques from Uncertainty Quantification (UQ) for
coupled problems, tuned to the statistical demands from manufacturability;

• to develop enhanced, parameterized Model Order Reduction techniques for
coupled problems and for UQ.

The best (efficient, robust) algorithms produced are currently being implemented
and transferred to SME partner MAGWEL. Validation is conducted on industrial
designs provided by the industrial partners. A thorough comparison to measure-
ments on real devices will be made.

2 Coupled Problems, Co-simulation, Multirate

The coupling of various physical effects in nanoelectronics plays an important role
in the operational reliability, at both circuits and systems level. This is the case
for high-performance applications (CPUs, RF-circuits) as well as applications in
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hostile environments (e.g., such as high voltages and/or high currents in automotive
applications, RF Power and Base Stations applications). Various types of coupled
phenomena exist. For example, electro-thermal coupling is a key concern during
operational cycles in industry where a substantial amount of heat is generated
that (1) will affect the voltage and current distributions and (2) will indirectly
impact the sources of the heat itself. The extent and impacts of electro-thermal-
stress coupling is studied in the modelling of power-MOS devices in DC and in
the transient regime (time domain), taking environmental aspects like metal stack
and package into account. The determination of both reliability and ageing needs to
be more effectively addressed by the combined simulation of these coupled effects.
Another challenging coupling mechanism concerns Radio Frequency (RF) designs
that have to involve with circuit-EM-heat couplings, where parasitic long-range
electromagnetic (EM) effects induce substantial distortion at the circuit level, which
can lead to the sudden malfunction of the circuit. In order to address both these types
of problems, companies need to have a capability for the simulation of multi-physics
with dynamics involving different time scales.

Co-simulation techniques are natural approaches in efficiently solving coupled
problems. Field-circuit couplings have been considered in [1, 2]. Using source
coupling, the current i of an equivalent current source is calculated from the
electromagnetic fields and becomes input for the circuit equations . Next, the circuit
excites the electromagnetic fields by a time-dependent voltage source. Alternatively,
using inductive coupling, the current source for the circuit is replaced by a resistor
in series with a time-dependent inductor with an inductance that is fitted to the field
quantities. This is a more preferred option. The complete problem is now described
as follows. The eddy-current field problem on ˝ is

	@ta.n/ C r �
�
�.jr � a.n/j/ r � a.n/

�
D �j.n/;

where a.n/ is the magnetic vector potential after the n-th iteration (with homoge-
neous Dirichlet conditions), 	 and � are conductivity and reluctivity, respectively
and the winding functions � D Œ�1; : : : ;�k; : : : ;�K �

> are functions of space that
distribute the lumped currents j in the 3D domain. The circuit coupling is established
via integration

@t

Z

˝

�ka.n/ dx C Rkj.n/k D v
.n�1/
k k D 1; : : : ;K

to the circuit system of differential algebraic equations

AC@tqC.AT
Cu.n/; t/C ARgR.AT

Ru; t/C ALi.n/L

CAMj.n/ C AVi.n/V C AIis.t/ D 0;

@t˚L.i
.n/
L ; t/ � ATu

L D 0;

ATu
V � vs.t/ D 0;
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with incidence matrices A� where v� D AT�u and constitutive laws for con-
ductances, inductances and capacitances (functions with subscripts R, L and C),
independent sources is and vs, unknowns are the potentials u and currents iL and iV.

Apart from this we deal with a field-mechanical coupling in cavities, a field-
thermal coupling and with a thermal-mechanical problem [3]. Dynamic iteration is
performed at each time step. In [4], for the field-thermal coupling this is combined
with a time-averaging for the heat source, thus exploiting multirate difference in
the dynamics between the field and the heat quantities.

Multirate time integration for circuit simulation has been studied for circuit
decomposition as well as for signals with a broad difference in the frequency
domain. When different signal shapes are present in the circuit, these may be
approximated more efficiently if individual grids are used for each of the signals.
As an example we consider a chain of five frequency dividers (as part of a PLL). In
each step the frequency is reduced by a factor 2 as one can see in Fig. 1. Obviously,
for the low frequency signals towards the end of the divider chain a much sparser
grid is sufficient for an accurate representation, in comparison to the high frequency
input signal. In the approach, the problem is cast into a multi-time problem using
a slowing varying time scale 
1 and a second timescale 
2 for a highly periodic
problem. The Rothe method is used for time integration along 
1. Spline wavelets
are used to solve the periodic problems along 
2. Very efficient discretizations in 
2
are obtained, that vary with 
1. From the solution in .
1; 
2/-space, a 1-dimensional
solution depending on .t; �.t// (for a suitable phase-function �) can be constructed,
which provides an envelope solution. Recently, the method has been extended to
deal with circuit partitions as well [5, 6]. Currently, one considers coupling with
heat as well.

Fig. 1 Several signals in a frequency divider chain as part of a PLL
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3 Model Order Reduction, Uncertainty Quantification

In [7] a robust algorithm for parametrized Model Order Reduction (pMOR)based
on implicit moment matching has been derived, for linear systems based on state-
space formulations, which directly applies to circuit equations. In [8] the method
has been extended to second order systems coming from electromagnetic field
discretizations. Additionally an a posteriori output error bound for reduced order
models of micro- and nano-electrical(-mechanical) systems is derived. The error
bound is independent of the discretization method (finite difference, finite element,
finite volume) applied to the original PDEs. Secondly, the error bound can be
directly used in the discretized vector space, without going back to the PDEs, and
especially to the bilinear form (weak formulation) associated with the finite element
discretization, which must be known a priori for deriving/using the error bound
for the reduced basis method. The error bound enables automatic generation of
the reduced models computed by parametric model reduction methods based on
approximation (interpolation) of the transfer function, e.g., Krylov subspace based
methods. Although established for parametrized systems, the error bound is also
well-grounded for linear time invariant (LTI) systems without parameters, since it
considers the non-parametric LTI systems as a special case [8].

For parameters coming from geometry, the expressions are not always easily
obtainable (for instance, meshing for electromagnetic problems is done in the
CAD environment) and thus the expansion may be even cumbersome [9]. Here
a strategy is to use, for a given parameter, the expression handler in the CAD-
environment before starting the simulation to evaluate the p-dependent sub-parts
of all expressions (usually also circuit simulators have such an internal step in their
expression handler) and then apply a MOR-projection for this parameter.

In [10] MOR for linear, coupled systems was derived based on low-rank
approximations of the coupling matrices. When having obtained MOR models for
subsystems an interesting application arises for multirate simulation or in use with
dynamic iteration and thus provides a link to Sect. 2. The lumped inductor coupling
can be seen as a first MOR-model, used for coupling. Dynamic iteration with MOR
can be much more robust than iteration with interpolation/extrapolation of values at
simple interphases.

In [11, 12] methods for Uncertainty Quantification (UQ) via generalized Poly-
nomial Chaos (gPC) expansions have been proposed. These methods can greatly
benefit when being combined with methods for pMOR [13]. Assuming that the
discretization of the underlying structure of the electromatic problem is fixed,
in [14, 15] UQ-results are obtained involving parameterized MOR. For three
parameters a full model of ca 30k dofs was compared to ROM of 40 dofs, for
different quadrature formulas in Stochastic Collocation. Popular is the so-called
Stroud-3 rule [16] to compute the collocation points. One can also use a Hermite
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Fig. 2 Typical layout of the power transistor (stretched vertical direction) showing its complex
geometry

Genz-Keister [14, 17] sparse grid that yields normally distributed sample points and
weights in the quadrature rule. In [18] the sensitivity of the variance with respect to
parameters is considered. This gives an indication of dominant parameters, see also
[13]. Clearly, MOR should preserve the main statistical properties of the full model.

In [19] stochastically varying domains are considered, leading to topology
optimization for a permanent magnet (PM) synchronous machine with material
uncertainties. The variations of the non-linear material characteristics are modeled
by the gPC method. During the iterative optimization process, the shapes of the rotor
poles, represented by zero-level sets, are simultaneously optimized by redistributing
the iron and magnet material over the design domain. The gradient directions of the
multi-objective function with constraints, composed of the mean and the standard
deviation, is evaluated by utilizing the continuous sensitivity equation approach and
the Stochastic Collocation Method. Combined with the level set method this yields
designs by using already existing deterministic solvers. Finally, a two-dimensional
numerical result demonstrates that the proposed method is robust and effective. This
example has already a non-trivial geometry. However, there still are a lot steps to be
taken. For one of our industrial use cases, a Power-MOS, Fig. 2 shows a complex
geometry, for which a lot of coupled effects have to be efficiently determined. Also
UQ for large parameter variations is a point of attention [20].
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Parameter Identification for Nonlinear Elliptic-Parabolic Systems with Application
in Lithium-Ion Battery Modeling
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Short Description

This minisymposium addresses mathematical problems and new methods for the
robust design of key components in E-mobility. These key components are for
instance: electrical machines, batteries etc. In the overall, multi-physical phenomena
have to be modeled. This yields large systems of coupled partial differential
algebraic equations. Enhancing these devices, one will also need to further approach
their limits. Therefore, the uncertainties of parameters need to be included. In the
end, these systems have to be solved accurately and repeatedly (for uncertainty
or for optimization). Thus besides modeling, efficient techniques for multiphysical
simulation, optimization using reduced order models and uncertainty computations
are in our focus. Mathematicians and electrical engineers report about their joint
work within the project SIMUROM funded by the German Federal Ministry of
Education and Research in the framework ’Mathematics for Innovation in Industry
and Services’.

8Oliver Lass, Technische Universität Darmstadt, Darmstadt, Germany.



A Meshfree Method for Simulations of Dynamic
Wetting

Sudarshan Tiwari, Axel Klar, and Steffen Hardt

Abstract In this paper we present a meshfree Lagrangian particle method for the
simulation of dynamic wetting phenomena. The essence of dynamic wetting is
that the contact angle between the interface of the immiscible fluids and the solid
surface is a dynamic quantity. The dynamic contact angle is modeled as a boundary
condition. The two-phase immiscible flow is described by the incompressible
Navier-Stokes equations in combination with the continuous surface tension force
model. The phases are distinguished by assigning colors to the particles, and the
normal vector and curvature of the interface are computed from this color function.
Chorin’s pressure projection method is used to solve the model equations in a
meshfree framework. A two-phase Couette flow is considered, with a capillary
bridge spanning the distance between the two walls. The details of the numerical
methods can be found in Tiwari and Kuhnert (J Comput Appl Math 203:376–386,
2007), Tiwari et al. (Numerical simulation of wetting phenomena by a meshfree
particle method. J Comput Appl Math 292:469–485, 2016. It is shown that the
numerical results reproduce the employed empirical law for the dynamic contact
angle.

Keywords Dynamic wetting • Meshfree method

1 Introduction

Wetting phenomena play a crucial role in many fields, for example in the area
of microfluidics [8, 12], coating technology [14], or oil recovery [1]. The term
“wetting” means that an intersection of the solid surface with the interface between
the two immiscible fluids exists. This intersecting line is called the three-phase
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contact line or wetting line. The angle between this interface and the solid surface is
called the contact angle. In the case of dynamic wetting the wetting line is a dynamic
entity, i.e. it moves over the solid surface. The general wetting behavior of a liquid is
determined by the static contact angle �s. A wetting liquid has a static contact angle
of less than 90ı, a non-wetting liquid has a static contact angle larger than 90ı.

If external forces are applied, the contact line is usually set into motion, moving
with a velocity denoted by Ucl. The corresponding dynamic contact angle is denoted
by �d. It depends on the static contact angle and on the capillary number Ca D �Ucl

	
,

where� is the dynamic viscosity of the spreading liquid, and 	 is the surface tension
coefficient.

Several theoretical and numerical analyses have been reported addressing
dynamic contact angles, see [3, 7, 9, 13] and references therein. Widely
used numerical methods are based on the classical finite difference or finite
volumes approach. In such methods the representation moving interfaces is not
straightforward. By contrast, Lagrangian type of methods describe the advection of
fluid-fluid interfaces in a natural way. Corresponding reports are available ranging
from molecular dynamics [13] to macroscale SPH particle methods [6].

In our earlier work [11] we have presented simulations of wetting phenomena
based on the static contact angle. In the current report we have extended the model to
account for contact angle dynamics. We use a meshfree Lagrangian particle method
which has a similar character as the method of smoothed particle hydrodynamics
(SPH) [4], except for the approximation of the spatial derivatives and the treatment
of the boundary conditions [10]. We approximate the spatial derivatives with the
help of the weighted least squares method, where the smoothing kernel in SPH and
the weight in our scheme play similar roles.

2 Mathematical Model

We consider two immiscible fluids, for example liquid and gas, where both of them
are incompressible. The two-phase flow is modeled by the incompressible Navier-
Stokes equations. The equations are expressed in the Lagrangian form

dx
dt

D v (1)

r � v D 0 (2)

dv
dt

D �1
�

r p C 1

�
r � .2�D/C g C 1

�
FS; (3)

where v is the fluid velocity vector, � is the density, � is the dynamic viscosity, D
is the viscous stress tensor D D 1

2
.rv C rTv/, g is the gravitational acceleration,

and FS is the surface tension force. In general, � and � are discontinuous across
the interface and remain constant in each phase. The surface tension force FS is
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computed using the classical continuum surface force (CSF) model [2]. It acts in
the vicinity of the interface between the fluids. In the CSF model the surface tension
force FS is defined by

FS D 	�nIıS; (4)

where 	 is the surface tension coefficient, assumed to be a constant, � is the
curvature of the interface, nI is the unit normal vector of the interface and ıS is
a smeared delta function, peaked at the interface.

Equations (1)–(3) are solved with initial and boundary conditions. For this
purpose a pressure projection method in a meshfree framework is used. The
meshfree scheme has been reported in our earlier papers, see, for example, [10].

2.1 Computation of the Surface Tension Force

Particle methods are suitable to compute the surface tension force and surface
tension driven flows, see [10, 11]. The interface can be accurately determined by
assigning colors or flags to the particle of each phase. For example, we define the
color c D 1 for the gas and c D 2 for the liquid. The normal vector nI at the interface
is computed via the gradient of the color function c. Since c is discontinuous across
the interface, one has to smooth it. Let x be the position of an arbitrary particle that
has neighbours with function values cj D c.xj/. We smooth c at x from its neighbors
with the help of the Shepard interpolation rule given by

Qc.x/ D
Pm

jD1 wjcj
Pm

jD1 wj
; (5)

where x is an arbitrary particle position, m is the number of neighbors inside the
interaction radius h and wj is the weight function given by

wj D w.xj � xI h/ D
(

exp.�˛ kxj�xk2
h2

/; if kxi � xk � h
0; else;

(6)

where ˛ is a positive constant. We observe that the gradient of Qc is non-vanishing
only in a region close to the interface. First we compute the unit normal vectors and
then compute the curvature by

nI D rQc
jrQcj ; � D �r � nI: (7)
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There exist many possible choices for ıs, but in practice, it is often approximated as
ıs 
 jrQcj. We note that ıs is non-zero in the vicinity of the interface and zero far
from it.

2.2 Boundary Conditions: Dynamic Contact Angle

In the following we consider a two-dimensional problem. The implementation of the
contact angle boundary condition is based on the method suggested in [2], where we
apply the boundary condition to the unit normal nI before computing the curvature
from (7). Therefore, the contact angle boundary condition is applied by redefining
the interface normals nI at the three-phase contact point xw and its nearest neighbors
within a radius ˇh .0 < ˇ < 1/ as

OnI D n cos �d C njj sin �d; (8)

where njj is the unit vector parallel to the wall normal to the three-phase contact line
and n is the outward unit vector normal to the wall at xw.

There exist several theoretical/empirical models for the dynamic contact angle,
see [9] for a comprehensive overview. In this work we use the empirical model
suggested by Hoffman [5]. This model captures the general behavior of the contact
angle in the entire range 0ı < �d < 180

ı. Using this model we obtain

�d D fHoff
�
Ca C f�1Hoff .�s/

�
; (9)

where fHoff is the Hoffman function given by

fHoff .x/ D arccos

"

1 � 2tanh

(

5:16

�
x

1C 1:31x0:99

�0:706
)#

: (10)

3 Numerical Results

We consider a two-phase Couette flow in a channel of size Œ0; 2�m�Œ0; 2�m. We
define the particles of fluid 1 to initially lie in the rectangle Œ0:6; 1:4�m � Œ0; 0:5�m,
while fluid 2 occupies the rest of the domain. In Fig. 1 the blue (dark grey)
particles represent fluid 1, the red (light grey) particles represent fluid 2. The
initial number of particles is around 13,500. This number remains approximately
constant throughout the simulations, while removing very close particles and adding
particles if necessary. Both fluids have the same density � D 1 kg/m3, viscosity
� D 0:1 kg/ms, and the surface tension is given by 	 D 0:2N/m. For the static
contact angle �s D 90ı was assumed. Gravitational forces were not taken into



A Meshfree Method for Simulations of Dynamic Wetting 849

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

Fig. 1 Particle distribution of both phases for different capillary numbers at time t D 1:2 s. Top
left for Ca D 0:02, top right for Ca D 0:06, bottom left for Ca D 0:1, and bottom right for
Ca D 0:14
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Fig. 2 Velocity field (left) and interface points (right) of phase 2 for a capillary number Ca = 0.1
at time t D 1:2 s

account. Periodic boundary conditions are used at the left and right boundaries of
the domain. The top and bottom walls move with opposite velocities of the same
magnitude. We fix � and 	 and change the wall velocity Ucl to vary the capillary
number. Effectively, for such liquid-liquid flows the correlation for the dynamic
contact angle may be different from Eq. (10) which was formulated for gas-liquid
flows. However, one purpose of this paper is to demonstrate that our numerical
scheme also allows implementing a given model for the dynamic contact angle for
the more complex situation of liquid-liquid flow.

In Fig. 1 we have plotted the particle distributions for Ca D 0:02; 0:06; 0:1 and
0:14 at time t D 1:2 s. Moreover, we have plotted the velocity field for Ca D 0:1

in Fig. 2 at the same instant in time. We observe the results match qualitatively with
the ones obtained from MD simulations [13] and SPH simulations [6].

As a more quantitative check, we evaluate the apparent angle �d obtained from
the simulations for the case that the fluid-fluid interface advances along the wall.
The interface particles are plotted in Fig. 2. We compute the tangent to the interface
by considering particles between y D 0 to 0:1 for all capillary numbers at time
t D 1:2s. At this time the apparent angle does no longer change as a function of
time, and the contact line moves with the wall velocity. In Fig. 3 we have plotted the
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Fig. 3 Dynamic contact angle vs. capillary number. The solid line represents the Hoffman
function (10), the dotted lines represents the numerically obtained angle

Hoffman function (10) together with the numerical approximation of the dynamic
contact angle vs. the capillary number. We observe a good agreement between both
data sets.
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Analysis of the Contraction Condition in the
Co-simulation of a Specific Electric Circuit

Kai Gausling and Andreas Bartel

Abstract The convergence for a co-simulation method is commonly based on
an error recursion. Usually the contraction condition itself is obtained by some
estimations (standard theory). This paper takes a closer look at the coupling
structure of co-simulation model for a simple electric circuit. It is shown that with
standard theory for our example no contraction could be inferred. However, co-
simulation converges. By a detailed analysis, we can prove convergence in this case.

Keywords Co-simulation method • Electric circuit

1 Introduction

Co-simulation is an important method for coupled systems in time domain. In
particular, if the monolithic description of a dynamic system is not feasible and/or
dedicated simulation tools for the subsystems are available, then it is a relevant
option. In practice co-simulation is frequently applied to electrical circuits. Seminal
approaches in this field were already specified in [6]. Furthermore this simulation
methodology is capable of multirate, multimethod, multiorder (and so on). However,
convergence can only be achieved by solving multiple times the subsystems.
To enhance convergence, the whole simulation time is split into time windows.
Co-simulation applied to coupled ordinary differential equations (ODEs) always
convergences [4]. This is not the case for coupled differential-algebraic equations
(DAEs). There convergence can only be guaranteed if a contraction condition is
fulfilled, see e.g. [1]. It can be shown that the convergence and stability of co-
simulation is directly influenced by the order of computation and by the coupling
interface, see e.g. [3].

In fact, a co-simulation computes the solutions of the coupled subsystems
separately on windows ŒTn;Tn C H�. We follow the Gauss-Seidel approach. Let
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.k/ denote the current iteration, also old iterates .k � 1/ are involved. Such a co-
simulation scheme can be encoded by splitting functions F;G:

Py D f.y; z/ $ PQy D F
�

Qy.k/; Qz.k/; Qy.k�1/; Qz.k�1/
�

0D g.y; z/ 0D G
�

Qy.k/; Qz.k/; Qy.k�1/; Qz.k�1/
�

Then the contraction condition reads:

˛ WD kG�1z.k/Gz.k�1/k2 < 1; (1)

where Gz.k/ ; Gz.k�1/ denote partials Jacobians of G, see e.g. [1, 2].
Our paper is outlined as follows: We consider a linear test system, where the

standard contraction condition (1) is not fulfilled. In a numerical treatment, we
observe convergence. Then convergence for this test case is proven by an exact fine
structure analysis. Finally, we discuss the connection of both types analysis.

2 Circuit Modeling and Test Circuit

Classically, a mathematical model for an electric network can be obtained via
modified nodal analysis, see e.g. [5]. This gives a DAE:

EPx C Ax D f.t/;

where E contains the dynamic components, A static components and f time
depended sources. The unknowns x are the node voltages and some branch currents.

We investigate the simple RL circuits depicted in Fig. 1. Modified nodal analysis
yields an index-1 DAE. By applying the strategy of source coupling (see e.g. [2]),
we can model this circuit as two coupled networks as given in Fig. 2. This example
serves as our test case for co-simulation. Notice that the monolithic circuit (Fig. 1) is
almost the same as the subsystem 2 (Fig. 2). This is due to the fact that we aimed at

Fig. 1 RL circuit applied by
supply voltage Uin.t/
(reference model)

Uin(t)

Iin

L
IL

R

U0

U1 U2
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Uin(t)

I(k,k−1)
in

ICo(t)

U (k,k−1)
Co

I(k−1,k)
Co

UCo(t)

I(k−1,k)
Co

L I(k,k−1)
L

R

U0

U (k,k−1)
Co U (k,k−1)

1 U (k,k−1)
2

Fig. 2 Decoupled RL network using source-coupling in a co-simulation of Gauss-Seidel type.
The first/second notation index denotes the old and new differential and algebraic variables for
subsystem 1/subsystem 2 first

an example as simple as possible. This makes our model rather academic, however
it shows the divergence between analysis and application of co-simulation, which
we want to highlight. Now, the two subsystems for our co-simulation read:

Subsystem 1: 0 D
�
0 1

�1 0
��

UCo

Iin

�

�
��ICo.t/
�Uin.t/

�

;

Subsystem 2: 0 D

0

B
B
@

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 L

1

C
C
A

0

B
B
@

PU1PU2PICoPIL

1

C
C
AC

0

B
B
@

0 0 1 1

0 G 0 �1
�1 0 0 0

�1 1 0 0

1

C
C
A

0

B
B
@

U1

U2

ICo

IL

1

C
C
A�

0

B
B
@

0

0

�UCo.t/
0

1

C
C
A ;

(2)

with inductance L, conductance G D 1=R, given voltage source Uin D Uin.t/,
unknown node potentials U1; U2; UCo and unknown currents Iin; IL; ICo. UCo and
ICo are additional variables needed for the source coupling. The application of a
Gauss-Seidel type of co-simulation demands to choose a system, which is computed
first.

3 Standard Abstract Co-simulation Analysis

Next we use standard theory [1, 2] to analyze the coupled system (2). To this end,
we generalize the system (2) to the following semi-explicit form:

0 D g1.z1; z2/; Py2 D f2.y2; z2/; 0 D g2.z1; y2; z2/; (3)

where subsystem 1 (subindex ‘1’) is merely a system of linear equations and
subsystem 2 is a DAE. The variables of the subsystems are

z1 WD 	
UCo; Iin


T
; y2 WD IL; z2 WD 	

U1; U2; ICo


T
:
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Since @gi=@zi are not singular in (2), the subsystems and the overall system are
index-1. Thus yi defines the differential and zi the algebraic components. Notice,
the semi-explicit form (3) encodes, which type of variables occur in the submodels.

Now, we start co-simulation with the subsystem 1 first and obtain the correspond-
ing splitting functions:

F.y.k/; y.k�1/; z.k/; z.k�1// WD
h
f2.0; 0; y

.k/
2 ; z

.k/
2 /

i
;

G.y.k/; y.k�1/; z.k/; z.k�1// WD
"

g1.0; z
.k/
1 ; 0; z

.k�1/
2 /

g2.0; z
.k/
1 ; y

.k/
2 ; z

.k/
2 /

#

:

(4)

Notice the old algebraic iterate z.k�1/2 (I.k�1/Co ) enters algebraic equations. The
reversed computational order gives us the splitting functions (subsystem 2 first):

F.y.k/; y.k�1/; z.k/; z.k�1// WD
h
f2.0; 0; y

.k/
2 ; z

.k/
2 /

i
;

G.y.k/; y.k�1/; z.k/; z.k�1// WD
"

g1.0; z
.k/
1 ; 0; z

.k/
2 /

g2.0; z
.k�1/
1 ; y.k/2 ; z

.k/
2 /

#

:

(5)

Also here depends an algebraic constraint on old algebraic iterates (subsystem 2
depends on z.k�1/1 , i.e., U.k�1/

Co ). Thus the contraction factor ˛ does not vanish for
both pairs of splitting functions (4) and (5). Consequently, stability and contraction
cannot be guaranty without previously estimated contraction factor ˛. Therefore
we calculate the matrices G�1

z.k/
;Gz.k�1/ needed in (1). Splitting the Jacobian of

G.y.k/; y.k�1/; z.k/; z.k�1// into parts of Gy.k/ ;Gy.k�1/ ;Gz.k/ and Gz.k�1/ , we obtain:

Subsystem 1 first: Gz.k/ D

0

B
B
B
B
B
B
@

0 0 0 0 1

0 0 1 0 0

0 0 0 1 0

0 G 0 0 0

�1 0 1 0 0

1

C
C
C
C
C
C
A

) G�1z.k/ D

0

B
B
B
B
B
B
@

0 1 0 0 �1
0 0 0 R 0

0 1 0 0 0

0 0 1 0 0

1 0 0 0 0

1

C
C
C
C
C
C
A

; Gz.k�1/ D

0

B
B
B
B
B
B
@

1

0

0

0

0

1

C
C
C
C
C
C
A

;

Subsystem 2 first: Gz.k/ D

0

B
B
B
B
B
B
@

0 0 0 1 1

0 0 1 0 0

0 0 0 1 0

0 G 0 0 0

�1 0 0 0 0

1

C
C
C
C
C
C
A

) G�1z.k/ D

0

B
B
B
B
B
B
@

0 0 0 0 �1
0 0 0 R 0

0 1 0 0 0

0 0 1 0 0

1 0 �1 0 0

1

C
C
C
C
C
C
A

; Gz.k�1/ D

0

B
B
B
B
B
B
@

0

0

0

0

1

1

C
C
C
C
C
C
A

:
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Thus we obtain for the contraction conditions for both splitting schemes:

Subsystem 1 first W kG�1z.k/Gz.k�1/k2 D k �0 0 0 0 1�T k2 D 1;

Subsystem 2 first W kG�1z.k/Gz.k�1/k2 D k ��1 0 0 0 0�T k2 D 1;

(6)

i.e., stability and contraction cannot be inferred for our co-simulation model directly
by using standard theory. Notice that standard theory gives only a rough inside into
the co-simulation.

4 Numerical Results

Now we analyze the above RL circuit numerically using MATLAB R
.1 For this
purpose, we employ the following parameters: resistance R D 10 k�, inductance
L D 1mH, and capacitance C D 1 nF. The circuit is operated by a supply voltage
Uin.t/ D 1V � cos.!t/ with an angular frequency ! D 2� � 5 � 103 Hz.

To investigate contraction and convergency, a co-simulation is studied in one
time window Œt0; t0 C H� with t0 D 0:4ms and time window size H D 10�4 s.

The accuracy of the solutions on the n-th time window after k iterations QX.k/
.t/ is

measured by comparing with a reference solution Xm.t/ computed by a monolithic

simulation: .k/
n .t/ D Xm.t/ � QX.k/

c .t/; ı
.k/
n WD k.k/

n k2. For both splitting schemes
(4) and (5), a constant extrapolation of the initial value is employed for the initial

guess QX.0/
.t/ on time window H is used. This is the most common choice for an

initial guess.
Figure 3 shows convergence and contraction for both splitting schemes (4) and

(5). Thus we have convergence even so the estimate (6) does not indicate this
behavior. Additionally, we observe two different convergency orders. For subsystem
1 first, we get order O.H/, whereas for subsystem 2 first O.H2/ is achieved.
This can be explained as follows: Constant extrapolation produces an error of
O.H/. For subsystem 1 first, the coupling parameter ICo is constantly extrapolated.
Since system 1 is just an algebraic equation, their is no improvement during time
integration. For subsystem 2 first UCo is constantly extrapolated. This parameter
is coupled to the algebraic unknown U1. However, subsystem 2 has a dynamic
element, which is defined by the coupling current. This current is improved during
time integration.

1Version: MATLAB R2013a, http://www.mathworks.de.

http://www.mathworks.de
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Fig. 3 Convergence and contraction of co-simulation applied to the test circuit in Fig. 2. Solid
lines indicate subsystem 1 first. Left: L2 error versus window size H for one iteration and one
window. Right: L2 error versus the total number of iterations

5 Exact Fine Structure Error Propagation

For our test circuit Fig. 2, we aim at calculating a recursion matrix Ke explicitly for
all unknowns in order to verify the above numerical results. To this end, .k/

X Xi WD
X.k/i .t/� QX.k/i .t/ measures the difference of two waveforms on the n-th time window
after k iterations. For simplicity of notation the index n is skipped.

We derive the fine structure recursion for our test circuit where the Gauss-Seidel
iteration begins with subsystem 1, see (4). For the algebraic variables we find from
(2) following the relations to old and new iterates by taking differences

.k/
z1

Iin D �.k�1/
z1

ICo; .k/
z1

UCo D Uin D 0;

.k/
z2

ICo D �.k/
y2

IL; .k/
z2

U1 D .k/
z1

UCo D 0; .k/
z2

U2 D 1

G
.k/

y2
IL:

(7)

Notice that U.k/
Co D Uin.t/ means that there is no error in the coupling variable U.k/

Co .
From the differential equation for IL, we obtain

d

dt

�
.k/

y2 IL
� D 

.k/
z2 U1 �.k/

z2 U2

L
D 1

G � L
.k/

y2 IL

and thus we find for any t 2 ŒTn;Tn C H�

j.k/
y2 IL.t/j D j.k/

y2 IL.tn/j � e.t�tn/=.G�L/ D j.k�1/
y2 IL.tn/j � e.t�tn/=.G�L/: (8)
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Putting (7) and (8) together and using absolute values, we finally find the exact
error propagation (for subsystem 1 first):

2

6
6
6
6
6
6
6
6
6
6
6
6
4

j.k/
y2 ILj

j.k/
z1 Iinj

j.k/
z1 UCoj

j.k/
z2 ICoj

j.k/
z2 U1j

j.k/
z2 U2j

3

7
7
7
7
7
7
7
7
7
7
7
7
5

D

2

6
6
6
6
6
6
6
6
6
6
6
6
4

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

3

7
7
7
7
7
7
7
7
7
7
7
7
5

„ ƒ‚ …
DKe

2

6
6
6
6
6
6
6
6
6
6
6
6
4

j.k�1/
y2 ILj

j.k�1/
z1 Iinj

j.k�1/
z1 UCoj

j.k�1/
z2 ICoj

j.k�1/
z2 U1j

j.k�1/
z2 U2j

3

7
7
7
7
7
7
7
7
7
7
7
7
5

Ce.t�tn/=.G�L/

2

6
6
6
6
6
6
6
6
6
6
6
6
4

1

0

0

1

0

1
G

3

7
7
7
7
7
7
7
7
7
7
7
7
5

j.k�1/
y2

IL.tn/j:

(9)

Now, the spectral radius of the recursion matrix is zero �.Ke/ D 0, since all
eigenvalues are zero. Hence, Ke satisfies the contraction condition, i.e., �.Ke/ <

1, for splitting scheme (4). An analogous computation verifies contraction for
the reversed order of computation. Thus this analysis agrees with our numerical
observation of convergence.

Clearly, the relation to the standard theory is the lumping of differential and
algebraic components in the error recursion (9). Applying the maximum norm, we
obtain the estimate

�j.k/yj
j.k/zj

�

� K
�j.k�1/yj

j.k�1/zj
�

C � WD
"
0 0

0 1

#�j.k�1/yj
j.k�1/zj

�

C
�

C
C

�

j.k�1/y.tn/j;

with C D .1 C 1
G /e

.t�tn/=.G�L/ and �.K/ D 1. Thus without fine structure analysis,
the contraction disappears from the estimate even for our simple test circuit.

6 Conclusions

We have shown that standard co-simulation theory may not always detects con-
vergence. This holds already for a simple electrical circuits, which we have
investigated. Therefore we analyzed our model by expressing the exact error
propagation (fine structure analysis) and proved stability and thus contraction for
our example. In fact convergence holds for both orders of computation.

Clearly, the information about stability and contraction disappeared during
lumping, which we have demonstrated for our example. It is a future aim to
investigate stability and contraction derived directly from the network structure and
thus to generalize convergence results from standard co-simulation theory.
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HJB-POD Feedback Control for Navier-Stokes
Equations

Alessandro Alla and Michael Hinze

Abstract In this report we present the approximation of an infinite horizon optimal
control problem for the evolutive Navier-Stokes system. The method is based on a
model reduction technique, using a POD approximation, coupled with a Hamilton-
Jacobi-Bellman (HJB) equation which characterizes the value function of the
corresponding control problem for the reduced system. Although the approximation
schemes available for the HJB are shown to be convergent for any dimension, in
practice we need to restrict the dimension to rather small numbers and this limitation
affects the accuracy of the POD approximation. We will present numerical tests for
the control of the time-dependent Navier-Stokes system in two-dimensional spatial
domains to illustrate our approach and to show the effectiveness of the method.

Keywords Hamilton-Jacobi equations • Navier-Stokes equations • Optimal con-
trol • Proper orthogonal decomposition

1 Introduction

In this report we investigate an infinite horizon optimal control problem for the
time-dependent Navier-Stokes equations (NSE). The basic ingredient of the method
is the coupling between a proper orthogonal decomposition (POD) approximation
of the NSE and a Dynamic Programming scheme for the stationary HJB equation
characterizing the value function of the optimal control problem. Due to the curse
of dimensionality, we need to restrict the dimension of the POD system to a rather
small number (typically 4). This limitation naturally affects the accuracy of the POD
approximation (see [14]), and, as a consequence, the problem class which we can
treat with this technique. It is well known that the solution of the HJB equation is
not an easy task from the numerical point of view since viscosity solutions of the
HJB equation are usually just Lipschitz-continuous. Optimal control problems for
ODEs are solved by Dynamic Programming (DP), both analytically and numerically
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(see [4] for a general presentation of this theory). From the numerical point of view,
this approach has been developed for many classical control problems obtaining
convergence results and a-priori error estimates (see the recent book from Falcone
and Ferretti [6]). We should mention that a first tentative approach to couple POD
and HJB equations is proposed by Atwell and King [3] for the control of the 1D
heat equation. Kunisch and Volkwein in [7, 8] extend this approach to diffusion
dominated equations and, in particular, Kunisch et al. in [9, 10] apply HJB-POD
feedback control to the viscous Burgers equation. We also mention an adaptive POD
technique for 1D advection dominated problems proposed by the first author and
Falcone in [1, 2].

The novelty in this paper consists in the control of the 2D nonlinear time
dependent Navier-Stokes system by means of DP equations and the reduction
of the nonlinear term with the Discrete Empirical Interpolation Method due to
Chaturantabut and Sorensen in [5].

The paper is organized as follows. We first present the optimal control problem
in Sect. 2, then we describe the DP equation in Sect. 3. Proper orthogonal decom-
position is summarized in Sect. 4 and, finally, the numerical tests are presented in
Sect. 5.

2 The Optimal Control Problem

In this section we describe the optimal control problem. The governing equations are
the two non-stationary dimensional unsteady Navier-Stokes equations. The flow in
the bounded domain˝ � R

2 is characterized by the velocity field y W ˝ � Œ0;T� !
R
2 and by the pressure p W ˝ � Œ0;T� ! R. The Navier-Stokes equations are

given by

yt � �y C .y � ry/C rp D
NX

iD1
bi.x/ui.t/ in ˝ � .0;T�;

r � y D 0 in ˝ � .0;T�;
y.�; 0/ D y0 in ˝;

y.�; t/ D yb in @˝ � .0;T/;

9
>>>>>>>>=

>>>>>>>>;

(1)

where the viscosity of the flow is given by the parameter � > 0. The control signals
are elements of U 	 fu W Œ0;T� ! U; u.�/ 2 L1.0;T/g, where U is a compact
subset of Rm: Later we take U as a discrete set as explained in [6]. The initial value
and the boundary values are denoted by y0 and yb, respectively. Finally, the functions
bi.x/ W ˝ ! R

2 play the role of the so called shape functions, which model the
actions that we can apply to the physical system governed by our PDE.
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The cost functional we want to minimize is given by

J.u/ WD
Z 1

0

�
ky.�; tI u/� Nyk2L2.˝/ C ˛ju.t/j2

�
e��t dt; (2)

where Ny is the desired state which we choose as the mean flow, ˛ 2 R
C and � > 0

is the discount factor. The optimal control problem, then, can be formulated as

min
u2U J.u/ s. t. y.u/ satisfies (1): (3)

We should state, that (1) for a given sufficiently smooth right hand side together
with sufficiently smooth initial values and boundary conditions admits a unique
solution. We refer to the book of Temam [13] for more details. Whenever we want
to emphasize the dependence of the solution on the control u we will write y D y.u/.

3 Dynamic Programming Equation

We illustrate the dynamic programming approach for abstract optimal control
problems of the form

min
u2U Jx.u/ WD

Z 1

0

L.y.t/; u.t// e��t dt subject to Py.t/ D f .y.t/; u.t//; y.0/ D x;

(4)

with system dynamics in R
n:We assume � > 0, and L.�; �/ and f .�; �/ to be Lipschitz-

continuous, bounded functions. Then, it is clear that the optimal control problem (3)
fits into the more abstract setting (4).
In this setting, a standard solution tool is the application of the dynamic program-
ming principle, which leads to a characterization of the value function v.x/ WD
inf

u2U Jx.u/ as a viscosity solution of the HJB equation

�v.x/ � inf
u2U

fDv � f .x; u/C L.x; u/g D 0 : (5)

To approximate Eq. (5), we construct a fully-discrete semi-Lagrangian scheme
which is based on a discretization of the system dynamics with time step h, and
a finite element discretization of the state space with mesh parameter k, leading to a
fully discrete approximation Vh;k.x/ of the value function v satisfying

Vh;k.xi/ D min
u2U

f.1 � �h/I1ŒVh;k�.xi C hf .xi; u//C L.xi; u/g ; (6)

for every element xi of the discretized spatial domain. In general, the arrival point
xi C hf .xi; u/ is not a node of the state space grid, and therefore the value of Vh;k at
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this point is approximated by means of a first-order interpolant of the data, denoted
by I1ŒVh;k� (we refer the reader to [4, Appendix A] for more details).

The goal is to find a feedback control law of the form u.t/ D ˚.y.t/; t/
which steers the system to the desired trajectory. ˚ is called feedback map. The
computation of feedback maps is almost built in and comes straightforward from
the knowledge of the value function. In fact;

˚.yx.t// D u�.t/ D arg min
u2U

˚
L.x; u/C rv.x/T f .x; u/

�
;

and the discrete version may be computed by the semi-Lagrangian scheme already
explained.

The characterization of the value function is valid for all classical problems in
any dimension and its approximation is based on a-priori error estimates in L1.

The request to solve an HJB in high dimensions comes up naturally whenever we
want to control evolutive PDEs. However, a direct discretization, in many practically
relevant situations, is impossible since the system of ODEs associated to a semi-
discretization in time would have the dimension equal to the space dimension
where one should solve the HJB equation. Fortunately, at the discrete level, the
POD [12, 14] method allows us to obtain low-dimensional reduced models even for
complex dynamics, and, thus, presents an opportunity to circumvent the curse of
dimensionality in the numerical solution of the HJB equation.

4 POD-Model Reduction for the Controlled Problem

The Reduced Order Modelling (ROM) approach to optimal control problems is
based on projecting the nonlinear dynamics onto a low dimensional manifold
utilizing projectors that contain informations of the expected controlled flow. A
common approach here is based on the snapshot form of POD proposed by Sirovich
in [12], which in the present situation works as follows. We compute the snapshots
set y1; : : : ; yn of the flow corresponding to different time instances t1; : : : ; tn and
define the POD ansatz of order ` for the state y by

y` D Ny C
X̀

iD1
wi i; (7)

where Ny D 1
n

Pn
iD1 yi denotes the mean flow and the basis functions f ig`iD1

are obtained from the singular value decomposition of the snapshot matrix Y D
Œ y1 � Ny; : : : ; yn � Ny�; i.e. Y D �˙V , and the first ` columns of � form the POD
basis functions of rank `. Here the SVD is based on the Euclidean inner product.
This is reasonable in our situation, since the numerical computations performed
in our numerical example for the driven cavity problem are based on a uniform
staggered grid. The snapshots are computed on the basis of a stable finite difference
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discretization of (1) which leads to a semi-discrete system of ODEs of the form

Py C �Ay C Cp D �.y/C Bu; y.0/ D y0: (8)

Note that we consider f .y.t/; u.t// D ��Ay � Cp C �.y/C Bu in (4).
The reduced optimal control problem is obtained through replacing (8) by a

dynamical system obtained from a Galerkin approximation with basis functions
f ig`iD1 and ansatz (7) for the state.

This leads to a `-dimensional system for the unknown coefficients fwig`iD1;
namely

M` Pw C �A`w D �.w/C B`u w.0/ D w0: (9)

Here the entries of the mass M` and the stiffness A` are given by h j;  ii and
h j;A ii, respectively. The reduced shape function is obtained by .B`/i D hB;  ii:
The coefficients of the initial condition y`.0/ 2 R

` are determined by wi.0/ D
.w0/i D hy0� Ny;  ii; 1 � i � `; and the solution of the reduced dynamical problem
is denoted by w.s/ 2 R

`: Note that for the reduction of the nonlinear term �.w/ we
use the Discrete Empirical Interpolation Method (DEIM, see[5]). The pressure does
not appear in the reduced problem (9) since the snapshots are divergence-free. Then,
the POD-Galerkin approximation leads to the optimization problem

inf J`w0 .u/; (10)

where u 2 U , w solves (9) and the cost functional is defined by

J`w0.u/ D
Z 1

0

L.w.s/; u.s/; s/e��s ds:

The value function v`, defined for the initial state w0 2 R
` is given by

v`.w0/ D inf
u2U J`w0 .u/;

and w solves (9) with the control u and initial condition w0: HJB equations are
defined in R

n; but we need to restrict our numerically domain to a bounded subset
of Rn. We refer the interested reader to [1] for a detailed description.

5 Numerical Tests

In this section we consider as numerical example the control of the flow in the lid-
driven cavity. In (3) we set: ˝ D .0; 1/ � .0; 1/; y0 	 0; � D 0:01; ˛ D 0:01; � D
1;U D f�1; 0; 1g; yb D .1; 0/ on the top boundary and yb D .0; 0/ on the remaining
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boundary segments. The desired configuration is given by Ny D 1
n

Pn
iD1 yi: In (6) we

take k D 0:2; h D 0:04 whereas the optimal trajectory is obtained with a time
stepsize of 0:01.

The control gain of the suboptimal control problem, with the ansatz (7), consists
of steering the coefficients w to the origin. For the purpose of this test, we take only
three POD and six POD-DEIM basis functions. In our numerical computations the
reduction of the nonlinearity with DEIM already yields a considerable computa-
tional speedup. Further investigations on the performance of DEIM in relation to
the discretization parameters are provided in a subsequent paper. The snapshots are
computed with a finite difference scheme from the uncontrolled problem (u 	 0) in
(1) where we use the Matlab code provided in [11].

In Fig. 1 we show the configuration of the flow. On the left we show the mean
flow, which is the desired state, in the middle the controlled flow is shown, and on
the right the uncontrolled flow is shown. As shape function we use the steady state
solution of the Navier-Stokes system.

We can see that at time t D 0:5 the suboptimal solution already well approxi-
mates the desired state, as confirmed in Table 1, where the L1-error of y` � Ny at
t D 0:5 and t D 4 is reported for this shape function. When the time is increasing
the solution itself tends to stabilize close to the mean flow, but still the suboptimal
solution has a smaller error with respect to the uncontrolled problem. Note that the
performance of our method depends on the choice of the shape functions. In Table 2
we display the results obtained with the steady state solution of the Stokes equation

DESIRED CONFIGURATION
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Fig. 1 Mean flow NS (left)—controlled configuration at time t D 0:5 (middle)—uncontrolled
configuration at time t D 0:5 (right)

Table 1 L1 error at time
t D 0:5 and t D 4

t D 0:5 t D 4

ky`.x; t; u`/� Nyk1 0.007 0.006

ky.x; tI 0/ � Nyk1 0.283 0.048

Ny is the desired state, y`.x; tI u`/ is
the suboptimal solution, and y.x; tI 0/
denotes the uncontrolled solution. The
shape function is chosen as the steady
state solution of the Navier-Stokes equa-
tions
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Table 2 L1 error at time
t D 0:5 and t D 4

t D 0:5 t D 4

ky`.x; t; u`/� Nyk1 0.081 0.022

ky.x; tI 0/ � Nyk1 0.283 0.048

Ny is the desired state, y`.x; tI u`/ is
the suboptimal solution, and y.x; tI 0/
denotes the uncontrolled solution. The
shape function is chosen as the steady
state solution of the Stokes equations
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Fig. 2 Control input with three constant controls f�1; 0; 1g and one shape function chosen as the
steady state solution of the Navier-Stokes equation

as shape function. As expected, the approach works better if we can use the steady
state of the Navier-Stokes equation as shape function.

In Fig. 2 we present the control input. The behavior of the control is classical for
feedback control, since the system tries to correct step by step the trajectories. The
control space is only given by constant values f�1; 0; 1g:
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Short Description

Particle methods such as Smoothing Particle Hydrodynamics (SPH) are Lagrangian,
meshless numerical method for Computational Fluid Dynamics (CFD) which
has recently seen a growing interest in a wide variety of problems, including
hydrodynamics, multi-fluid simulations, thermal problems, lava flow simulations,
fluid-structure interaction problems, with applications ranging from oceanography
to medicine, from engineering to geophysics.

Particle methods are a powerful and flexible tool for computational fluid-dynamics
of great relevance for environmental and industrial applications. The purpose of
the mini-symposium is to present the current state-of-the-art in applied particle
methods, both for scientific research and in industrial applications, providing an
opportunity for researchers and applied mathematicians working on and with
particle methods to present their work both to fellow scientists in the same research
fields and to a wider audience.
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Abstract We present a validated fully three-dimensional simulation of a vertical-
slot fish pass with GPUSPH, a high-performance CUDA implementation of the
Smoothed Particles Hydrodynamics (SPH) numerical method for free-surface flows.
The GPUSPH results are compared to flow velocity and water level measurement
from a laboratory model with the same geometry. The results show good agreement
between the numerical simulations and the experimental data.
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1 Introduction

CFD modeling represents an efficient tool to investigate different geometry variants
in hydraulic engineering. However, a validation of the models is necessary, due to
the complexity and high turbulence level of the flow in a several facilities.

In the present paper we simulate a vertical-slot fish pass with GPUSPH [4], a
high-performance CUDA implementation of the Smoothed Particles Hydrodynam-
ics (SPH) numerical model for free-surface flows.

Hydraulic research on vertical slot fish passes has shown that the hydraulic
conditions within the pools of such facilities are mostly determined by the pool
geometry and the slope of the fish pass. While previous SPH-based approaches to
the numerical simulation of fish passes were mostly in two dimensions, the use
of SPH allows to run fully three-dimensional simulations, without constraints on
the domain shape and with great accuracy. This comes at the cost of significant
requirements in terms of memory and computational power, so that only low-
resolution attempts have been done so far [6]. To cope with this, we have
extended GPUSPH, which previously supported single-node multi-GPU computing,
to exploit the computational power of clusters of graphic devices. By exploiting
12 devices across 6 nodes simultaneously we have been able to run a fine-grained
simulation with a resolution of about 4 mm per particle and a total of 50 millions
particles.

We first present the SPH discretization of the Navier-Stokes equations (Sect. 2),
followed by some technical information about GPUSPH, the implementation of
SPH on GPU we used for our simulations (Sect. 3). We then introduce the
experimental and numerical set-ups (Sect. 4), followed by the comparison between
experimental measurements and numerical results (Sect. 5), and some concluding
remarks (Sect. 6).

2 SPH Discretization of Navier-Stokes Equations

The motion of a weakly compressible inviscid fluid can be described by the Navier-
Stokes equations in the Lagrangian form

Du
Dt

D �rP

�
C g

D�

Dt
D ��r � u;

where D=Dt denotes the total (Lagrangian) derivative with respect to time, v the
fluid velocity, P the pressure, � the density, � the kinematic viscosity coefficient,
and g the external forces per unit mass (in our case, gravity).
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SPH is a meshless Lagrangian numerical method for computational fluid dynam-
ics [8]. Using the standard notation for Weakly-Compressible SPH (WCSPH), we
denote by W.�; h/ a family of smoothing kernels parametrized by the influence
radius h and such that limh!0 W.�; h/ D ı.�/, where ı is Dirac’s delta and the limit
is intended in the sense of distributions. The smoothing kernels are assumed to have
compact support and to be positive and with radial symmetry. The fluid body is
discretized by a set of particles with average inter-particle distance p and we will
denoted with ra the position of particle a, while rab D rb � ra denotes the distance
vector between the particles, rab its norm and Wab D W.rab; h/.

For the physical properties we will use the usual subscripted convention, with �a

being the density of particle a, ma its mass, Va its volume, Pa its pressure and ua its
velocity.

The flow is assumed weakly compressible with an equation of state (EOS)
coupling pressure and density. Typically, the Tait EOS is used, in the form P.�/ D
B..�=�0/� C 1/ where � D 7 is the polytropic constant, �0 the at-rest density of the
fluid and B D �0c20=� , c0 being the numerical speed of sound density of the fluid.

The mass continuity equation is then discretized as

D�i

Dt
D �i

X

j

mj

�j
uij � riWij;

and the Navier-Stokes momentum equation can be written

Dui

Dt
D �

X

j

mj

 
Pj

�2j
C Pi

�2i
C˘ij

!

riWij C g;

where F.r; h/ D .1=r/.@W.r; h/=@r/, and the ˘ij term is an artificial viscosity that
takes the form

˘ij D
(

�˛ NcsN� h xij�uij

rijC"h2 xij � uij < 0;

0 otherwise

where Ncs is the average speed of sound computed at the particles i and j, and N� their
average density.

In most applications, explicit integration methods are used, so that the timestep
is limited by the speed of sound in the EOS. Hence, rather than using the physical
speed of sound, a fictitious speed of sound is used, which is at least one order of
magnitude higher than the maximum velocity of the fluid in the given problem: this
ensures that density fluctuations are kept small (less than 1 %) while allowing for
larger timesteps. In our experiments, the expected maximum velocity is 11:7 m/s,
so we set c0 D 117m/s.
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3 GPU SPH Implementation

For our numerical tests, we use GPUSPH [4], which is a modular implementation
of SPH relying on CUDA-enabled GPUs as high-performance computing devices.
GPUSPH is capable of distributing the computation across multiple devices attached
to one or more nodes in a network: this allows to run large-scale simulation and/or
reduce computational times.

3.1 Integration Scheme

GPUSPH uses a predictor-corrector integration scheme. With accelerations f and
time-step dt, the scheme describing a time-step with the standard SPH formulation
can be summarized as follows: compute accelerations f.n/ D f.x.n/; v.n/; �.n//
and density derivatives P�.n/ D P�.x.n/; v.n/; �.n//; compute half-step intermediate
positions, velocities, densities: x.n?/ D x.n/ C v.n/ dt

2
, v.n?/ D v.n/ C f.n/ dt

2
, �.n?/ D

�.n/ C P�.n/ dt
2

; compute corrected accelerations f.n?/ D f.x.n?/; v.n?/; �.n?// and
density derivatives P�.n?/ D P�.x.n?/; v.n?/; �.n?//; compute new positions, velocities,
densities: x.nC1/ D x.n/ C .v.n/ C f.n?/ dt

2
/dt, v.nC1/ D v.n/ C f.n?/dt, �.nC1/ D

�.n/ C P�.n?/dt.
Stability of this scheme is guaranteed when the time-step is limited by CFL-like

conditions in the form t � Cmin.
p
.h=k f k/; h=c0/ for some constant C < 1. In

our experiments we have C D 0:1.

3.2 Neighbors List

For efficiency reasons, GPUSPH keeps track of the neighbors of each particle
in a dedicated list. Additionally, since the fluid is normally not subject to large
instantaneous deformation, the neighbors list is only rebuilt every n timesteps, with
n configurable. In our tests we use the default value n D 10.

To speed up neighbor search during the neighbors list construction, particles are
indexed by their position with respect to an auxiliary grid with spacing not smaller
than the influence radius of the kernel. This ensures that the neighbors of a given
particle can be found in cells neighboring the cell to which the particle belongs [2].
Computations are distributed across multiple devices via domain decomposition at
the granularity of the auxiliary cell [9, 10].

3.3 Homogeneous Accuracy

As explained in [5], the auxiliary cell grid is used in GPUSPH also to provide
homogeneous accuracy in the particle position throughout the domain: instead of
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storing the positions of the particles in a global reference frame, GPUSPH stores
the cell index (which is used for the neighbor list, and is thus already computed),
and the position of the particles with respect to the center of the cell it belongs to.

This ensures that the distance vector between particles can be computed with
the same accuracy regardless of the location of the particles with the respect to the
origin of the global reference frame, by computing the difference between the local
positions of the particles, and adding an offset equal to the cell side when particles
are in different cells.

In our application, homogeneous accuracy provides a significant benefit, since
the ratio of the particle resolution (p D 3:88mm) to the domain size (15m in
length) is in the order of the single-precision floating-point machine epsilon (10�7,
and thus high enough to cause numerical problems with a naive implementation,
such as particles near the external parts of the domain clumping together due to their
relative distance being computed with only one or two bits of precision at most.

3.4 Boundary Conditions

We model physical domain boundaries using the Lennard-Jones boundary particles
method, the classic approach to realize solid boundaries in SPH: physical boundaries
are discretized with one layer of equally spaced particles that exert a Lennard-Jones
force on fluid particles.

A side effect of using Lennard-Jones boundary particles is the generation of
artificial friction of the fluid against the wall. This effect can be reduced by
increasing the spatial density of the particles realizing the walls. For simple, convex,
plane geometries a better approach is to model the wall as a geometrical plane, and
then compute the fluid/plane interaction by finding the projection of the fluid particle
on the plane and compute a Lennard-Jones repulsive force from the projection to the
actual particle. For particles travelling parallel to the plane, this results in a constant
force, and a much smoother motion. Further details on the Lennard-Jones repulsive
plane can be found in [3], where the approach was used to locally approximate
complex topographies.

4 Modeling a Vertical-Slot Fish Pass with GPUSPH

A laboratory model of the modeled fish pass has already existed in the laboratory
of the Federal Waterways Engineering and Research Institute (BAW) as part of
ongoing R&D activities.

The laboratory model consists of nine pools with width of 78:5 cm and length of
99 cm installed in a flume. The slot width is 12:2 cm; the slope of the flume is 2.8 %.
The side walls and the bottom of the flume are made of plexiglas, the cross-walls
and the baffles of the model are made of wood.
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The SPH model was designed to reproduce the same geometry, inlet and outlet
conditions of the laboratory model. Influx rate, sizes, wall offsets, initial filling and
other geometric details are fully parametrized to allow for fast comparative tests and
efficient maintenance in case of changes in the physical model.

The physical boundaries of the domains are modeled with a combination of
Lennard-Jones repulsive particles and Lennard-Jones repulsive planes. Planes are
used to model the side walls of the entire fishpass, as they yield no friction to the
fluid stream, and their usage reduces the total number of particles required for the
simulation. However, since the current implementation only allows infinite planes,
they cannot be used to model other parts of the fishpass (inner walls and floor), for
which the standard Lennard-Jones repulsive particles are used instead, with a linear
density which is double that of the fluid, in order to reduce the artificial friction
introduced by this kind of boundaries.

Inflow is modeled by reserving a section (inlet) at the beginning of the domain
for particle generation. These particles are generated with an initial velocity such
that the inlet achieves the same inflow rate as the physical model. The inlet itself is
divided in two section: the first creates particles and applies the velocity field as is;
the second makes a linear interpolation between the velocity imposed by the field
and the one which particles would have according to their dynamics computed from
the SPH formulation.

A ramp at the end of the outflow channel is used to model the flap gate, which
was not moved for this test case. In the computation model, an outflow field is placed
right after the freefall (Fig. 1). Its only task is to destroy the particles that fall into it.

Water levels are captured with special “gage particles”, which are floating
particles with fixed X and Y coordinates. Two gages are set in each pool in the
same positions where the water level are measured in the physical model.

Fig. 1 Three pools, inlet and outlet of a 50 M particles simulation
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5 Validation Using Laboratory Measurements

The validation data was provided by measurements performed in the laboratory
model described before. The measurements were performed in uniform flow
conditions. The measurement duration was 3 min in each point for both the water
level sensors and flow velocimeters, as suggested by a preliminary stationarity
analysis.

The flow velocity measurements were carried out in the sixth pool of the model
12 cm above bottom level along 134 gridpoints by an Acoustic Doppler Velocimeter
(ADV) of type side-looking Vectrino with 200 Hz sampling rate.

For the validation of the flow velocities, velocities were captured at the same
gridpoints in the numerical model as in the laboratory model. The flow velocities
were recorded for every time-step in the numerical model. The obtained velocity
time series show fluctuations, so time averaged values over 10 s were used during the
comparison for stationarity reasons. The measured and modeled velocity fields are
presented in Fig. 2. It can be observed, that the main flows interconnecting the slots
have a similar shape and the magnitudes of the velocities show a good agreement.

The water depths measurements were performed in points A and B in each of the
nine pools by ultrasonic water level sensors with a sampling rate of 40 Hz. Water
depths in points A and B nearly represent the minimal and maximal water depths
within the pools, so that the average of the two values was used as the characteristic
water depth in the pool. The water levels captured in the numerical model were
transformed to water depth values, and were then averaged over 10 s to get statistical
stationary values.

The water depths obtained from the measurements and the numerical model are
presented in Fig. 3. It can be observed that the water depths in the numerical model
are higher than in the laboratory model, with a larger difference close to the inflow.
This indicates that our SPH model produces more hydraulic loss than the laboratory
model, which is probably due to a combination of boundary effects, such as the wall

Fig. 2 Velocity field measured in the sixth pool of the laboratory model (left) and captured in the
sixth pool of the numerical model (right)
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Fig. 3 Characteristic water depths in the pools in the laboratory model and SPH

friction and inflow conditions, as well as to the non-physical viscosity applied in
the model.

6 Conclusions

These preliminary tests show good agreement between the numerical simulations
and the experimental data.

To improve the results, we need to reduce the energy loss of the fluid, to which
end we are testing different viscosity models and we plan to switch to the unified
semi-analytical boundary model [1, 7] for the fishpass walls. This boundary model
will also allow better modeling of inlet and outlet conditions.
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Simulation of a Twisting-Ball Display Cell

Peep Miidla, Jüri Liiv, Aleksei Mashirin, and Toomas Tenno

Abstract A system of differential equations describing the behavior of a single
ball in an elementary cell of the twisting-ball information display is considered.
Nonlinear ordinary differential equations describe the ball shift and rotation. For
efficient practical implementation of the display, the optimal values of ball and cell
parameters are needed. To obtain these, the computer simulations were realized.
Results of numerical experiments of modeling the balls with different physical
parameters are presented. The numerical experiments show that the movement of
the elementary particle of the twisting-ball display is extremely sensitive to the
physical parameters of the balls but there exist nearly optimal combinations of these
parameters. In this case the ball rotation intends towards some complete rotation
cycle: if control voltage changes its polarity, the ball rotates nearly 180ı and exposes
right, black or white, size to the observer and the display works as expected.

Keyword Twisting-ball display cell

1 Introduction

A twisting-ball display is a kind of electrophoretic information display invented at
the Xerox Palo Alto Research Center [5–7]. The display consists of a thin layer of
transparent silicone plastic in which multiple randomly dispersed bichromal balls.
Each ball is an electrical dipole and is placed in the cavity filled with dielectric fluid.
The width of the cavity is 10–30 % greater than the diameter of the balls. Depending
on the polarity of the control voltage, one or other of their colored hemispheres is
exposed to the viewer. The displays based on such physical principles are highly bi-
stable, robust, easy to manufacture and have very low power consumption as they do
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not emit light, the image being formed using ambient light, similar to conventional
printed paper.

The authors of this work have developed a method for manufacturing the particles
of polyvinylidene fluoride (PVDF), which is an electret material with extremely
high residual electric field [3]. An electret material is a stable dielectric with a
permanently embedded static electric charge, which, owing to the high resistance
of the material, will not decay for hundreds of years. Each ball has a monopolar
electrical charge and bipolar charge. When the control voltage is constant or zero,
the ball is glued to the wall of the cavity due to the electrostatic forces [1]. The ball
begins to move towards the opposite wall of the cavity, when the polarity of the
control voltage changes. Microscopic asymmetries and other small perturbations
cause a deviation of the axis of the electrical dipole from the direction of the
electrical field and electrostatic torque causes the ball to rotate.

This paper describes the numerical experiments with a simplified mathematical
model of the cell of display and provides the opportunity to determine the
performance of the display depending on the physical parameters of the balls[4].

The system of equations was solved using MATLAB solvers with variable time
step using step-wise integration. The development of display performance function
describing the dependence between luminance and rotation time in cases of different
physical parameters is planned as future work.

2 Mathematical Model of the Translation of the Ball

After applying electrostatic force, the ball inside the cavity accelerates at first and
reaches a stable velocity determined by the diameter of the ball and the viscosity of
the carrier liquid. The equilibrium state of a ball in the cavity is at the cavity wall.
If the control voltage changes polarity, the ball begins to move towards the opposite
wall of the cavity. Neglect the influence of gravity and buoyant force because of
their smallness in comparison with the electrostatic force and viscous drag. The
shift y D y.t/ of the ball is described by the differential equation:

d2y

dt2
� FE � FL

m
D 0 : (1)

Here, FE is an electrostatic force and FL is a viscous drag, m is the mass of the
particle. After simplifications and using Stokes’ law to determine the resistance of
the fluid, we obtain resulting differential equation

d2y

dt2
C 9 � �
2 � � � r2

� dy

dt
� 3 � U � q

4 � � � s � � � r3
D 0 : (2)
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Fig. 1 Movement of the ball in cavity; q D 6� 10�16 C

q is the monopolar charge of the particle; the other notations and parameters in
simulations here and below are the following: the median radius r D 25 � 10�6 m,
thickness of the film RD D 150 � 10�6 m, diameter of the cavity is 70 � 10�6 m,
control voltage UC D 100V, the density of PVDF given by � D 1:75 � 103 kg=m3,
the viscosity of carrier liquid � D 3 � 10�4 N � s=m2. The simulated trajectory
of the ball governed by the differential equation (2) is shown on Fig. 1. The initial
conditions are y(0) = y’(0) = 0. On Fig. 1 we see the equilibrium states y D 0 and
20 � 10�6 m of the ball shift which are determined by the cavity walls.

3 Mathematical Model of the Rotation of the Ball

Polarized bichromal ball is embedded into a cell filled with dielectric fluid. Rotation
of the ball inside the cell cavity as a result of the outer electrical field can be
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described through the balance relation:

MJ C MS C ME D 0: (3)

Here MJ is the inertial torque, MS is the viscous torque and ME is the electrostatic
torque. After transformations, we get the resulting differential equation which
describes the rotation � D �.t/ of the ball:

� 8

15
� ��r5 � d2�

dt2
� 8

3
� ��r4 � d�

dt
C r � qD � U � sin �

s
D 0 : (4)

In addition to the notations introduced in previous section, here qD denotes dipole
charge. The magnitude of rotation depends on several parameters. Figure 2 shows
a sample movement of a ball free of the cavity. We see that the ball reaches
equilibrium state after some periods of damped oscillation. If the ball is in the cavity,
physical boundaries are applied. When the polarity of the control voltage changes,
the ball begins to move towards the opposite wall of the cavity. The rotation stops

Fig. 2 Sample plot of ball rotation
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Fig. 3 Rotation angle and velocity of the ball in cavity for qD D 1� 10�18 C

at the moment when the ball reaches opposite wall and ball does not obtain the
equilibrium state as we saw on Fig. 2. The changes of the angle and velocity of
ball rotation corresponding to this situation with different electrical parameters of
the ball are shown on Figs. 3, 4 and 5. On Fig. 3 we see that in the case of small
dipole charge the ball performs some incomplete rotation cycles and stops in some
fixed angle.

On Fig. 4 the ball has nearly optimal dipole charge, other parameters remain
unchanged. We see that in this case the ball rotation intends towards some complete
rotation cycle. If control voltage changes, the ball rotates nearly 180ı and exposes
right, black or white size to the observer. Display works as expected.

On Fig. 5 we see that when the dipole charge is too big, over some critical
value, then the uniform rotation cycles of the ball are lost and ball performs random
rotations and stops in unpredictable states.
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Fig. 4 Rotation angle and velocity of the ball in cavity for qD D 2� 10�18 C

4 Conclusions

During numerous laboratory experiments, we discovered unstable behavior of the
experimental display for different dipole and monopole charges of balls. In some
cases the display worked as expected but in some cases we noticed that the particles
acquired random states, not the “white” and “black” as presumed and in other
cases the display stopped working at all after some time. Notice that, in the case
of unpropitious combination of physical parameters, the rotation of the ball is
strictly limited and the final rotation angle is highly undetermined. These situations
correspond to the simulations presented on Figs. 3 and 5.

We can conclude that the mathematical model presented in this paper corre-
sponds to proper operation of the display. In our experiments, the dipole charge
can be changed by changing the polarization parameters and the monopolar charge
can be simply controlled using nonpolar surfactants dissolved in the carrier liquid
[2].The proper operation of the display can be achieved only using the strictly
predetermined combination of physical characteristics of the particles. Integration
of the behavior of the whole electrophoretic display is planned as future work.
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SPH for the Simulation of a Dam-Break
with Floating Objects

Giuseppe Bilotta, Alexander Vorobyev, Alexis Hérault, Damien Violeau,
and Ciro Del Negro

Abstract We show an application of the Smoothed Particle Hydrodynamics (SPH)
method to the simulation of a fully three-dimensional dam-break with floating
objects. The simulation is done using GPUSPH, an implementation of the SPH
method in CUDA which has been recently extended including support for fully
coupled fluid/solid interaction. Boundary conditions are computed using the unified
semi-analytical model proposed by Ferrand et al. SPH is also used to compute the
total force and torque acting on the floating objects, which are then used to integrate
the motion of the objects.

Keywords Floating object • Meshfree method • Smoothed particle hydrodynam-
ics method

1 Introduction

Applications of SPH to real-world problems depend on the correct evaluation of
boundary forces, particularly when the domain has a complex shape, or when fluid/
object interactions are to be modeled. Additionally, since SPH is a Lagrangian
meshless method, implementations can be subject to numerical instabilities when
the ratio of the domain size to the resolution is close to machine epsilon.

In this paper we show the approach used to solve these issues in an application of
SPH to a dam-break with floating objects on a natural topography. Specifically, we
rely on the unified semi-analytical boundary model proposed by Ferrand et al. [2, 8],
and on the homogeneous accuracy work by Hérault et al. [4] to solve the numerical
precision issues.
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The simulations are done with GPUSPH [3], an implementation of 3-D SPH
using CUDA-enabled GPUs to achieve high computing performance. GPUSPH has
been recently extended to include the unified semi-analytical boundary model, and
support for floating objects and their fully coupled interactions with the fluid.

We will first briefly summarize the key aspect of the unified semi-analytical
boundary model (Sect. 2), and introduce the key aspects of homogeneous precision
(Sect. 3), followed by a synthetic description of our approach to the modeling of
fluid/solid interaction, which are the theoretical foundations of the simulation of a
dam-break with floating objects (debris flow on a spillway, Sect. 5). Conclusions are
then drawn in Sect. 6.

2 Unified Semi-analytical Boundary Conditions

The unified semi-analytical boundary model for SPH builds on the standard weakly-
compressible SPH formulation (WCSPH), [2, 6, 8]. Following the standard notation,
we will denote by W.�; h/ a family of smoothing kernels parametrized by the
influence radius h and such that limh!0 W.�; h/ D ı.�/, where ı is Dirac’s delta
and the limit is intended in the sense of distributions. The smoothing kernels are
assumed to have compact support and to be positive and with radial symmetry. The
fluid body is discretized by a set of particles with average inter-particle distancep
and we will denoted with ra the position of particle a, while rab D rb � ra denotes
the distance vector between the particles, rab its norm and Wab D W.rab; h/.

For the physical properties we will use the usual subscripted convention, with �a

being the density of particle a, ma its mass, Va its volume, Pa its pressure and ua its
velocity. Additionally we will denote by F the set of all fluid particles, and by S
the set of all boundary particles.

The flow is assumed weakly compressible with an equation of state (EOS) P D
B..�=�0/# � 1/ where # D 7 is the polytropic constant, �0 the at-rest density of the
fluid and B D �0c20=#, c0 being the numerical speed of sound of the fluid.

2.1 Renormalization Terms

The unified semi-analytical boundary model was first introduced by Kulasegaram
et al. [5], suggesting a renormalization for the SPH smoothing kernel near a solid
wall. In such a case, the standard WCSPH density summation �a ' P

b2F mbWab

is replaced by

�a D 1

�a

X

b2F
mbWab: (1)
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The renormalization factor � is defined as

�a 	
Z

˝\˝a

W.jr � raj/dV; (2)

where ˝ denotes the fluid domain,˝a the support of W centered on particle a, and
dV the infinitesimal volume element. Informally, �a measures the ratio of the domain
volume inside the kernel support to the kernel support itself, and the normalization
condition of the smoothing kernel ensures that �a D 1 when the kernel support is
fully contained in the fluid domain.

The gradient of �a, which appears in the momentum and continuity equations as
shown in Sect. 2.2, can be computed analytically as

r�a 	
Z

˝\˝a

raW.jr � raj/dV D
Z

@.˝\˝a/

W.jr � raj/ndS; (3)

where n denotes the outer unit normal to the boundary and dS the infinitesimal
surface element.

The values of both �a and r�a can only be computed analytical in case of trivial
geometries. For more complex cases, Ferrand et al. [2] propose to discretize the
boundary into small elements s (segments in the two-dimensional case, extended
to triangles in the three-dimensional case [8]) and approximate the integrals by
the summation of contributions from each boundary elements located within the
influence domain of the particle: r�a ' P

s2S r�as.
The formulation by Ferrand et al. also considers vertex particles, located at the

vertices of the boundary elements. These particles may be considered as (non-
moving) fluid particles attached to the solid wall: as such their mass is a fraction
of the mass of standard fluid particles, and depends on the geometry of the wall.
For example, a vertex particle for a plane wall would have half the mass of a fluid
particle, while at a right corner it would have one fourth of the mass.

In what follows F will include both moving fluid particles and vertex particles,
and we will denote the set of vertex particles by E .

2.2 Wall-Corrected Differential Operators

With kernel renormalization, the pressure gradient approximation takes the form:

raP ' �a

�a

X

b2F

�
Pa

�2a
C Pb

�2b

�

mbrWab � �a

�a

X

s2S

�
Pa

�2a
C Ps

�2s

�

�sr�as: (4)

Compared to the classical WCSPH approximation of rP, this formulation
includes a contribution from the gradient of the renormalization factor, computed
as a summation over the neighboring boundary elements. Vertex particles also
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contribute to the pressure gradient, as they are included in the first summation.
Similarly, the divergence of the velocity is approximated as

ra � u ' � 1

�a�a

X

b2F
mbuab � rWab C 1

�a�a

X

s2S
�suas � r�as; (5)

where uab D ua � ub and uas D ua � us.
Finally, the viscous contribution to the momentum equation can be discretized as:

r � �ru ' 1

�a

X

b2F
mb
�a C �b

�a�b

uab

r2ab

rab � rWab � 1

�a�a

X

s2S
jr�asj.�arua C �srus/ � ns:

(6)

The second term is particularly important to correctly model the flow near the
boundary. For laminar flow, the term can be rewritten in the form

1

�a�a

X

s2S
jr�asj�a C �s

ıras
u
a; (7)

where u
a represents the wall-tangential component of the velocity of particle a,
computed as u
a D uas � .uas � n/n, and ıras is the clipped distance between the
particle and the wall, ıras D max.p; ras�n/, where the lower limit ofp is imposed
to prevent zero values on the denominator.

2.3 Ferrari Correction

Mayhrofer et al. [7] adapted Ferrari et al.’s density correction [1] to the semi-
analytical boundary model. The discretized continuity equation then takes the form:

D�a

dt
D ��a

�a

X

b2F
Vb

�

uba C K
cab

�a
N�ab

rab

rab

�

� raWab
�a

�a

X

s2S
usa � r�as; (8)

where K is a coefficient to be chosen between 0 and 1, cab D maxfca; cbg is the
maximum speed of sound and N�ab is a corrected density difference that takes into
account the hydrostatic pressure balance by inverting the EOS:

N�ab D �a � �b �
�

Pa � Pb�C F � rab

B
C 1

�1=#
; (9)

where F are the external forces (typically, gravity).
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2.4 Boundary Pressure and Density

The pressure and density of vertex particles is computed imposing @P=@n D 0 at the
boundary, which gives us the following SPH interpolation formulas for the density
and pressure of a vertex particle e:

�e D 1

˛e

X

b2FnE
Vb�bWbe; (10)

Pe

�e
D 1

˛e

X

b2FnE
Vb

�
Pb

�b
� F � rbe C u2b � u2e

2

�

Wbe; (11)

where ˛e 	 P
b2FnE VbWbe is the renormalization factor of the SPH interpolation.

We remark that the summations here are extended to neighboring fluid particles
only. For boundary elements, the pressure and density are obtained by averaging the
three adjacent vertex particles.

Finally, since Pe; �e computed as above are inconsistent with the EOS, an
iterative procedure relying on inverting the EOS should be used to correct their
values. In our tests, a single iteration �0e D �0.P=BC1/1=# has shown to be sufficient.

3 Homogeneous Accuracy

Naive implementations of SPH store particle positions with respect to a global
reference frame, even though global positions are never actually used in SPH
formulas. As a result of this choice, the accuracy of the evaluation of the distance
vector between particles (rab) and all the related quantities is higher closer to the
origin, and becomes lower as the particles move away from the origin.

On the other hand, to make neighbor search computationally efficient, many SPH
implementations rely on an auxiliary domain grid with spacing not smaller than the
influence radius of the smoothing kernel, which ensures that if particle a is located in
cell Ca D .Xa;Ya;Za/, its neighbors are located in the cells .Xa ˙1;Ya ˙1;Za ˙1/.

While this auxiliary grid has only been used until recently to speed up the
neighbor search, it can be used to provide homogeneous accuracy throughout the
domain [4]. To achieve this, in GPUSPH the position of each particle is stored in
terms of the distance fa to the center of the cell it belongs to. The global position of
particle a is never computed as such (except when setting up the problem initially,
and when retrieving the particle positions for storage or visualization), and rab is
computed as fab C K where K D Cabs is the distance between the centers of the
cells, and s the grid spacing.

This approach has several benefits. It’s numerically more stable, particularly in
the case of simulations over large domains with a very high resolution, and it’s
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computationally more efficient, since it allows storing the neighbor list purely in
terms of their offset to the neighboring cell, reducing the memory consumption of
the neighbor list.

4 Fluid/Solid Interaction

GPUSPH includes a fully coupled fluid/solid interaction model based on the thin
shell model for rigid bodies.

Objects are described by their inertia tensor with respect to the principal axes,
the location of the center of mass and the rotation of the local reference system with
respect to the global reference system. The latter is described using unit quaternions,
which simplifies the treatment of rotations and avoids some of the well-known
problems associated with the use of Euler angles [10].

For the fluid/solid interaction, objects are discretized as a thin shell of boundary
particles, which interact with the fluid using the standard fluid/boundary interaction
model. The interaction is used to compute the forces acting on each boundary
particle, which are used to derive the total force and torque acting on the object.

The object motion is then integrated, taking interaction with other objects and
with the topography into account, using the Open Dynamics Engine [9]. The object
motion is then used to derive the new position and velocities for the object particles
for the new integration step.

5 Goulours Spillway Debris Flow Test Case

Our sample application is a dam break on a natural topography with floating objects.
The dam break is simulated on the topography of the Goulours dam spillway,
provided by Électricté de France (EDF). Five trees are placed in the reservoir
before the water spill. The trees are modeled as cylinders 8m tall and with a 1m
diameter. Their density is �t D 0:7�w, where �w D 1000 kg=m3 is the water density.
Boundaries are described using the semi-analytical boundary conditions.

Lacking validation data, the main purpose of this simulation is provide a proof
of concept, to show the possibility to simulate fluid/solid interaction with GPUSPH,
and its application to the modeling of hydraulic waterworks. We can only provide
a qualitative evaluation of the simulation, highlighting some crucial aspects in the
interaction between the fluids, the floating objects and the irregular topography.

The first highlight is given by the interaction between the first tree that enters
the spillway, and the high velocity flow at the beginning of the dam break. The
simulation (Fig. 1) shows the sinking/floating of the tree dragged by the flow.
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Fig. 1 Zoom-in of the first part of the Goulours spillway showing the interaction of the first tree
with the initial water spill. (a) t D 8:5 s. (b) t D 9 s. (c) t D 9:5 s. (d) t D 10 s

The second highlight is given by a later stage of the simulation, where the first
tree has settled down around a bend further down the spillway, and two more trees
are able to catch up with it (Fig. 2), potentially causing an obstruction in the spillway.

6 Conclusions

We have shown a possible applications of SPH in the modeling and simulation
of hydraulic waterworks. The GPUSPH implementation of SPH in CUDA is
used in the examples presented. The results obtained with the use of the unified
semi-analytical boundary conditions, in conjunction with the model for fluid/solid
interaction present in GPUSPH, show qualitatively good results in the simulation of
fully coupled fluid/solid interaction with the flow, in a proof-of-concept application
to the simulation of debris flow during a dam-break on a natural topography. The
application illustrates the use of numerical modeling with SPH to highlight potential
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Fig. 2 Two trees reach up with the first tree causing a potential obstruction in the Goulours
spillway. (a) t D 20s (b) t D 22:5 s (c) t D 25 s. (d) t D 27:5 s

obstructions to the waterway and related situations. Future work in this regard will
be aimed at the validation of the fluid/solid interaction, and the refinement of the
unified semi-analytical boundary conditions by improving the computation of � .
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Short Description

The geometrization of gravity forms one of the cornerstones of modern science
having an impact on the industrial progress connected to many activities of daily
life. In the past decade, substantial research has been invested into post-Newtonian
corrections for high-precision navigation, geolocation, and tracking devices, as well
as into the design of analogue models of gravity by making use of advanced
optical and acoustic metamaterials. Present industrial needs demand innovative
development of computationally efficient spacetime models in this interdisciplinary
field. Such mathematical models become important for applications requiring
very accurate timing as achieved in today’s engineering systems which rely on
modern atomic clocks. Moreover, acoustic metamaterials—artificially produced
with properties not found in nature—challenge the engineer to fabricate acoustic
devices with highly unusual features.



Maxwell’s Fish-Eye in (2+1)D Spacetime
Acoustics

M.M. Tung, J.M. Gambi, and M.L. García del Pino

Abstract In the past few years Maxwell’s fish-eye lens has been subject to intense
investigation in the context of transformation optics, mainly spurred by the possi-
bility to create perfect imaging without the need to resort to negative refraction, one
of the outstanding—but difficult to implement—properties of metamaterials. Here
we extend this discussion to an acoustical fish-eye constructed in (2+1)D spacetime.
The underlying acoustic wave is governed by a homogeneous spherical Helmholtz
equation, which is shown to emerge from a variational principle in inherently
covariant manner. The formal analytical solutions of the acoustic potential are
derived.

Keywords Acoustic • Helmholtz equation • Maxwell’s fish-eye

1 Introduction

One of the central objectives of metamaterial research is first the theoretical
conception and then the industrial engineering of artificial materials with remarkable
properties which are not found in nature. The clever design of so-far unknown
advanced metamaterial devices with useful applications in all sectors of living is
its prime purpose. The engineering of acoustic metamaterial devices falls in this
category [9] and also serves well to demonstrate the power of the underlying
differential-geometric framework in this analogue model of gravity [16]. Apart from
perfect acoustic lenses, it is worthwhile mentioning that other industrial applications
in this field cover the acoustical improvement of concert halls, the construction
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of ships and submarines invisible to sonar detection, and much more. Interesting
applications of acoustic cloaking may be found in [2, 3, 11].

Maxwell’s fish-eye lens is the special case of a so-called Lüneburg lens [7,
pp. 172–182], which is a spherically symmetric lens characterized by a variable
refractive index in its interior. More precisely, the fish-eye is a positively refracting
metamedium which is implemented by the stereographic projection of a hypersphere
to a plane passing through its origin. In the remainder of this section we will explain
what this means in the 2D example, referring to purely spatial dimensions first.

Hence, we shall consider the conformal mapping of the 2-sphere with radius
a > 0 to the xy-plane, namely S2 ! R

2 conveniently defined by the following
stereographic coordinate transformation with parametrization:

r.x; y/ D
0

@
�

�

#

1

A D a

0

B
B
B
B
B
B
B
@

2x=a

.x=a/2 C .y=a/2 C 1

2y=a

.x=a/2 C .y=a/2 C 1

.x=a/2 C .y=a/2 � 1

.x=a/2 C .y=a/2 C 1

1

C
C
C
C
C
C
C
A

: (1)

Here .�; �; #/ are the auxiliary coordinates on S2, and .x; y/ are the physical
coordinates in the projected plane. It is easy to check that krk D a for all .�; �; #/ 2
S2 and that the equator lies in the xy-plane, also with radius a. A straightforward
calculation yields for the 2D-metric with coordinates .x1; x2/ 	 .x; y/ the isotropic
result

gij D
�

2

.�=a/2 C 1

�2 �
1 0

0 1

�

; with �2 D x2 C y2: (2)

Note that Eq. (2) represents a curved space with the non-vanishing Ricci tensor
components R11 D R22 D 4a2=.�2 C a2/2 giving the scalar curvature R D 2=a2,
which is identical to the 2D-sphere. Comparing this with the acoustic metric of an
isotropic metamedium,

gij D n2.�/

�
1 0

0 1

�

; (3)

immediately provides the positive refractive index

n.�/ D 2

.�=a/2 C 1
: (4)

See also [5, 6] for different derivations of Eq. (4)
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For further derivations we will also require the inverse transformation of Eq. (1)
given by

x D �

a � #
a; y D �

a � #
a: (5)

It thus becomes obvious that the azimuthal angle, ', for the xy-plane and for the
sphere S2 is the same:

tan ' D y

x
D �

�
: (6)

Furthermore, by using the standard representation in spherical coordinates with the
polar angle # , the radial coordinate is calculated by

� D
p
�2 C �2

a � #
a D a cot .#=2/ : (7)

We are now in the position to extend the previous results to the covariant formalism
in curved spacetime and will proceed in the next section with an exploration of
Maxwell’s fish-eye in this full spacetime framework.

Section 2.1 first introduces the variational principle in spacetime for the scalar
acoustic potential, �, and its associated wave propagation. The proposed funda-
mental Lagrangian density function on the spacetime manifold allows to derive the
equations of motion—related to the homogeneous spherical Helmholtz equation—
and thus completely predicts the evolution of non-dissipative acoustic phenomena.

Next, in Sect. 2.2 we are able to move on to the problem at hand, namely
the fish-eye lens in (2+1)D spacetime and the general relationship between the
constitutive parameters of the virtual and physical acoustic metafluid. These are
needed to engineer the metamaterial with fish-eye properties. Finally, we derive
formal analytic solutions for the acoustic potential with a fish-eye spacetime metric.

2 Results and Discussion

2.1 Variational Principle for Spacetime Acoustics

Previously, we have introduced a Lagrangian framework to describe macroscopic
electrodynamic phenomena within transformation optics [4] and also tackled
diffusion on curved manifolds [10, 12, 13]. In [11, 14] we have focussed on the
Lagrangian framework which describes acoustic phenomena. Since the advent of
special relativity it is known that Maxwell’s equations for electrodynamics are
inherently covariant, an advantage which is absent in acoustics. Even so, the acoustic
theory only requires a scalar potential � W M ! R (in contrast to the vector
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potential of electrodynamics), which simplifies matters a bit. As usual, M denotes a
smooth spacetime manifold endowed with a Lorentzian metric g, where we assume
a positive signature.

For the reformulation of Hamilton’s variational principle in acoustics within
fully covariant spacetime and for finding the extremal solution of the corresponding
action functional, we require a Lagrangian density function of the type

L W M � TP ! R; (8)

where P the ambient space defined by the acoustic potential. If N D M � P is the
Riemannian manifold representing configuration space, then the jet bundle J1N D
M � TP indicates that the Lagrangian L generally is a scalar function of x�, �,
and �;� and may also contain the metrics of M and N, see e.g. [1].1 In other words,
partial derivatives of configuration space with respect to all spacetime coordinates
are admitted.

Observe also that in the acoustic metamaterial the local fluid velocity, v, the
acoustic pressure, p, and the density, %0, are directly obtained from the scalar
potential via [8, 11]

v� D ��I� D ��;� D
 

�p=c%0
v

!

; (9)

where c > 0 is the time-independent acoustic wave speed.
Physical constraints (energy-momentum conservation, locality) limit the acoustic

Lagrangian density to take the simplest possible form [11], which only contains a
kinetic term (in the spacetime sense): L .�;�/ D 1

2

p�g g���;��;�: Therefore, for
transformation acoustics the functional derivative of the following associated action
integral must vanish [11]:

ı

ı�

Z

dvolg g���;��;� D 0: (10)

Integration is carried out over a bounded, closed set of spacetime (n D 4 for (3+1)D
spacetime) and the invariant volume element is defined by dvolg D p�g dx0 ^
: : : ^ dxn�1 with g D det g. The solutions of Eq. (10) are just the Euler-Lagrange
equations of motion governing the dynamics of the acoustic system.

1It is customary to denote by Greek indices the usage of the full range of spacetime values for
tensors, whereas Latin indices only run over the spatial values. Comma and semicolon are standard
notation for partial and covariant derivatives, respectively.
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2.2 Analytic Solutions for the Acoustic Fish-Eye in (2+1)D
Spacetime

As shown before, the fish-eye metric in physical space, Eq. (2), represents isotropic
characteristics similar to those of a 2-sphere, especially with the same scalar
curvature R D 2=a2. It is therefore more convenient for the study of the fish-eye
metric to work in a spherical virtual space [6].

Rewriting the Cartesian metric, Eq. (2), in spherical coordinates for S2 by
considering Eq. (5) and including the time component, readily yields

g�� D
0

@
�1 0 0

0 a2 0

0 0 a2 sin2 �

1

A (11)

for the full (2+1)D spacetime metric of the fish-eye with coordinates .x0; x1; x2/ D
.ct; #; '/. It is

p�g D a2 sin# . Note that in this simple metric no spacetime mixing
occurs and time dilation is absent. For the simplest metric representing time-dilation
in uniformly accelerated frames or within a uniform gravitational field we refer to
[14, 15].

The metric Eq. (11) is static and its non-vanishing Christoffel symbols are thus
identical to those of S2. Consequently, the geodesics in virtual space are great circles
on S2 with its projections conformally mapped onto physical space, i.e. the xy-plane,
also being circles.

Following the outline of [11], we identify the virtual space with flat Minkowski
space. Moreover, we associate physical space with the space having the desirable
acoustic properties of the fish-eye, realized by the metric Eq. (11). The so-called
constitutive relations establish the connection between physical and virtual acoustic
space and their material properties. With Eq. (19) of [11], for the fish-eye the result
is

� D �0 sin#; %ij D %0
�

�0

�
1 0

0 1

�

; (12)

where as usual � is the bulk modulus with a fixed scale �0, and %ij is the isotropic
mass-density tensor. These relations fully determine the metamaterial properties for
engineering the acoustic fish-eye.

On the other hand, the variational principle, Eq. (10), provides the following wave
equation for the fish-eye metric

M� D g���I�� D � 1

c2
@2�

@t2
C 1

a2
S2� D 0; (13)

which is a homogeneous spherical Helmholtz equation combined with a harmonic
temporal contribution. For finding its solutions it is therefore natural to try the
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following ansatz by applying the method of separation of variables:

�.t; #; '/ D �0.t/Y.#; '/: (14)

It is expected that Y.#; '/ are the eigenfunctions of the spherical LaplacianS2 , i.e.
spherical harmonics with eigenvalues �, necessarily of the form � D l.lC1/; l 2 N.
Hence, an explicit calculation yields formally the following solution for the acoustic
fish-eye potential

�.t; #; '/ D
1X

lD0

lX

mD�l

"

Alm cos

 p
l.l C 1/

a
ct

!

C Blm sin

 p
l.l C 1/

a
ct

!#

Ylm.#; '/;

(15)

where

Ylm.#; '/ D
s
2l C 1

4�

.l � m/Š

.l C m/Š
Plm
�

cos#
�
eim' (16)

are the orthonormalized spherical harmonics and Plm the associated Legendre
polynomials. The coefficients Alm and Blm will depend on the precise boundary
conditions under consideration and can be determined by employing the standard
orthogonality relation for Ylm.#; '/.

The final transformation of �.t; #; '/ back to physical space with Eqs. (6) and (7)
finally yields �.t; x; y/. This completes the calculation of the 2D fish-eye potential.

3 Conclusions

The acoustic fish-eye is a particularly interesting subject of transformation physics,
since it might facilitate the construction of perfect acoustic focussing devices.

In this work, we have sketched the application of a covariant variational principle
to determine the acoustic potential for a metamaterial with an underlying (2+1)D
fish-eye spacetime metric. The fish-eye metric is the result of the choice of physical
and virtual spaces linked by a stereographic mapping of the 2-sphere S2 to the xy-
plane. It is shown that the wave equation for the acoustic potential can be solved
analytically in terms of spherical harmonics.

We hope that the variational spacetime approach to transformation acoustics may
assist in the design and implementation of other acoustic metadevices and may
provide new avenues to research in this field.
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Post-Newtonian Effects in Geolocation by FDOA

J.M. Gambi, M.M. Tung, J. Clares, and M.L. García del Pino

Abstract The post-Newtonian terms included in the Frequency Difference of
Arrival equation derived here by means of Synge’s world-function are considered to
estimate their contribution in the precise Geolocation of passive radio transmitters
at rest on the earth surface. Four of these terms are kinematical and the other two
are gravitational. The kinematical terms account for the velocities of the radio
transmitter and the receivers with respect to the Earth Centered Inertial reference
frame, as well as for the relative velocities of the transmitter with respect to the
receivers. The other two account for the gravitational attraction of an spherical earth
on the receivers. The gravitational time delay has been taken into account to derive
these terms.

Keywords Frequency difference of arrival • Geolocation • Post-newtonian

1 Introduction

The Frequency Difference of Arrival (FDOA) equation used in this paper has been
derived by means of Synge’s world-function [1] and the frequency shift formula [2].
The equation involves two satellites, Si and Sj, that are in orbit about the earth. The
equation reads

fSi � fSj D fE
n	

nj � .vSj � vE/

	
1C .nj � vE/




�	ni � .vSi � vE/

	
1C .ni � vE/




C 1

2

	jvSi j2 � jvSj j2

C 	 m

jrSi j
� m

jrSj j

oC O."3/; (1)
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where fE is the frequency of emission of the signal emitted by a radio transmitter at
tE, and fSi , fSj are the frequencies received by Si and Sj at the reception instants tSi

and tSj respectively.
The equation contains all the second order post-Newtonian terms that can be

considered in the Earth Centered Inertial (ECI) reference frame. Thus, it contains
the kinematical terms Œni �.vSi �vE/�Œni �vE�, Œnj �.vSj �vE/�Œnj �vE�, as well as jvSi j2 and
jvSj j2, where vE is the velocity of the transmitter at the emission event of the signal,
.rE; tE/, and vSi and vSj are the velocities of Si and Sj at the reception events, .rSi ; tSi/,
.rSj ; tSj/, so that both positions and velocities are referred to the ECI reference frame;
ni, nj are the directions given by rSi.tSi/ � rE.tE/ and rSj.tSj/ � rE.tE/ respectively.
The gravitational terms take the form m=jrSi j and m=jrSj j, since this form fulfils the
present needs in Geolocation, m being the mass of the earth [3, 4] (Note that in
Eq. (1), and in what follows, c D G D 1. Therefore, all the basic magnitudes in the
simulations below will be given in seconds. In particular, the values of the mass and
mean radius of the earth adopted are 1:479�10�11 and 2:125�10�2 s respectively).

The time delay formula used to derive (1) when rS.tS/ is not aligned with rE.tE/
and the ECI center is

t D m
h
2 log

rS C dS

rE C dE
C dE

rE
� dS

rS

i
; (2)

where rE D jrE.tE/j, rS D jrS.tS/j, .dE/
2 D r2E � d2, .dS/

2 D r2S � d2, and d is the
Euclidean distance from the ECI center to the straight line joining rE.tE/ and rS.tS/.
S stands for Si and Sj in each case. The formula used when rS.tS/ is aligned with
rE.tE/ and the ECI center is

t D 2m log
rS

rE
; (3)

which is the limit of (2) when rS.tS/ tends to be aligned with rE.tE/ and the ECI
center. Other frequency shift formulae that may give rise to alternative forms to (1)
can be found in [5–7], and a different version of the time delay formulae in (2) and
(3) can be found in [8]. In this context see also [10–12].

Since the aim of this work is to estimate the magnitude of the contributions in
Geolocation of all the terms described above, let us mention, first, as a matter of
reference, that the contribution of .1=2/Œ.vS.tS//2 � .vE.tE//2� in the frequency shift
formula introduced in [7] for the Navigation problem by GPS, and for receivers at
rest on the earth surface, is of the order of 10�11 (a rough estimation of 8:35�10�11,
which is equivalent to a correction of 2:50 cm/s in range rate, can be found in [9]);
and second, that to resemble actual geolocations, very highly inclined Low Earth
Orbit (LEO) satellites in orbit with zero eccentricity will be considered as receivers.
Finally, let us note that the term just mentioned does not appear in (1).
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2 Impact of the Post-Newtonian Terms

Before estimating the impact of the post-Newtonian terms on the standard determi-
nation of vE and fE, let us note that, unlike the terms Ai 	 Œni � .vSi � vE/�Œni � vE�

and Bj 	 Œnj � .vSj � vE/�Œnj � vE�, the last two terms between brackets in (1), that
is, Cij 	 .1=2/ŒjvSi j2 � jvSj j2� and Dij 	 Œm=jrSi j � m=jrSj j�, are universal, i.e. do
not depend on any characteristic of the radio transmitter. In fact, the only terms
that depend on the radio transmitter, through its position and velocity, are Ai and
Bj. Furthermore, for orbits with zero eccentricity, 2Cij D Dij. Therefore, Cij C Dij

remains constant along the orbits of Si and Sj, if they are of zero eccentricity. The
value of the constant is .3=2/Œm=ai � m=aj�, where ai and aj are the semi-major axis
of Si and Sj respectively.

Let us now assume that Sj is a family of LEO satellites with orbital inclination i D
85ı and zero eccentricity, so that the longitudes of the ascending nodes, ˝j, range
from˝i D 30ıW to˝K D 30ıE,˝i,˝K being the longitude of the ascending nodes
of Si and SK . Let us also assume that aj range from 2:292 � 10�2 to 2:659 � 10�2 s
(that is, from about 500–1600km). The area of interest for all the couples .Si; Sj/

is bounded by the interval (10ıW, 10ıE) in longitude and by the interval (40ıN,
60ıN) in latitude. Then we have that the contribution of Cij C Dij to the standard
determination of fE ranges from 0 to 1:25 � 10�10, regardless the position of E
(Fig. 1). Now, the corrections due to Ai C Bj for any Bj are of the same order of
magnitude for any potential emitter within the area of interest. Therefore, we chose,
as representative, an emitter located at coordinates (0ıE, 50ıN).
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Fig. 1 Contributions of Cij CDij up to aK D 2:659� 10�2 s
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Fig. 2 Contributions of Ai C Bj up to aK D 2:659 � 10�2 s

Figure 2 shows the contribution of Ai CBj for each couple .Si; Sj/, so that the last
˝j is ˝K . Hence we can conclude that, among Ai C Bj and Cij C Dij, the dominant
contributor is CiK C DiK (Figs. 1 and 2).

Next, let us assume that aj range from 2:292 � 10�2 to 2:351 � 10�2 s. Then,
keeping˝j between˝i and˝K , we find that the contribution of Cij C Dij for any Sj

becomes much smaller than in the previous case (Fig. 3). But the contribution of
Ai C Bj practically remains the same for any Bj (Fig. 4). In this case both
contributions balance, although never cancel all over the area of interest (Fig. 5).

As a consequence, it is not possible to neglect, even in this case, the total
contribution of the post-Newtonian terms. In fact, this contribution is in general
of the same order of the contribution of the post-Newtonian term .1=2/Œ.vS.tS//2 �
.vE.tE//2�, which is characteristic of the Navigation problem by GPS (it ranges, as
was said above, in a neighborhood of 10�11).

The same consequence is valid for semi-major axis intervals much smaller, such
as .2:292 � 10�2; 2:295 � 10�2/ (note that in this case aK � ai Š 4 km). In fact,
despite the contribution of Cij C Dij becomes very small (Fig. 6), there still remains
the contribution of Ai C Bj, which newly again is similar to those shown in Figs. 2,
4 and 7.

The last step is to check whether or not the order of the contribution of Ai C Bj

remains the same, so as to show its size in detail when aj D ai for any j. The result
is shown in Fig. 8. (Note that the scale of the y-axis is logarithmic.)
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Fig. 8 Contributions of Ai C Bj when ai D aK

3 Conclusion

According to the previous discussion, the post-Newtonian terms in FDOA equa-
tions, such as the one in (1), should be taken into consideration for any couple
of LEO satellites. This is so because the total contribution of Ai, Bj, Cij, and Dij
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reach values of the order of 10�11, at least within the specified area of interest.
Furthermore, even when Cij and Dij could be neglected for some couple of satellites,
the corrections due to Ai and Bj always remain in the four equations of this kind
needed to locate a radio transmitter.

References

1. Synge, J.L.: Relativity: The General Theory, Chap. 2. North-Holland, New York (1960)
2. Synge, J.L.: Relativity: The General Theory, Chap. 7, p. 304. North-Holland, New York (1960)
3. Ho, K.C., Chan, Y.T.: Solution and performance analysis of geolocation by TDOA. IEEE Trans.

Aerosp. Electron. Syst. 29(4), 1311–1322 (1993)
4. Adamy, D.L.: EW 102: A Second Course in Electronic Warfare. Artech House Radar Library,

Chap. 6, p. 169. Horizon House Publications Inc., Boston (2004)
5. Soffel, M.H.: Relativity in Astrometry, Celestial Mechanics and Geodesy, Chap. 5. Springer,

Berlin/Heidelberg (1989)
6. Montenbruck, O., Gill, E.S.: Satellite Orbits, Chap. 6, pp. 202–203. Springer,

Berlin/Heidelberg (2000)
7. Ashby, N.: Relativistic effects in the global positioning system. http://www.aapt.org/doorway/

tgru/articles/Ashbyarticle.pdf (2006)
8. Gambi, J.M., Rodriguez-Teijeiro, M.C., Garcia del Pino, M.L., Salas, M.: Shapiro time-delay

within the Geolocation problem by TDOA. IEEE Trans. Aerosp. Electron. Syst. 47(3), 1948–
1962 (2011)

9. Combrinck, L.: General Relativity and Space Geodesy. In: Xu, G. (ed.) Sciences of Geodesy -
II. Springer, Berlin/Heidelberg (2013)

10. Gambi, J.M., Rodriguez-Teijeiro, M.C., Garcia del Pino, M.L.: The post-Newtonian Geoloca-
tion problem by TDOA. In: Progress in Industrial Mathematics at ECMI 2010, p. 489. Springer,
Berlin/Heidelberg (2012)

11. Seeber, G.: Satellite Geodesy, 3rd edn. Walter de Gruyter, Berlin (2003)
12. Combrinck, L.: General Relativity and Space Geodesy. In: Xu, G. (ed.) Sciences of Geodesy -

II. Springer, Berlin/Heidelberg (2013)

http://www.aapt.org/doorway/tgru/articles/Ashbyarticle.pdf
http://www.aapt.org/doorway/tgru/articles/Ashbyarticle.pdf


Post-Newtonian Geolocation of Passive Radio
Transmitters by TDOA and FDOA

J.M. Gambi, J. Clares, and M.C. Rodríguez Teijeiro

Abstract Different satellite configurations are considered to show by numerical
simulations the influence of the post-Newtonian corrections for the standard
locations of radio transmitters by the Time Difference of Arrival method to the
solutions of the Newtonian Frequency Difference of Arrival equations. The satellites
considered are Low, Mid and Geostationary Earth Orbit satellites in a number never
smaller than five. The radio transmitters are supposed to be passive and are placed
either on the earth surface or in space.

Keywords Frequency difference of arrival • Geolocation • Post-newtonian •
Time difference of arrival

1 Introduction

Time Difference of Arrival (TDOA) and Frequency Difference of Arrival (FDOA)
are the most accurate location systems among all the systems presently used to
locate passive (i.e. noncooperative) radio transmitters placed on the Earth surface or
in space. The standard TDOA methods involve receivers on board three satellites.
For this reason they do not yield unique locations; further, they provide location
accuracy as large as tens of meters [1].

A new TDOA method that generalizes one method for emitters on the earth
surface by Ho and Chan was introduced in a recent paper [2, 3]. The method involves
five satellites and provides unique locations both for emitters on the earth surface
and in space. The method was also formulated within the post-Newtonian model of
the Earth surrounding space in order to increase the accuracy so far reached.

Unlike the standard equations, the FDOA equations used in this paper are aimed
to directly find the velocities of the emitters and the frequencies of emission. They
also involve five satellites, which may not be the same used to locate the emitters
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by TDOA. To solve the FDOA equations, the position of the emitters must be
previously know. For this reason we use the TDOA method introduced in [3].

The aim of this work is to show by means of numerical simulations the
corrections for the velocities of the emitters and for the frequencies of emission
that are due to the post-Newtonian corrections to the Classical TDOA equations.

2 TDOA and FDOA Equations

Let us assume that the position of an emitter E at the emission instant of a signal
is rE, so that rE D jrEj. Let us also assume that .x; y; z/ are the Earth Centered
Inertial (ECI) coordinates of E at the emission instant of the signal. Let us assume
that vE is the velocity of E at the emission instant, and that .vx; vy; vz/ are the ECI
components of vE at that instant. Let rSi be the positions of the receivers Si at the
arrival instants of the signal, so that .xi; yi; zi/ are the ECI coordinates of Si at those
instants, rSi D jrSi j, and .vxi ; vyi ; vzi/ are the ECI components of vSi .i D 1; : : : ; 5/.
Finally, let us assume that the frequency of emission of the signal is fE, and that fi
are the reception frequencies at the reception instants at rSi .

If ri D jrij, where ri D rSi � rE, we have that the time difference of arrival to Si

and Sj, say ri;j, is given by ri � rj .i; j D 1; : : : ; 5I i ¤ j/. Then we have (Fig. 1)

r3;2 C r2;1 � r3;1 D 0;

r4;3 C r3;1 � r4;1 D 0;

r5;4 C r4;1 � r5;1 D 0;

so that

r3;2r2;1r3;1 D l1 C m1x C n1y C v1z;

r4;3r3;1r4;1 D l2 C m2x C n2y C v2z;

r5;4r4;1r5;1 D l5 C m5x C n5y C v5z; (1)

Fig. 1 Magnitudes involved in the Newtonian TDOA equations
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where

l1 D r3;2K1 C r2;1K3 � r3;1K2;

l2 D r4;3K1 C r3;1K4 � r4;1K3;

l5 D r5;4K1 C r4;1K5 � r5;1K4;

m1 D �2.r3;2x1 C r2;1x3 � r3;1x2/;

m2 D �2.r4;3x1 C r3;1x4 � r4;1x3/;

m5 D �2.r5;4x1 C r4;1x5 � r5;1x4/;

n1 D �2.r3;2y1 C r2;1y3 � r3;1y2/;

n2 D �2.r4;3y1 C r3;1y4 � r4;1y3/;

n5 D �2.r5;4y1 C r4;1y5 � r5;1y4/;

and

v1 D �2.r3;2z1 C r2;1z3 � r3;1z2/;

v2 D �2.r4;3z1 C r3;1z4 � r4;1z2/;

v5 D �2.r5;4z1 C r4;1z5 � r5;1z4/;

with Ki D x2i C y2i C z2i .
The Classical TDOA equations are the equations in (1).1 For the post-Newtonian

equations we have ri;j D .ri � rj/.1 � �ij/, where �ij D �pij=.ri � rj/ .ri ¤ rj/ and

pij D m

8
<

:
2 log

2

4
tan.

�0i
2
/ tan. �j

2
/

tan.
�0j

2
/ tan. �i

2
/

3

5C .cos �0i � cos �0j/C .cos �j � cos �i/

9
=

;
;

so that �0i (�0j) and �i (�j) are the angles that rE and rSi (rSj ) make with ri (rj) and m
is the mass of the earth (Fig. 2). The equations are

r3;2r2;1r3;1 D l1 C m1x C n1y C v1z;

r4;3r3;1r4;1 D l2 C m2x C n2y C v2z;

r5;4r4;1r5;1 D l5 C m5x C n5y C v5z; (2)

1Note that to derive these equations we take c D 1. Note also that to derive the post-Newtonian
equations we have also made G D 1. For this reason, the initial data in the numerical simulations
below are given in seconds.
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Fig. 2 Magnitudes involved in the post-Newtonian TDOA equations

where

l1 D .r3;2K1 C r2;1K3 � r3;1K2/.1C �32 C �21 C �31/;

l2 D .r4;3K1 C r3;1K4 � r4;1K3/.1C �43 C �31 C �41/;

l5 D .r5;4K1 C r4;1K5 � r5;1K4/.1C �54 C �41 C �51/;

m1 D .�2/.r3;2x1 C r2;1x3 � r3;1x2/.1C �32 C �21 C �31/;

m2 D .�2/.r4;3x1 C r3;1x4 � r4;1x3/.1C �43 C �31 C �41/;

m5 D .�2/.r5;4x1 C r4;1x5 � r5;1x4/.1C �54 C �41 C �51/;

n1 D .�2/.r3;2y1 C r2;1y3 � r3;1y2/.1C �32 C �21 C �31/;

n2 D .�2/.r4;3y1 C r3;1y4 � r4;1y3/.1C �43 C �31 C �41/;

n5 D .�2/.r5;4y1 C r4;1y5 � r5;1y4/.1C �54 C �41 C �51/;

and

v1 D .�2/.r3;2z1 C r2;1z3 � r3;1z2/.1C �32 C �21 C �31/;

v2 D .�2/.r4;3z1 C r3;1z4 � r4;1z3/.1C �43 C �31 C �41/;

v5 D .�2/.r5;4z1 C r4;1z5 � r5;1z4/.1C �54 C �41 C �51/:

The FDOA equations are based on the standard formula

fi D fE
	
1 � .ri=jrij/ � .vSi � vE/



;
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so that fi;j D fi � fj. The equations are

.
r1

jr1j � r2
jr2j / � vE � f1;2.fE/

�1 D r1
jr1j � vS1 � r2

jr2j � vS2 ;

.
r3

jr3j � r2
jr2j / � vE � f3;2.fE/

�1 D r3
jr3j � vS3 � r2

jr2j � vS2 ;

.
r4
jr4j � r2

jr2j / � vE � f4;2.fE/
�1 D r4

jr4j � vS4 � r2
jr2j � vS2 ;

.
r5
jr5j � r2

jr2j / � vE � f5;2.fE/
�1 D r5

jr5j � vS5 � r2
jr2j � vS2 : (3)

3 Numerical Simulations

The satellite data used to solve (1) and (2) for emitters in circular orbit about the
earth, with rE D 2:140 � 10�2 s, ˝E D 0ı, and inclinations ranging from 30ı to
80ı are: S1.a1 D 6:7 � 10�2 s; e1 D 0;˝1 D �70ı; i1 D 55ı; f1 D 0:12ı/; S2.a2 D
14:002 � 10�2 s; e2 D 0;˝2 D �99ı; i2 D 0:1ı; f2 D 57ı/; S3.a3 D 14:002 �
10�2 s; e3 D 0;˝3 D �57ı; i3 D 0:1ı; f3 D 57ı/; S4.a4 D 6:7 � 10�2 s; e4 D
0;˝4 D 42ı; i4 D 55ı; f4 D 0:12ı/, and S5.a5 D 6:7 � 10�2; s; e5 D 0;˝5 D
70ı; i5 D 55ı; f5 D 0:12ı/. Figure 3 shows the distance between the classical and
post-Newtonian locations. The orbital inclinations of the emitters are represented on
the X-axis, and the true anomalies at the emission instants on the Y-axis.

The satellite data used to solve (3), with fE D 1:025 � 106 Hz, are: S1.a1 D
3:0 � 10�2 s; e1 D 0;˝1 D 30ı; i1 D 80ı; f1 D 5ı/; S2.a2 D 2:3 � 10�2 s; e2 D
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Fig. 3 Corrections to the distances (in m)
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Fig. 4 Corrections to the speeds (in m/s)

30
40

50
60

70
80

20

40

60

80
0

2

4

6

8

x 10
−5

inclination
true anomaly

Fig. 5 Corrections to the velocity directions (in radians)

0;˝2 D 30ı; i2 D 80ı; f2 D 60ı/; S3.a3 D 14:002 � 10�2 s; e3 D 0;˝3 D 0ı; i3 D
0:1ı; f3 D �10ı/; S4.a4 D 14:002 � 10�2 s; e4 D 0;˝4 D 20ı; i4 D 0:1ı; f4 D
10ı/, and S5.a5 D 14:002 � 10�2 s; e5 D 0;˝5 D 10ı; i5 D 0:1ı; f5 D 10ı/.
Figure 4 shows the influence of the post-Newtonian corrections for the location of
the emitters on their speeds; Fig. 5 on the velocity directions, and Fig. 6 on fE.
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Fig. 6 Corrections to the emitted frequency (Hz)

4 Conclusion

The simulations shown in this work are rather representatives of the size of the
corrections for a wide variety of satellite configurations. In fact, the three types of
satellites, i.e. Low, Mid and Geostationary Earth Orbit satellites are involved in these
simulations. Therefore, the post-Newtonian corrections to the standard locations can
be expected to be at least of the order of the meter for any configuration. Hence they
can produce significative variations on many standard estimations of the velocities.
Better estimations of the velocities must be obtained by using the post-Newtonian
equations corresponding to (3).
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Post-Newtonian Orbital Equations for Fermi
Frames in the Vicinity the Earth

J.M. Gambi, M.L. García del Pino, and M.M. Tung

Abstract Synge’s equations for time-like geodesics in terms of Fermi coordinates
are used to derive post-Newtonian equations for the relative motion of satellites
in coplanar circular near orbits about the earth. The reference frame, co-moving
with the base satellite, is assumed to be a Fermi frame, that is, inertial guided. The
resulting system is autonomous, linear, and reduces to the equation of the geodesic
deviation for nearby satellites. Hence, it can be used by some Acquisition, Pointing,
and Tracking systems to increase the accuracy presently reached in locating passive
radio-transmitters.

Keywords Frequency difference of arrival • Post-newtonian • Radio transmission
control and surveillance

1 Introduction

The emerging importance of radio transmission control and surveillance is making
the implementation of accurate space-based Acquisition, Pointing, and Tracking
(APT) systems a relevant issue. In particular, Satellite-to-Satellite laser technology
attracts more and more attention due to the fact that this technology has matured
substantially in the recent years (see e.g. [1, 2]).

The equations introduced below correspond to the post-Newtonian model of the
Earth surrounding space. They can help the satellites equipped with those systems
to increase the accuracy in computing the relative position of other satellites in order
to determine by the Frequency Difference of Arrival (FDOA) method the velocities
of passive radio transmitters placed on the Earth surface or in space [3]. In fact,
the equations reduce to the equation of the geodesic deviation for nearby satellites
orbiting the earth. To show their benefits, the satellites are assumed to be in coplanar
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circular orbits with similar radii. Certainly, among these assumptions the only
essential to autonomously set up, at the right instants, initial conditions producing
solutions with the accuracy presently required, is the last. But, in summary, here we
add the other two for the sake of simplicity.

To derive the equations, Synge’s equations for time-like geodesics in terms of
Fermi coordinates are used. For this reason these equations are introduced in Sect. 2.
Then the equations are derived in Sect. 3. The generalization of these equations for
orbits with small eccentricity and/or different orbital planes is briefly discussed in
the Conclusions.

2 Synge’s Equations

Let E be a space-time with metric gij.xk/ and world-function ˝.xk1 ; xk2 /.1 From
now on Latin indices range from 1 to 4, and Greek, from 1 to 3. We also adopt
c D G D 1, so that x4 D t and the basic magnitudes are to be given in seconds.

Let .�k1
.˛/.s1/; �

k1
.4/.s1// be an orthonormal tetrad Fermi transported along a

time-like base world line C1.xk1 .s1// with �
k1
.4/.s1/ D Ak1 .s1/ D dxk1=ds1, so

that A41.s1/ D dt=ds1; let P2.xk2 / be an arbitrary event in a time-like geodesic
C2.xk2 .s2// and let .X.˛/; s1/ D .X.˛/; s1/ be the Fermi coordinates of P2.xk2 / with
respect to C1 where s1 and s2 are the proper times of C1 and C2 respectively. If
b1.s1/, the first curvature of C1, is null for all s1; if ˝i1j1l1 and ˝i1j1l2 are the
third-order covariant derivatives of ˝.xk1 ; xk2 / taken as indicated by the indices,
that is, with respect to xi1 , xj1 and xl1 , in the first case, and with respect to xl2 for
the third derivative in the second case; if, furthermore, Hk2 D Ak2.ds2=ds1/ with
Ak2 D dxk2=ds2, and if, finally,

dL.˛/=ds1 D �L.˛/ C˝i1j1 l2�
i1
.˛/A

j1Hl2 C˝i1j2l2�
i1
.˛/H

j2Hl2 ; (1)

with L.˛/ D ˝i1j2�
i1
.˛/H

j2 , where ˝i1j2 are the second-order covariant derivatives of

˝.xk1 ; xk2 /, first with respect to xi1 , and then with respect to xj2 ; � D .d2s2=ds21/=
.ds2=ds1/ and˝i1j1l2 ,˝i1j2 l2 are the third-order covariant derivatives whose interpre-
tation is similar to those of the previous derivatives, then Synge’s equations read [4]

d2X.˛/
ds21

D �˝i1j1 l1�
i1
.˛/A

j1Al1 �˝i1j1l2�
i1
.˛/A

j1Hl2 � dL.˛/
ds1

: (2)

1For any two events in E, P1.xk1 /, P2.xk2 /, for which there is a unique geodesic �P1P2 joining them
with equations xk D �k.u/ where u is an affine parameter ranging from 0 to 1, the world-function
˝.P1;P2/ is defined by the line integral

˝.P1;P2/ D ˝.xk1 ; xk2 / D 1

2

Z 1

0

gijU
iUjdu

taken along �P1P2 where xk1 � �k.0/, xk2 � �k.1/ and Uk D d�k=du.
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3 The Post-Newtonian Equations

According to Synge the calculations to integrate Eq. (2) become unmanageable.
However, they become much simpler by introducing the following approximations,
which are valid for all time-like world lines in the vicinity of the earth: (1) ds2=ds1 D
1 approx.; (2) C2 is nearly parallel to C1; and (3) for any two events P2, P20 in C2,
with Fermi coordinates .X.˛/; s1/ and .X.˛/ C dX.˛/; s1 C ds1/,

2˝.P2;P20/ D g.rs/dX.r/dX.s/;

with

g.˛ˇ/ D ı˛ˇ C 2h.˛1ˇ2/;

g.˛4/ D 0;

g.44/ D �1C 2h.4141/ C 2h.4142/; (3)

where

h.˛1ˇ2/ D 3

2
	�3X.�/X.�/

Z 	

0

.	 � u/uS.˛ˇ��/du;

h.4141/ D 3

2
	�3X.�/X.�/

Z 	

0

.	 � u/2S.44��/du;

h.4142/ D 3

2
	�3X.�/X.�/

Z 	

0

.	 � u/uS.44��/du; (4)

the integrals being taken along the straight line xk.u/ D xk1 .1 � u=	/ C xk2u=	
.0 � u � 	/ where, according to the Fermi coordinates assigned to P2, xk1 .s1/ are
the coordinates of the foot P1 at C1 of the geodesic �P1P2 drawn from P2.xk2 / to cut
orthogonally C1, so that 	 D X.˛/X.˛/ and

S.abcd/ D S.abcd/.x
k.u// D 	

Sijlm.x
k.u//


	
�i
.a/�

j
.b/�

l
.c/�

m
.d/.x

k.u//


; (5)

where �k
.˛/.x

k.u//; �k
.4/.x

k.u// are respectively parallel to �k1
.˛/.x

k1 .s1//;Ak1 .xk1 .s1//

with respect to the metric gij.xk/, and

Sijlm.x
k.u// D �1

3
.Riljm C Rimjl/

�
xk.u/

�
; (6)

where Rabcd.xk.u// is the Riemann tensor at xk.u/.
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In fact, under these hypothesis Eq. (2) become for the post-Newtonian approxi-
mation of the earth exterior Schwarzschild field with Earth Centered Inertial (ECI)
coordinates

d2X.˛/
ds21

D �˝.˛14141/ � 2˝.˛14142/ �˝.˛14242/; (7)

where

˝.˛14141/ D �˝.˛14142/ D �	�3X.�/
Z 	

0

.	 � u/2R.˛4�4/du;

˝.˛14242/ D 2	�3X.�/
Z 	

0

u2R.˛4�4/du; (8)

and

R.˛4�4/ D R.˛4�4/.x
k.u// D �m

�
3x˛.u/x� .u/

r.u/5
� ı˛�

r.u/3

�

; (9)

where m is the mass of the earth; xı.u/ D xı1 .1 � u=	/C xı2u=	 , xı1 and xı2 being
the ECI coordinates of P1 and P2, and r.u/2 D xı.u/xı.u/.

The calculations to integrate Eq. (7) are now as manageable as the calculations
to integrate the equations of the geodesic deviation, since these equations are

d2X.˛/
ds21

D �R.˛4ˇ4/X
.ˇ/; (10)

with R.˛4ˇ4/ evaluated at xk1 .s1/.
In fact, both systems of equations can be integrated in parallel in order to compute

the increment of accuracy while determining the relative motion of any satellite S2
(whose world line is C2) with respect to a base satellite S1 (whose world line is C1).

In particular, the benefits of (7) compared with the benefits of (10) for a system of
satellites designed to locate passive radio transmitters by means of FDOA can easily
be shown by merely considering S1 and S2 to be under the assumptions mentioned
in the Introduction. (A detailed description of the nature of the Geolocation problem
by FDOA can be found in [5].)

Thus, after computing the integrals in (8) under those assumptions using the
plane orbital coordinates x1, x2 for S1 (the x1-axis taken towards the ascending node
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of the orbit of S1) and assuming that �ı1.1/.s1/ and �ı1.2/.s1/ remain parallel to the x1-

and x2-axis respectively, we have that Eq. (7) become

d2X.1/
ds21

D m

r31

�
3 cos2 M1 � 1� �1 � 7

4
�
�
X.1/ C 3m

r31
cos M1 sin M1

�
1 � 7

4
�
�
X.2/;

d2X.2/
ds21

D 3m

r31
cos M1 sin M1

�
1 � 7

4
�
�
X.1/ C m

r31

�
3 sin2 M1 � 1

� �
1 � 7

4
�
�
X.2/;

(11)

with X.3/ D 0, where M1 D M1.s1/ is the mean anomaly of S1 at s1; r21 D xı1xı1 ,
and � D ..r2 � r1/=r1/ � 1, r22 being xı2xı2 .

We now note with respect to Eq. (11) that � does not depend on s1. It can also
be verified, as a matter of check, that if � D 0 and the initial condition are X.1/0 D
X.2/0 D X0.1/0 D X0.2/0 D 0, then we have the expected solution X.1/.s1/ D X.2/.s1/ D
0. Therefore, one can derive useful results when � D 0 and the initial conditions
correspond to configurations of S1 and S2 for which M2 D M1 C M, where M2 is the
mean anomaly of S2 and M takes several constant values properly chosen. In fact,
for � D 0, Eq. (11) become

d2X.1/
ds21

D m

r31

�
3 cos2 M1 � 1�X.1/ C 3m

r31
cos M1 sin M1X

.2/;

d2X.2/
ds21

D 3m

r31
cos M1 sin M1X

.1/ C m

r31

�
3 sin2 M1 � 1

�
X.2/; (12)

which coincide with Eq. (10) for nearby satellites.

4 Conclusion

Synge’s equations for geodesics in terms of Fermi coordinates can be simplified up
to obtain equations more general than the equations of the geodesic deviation, yet
useful to increase the accuracy provided by these equations in locating by means
of FDOA passive radio transmitters placed on the earth surface or in the vicinity of
the earth. In fact, by comparing Eqs. (7) and (10), it is straightforward to see why
Eq. (7) reduce to Eq. (10). In particular, it can be deduce from these equations that
their difference for the particular case considered to derive Eq. (11) is the parameter
�, which in this case is constant, as it is in any other case. In fact, the essential
characteristic of � is that it only involves the semi-major axes of S1 and S2, so that
the initial and subsequent Fermi distances from S1 to S2 can be kept under control
by two-way laser ranging according to the post-Newtonian framework. Furthermore,
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despite Eq. (7) are more complete than Eq. (10), they are equally affordable, since
they are still linear and the system remains autonomous.

The generalization of Eq. (11) to equations valid for satellites with different
inclination is straightforward, particularly if the orbits are circular and have the same
radius. The reason is that the integrals in (8) that correspond to these configurations
are very similar to those computed to derive Eq. (11). But the computation of the
integrals for orbits with (small) eccentricities, e1, e2, is not so simple, since previous
computations involving series expansions in e1 and e2 are required.
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Short Description

Numerical methods in structured linear algebra/matrix theory are relevant in several
applications in the restoration of blurred and noisy images (2D, 3D) and in the
modeling of the monument degradation under the action of pollutants (e.g. of
biochemical type). In reality, several tools from structured matrix-theory are ready
to be used in this context, with the effect of substantial improvements in the
computational efficiency and in the precision of the results. Conversely, new specific
examples of applications pose new challenging mathematical problems to people
working on numerical methods and in structured matrix theory.

The researches in the field require multi-level techniques in order to deal with
edges/details present in images and monuments and often the convergence of these
techniques is well understood in terms of the spectral properties (eigenvalue local-
ization, eigenvalue distribution, asymptotic behavior, eigenvector character in terms
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of frequencies etc.) of the underlying structures, arising from the approximation of
the involved integral and differential operators. We recall that the approximation
of integral equations in imaging leads to matrix-structures which are (severely) ill
conditioned in a high portion of the high frequency domain, while elliptic/parabolic
partial differential equations, also of nonlinear and degenerate type, arise in both
problems.



A Free-Boundary Model of Corrosion

F. Clarelli, B. De Filippo, and R. Natalini

Abstract Deterioration of copper and bronze artifacts is one of the main concerns
for people working in cultural heritage. In particular a significant effort has been
devoted to study the corrosion due to environmental conditions, such as temperature,
moisture and the concentration of pollutants. We introduce a mathematical model
able to describe the corrosion effects on a copper layer, which is subject to depo-
sition of SO2. The present model is based on a partial differential equation system
with a double free boundary for monitoring and detecting copper corrosion products
(mainly brochantite and cuprite).We assume to have a copper sample on which
is formed a non protective oxide layer (Cu2O), and, over this layer, a corrosion
product (brochantite) grows. We aim to create a new approach to forecasting
corrosion behavior without the necessity of an extensive use of laboratory testing
using chemical-physical technologies, while taking into account the main chemical
reactions. Although the model was kept simple, just describing the main reaction
and transport processes involved, the mathematical simulations and the related
model calibration are in agreement with the laboratory experiments.

Keywords Brochantite • Copper • Corrosion • Cultural heritage • Finite differ-
ence methods • Free boundary model • Parabolic problems

1 Introduction

The process of deterioration of copper alloys is a major concern for conservators,
scientist, art historians and collectors [8], where environmental factors, such as
temperature, moisture, concentration of pollutants play a key role in corrosion
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[1, 5, 7]. In this study we focus on pollutants such as sulfur dioxide (SO2), being
one of the most important factors in the deterioration of bronze. Indeed SO2 reacts
(in presence of water) to produce sulfate acid (H2SO4), which causes corrosion
phenomena on copper surfaces and produces several corrosion products (such as
antlerite, posnjakite, brochantite [6]).

The complexity of corrosion processes involved need a quantitative model
approach to develop predictive tools. These methods, similar to those introduced
in [3] and [2], can be used not only for the monitoring and detection of artefact
alterations, but also for determining optimal intervention strategies.

This mathematical model is able to describe the evolution of copper corrosion
and is based on fluid dynamical and chemical relations and characterized by
a double free boundary. Its calibration has been elaborated according to the
experimental results in [4].

2 The Model

The mathematical model describes the development of a corrosion patina on a
copper sample, taking into account the formation of cuprite and brochantite as the
principal corrosion products, as in Fig. 1.

Fig. 1 Example of cuprite and brochantite deposition on a copper sample
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We consider the following reaction to describe the cuprite Cu2O production (see
Eq. (1))

2Cu C 1

2
O2 ! Cu2O: (1)

While, we consider a simplified reaction for brochantite production in Eq. (2),
details regard this approximation are in [3].

2Cu2O C SO2 C 3H2O C 3

2
O2 ! Cu4.OH/6SO4; (2)

Since we assume these two reactions as instantaneous, we have two free
boundaries, and the effective time of reaction is implicitly included in the diffusivity
coefficients.

2.1 Equations of the Model

In our model we consider the swelling effect due to the volume change caused by the
chemical reactions. We indicate by ˛.t/ the boundary between copper and cuprite,
ˇ.t/ is the boundary between cuprite and brochantite, and �.t/ is the boundary
between brochantite and external air. Thus, we have four regions:

1. Copper (inner region).
2. Cuprite Cu2O, between ˛.t/ and ˇ.t/.
3. Brochantite Cu4.OH/6SO4, between ˇ.t/ and �.t/.
4. Laboratory controlled atmosphere on the external side of �.t/.

Equations of our model describes mass balances in the brochantite layer and in
the cuprite layer, a detailed description of the model and the mass balances on the
boundaries are in [3].

2.2 Brochantite Layer Equations

The brochantite formation (Eq. (2)) has been assumed to develop on the cuprite
layer, due to the SO2, H2O and O2, which move through the brochantite layer
(�.t/ � x � ˇ.t/) and react with Cu2O. This reaction implies the formation of a
new layer of brochantite.

In the following, the concentration of SO2 is indicated by S, the water concentra-
tion by W and the oxygen concentration by O.
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Mass balance of SO2 in the brochantite layer �.t/ � x � ˇ.t/ is

@S

@t
� Ds

@2S

@x2
C P� @S

@x
D 0; (3)

on the external boundary we have the environmental SO2 concentration (Eq. (4))

S.�.t// D Sair.t/; (4)

and on the boundary ˇ.t/ we assumed that SO2 reacts totally with Cu2O, thus we
have

S.ˇ.t// D 0: (5)

Since the flux of SO2 at the boundary ˇ.t/ is proportional to Cu2O moles
consumption, we have a further condition (first free boundary)

� nb
Ds

Ms

@S

@x
D 1

2

�p

Mp

P̌I (6)

where Ms, Mp are the molar weight of SO2 and Cu2O respectively, �p is the mass
density of cuprite and Ds is the diffusivity.

The mass balance of water in the brochantite layer is

@W

@t
� Dw

@2W

@x2
C P� @W

@x
D 0: (7)

On the boundary �.t/ we have

W.�.t// D Wair.t/: (8)

For x D ˇ.t/, we have that some moles of water are wasted by the reaction (2), and
the boundary condition is

Jw

Mw
D 3

2

�p

Mp

P̌ C nb
W

Mw

P̌: (9)

Where Dw is the water diffusivity and

Jw D nb

�

�Dw
@W

@x
� W!p P̨ � W!b

P̌
�

D nb

�

�Dw
@W

@x
C W P�

�

: (10)

Finally the oxygen mass balance in the brochantite layer is

@O

@t
� Do

@2O

@x2
C P� @O

@x
D 0; (11)
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on the boundary x D �.t/ we have

O.�.t// D Oair.t/; (12)

and on the boundary x D ˇ.t/we have the condition (13), since the oxygen is wasted
by the reaction (2).

Jo

Mo
D 3

4

�p

Mp

P̌ C nb
O

Mo

P̌: (13)

where Do is the oxygen diffusivity and the flux Jo is in Eq. (14)

Jo D nb

�

�Do
@O

@x
C O P�

�

: (14)

2.3 Cuprite Layer Equations

In this domain, to avoid confusion, we indicate oxygen by G.
We assume that all oxygen moles, that arrive on the inner boundary ˛.t/, react

with copper. Although this assumption is not always valid, it is justified in our model
since water plays a key role in the speed of reaction and in our experiments the
parameters of Relative Humidity (RH) are near to 100 %. Also, the diffusivity Dg

includes implicitly the finite time of reaction.
Oxygen mass balance equation is

@G

@t
� Dg

@2G

@x2
� !p P̨ @G

@x
D 0: (15)

The value of G.ˇ.t// is given by oxygen on the boundary ˇ.t/ obtained by Eq. (13).

G.ˇ.t// D O.ˇ.t//I (16)

on the other boundary ˛.t/, oxygen reacts totally with copper (Eq. (17))

G.˛.t// D 0: (17)

The last condition in x D ˛.t/ is given by the oxygen which reacts totally with the
copper moles

� np
Dg

Mg

@G

@x
D 1

4

�c

Mc
P̨ : (18)

Where Dg is the oxygen diffusivity and Jg is

Jg D np

�

�Dg
@G

@x
� G!p P̨

�

: (19)
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3 Calibration

We calibrated the diffusivity coefficients with our experimental tests. To do that,
we used the thickness of corrosion products at different time points. Each thickness
value has been obtained by a sample average and standard deviation, computed at
each time-point.

We used the least square method to find the best parameters. We obtained (in
cm2/s): Dg D 9:9 � 10�9, Ds D 3:96 � 10�5, Do D 9:9 � 10�6 and Dw D 3:96 � 10�5.
The evolution in time of the corrosion products thickness, using the best parameters,
is in Fig. 2. We can see the difference between the experimental points and the best
simulation in Fig. 3.

Fig. 2 Evolution of �.t/ (black line), ˇ.t/ (blue line) and ˛.t/ (red line)
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Fig. 3 Simulation (continuous line) and experimental points (in red)

Details on finite differences numerical schemes can be found in [3]. Simulations,
after 40 h, give us the following values: � D �9:505 � 10�4, ˛ D 3:1693 � 10�4,
ˇ D 7:9916 � 10�4 (cm).

Although the model was kept simple, just describing the main reaction and
transport processes involved, the mathematical simulations and the related model
calibration are in agreement with the laboratory experiments.
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Short Description

Spunbond, meltblowing, airlaying, fluid-dynamical sewing as well as electrospin-
ning are just a number of the various manufacturing processes for technical
textiles. In the focus of all these processes stand slender objects such as oriented
particles, elastic threads or viscous/viscoelastic jets that move due to mechanical,
electromagnetic or aerodynamical forces and interact with each other, outer walls
and/or surrounding turbulent flows. The application spectrum for the final fabrics,
the technical textiles, is extremely broad and ranges from everyday products
like diapers and vacuum cleaner bags to high-tech goods like battery separators
and medical products. Optimization and design of the production processes with
respect to the desired material properties requires tailored mathematical models and
methods that allow for accurate and efficient simulations.
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A Moving Mesh Framework Based on Three
Parameterization Layers for 1d PDEs

Stefan Schiessl, Nicole Marheineke, and Raimund Wegener

Abstract Solutions of partial differential equations (PDEs) arising in science
and industrial applications often undergo large variations occurring over small
parts of the domain. Resolving steep gradients and oscillations properly is a
numerical challenge. The idea of the r-refinement (moving mesh) is to improve the
approximation quality—while keeping the computational effort—by redistributing
a fixed number of grid points in areas of the domain where they are needed. In
this work we develop a general moving mesh framework for 1d PDEs that is based
on three parameterization layers representing referential, computational and desired
parameters. Numerical results are shown for two different strategies that are applied
to a fiber spinning process.

Keywords Fiber spinning • Moving mesh • Three parameterization layers

1 Moving Mesh

In the solution of PDEs steep gradients and oscillations can occur and cause
numerical difficulties. In the classical h-refinement additional grid points are
inserted, the improved approximation quality comes hence with the price of
increased computational costs. This work considers the so-called r-refinement or
moving mesh (see e.g. [4] and references within): the general idea is to improve
the approximation quality by redistributing a fixed number of grid points within
the domain while keeping the computational effort. For this purpose the existing
approaches in literature use two grids: the referential grid in which the model
equations are originally formulated and the transformed grid. Restricting to 1d
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Fig. 1 Illustration of the
three parameterization layers

problems we develop a general moving mesh framework that is based on three
parameterization layers and discuss different adaption strategies for a suitable
reparameterization. In particular, we embed an established MMPDE approach [5]
into our framework and compare the results in an example of fiber spinning.

Framework of Three Parameterization Layers We consider three parameteri-
zation layers: referential 	 2 Ő , computational s 2 ˝ and desired p 2 Q̋
parameterizations, see Fig. 1. The model equations for an arbitrary application are
originally formulated in a depicted parameterization (e.g. Lagrangian or Eulerian
description) to which we refer to as the referential parameters. The desired parame-
ters should now reflect some kind of optimal parameterization for the given problem,
e.g. the absolute value of a gradient of a solution component becomes constant.
As the direct use of the desired parameterization is not numerically beneficial, the
computational parameters are additionally introduced. The core of the framework
are the time-dependent parameter transformations $ 2 f�; ˛; �g with $.�; t/ one-
to-one mapping for time t 2 Œ0;T� that are listed in Fig. 1.

To allow for moving grids, the original equations are transformed into the
computational parameters by using � W ˝ � Œ0;T� ! Ő . The computational
parameters are not identical to the desired ones, but should approach them, i.e.
˛ W ˝ � Œ0;T� ! Q̋ should be pulled towards identity id. Consequently, the
r-refinement aims at an adaption strategy (Part (a) equation for the unknown� ) and
a description of a desired reparameterization (Part (b) choice for ˛). The existing
moving mesh approaches regard only two parameterizations as the desired layer is
implicitly incorporated in the computational layer. The advantage of our proposed
framework is a clear separation of all three layers. This provides more flexibility in
the modeling as we will see in the following.

In literature there exists various approaches with theoretical statements for fixed
domains, e.g. [3, 5]. Following that confinement, we assume here that Ő D ˝ D
Q̋ D Œ0; 1�. Then, the transformations$ can be interpreted as distribution functions

for the parameters. Supposing sufficient regularity $ 2 C 1.Œ0; 1� � Œ0;T�; Œ0; 1�/,
the derivatives f$ D @x$ describe the parameter densities, i.e. f$ > 0 and
R 1
0

f$.x; t/ dx D 1.

(a) Adaption Strategy: Equation for � , f� Proceeding from a desired parameter
distribution in terms of �, f� , the idea behind the adaption of the computational
parameters is a temporal relaxation. In that sense � , f� fulfills at a later time what is
currently deemed optimal with �, f� . In the following we present two strategies:
distribution relaxation (DELAX) and moving mesh partial differential equations
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(MMPDE). Thereby, the second one was originally proposed and explored in [5]
as the MMPDE4 approach and is here embedded in our general framework.

Strategy 1.1 (Distribution Relaxation (DELAX)) Let a parameter density f˛ be
given. Then � is determined by the evolution equation

@t� D �1



�
� � � ı ˛�1ˇˇ

pDs

�
; t 2 .0;T/; s 2 ˝ (1)

with initial condition �.s; 0/ D s and temporal relaxation parameter 
 > 0. Note
that ˛.s; t/ D R s

0
f˛.s0; t/ ds0 holds.

DELAX proceeds from the relaxation ansatz �.s; t C 
/ D �.s; t/ D �.˛�1.s; t/; t/
for the distribution. Since f˛ > 0, the order of the grid points is preserved under
˛ (i.e. no node crossing property [3]). This property is directly handed over to
� . Moreover, in the limit 
 ! 0, (1) enforces that ˛ 	 id. The strategy
requires the computation of the inverse of ˛ and the interpolation between the
parameterizations. However, the costs are relatively cheap as the domains are one-
dimensional. Alternatively, one might also think of an respective evolution equation
for f�

@tf� D �1



�
f� � .f� ı ˛�1/f˛�1

ˇ
ˇ
pDs

�
:

In MMPDE [5] a monitor function is introduced to describe the desired repara-
meterization.

Definition 1.2 (Monitor Function) Let a function OM W Ő � Œ0;T� 7! RC,
t 2 Œ0;T� be given and assume that OM.�; t/ 2 C 0. Ő ;RC/ is strictly positive and
bounded. Then OM is called a monitor function. On the computational domain˝ the
monitor function is denoted by M.s; t/ WD OM.�.s; t/; t/.
Strategy 1.3 (Moving Mesh PDE (MMPDE)) Let a monitor function M be given,
satisfying M.�; t/ 2 C 1.˝;RC/. Assume that �.�; t/ 2 C 2.˝; Ő /, then � is
determined by the PDE

@s.M @tf� / D �1


@s.M f� /; t 2 .0;T� s 2 .0; 1/; (2)

with the initial and boundary conditions �.s; 0/ D s and �.0; t/ D 0, �.1; t/ D 1

and temporal relaxation parameter 
 > 0.

MMPDE proceeds from the relaxation ansatz f� .s; t C 
/ D f�.˛.s; t/; t/ for the
density. By the chain rule f� ı ˛ D .f��1 ı �/�1 D f�=f˛ particularly holds. The
desired parameterization is modeled in terms of M with M .t/ D R 1

0
OM.	; t/ d	 , i.e.

f��1 D OM
M
; implying f� ı ˛ D M

M
; f˛ D f�M

M
:
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Multiplying @tf� D �.f� � M =M/=
 with M and taking the space derivative, the
integral of the monitor function disappears and the second order MMPDE (2) with
mixed partial derivatives is obtained. The property of no node crossing is fulfilled
(see proof in [3]). Moreover, in the limit 
 ! 0, f˛ 	 1 is enforced which implies
˛ 	 id. By dealing with the parameter density f� , this strategy brings diffusion
to the problem. In contrast to DELAX, the MMPDE strategy cannot be formulated
directly on the level of the distribution function � .

(b) Desired Reparameterization: Choice of ˛, fa The redistribution of the
parameters is performed with respect to the chosen density function f˛ (or OM, M in
MMPDE, respectively). In general, f˛ is a model-dependent arbitrarily complicated
functional on the solution that should approach f˛ D 1 by moving the mesh. Hence,
it is often set up as gradient or higher derivatives of solution components. Consider
the solution Oy W Ő � Œ0;T� ! R with large, strictly positive derivative in the
referential parameterization. To obtain a moderate (constant) derivative, we impose
f˛ D @sy=

R 1
0
@sy.s0; t/ ds0 with y.s; t/ D Oy.�.s; t/; t/. The MMPDE strategy yields

the same parameter density for OM D @	 Oy.

2 Application

The driving application behind this research are fiber spinning processes where
boundary layers occur, for example due to large elongations or mass lumping.

Fiber Spinning Model The spinning of a slender viscous jet under the influence of
gravity is characterized by the dimensionless Reynolds number Re (ratio between
inertia and viscosity) and Froude number Fr (ratio between inertia and gravity).
Consider the jet attached to a wall on one side and with a stress-free end at the
other side (Fig. 2a). Its uni-axial dynamics can be described by an initial-boundary
value problem for the unknown jet position r, cross-sectional area A, momentum-
associated velocity v, inner force (stress) n, elongation e and parameter speed u in
.0; 1/� Œ0;T�

@tr D v � ue; @sr D e; (3a)

@tA C @s.uA/ D 0; @t.Av/C @s.uAv/ D 1

Re
@sn C 1

Fr2
A; (3b)

@sv D 1

3

ne2

A
; (3c)

supplemented with

.r;A; v/.s; 0/ D .s; 1; 0/; .r; v; u/.0; t/ D .0; 0; 0/; .n; u/.1; t/ D .0; 0/:

(3d)
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Fig. 2 (a) left: Jet illustration; (b) right: Simulation of r and its grid points at time T D 0

and T D 3 in Lagrangian description and in the moving mesh strategies for different relaxations

 D 0:5; 0 (simulation set-up: (Re; Fr/ D .1; 0:5/ with step sizes sD t D 0:1)

Equations (3a) state the kinematics, the dynamics is given by the balance Eq. (3b)
with the material law in (3c). For fiber spinning the model equations are typically
formulated in Lagrangian or Eulerian parameterization (see e.g. [1, 2] for the more
sophisticated 2d or 3d rotational spinning). However, to allow for a moving mesh,
we consider the dynamics in a computational parameterization ˝ D Œ0; 1�: by
containing the unknown parameter speed u, system (3) is not complete yet. There
are different possibilities to fix the remaining degree of freedom:

(L) u 	 0: Lagrangian (material) description (cf. [1])
(E) e.s; t/ D r.1; t/: scaled Eulerian (spatial) description

(D)
 u is modeled as parameter speed using (4) with � determined by DELAX
(M)
 u is modeled as parameter speed using (4) with � determined by MMPDE.

u.s; t/ D � @t�.s; t/

@s�.s; t/
(4)

Numerical Results The underlying numerical method of choice is a first order
finite volume scheme in space (leading to a DAE system) with an implicit Euler
method in time [1, Sect. 3] for (3). The resulting nonlinear system is solved
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with a Newton method. The flux discretization is performed down-winded for
the convective terms and the stress in the balance equations, the other spatial
derivatives in (3) are treated in a up-winded manner. In case of moving mesh, the
two boundary conditions for u keep the parameterization domain time-independent.
The finite volume method is applied to MMPDE with central differences according
to [7]. Since the considered parameter density f˛ (or OM respectively) are in general
complicated functionals on the solution, analytical derivatives are not available.
Hence, a fully implicit time integration may slow down the Newton method due to
the need for numerical gradients. We use a semi-implicit time scheme: solely f˛ ( OM,
respectively) is evaluated explicitly. This treatment is reasonable since it only creates
an additional temporal delay in the grid similar to the relaxation effect of the 
 .

Simulating the jet dynamics in the Lagrangian (material) description (L) shows
already for moderate Reynolds and Froude numbers a lumping of the grid points
towards the jet end s D 1. Moreover, large elongations (large derivatives @sr D e)
arise at s D 0, see Fig. 2b for the example .Re;Fr/ D .1; 0:5/. In the inviscid
case Re ! 1, the model Eq. (3) describe the free fall where the jet position r
becomes even discontinuous: r.s; t/ D Fr�2t2Cs has a jump because of the imposed
boundary condition r.0; t/ D 0. Whereas (L) resolves the mass lumping at the jet
end optimally (arising boundary layer since A.1; t/ D A.1; 0/), it is not suitable for
the refinement of the large elongations. Here, the Eulerian description (E) yielding
e.�; t/ D const: is obviously preferable. We apply the moving mesh strategies to
increase the approximation quality by rearranging the grid points. To approximate a
scaled Eulerian description we choose the parameter density f˛ as

f˛.s; t/ D @sr
R 1
0
@sr.s0; t/ ds0

(or OM.	; t/ D @	 Or with Or.	; t/ D r.��1.s; t/; t/, respectively). The positivity of f˛
is ensured due to the initial condition for r, so no node crossing is suspected. In
addition to the results of (L), Fig. 2 also shows the redistribution of the grid points
for (D)0:5 and (M)0:5 at time T D 3. The effect of the moving mesh strategies over
time can be seen in Fig. 3.

Fig. 3 Equidistant computational grid points si D i=N, i D 0; : : : ;N with mesh movement 	i D
�.si; t/ in the referential parameterization over time for (M)0:5 and (D)0:5 (cf. Fig. 2b)
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The grid points move to the beginning of the referential parameter domain. In the
limit 
 ! 0, both strategies yield an almost constant derivative @sr D e as desired
(Fig. 2b). Note that the small observed variations in the elongation come from the
semi-implicit time scheme which causes a temporal delay. Using a fully implicit
time integration the elongation stays constant over the domain for all times.

3 Conclusion

For 1d PDEs we proposed a general moving mesh framework based on three
parameterization layers and studied two adaption strategies in the application of
fiber spinning. In comparison to the existing sophisticated MMPDE strategy [5],
a relatively easy evolution equation for the mesh movement is employed in our
DELAX approach. Our numerical studies show that both strategies yield similar
results. The possibilities to control the mesh are very promising. The framework
provides further ideas on how to model adaption strategies. An extension to time-
dependent parameterizations is in work, see e.g. [6].
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Construction of Virtual Non-wovens

Axel Klar, Christian H. Neßler, and Christoph Strohmeyer

Abstract We present a method for the computational construction of virtual non-
woven materials in the textile industry. The underlying model is a surrogate model
for the lay-down process of a single fibre described by stochastic differential
equations. In particular, we illustrate a computational method of constructing a
virtual non-woven material from thousands of single fibres. Furthermore, we show
a way of identifying contact points between the fibres. These contact points play
an essential role in the corresponding fibre network, which is the basis for virtual
material testing.

Keywords Airlay process • Fiber lay-down • Fiber network • Nonwoven manu-
facturing

1 Introduction

Many products like filters are non-woven materials. We consider the case where the
material consists of many thousands of relatively short fibres, so called staple fibres.
Usually the product is a mixture of several different materials, for example, cotton
or polymers. The fibres lay down on a conveyor belt where they form the material
structure. To fix this structure, a post processing step is needed, which in our case
is thermobonding. The material is heated so that the polymer fibres melt and stick
together at contact points. The production process is highly involved and so further
improvements can both save money and increase the quality of the products. Due to
the complexity of the production process, it is not possible to describe all aspects by
a model of first principles. Therefore, in the project OPAL, the research on this topic
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has been separated into three main parts: the fibre flow in a turbulent air stream, the
lay-down process on the belt and virtual material testing.

In this paper we concentrate on a computational method of generating virtual
fibre webs based on a stochastic differential equation model. The aim is to describe
the fibre behaviour in the lay-down area in such a way that it is accurate enough, but
also possible to run simulations in a reasonable time frame. In addition, we describe
an efficient method for the contact point identification.

2 Fibre Lay-Down Model

We begin by outlining a stochastic differential equation model for the lay-down of a
single fibre which includes anisotropic behaviour as well as transport with respect to
a reference curve. The underlying model for our fibre simulation was developed for
the lay-down process in melt-spinning. We direct the reader to [1] for an overview of
this research area and existing two dimensional models, and to [2, 3] for a detailed
analysis of the three dimensional model considered here.

Let us assume that we want to simulate a non-woven material consisting of
thousands of fibres with identical material properties, for example, length, diameter
and the number of crimps of each fibre. Furthermore, we assume that there is
no direct interaction between the fibres. Thus, we consider the evolution of the
lay-down scenario for each fibre individually. The fibre position is described by
a parametrised curve � W Œ0;T/ ! R

3 and its orientation by 
 W Œ0;T/ ! S
2,

where S
2 is the unit sphere, i.e. k
k D 1. This implies that T is the fibre length.

External forces, generated by a potential V W R
3 ! R, are allowed to act on the

fibre. We include a Brownian motion Wt and a noise amplitude A > 0 which allows
us to control the entanglement of the fibre. The larger the noise, the larger is the
entanglement. Moreover, we introduce the reference curve � W R ! R

3 which is
usually chosen as �.t/ D � e1, where ei; i D 1; 2; 3 is the canonical basis and  
is the ratio of production speed to the transport speed of the belt.

With the above, the governing equations for a single fibre with initial conditions
.�0; 
0/ 2 R

3 � S
2 are

d� D 
 dt ;

d
 D � 1

B C 1
.n1 ˝ n1 C B n2 ˝ n2/r�V.� � �/dt (1)

CA
�

n1 ˝ n1 C p
Bn2 ˝ n2

�
ı dWt;

where ˝ denotes the tensor product and ı Stratonovich integration [1–3]. Here n1
and n2 are the normal and binormal to the fibre curve respectively and B 2 Œ0; 1� a
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parameter of anisotropy. We note that, due to construction, n1 2 spanfe1; e2g. This
implies that for B D 0 we have a process which lives in the e1 � e2 plane, assuming
appropriate initial conditions, whereas for B D 1 we obtain the fully isotropic
model.

3 Layer Building

Non-woven materials can have a rather complex structure due to the production
process and the requirements from industry. Therefore it is important to consider
the building of these structures, for example layers, within the virtual generation of
fibre webs.

The evolution equation (1) requires appropriate initial conditions Œ.x0; y0; z0/; 
0�.
The initial values x0 and y0 are chosen from a distribution provided by our project
partners from the transport group of Fraunhofer ITWM, who simulate the turbulent
air stream and the fibre transport within this air stream until the fibres are close to
the conveyor belt. For related work in melt-spinning, see, for example, [4] and [5].

What remains is to determine z0. This strongly depends on the material already
laid down on the belt. Of course, not all fibres already simulated are relevant, but
only those close to the incoming new fibre we want to describe.

Let us assume that we already have simulated N fibres, whose positions are
described by � j; j D 1; : : : ;N. Then the task is to compute the initial point �NC1

0 for
the .N C 1/th fibre.

In the single fibre simulations based on (1) we assume a constant discretisation
step size  for all fibres, which results in a uniform grid t1; : : : ; tM; M 2 N. For
� > 0 we define

Z�.x0; y0/ WD f.x; y; z/ 2 R
3
ˇ
ˇ.x � x0/

2 C .y � y0/
2 < �2; z 2 Rg; (2)

which we call the local (�-) cylinder for .x0; y0/ 2 R
2. As � increases, the domain

describing the layer building also gets larger. Then we define

K WD
MX

jD1

NX

iD1

ˇ
ˇf� i.tj/ 2 Z�.x0; y0/g

ˇ
ˇ ; (3)

the number of already simulated fibre points in the local cylinder. This is illustrated
in Fig. 1. We make the assumption that the fibre volume at each discretisation point
� i.tj/ 2 Z�.x0; y0/ can be approximated by a ball of radius r, where r is the actual
fibre radius. This assumption is meaningful as long as  is sufficiently small and
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Fig. 1 Local cylinder around
.x0; y0/ with radius � where z0
is chosen as described by (4).
The fibre curves with
discretisation points in the
cylinder are indicated in red

the fibre radius is much smaller than the fibre length. Then we define

z0 D ˇ
4=3�r3K

��2
D ˇ

4r3K

3�2
; (4)

where we scale by the cross-section area of Z�.x0; y0/ and take the discretisation
step size  into account. This approximation describes the situation of compactly
distributed balls within Z�.x0; y0/ and close to the belt quite well. In general such
a compact distribution is not the case. Real materials can have a much more
complicated structure and can have a higher relative volume. This fact is considered
by the parameter ˇ in (4), which varies for different materials.

4 Contact Point Identification

Identifying material properties from the simulations described in the previous
sections plays an important role in real-life applications. So far we have considered
the material as a number of individual fibres rather than a connected fibre net. The
idea is to identify the contact points of the fibres and to generate a graph, where the
contact points are interpreted as nodes. This graph, corresponding to the virtual non-
woven simulated, will then form the basis for virtual material tests, see [6] and [7].

Assuming a constant discretisation step size  and M discretisation points for
each individual fibre, with a total of N fibres, comparing all data points with
another has the complexity O..N � M/2/. As we consider in general a large number
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of fibres and a small step size, a direct point wise comparison would be by far
computationally too expensive. Therefore one should consider the simulation data
for one fibre as one object and take advantage of this consideration.

For our purposes the so called bounding box method is very promising. It is
well-known in computer graphics and has multiple applications, for instance in
ray-tracing. For more sophisticated methods and an overview on this topic, we refer
to [8] and references therein.

The basic idea of the bounding box method is to use a simple geometry which
contains the object of interest. In our case this is just a box aligned to the coordinate
axes for each single fibre. Then we check pairwise if those N boxes intersect or
not. If the box-intersection is empty, then we know also that the fibres contained
in the boxes must be disjoint and so there are no contact points. However, if the
intersection of the boxes is not empty this does not mean that the fibres do intersect.
Then we have to consider the parts of the fibres within the intersection box and
iterate.

We illustrate our approach by a simple two dimensional example in Fig. 2. In
the first step (on the left hand side) we see that the bounding boxes for the red
and blue curves intersect, resulting in the black intersection box. In the second step
(on the right hand side) the fibre data we need to consider is reduced to the black
dashed box. As soon as the fibre data is reduced enough, one can perform a point
wise comparison, which is relatively cheap in computational costs, and identify the
contact points.

An example of contact point identification considering simulated fibre data is
illustrated in Fig. 3. The image shows the situation within a reference volume:
only the fibre parts lying in the reference volume are considered. Then the contact
point identification with bounding boxes is performed. Red circles indicate both the
contact points and intersections with the edges of the reference volume.
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Fig. 2 A simple example for iterated bounding boxes. Note the change in the domain from the left
to the right image
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Fig. 3 Fibres, shown as blue lines, and their contact points, indicated as red circles, within a
reference volume

5 Conclusion

We introduced a computational method for the simulation of virtual non-woven
materials. This can incorporate the information from turbulent air stream simu-
lations into the fibre web generation. Furthermore, we described a technique for
contact point identification based on a bounding box approach. These ideas build
the basis for the simulation of a production process of non-woven materials that
aims for the optimisation of material properties with respect to process parameters.

Acknowledgements We thank all our partners in the project OPAL. This work has been supported
by the German BMBF, Project OPAL 05M2013.

References

1. Klar, A., Marheineke, N., Wegener, R.: Hierarchy of mathematical models for production
processes of technical textiles. Z. Angew. Math. Mech. 89(12), 941–961 (2009)

2. Klar, A., Maringer, J., Wegener, R.: A 3D model for fiber lay-down in nonwoven production
processes. Math. Models Methods Appl. Sci. 22, 9 (2012)

3. Klar, A., Maringer, J., Wegener, R.: A smooth 3D model for fiber lay-down in nonwoven
production processes. Kinet. Relat. Models 5 1, 97–112 (2012)

4. Marheineke, N., Wegener, R.: Modeling and application of a stochastic drag for fiber dynamics
in turbulent flows. Int. J. Multiphase Flow 37, 136–148 (2011)

5. Marheineke, N., Wegener, R.: Fiber dynamics in turbulent flows: general modeling framework.
SIAM J. Appl. Math. 66, 1703–1726 (2006)

6. Lebée, A., Sab, K.: Homogenization of a space frame as a thick plate: application of the
Bending-Gradient theory to a beam lattice. Comput. Struct. 127, 88–101 (2013)



Construction of Virtual Non-wovens 959

7. Langnese, J., Leugering, G., Schmidt, E.: Modeling, Analysis and Control of Dynamic Elastic
Multi-Link Structures. Springer Science + Business Media, LLC, New York (1994)

8. Chang, C., Gorissen, B., Melchior, S.: Fast oriented bounding box optimization on the rotation
group SO(3, R). ACM Trans. Graph. (TOG) 30(5), 122:1–6 (2011)



Effective Mechanical Properties of Nonwovens
Produced by Airlay Processes

Christoph Strohmeyer and Günter Leugering

Abstract The mechanical properties of nonwoven materials are investigated and
optimized. On the micro scale these fabrics are modeled as network of beams. Here
linear Timoshenko beams and geometrically exact beams are compared in simple
tension tests. Then a homogenization scheme is used to calculate effective material
tensors of Kirchhoff-Love plates, where periodically repeatable representative
volume elements containing fiber networks define the micro structure. Finally, these
effective properties are optimized by changing the shape of the underlying network.

Keywords Airlay process • Beam models • Cosserat rod model • Effective
mechanical properties • Fiber network • Nonwoven manufacturing

1 Introduction

In modern textile industry it is of great importance to fabricate custom-tailored prod-
ucts which have to meet specific standards and should fulfill special requirements
such as high toughness. The project OPAL (OPtimization of AirLay processes)
investigates the industrial process including the single fiber traveling in turbulent
air flow, laying down onto a ramp of loosely connected fibers and finally forming
networks being glued together by thermo bonding. The resulting inner structure
determines effective material properties of the nonwoven textile. This work is
concerned with the latter part of the process. On the micro scale stochastic fiber
networks have to be tackled, both from a modeling and a numerical point of view. As
first approaches direct (non-)linear simulation as well as energetic homogenization,
suggested by [8], are used to obtain information about the macroscopic behavior of
fiber networks. Subsequently the homogenization procedure and optimization are
combined, which is to be seen as a first step towards controlling industrial relevant
scenarios, the ultimate goal of the OPAL project.
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2 Networks of Beams

Beam models can be derived by inserting an ansatz on how beam-like objects
can deform into the 3D equations of continua and subsequently averaging these
equations over the cross section. This so-called constrained motion (describing the
displacement of a material point x of the beam), derived due to assumptions because
of their special geometric properties, has for Timoshenko-like beams in general the
form

ufull.x/ D u.x1/C �
�.x1/� I

�
xA:

Here the vector xA lies in the cross section of the beam, x1 parameterizes its
centerline and � 2 R3�3 characterizes the rotation of the cross section. Now there
are two extreme cases of beam models:

• The geometrically exact (GE) beam, obtained by taking � 2 SO.3/, e.g.
parameterized by its rotation vector � 2 R3 (see [6]), and nonlinear continuum
equations, see e.g. [9].

• The linear Timoshenko (TS) beam, obtained by linearizing �.�/ 2 SO.3/, so
that ufull.x/ D u.x1/C �.x1/ � xA, together with the linear continuum equations.

For initially straight beams of length L, oriented along the x1-axis, we obtain the
following similar looking but in terms of complexity very different systems of
differential equations, both holding for x1 2 .0;L/:

TS beam GE beam
N0 C NN D 0

M0 C E1 � N C NM D 0

.�N/0 C NN D 0

.�M/0 C .E1Cu0/ � .�N/C NM D 0

(1)

All quantities are given in the local basis of the beam fE1;E2;E3g, .�/0 denotes
differentiation w.r.t. x1 and � is the cross product. If the beams are linear elastic
and have a doubly symmetric cross section the constitutive law reads as:

TS beam GE beam material data

N D CN.u
0 C E1��/

M D CM�
0

N D CN�
T
�
u0 � .��I/E1

�

M D CM vec.�T�0/

CN D diag.EAc;GAs;GAs/

CM D diag.GIt;EI;EI/
(2)

The operator vec.�/ extracts the axial vector from a skew symmetric matrix and
diag.�/ indicates the diagonal elements of a square matrix. The material and
geometric properties of the beam are elastic and shear modulus E and G, area
of cross section Ac and corrected shear area As. Fibers considered in this paper
have circular cross sections, so that one has just one second moment of inertia
I D R

x22dxA D R
x23dxA and torsional constant It D 2I.
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With these equations at hand a network is built up: given a global basis
fe1; e2; e3g, vertices V WD fv1; : : : ; vng � R3and edges E WD fb1; : : : ; bmg; bi WD
.vi1 ; vi2 /; defining the graph G WD .V ;E /, the i-th beam connects vertices vi1 and
vi2 and has length Li D kvi2 �vi1k. It fulfills the differential systems (1) and (2) with
corresponding sets of unknowns .ui; �i/ (TS), .ui; �i/ (GE) and material matrices
CNi ;CMi . The local basis is given as:

E1i WD vi2 � vi1

Li
; Eji � E1i D 0; j D 2; 3 ^ Ti WD �

E1i;E2i;E3i

� 2 SO.3/: (3)

Using the transformation matrix Ti we can express local unknowns in the global
basis and formulate proper transmission conditions for junctions. Prior to this we
define Mk WD fi W vk 2 big the index set of beams connected to node vk and

xk
i WD

(
0; if i-th beam starts in node vk

Li; if i-th beam ends in node vk

nk
i WD

( �1; if xk
i D 0

1; if xk
i D Li

(4)

It is assumed that fibers are connected rigidly, since they have been connected by
thermo bonding during the industrial process, so that we have to ensure continuity
of displacement and rotation over joints:

TS: Tiui.x
k
i / D Tjuj.x

k
j / ^ Ti�i.x

k
i / D Tj�j.x

k
j /

GE: Tiui.x
k
i / D Tjuj.x

k
j / ^ Ti�i.x

k
i /T

T
i D Tj�j.x

k
j /T

T
j

)

8i; j 2 Mk (5)

as well as balance of forces and moments at nodes that are not fixed by Dirichlet
boundary conditions, see [7]:

X

i2Mk

nk
i TiNi.x

k
i / D nk ^

X

i2Mk

nk
i TiMi.x

k
i / D mk; (6)

with nk;mk being nodal loads at vk. Note that conditions (6) are the same for TS
and GE beams, just the respective constitutive law (2) has to be used. Furthermore
they contain Neumann boundary conditions as special case if only a single beam is
connected to node vk. Remaining nodes are of Dirichlet type:

TS: Tiui.x
k
i / D uDk ^ Ti�i.x

k
i / D �Dk

GE: Tiui.x
k
i / D uDk ^ Ti�i.x

k
i /T

T
i D �Dk

)

8i 2 Mk: (7)
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3 An Optimization Problem with Effective Material Data

In the following section an optimization problem, whose cost functional depends
on material data of homogenized linear beam networks, is introduced. First we
are going to describe the process of homogenization of x1=x2-periodic cells (rep-
resentative volume element, RVE) as Kirchhoff-Love plates. Subsequently a shape
optimization problem is proposed where the position of inner nodes of the RVE are
design dependent and therefore can be moved freely in space.

3.1 Energetic Homogenization

At this point we are following [8] to compute homogenized material tensors with
corresponding cell problems on the RVE, defined as˝" WD Œ0; "1��Œ0; "2��Œ�"3; "3�.
In this approach no strict homogenization in the sense of two-scale convergence,
see [1], is carried out, but the Hill-Mandel principle, where the equivalence of inner
energies of the micro (beams) and macro scale (plate) is required, see e.g. [5]. This
has the advantage that one can simply choose the model as which the fiber net is
going to be homogenized—in this case a Kirchhoff-Love (KL) plate. Starting point
is the constitutive law of the plate

NKL D A W e C B W �; MKL D BTW e C D W �;

that relates the stress resultants N 2 R2�2 (collecting normal and shear forces) and
M 2 R2�2 (collecting bending and torsional moments) to its strain and curvature,
e; � 2 R2�2. The fourth order tensors A;B;D 2 R2�2�2�2 are to be calculated
from the base cell containing a fiber net. To use the Hill-Mandel principle we have
to equate the energy density of the beams (inner energy of the fiber net in the RVE
averaged over its in-plane area A D "1"2) to the energy density of a KL-plate

1

A

mX

iD1

1

2

Z Li

0

NT
i

C�1Ni
Ni C MT

i
C�1Mi

Mi dsi D 1

2
.e WA We C 2e WB W�C � WD W�/ :

If the inner forces/moments of the network in the RVE can be constructed as

Ni.e; �/ D Ne
i

W e C N�
i

W �; Mi.e; �/ D Me
i

W e C M�
i

W �; (8)

with e and � (constant in ˝") applied as a special loading scenario to the network,
it’s obvious that the homogenized material data of the plate can be written as

1

A

mX

iD1

Z Li

0

.N!1
i
/T � C�1Ni

� N!2
i

C .M!1
i
/T � C�1Mi

� M!2
i

dsi; (9)
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where (9) yields tensor A for !1=2 D e, D for !1=2 D � and B for !1De; !2D�. In
[8] the cell problem is constructed by applying the constrained motion

uKL.x/ D Oex C x3 O�x � 1
2
.xT O�x/e3; �KL.x/ D 1

2
r � uKL.x/ D e3 � O�x

of a KL plate, which can be evaluated in particular at the center line of the i-th beam
Nxi.x1/ WD vi1 C x1E1i 2 ˝" (x3 D 0 being the neutral plane of the plate) and

Oe D
�

e 0
0 0

�

; O� D
�
� 0

0 0

�

2 R3�3;

in average to the RVE allowing for periodic deviations uper
i ; �

per
i :

CNi.u
0
i C E1i � �i/

0 D 0; ui.e; �/ D TT
i uKL.Nxi.x1//C uper

i

CMi�
00
i C E1i � CNi.u

0
i C E1i � �i/ D 0; �i.e; �/ D TT

i �
KL.Nxi.x1//C �

per
i

(10)

for x1 2 .0;Li/, together with continuity (5) of the periodic part uper
i ; �

per
i and

balance conditions (6). These conditions are enriched by enforcing continuity and
balance also for periodic sets of points (periodicity in x1- and x2-direction) lying on
faces of @˝". To be physically meaningful (i.e. fiber net is physically connected at
periodic points), all points belonging to the same periodic set have to fulfill:

9k1; k2 2 f�1; 0; 1g W vi D vj C �
k1"1; k2"2; 0

�T
: (11)

One node of the neutral plane has to be fixed in space via (7) to prevent rigid motions
of the beams. Now it is clear that the third order tensors Ne=�

i ;Me=�
i in (8) can be

constructed by solving (10) where only a single component of e or � is set to 1:

�
Ne=�

i

�

kˇ�
D .Ni/k.e; �/;

�
Me=�

i

�

kˇ�
D .Mi/k.e; �/; if .e=�/ˇ� D 1:

(12)

3.2 A Shape Optimization Problem

As indicated in the introductory part of this chapter the cost functional of the
optimization problem contains entries of the homogenized material tensors (9). Of
course there is also the possibility to penalize changes of shape or e.g. stress of the
network in the RVE, so that also the states and the design itself may be argument of
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the objective functional

J.A;B;D; u; �; ˛/
�
 A D A.u; �/  u D u.˛/

�
: (13)

As implied by (13), A;B and D depend on solutions of cell problems (10). These
solutions again depend on the design variables ˛ coming into the problem as
displacements of inner nodes vi, see e.g. [2], of the underlying graph in the RVE
[points belonging to periodic sets still need to fulfill (11)]:

vi.˛/ D v0i C ˛i  graph G .˛/ WD .V .˛/;E /: (14)

This way the topology of the network remains unchanged but its shape can change
completely. To avoid singularities and physically undesirable situations, constraints
on the length of all beams as well as box constraints to the design ˛ are imposed:

0 < Lj � Lj.˛/ � Lj;

0

@
0

0

�"3

1

A � v0i � ˛i � ˛i � ˛i �
0

@
"1
"2
"3

1

A � v0i : (15)

Additionally, resource constraints are introduced to the problem:

V �
mX

iD1
�iLi.˛/ � V; physical volume for �i D Aci : (16)

Finally, we state the shape optimization problem:

min
˛

j.˛/ WD J
�
A.˛/;B.˛/;D.˛/; u.˛/; �.˛/; ˛

�

s.t. A;B;D from (9) with (12) in which

.u; �/.e; �/ solves (10) on graph G .˛/ (14)

˛ satisfies (15), (16)

9
>>>>>>=

>>>>>>;

(17)

Gradient information is calculated via adjoint calculus, see e.g. [4].

4 Results

Numerical results are obtained by Finite Element discretization and snopt, an
optimization software for constrained problems, see [3]. Material data of the beams
is approximately taken from polyester micro fibers: E D 3:0 � 109 N/m2, Poisson’s
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Fig. 1 Numerical setup (left) and displacement-force-diagram (right). At the face with circle—
markers homogeneous and at plus—markers inhomogeneous Dirichlet conditions are applied and
reacting (normal) force is calculated (in the nonlinear case for every load increment)

ratio � D 0:45 and diameter D D 25 � 10�6 m. With these quantities all entries of
CN and CM , see (2), can be calculated.

4.1 Tension Tests with Stochastic Fiber Networks

Here a tension experiment is mimicked: On two opposing faces of the unit cell˝" D
Œ0; 0:5 mm�3 a constant Dirichlet displacement in normal direction is applied and the
reacting force in normal direction on one of these faces calculated. In Fig. 1 TS and
GE beam models are compared on a stochastic net with 251 nodes and 262 beams,
discretized by 1908 four-noded 3D-elements (34; 026DoFs). The asymptotic nature
for small strains is clearly evident, as well as the stiffer behavior of the GE model
due to the aligning of the fibers in pulling direction. The influence of crimping and
different densities of contact points is yet to be investigated.

4.2 Optimization

In Fig. 2 we see a RVE (˝" D Œ0; 1 mm�3) consisting of a cube connected to the
corners (initial configuration) and the optimized structure (maximal stiffness in x1-
direction). Figure 3 shows the result if a structure is optimized regarding transversal
contraction of the plate. For the results it was set V D Lj D 1, see (16), (15).
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Fig. 2 3D scenario—initial configuration (left) and optimized cell structure (right) for J D
�A1111: j.˛0/ D �13:01; j.˛opt/ D �5:88 � 103 D �4EAc � 103 (four fibers per RVE
aligned exactly in x1-direction). Different markers (square/diamond on top/bottom) indicate the
two different periodic sets. The minimal length constraint can be seen in the result

Fig. 3 Auxetic 2D structure—initial (dashed) and optimized (solid) RVE (left) and periodic layer
(right) for J D A1122

A1111
: j.˛0/ D 0:11; j.˛opt/ D �1:47

5 Conclusion

The tension tests show the robustness of the GE beam model even for very
unstructured and relatively large 3D networks. Since these situations can be handled
very well they are going to be used to identify relevant parameters of stochastic nets
which then are to be optimized including more aspects of the industrial process.

The presented optimization problem is a very good starting point for further
investigations since homogenization and optimization are combined, although it is
not exactly in focus of manufacturing nonwovens by airlay processes. The scenarios
are chosen such that there are somewhat expectable solutions which are indeed
found by the optimization, like the aligning of the fibers in the direction of maximal
stiffness and the well-known auxetic honeycomb structure.
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Homogenization Strategies for Fiber Curtains
and Bundles in Air Flows

Thomas M. Cibis, Christian Leithäuser, Nicole Marheineke,
and Raimund Wegener

Abstract In non-woven manufacturing thousands of slender fibers are swirled
by air flows before they lay down to form a web. The fiber-fluid interactions
have a crucial influence on the quality of the final product. For the purpose of
an efficient and fast computation of the multi-scale, two-way coupled interaction
problem, we investigate classical homogenization strategies and a new continuum
approach for very long fibers suspended in a fluid flow. We compare the results
with Direct Numerical Simulation (DNS) and Immersed Boundary Methods for
academic examples.

Keywords Fiber-fluid interaction • Fiber dynamics • Homogenization •
Immersed boundary method

1 Introduction

Fiber-fluid interactions play a crucial role in many applications, e.g. non-woven
manufacturing [14], fiber spinning [5], fiber suspension flows in paper making or
dry forming of pulp mats [3, 12, 24]. Their simulation based on the model of first
principles suffers from the computational complexity, hence appropriate surrogate
models are required. In this work we focus on the effect of a curtain or bundle of
long fibers on a surrounding flow field and investigate different homogenization
strategies. We present a continuum approach that is based on the description of
the fibers as special Cosserat rods and results from a homogenization on the fiber
length density. It is compared to classical approximations, such as Darcy’s Law and
Brinkman’s Law for porous media, as well as to numerical results from Immersed
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Boundary Methods and DNS in the academic example “forest of cylinders”. We
comment on the methods’ utility to coupled fiber-fluid simulations in industrial
problems.

2 Effect of a Fiber Curtain/Bundle on a Surrounding
Flow Field

For modeling the effect of an immersed fiber curtain or bundle on a flow field we
present different asymptotic and numerical strategies, proceeding from DNS for
the Navier-Stokes equations (NSE). For simplicity we restrict here to a stationary
incompressible flow with mass density �?, dynamic viscosity �?, velocity v?
and pressure p?. Appropriate boundary conditions need to be supplemented. A
generalization of the strategies to a dynamic set-up is possible.

DNS and Comparison Quantity (Curtain Force) F The model of first principles
is an interface problem in terms of NSE where the fibers are considered as extended
3D objects˝i with velocity vi, i D 1; 2; : : : in the domain˝? � R

3,

r � v? D 0; �? .v? � r/ v? D �rp? C �?v? in ˝ı? WD ˝?n
[
˝i

v? D vi at �i WD @˝i

Due to the actio-reactio principle the fibers’ impact on the flow equals the
aerodynamic force on the fibers f D R

S
�i
S? � n dA with outer normal n and

Newtonian stress tensor S? D �p? C �?.rv? C rv?T/. However, because of
the required very fine resolution, DNS is in general too memory-intensive and
time-consuming and thus limited to academic problems. In view of the desired
surrogate models, we hence introduce the force F on the fiber curtain ˝ � ˝?

with boundary � , i.e. domain containing all fibers ˝ � S
˝i, as quantity for

further observations. According to the Gaussian integral theorem we have F WDR
�
S? � n dA D R

˝ı

?\˝ r � S? dV � f :

Immersed Boundary Methods Immersed Boundary Methods [18, 21] provide a
simplification of the interface problem, but are still computationally demanding as
they also require a fine resolution of the flow. The slender fibers are represented as
1D objects (curves) riWIi � R ! R

3 with velocity vi, tangent �i and diameter
di, for example using the special Cosserat rod theory [4, 22]. Their impact on the
flow is modeled as an external source term in the momentum equation of the flow.
Proceeding from an aerodynamic drag model fiair for the force on a single fiber
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(cf. e.g. [8, 16]), the fiber’s force is given by a Dirac delta-shaped line source. The
force of the entire fiber curtain results then from the superposition of the individual
forces,

r � v? D 0; �? .v? � r/ v? D �rp? C �?v? C f jets; f jets D
X

i

fijet in ˝?

fijet .z/ D �
Z

Ii

fiair .�i.s/; v? � vi.s/; �?; �?; di.s// ı .z � ri.s// ds

In the following, we consider two approaches that differ in the choice of the
drag model fiair: in the Numerical Strategy (NUM) the model of [16] is evaluated
with flow velocities averaged over the numerical grid (see also [5]), in the Modified
Strategy (MOD) a more complex variant [8] is used that requires the solving of
integro-differential equations.

Homogenization Strategies Considering a fiber curtain or bundle ˝ as porous
medium suggests the use of classical homogenization strategies [13, 20]. In the
special case of the “forest of cylinders” [1, 2, 9], the Darcy, Darcy-like, Brinkman
and “Navier-Stokes” Laws presented in (a)–(d) are derived in a homogenization
procedure for an increasing number of fibers with decreasing diameter. The laws
differ in the relation of fiber diameter d and neighboring distance a between the
fibers. In general, the applicability range of the laws is characterized by the porosity
� or the solid fraction � D 1 � � of the medium. The core of the laws is the
permeability tensor K being a measure of the porousness, it is often modeled as a
function of porosity � and Reynolds number Re, see e.g. [10, 15, 23]. Offside of
the classical laws stands the new continuum approach that we discuss in (e). Note
that the quantities associated to the fiber curtain (fiber continuum) are indicated by
N� throughout this paper, e.g. fiber curtain’s velocity v and tangent �.

(a) Darcy’s Law (DL). The classical Darcy’s Law is probably the most well-
known homogenization law, it is particularly suitable for dense porous media
with � � 0:6 [20]. Here, NSE are solved outside the fiber curtain and the Darcy
equations with flow velocity w? and pressure q? in the curtain. At the curtain
surface � we apply the interface conditions of Beavers and Joseph [19], whose
main feature is a jump in the tangential velocity component. For the normal
component it holds v? � n D w? � n,

r � v? D 0; �? .v? � r/ v? D �rp? C �?v? in ˝?n˝
r � w? D 0; w? � v D ���1? Krq? in ˝

(b) Darcy-like Law (DlL). The Darcy-like Law has a similar structure to DL,
but differs in scaling and modeling of the permeability [1, 2]. The inverse of a
constant tensor M takes the place of K. Moreover, the flow velocity in the curtain
is scaled with ı2 where ı D ajlog.d=a/j1=2 depends on the ratio of fiber diameter
and neighboring distance. At the curtain surface � the transition conditions of
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Beavers and Joseph are used for the scaled velocity, such as v? � n D ı2w? � n,

r � v? D 0; �? .v? � r/ v? D �rp? C �?v? in ˝?n˝
r � w? D 0; w? � ı�2v D ���1? a2M�1rq? in ˝

(c) Brinkman’s Law (BL). In Brinkman’s Law, NSE are solved in the entire
domain for the flow field where the curtain’s impact is incorporated as an
additional force term. This force depends on the curtain’s permeability and is
linear in the relative velocity between flow and curtain. It exclusively acts in the
curtain area, using the characteristic function �˝ . Brinkman [6] showed that a
porosity � � 0:6 is necessary for the validity of his law. Later, the validity of
the law was proven for porous media with � � 0:95, see [11]. In non-woven
manufacturing particular attention is paid to BL since the arising fiber curtains
have a high porosity due to the fibers’ slenderness.

r � v? D 0; �? .v? � r/v? D �rp? C �?v? C fBL in ˝?

fBL D ��?K�1 .v? � v/ �˝
(d) “Navier-Stokes Law” (NSL)/One-way coupling. The solution of the
“undisturbed” NSE can also be seen as a homogenization law. This is particularly
appropriate for highly porous media, when the fibers’ effect on the flow is
negligible small. Thus, NSL corresponds to a one-way coupling [8].

r � v? D 0; �? .v? � r/ v? D �rp? C �?v? in ˝?

(e) Continuum approach (CA). The continuum approach [5] results from
a homogenization procedure with increasing number of fibers and an ever-
decreasing fiber length density. Similarly as in BL, the curtain’s impact on the
flow is incorporated as an force term in NSE for the flow field. In accordance to
the actio-reactio principle this force equals the product of the aerodynamic force
on the fiber continuum f air (force per fiber length) and the fiber length density
' (fiber length per volume). The underlying aerodynamic drag model originates
from [16] (cf. NUM).

r � v? D 0; �? .v? � r/ v? D �rp? C �?v? C fCA in ˝?

fCA.z/ D �'.z/ f air ��.z/; v?.z/ � v.z/; �?; �?; d.z/
�
�˝
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3 Comparison of Strategies in Scenario “Forest of Cylinders”

The “forest of cylinders” is a benchmark scenario [9]. Although it is obviously
academic, it gives insight in the applicability of the strategies to fiber curtains or
bundles arising in industrial problems. Consider MN infinitely long fixed cylinders
of diameter d that are arranged uniformly in a square array with M columns side
by side and N rows behind each other with neighboring distance 2a. For the
permeabilityK we use the formulas in [10, 23]; in these cases M D �diag.1; 1; 1=2/
holds [2, 9]. We investigate the acting force F in dependence on the Reynolds
number Re and the solid fraction �. DNS results are used as reference.

Infinitely Extended Fiber Curtain As first example we consider an infinitely
extended periodic curtain (M D 1, N D 10). Due to the high symmetry of the
set-up the homogenization approaches can even be solved analytically. We have
Re D d�?vin

? n=�? and � D �d2=
�
16a2

�
where vin

? n is the orthogonal (normal)
inflow velocity. Figure 1 shows the typical flow behavior. The inflow velocity is
slowed down by the curtain, the non-orthogonal velocity components vanish. The
pressure drops in the curtain continuously.

Comparing the different strategies, the orthogonal (normal) force component
onto the fiber curtain is visualized in dependence on Re and � in Fig. 2. In the
dimensionless consideration, the classical homogenization strategies reflect the
dependence on the solid fraction well, but their results turn out to be completely
independent of the Reynolds number. In the continuum approach, it is exactly the
opposite. One explanation might be that the flow can not duck the curtain and that
there remains a constant, not decelerated velocity due to the incompressibility in
the orthogonal (normal) direction. Concerning the immersed boundary methods
MOD gives satisfying results as long as � is not too large. NUM, in contrast, yields
the worst results. The study of the tangential directions is relatively unspectacular:
MOD and NUM yield very good agreements to DNS, BL and CA behave also well.

MxN-Fiber Bundle As second example we consider a bundle of 25 � 10 D 250

endless fibers. This bundle behaves qualitatively like a single thick fiber (rope) of
diameter d, see Fig. 3. The fluid flow avoids the bundle and circulates around it. As
expected, it is slowed down by the bundle. We use here the Reynolds number wrt.
to the bundle diameter Red D d�?vin

? n=�?.

Fig. 1 Flow behavior for an infinitely extended fiber curtain. Cross-sectional view on a curtain
column (N D 10 rows) being continued periodically up- and downwardly. Top: High velocity
magnitude in front of the curtain (red area), behind the curtain only the orthogonal component
remains (yellow area). Bottom: Continuous pressure decrease (from the higher red to the lower
blue level)
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Fig. 2 Comparison of the strategies for an infinitely extended fiber curtain (N D 10). Normal
force component onto the curtain surface, left: for varying � and fixed Re D 1, right: for varying
Re and fixed � D 0:001

Fig. 3 Flow behavior for an immersed fiber bundle (M D 4 columns, N D 3 rows). Cross-
sectional view: velocity (magnitude) is slowed down near the bundle

Apart from NSL, all strategies yield a relative deviation from the DNS reference
by less than 10% in all force components (see for example the component in
direction of the rows in Fig. 4). Obviously, the results of MOD agree best, followed
by BL. The reason for the strong deviation of NSL can be found in the fact that the
curtain’s impact on the flow is relevant and can definitely not be neglected.
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Fig. 4 Comparison of the strategies for a fiber bundle (M D 25, N D 10). Relative error of the
normal force component onto the curtain surface wrt. DNS results, left: for varying � and fixed
Re D 1, right: for varying Re and fixed � D 0:001

4 Discussion and Summary

Aiming the efficient simulation of curtains of long fibers in flow fields, we studied
different asymptotic and numerical surrogate models and strategies. The most
accurate results are obtained by an immersed boundary method. However, the
variant MOD requires the solution of integro-differential equations and is hence very
costly. The much cheaper strategy NUM in contrast suffers from the disadvantages
of the averaging over the grid cells. Its outcome is grid-dependent. Brinkman’s
Law and our continuum approach turn out to be satisfying compromises between
accuracy and effort. This is not surprising as the strategies are quite similar, dealing
with an additional force term in the flow’s momentum equation. The force fBL is
linear in the relative velocity, which is also true for fCA for small relative velocities.
In view of coupled dynamic fiber-fluid simulations the satisfaction of the actio-
reactio principle is important. CA fulfills this requirement due to the underlying
aerodynamic drag model. For its application to simulating a rotational spinning
process in glass wool production we refer to [17]; for further details see [7].
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Homotopy Method for Viscous Cosserat Rod
Model Describing Electrospinning

Walter Arne, Javier Rivero-Rodriguez, Miguel Pérez-Saborid,
Nicole Marheineke, and Raimund Wegener

Abstract The dynamics of viscous jets in electrospinning processes varies from
drop forming, whipping to coiling depending on the parameter regime. To investi-
gate the practically relevant whipping regime more closely we use an asymptotic
Cosserat rod model that is given by a stiff boundary value problem of ordinary
differential equations. For the efficient simulation of the six-parametric problem we
present a numerical approach that is based on a continuation-collocation method. On
top of an implicit Runge-Kutta discretization of fourth order, suitable initial guesses
and global convergence of the applied Newton method are achieved by a recursive
continuation strategy. The numerical results are very convincing, they show the jet
characteristics observed in the experiments.

Keywords Cosserat rod model • Electrospinning • Fiber spinning • Homotopy
method • Viscous jets • Whipping instability

1 Introduction

Electrospinning processes allow the production of very thin polymer fibers with
diameters ranging from less than 3 nm to over 1�m. By applying an electric charge,
a molten polymer extrudes from the spinneret and forms a slender jet due to the
high voltage between nozzle and collector, see Fig. 1. Depending on the parameter
regime, the observed jet behavior varies from drop forming, whipping instability
to coiling [6, 7]. The whipping is of practical interest and can be described by a
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Fig. 1 Sketch of
electrospinning set-up with
acting electric field E D Ea3

and gravity
g D �Aga3—consideration of
a time-dependent outer basis
fa1.t/; a2.t/; a3g that is
originated in the spinneret
(tip) and rotates wrt. the jet’s
whipping frequency ˝, i.e.
˝ D ˝a3, @tai D ˝ � ai

V

liquid jet

polymer solution
spinneret

collector

high voltage

a3

a1(t)
a2(t)

stationary viscous Cosserat rod model.1 In this paper we focus on the numerical
treatment of the six-parametric stiff boundary value problem (BVP) of ordinary
differential equations. We use a Lobatto IIIa formula (implicit Runge-Kutta scheme
of fourth order) for collocation. The resulting nonlinear system is solved with a
Newton method for which global convergence is achieved by a continuation strategy
(homotopy method). The initial guess is adapted from an idea of Ribe [4] for viscous
rope coiling onto a plane. We conclude with numerical results to a parameter study.

2 Electrospinning Model

In electrospinning a liquid jet leaves the spinneret and moves due to viscous friction,
surface tension, gravity and applied electric forces (Fig. 1). In the special Cosserat
theory it is described by a curve for the position and a director triad for the cross-
sectional orientation. In this work we consider a spun fiber jet of certain length L
with stress-free end. To study the whipping instability, we choose a time-dependent
outer basis fa1.t/; a2.t/; a3g rotating with the—a priori unknown—jet’s whipping
frequency˝ ,˝ D ˝a3 and introduce the respective spin to the directors, cf. [4, 5]
on viscous rope coiling. This makes a ‘lay-down’ position and the directors time-
independent, but introduces fictitious rotational forces and moments due to inertia.

Proceeding from the incompressible viscous Cosserat rod equations [2] derived
for rotational spinning, we incorporate electric and capillary force models [7]. The
resulting dimensionless BVP is formulated in the director basis fd1;d2;d3g for the

1For details on experiments, physical effects and modeling of the electrospinning process we refer
to the proceeding article Setup of viscous Cosserat rod model describing electrospinning by J.
Rivero-Rodriguez et al.
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jet curve r, rotational group R D .Rij/ D .di � aj/ 2 SO.3/, curvature �, velocity
u, forces n and moments m. The unknown jet length L and whipping frequency
˝ are expressed in the dimensionless numbers—length ratio ` between jet length
and tip–counterelectrode (spinneret–collector) distance and Rossby number Rb as
ratio between inertia and rotation—that are determined by two additionally imposed
geometric boundary conditions at the jet end. The model is given by

`�1R � @sMr D e3 `�1@sR D �» � R

`�1@s» D �1
3
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and geometric and kinematic boundary conditions at the nozzle s D 0 as well as
geometric and stress-free dynamic boundary conditions at s D 1

Mr.0/ D 0 R.0/ D P1 �.0/ D 0 u.0/ D 1

Mr1.1/ D 0 Mr3.1/ D 1 n.1/ D 0 m.1/ D 0;

Pk D diag.1; 1; k/, k 2 R and ei, i D 1; 2; 3 canonical basis vectors in R
3. Note that

Mr D .Mri/ represents the curve in the outer basis, i.e. r D R � Mr. For the parametrization
of the rotational group R we use unit quaternions [3].

The electrospinning model and hence the jet’s solution are characterized by six
dimensionless parameters .Re;Ca;Fr; �; �; �/ 2 R

6
0 with Reynolds number Re as

ratio between inertia and viscosity, Capillary number Ca as ratio between viscosity
and surface tension, Froude number Fr as ratio between inertia and gravity, � as
ratio between electric field and viscosity, � as ratio between Coulomb repulsion and
viscosity, and � as slenderness ratio between jet diameter and tip–counterelectrode
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distance. Note that � plays a special role in the equations since it has two meanings.
Whereas it represents the actual (physical) slenderness ratio in the electric fel and
capillary forces fca, it can be considered as a regularization parameter � D �? in
the momentum equation. Interpreting the rod as �-regularized string model in the
context of asymptotic analysis [2], we can thus modify the regularization parameter
�? to take a moderate value and stabilize the numerics (e.g. �? D 0:1).

3 Numerical Approach

The numerical challenge lies in solving the BVP for arbitrary parameter settings.
Following [1] we apply an implicit Runge-Kutta scheme (Lobatto IIa formula) of
fourth order as collocation method. The resulting non-linear system of equations is
solved using a Newton method. The core of the numerics is the applied continuation
procedure. As the convergence of the Newton method depends crucially on the
initial guess, we adapt the initial guess iteratively by solving a sequence of BVPs
with slightly changed parameters, improving so the computational performance
and globalizing the convergence. The typical questions in such a continuation
(homotopy) method deal with the continuation step size control, an appropriate
starting solution and the choice of a continuation path through the parameter space.
Thereby, the first one is obviously general and technical, whereas the last two are
model-dependent.

Continuation Step Size Control Given a starting solution to the parameter tuple
ps, we seek for a sequence of parameters ps D p0, p1; : : : ;pn D pd with the
desired parameter tuple pd such that the solution to the respective predecessor BVP
provides a good initial guess for the successor. The choice of the continuation path
decides about failure or success since there are not always existing solutions and
several meaningful ways. We use an adaptive step size control with the number
of Newton iterations as quality criterion for the chosen pi. An interim solution is
always computed twice by using one full step and two half steps. If the full step
requires more Newton iterations or 10% more collocation points than both half steps
together, the continuation step is reduced by a factor k1, otherwise it is increased by
k1 for the further computation. If the Newton method fails, the step size is reduced by
a factor k2 and the computation is repeated. As first step we try p1 D ps Ck.pd �ps/

with k D 10�2, moreover k1 D 1:5, k2 D 10.

Starting Solution The initialization is taken from [4], it is the analytical solution

Mr.s/ D .1 � cos.�s=2/; 0; sin.�s=2//; q.s/ D .cos.�s=4/; 0;� sin.�s=4/; 0/

� D .0; 1; 0/; u D 1; n D m D 0

with ` D �=2 and Rb�1 D 0 for a (non-coiling) jet having the form of
a quarter circle in the absence of inertia, surface tension and outer forces
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.Re;Ca�1;Fr�1; �; �/ D 0 and arbitrary � ¤ 0. Using continuation on the boundary
conditions we obtain a solution associated to viscous rope coiling with vanishing
linear and angular velocity at the jet end, i.e. continuation parameters ci are turned
from 0 to 1 in

�.0/� .1 � c1/e2 D 0

c2Mr1.1/� .1 � c2/Mr2.1/ D 0

.�1 � c3 C c3=Rb/R.1/ � .e3 � Mr.1//C u.1/e3 � .1 � c4/.e2 C e3/ D 0

.�1 � c5 C c5=Rb/.R.1/� P1/ � e3 C u.1/».1/C .1 � c6/.e1 � e2 C e3/ D 0

Continuation Path in Parameter Space In electrospinning the whipping is caused
by the applied electric forces according to observations. The following continuation
strategy turns out to be successful, as it regards the change of the whipping
frequency by taking into account the interplay of Re, � and � .

1. Proceed from the solution to viscous rope coiling for desired � and increase Re,
�, � up to moderate values [e.g. .Re; �; �/ D .1; 1; 2:3/].

2. Perform continuation on the boundary conditions to obtain a stress-free jet end,
i.e. parameter c is turned from 0 to 1 in n.1/ D .1 � c/ Qn and m.1/ D .1 � c/ Qm.

3. Change continuously to the desired characteristic parameters of the BVP, keep
thereby � and � in balance.

Note that the continuation method is robust in Ca, Fr, � as the respective solutions
only slightly change. The forthcoming numerical simulations are performed on a
Intel Xeon 2.67 GHz using MATLAB, in particular the routine bvp4c.m is used
for the collocation. In the algorithm the preparatory step to obtain the solution
associated with viscous rope coiling takes a CPU time of 156 s. Each step (including
rejection) requires about 3–5 s. This is a spectacularly good performance in view
of the fact that the path through the six-parameteric ci-space is by no means the
diagonal. The actual navigation in the space of the electrospinning parameters is
sensitive and takes in general several minutes. With a step size varying over several
orders of magnitude and only same hundred steps in total, it clearly stresses the
efficiency of the adaptive step size control.

4 Results and Discussion

The numerical results of the electrospinning model are very promising, they show
qualitatively the characteristic whipping behavior observed in the experiments [6].
The whipping radius increases for a stronger repulsion (larger �) or a smaller electric
field (smaller �), see jet dynamics in Fig. 2. Also the cross-sectional stretching
depends strongly on the electrostatic effects. The impact of gravity and surface
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Fig. 2 Jet curve in 3d with 2d projections side view and top view (from left to right) for
.Fr�1;Ca; �; �?/ D .0; 1; 8 � 10�3; 10�1/. Top: .Re; �/ D .0:17; 40/ and varying � (repulsion
� D 2 � 105; 3 � 105), bottom: .Re; �/D .0:25; 3 � 105/ and varying � (electric field � D 40; 60)

tension on the jet’s solution is comparatively small. To improve the quantitative
agreement with measurements, model extensions are in work.
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Setup of Viscous Cosserat Rod Model Describing
Electrospinning

Javier Rivero-Rodríguez, Walter Arne, Nicole Marheineke,
Raimund Wegener, and Miguel Pérez-Saborid

Abstract Electrospinning is commonly used to produce very fine polymeric fibers.
In this technique, a conducting liquid is pumped from an electrified needle into
a surrounding dielectric media and the meniscus formed exhibits a conical shape,
known as Taylor cone, due to the balance of electrical and surface tension forces.
If the needle electrical potential is sufficiently high, the very strong electric field
generated at the cone apex cannot be balanced by surface tension and a very thin
jet is issued which eventually develops lateral instabilities that are responsible of
additional stretching. In this work, we use a theoretical model that describes the
kinematic of the midline of the jet, its radius and convective velocity from an
Eulerian framework. Balances of mass, linear and angular momentum applied to
a slice of the jet, as well as viscous law for stretching, bending and torsion describe
the dynamics (nonlinear PDE in time and arclength of the midline). Capillary
and electric forces are included in the momentum balance. If periodic orbits are
explored, the time dependence of the PDE disappears when the motion is considered
with respect to a frame rotating with the jet. One obtains a boundary value problem
of ODEs with the frequency as a free parameter. This model is also suitable for
describing other kinds of instabilities, such as the axisymmetric one which takes
place in drop formation (dripping regime, electrospray).

Keywords Cosserat rod model • Electrospinning • Fiber spinning • Viscous
jets • Whipping instability
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1 Introduction

The interaction of an intense electrical field with the interface between a conducting
liquid and a dielectric medium has been known to exist since Gilbert [4] reported
in 1600 the formation of a conical meniscus when an electrified piece of ambar was
brought close enough to a water drop. The deformation of the interface is caused by
the force that the electric field exerts on the net surface charge induced by the field
itself. This phenomenon is at the base of modern devices for the production of micro
and nano-structures of interest in several technological fields. As schematized in
Fig. 1a, these devices consist essentially of a high-voltage power supply, a metallic
needle (spinneret) and a grounded collector (counterelectrode). The metallic needle
is connected to a syringe pump through which a conducting liquid can be fed at
a constant and controllable rate. When a high voltage (usually in the range of 1–
30 kV) is applied, the electric field induces an electric current in the liquid that
accumulates electric charge at the surface and causes an electric stress that elongates
the pendent drop at the needle’s exit in the direction of the field. It is observed that if
the field strength is below a certain threshold value the balance of electrostatic and
surface tension stresses gives rise to a motionless conical shape commonly known as
the Taylor cone [12]. However, above the threshold, the large electrostatic stresses
concentrated near the cone tip overcome the surface tension stresses and force the
ejection of an electrified liquid jet from the cone tip.

For certain values of the applied voltage and imposed liquid flow rate, the jet
emanating from the cone tip is stationary and breaks into spherical droplets at some
distance downstream due to axisymmetric Rayleigh-Plateau (varicose) instabilities

syringea b

Taylor cone

needle

liquid jet

high voltage
power supply

V

collector

polymer solution

+
+
+

+

+

+
+
+

Fig. 1 (a) Sketch of an electrospinning or electrospray device (taken from [7]). (b) Cone-jet mode
of an electrospray (taken from [8])
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corrected to account for the presence of surface charge. This so-called cone-jet mode
(see Fig. 1b) forms the basis of the electrospray technique [3] for generating small
monodisperse drops with great applications in fine coatings, synthesis of powders,
micro and nanocapsules, etc.

However, nonsymmetric perturbation modes can also grow due to the net charge
carried by the jet. Indeed, if a small portion of the charged jet moves slightly off
axis, the charge distributed along the rest of the jet will push that portion farther
away from the axis according to Earnshaw’s theorem, thus leading to a lateral
instability known as whipping or bending instability. If the growth rate associated to
this whipping instability is larger than that associated to varicose jet break-up—
as may happen, for example, for sufficiently high values of the applied voltage
or of the liquid viscosity—, the off-axis movement of the jet becomes the most
significant aspect of its evolution (see Fig. 2). The whipping mode manifests itself
in the form of chaotic, fast and violent slashes which give rise to very large tensile
stresses and to a dramatic jet thinning. This is of fundamental importance in the
process known as electrospinning [7, 9], where micro or nanofibers of a polymeric
fluid are produced by solidification of the jet issuing from the Taylor cone before
it breaks up into droplets. The evaporation of the solvent is greatly enhanced by a
reduction of the jet diameter that is typically several orders of magnitude, which
makes the electrospinning technique very competitive with other existing ones such
phase separation or self-assembly. It must be realized that the chaotic nature of the
whipping regime makes very difficult to unravel its detailed structure. However,
there are some circumstances which greatly enhance the parametric range for which

1 cm 2 cm

a b c

Fig. 2 Whipping instability (a) in an electrified jet of glycerine in a bath of hexane (courtesy of
Dr. A. Gomez-Marin). (b–c) Photograph illustrating the chaotic behavior of the whipping mode:
(b) capture time 1/250 s and (c) capture time 18 ns (taken from [7])
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a b 15μm

50
μm

0 s 0.149 s

0.336 s 0.641 s

Fig. 3 (a) Coiling of an electrified liquid jet (Courtesy of Dr. G. Riboux). (b) High speed
sequential images of nanocoiling process that yields a free-standing hollow cylinder (taken
from [6])

the bending stability leads to a stable helicoidal structure as, for example, when the
conducting liquid is surrounded by a dielectric bath [11] or by another coflowing
liquid [5].

Yet another mode of operation has been observed for the device sketched in
Fig. 1, the so-called coiling mode (see Fig. 3). This mode occurs when the ground
electrode is located sufficiently close to the needle’s exit so that the liquid jet
reaches the plate before being set into chaotic motion by the bending instability.
The situation is then the same as if a thin stream viscous fluid such as honey
is poured onto a surface from a certain height [10]. Rather than approaching the
surface vertically the jet builds on it a helical structure which resembles a pile of
coiled rope. The origin of liquid rope coiling is a buckling instability in which an
initially vertical fluid stream subject to an axial compressive stress becomes unstable
to deformation by bending. Sufficiently far from the counterelectrode, the electrified
jet has an helicoidal structure which, under some circumstances, strongly resembles
that of the whipping regime in the more stable cases referred to above [5, 11]. The
coiling mode has also been observed [6] when polymer nanofibers are electrospun
using a grounded pin collector, where the strongly focused electrical field at the
ground causes a stable jet which evaporates after exiting the spinneret and gives
rise to a dry fiber which impinges on the pin’s tip buckling and coiling as shown in
Fig. 3b.

As a first step towards the understanding of the physical processes involved in
electrospinning, we deal with the modeling and simulation of the whipping regime
of an electrified liquid jet. We are particularly interested in the influence of viscosity,
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surface tension, gravity, imposed electric field and self-repulsion of the induced
charges on the jet dynamics. In the framework of viscous Cosserat rods, we set-
up an one-dimensional model that allows for the description of the whipping as
stationary process in a rotating frame.

2 Viscous Cosserat Rod for Electrospinning

A jet is a slender long body whose dynamics can be reduced to an one-dimensional
description by averaging the underlying balance laws over its cross-sections. In
the special Cosserat rod theory there are two constitutive elements: a curve r W
Q ! E

3 specifying the jet position (e.g. midline) and an orthonormal director
triad fd1;d2;d3g W Q ! E

3 characterizing the orientation of the cross-sections in
the three-dimensional Euclidian space E

3, see Fig. 4a. In Q D f.s; t/ 2 .RC0 /2g,
t denotes the time and s the arc-length parameter imposing here an Eulerian
description. In the following we proceed from the incompressible viscous Cosserat
rod model of [1, 2] that was derived for fiber jets in rotational spinning processes on
the basis of the work [10] on viscous rope coiling. It allows for stretching, bending
and torsion. The incorporated electric and capillary forces are modeled according
to [13].

The rod system consists of four kinematic and three dynamic equations, i.e.
balance laws for mass (cross-section A), linear and angular momentum,

@sr D d3; @sdi D � � di; @tr D v � ud3; @tdi D .! � u�/ � di

@tA C @s.uA/ D 0; �@t.Av/C �@s.uAv/ D @sn C fgr C fca C fel

�@t.J �!/C �@s.uJ �!/ D @sm C d3 � n

supplemented with geometric model, viscous material laws and external forces

J D JP2; J D �

4
a4; A D �a2; n � d3 D 3�A@su; m D 3�JP2=3 � @t�

fgr D �Ag; fca D ��@s.ad3/; fel D 2�a	

�

E � a	

2"per
log

�
H

a

�

� � d3

�

r

d2 d1

s

m(s)

m(s + ds)

f  ext

mext

rÄ(s)
rA(s)u (s)

n (s)

n (s + ds)
.w (s) rÄ(s + ds) . w (s + ds)

rA(s + ds)u (s + ds)
d3

a b

Fig. 4 (a) Sketch of jet with midline r and triad di. (b) Balance of linear and angular momentum
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and Pk D d1 ˝ d1 C d2 ˝ d2 C k d3 ˝ d3, k 2 R. The convective speed u can
be viewed as one of the Lagrange multipliers to the constraint @sr D d3 for the
jet tangent (i.e. generalized Kirchhoff constraint with stretching, no shear and arc-
length parametrization). The further kinematic equations relate the jet’s midline
and triad to the curvature �, the linear v and angular ! velocities. The geometric
model for the angular momentum line density with moment of inertia J preserves
the jet’s incompressibility. The mass density � is considered to be constant and
the cross-section circular-shaped of radius a. The tangential contact force n � d3

and the couple m are specified by a linear material law in the strain rate variables
with dynamic viscosity �, whereas the normal force components are the other
Lagrange multipliers to the constraint. The external forces are due to gravity g,
surface tension � and the electric field E. The self-repulsion of the induced charges
are modeled in terms of the surface charge density 	 , the permittivity "p and the
tip–counterelectrode distance H by help of a local interaction approximation [13].
It is assumed that 	 is purely convected with the fluid, i.e. I D 2�a	u holds for the
electric current.

In the electrospinning process, we have a fixed predominant direction a3 D
d3.0; t/ (jet tangent at the spinneret s D 0) due to the acting electric field
E D Ea3 and gravity g D ga3 (Fig. 1a). To investigate the whipping behavior
in a stationary manner, we consider a spun jet of certain – a priori unknown –
length L with stress-free end. Furthermore, we introduce a time-dependent outer
basis fa1.t/; a2.t/; a3g, @tai D ˝ � ai rotating with the jet’s – a priori unknown –
whipping frequency ˝ , ˝ D ˝a3 and a modified director triad with an additional
spin @tds

i D .! � u� C ˝ds
3/ � ds

i , i D 1; 2; 3 [10]. A suitable representation
in these bases yields a stationary set-up, but introduces fictitious body forces and
couples, such as Coriolis, centrifugal and spin-associated ones, due to inertia in
the model equations. The director and outer bases are related by the tensor-valued
rotation R, i.e. R D ai ˝ ds

i . For any quantity we use the following coordinate
terminology: y D P3

iD1 yids
i D P3

iD1 Myiai 2 E
3 with y D .y1; y2; y3/ 2 R

3 and
My D .My1; My2; My3/ 2 R

3 where y D R � My and R D .Rij/ D .ds
i � aj/ 2 SO.3/.

Remark 2.1 The periodic rotation of the system around the symmetry axis given
by a3 allows alternatively also the following elegant approach to obtain stationarity.
We can express any scalar y and vector-valued y variables as y.s; t/ D y.s; 0/ and
y.s; t/ D M.t/ �yı.s/, where M represents the rotation tensor with respect to the jet’s
whipping frequency, M.t/ D cos.˝t/P0.0; 0/ C sin.˝t/a3 � P0.0; 0/ C a3 ˝ a3.
Hence, we get @ty D 0 and @ty.s; 0/ D ˝a3 � yı.s/ and, in particular, vı � uıdı3 D
˝a3 � rı and !ı � uı�ı D ˝.a3 � dı3/ for the linear and angular velocities. In this
consideration the relevant two frames are the director triad dıi .s/ and the reference
triad at the nozzle dıi .0/ with dı3.0/ D a3.

In the stationary set-up the mass flux becomes constant, i.e. Au D const.
Moreover, the linear and angular velocities can be expressed in terms of the other
variables. Incorporating the viscous material laws leads to a boundary value problem
of ordinary differential equations for jet curve, triad (rotational group), curvature,
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convective speed, contact forces and couples (analogously to the derivation in [2]).
To the geometric and kinematic boundary conditions at the nozzle s D 0 and stress-
free conditions at the end, we impose two additional geometric conditions on the
curve end point (height and phase) to determine the free unknown parameters of
jet length L and whipping frequency ˝ in the problem. In the director basis the
dimensionless model equations are then given by

`�1R � @sMr D e3; `�1@sR D �� � R

`�1@s� D �1
3
�n3 C 4

3
uP3=2 � m C 1

Rb

1

u
� � e3; `�1@su D 1

3
un3

`�1@sn D �� � n C Re u

�

� � e3 C 1

3
n3e3

�

C 2Re

Rb
.R � e3/ � e3

C Re

Rb2
1

u
R � �e3 � .e3 � Mr/� � Re

Fr2
1

u
R � e3 � fca � fel

`�1@sm D �� � m C 4

�2
n � e3 C Re

3

�

uP3 � m � 1

4
n3P2 � �

�

� Re

4Rb

1

u
P2 �

�
1

3
R � e3n3 � 1

3
e3n3 C

�

� � 1

Rb

1

u
e3

�

� R � e3
�

� Re

4

�
1

u2
P2 � .u� � 1

Rb
e3 C 1

Rb
R � e3/

�

�
�

u� � 1

Rb
e3 C 1

Rb
R � e3

�

with capillary and electric forces

fca D 1

�Ca

1p
u

�

2� � e3 � 1

3
n3e3

�

; fel D 4�

�

1

u
R � e3 � �

1

u2
log

�
2

�

p
u

�

� � e3

and boundary conditions

Mr.0/ D 0; R.0/ D P1; �.0/ D 0; u.0/ D 1

Mr1.1/ D 0; Mr3.1/ D 1; n.1/ D 0; m.1/ D 0

with Pk D diag.1; 1; k/, k 2 R and canonical basis ei 2 R
3. The system is

made dimensionless using the three problem-relevant lengths (jet length L, tip–
counterelectrode distance H, nozzle diameter D) and the jet velocity at the nozzle
U. The reference values are Ns D L, Nr D H, N� D 1=H, Nu D U, Nn D ��UD2=.4H/
and Nm D ��UD4=.16H2/. Apart from the length ratio ` D L=H and the Rossby
number Rb D U=.˝H/ that are induced by the free unknown parameters, the
electrospinning model1 is characterized by six dimensionless numbers: Reynolds

1The numerical treatment of the problem is discussed in the proceeding article Homotopy method
for viscous Cosserat rod model describing electrospinning by Arne et al., the simulations show the
experimentally observed whipping behavior.
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number Re, Froude number Fr, Capillary number Ca, ratio between electric field
and viscosity �, ratio between Coulomb repulsion and viscosity � and slenderness
ratio �, i.e.

Re D �UH

�
; Fr D Up

gH
; Ca D �U

�
; � D IEH

��DU2
; � D I2H

�2"p�D2U3
; � D D

H
:
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Simulation of Fiber Dynamics and Fiber-Wall
Contacts for Airlay Processes

Simone Gramsch, Andre Schmeißer, and Raimund Wegener

Abstract In an airlay process thousands of fibers are distributed by a turbulent air
stream to produce a nonwoven. We present models and numerical strategies in order
to simulate the dynamics of the fibers until they are laid down to a conveyor belt. In
particular, we focus on the effect of the turbulent air flow onto the fibers and their
contact with walls. The simulation results of the laydown can be used further, e.g.,
as input for fiber laydown models in nonwoven production processes.

Keywords Airlay process • Fiber dynamics • Fiber-wall contact • Nonwoven
manufacturing • Turbulent airflow

1 Introduction

Nonwoven fabrics are defined as sheet or web structures bonded together by entan-
gling fibers or filaments mechanically, thermally, or chemically. The emphasis is on
the prefix ‘non’. Nonwovens are not woven. There are three main nonwoven manu-
facturing processes: dry-lay processes, wet-lay processes, and extrusion processes.

Independent of the nonwoven manufacturing process there are usually two major
challenges engineers deal with in textile industry. On the one hand, the nonwoven’s
market demands lower and lower prices for the end products, hence the production
processes must be as economical as possible. On the other hand, the demand for
better quality increases due to the fact that nonwovens make more an entrance
in consumer goods. Both goals are inconsistent with one another. Simulating
nonwoven production processes is a mathematical key technology that enables
engineers to optimize the processes with respect to economics as well as quality.
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2 Airlay Processes

An airlay process is a typical example of a dry-lay process. First, the raw material
is opened by a carding roller system. The carding system consists of a main rotating
card cylinder and several smaller disentangling roller cards (see Fig. 1). Typically,
the raw material are natural fibers, but also man-made fibers can be processed.
In contrast to extrusion processes an airlay process works with short- or long-
staple fibers to form the web. After their disentangling the fibers are transported
in an air flow. The fibers leave the rotating card cylinder due to centrifugal forces.
Then air and fibers move towards a conveyor belt that is continuously sliding into
machine direction (abbreviated in the following with MD). The conveyor belt is
under suction such that the fibers lay down on it and the deposited material is
condensed. An additional web forming roll is placed near to the deposition zone in
order to condense the laid down material further. More details about airlay processes
and the next steps in the process chain like bonding or finishing can be found in [1].

Fig. 1 Principle design of an airlay production process
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3 Model for Fiber Dynamics

The basis for the modeling of the fiber dynamics is the Cosserat-Rod theory. A
good overview about Cosserat-Rods can be found in [2]. The basic idea of fiber
models is to describe a fiber as a curve with oriented cross-sections. By averaging
over the cross-sectional area we obtain one-dimensional balance laws of linear and
angular momentum. We close the system of equations by modeling the angular
momentum dependent of the angular velocity and specifying the material laws. A
detailed description of the fiber models is derived in [5]. We focus in the following
on a model for elastic, inextensible fibers.

Let r W .sa; sb/ � R
C
0 ! R

3 and T W .sa; sb/ � R
C
0 ! R

3 be the center-line and
the tangential contact force of the fiber. With s 2 .sa; sb/ we denote a material point
of the fiber. Then the fiber dynamics equation reads for a time t > 0 as

.�A/@ttr D @s .T@sr � @s..EI/@ssr//C fext;

k@srk D 1:
(1)

The line density and the bending stiffness of the fiber are denoted by .�A/.s/ and
.EI/.s/, respectively. In more detail we have density �, Young’s modulus E, cross-
section area A, and moment of inertia I with I D A2=.4�/ for a circular cross-
section.

A crucial point in the fiber dynamics equation is the modeling of the external
forces fext.r; @sr; @tr; s; t/. For an airlay process the dominating external force is the
air drag, hence we have to deal with the effect of aerodynamics in more detail. The
air drag model for fibers is based on the construction principle of an infinite cylinder
that is circulated by a flow. The air drag coefficients are derived by considering the
relative velocity of fiber and flow as well as the angle of attack. For more details we
refer the reader to [9]. In general, the air flow in an airlay process is turbulent.
Hence, we model the aerodynamic force on the fiber as a stochastic drag force
that summarizes these turbulent effects as described in [9]. In [4] a new approach
to reconstruct the turbulent velocity fluctuations on basis of turbulence models is
developed that will be included in our simulation framework in the near future.

The fiber-wall contact is modeled by an anholonomic constraint that is based on
a signed distance function H 2 C 2 representing the machinery parts. In case of a
contact between a fiber point and a part of the machinery we extend the dynamics
equations by the constraint H D 0 and an additional force �rH=krHk normal
to the geometry. Here, �.s; t/ acts as a Lagrangian multiplier with respect to the
constraint, i.e., in a formal notation

.�A/@ttr D : : :C �
rH

krHk ; .� D 0 ^ H > 0/ _ .� > 0 ^ H D 0/: (2)
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In practice, we implemented a predictor-corrector scheme to detect and handle the
contacts according to this model. Finally, the fiber dynamics models have to be
completed by appropriate boundary and initial conditions.

4 Numerical Strategies and Implementation

Simulations of nonwoven production processes at industrial scale require stable
numerics and a highly efficient implementation. First, the fiber model (1) has
prototypically been implemented and tested in MATLAB. In the early stage of the
software development we designed the numerical algorithms with high performance
by applying the following strategy.

Equation (1) is formulated as a system of differential equations of order 1
for the state variables curve r, velocity v, and tangential contact force T. The
semidiscretization with respect to s 2 .sa; sb/ is based on a finite volume scheme,
i.e., we introduce ri and vi as mean values in cells with center si D .i � 1/ s,
i D 1; : : : ;N. Using a staggered grid with contact forces TiC1=2 at the cell edges
leads to

@tri D vi; .�A/@tvi D rhsiC1=2 � rhsi�1=2 C fext; k@srki�1=2 D 1

rhsiC1=2 D TiC1=2.@sr/iC1=2 � .@s..EI/@ssr//iC1=2; i D 2; : : : ;N � 2:

Here, .@sr/iC1=2 and .@s..EI/@ssr//iC1=2 are approximated by first order finite
differences. Additionally, the boundary conditions have to be specified (see [5] for
more details). In summary, we gain a DAE-system that is solved by an implicit
Euler method. The resulting non-linear system of equations is solved with a Newton
method considering the Jacobian analytically and using an Armijo rule for the
relaxation control. This strategy is highly efficient, one minor flaw is the treatment
of fiber-wall contacts. Due to strong variations of Newton iterations occurring at
time steps with contacts adaptive time step strategies do not show any advantages
with respect to quality and costs. In practice, geometries in CFD simulations are
described as triangular meshes. Particular attention should therefore be paid on the
generation of the smooth distance function H 2 C 2 introduced in (2). Our approach
uses a linear combination of the triangle plane distance functions. They are weighted
by radial Gaussian kernels normalized to give a partition of unity. A new smoothing
approach based on convolutions is currently being developed (see [3]).

To achieve maximal performance the numerical algorithms are implemented in
the C++ simulation tool FIDYST (Fiber Dynamics Simulation Tool) using the Qt
framework and OpenGL. The underlying CFD data must be imported in a standard
data format called EnSight Gold Case that is also used for further post-processing.
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5 Simulation Results

For the first time, we present fiber simulation results of the airlay process K12 from
the company Autefa Solutions. Autefa Solutions specified the process parameters
of a reference scenario. The simulation of the air flow was performed by the
commercial flow solver FLUENT. Then a mixture of fibers was simulated. The
mixture consists of 30 % bicomponent fibers (core PES, surface PET) and 70 %
solid fibers (PES). Table 1 summarizes the different material properties.

The simulation of the fibers included overall 1000 fibers. The initial conditions
were identical for all fibers. The starting point of the fibers leaving the rotating card
cylinder was fixed. The initial velocity was assumed to be equal to the effective
velocity of the rotating card cylinder. The belt is non-moving and treated in the
CFD simulation as a porous medium. The total simulation time was 0.1 s. Figure 2
shows the simulation results at certain timesteps.

In the following we focus on the laydown of the fibers on the belt, since the
quality of the web is one of the optimization goals. Figure 3 shows the laydown
distribution of the fibers on the conveyor belt. 287 bicomponent and 559 solid fibers
have reached the belt after a total simulation time of 0.1 s. The remaining fibers are
still moving in the air due to turbulence effects.

Bearing in mind that all fibers have the same initial conditions (besides the
variations in density) it is impressive to see their spatial distribution on the non-
moving belt due to turbulent air effects. For real industrial applications the spatial
distributions must be superposed in both directions: machine direction (MD) and
cross machine direction (CD). Hereby, we use stochastic models that mimic the
characteristic laydown properties of the fibers (see [5–7]). In order to apply such
models for an industrial scale the number N of stochastic fibers that fall during
the time t in a rectangular section of width w on the moving belt must be adjusted
to the real machine throughput. With given total mass rate Pm of the industrial
production process regarding a total working width W we obtain

N D Pm
.�A/l

� w

W
�t:

Table 1 Material properties
of fibers for the reference
scenario

Material property Bicomponent fiber Solid fiber

Line density 4.4 e-07 kg/m 6.7 e-07 kg/m

Density 1325 kg/m3 1380 kg/m3

Length 60 mm 60 mm

Elasticity modulus 3 kN/mm2 3 kN/mm2
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Fig. 2 Simulation results of 1000 fibers in the airlay process K12 at certain timesteps (constant
time step t = 1e-5 s). A cut through the air flow, the geometry of the web forming roll, the baffle
pipe, and the rotating card cylinder is displayed. The fibers collide with the baffle pipe and move
towards the belt

Hereby, .�A/ denotes the line density and l the fiber length. Now, we can use the
fiber distributions displayed in Fig. 3 as starting point for the surrogate stochastic
models and the optimization of the nonwoven quality.
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Fig. 3 Fiber laydown distributions. The normalized histogram (top) is obtained by summarizing
the fiber mass (bottom) in cross machine direction and fitted by a normal distribution (dashed line)
and a Gaussian kernel density estimation (continuous line)

6 Conclusion

We have presented a summary of a fiber dynamics model that is appropriate to
simulate an airlay process. We have sketched the numerical algorithm that is used to
solve the dynamic equations for elastic, inextensible fibers. They form the basis
of the software tool FIDYST (Fiber Dynamics Simulation Tool) that is capable
of simulating nonwoven production processes at industrial scale. Furthermore,
simulations of fiber dynamics in an airlay process have successfully been performed
for the first time. A short discussion of the laydown results shows how mathematical
techniques can be used in order to optimize the product quality.

Obviously, the fibers on the belt have a big influence on the air flow since they
block the suction through the belt. Hence, studying the build up of the nonwoven
on the conveyor belt is the next step for a deeper understanding of the airlay
process. Additionally, analyzing the effect of the fibers on the air is a challenging
issue. First ideas to consider the back-coupling of fibers to air are derived in
[8] and will be developed further. We also expect that including the turbulence
reconstruction model will significantly improve the validity of simulations for
nonwoven production processes.
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Short Description

In the drug development arena, the rapid accumulation of new quantitative method-
ologies and tools pushed the emergence of systemic and mechanistic studies of
pharmacology that drive the drug R&D. Particularly, tools based on modeling and
simulation (M&S) gained a large popularity in the milieu considering the increasing
number of success stories involving M&S. The efficient use of these tools heavily
relies on advanced mathematical methodologies and their appropriateness to the
problem at hand. This minisymposium will exemplify this field with mathematical
applications to concrete pharmaceutical problems.



A Probabilistic Strategy for Group-Based Dose
Adaptation

Guillaume Bonnefois, Olivier Barrière, Jun Li, and Fahima Nekka

Abstract Individualized dose adaptation usually requires Therapeutic Drug Mon-
itoring (TDM) based on patient blood samplings. However this invasive approach,
generally accompanied with discomfort and cost, is not always justified since it
may occur that the resulting dose adaptation does not significantly differ in a
population whose individuals share similar characteristics. Inspired by the principle
of maximum likelihood, we propose a probabilistic approach, based on population-
pharmacokinetic modeling and simulation, to evaluate the therapeutic performance
of a dosing regimen in terms of dose and time. Two types of therapeutic indicators,
time-based and concentration-based, are suggested to assess quantitatively different
drug regimens with the aim to identify the optimal one. For the population
under investigation, our results identified a stable and robust optimal regimen and
determined critical times including toxicity. Moreover, for a same therapeutic target,
our approach enables to identify more than one corresponding regimen, giving thus
a great flexibility in clinical practice.

Keywords Population-pharmacokinetic modeling • Probabilistic approach •
Therapeutic drug monitoring
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1 A Probabilistic Strategy to Assist Dose Adaptation

Dose adaptation enables to tailor a patient’s specific dose and time schedule in
order to maximise efficacy while minimising toxicity [1]. It aims to target the
best therapeutic outcomes for an individual or a specific population and is applied
for a variety of drugs, especially those exhibiting narrow therapeutic windows
such as immunosuppressants and anticancer drugs [2]. The Population Pharma-
cokinetics (Pop-PK) approach, taking into account the inter and intra individual
variability, has been adopted to model relationships between dose, concentration,
and effect/toxicity [4].

Several approaches have been used for dose adaptation using linear relationship
principles, nomograms, and individual PK Bayesian estimation methodologies [2].
These methods, either being deterministic, overlooking thus the individual particu-
larity, or involving an invasive blood sampling, motivate the search of alternative
methods, with the objective to determine a uniform dosing regimen for a sub-
population, for example, a group of individuals that share similar characteristics.
Working in this direction, we here develop a Pop-PK model-based computational
strategy for the selection of the optimal drug regimen accounting for dose as well as
administration time schedule.

The current work provides a solution for dose adaptation from a probabilistic
point of view, which, for reasons of limitations in blood sampling, can be of
particular relevance for sensitive populations such as pediatrics and geriatrics.

1.1 Regimen Performance

Our computational strategy aims to determine the best drug regimen that gives rise
to a therapeutic target based on a proposed quantitative performance. Within the
framework of Pop-PK modeling, the performance can be defined as:

Performance.Regimen;Pop-PK model/

ˇ
ˇ
ˇ
ˇ
Drug Pop-PK model

1.2 Regimen Design

A dosing regimen will be defined on a daily basis with the following notations:

Regimen D .D;�/, where
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D D .D1;D2;D3; � � � ;Dk/

� D .
1; 
2; 
3; � � � ; 
k/; 
1 < 
2 < � � � < 
k

Each pair (Di; 
i), i D 1; � � � ; k, represents a dose and its corresponding dosing time.
Thus, the total daily dose (TDD) is:

TDD D
kX

iD1
Di:

When performing a regimen selection, all possible dose regimens will be evaluated
and compared.

1.3 Criteria for Screening Dosing Regimens at Steady-State

In order to evaluate the dosing regimens, we refer to the Therapeutic Window (TW)
of a drug for which PK and effects are linked. TW is defined by a minimum effective
concentration (TWmin) and a minimum toxic concentration (TWmax).

The performance of the PK profile of a particular dosing regimen will be
evaluated in terms of TW. For this, we define four therapeutic indicators (TI) for
the selection of the best drug regimen. Two types of TI are proposed as follows.

1.3.1 Time-Based Therapeutic Indicators

One time-based TI is defined as the daily time spent by a steady-state PK profile
within the TW. This is named the effective time TIeff of a PK profile and given by:

TIEff D Lengthft W TWmin � C.t/ � TWmaxg D
Z

1 day

�TW.C.t//dt

where �TW.C.t// D 1 if the value of C.t/ is within TW, and �TW.C.t// D 0

otherwise.
Another time-based TI refers to the toxicity of the PK profile and is defined as

the daily time where the concentrations are beyond TWmax. This is named the toxic
time TItox of a PK profile and given by:

TITox D Lengthft W C.t/ > TWmaxg D
Z

1 day

�
ŒTWmax ;C1/.C.t//dt

where�
ŒTWmax ;C1/.C.t// D 1 if the value of C.t/ is beyond TWmax, and 0 otherwise.
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Fig. 1 PK profiles corresponding to the six therapeutic categories. Non responders (NR), respon-
ders (R), and toxic (T) are simple categories whereas hybrid ones are comprised of NR/R, R/T, and
NR/R/T. Comb groups categories where toxicity arises (Comb = R/T+T+NR/R/T)

1.3.2 Concentration-Based Therapeutic Indicators

The performance of dosing regimens based on different concentration levels that
the associated PK profile may reach in reference to TW can be evaluated. For this,
three therapeutic zones that lie below, within, and beyond TW are referred to as non-
effective, effective, and toxic zones, respectively. We define six mutually exclusive
therapeutic categories which are further divided into simple (the whole daily PK
profile remains within a unique zone) and hybrid classes (the PK profile moves
between zones) as illustrated in Fig. 1. In the current paper, we only consider the
use of concentration-based TI: TIR and TIComb D TIT C TIR=T C TINR=R=T .

1.3.3 Evaluation of Dosing Regimens

Based on the TIs defined above, the performance of dosing regimens is evaluated
using Monte-Carlo simulations (N=1000). Indeed, each dosing regimen generates
a large variety of PK profiles which may belong to different categories. This is
induced by the variability present in the Pop-PK model. To use the time-based TI,
the average toxic time (TITox) or the average effective time (TIEff ) can be evaluated
as follows:

TI D 1

N

NX

iD1
TIi

where N is the total number of simulated PK profiles and TI refers to either TIeff or
TItox.

Similarly, the concentration-based TI (TIR and TIComb), can be determined for a
given dosing regimen. Its probability to produce PK profiles belonging to a CAT
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(here R and Comb) is defined as:

TICAT.Regimen/ D Prob.CAT/

D 1

N
� #(PK 2 CAT)

where # indicate the number of PK profiles belonging to the specific CAT.

1.3.4 Selection of the Best Regimen

Using the previously described quantitative evaluation of the dosing regimen, the
best regimen is selected as follows. A multi-objective approach is considered with
a combination of TI with associated weights in order to determine the Regimen D
.D;�/ that maximizes (or minimizes) this combination. For this, a pool of regimens
was set up, for which the TIs values, including their maximum TImax and minimum
TImin, are calculated. Then the performance of each dosing regimen is evaluated by:

Performance.Regimen/ D
IX

iD1
wi

8
ˆ̂
<̂

ˆ̂
:̂

TImax � TIRegimen

TImax � TImin
for minimization

TIRegimen � TImin

TImax � TImin
for maximization,

where wi are the weights suggested or supported by the clinical experience and
chosen by the user in order to favor or penalize TI D TIi on the right of bracket and

IX

iD1
wi D 1, I is the number of TIs considered. The normalization is necessary for

the uniformity of units so that comparison can be made.

1.3.5 Software and Implementation

Two major software platforms were used for the development and implementation
of the algorithm. NONMEM (version VII, Icon Development Solutions, Ellicott
City, MD) was used to simulate the steady-state PK profiles. Implementation in
MATLAB (R2008, MathWorks, Inc.) allowed for the simulation of dosing regimen,
data analysis and the production of graphical outputs as illustrated in Fig. 2.
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Fig. 2 Overview of the algorithm. In a first step, the number of patients, total daily dose and
therapeutic index were defined. Then giving a dose unit and time interval enables to define
regimens. Drug concentrations were simulated and, for each regimen, TIs are calculated to obtain
the performance

2 Results

Figures 3 and 4 illustrate numerically and graphically regimen performance for the
QD regimen using carbamazepine as a drug illustrative case with its associated Pop-
PK model [3], where weights for TIs emphasising toxicity rather than efficacy have
been considered.

In Fig. 3, the left panel shows the simulated steady state concentration distri-
butions, from the lower 10 % to the upper 90 %, which have been calculated to
highlight time-based TIs. In the right panel, a pie chart represents the probability
partition of the six therapeutic categories for all generated PK profiles for the
concentration-based TIs.

Moreover, for the same therapeutic target (ex: regimens for which TIR >50 %),
we are able to identify more than one regimen that satisfy this criterion.

In Fig. 4, an additional characterization of the PK profiles is presented. In the
upper panel, the time evolution of percentages of concentrations compared to TW
are illustrated for each simple or hybrid category. These conditional probabilities
allow the identification of critical therapeutic times including toxicity.

In the lower panel of Fig. 4, the distribution of effective times of PK profiles
in each therapeutic category are reported. While the results are trivial for simple
categories (NR, R, T), different patterns can be observed for hybrid categories and
allow a better investigation and evaluation of the benefit and risk for a given regimen.
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Fig. 3 Left panel: Distribution of concentrations at steady state during a 24 h time interval for a
given regimen. The middle dotted line represents the median of concentrations at any time. The TW
is indicated with two thick horizontal red lines; Right panel: Probabilities of PK profiles generated
from this given regimen belonging to six therapeutic categories
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Fig. 4 Upper panel: Time evolution of percentages of concentrations below (cyan), within (green)
and beyond (red) the therapeutic window; Lower panel: the distribution of effective times of PK
profiles. From left to right: NR, NR/R, R, R/T,T and NR/R/T with their corresponding percentages.
Percentage indicated below the figure are the probabilities of PK profile generated from the given
regimen belonging to six CAT as illustrated in Fig. 3, right
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3 Conclusion

In this paper, a new computational methodology for dose adaptation that integrates
a Pop-PK modeling and simulation has been proposed and developed. Based on
the concept of TW, several TIs have been revisited in the framework of the Pop-
PK approach to evaluate the performance of dosing regimens. This allows us to
determine the optimal regimens in terms of doses and dosing times. In the context of
drug research and development continuum, our approach can be iteratively applied
through clinical phases to refine the search for dosing and schedule.
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˛AMG Based on Weighted Matching
for Systems of Elliptic PDEs Arising
from Displacement and Mixed Methods

Pasqua D’Ambra and Panayot S. Vassilevski

Abstract Adaptive Algebraic Multigrid (or Multilevel) Methods (˛AMG) are
introduced to improve robustness and efficiency of classical algebraic multigrid
methods in dealing with problems where no a priori knowledge or assumptions on
the near-null kernel of the underlined matrix are available. Recently we proposed
an adaptive (bootstrap) AMG method, ˛AMG, aimed to obtain a composite solver
with a desired convergence rate. Each new multigrid component relies on a current
(general) smooth vector and exploits pairwise aggregation based on weighted
matching in a matrix graph to define a new automatic, general-purpose coarsening
process, which we refer to as “the compatible weighted matching”. In this work,
we present results that broaden the applicability of our method to different finite
element discretizations of elliptic PDEs. In particular, we consider systems arising
from displacement methods in linear elasticity problems and saddle-point systems
that appear in the application of the mixed method to Darcy problems.

Keywords Adaptive algebraic multigrid method • Weighted matching

1 Introduction

Algebraic Multigrid Methods (AMG) were introduced in the mid-1980s as plug-in
solvers for large and sparse linear systems of equations Ax D b, with the final aim
to define automatic coarsening process only depending on the coefficient matrix
[4, 15]. These methods are particularly efficient for systems arising from scalar
second-order elliptic partial differential equations (PDEs), where a characterization
of the algebraically smooth error, which is the error component not reduced by a
simple relaxation scheme (such as Gauss-Seidel relaxation), is available [9]. This
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error, corresponding to the eigenvectors of A with small associated eigenvalues
(near-null kernel of A), must be nearly exactly represented in the coarse-space in
order to be eliminated by the coarse-grid correction process. Therefore, a main
focus in the current state-of-the-art AMG methods is to define strategies for building
coarse variables and intergrid operators which are able to adapt themselves to
the properties of the near-null kernel of the problem at hand in order to preserve
efficiency and robustness for dealing with more general classes of problems than
the traditional scalar elliptic PDEs, including systems of elliptic PDEs, convection-
diffusion equations and also more general non-PDE problems. In this direction,
Adaptive Algebraic Multigrids (˛AMG) have been proposed [6, 8], where main idea
is to use appropriate adaptive steps aimed to “identify” smooth error components
which the current solver is not able to efficiently handle so that they can be used
to improve the solver by modifying the coarsening scheme without using any
specific a priori knowledge about these error components. In [11] we proposed
a new ˛AMG method which relies on a bootstrap strategy aimed to compute a
composite solver with a desired convergence rate. We demonstrated its effectiveness
when applied to symmetric positive definite (s.p.d.) systems arising from finite
element discretization of highly anisotropic scalar elliptic PDEs on structured and
unstructured meshes. Here, we extend the application of the method to systems
of elliptic PDEs coming from linear elasticity and Darcy flow in porous media in
mixed setting. In Sect. 2 we outline the ˛AMG based on the compatible weighted
matching; in Sect. 3 we describe the model problems and introduce the Bramble-
Pasciak transformation used for extending our method in dealing with symmetric
indefinite systems stemming from the mixed finite element discretization of Darcy
problems; finally, in Sect. 4 we present results obtained by a prototype Matlab
version of our ˛AMG solver.

2 Main Features of ˛AMG Based on Compatible Weighted
Matching

In [11], we proposed a bootstrap process aimed to build a composite solver of the
following form:

xk D
2mC1Y

rD0
.I � B�1r A/xk�1; k D 1; 2; : : : ; (1)

with BmCr D BmC1�r; r D 1; : : : ; m C 1. Each Br is an AMG-cycle built with
its own aggregation procedure of unknowns driven by a weighted matching for
the original matrix graph with weights depending on the most recently computed
algebraically smooth vector xk with respect to the current composite solver. In
more details, starting from a general (random) given vector, we build an initial
AMG-cycle represented by the operator B0 and apply it to the homogeneous system
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Ax D 0, starting with a nonzero random initial iterate x0, and successively com-
puting xk WD .I � B�10 A/xk�1 for a fixed number of iterations. The iterative process
provides an approximation to the eigenvector of B�10 A corresponding to the minimal
eigenvalue of B�10 A, i.e., of the algebraically smooth vector corresponding to the
current solver. This last vector is then used to build a new AMG-cycle represented
by the operator B1 to be composed as in (1) and tested on the homogeneous system.
The bootstrap process is stopped when the process represented by (1) reaches a
desired convergence rate.

Each new AMG operator Br is built by using pairwise aggregation of unknowns
driven by weighted matching algorithms for the matrix graph. Such matching
algorithms are widely exploited in sparse matrix computations to enhance matrix
diagonal dominance [12]. More aggressive coarsening (than pairwise aggregation)
can be obtained by combining multiple steps of the pairwise aggregation. Our
main idea was to exploit the concept of compatible relaxation introduced in [5] for
selecting the coarse-vector space. Since for the coarse space, we choose piecewise
constant interpolant (that interpolates exactly the current smooth vector), we choose
a complementary space such that on each aggregate (of pair of vertices) it is
spanned by a vector orthogonal to the restriction of the smooth vector to that
(pairwise) aggregate. To actually choose the aggregates, we use weights based on
these orthogonal vectors so that the resulting Af matrix corresponding to the space
complementary to the coarse space have maximal product of its diagonal entries. For
the actual details on the respective algorithms and results on scalar PDEs, we refer to
[11]. Here, we investigate the use of more accurate interpolation operators obtained
by weighted-Jacobi smoothing of the piecewise constant interpolation operators
coupled with aggressive coarsening. This leads to smoothed aggregation type
adaptive AMG method [7], which exhibits improved convergence and scalability
properties with general reduction of setup costs.

Our coarsening process, which we referred to as compatible weighted matching,
has the advantage to be independent of user-defined parameters; furthermore, it
overcomes the limitations of the characterization of strength of connectivity between
pairs of unknowns, well motivated only for algebraic systems with M-matrices.
The latter concept is generally used in both the coarse space selection and in the
interpolation scheme for classical AMG schemes. We stress that computing optimal
matching has a super-linear computational complexity, whereas we are interested
in (optimal) AMG with linear complexity, that is why we apply an approximate
algorithm to find sub-optimal weighted matchings in a graph [13]; this approach was
demonstrated to be effective in computing suitable compatible weighted matchings
in the difficult case of highly non-grid aligned anisotropic scalar elliptic PDEs.

3 Case Studies: Linear Elasticity and Darcy Problems

We focus on two types of elliptic PDEs particularly relevant for many engineering
applications, such as Lamé equations for linear elasticity and Darcy equations for
flow in porous media in mixed system setting. Of main interest is to demonstrate
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the feasibility of our method on general s.p.d linear systems, where the coefficient
matrix is not an M-matrix, as well as, on some symmetric but indefinite systems of
saddle-point form.

The most widely used mathematical model for studying deformation of materials
due to the application of external forces are the following Lamé equations, which
are equilibrium equations written in terms of the displacement field u:

�u C .�C �/ grad.divu/ D f x 2 ˝ (2)

where u D u.x/ is the displacement vector, ˝ is the 3D spatial domain, and � and
� are the Lamé constants. A mix of Dirichlet boundary conditions and so-called
traction conditions are usually applied to have a unique solution. Discretization of
(2) by finite element method, if each scalar component of the displacement vector
u D .u; v;w/ is considered separately (unknown-based [14] discretization), leads to
s.p.d. systems of equations whose coefficient matrix can be written in the following
block form:

A D
2

4
Auu Auv Auw

Avu Avv Avw

Awu Awv Aww

3

5

We note that if � >> �, the above matrix is spectrally equivalent to its block
diagonal, corresponding to the matrix coming from discretization of Laplace
equation per each unknown component. In this case, block-wise version of the
classical AMG are efficient solver. In general, A is not strongly block-diagonally
dominant and problem-dependent multigrid operators have to be considered to
improve convergence of AMG [1]. In the present work we demonstrate that our
˛AMG is able to obtain a solver with a desired convergence rate for general
elasticity problems, without any a priori information on the problem neither on the
discretization scheme.

The second type of systems of PDEs we considered in this work comes from the
Darcy problem of flows in porous media. It is a boundary value problem associated
to the following second order elliptic equation:

� divk.x/ grad p D f .x/ x 2 ˝; (3)

where p D p.x/ is the flow pressure, ˝ is the spatial domain, and k.x/ is the
permeability coefficient. In a mixed finite-element formulation, the flow velocity
field u D �krp is introduced and Eq. (3) becomes divu D f . The resulting problem
is a system of two first order vector equations which can be discretized by using a
pair of finite element spaces leading to the following indefinite system of saddle-
point form:

�
A BT

B 0

� �
u
p

�

D
�

f
f

�

;
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where A is an s.p.d. matrix. Such linear systems, especially for highly variable or
discontinuous permeability coefficient, are very challenging for general iterative
solvers, and more specifically for algebraic multigrid (see [2, 16]). Here we
propose to use an approach based on the Bramble-Pasciak preconditioner [3] which
transforms the saddle-point matrix into a s.p.d. matrix. They utilize a preconditioner
matrix M for the A block, such that A � M is s.p.d., and transform the saddle-point
matrix into the following s.p.d. one:

bA D
�

AM�1 � I 0

BM�1 �I

� �
A BT

B 0

�

D
�

AM�1A � A .AM�1 � I/BT

B.M�1A � I/ BM�1BT

�

: (4)

A good choice in practice is a diagonal matrix M assembled from the local element-
based diagonal matrices diag.Mfem/, where Mfem D 1=2�minDfem and Dfem D
diag.Afem/. Here, Afem is the local element mass matrix for each finite element
and �min is the minimal eigenvalue of the generalized local eigenvalue problem
Afemq D �Dfemq. In this case the transformed matrix (4) can be explicitly computed
at a cost of a moderate increase in the total number of nonzero elements. In the
following Section we report some numerical results related to the application of our
adaptive AMG on Darcy problems discretized by the mixed finite-element method,
in the above transformed s.p.d. form.

4 Numerical Results

In this Section we report some preliminary results which illustrate the ability of our
method to solve the systems of equations introduced in Sect. 3 both in 2D and in 3D
domains. We investigate the convergence behavior and the setup cost for increasing
mesh size of the discretization. The setup cost is measured in terms of AMG
components nstages built by the bootstrap process to reach a desired convergence
rate set to 0:7. The obtained convergence rate �was estimated by applying the solver
in (1) for 15 iterations at each new built. We also report, per each test case and per
each mesh with n nodes, the average number of levels nlev of all solver components
and the average of their operator complexity cmpx, which gives information on the
cost of the application of one cycle; cmpx is defined as the ratio between the sum
of nonzero entries of the matrices of all levels and the number of nonzero entries
of the fine-grid matrix. Each AMG component, built on the base of the compatible
weighted matching coarsening method, is a general �-fold cycle [16], where one-
sweep is alternated with three sweeps in the next level; In this way, we ensure linear
cost per cycle since our coarsening is based on pairwise aggregation. Symmetric
Gauss-Seidel relaxation (one iteration) is employed as pre/post smoothing while
direct solver (based on LU factorization) is used at the coarsest level. In order
to achieve aggressive coarsening we combine four steps of pairwise aggregation
based on compatible matching, which allows us to define coarse matrices with a
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Table 1 Linear elasticity problems: setup cost when unsmoothed (on the left) and smoothed
aggregation (on the right) are used

Composite ˛AMG setup

n nstages � nlev cmpx
beam 2D 4386 8 0:61 3 1:12

16,962 10 0:69 3 1:12

66,690 12 0:69 4 1:12

264,450 20 0:68 5 1:10

beam 3D 2475 9 0:61 3 1:20

15,795 11 0:67 3 1:20

111,843 16 0:67 4 1:23

839,619 25 0:57 5 1:09

Composite ˛AMG setup

n nstages � nlev cmpx
beam 2D 4386 5 0:69 3 1:25

16,962 7 0:63 3 1:20

66,690 9 0:68 4 1:23

264,450 12 0:70 5 1:19

beam 3D 2475 8 0:53 3 1:53

15,795 10 0:60 3 1:78

111,843 12 0:64 4 2:40

839,619 17 0:61 5 1:34

coarsening ratio of at most 16 at each level; the process is stopped when the size of
the coarsest matrix is at most 100.

As test case for linear elasticity, we consider Eq. (2) on a beam characterized
by � D 0:42 and � D 1:7; one side of the beam is considered fixed and the
opposite end is pushed downward. The problem is discretized using linear finite
elements on triangular (2D) and tetrahedral meshes (3D) on different mesh sizes,
obtained by uniform refinement, with the software package MFEM (http://mfem.
googlecode.com). In Table 1, we summarize our results obtained both in the case
of constant piecewise interpolation, i.e., unsmoothed aggregation, (on the left) and
with smoothed aggregation (on the right). We observe that our method is able to
achieve convergence factors less than the desired one for all the cases, although
no a priori information on the spectral properties of the matrices neither on the
particular features of the system of PDEs and of its discretization were used. We
notice that the number of the necessary bootstrap steps generally increases with
increasing the mesh size, especially for 3D problems; the largest size mesh requires
five more bootstrap steps with respect to the medium size mesh. The total number
of bootstrap steps, as expected, is reduced if the smoothed aggregation is applied;
furthermore, smoothed aggregation coupled with our aggressive coarsening based
on a combination of more steps of pairwise aggregation produces a moderate
increase in the operator complexity, leading to a general reduction both in the setup
and the application cost of the method.

For the Darcy problems, we consider saddle-point systems stemming from a
realistic problem with highly variable permeability coefficients, describing a 3D
petroleum reservoir obtained from the 10th Society of Petroleum Engineers (SPE)
Comparative Solution Project [10]. We present results for Dirichlet problems (i.e.
pressure given on the boundary) discretized by using MFEM with structured
hexahedral meshes. For discretization, we used first-order Raviart-Thomas spaces
[16] for velocity and piecewise-constant functions for pressure. We apply the
Bramble-Pasciak transformation described in Sect. 3 to obtain the corresponding
s.p.d. matrix (4). We observe that for the considered test case and the employed

http://mfem.googlecode.com
http://mfem.googlecode.com
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Table 2 Darcy problems: setup cost when unsmoothed (on the left) and smoothed aggregation
(on the right) are used

Composite ˛AMG Setup

n nstages � nlev cmpx
SPE10 1403 2 0:50 2 1:07

10,652 3 0:68 3 1:12

33,645 5 0:65 4 1:13

88,800 7 0:65 4 1:14

Composite ˛AMG Setup

n nstages � nlev cmpx
SPE10 1403 2 0:57 2 1:12

10,652 3 0:69 3 1:34

33,645 5 0:66 4 1:46

88,800 6 0:69 4 1:54

mesh sizes, the number of nonzeros in the transformed matrix has an increase of
about 80% with respect to the original saddle-point matrix. In Table 2 we report
results for different mesh sizes (note that here n is the size of the saddle-point
matrix) for both unsmoothed and smoothed aggregation, when the algorithmic
choices were the same as in the elasticity problems. We observe that the adaptive
solver is able to obtain the required convergence rate with a moderate number of
setup steps, demonstrating the potential of the coupling between Bramble-Pasciak
transformation and the adaptive solver to handle well indefinite systems of saddle-
point type coming from realistic flow problems. The increase in the number of
bootstrap steps needed to obtain the desired convergence rate for increasing mesh
size is moderate, showing good scalability properties also in the case of unsmoothed
aggregation. We also observe that in this case the impact of smoothed aggregation
based on a weighted Jacobi smoother on the convergence behaviour and scalability
is not as significant.
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A Mathematical Model of the Ripening of
Cheddar Cheese

Winston L. Sweatman, Steven Psaltis, Steven Dargaville, and Alistair Fitt

Abstract Cheddar cheese undergoes a number of biochemical changes during
ripening. These processes were modelled with differential equations in a project
at MISG2013 (the 2013 mathematics-in-industry study group) at Queensland
University of Technology, Australia. Models could aid in the prediction of cheese
quality from initial measurements. The model is presented and the effect of small
changes in initial conditions is explored.

Keywords Biochemical process • Cheese ripening model

1 Introduction

The mathematical model for cheese ripening described here was developed during
the 2013 Mathematics-in-Industry Study Group at QUT in Australia. A full
description is given in the report [4]. The project was brought by the Fonterra
Co-operative Group. A predictive model would be helpful for adjusting factory
processes following pre-ripening measurements. The current model is summarised
here and its behaviour is illustrated as some initial conditions are varied.

The particular focus is on cheddar-type cheeses. These are produced as 20 kg
blocks in a process lasting a few hours. The blocks are then ripened in temper-
ature controlled (cool) storage for a period of months. The three principal milk
constituents of cheese (casein, milk fat and lactose) are responsible for generating a
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number of flavour compounds during cheese ripening [3]. These compounds include
peptides, amino acids and fatty acids that are accounted for in the current model.

During the ripening there is an initial phase of about 2–4 weeks in which bacteria
are active. This is followed by a longer phase in which chemical reactions take
place catalysed by enzymes with minimal bacterial activity. These phases have been
modelled separately in an earlier study [1]. The present model instead combines
the phases into a coherent whole with consistent parameters between the different
phases.

2 The Cheese-Ripening Model

Three key processes in the production of cheese are included in the model [4].
These are the breakdown of sugar (lactose), protein (casein) and fat (milk fat). The
variables involved are listed in Table 1 together with illustrative initial values. Other
symbols represent constant parameters (Table 2). It should be remembered that the
reactions, variables and parameters in this model are representative of the whole
process which is rather more complex.

Bacteria are crucial to the process. As a part of their life cycle they consume
lactose and produce lactic acid, as described in (1)–(3).

dX

dt
D �mLX

K` C L
� k`X; (1)

dL

dt
D
�

��m

Yx
� �LA

�
LX

K` C L
; (2)

d˛

dt
D �1

�LALX

K` C L
; (3)

Table 1 Variables and initial conditions

Symbol Description Value Units

X Bacterial cells 3:692 � 109 cfu g�1

L Lactose 15.366 mg g�1

˛ Lactic acid 1 mg g�1

E1 Proteinase 3:692 � 109 � e1;0 U g�1

Eo
2 Extracellular dipeptidase 0:023 U g�1

A Casein 258 mg g�1

C Amino acids 2.07059 mg g�1

B Dipeptides 24.7013 mg g�1

EL Extracellular lipase 1 U g�1

T Triglycerides 9.5 mg g�1

F Fatty acids 0.5 mg g�1

t Time 0 days
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Bacteria also produce enzymes for the breakdown of protein and fat. The
protein breakdown is modelled through (4)–(8). The enzymes proteinase E1 and
extracellular dipeptidase Eo

2 are produced by the bacterial action.

dE1
dt

D �1�mLX

K` C L
� k1E1; (4)

dEo
2

dt
D �k`X � k2E

o
2; (5)

dA

dt
D � Vf E1A

KA C A
; (6)

dC

dt
D VbEo

2B

KB C B
; (7)

dB

dt
D �# dA

dt
� 1

#

dC

dt
: (8)

The differential equations representing the breakdown of fat are similar to those
for the breakdown of protein. Lipase EL is produced by the bacteria and converts
triglycerides T into fatty acids F.

dEL

dt
D �Lk`X � k3EL; (9)

dT

dt
D � VTELT

KT C T
; (10)

dF

dt
D ��2 dT

dt
: (11)

The parameters in the equations, and listed in Table 2, were obtained in various
ways. Several come from values garnered from the literature by Kim et al. [1].
Others were numerically fitted to experimental data presented by Kim et al. [1].
These experimental data are divided into two phases: that when bacteria are active
and that when they are not. The parameters for the fat evolution were fitted to data
given by Marsili [2]. The constant of proportionality �1 was not fitted, and the value
of initial proteinase activity e1;0 (U cfu�1) is not required.
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Table 2 Parameter values

Symbol Description Value Units

K` Reaction constant 4.2322 �104 mg g�1

k` Cell death rate 0.2388 day�1

�m Cell reaction constant 4.7295 �103 day�1

Yx Lactose yield constant 1:04 � 109 cfu mg�1

�LA Lactic acid reaction constant 3.692 �10�7 mg cfu�1 day�1

�1 Proteinase reaction constant 1:2972 � e1;0 U cfu�1

k1 Extracellular dipeptidase
destruction rate

0.005 day�1

� Dipeptidase reaction constant 0.5151 U cfu�1

k2 Proteinase destruction rate 0.0235 day�1

Vf Casein reaction constant 1:9752 � 10�11 � .e1;0/�1 mg U�1 day�1

KA Casein reaction rate constant 0.207 mg g�1

Vb Amino acids reaction constant 9:4449 � 10�12 mg U�1 day�1

KB Amino acid reaction rate constant 1.15 mg g�1

# Scaling constant for proteolysis
reactions

1.08 Dimensionless

�L Lipase reaction constant 2.2119 �10�4 U cfu�1

k3 Lipid destruction rate 0.00256 day�1

VT Triglyceride reaction constant 2:864 � 10�9 mg U�1 day�1

KT Triglyceride reaction constant 1.5537 mg g�1

�2 Constant of proportionality relating
triglycerides and fatty acids

1 Dimensionless

3 Coupling and Variation with Initial Conditions

The evolution of the bacterial cells and lactose influences that of the other variables
(3)–(11). However, there is no back-coupling and so these quantities may be found
independently once the values for bacterial cells and lactose are known.

The equations for bacterial cells and lactose (1)–(2) are coupled. From (2), we
note that, assuming lactose is present, the quantity of bacterial cells can be expressed
in terms of the lactose present and its derivative (which is negative),

X D � Yx.K` C L/

.�m C �LAYx/L

dL

dt
; (12)

and, further, the evolution of lactose can be described by a second-order non-linear
equation

d2L

dt2
C
�

kl � �mL

Kl C L
� Kl

.Kl C L/ L

dL

dt

�
dL

dt
D 0: (13)
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Fig. 1 Effect of varying initial bacteria population

We now explore the effects of small changes in the initial conditions. Figure 1
shows the original results (blue) and those for which the initial quantity of bacteria
was increased by a factor of five (green) and decreased by a factor of five (red).
The quantities of bacteria are quite similar after 15 days. Thereafter the decline in
bacteria is marginally slower for the lower initial quantity as it does not exhaust the
initial supply of lactose. Increasing the quantity of bacteria produces more enzymes
to break down protein and fat, E1, Eo

2 and EL, with consequent increases in these
reaction rates.

The amount of casein (A) varies naturally in cow milk during the year. However,
varying the initial quantity by plus or minus 10 mg/g the effect is only noticeable in
casein levels (Fig. 2). Most quantities’ evolution is not affected by casein levels and
further A is so much larger than KA that its rate of change is essentially constant.
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Fig. 2 Evolution of casein for different initial values. The three graphs shown are for A D
248; 258 and 268mg/g

4 Discussion and Conclusions

We have presented a model for processes of biochemical change during the ripening
of cheese. This was developed at the Australian study group MISG2013 and a
fuller account of this modelling process together with further investigations is given
elsewhere [4]. Here we have further commented on the coupling of the equations
and investigated the effect of some changes in initial conditions. Additional data
will enable more accurate fitting of model parameters and further verification of the
model.
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An Alternative Stochastic Volatility Model

Youssef El-Khatib and Abdulnasser Hatemi-J

Abstract Stochastic volatility modelling is of fundamental importance in financial
risk management. Among the most popular existing models in the literature are the
Heston and the CEV stochastic models. Each of these models has some advantages
that the other one lacks. For example, the CEV model and the Heston model have
different relative properties concerning the leverage as well as the smile effects.
In this work we deal with the hybrid stochastic volatility model that is based on
the CEV and the Heston models combined. This alternative model is expected
to perform better than any of the two previously mentioned models in terms of
dealing with both the leverage and the smile effects. We deal with the pricing
and hedging problems for European options. We first find the set of equivalent
martingale measures (E.M.M.). The market is found to be incomplete within this
framework since there are infinitely many of E.M.M. We then find the targeted
E.M.M. by minimizing the entropy. Using Ito calculus and risk-neutral method
enable us to find the partial differential equation (P.D.E.) corresponding to the option
price. Moreover, we use Clark-Ocone formula to obtain a hedging strategy that
minimizes the distance between the payoff and the value of the hedged portfolio at
the maturity. This hedging strategy is among the most efficient available strategies.

Keywords Financial risk management • Option pricing and hedging • Stochastic
volatility model
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1 Introduction

The classical Black and Scholes model (see [2]) is used regularly for the evaluation
of options. However, this model suffers from several deficiencies among other the
so called smile effect as well as the leverage effect. A well-known approach that for
improving the Black Scholes model is to incorporate jumps in the stochastic process.
The literature contains quite large number of research work on this issue, we can cite
for instance [4, 5, 12]. In [6, 7] we can find new types of stochastic volatility models
where the main objective is to try to capture the impact of the financial crises. In
[1] the author suggests a model that combines stochastic volatility and jumps. In
addition, the stochastic volatility models are considered useful tools for taking into
account the smile phenomena and to some extent the leverage effect. One of the most
popular stochastic volatility model is the Heston model [11]. Another useful model
within this context is the Constant Elasticity Variance (CEV) model developed by
Cox [3], which is also widely used by practitioners to capture the leverage effect.
This paper suggests a combined1 Heston-CEV model, which is expected to sustain
the advantages of each model while reducing their weaknesses.

The remaining part of the paper is organized as follows. Section 2 presents the
model. Section 3 deals with the pricing of European options within this new context
together with the underlying hedging strategy. The last section concludes the paper.

2 The Model

Assume that the probability space is .˝;F ;P/. Assume also that .Wt/t2Œ0;T� and
.Bt/t2Œ0;T� are two Brownian motion processes such that dhWt;Bti D %dt and j%j <
1. We also consider the filtration .Ft/t2Œ0;T� to be the natural filtration generated by
W and B. The market is consisting of two assets: a risky asset S D .St/t2Œ0;T� to
which is related an European call option and a riskless one given by

dAt D rtAtdt; t 2 Œ0;T�; A0 D 1; (1)

where rt is a deterministic measure of time varying interest rate. Assume that the
data generating process for the stock price at time t, denoted by St, is the following
stochastic differential equation:

dSt D �tStdt C 	S˛t
p

YtdWt; (2)

dYt D �.� � Yt/dt C b
p

YtdBt (3)

1The combined Heston-CEV model has independently been investigated by others see for example
[9].
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where t 2 Œ0;T� and S0 D x > 0. The parameters 	 , ˛, �, � and b are all constant
numbers and �t is a deterministic function. Note that 	 is related to the volatility of
the underlying asset, ˛ is the elasticity of the underlying asset variance.

2.1 Change of Probability and Equivalent Martingale
Measures

In order to insure the no arbitrage condition and according to the first fundamental
theorem of asset pricing we need to move to a new probabilistic environment
where the probability is a P-Equivalent Martingale Measure (P-EMM). It is well-
known that if Q is a P-equivalent probability then by the Radon-Nikodym theorem
there exists a FT -measurable random variable, �T such that Q.A/ D EPŒ�T1A�,
A 2 P.˝/. Notice that �T is strictly positive P-a.s, since Q is equivalent to P and
EPŒ�T � D EPŒ�T1˝� D 1. It is common to use the notation �T WD dQ

dP . Consider now
the P-martingale � D .�t/t2Œ0;T� defined by

�t WD EPŒ�T j Ft� D EP

�
dQ

dP
j Ft

�

:

The next proposition gives the Radon-Nikodym density of an EMM with respect to
P.

Proposition 1 Let Q be a P-EMM. The Radon-Nikodym density of Q with respect
to P is given by

�T D exp

�Z T

0

.ˇtdWt C �tdBt/ � 1

2

Z T

0

.ˇ2t C �2t C 2%ˇt�t/dt

�

(4)

where .ˇt/t2Œ0;T� and .�t/t2Œ0;T� are two predictable processes. Moreover ˇt and �t

are related by

�t � rt C 	S˛�1t

p
Yt.ˇt C %�t/ D 0: (5)

Proof A complete proof is available on request. ut
The previous proposition leads to the following corollary.

Corollary 1 The market of the model (1)–(3) is incomplete.

Proof A complete proof is available on request. ut
We just saw from the previous proposition that there is an infinite number of P-
EMM. We find the P-EMM that minimizes the relative entropy because this will
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minimize the Kullback-Leibler distance within these settings (see for instance [10,
13]). Our aim is to minimize

I.Q� ;P/ D EP

�
dQ�

dP
ln

dQ�

dP

�

D EP
	
�
�
T ln ��T



; (6)

over all the P-EMM. The following proposition gives the P-EMM that minimizes
the relative entropy.

Proposition 2 Let O� D 0 and Ǒ D rt��t

	S˛�1
t
p

Yt
. The P-EMM OQ defined by its Radon-

Nikodym density

eT D exp

 Z T

0

rt � �t

	S˛�1t

p
Yt

dWt � 1

2

Z T

0

�
rt � �t

	S˛�1t

p
Yt

�2
dt

!

;

minimizes the relative entropy.

Proof Since we deal with continuous stochastic processes we can apply Theorem 1

of [14] which shows that the reverse relative entropy I.P;Q� / D EQ�

h
dP

dQ� ln dP
dQ�

i

can be used instead of the relative entropy given by (6). We have

ˇ2t C 2%ˇ�t D .ˇt C %�t/
2 � %�2t D

�
�t � rt

	S˛�1t

p
Yt

�2
� %�2t :

Thus,

I.P;Q� / D EP

"
1

2

Z T

0

 

�2t .1 � %/C
�

�t � rt

	S˛�1t

p
Yt

�2
!

dt

#

:

Therefore, we need to minimize the following function:

f .x/ D 1

2

 

.1 � %/x2 C
�

�t � rt

	S˛�1t

p
Yt

�2
!

:

Note that since j%j < 1, f .x/ has an absolute minimum at x D 0. This ends the
proof. ut

3 Pricing and Hedging

In this section we find the PDE of the option price as well as a hedging strategy
that minimizes the variance. In a complete market, one is interested in finding a
strategy that leads to a portfolio value that is equal to the payoff at maturity. In
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an incomplete model, this type of strategies are not available, thus the question is
which one is the best. The answer will depend on in which sense the strategy is
better. Here we define the best strategy to be the one that minimizes the distance
between the payoff and the value of underlying portfolio (for more details about this
approach one can refer to [8]). From now on, we work with OQ i.e. the P-EMM that
is minimizing the entropy given by Ǒ from Proposition 2. In the previous section,
we found the probability measures that insure the market is arbitrage free. Thus, we
need to express our model under the new probability space. For this purpose, we
define the following:

OWt D Wt �
Z t

0

Ǒ
sds D Wt �

Z t

0

rs � �s

	S˛�1s

p
Ys

ds; t 2 Œ0;T�:

By using the Girsanov theorem OW is a OQ-Brownian motion. Moreover, under OQ,
.St/t2Œ0;T� satisfies

dSt D rtStdt C 	S˛t
p

Ytd OWt; t 2 Œ0;T�;
dYt D �.� � Yt/dt C b

p
YtdBt; t 2 Œ0;T�:

Next we find the price of the option using the PDE approach.

3.1 Option Price PDE

The following proposition gives the PDE of the option price for our model.

Proposition 3 The price of an European call option with maturity T on a stock with
price .St/t2Œ0;T� defined by the model (1), (2) and (3) and with strike K can be written
at maturity as .C WD C.t; St;Yt//t2Œ0;T� and it satisfies the following PDE.

Ct C rtxCx C�.� � y/Cy C 1

2
	2x2˛yCxx C 1

2
b2yCyy C b	%x˛yCxy � rtC D 0; (7)

with the terminal condition C.T; ST ;YT/ D h.ST/ WD .ST � K/C.

Proof By Itô Lemma, we obtain dC D Ltdt C 	S˛t
p

YtCxd OWt C b
p

YtCydBt; where

Lt WD Ct C rtStCx C �.� � Yt/Cy C 1

2
	2S2˛t YtCxx:C 1

2
b2YtCyy C b	%S˛t YtCxy:

Since,
�

e�
R t
0 rsdsC

�

t2Œ0;T� is a OQ-martingale then Lt D rtC which gives (7). Complete

proof is available on request. ut
In the next section we deal with the hedging problem.
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3.2 Hedging

Let �t and #t denote the number of units invested at time t in the risky and risk-less
assets respectively. Thus the value Vt of the portfolio at time t is given by

Vt D #tAt C �tSt; t 2 Œ0;T�:
Assuming that the portfolio is self-financing, we can state the following.

Proposition 4 The payoff h.ST/ D .ST � K/C is not marketable (attainable).
However if D OW and DB are the Malliavin derivatives with respect to OW and B
respectively. Then, we have

C0 D E OQŒ.ST � K/C�e�
R T
0 rsds;

Cx D 	�1S�˛t Y
� 1
2

t E OQŒD
OW

t .ST � K/C j Ft�e
� R T

t rsds; (8)

Cy D b�1Y�
1
2

t E OQŒD
B
t .ST � K/C j Ft�e

� R T
t rsds:

Proof We use the expansion of d.e�
R t
0 rsdsC/ and the following equalities

VT D V0e
R T
0 rtdt C

Z T

0

e
R T

t rsds�t	S˛t
p

Ytd OWt; (9)

h.ST/ D E OQ Œh.ST/�C
Z T

0

E OQŒD
OW

t h.ST/ j Ft�d OWt C E OQŒD
B
t h.ST/ j Ft�dBt:(10)

A more detailed proof is available on request. ut
The previous proposition is in alignment with the market incompleteness. Since the
payoff is not attainable, we search in this case for a portfolio that leads to a value that
is the closest to h.ST/. We need to determine in which sense the closeness should be
defined. In this paper, we choose to find the hedging strategy that leads to a portfolio
that minimizes the distance between the value of the portfolio at maturity VT and
the payoff h.ST/. The next proposition gives the strategy that minimizes the variance
E OQ
	
.h.ST/ � VT/

2


.

Proposition 5 The strategy minimizing E OQ
	
.h.ST/� VT/

2



is given by

O�t D 	�1S�˛t Y
� 1
2

t EŒD OWt .ST � K/C j Ft�e
� R T

t rsds D Cx: (11)

Moreover the distance between the payoff and value of the portfolio at maturity is
in this case given by

E OQ
h
.h.ST/� OVT/

2
i

D
Z T

0

.E OQŒD
B
t h.ST/ j OFt�/

2dt:
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Proof By comparing (9) and (10) we obtain

E OQ
h
.h.ST/� OVT/

2
i

D E OQ

"�Z T

0

E OQŒD
B
t f .ST/ j OFt�dBt

�2#

CE OQ

"�Z T

0

�
EŒD OWt f .ST/ j OFt� � e

R T
t rsds O�t	S˛t

p
Yt

�
d OWt

�2#

D E OQ
�Z T

0

g. O�t/dt

�

;

where

g.x/ D .E OQŒD
B
t f .ST/ j OFt�/

2 C
�

E OQŒD
OW

t f .ST/ j OFt� � e
R T

t rsdsx	S˛t
p

Yt

�2
:

The minimum is reached at g
0

.x/ D 0: Therefore, the strategy that minimizes the
variance is given by (11). The second part of the equality is obtained from (8). This
ends the proof. ut

4 Conclusions

In this work, an alternative stochastic volatility model has been considered. It
combines the CEV and heston models. The combined model is more consistent
with the reality than the CEV or the Heston model separatively. The pricing and
hedging problems for the considered model have been investigated. After providing
the Radon-Nikodym density for an arbitrary equivalent martingale measure, we
show that the market is incomplete. Within this situation, the PDE of the option
price for a European call option was derived under the minimal entropy martingale
measure. Using the Malliavin calculus and the Clark-Ocone formula, the strategy
that minimizes the variance was also obtained.
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A Nonlinear CVFE Scheme for an Anisotropic
Degenerate Nonlinear Keller-Segel Model

Clément Cancès, Moustafa Ibrahim, and Mazen Saad

Abstract In this paper, we consider a nonlinear Control Volume Finite Element
(CVFE) scheme to solve an anisotropic degenerate Keller-Segel model over general
meshes. This scheme, whose construction is based on the Godunov scheme to
approximate the degenerate diffusion fluxes provided by the conforming finite
element reconstruction on a primal triangular mesh and on a nonclassical upwind
finite volume mesh to approximate the other terms over a dual mesh, ensures the
discrete maximum principle whatever the anisotropy of the problem and without any
restriction on the transmissibility coefficients. Numerical experiment is provided
with full anisotropic and heterogeneous diffusion tensors over general mesh.

Keywords Control volume finite element scheme • Keller-Segel model

1 The Anisotropic Degenerate Keller-Segel Model

Let ˝ be an open bounded polygonal and connected subset of R2, and let tf > 0 be
a fixed finite time. We are interested in the modified degenerate Keller-Segel system
[6] modeling the chemotaxis process given by the set of parabolic equations

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

@tu � div .� .x/ a .u/ru ��.x/ � .u/rv/ D f .u/ in Qtf D ˝ � .0; tf/;
@tv � div .D .x/rv/ D g .u; v/ in Qtf D ˝ � .0; tf/;
.� .x/ a .u/ru ��.x/ � .u/rv/ � n D 0 on ˙tf D @˝ � .0; tf/ ;
D .x/rv � n D 0 on ˙tf D @˝ � .0; tf/ ;
u .x; 0/ D u0 .x/ ; v .x; 0/ D v0 .x/ in ˝:
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In the above model, the density of the cell-population and the chemoattractant
concentration are represented by u D u.x; t/ and v D v.x; t/ respectively. Next,
a.u/ is a density-dependent diffusion coefficient, and �.x/ is the diffusion tensor
in a heterogeneous medium. Furthermore, the function �.u/ is the chemoattractant
sensitivity, and D.x/ is the diffusion tensor for v. The function f .u/ describes cell
proliferation and cell death. The function g.u; v/ describes the rates of production
and degradation of the chemoattractant; here, we assume it is the linear function
given by

g.u; v/ D ˛u � ˇv; ˛; ˇ � 0: (2)

We give the main assumptions made about the system:

(A1) The cell-density diffusion a W Œ0; 1� �! R
C is a continuous function such

that, a.0/ D a.1/ D 0, and a.u/ > 0 for 0 < u < 1:
(A2) The chemosensitivity � W Œ0; 1� �! R

C is a continuous function such that,
� .0/ D � .1/ D 0. Furthermore, we assume that there exists a function � 2
C
�
Œ0; 1� IRC�, such that � .u/ D � .u/

a .u/
and � .0/ D � .1/ D 0.

(A3) The diffusion tensors� and D are two bounded, uniformly positive symmetric
tensors on ˝ , that is: 8w ¤ 0;T� jwj2 � hT.x/w;wi � TC jwj2, T D
� or D.

(A4) The cell proliferation function f W Œ0; 1� �! R is a continuous function such
that, f .0/ � 0 and f .1/ � 0.

(A5) The initial function u0 and v0 are two functions in L2 .˝/ such that, 0 � u0 �
1 and v0 � 0.

In the sequel, we use the Lipschitz continuous nondecreasing function � W R �! R

defined by

� .u/ WD
Z u

0

p
a .s/ ds; 8u 2 R: (3)

and the following set of functions: � .v/, p .v/, � .v/ and ˚ .v/ defined in R by

� .v/ D max .0;min .v; 1// ; p .v/ D
Z v

1

1

� .s/
ds;

� .v/ D
Z v

1

p .s/ ds; ˚ .v/ D
Z v

0

1
p
� .s/

ds:

The Keller-Segel model (1) has been numerically investigated by many authors. For
instance, Andreianov et al. studied in [1] the finite volume scheme for system (1)
with isotropic diffusion tensors. Recently, Ibrahim and Saad proposed and analyzed
in [5] a CVFE scheme for the case of anisotropic diffusion tensors and under the
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assumption that all the transmissibility coefficients are nonnegative. Here we extend
the idea given by Cancès and Guichard [2] to the degenerate Keller-Segel system
(1) over general meshes. The theoretical results presented in this contribution are
detailed in the article version [3].

2 The Nonlinear CVFE Scheme for System (1)

The discretization of system (1) requires the definition of two type of approxima-
tions: the finite element approximation over a primal triangular mesh and the finite
volume approximation over a dual barycentric mesh (Fig. 1).

Let T be a conforming triangulation of the domain ˝ . We define hT and �T
to be the size and the regularity of the mesh ˝ defined by: hT WD maxT2T hT

and �T D maxT2T hT
�T

, where hT is the diameter of the triangle T and �T is the
diameter of the incircle of the triangle T. We denote by V the set of vertices of the
triangulation T and by E the set of edges of T . For every vertex K 2 V (located
at position xK), we denote by EK the subset of E consisting of the edges having xK

as an extremity. An edge joining two vertices K and L is denoted by 	KL. For the
construction of the dual barycentric mesh, we denote by TK the set of all triangles
having K as a vertex. There exists a unique dual element !K constructed around a
vertex K 2 V by connecting the barycenters xT of the triangles T 2 TK with the
barycenters x	 of the edges 	 2 EK . We denote by HT the usual P1-finite element
space defined by

HT D f� 2 C 0
�
˝
� I�jT 2 P1 .R/ ;8T 2 T g

Fig. 1 Triangular mesh T and Donald dual mesh M : dual volumes, vertices, interfaces
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and by .'K/K2V its canonical basis. Furthermore, we consider the discrete control
volumes space XM defined by

XM D f� W ˝ �! R; �j!K
is constant ;8K 2 V g:

In this paper, we restrict our study to the case of uniform time discretization with
the time step given by t D tf= .N C 1/ for a given nonnegative integer N.
We set tn D nt for 0 � n � N C 1, and introduce the space and time discrete
spaces

HT ;t D f� 2 L1 .Qtf/ I� .x; t/ D �
�

x; tnC1
�

2 HT ;8t 2 .tn; tnC1�; 0 � n � Ng;

XM ;t D f� 2 L1 .Qtf/ I� .x; t/ D �
�

x; tnC1
�

2 XM ;8t 2 .tn; tnC1�; 0 � n � Ng:

For a given
�
un

K

�
n2f0;��� ;NC1g;K2V (resp.

�
vn

K

�
n2f0;��� ;NC1g;K2V ), there exists a unique

function uT ;t 2 HT ;t (resp. vT ;t 2 HT ;t) and a unique uM ;t 2 XM ;t

(resp. vM ;t 2 XM ;t) such that

uT ;t
�
xK; t

nC1� D uM ;t
�
xK; t

nC1� D unC1
K ; 8K 2 V ; 8n 2 f0; : : : ;Ng;

vT ;t
�
xK ; t

nC1� D vM ;t
�
xK; t

nC1� D vnC1
K ; 8K 2 V ; 8n 2 f0; : : : ;Ng:

Let mK be the 2-dimensional Lebesgue measure of !K for every K 2 V . The
nonlinear CVFE scheme for the discretization of system (1), is given by the
following set of equations: for all K 2 V

u0M .x/ D u0K D 1

mK

Z

!K

u0 .y/ dy; v0M .x/ D v0K D 1

mK

Z

!K

v0 .y/ dy: (4)

and for all n 2 f0; : : : ;Ng

mK
unC1

K � un
K

t
C

X

	KL2EK

�KLanC1
KL

�
unC1

K � unC1
L

�

�
X

	KL2EK

�KL�
nC1
KL anC1

KL

�
vnC1

K � vnC1
L

� D mKf
�
unC1

K

�
;

mK
vnC1

K � vn
K

t
C

X

	KL2EK

DKL�
nC1
KL

�
p
�
vnC1

K

� � p
�
vnC1

L

�� D mK
�
˛un

K � ˇvnC1
K

�
:

(5)

In the above system, we have set TKL D � R
˝

T .x/r'K .x/ � r'L .x/ dx D TLK ,
with T 	 � or D. Denoting by InC1

KL D Œmin.unC1
K ; unC1

L /;max.unC1
K ; unC1

L /�, and by
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JnC1
KL D Œmin.vnC1

K ; vnC1
L /;max.vnC1

K ; vnC1
L /�, then anC1

KL and �nC1
KL are given by

anC1
KL D

8
<

:

max
s2InC1

KL
a.s/ if �KL � 0;

min
s2InC1

KL
a.s/ if �KL < 0;

�nC1
KL D

8
<

:

max
s2JnC1

KL
�.s/ if DKL � 0;

min
s2JnC1

KL
�.s/ if DKL < 0:

Finally, �nC1
KL is set to be equals to

�nC1
KL D

(
�#
�
unC1

K

�C �"
�
unC1

L

�
; if �KL

�
vnC1

K � vnC1
L

� � 0;

�"
�
unC1

K

�C �#
�
unC1

L

�
; if �KL

�
vnC1

K � vnC1
L

�
< 0:

The functions �" and �# are deduced from the function � introduced in (A2) and
given by

�" .z/ D
Z z

0

�
�0 .s/

�C
ds; �# .z/ D �

Z z

0

�
�0 .s/

��
ds:

Note that the scheme (5) is locally conservative on the dual median mesh M .
Indeed, denoting by

FnC1
KL D �KLanC1

KL

�
unC1

K � unC1
L

� ��KL�
nC1
KL anC1

KL

�
vnC1

K � vnC1
L

�

and

˚nC1
KL D DKL�

nC1
KL

�
p
�
vnC1

K

� � p
�
vnC1

L

��
;

it follows from the symmetry properties TKL D TLK for T 	 � or D, anC1
KL D anC1

LK ,
�nC1

KL D �nC1
LK , and �nC1

KL D �nC1
LK that the following conservation relation holds:

FnC1
KL C FnC1

LK D 0 D ˚nC1
KL C ˚nC1

LK ; 8	KL 2 E :

3 Discrete Estimates, Existence and Convergence
of the Scheme

As a major feature of the method we propose, the uniform bounds are preserved at
the discrete level. We give the discrete maximum principle

Proposition 1 For all K 2 V , and all n 2 f0; : : : ;N C 1g, we have 0 � un
K � 1

and vn
K � 0.
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Sketch of the proof We take a dual element !K such that unC1
K D minL2V funC1

L g,
then we multiply the first equation of system (5) by �unC1

K and sum over K 2 V .
One obtains that unC1

K � 0 by noting that anC1
KL D 0 when �KL � 0, and that

anC1
KL .�KL/

C �unC1
K � unC1

L

� �
unC1

K

��� 0, and�nC1
KL �CKL

�
vnC1

K � vnC1
L

���
unC1

K

��D 0.
Similarly, we get unC1

K � 1 by taking !K such that unC1
K D maxL2V funC1

L g.
The proof of the last claim vn

K � 0 is a direct consequence of the nonnegativity
of un

K .

Now we give some discrete properties on the CVFE scheme (4)–(5).

Proposition 2 For all n � 0, there exists a constant C independent of h such that

X

K2V
mK�

�
vnC1

K

�Ct
X

	KL2E
DKL

�
˚.vnC1

K /� ˚.vnC1
L /

�2

�
X

K2V
mK� .v

nC1
K /Ct

X

	KL2E
DKL�

nC1
KL

�
p.vnC1

K /� p.vnC1
L /

�2 � C:
(6)

This estimate is obtained by multiplying the second equation of system (5) by
tp.vnC1

K /, by using the convexity of the function � , and by using the definition
of the function ˚ .

The Proposition 2 as well as the assumption (A3) on � and D lead to the
following proposition

Proposition 3 There exists a constant C > 0 independent of h such that

“

Qtf

�rvT ;t � rvT ;tdx dt D
NX

nD0
t

X

	KL2E
�KL.v

nC1
K � vnC1

L /2 � C: (7)

Using Estimates (6) and (7), we obtain an analogous estimate to the one in
Proposition 2; it is given in the following proposition.

Proposition 4 For all n � 0, there exists a constant C independent of h such that

X

K2V
mK

�
unC1

K

�2 Ct
X

	KL2E
�KL

�
�.unC1

K /� �.unC1
L /

�2

�
X

K2V
mK

�
unC1

K

�2 Ct
X

	KL2E
�KLanC1

KL

�
unC1

K � unC1
L

�2 � C:
(8)

In order to prove the existence of a solution
�
unC1

K ; vnC1
K

�
K2V ; n2f0;:::;Ng to the CVFE

scheme (4)–(5), we use the previous a priori estimates and the following result
ensuring that no component vnC1

K of the discrete solution can go to zero. In what
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follows, we denote by uM ;t and vM ;t the unique elements of XM ;t such that

uM ;t .xK ; t/ D unC1
K ; vM ;t .xK ; t/ D vnC1

K ; 8K 2 V ;8n � 0:

Proposition 5 Assume that
R
˝

u0.x/dx > 0 or
R
˝
v0.x/dx > 0, then there exists

rh > 0 depending on the data as well as on the mesh T andt such that

vnC1
K � rh; 8K 2 V ;8n 2 f0; : : : ;Ng:

Moreover, there exists a solution
�
unC1

K ; vnC1
K

�
K2V to the scheme (4)–(5).

The proof of Proposition 5 is similar to the one given in [2], we rely on the
topological degree argument to get the existence results.

We are in a position to state the main result on the convergence of the CVFE
scheme (4)–(5) towards the weak solution of the continuous system (1) as the
time and space discretization steps go to zero. Specifically, we have the following
theorem

Theorem 1 Let .Tm/m�1 be a sequence of conforming triangulations of ˝ such
that hTm ! 0 as m ! 1, and let .tm/m�1 be a sequence of time steps such that
tm ! 0 as m ! 1. For all q 2 Œ1;1/, the discrete solution .uMm;tm ; vMm ;tm/m
converges (up to an unlabeled subsequence) in Lq .Qtf/ towards the weak solution
of the continuous system (1) as m ! 1.

Sketch of the proof In order to obtain the convergence result, we follow the tech-
nique employed in [4]. Thus, we use the Kolmogorov compactness criterion relying
on some estimates on differences of time and space translates of the discrete
solutions .uMm;tm ; vMm;tm/m�1. Then, we identify the limit solution as a weak
solution to the continuous problem (1).

4 Numerical Experiment

In this section, we simulate the chemotaxis process in a 2-D domain. To implement
the CVFE scheme (4)–(5), we use the Newton’s algorithm coupled with a biconju-
gate method to solve the nonlinear systems arising from the use of a fully non-linear
implicit Euler which is adopted in order to obtain a stable numerical scheme. In
the numerical test, we consider a general unstructured mesh ˝ D .0; 1/2 made of
5 193 triangles that contains obtuse angles. Here, we consider a general triangular
mesh and not a cartesian mesh in order to show the efficiency of the numerical
scheme to tackle anisotropic convection-diffusion problem over a general mesh. We
fix: t D 0:002, ˛ D 0:01, ˇ D 0:05, a .u/ D duu .1 � u/, du D 0:0005, � .u/ D
# � .u .1 � u//2, # D 0:05, and f 	 0. By definition, we have � .u/ D #

du
u .1 � u/
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Fig. 2 Initial condition for the cell density u (left) with 0 � u � 1 and for the chemoattractant
concentration v (right) with 0 � v � 5

then, the numerical flux function �nC1
KL is given using the following functions:

�" .z/ D �

�

minfz;
1

2
g
�

; and �# .z/ D �

�

maxfz;
1

2
g
�

��
�
1

2

�

; 8z 2 .0; 1/2:

Furthermore, we assume that the initial conditions are defined by regions, and we
assume zero-flux boundary conditions. For instance, the cell density is initially
defined by u0 .x; y/ D 1 in the square region given by .x; y/ 2 Œ0:45; 0:55� and
0 otherwise (see Fig. 2). The initial chemoattractant concentration is defined by
v0 .x; y/ D 5 in the space region given by .x; y/ 2 .Œ0:2; 0:3� � Œ0:45; 0:55�/ [
.Œ0:45; 0:55�� Œ0:2; 0:3�/[ .Œ0:45; 0:55�� Œ0:7; 0:8�/[ .Œ0:7; 0:8�� Œ0:45; 0:55�/:

The diffusion tensors are defined, for all x 2 .0; 1/� .0; 1/, by

�.x/ D
�
7 2

2 10

�

; D .x/ D d

�
1 0

0 3

�

; d D 0:0001:

Figures 3 and 4 represent the evolution of the cell density at time t D 0:8, t D 1:4,
t D 3 and the distribution of the chemoattractant at t D 3 over the dual barycentric
mesh. We observe in practice that the bounds on the solution stated in Propositions 1
and 5 are well respected by the proposed CVFE scheme.
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Fig. 3 Evolution of the cell density u at time t D 0:8 with 0 � u � 0:44 (left), and at time t D 1:4

with 0 � u � 0:954 (right)

Fig. 4 Evolution of the cell density u at time t D 3 with 0 � u � 0:985 (left), and of the
chemoattractant at the same time with 2:37� 10�10 � v � 2:192 (right)
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Combining Traditional Optimization
and Modern Machine Learning: A Case
in ATM Replenishment Optimization

Harry Raymond Joseph

Abstract ATM Replenishment has become a widely studied popular problem in
the modern age of human-machine interaction, due to several reasons. This paper
presents a solution that is a two-part system. The first part or the analytics section
is capable of providing very highly accurate, hourly forecasts of withdrawals from
an ATM, for which past data is available. The Machine Learning algorithm used for
obtaining forecasts, M5P, is based on a decision tree approach that reinforces various
characteristics empirically found on withdrawal patterns in ATMs. The second
and more important section formulates a simple mixed binary, goal programming
problem. The weights are decided by the bank at the beginning of each period,
and is particularly advantageous in decision flexibility terms. This is done specially
keeping in mind the ever-changing operating budgets and customer service goals.
In terms of hard numbers, this work describes a system which generates daily
schedules with an error in withdrawal forecast per month (non-absolute addition)
as low as 0.7 % at a correlation coefficient of 0.92.

Keywords ATM replenishment optimization • Human-machine interaction •
Machine learning

1 ATM Replenishment Optimization

ATMs have replaced serpentine queues of earlier days in large banks as customers
lined up to withdraw money from their accounts. The first ATMs appeared in the
early 90s and have since seen rapid indictment, with almost 90 % of withdrawals
being done through ATMs. ATM service has become such an important factor that
many banks have spent millions in optimizing and enriching customer experience
in this aspect. The importance is reflected in the customer-side as well, with many
customers considering ATM service as an important factor before opening an
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account with a particular bank. The most studied aspect with regard to ATMs is
that of cash-outs [1–3].

Cash-outs are defined as an event occurring at an ATM such that the ATM
does not have sufficient cash repository to meet the demand for the next 4 h of
operation. This demand for the next 4-h window is calculated through several
statistical procedures ranging from simple interpolation to advanced correlation
techniques that consider several parameters. Particularly, the availability of data
in abundance that provides an excellent avenue of opportunity for forecasting, the
increasing spotlight on customer satisfaction—which many banks value highly in
the competitive sector that is banking and the mere cost-cutting incentive are aspects
which have made this problem both interesting and challenging. This work looks at
an all-round solution in terms of tractability, simplicity and flexibility that lies at the
marriage of modern machine learning and conventional operations research based
optimization [4–6].

2 The Case: Industrial Environment

The following section describes the operating conditions under which the system
proposed in this solution is expected to operate and introduces the basic problem
statement.

2.1 Operating Environment and Assumptions

Given blow are a set of assumptions that are to be considered in providing the
solution.

1. Transport is charged for a ‘to-fro’ trip from central cash facility to ATM and back
to cash facility from ATM to return cartridge.

2. Given any reasonable refilling schedule, the transporter is willing to oblige, with
services available at all times—no constraints imposed by the transporter on the
scheduling of refills.

3. Some new ATMs do not have a large transaction record database as they are
newly inaugurated or due to several other possible changes. Some forms of
interpolation or meta-inspired tools have to be developed for these cases in
making forecasts and providing solutions.

4. Some ATMs are co-located with others. For this purpose, we would like to define
co-location as: two ATMs are co-located if a customer at one ATM can see the
other or if the ATMs are located within a 300-m distance from each other.

5. Location data for each ATM is available. Data may also be obtained using a
simple web-crawling application on Google Maps.

6. All ATMs don’t have similar characteristics—different ATMs have varying full-
capacities.
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7. ATMs are declared to be cashed-out if the cash in the inventory is forecast to
not be able to meet the next 4 h of demand. This is an expected safety buffer for
uncertainty in the forecasts of the demand. On visiting an ATM, the truck always
fills the ATM to capacity.

2.2 Challenges

A list of challenges that make the problem slightly more difficult are considered
below.

1. The banks are unable to provide a quantitative preference between the two
conflicting goals to be pursued—customer service goals and transportation
austerity measures.

2. As stated earlier, some new ATMs do not have a large transaction record database
as they have been recently inaugurated.

2.3 Operating Goals

The goals that must be pursued are:

1. The banks require the solution to make accurate forecasts of refilling schedules.
2. The schedule needs to be optimized to minimize transportation costs charged by

the transporter.

3 Solution Description

This section describes in detail the work to be completed, and the theoretical basis
behind the various procedures, that are likely to be followed.

3.1 Information Flow: Theoretical Basis: Information Theory
and Machine Learning

After a comprehensive survey academic literature on ATM networks, the following
qualitative claims have been recorded regarding withdrawal patterns—these claims
are important as they provide the theoretical basis for the machine learning
process—choice of algorithm and input schema in the relational algebra sense
[7, 9].
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1. Withdrawals may depend on seasonality—example month of the year, date and
day of the month, time of the day and so on.

2. Withdrawals depend on macroeconomic parameters such as Inflation percentage
and price level.

3. Withdrawals at an ATM depend on the location of the ATM—crowded with high
population density, less sparse population coverage, ATMs on highways, etc.

Almost certainly, one may model withdrawals at any ATM as belonging to one of
the two components: (a) Random/Floating Population and (b) Fixed or Periodic
Withdrawals. In which case, the withdrawal over a 4-h window, WL;T may be
modeled as the sum of two stochastic variables: one the Poisson counter and two the
Gaussian Normal distribution, each with mean and variance modified appropriately.

WL;T D P.�/C N.�; 	/ (1)

In such a model, Machine Learning and Data Analytics methods such as decision
trees have proven effective. Since our task is that of predicting a floating point
number—the withdrawal, we will use the well-known M5P algorithm for predicting
the same. The results of which, for predicted withdrawals from the test data set
are presented in a later section. Increasing the granularity of the output forecast,
collecting more data and data pre-processing are some of the major aspects that
need to be worked on.

3.2 The M5P Algorithm

The M5P [10] algorithm is a modification over Quinlan’s M5 algorithm for inducing
trees for regression models. Given the stochastic splitting presented above in (1)
M5P appears to be the most optimal algorithm for forecasting ATM withdrawals
with reasonable computational expense. The M5P algorithm, is based on the well-
known decision trees which ensure each splitting reduces the entropy of the split
groups through an apparent renormalization. For instance if at the split G there are C
classes such that p.Ci/ is the probability of rows being split at the split G belonging
to the class Ci then, entropy of the data being split at G is defined as:

H.G/ D
X

p.Ci/Log.1=p.Ci// (2)

Similarly, the information gain IG at the split G on the attribute AG is defined as:

H.AG;G/ D H.G/�
X

p.i/H.i/ (3)

M5P combines however several novelties over traditional decision tree based
machine learning methods. For instance, the decision-tree induction algorithm used
to build a tree, minimizes the intra-subset variation in the class values down each
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branch. The splitting procedure in M5P stops if the class values of all instances
that reach a node vary very slightly, or only a few instances remain. Second, the
tree is pruned back from each leaf. When pruning an inner node is turned into
a leaf with a regression plane. Third, to avoid sharp discontinuities between the
subtrees a smoothing procedure is applied that combines the leaf model prediction
with each node along the path back to the root, smoothing it at each of these nodes
by combining it with the value predicted by the linear model for that node [8].

3.3 Traditional Analytics: Goal Programming Based
Optimization

The following section describes the analytical components describing the operation
research problem: Given that WL;T is the withdrawal forecast for the next 4 h at
the Lth ATM at time T of the day, then, the fund equation representing the cash
dynamics may be modeled as:

FL;T�1 C RL;T � WL;T � LL;T D FL;T (4)

RL;T is the replenishment decision for ATM L at time T of the day. FL;T�1
represents cash remaining in the cartridge after withdrawal in the previous hour,
T � 1. WL;T represents the demand forecast for the next 4 h, obtained from the
above, data analytics section employing the M5P algorithm. LL;T is the left over
money in the cartridge in case of replenishment. This money is returned to the bank.
LL;T is significant only if the replenishment decision RL;T is non-zero. Now:

RL;T D TLSL;T (5)

In the above equation,TL is the capacity of the Lth ATM. This ensures flexibility
in modeling and factors the aspect of non-uniform ATM full-capacities. SL;T is one
of the variables that appear in the objective function. It is binary and is 1 if the Lth
ATM is replenished at time T, else it takes the value 0. SL, T is hence a record of
the number of replenishments. Also if replenished, LL;T becomes active—whatever
is the cash remaining after withdrawal in the previous hour, it is taken away when
the cartridge is replaced and the ATM is brought to full capacity. Hence, LL;T may
be defined as:

LL;T D SL;TFL;T�1 (6)

The goal for this mixed binary goal programming problem is:
Minimize:

P
L;T .jFL;T j C MSL;T/

M is the weight of the second objective: transport austerity. As can be seen from
above, the problem is a simple linear programming problem, that can be solved to
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resolve values of variables SL;T and FL;T that satisfy the objective function measures.
Please note that the system runs the analysis at a granularity of 1 h, and determines
the signs and magnitude of the variables for the next 4 h—this ensures the 4-h safety
buffer for determining cash-outs.

3.4 Input Data Structure

Input data is sent to the data analytics engine that applies the M5P algorithm and
outputs forecasts for hourly demand. The exact schema S that will be required to be
input for a particular ATM at a given location is as below:

S: (Day, Date, Month, Time, Amount Withdrawn, Daily Price Level, Inflation
Percentage)

Note that the daily price level and inflation percentage are of utmost importance,
since they dictate the trends in savings and spending in the economy and hence
withdrawal patterns. This data is easily available from the relevant regulatory
authority, if unavailable with the bank. This data on hourly forecast withdrawals
obtained is now fed by the system into the LP solver component along with the
Goal weight M. We anticipate that priorities between customer service goals and
transport austerity are expected to keep shifting. The system provides a flexible
replenishment schedule, allowing for these changes, to reflect whatever objectives
the bank has set for that period.

3.5 Output Data Structure

The output data structure provides us with corresponding replenishment schedules
and the flow/error variable values. The system is run with the hourly withdrawal
forecasts at say the beginning of the month, to forecast all replenishment schedules
and corresponding flow elements for the rest of the month. Output data structure is
a schema comprising:

O: (Date of Replenishment, Time of Replenishment)
In addition, the system also outputs: Expected Number of Cash-Outs and Number

of Replenishment Events. Given below is a diagrammatic representation of the
complete process associated with the system (Fig. 1).

4 Special Considerations

This section addresses two special considerations: New ATMs with insufficient
transaction history for analytics and Co-Located ATMs.
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Fig. 1 Top-level representation of the solution

New ATMs The strategy to deal with this challenge is rather straightforward.
Analytics learning methods are extended—data analytics methods are employed on
a new schema, which consists of the following attributes:

S: (Day, Date, Month, Time, Amount Withdrawn, Daily Price Level, Inflation
Percentage, Number of Bank Customers in that Location, Population Density around
the ATM)

Note that the above columns have data from all ATM transactions at all
Locations. Withdrawals are forecast at the new locations using learning from
previous transactions, in addition with two attributes: Number of Bank Customers
in that Location and Population Density. It is expected that the former is available
with the bank, the latter may be obtained from the competent authority.

Co-Located ATMs These are as defined previously. In these cases, the capacity of
the two co-located ATMs together will be added and ensuing analysis is done by
adding forecast demands. For this purpose, they maybe visualized as a single ATM
with capacity twice as that of a normal ATM. Inclusion of capacity parameter TC in
the modeling facilitates this analysis.

5 Results and Conclusions

In this paper a solution that utilizes traditional optimization methods as well as
modern machine learning algorithms to maximize ATM replenishments in banks
has been developed. The conventional goal programming mixed binary formulation
enables banks to adapt to changing goals in terms of a trade-off between customer
satisfaction and operating expenses. The Machine learning forecasting algorithm
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Table 1 The following table shows the output obtained from the learning engine for a given month

Date Number of transactions Predicted Observed withdrawals Error/flow

19 31 3772.09 3441.00 �331:09
13 42 4652.61 4998.00 345:39

21 27 2557.23 2862.00 304:77

7 31 2860.63 3689.00 828:37

23 35 3185.23 3080.00 �105:23
9 31 2860.63 2697.00 �163:63
5 43 4482.33 4859.00 376:67

18 30 2620.96 2700.00 79:04

10 28 2442.20 3052.00 609:80

30 43 3902.50 3655.00 �247:50
25 46 4150.17 3818.00 �332:17
22 34 3159.50 3026.00 �133:50
16 35 3207.12 2975 �232:12
2 45 4020.10 3825 �195:10

seems to perform particularly well, with a correlation coefficient of 0:92 and an
error of 0:7% (Table 1).

Several research avenues seem to open up while considering useful extensions to
this problem. For instance, the seasonality in terms of day of the week and month of
the year seem to be little emphasized. Perhaps feature-extraction methods in these
aspects may considerably improve results. In addition, further research considering
a differing stochastic model of withdrawals, might also be an interesting exercise.
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Detection of Shadow Artifacts in Satellite
Imagery Using Digital Elevation Models

Ivan Martynov and Tuomo Kauranne

Abstract There are numerous methods for shadow identification in satellite
imagery using variety of means of image processing and pattern recognition. We,
however, suggest to detect shadow artifacts using a straight geometrical approach
with the help of digital elevation models (DEM). To demonstrate the pipeline of
shadow detection process we use Landsat imagery and SRTM DEM database as
the sources of images and MATLAB as software to run computational operations.
Landsat provides a huge amount of images covering the surface of our planet. The
SRTM collection covers nearly all terrain areas, thus excluding oceans, seas and
other zero elevation areas. Both databases are widely used for image processing
in various projects working with geographical data. The computational tools of
MATLAB in their turn help to easily create functions and scripts for image processing
in a relatively simple and fast way.

Keywords DEM • Homography • Landsat • Satellite imagery • SRTM

1 Introduction

Shadows appear in nearly every satellite image and, therefore, may hide and obscure
important features of a terrain. In various areas of satellite image processing it is
important to classify the terrain into segments (forest, mountains, water bodies, etc.)
or analyze the terrain for other features. Consequently, detection and removal of
shadow artifacts in satellite images is important for image analysis [1, 2].

In this paper we represent an approach for detection of shadow areas using DEM
(Digital Elevation Model) as an accessorial tool. Among a number of DEM data we
have decided to exploit SRTM (Shuttle Radar Topography Mission) DEMs due to
their availability. A DEM image would require latitude and longitude coordinates of
image corners.
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There are several satellites providing imagery for the Earth. We have chosen
Landsat because they provide a great collection of moderate resolution (30x30 m)
images for over 40 years and the images are available for everyone due to free
access. There are many images for every region of our planet, thus making it
possible to choose among them one image or few which would satisfy the needs. For
example, choosing an image with less clouds or from a certain date (Landsat provide
data from 1972). Otherwise, it is possible to use collections of other satellites. The
image would require the Sun position relatively to the Earth (azimuth and elevation
angles) and, likewise for a DEM data, latitude and longitude coordinates of image
corners. These are the necessary parameters in order to compute where the shadows
are cast and to match the satellite image with the DEM data.

Given the solar angles we can use the DEM image to compute coordinates
of shadow areas in a specific region. Then homography is applied in order to
convert pixel coordinates into latitude and longitude values since they are unique
for both Landsat and SRTM images. The latitude and longitude coordinates are then
converted into pixel values using homography for the Landsat image in order to
locate the shadow artifacts in the image.

We have chosen to use MATLAB as a computational tool since they provide
convenient environment for a relatively fast coding of functions and scripts for
image processing.

2 Shadow Detection Pipeline

Assume we have chosen a region and acquired Landsat images for this region (7–8
images for Landsat 5–7 or 10–11 images for Landsat 8). In order to begin shadow
calculation we need corresponding SRTM files and the solar angles relatively
to the Earth. The angles can be extracted from meta data which comes in a
separate text file together with the Landsat images. Usually, the file looks like
Landsat code MTL.txt using the MTL part as a special identifier for the meta
file. From the same file latitude and longitude values for corner points are fetched.

Using the latitude and longitude values we can choose SRTM DEM files which
would cover one Landsat image (tile) entirely. The size of one SRTM image is 1ı
degree latitude by 1ı longitude, which makes roughly 110 km by 100 km depending
on the location. The latitude value does not change a lot, but the longitude kilometers
lessen significantly when coming towards one of the Poles. As can be seen in Fig. 1
an SRTM image covers only a part of the Landsat image (due to the difference in
latitude and longitude coordinates). The size of a Landsat image is about 170 km by
185 km and thus nine SRTM images are required to fully cover the Landsat image.

We can acquire the SRTM DEM data using, for example, Earth Resources
Observation and Science (EROS) Center. After we have acquired all necessary files
we need to compute shadow areas for every DEM image. Apparently, the steps
would be the same for every image.
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Fig. 1 Landsat and SRTM DEM images

Fig. 2 Solar ray geometry

A DEM image pixels represent heights of a terrain. Firstly, we decide to define
where shadows fall by drawing an imaginary solar ray going through one of the
peaks until the ray reaches the ground (see Fig. 2). Knowing the height (denoted as
h in Fig. 2) at the certain peak point, the solar elevation angle (el) and the point on
the ground we can calculate the length of a potential shadow (d). The height value
is taken from the DEM file, the elevation angle has been acquired earlier and the
ground point is considered to have either the zero height or the lowest meaningful
value in the DEM image. In case of a non-zero ground point the height should be
accordingly adjusted (height minus the lowest value). Let us assume that the ground
point has height zero for simplicity.

The next step is to calculate shifts in x and y directions in order to obtain
coordinates of the ground point. For this purpose we use the solar azimuth (azi).
Since we know the length of the potential shadow then we can apply simple
trigonometry formulae to calculate the shifts (dx and dy). The shifts allow us to
parametrize the line with one end in the peak and the other in the ground. Since the
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peak point has known coordinates .x0; y0; z0/ then the ground point has coordinates
.x0 C dx; y0 C dy; 0/. Therefore, the line would be defined as shown in (1):

x � x0
dx

D y � y0
dy

D z � z0
dz

D t: (1)

Afterwards, we calculate the coordinates of all pixels which the shadow line is
to cross and we name them potential shadow pixels. Sometimes the solar ray would
not reach the ground because of an obstacle (a hill or another mountain peak) as
it can be seen in Fig. 2. Therefore, we check every potential shadow pixel starting
from the closest to the chosen peak but excluding the peak itself (because it is never
in shadow). We continue towards the ground pixel until an obstacle is met or the
ground is reached. The check is performed using the parameter t from (1) which
can be calculated using the x or y coordinate of the current pixel and then used to
calculate the z height value of the line. Then the z value is compared with the actual
height value in the DEM image to determine whether the solar ray has been blocked
or not.

After all true shadow pixels have been identified we can move to the next peak.
In order to simplify and speed up the process of shadow detection we ignore peaks
(pixels) which are already in shadow. Besides, we sort all peaks in the descending
order because the highest peaks assume to cast the longest shadows and, therefore,
more pixels could be omitted in the following steps. The algorithm continues until
all pixels have been processed and then creates a binary image with true values
assigned to shadow areas (see Fig. 3).

Fig. 3 Shadow mask computed for an SRTM DEM image
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The next maneuver would be to convert the pixel coordinates into latitude and
longitude coordinates. For this purpose we apply a plane-to-plane homography.
Apparently, we may easily acquire the corner coordinates of the DEM image. The
question is how to calculate the corresponding geographic coordinates. These values
can be extracted from the SRTM file name due to its construction. The file name is
formed as follows N28E086.hgt where the first and second letters define north,
south, west or east directions (N, S, E, W). The numbers following the letters show
the latitude and longitude values of the southwest corner correspondingly. In this
example the image covers latitudes 28–29 North and longitudes 86–87 East.

When the geographic coordinates have been acquired we can compute a homog-
raphy matrix. The matrix is applied to convert the earlier computed shadow pixel
coordinates into latitude and longitude values. Since the geographic coordinates are
unique we can then convert the latitude and longitude values into pixel coordinates
using the homography technique. In order to compute a homography matrix for
the Landsat image we repeat the same steps: acquire the corner pixel coordinates,
extract the latitude and longitude values for corners from the meta data file and
then compute the homography matrix. Then we use the matrix to calculate the pixel
coordinates using the geographic coordinates. Since the resolution of SRTM images
is 90� 90m and the resolution of Landsat images is 30� 30m the Landsat shadow
mask is morphologically dilated using the square of size 3� 3 pixels as a structured
element. Exception applies if an SRTM image covers an area in USA: the resolution
is the same as for the Landsat image—30� 30m. The final shadow pixel are shown
in Fig. 4 as red areas.

Fig. 4 Shadow mask over the Landsat image
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3 Discussions

There are few known problems concerning our method of shadow detection.

1. The resolution of SRTM DEM images is coarser than the resolution of Landsat
(as well as several other satellites) images. This means that small shadows as
well as the borders of bigger shadow areas might be easily left unidentified.
DEM images with a better resolution would definitely improve the accuracy;

2. An SRTM DEM image may have void zones thus there is no meaningful data.
Usually the pixel values in these zones are set to be very low (for example,
�215C1). One way to deal with this problem is to ignore these zones and consider
that there are no shadow artifacts inside void areas. Another way is to interpolate
the missing data using an appropriate algorithm;

3. Clouds add shadows which can not be detected in DEM images. Clouds as well
can cover areas (mountain slopes, hills) which might be identified as shadow
artifacts in the DEM images. An example of a shadow mask covering an entire
Landsat image having clouds is shown in Fig. 5. In order to solve the cloud issue,
we can use one tool called Fmask which is able to identify clouds and their
shadows in a Landsat image rather well [3].

Fig. 5 Landsat image with clouds and its shadow mask
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Efficient Numerical Simulation of the Wilson
Flow in Lattice QCD

Michèle Wandelt and Michael Günther

Abstract Lattice Quantum Chrome Dynamics (Lattice QCD) is a gauge theory
formulated on a highly dimensional grid or lattice of points in space and time.
It aims at determining observables such as the mass of elementary particles as
accurate as possible, with computational costs as low as possible at the same time.
Thus high performance computing tools are inevitable, as well as the construction
of HPSC hardware tailored to the needs of Lattice QCD. In the Hybrid Monte
Carlo (HMC) approach (Duane et al., Phys. Lett. B, 195:216, 1987 http://dx.doi.org/
10.1016/0370-2693(87)91197-X), Monte Carlo simulations involving a molecular
dynamics step in its core are performed, which yield physical values provided with
their statistical errors.

In this talk we concentrate on the Wilson Flow, a system of differential equations
defined on the Lie group SU.3/. The Wilson Flow can be used, e.g., to determine
the physical lattice spacing which influences the result of the HMC simulations.
We focus on tailored Runge-Kutta Lie group integration methods with step size
prediction. The numerical results confirm that our strategy is able to reduce the
statistical errors of the simulation.

Keywords Lattice quantum chrome dynamics • Wilson flow

1 Introduction

Quantum Chromo Dynamics (QCD) is a quantum field theory that describes the
strong interaction between fundamental constituents of matter inside subatomic
particles. The discretized version of QCD is formulated on a 4-dimensional grid—
or lattice—in space and time and called Lattice QCD. It aims at the computation
of observables like the mass of elementary particles which is theoretically done via
the computation of path integrals. Due to the fact that these integrals are very high
dimensional, this calculation is done using Monte Carlo simulations [1]. During
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these simulations, a sequence ŒU�0 ! ŒU�1 ! ŒU�2 ! : : : of field configurations is
computed which consists of a set of matrices being elements of the special unitary
matrix Lie group SU.3/. Moreover, the observables are determined as expectation
values of certain operators of the different configurations. As a byproduct of the
Monte Carlo simulation, the so-called Wilson flow can be computed, see [2, 3]. It is
a flow in the field space and can be used to investigate certain physical properties of
the lattice as, for example, the physical lattice spacing. The Wilson flow is defined
by a system of differential equations of the kind

PV.t/ D Z.ŒV.t/�/ � V.t/ : (1)

Since the variables V.t/ are elements of the matrix Lie group SU.3/ and the variables
Z.ŒV.t/�/ elements of the appropriate matrix Lie algebra su.3/we have a differential
equation on the manifold SU.3/. This means, the solution has to be also in the
Lie group. Thus, we have to choose a numerical method that ensures a solution
in the Lie group like, for example, Munthe-Kaas Runge-Kutta (RK-MK) methods.
Usually, the Wilson Flow is computed via Runge-Kutta methods for Lie groups of
fixed convergence order.

In this paper, we concentrate on the numerical integration of the Wilson flow
using step size prediction. In Sect. 2, we start with a brief explanation of RK-MK
schemes for differential equations of type (1). Then, we focus on step size prediction
for RK-MK schemes in Sect. 3. Afterwards, we show the numerical results for a RK-
MK scheme of convergence order (2)3 in Sect. 4. Here, we compute the Wilson flow
and investigate the so-called Wilson energy as observable. Then, we adapt the step
size prediction for the whole set of variables of a field configuration. Finally, we
show some simulation results.

2 Runge Kutta Methods for Lie Groups

In the Wilson flow, a differential equation on a Lie group which is a differentiable
manifold has to be solved. This differential equation has a special structure:

PV D Z � V (2)

with V being an element of a Lie group G and Z an element of the Lie algebra g.
This kind of differential equation can be solved using the theorem of Magnus [4].
That means, the unknown Lie group element V can be replaced by a mapping

V D exp.˝/V0 (3)

with unknown Lie algebra element ˝ . Then, ˝ is the solution of the differential
equation

P̋ D d exp�1˝ .Z/ (4)
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in the Lie algebra with P̋ being the derivative of the inverse exponential mapping
and initial value ˝.0/ D 0. At the end, the solution of (2) is given as the mapping
(3) of the solution ˝ of (4). Thereby, the derivative of the inverse exponential map
can be rewritten as infinite series

d exp�1˝ .Z/ D
1X

kD0

Bk

kŠ
adk

˝.Z/

with Bk being the kth Bernoulli number and adjoint operator adk
˝ which is a mapping

ad˝.A/ WD Œ˝;A� D ˝ � A � A �˝

in the Lie algebra g. For the numerical simulation, the infinite series of the derivative
of the inverse exponential map has to be truncated. This truncation induces a model
error which should be smaller or equal than the convergence order of the numerical
method used for the detection of the solution˝ .

Munthe-Kaas describes a suitable truncation for Runge-Kutta methods [5, 6] as
follows: for a Runge-Kutta method of convergence order p, the truncation index q
has to be larger than p � 2:

P̋ D
qX

kD0

Bk

kŠ
adk

˝.Z/ ; q � p � 2 (5)

A Runge-Kutta method for the differential equation (2) can be computed in three
steps: Start with the mapping V D exp.˝/V0. Then, use an appropriate numerical
integration scheme to solve the differential equation

P̋ D d exp�1˝ .Z/ D
qX

kD0

Bk

kŠ
adk

˝.Z/

with initial value ˝.0/ D 0, e.g. the Munthe-Kaas Runge Kutta scheme. Finally,
map the solution˝ via Eq. (3) from the Lie algebra to the Lie group.

The RK-MK for the computation of the solution of the differential equation (4)
is given as:

˝1 D h
X

i

biKi with Ki D fq.Yi;Zi/

Yi D h
X

k

aikKk; Zi D Z.Vi/; Vi D exp.Yi/ � V0

Here, fq.Yi;Zi/ is described by (5) as

fq.Yi;Zi/ D B0 � Z C B1 � Œ˝;Z�C B2
2

� 	˝; Œ˝;Z�
C : : :C Bq

qŠ
adq

˝.Z/
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This means, the function fq has to be suitably truncated according to the desired
convergence order of the method. For example, a convergence order p D 2 can be
achieved using f0 D B0 � Z, and for p D 3 we would need f1 D B0 � Z C B1 � Œ˝;Z�.

3 Step Size Control

Our aim is to solve the equation PV D Z � V using a step size control. Here, we use
a common step size control as, for example, described in [7] and combine it with a
Munthe-Kaas Runge-Kutta method. We proceed as follows: Start from initial values
V0 with a given step size and compute the solutions OV1 of convergence order p and
V1 of convergence order pC1. Here, the RK-MK method is adapted for the step size
control: start with V1 D exp.˝1/ � V0 and OV1 D exp. Ő

1/ � V0. To reach the desired
convergence order p of OV1 and p C 1 of V1, the RK-MK algorithm is given as

˝1 D h
X

i

biKi with Ki D fp�2.Yi;Zi/

Yi D h
X

j

aijKj; Zi D Z.Vi/; Vi D exp.Yi/ � V0

Ő
1 D h

X

i

Obi OKi with OKi D fp�1. OYi; OZi/

OYi D h
X

j

aij OKj; OZi D Z. OVi/; OVi D exp. OYi/ � V0 :

The measure for the error is calculated as

err D
v
u
u
t1

n

nX

jD1

� jj Ő
1 �˝1jjj

ATOL C RTOL � jj Ő
1jjj

�2
:

As we work on a set of matrix Lie algebra elements, the computation of the error
measure has to be adapted to a set of Lie algebra elements: The norms jj Ő

1 �˝1jjj

and jj Ő
1jjj have to be chosen as matrix norms like, for example, the Frobenius

norm, row sum norm or the spectral norm. Afterwards, the optimal step size hopt is
computed as

hopt D h � pC1

r
1

err
� �

with safety factor �. Additionally, the step size should not increase or decrease too
fast which is prevented by

hopt D min
�
˛ � h;max

�
ˇ � h; hopt

��
:
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If the error measure is small enough, i.e. err � 1, the step is accepted and V1 taken
as initial value for the new step, otherwise the step is repeated. In any case, the new
step size is set to hopt.

Remark 1 (Step Size Control for the Wilson Flow) The Wilson Flow is a flow in the
field space, i.e. for a lattice of n variables there are n differential equations

PVj.t/ D Z.ŒV.t/�/ � Vj.t/ j D 1; : : : ; n

to be solved. The calculation for one Wilson Flow starts at one of the given
configurations, e.g. ŒU�i which serves as initial values ŒV�0. Here, we have to
refresh our mind with the fact that the variables Vj.t/, j D 1; : : : ; n are elements
of the special unitary Lie group SU.3/. The function Z.ŒV.t/�/ maps an element
Vj 2 SU.3/ to its appropriate special unitary Lie algebra su.3/:

Vj ! Zj D Z.ŒV�/ ; SU.3/ ! su.3/:

Thereby, the function Z does not just depend on Vj itself but of several adjacent
variables Vk (considered to be constants at this moment). This dependence is
induced by the notation Z.ŒV�/. Considering the elements Vj 2 SU.3/;Zj 2 su.3/
we have a system of the aforementioned differential equations on Lie groups with
solution being as well in the Lie group.

4 Numerical Results

We compute the Wilson flow for one single configuration that consists of n lattice
points. Then, we measure the Wilson energy

E D
X

p

Real Trace.1 � U.p// (6)

whose formula is, for example, described in [2]. We have implemented a Munthe-
Kaas Runge-Kutta method of convergence order (2)3 with Bogacki-Shampine
coefficients given in Table 1. This means, we have a Runge-Kutta method of four
stages and have to compute

˝1 D h
kD3X

iD1
biKi with Ki D f1.Yi;Zi/ D f0.Yi;Zi/C B1ŒYi;Zi�

Ő
1 D h

kD4X

iD1
Obi OKi with OKi D f0.Yi;Zi/
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Table 1 Bogacki-Shampine
coefficients
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Fig. 1 Wilson energy computed with a Runge-Kutta method of convergence order 2 (blue) and
with step size control (red)

for all n points in the configuration. Then, the solutions V1 of convergence order
three and OV of convergence order two are reached for all lattice points via

V1 D exp.˝1/V0 and OV1 D exp.˝1/V0 :

Since the model error of OKi is larger than the one of Ki, we use the better
approximation Ki instead of OKi if it is already available (this is the case in the first
three stages). In Fig. 1, we compare the Wilson energy (6) computed (via the Wilson
flow) with a RK method of order 2 with one computed with the aforementioned step
size prediction. Here, the parameters for the step size control are set to ATOL=1e�3,
RTOL=0, � D 0:8, facmin=0.5 and facmax=2. We see that a step size prediction
works for the Wilson flow which consists of a set of matrices being Lie group
elements.
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5 Conclusion and Outlook

Usually, the Wilson flow is computed via a Runge-Kutta method with fixed step
size and physicists are interested in the mean values of the observables computed
from many configurations including their statistical errors. There are two advantages
of the step size prediction explained here: first of all, the computational effort is
reduced exploiting the dynamics of the system. Here, the parameters controlling
the step size prediction have to be approved in a next step. Then, the step size
prediction controls the numerical error such that the statistical errors can be reduced
in a suitable manner. This has to be investigated in a next step.
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Electro-Manipulation of Droplets
for Microfluidic Applications

L.T. Corson, C. Tsakonas, B.R. Duffy, N.J. Mottram, C.V. Brown,
and S.K. Wilson

Abstract There is a growing technology-driven interest in using external influences
to move or shape small quantities of liquids, a process that is referred to as
microfluidic actuation. The use of electrical, rather than mechanical, forces to
achieve this actuation is convenient, because the resultant devices contain no moving
parts. In this work we consider a sessile drop of an incompressible liquid with a high
conductivity resting on the lower substrate inside a parallel-plate capacitor subjected
to a relatively low frequency A.C. field. With the application of an electric field the
drop deforms into a new static shape where the apex of the drop rises towards the
upper electrode in order to balance the Maxwell electric stresses, surface tension and
hydrostatic pressure on the interface. From experimental, numerical and asymptotic
approaches we determine a predictive equation for the deformation as a function of
initial contact angle and drop width, surface tension and applied voltage.

Keywords Electro-manipulated droplets • Microfluidic actuation

1 Introduction

There is a growing technology-driven interest in using external influences to
move or shape small quantities of liquids, referred to as microfluidic actuation.
The use of electrical, rather than mechanical, forces to achieve this actuation is
convenient, because the resultant devices contain no moving parts. Existing non-
mechanical microfluidic actuation techniques that are driven by the application
of a voltage include electrowetting and liquid dielectrophoresis [10], with many
applications including lab-on-a-chip [11], polymer surface patterning [17], as well
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(a) (b)

dg

fluid fluid

air air

Δh

2b0 2b0

dielectric layer
θ c θ c +Δθc

Fig. 1 Sketch of the geometry of a sessile drop resting on the lower substrate inside a parallel-
plate capacitor. This substrate consists of an electrode coated with a thin solid dielectric layer. (a)
No electric field applied. (b) An electric field applied across the capacitor deforms the drop

as optimisation of optical properties for polymer microlenses [13, 21], and droplet
driven displays [7].

When an ionic, conducting liquid drop is subjected to a uniform electric field,
the drop deforms as a result of the electric stresses on the interface, and it elongates
in the direction of the electric field [18]. In this work we consider a sessile drop of
an incompressible liquid with a high conductivity resting on the lower substrate
inside a parallel-plate capacitor (Fig. 1) subjected to a relatively low frequency
A.C. field. This situation is of particular interest to display device applications
where the deformation of the drop can be used to change the optical properties of an
image pixel [7]. With the application of an electric field the drop deforms into a new
static shape where the apex of the drop rises towards the upper electrode in order to
balance the Maxwell electric stresses, surface tension and hydrostatic pressure due
to gravity on the interface. The lower electrode is coated with a thin solid dielectric
layer, so the liquid drop is shielded from both electrodes. In this situation the mobile
ions will reconfigure to reduce the electric field inside the drop to zero, so that the
electric potential of the drop is a constant.

Previous experimental work on the deformation of sessile conductive drops in
this geometry has included work on soap bubbles [2], polymer drops [14], water
drops in air [3, 4, 15], water drops immersed in dielectric oil [16], and various
alcohols in air [5, 6, 19]. As well as different liquids, these experiments also
considered different substrate treatments (untreated, hydrophilic and hydrophobic),
and therefore the initial contact angles of the drop varied greatly (specifically
from 15ı to 160ı) [20]. Theoretical work in this geometry has tended to employ
numerical techniques to solve the coupled electrostatic and augmented Young–
Laplace equations for the electric field and drop profile. To simplify the process,
many authors consider small drops where the assumption of negligible gravity is
valid (see e.g. [1, 2, 14]).

In this paper we consider, experimentally and theoretically, the situation of
pinned conductive liquid drops with contact angles that are close to �=2. Using
both numerical and asymptotic approaches we find solutions to the coupled
electrostatic and augmented Young–Laplace equations which agree very well with
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the experimental results. Our asymptotic solution for the drop profile extends that
of Basaran and Scriven [2] to drops that have initial contact angles close to �=2 and
higher values of the electric field, and provides a predictive equation for the changes
in the height as a function of the zero-field contact angle, drop radius, surface tension
and applied voltage.

2 Experimental Setup

Figure 1 shows the experimental setup. A sessile drop of the liquid trimethylol-
propane triglycidyl ether (TMPGE) rests on the lower substrate inside a parallel-
plate capacitor with gap d between the electrodes. TMPGE is often considered a
non-conducting dielectric material. However, dielectric studies show that, at the
frequencies and voltages used in our experiments, this is a lossy material with a
high conductivity that masks the dielectric polarisability so that the liquid is more
accurately considered to be a conductive liquid. The electrodes were formed from
a continuous layer of transparent conductor, indium tin oxide, on borosilicate glass
slides. On the lower substrate the electrode is coated with a 1�m thick layer of
the dielectric material SU8 as well as a commercial hydrophobic coating to give
contact angles close to �=2. The surface tension � of the liquid was found to be
40:5mN m�1 and the value of the density � was measured as 1157 kg m�3. In this
study AC voltages at 1 kHz were used, and accurate values for the small height
changes in the range 1–40�m were obtained using a 20� microscope objective.
Experiments were conducted for eight drops of various sizes with zero-field contact
angles ranging from 86.1ı to 93.1ı (1.50–1.62 rad) and a range of cell gap to
drop radius ratios from 2.45 to 4.21. In all experiments, the drop contact line was
observed to be pinned with no appreciable movement even at the highest voltages
used. Experimental results for the change in the height of the drop apex h will
be shown in Sect. 4 when comparisons with numerical solutions of the theoretical
model are made.

3 Theoretical Model

In the theoretical model of the experiment described in Sect. 2, an axisymmetric
drop of an incompressible, perfectly conductive liquid rests on the lower substrate
inside a parallel-plate capacitor surrounded by air, as shown in Fig. 1. Consistent
with the experimental results, it is assumed that the drop is static and the contact line
is pinned. We denote the constant drop base radius by b0; the zero-field contact angle
by �c; and the contact angle with an electric field applied by �c C�c, where�c is
the electric-field-induced change in the contact angle. The electrodes are separated
by a constant distance d, and we assume that the thickness of the dielectric layer on
top of the lower electrode is negligible, so that the electric potential at the top of this
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layer can be assumed to be zero. This is a reasonable approximation given that the
thickness of the dielectric layer (1�m) is small compared to the other dimensions of
our system: b0 and d are of the order of millimetres. At the top electrode the electric
potential is equal to V .

We use spherical polar coordinates with their origin at the centre of the base of
the drop with r denoting the distance from the origin and � the angle the radial
vector makes with the axis of symmetry. The drop interface is then defined as the
zero level of the function � D r�R.�/, so that at any particular angle � , the distance
of the drop interface from the origin is r D R.�/.

The electric field E D �rU, where U.r; �/ is the electric potential, and the drop
interface r D R.�/ are governed by Laplace’s equation in the bulk and the normal
stress balance, often termed the augmented Young–Laplace equation, on the drop
interface. Since the drop is assumed to be a perfectly conducting liquid, the electric
potential inside the drop is constant, and is determined by the close proximity of the
lower electrode which is fixed at U D 0. The upper substrate is held at a potential
U D V . The boundary conditions for the interface are those of axisymmetry and
that the contact line is fixed at r D b0. In addition, the volume of the drop V is
assumed constant.

The governing equations and boundary conditions are made dimensionless by
scaling distance by b0, so that r D b0r� and R D b0R�, and by writing

V D 2�b30
3

V �; E D V

d
E�; U D Vb0

d
U�; p � pa D �

b0
p�: (1)

We define a non-dimensional electric Bond number, gravitational Bond number, and
scaled cell gap as

ı2 D �0�2V2b0
�d2

; G D �gb20
�
; D D d

b0
; (2)

respectively. Here pa is the constant air pressure, � is the constant fluid density, � is
the constant surface tension, �0 is the permittivity of free space and �2 D �air=�0 is
the relative permittivity of the surrounding air; �2 is sufficiently close to one that we
take it to equal unity.

Then, with the stars dropped for clarity, the electric potential U and the drop
interface R must satisfy

r2U D 1

r2
@

@r

�

r2
@U

@r

�

C 1

r2 sin �

@

@�

�

sin �
@U

@�

�

D 0; (3)

p � GR cos � C ı2
�

.E � n/2 � 1

2
jEj2

�

D r � n; (4)

where n D r�=jr�j is the drop interface outward unit normal, so that r � n is twice
the mean curvature. The electric potential and the drop interface must also satisfy
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the boundary conditions

U.r; �=2/ D 0; U.R; �/ D 0; U.r; �/ D D on r cos � D D; (5)

R .�=2/ D 1; R0.0/ D 0; (6)

and the volume constraint

V D
Z �=2

0

R3 sin � d�: (7)

In order to compare to experimental measurements we consider the change in the
height of the drop apex, h D R.0/ � R.0/jı2D0, where R.0/jı2D0 is the zero-field
height of the drop apex.

Using this theoretical model of the experimental system we will carry out
numerical simulations and compare with the experimental results. Using evidence
from these numerical simulations, we can find asymptotic solutions in appropriate
limits, although these calculations are only summarised here; further details can be
found in Corson et al. [9].

4 Numerical Results and Comparison with Experimental
Results

The theoretical model described above was solved numerically using COMSOL [8]
and MATLAB [12], where solutions to Laplace’s equation (3), subject to (5), and
solutions to the normal stress balance (4), subject to (6), were found iteratively until
convergence was achieved. Figure 2 compares the experimentally measured change
in the height of the drop apex (stars) to the full numerical solution (solid line) for the
eight experimental drops. Figure 2 illustrates the validity of the numerical solutions
over a range of parameter values: the gravitational Bond number G which increases
from panel (a)–(h), the cell gap to drop radius D which decreases from panel (a)–(h),
and the initial contact angle �c. We see that there is very good agreement between
the experimental results and the numerical solution.

Figure 2 also shows numerical solutions using two additional simplifying
assumptions: with gravity neglected G D 0 (dashed line) and with the upper
electrode very far from the drop D ! 1 (dashed-dotted line). We see that,
for all values of D we consider, the simplifying assumption of large cell gap is
valid. Unsurprisingly, since G > 0:1 for all drops, the numerical solutions with
G D 0 overestimate the deformation, although the numerical solutions with gravity
included do reproduce the experimental results.

From Fig. 2 we see that the deformation may be approximated byh D ˛0;2ı
2C

˛1;2�ı
2 C ˛0;4ı

4, and fitting to the experimental results we find coefficients ˛0;2 D
0:366˙0:012, ˛1;2 D �1:059˙0:419 and ˛0;4 D 0:090˙0:096. For the theoretical
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Fig. 2 The change in the height of the drop apexh plotted as a function of electric Bond number
ı2 for each experiment (stars) along with the full numerical solution (solid lines). Also shown are
numerical solutions using two additional simplifying assumptions: with gravity neglected, G D 0

(dashed lines), and with the upper electrode very far from the drop, D!1 (dashed-dotted line)

model we find the numerically determined coefficients ˛0;2 D 0:375, ˛1;2 D �0:966
and ˛0;4 D 0:541. The experimental coefficients for ˛0;2 and ˛1;2 agree well with the
theoretical coefficients, although the large amount of scatter in experimental values
for the ˛0;4 coefficient suggests that the level of error in the experimental values is
of the same size as ı4.

5 Summary and Discussion

In this short paper we have considered, both experimentally and theoretically, the
deformation due to an electric field of a pinned nearly hemispherical static sessile
drop of a liquid with a high conductivity. Numerical solutions of the theoretical
model were found to agree very well with experimental results for eight drops with
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contact angles ranging from 86.1ı to 93.1ı and cell gap to drop radius ratios from
2.45 to 4.21.

For these experiments it was also noted that the assumption of an infinite cell
gap D ! 1 is a good approximation to the experimental situation. Also, although
a model with the further simplifying assumption of zero-gravity G D 0 did not
accurately reproduce the experimental results, the fit to experiments was sufficiently
close to consider a simplified model in order to make analytical progress. Therefore,
an approximate analysis of the theoretical model, with G ! 0 and D ! 1, was
undertaken (further details of which can be found in Corson et al. [9]). For this
analysis we obtain

h D 3

8
ı2 �

�
1

4
C ln 2

�

�ı2 C
�
69

64
� 3

4
ln 2

�

ı4 ' 0:375ı2 � 0:943�ı2 C 0:558ı4;

which is a very good approximation to the numerically obtained results from the
full model, and can readily be extended to all orders. The expressions for h that
are described in this paper predict a reduction in the leading order deformation at
the apex of the drop as the contact angle decreases (� increases). The numerical
implementation of the theoretical model, as well as the approximate analytical
solution, therefore provide accurate solutions for the drop profile R.�/ and electric
potential U.r; �/, and form a useful predictive tool for the electro-manipulation of
a sessile conductive drop in a parallel-plate capacitor.
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Fiber Suspension Flows: Simulations
and Existence Results

Uldis Strautins

Abstract Main result of this article is demonstrating the weak global in time well
posedness result for the equations governing fiber suspension flows for sufficiently
small initial data under mild assumptions about the nonlinear equation for fiber
orientation dynamics and the constitutive law, thus extending the previous local in
time results. The required estimate of growth of the H2 norm is granted if the L1
norm of fiber orientation state variables remains bounded. This is the case for fiber
orientation tensors.

Keywords Existence result • Fiber orientation dynamics • Fiber suspension flow

1 Introduction

Technical fiber suspension flows are commonly modelled as flows of a non-
Newtonian fluid with a material law characterizing the relation between stress and
strain dependent on the local microstructure of the fluid. The microstructure is pri-
marily characterized by fiber orientation and concentration although it also depends
on a multitude of other parameters such as shape and interfacial phenomena on
the fiber-matrix surface. Fiber orientation is commonly characterized by orientation
tensors which are low order momenta of the distribution function. This description
is concise (fiber orientation can be described using just five independent scalar
fields) and allows modelling the microstructure dynamics in a closed way once
a closure approximation has been chosen. As a result, one ends with a system
of incompressible generalized Navier-Stokes equation and a transport equation
governing the fiber orientation.

The FO equations depend on the model chosen, but also on the closure
approximation, see e.g. [1]. Assuming that higher order coefficients in expansion
of the ODF vanish, the linear closure approximation is obtained. Powerful well-
posedness results have been obtained by Munganga et al. for this linear case [4, 5].

U. Strautins (�)
Institute of Mathematics and Computer Science, University of Latvia, Raiņa bulvāris 29, Rı̄ga
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Otherwise the equations are non-linear, and in this case much less is known. A fixed
point argument used by Guilope and Saut [3] to prove existence for a viscoelastic
fluid was the point of departure. From there Galdi et al. [2] have demonstrated the
well posedness in a weak sense for the Folgar-Tucker equation with the quadratic
closure approximation (we note, however, that the necessary estimates fail if the
orientational distribution is exactly proportional to the scalar shear rate). Strautins
has extended that approach to a wide class of nonlinear equations under mild
assumptions; these are not restricted to fiber suspensions alone. This paper aims
to extend these results to global in time results by exploiting the fact that the
supremum norm of the components of FO tensor are bounded (e.g., for the second
order moment a.2/ we have Tr.a.2// D 1 and a.2/ � 0).

2 Equations

We formulate the equations in a general setting. Linear momentum of the suspension
is governed by a Navier-Stokes equation:

Re
Dv

Dt
� 4v C rp � divT D �b; (1)

r � v D 0;

where v is velocity, p is pressure and T is extra stress tensor due to the fibers.
Typically T depends on the fourth order fiber orientation tensor, e.g., T D Npa.4/ W
D C Ns.D � a.2/ C a.2/ � D/ for constants Np and Ns, where D is the symmetrical part
of rv, but we only require the linearity of this constitutive law wrt. components of
rv.

Fiber orientation is described by a finite set of scalars governed by a system of
transport-reaction equations, for example, the components of a.2/ and Folgar-Tucker
equation. We allow arbitrary finite set of parameters, which we group in a vector
field s. This field satisfies the transport-reaction equations

st C .v � r/s D F.s;rv/:

We assume that s D 0 is a stationary state when the suspension does not flow
rv D 0, i.e., F.0; 0/ D 0: Some fiber orientation diffusion models having
isotropic orientation diffusion have a.2/ D 1

3
I as stationary point; then we define

the components of s as the components of

a.2/ � 1

3
I
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We define the space of solenoidal vector fields with vanishing trace V WD
H1
0;	 .˝/. Let ˘ W H1

0 ! V be the standard projection to incompressible fields,
and denote L D �˘4.

Next we formulate an initial-boundary value problem for .v; s/ and state our main
assumptions.

Problem P: Find

v.�; t/ 2 V and s.�; t/ 2 .H2.˝//d2 ;

such that for almost all t 2 .0;T/ the following equations are satisfied

ReŒvt C .v � r/v�C �L v � divT D b;

T D T .s;rv/;

st C .v � r/s D F .s;rv/;

and the given initial conditions v.�; 0/ D v0 and s.�; 0/ D s0 hold.
Here T , F satisfy the following assumptions.

T 2
h
C2.Rd2Cd2/

id2

, the function T .s; �/ is linear in �, and together with

its first and second order derivatives has a polynomial growth with respect to jsj.
Furthermore, whenever jsj D 0 or j�j D 0, the gradient r.s;�/T D 0.

F 2
h
C2.Rd2Cd2 /

id2
, the function F .s; �/ is linear in �, and together with

its first and second order derivatives has a polynomial growth with respect to jsj.
Moreover, F .0; 0/ D 0. ut

An important assumption is that F must be C2 w.r.t. velocity gradient. This
condition is not fulfilled in the classical Folgar-Tucker model where the fiber
orientation diffusion is assumed to be proportional to the local scalar shear rate,
which is not differentiable in the origin.

3 Main Result

In the dissertation [6] the following result is proven:

Theorem 1 Let ˝ have C3 boundary, b 2 L2loc.R
CI H1/, b0 2 L2loc.R

CI H�1/, v0 2
D.L / and s0 2 H2.˝/d2 . Then there exist positive constants K and T such that
whenever

kb0kL2.0;TIH1/\L2.0;TIH�1/ C kv0kD.L / C ks0kH2 � K;
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then Problem P admits at least one solution .v;P; s/ in ˝ � .0;T/ in the spaces

v 2 L2.0;TI H3/; v0 2 L2.0;TI V/; P 2 L2.0;TI H2/;

s 2 L1.0;TI H2/; s0 2 L1.0;TI H1/:

The constant K depends only on the domain˝ and on the material constants, while
T also depends on the data. Finally, such solutions satisfy the estimate

kvkL2.0;TIH3/\L1.0;TID.L // C kv0kL2.0;TIV/\L1.0;TIH/
CkPkL2.0;TIH2/ C kskL1.0;TIH2/ C ks0kL1.0;TIH1/ � k;

where k depends on the data in such a way that

k ! 0 as kbkL2.0;TIH1/ C kb0kL2.0;TIH�1/ C kv0kH2 C ks0kH2 ! 0:

We extend it to the following.

Theorem 2 Let the ordinary differential equation Ps D F .s; �.t// have a compact
invariant manifold, whatever the matrix valued function �.t/ be, and the initial data
s0 are from this invariant manifold, then the weak solution of Theorem 1 can be
continued uniquely for all time points t 2 RC.

We proceed the proof as for Theorem 1 in [6]. The assumptions about bound-
edness of s allows us to estimate krs ˝ rskL2 � ckskL1 kskH2 by Gagliardo-
Nirenberg, hence from (3.18) in [6] we deduce the linear bound d

dt ksk2
H2 � c1ksk2

H2 :

4 Conclusions

Interpretation of simulation results should rely on qualitative theory of the underly-
ing equations. For example, in fiber suspension flows in channel domain there may
be rv D 0 on the centerline at all times. Thus, the initial fiber orientation state is
retained while in arbitrary close neighbourhood the solution tends to the stationary
solution. Does the analytical solution break down at certain time? The result of
this paper guarantees that the solutions of fiber orientation models do not develop
singularities under the assumptions of the Theorem.

However, we have seen that the Folgar-Tucker model does not satisfy the
conditions. This equation can be modified by using a mollified version of the local
shear rate as suggested in [6].

Acknowledgements This work was partially supported by the grant 623/2014 of the Latvian
Council of Science.
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Global Existence of Weak Solutions
to an Angiogenesis Model

N. Aïssa and R. Alexandre

Abstract We prove global existence of a weak solution to the angiogenesis model
proposed by A. Tosin, D. Ambrosi, L. Preziosi in Bull. Math. Biol. (2006) 7, 1819-
1836. The model consists of compressible Navier-Stokes equations coupled with
a reaction-diffusion equation describing the concentration of a chemical solution
responsible of endothelial cells migration and blood vessels formation.

Proofs are based on the control of the entropy associated to the hyperbolic
equation of conservation mass and the adaptation of the results of P.L. Lions
dealing with compressible fluids which are inevitable for all models dealing with
compressible Navier-Stokes equations.

We use the vanishing artificial viscosity method to prove existence of solutions,
the main difficulty for passing to the limit is the lack of compactness due to hyper-
bolic equation which usually induces resonance phenomenon. This is overcome by
using the concept of the compactness of effective viscous pressure combined with
suitable renormalized solutions to the hyperbolic equation of mass conservation.

Keywords Angiogenesis model • Existence result • Vanishing artificial viscosity
method

1 Introduction

In this paper, we discuss a mathematical model introduced by Ambrosi et al. [1],
Tosin et al. [7] describing the formation of blood vessels in the organism. The self-
assembly of endothelial cells into a vascular labyrinth is called vasculogenesis and
is responsible for the early formation of blood vessels in the embryo.

We refer to the papers [1, 7] for the physical and biological relevances of the
model considered herein. We set QT D .0;T/ �˝ where T > 0 is a fixed time and
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˝ is a bounded and regular subset of R2 or R3. The model problem settled in QT is
given by

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

@tn C r � .n v/ D 0;

@t.nv/C r � .nv ˝ v/ � �v � �r.r � v/C �nv C r.'.n// D anrc;

@tc � d c C 1



c D ˛.n/ n;

n.0/ D n0; .nv/.0/ D m0; c.0/ D c0 in ˝;

v D 0; rc � N D 0 on .0;T/ � @˝:

(1)

State variable n represents the density of cellular matter and v it’s velocity field. The
chemotaxis force is fchem D a rc where c represents concentration of the chemical
soluble factor and a measures the intensity of cell response per unit mass. It is
assumed that the chemotactic interaction has an attractive character, that is a > 0.
The dissipative interaction with the substratum is taken into account by the term
fdiss D ��nv, � > 0. Parameter d > 0 is the diffusion factor, ˛.n/ > 0 is the rate of
release and 
 > 0 is the half-life of the soluble mediator.

Moreover, N is the outward unit normal to the boundary,� > 0 and � D �C� >
0 are the Lamé parameters appearing in the usual Navier-Stokes theory. Finally,
'.n/ represents the repulsive force felt by the cells when they crowd, according to
the papers [1, 7], we shall consider the following explicit example

'.n/ D 1fn>ncg.n � nc/
k; (2)

where nc > 0 is a constant called the close-packing density and k > 3
2
. In order to

simplify the proofs and to highlight the main ideas, we will consider the case when
k D 4. The case of powers less than 4 will be discussed at the end of the paper. Our
main theorem for model (1) is given by

Theorem 1 Let the pressure function ' be given by (2) and the entropy function
 .n/ be defined by  .n/ D n

R n
0
'.s/
s2

ds. Assume

(i) n0 � 0, n0 2 L4.˝/,  .n0/ 2 L1.˝/,
(ii) v0 2 L2.˝/, n0v0 2 L2.˝/,

(iii) c0 2 H1.˝/, ˛.n/ is such that j˛j1 � ˛0, j˛0.n/j � ˛1
n for some positive

constants ˛0; ˛1.

Then, there exists a global weak solution .n; v; c/ to (1) satisfying the energy
estimate

E .t/C
Z t

0

�jrvj2 C �jr � vj2 C njvj2dxds � C1

Z t

0

.E .s/C 1/ds C C2E0; (3)
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with some constants Ck > 0 depending only on the data for k D 1; 2. The energy of
the system is defined by

E .t/ D
Z

˝

f .n/C 1

2
njvj2 C bjcj2gdx:

for some appropriate positive constant b.

We note that the convex function  satisfies the differential equation

s 0.s/�  .s/ D ';  .0/ D 0; (4)

and is related to the definition of renormalized solution of the continuity equation
that will be recalled later. Through the paper, we shall use the standard Hilbert
spaces L2.˝/;Hm.˝/ and Lp.0;TI Hm.˝// equipped with the norms denotes
k:k; k:kHm.˝/ and k:kLp.0;TIHm.˝// respectively.

Weak solutions alluded to in the above statement are finite energy weak solutions
of problem (1). In particular, .n; v; c/ satisfy

1. n � 0, n 2 L1.0;TI L4.˝//, v 2 .L2.0;TI H1
0.˝///

2,
p

nv 2 L2.0;TI L2.˝//,
c 2 L2.0;TI H2.˝//;

2. The energy is locally integrable on .0;T/ and energy inequality (3) holds in
D 0.0;T/I

3. Equations from (1) are satisfied in D 0..0;T/ � ˝/ and in addition, mass
conservation law holds in the sense of renormalized solutions.

Plan of the Paper In Sect. 2 we use Galerkin method to solve an approximate
system with artificial viscosity; in Sect. 3, we give the main tools for the vanishing
viscosity method. Finally, in Sect. 3.3, we prove the strong convergence of the mass
density and prove the main theorem.

2 Approximate System

It is natural to introduce an artificial viscosity to transform the hyperbolic equation
of mass conservation into a parabolic one. The new problem can be treated by
standard methods.

2.1 Approximate System with Artificial Viscosity

8
<

:

@tn C r � .nv/� "n D 0 on .0;T/ �˝;
rn � N D 0 on @˝ and n.0; x/ D n0 on ˝:

(5)



1090 N. Aïssa and R. Alexandre

8
<

:

@t.nv/C r � .nv ˝ v/ � �v � �r.r � v/C �nv C r.'.n//C "rv:rn D a n:rc;

v D 0 on @˝; .nv/.0; x/ D m0 on ˝:
(6)

8
<

:

@tc � dxc C 1


c D ˛.n/n on .0;T/ �˝;

rc � N D 0 on @˝; c.0; x/ D c0:
(7)

The artificial viscosity is balanced in the momentum equation by the term "rv:rn
in order to control energy estimates.

2.2 Second Level Approximation: Galerkin Approximation

Let f�ig1iD0 be an orthonormal basis in L2.˝/ and an orthogonal basis in H1
0.˝/. We

denote Xm D span f�jg1�j�m and Pm the orthogonal projection of L2.˝/ onto Xm.
Adapting proofs of Novotny and Straskhaba [6], p. 352 by combining Galerkin’s

method and Schauder’s fixed point theorem, we get existence and uniqueness of
an approximate solution .nm; vm; cm/ 2 C 0.0;TI Xm/ to (5)–(6)–(7) satisfying the
following uniform estimates with respect to m which are deduced from energy
estimates and interpolation argument

kvmkL2.0;TIW1;2.˝// C knmkL1.0;TIL4.˝// C knmjvmj2kL1.0;TIL1.˝// � L.E0;T/; (8)

kcmkL2.0;TIW2;2.˝// � L.E0;T/; (9)

p
"krnmkL2.˝T / C "knmkL2.˝T / � L.E0;T;˝/; (10)

knmvmk
L1.0;TIL 8

5 .˝//
C k@tnmk

L2.0;TI.W1; 83 .˝//?/
� L.E0;T;˝/; (11)

kn
16
3

m k � L.E0;T; ";˝/; (12)

Here L is a positive constant which is, in particular, independent of m. Moreover, if
" is not explicitly written in the argument of L, then L is independent of ". We may
pass to the limit as m ! 1. Indeed, we deduce from the previous estimates that for
subsequences,

vm * v" in L2.0;TI H1
0.˝//; nm * n" weakly�? in L1.0;TI L4.˝//; (13)

rnm * rn" weakly in L2.˝T/; cm ! c" strongly in L2.0;TI H1.˝//:

(14)
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Moreover, using Aubin’s compactness result, nm ! n" in L2.˝T/. Consequently,
using (12) and the Vitali’s theorem; we get nm ! n" in Lp.˝T/, 1 � p < 16

3
. Then

'.nm/ ! '.n"/ strongly in L
4
3 .˝T/ as m ! 1. Finally we check that .n"; v"; c"/ is

a solution to (5)–(6)–(7).
We have thus proven the existence of solutions of the approximate problem.

3 Main Ideas for Letting " ! 0 and Mathematical Tools

Using estimates (8) and (9) which are also valid for .n"; v"; c"/, we get for
subsequences,

v" * v in L2.0;TI H1
0.˝//; n" * n in L2.˝T/ weak; c" ! c in L2.0; TI H1.˝// strong:

At this stage, we loose the strong convergence of n" because the constant occurring
in (10) depends on ". Consequently '.n"/ should converge to a mere measure. The
limiting problem would, a priori, be different from the initial one. The procedure we
will use is not standard and is an adaptation of Lions [4]. The ideas are the following
and will be developed later:

• The real pressure exerted on a unit volume is not only '.n/ but '.n/�.�C�/r �v
which is called the effective viscous pressure. This term behaves as though it was
a strongly convergent quantity in the following sense [4]

.'.n"/� .�C �/r � v" * F; n" * n/ ) .'.n"/� .�C �/r � v"/n" ! Fn a:e:

• Renormalized solutions of the continuity equation with suitable test functions
allow to control density oscillations.

• Strong convergence under strict convexity theorem leads to the strong conver-
gence of the density n" in at least L1.QT/.

Next, we recall some mathematical tools which will be useful in the sequel.

3.1 Renormalized Solutions

It is well known that hyperbolic systems of conservation laws are not well posed in
the class of distributional solutions. The appearance of discontinuities represents
a source of energy dissipation which is not captured by the weak formulation.
Multiplying the continuity equation

@tn C r � .nv/ D f ; n.0/ D n0; (15)
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by expression B0.n/ where B is a smooth function, we formally deduce the equation

@tB.n/C r � .B.n/v/C b.n/r � v D B0.n/f ; b.s/ D B0.s/s � B.s/; (16)

Definition 1 We shall say that n (and v ) is a renormalized solution of the continuity
equation (15) on .0;T/ �˝ if (16) holds in D 0..0;T/ � ˝/ for any functions B 2
C Œ0;1/\C 1.0;1/, b 2 C Œ0;1/, B.0/ D 0 (Including that the continuity equation
holds in R

2 by extending the solution by 0 outside ˝).

By well known results due to DiPerna-Lions transport theory [2], if n 2
L2.0;TI L2.˝// is a weak solution associated to v 2 L2.0;TI H1.˝// then n is
a renormalized solution of the continuity equation on .0;T/ �˝ .

3.2 Compactness of the Effective Viscous Pressure

We check that Proposition 7.36 in [6] applies in our case since we have uniform
bounds of n" in L5.QT/ [5] which allows us to conclude that '.n"/ * '.n/ in at
least L

5
4 .QT/. Then the compactness of the effective viscous pressure writes

'.n/n � .� C �/nr � v D '.n/n � .� C �/nr � v a:e: (17)

where n, '.n/n, nr � v and '.n/ are respectively the weak limits of n", '.n"/n",
n"r � v" and '.n"/.

3.3 Strong Convergence of the Density and Proof of the Main
Theorem

As n 2 L2.˝T/ and v 2 L2.0;T;H1.˝// then n is a renormalized solution to the
continuity equation @tn C r � .nv/ D 0 so it satisfies

@tb.n/C r � .b.n/v/C .nb0.n/� b.n//r � v D 0 (18)

with the test function b.s/ D s ln.s/. Next, n" satisfies renormalized inequality

@tb.n"/C r � .b.n"/v"/C .n"b
0.n"/ � b.n"//r � v" � "b.n"/ � 0 (19)

with the test function bh.s/ D s ln.s C h/. Integrating over .0;T/ � ˝ and letting
h ! 0 and " ! 0 we get

Z

˝

n.T/log.n.T//� n.T/log.n.T//dx �
Z

˝T

nr � v � nr � vdxdt
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Hence using the compactness of the effective viscous flux (17)

R
˝

n.T/log.n.T//� n.T/log.n.T//dx � 1
�C�

R
˝T
.'.n/n � '.n/n/dxdt (20)

Next we use results on monotone and convex operators to control density oscilla-
tions. Since log and ' are nondecreasing, using Lemmas 3.33 and 3.35 in [6], we
get n.T/log.n.T//� n.T/log.n.T// � 0 while .'.n/n � '.n/n/ � 0. Hence

'.n/n D '.n/n a:e: (21)

Next, as ' is nondecreasing, thanks to the results on monotone operators (Cf.
Lemma 3.39 in [6]), we deduce from (21) that

'.n/ D '.n/; a:e: in ˝T : (22)

Finally, as ' is strictly convex, we can use Theorem 2.11 in [3] to conclude that
n" ! n a.e. in ˝T . Then by the density improved uniform estimates of Lions [4],
Lions [5], Novotny and Straskhaba [6] in L5.˝T/ and Vitali’s theorem

n" ! n strongly in Lp.˝T/; 1 � p < 5: (23)

Consequently '.n"/ ! '.n/ in L1.˝/ and we check that .n; v; c/ is a weak solution
of (1).

Remark 1 In the case when the pressure function is in the form

'.n/ D 1fn>ncg.n � nc/
k; 2 � k < 4;

Galerkin approximation convergence fails because (10) relies on L4 uniform
estimates of the density n. To overcome this difficulty, we modify the pressure term
r'.n/ by adding the artificial pressure ırnˇ for some constants ˇ � 4, ı > 0. As
n 2 L2.QT/, the DiPerna-Lions’s transport theory applies to the continuity equation
and the previous arguments remain valid for letting ı ! 0 to get a global weak
solution to (1). We refer to [6] for more details.

If 9
5

� k < 2, using the Lions’s approach [4] and an improved estimate on
the density we deduce from [5] that n 2 L2.QT/. Then we can proceed like in the
previous case.

If 3
2
< k < 9

5
, n may not belong to L2.QT/ and the DiPerna-Lions theory fails. By

Fereisl’s approach [3, 6], we can overcome this by using generalized renormalized
solutions to control density oscillations. We refer to [3, 6] for more details. Finally
the case when k < 3

2
is an open problem.
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High-Order Compact Schemes
for Black-Scholes Basket Options

Bertram Düring and Christof Heuer

Abstract We present a new high-order compact scheme for the multi-dimensional
Black-Scholes model with application to European Put options on a basket of two
underlying assets. The scheme is second-order accurate in time and fourth-order
accurate in space. Numerical examples confirm that a standard second-order finite
difference scheme is significantly outperformed.

Keywords Black-Scholes model • Computational finance • Option pricing

1 Introduction

The multidimensional Black-Scholes model for option pricing (e.g. [8]) considers
n 2 N�2 underlying assets Si 2 Œ0;1Œ for i D 1; : : : ; n, where each asset follows a
geometric Brownian motion,

dSi.t/ D �iSi.t/dt C 	iSi.t/dW.i/.t/; (1)

where �i 2 R is the drift and 	i � 0 is the volatility of the asset Si, respectively,
for i D 1; : : : ; n and dW.i/.t/ denotes a Wiener Process at time t 2 Œ0;T� for some
T > 0. The correlation between the assets is given by dW.i/.t/dW. j/.t/ D �ijdt. The
Lemma of Itô and standard no-arbitrage arguments lead to the following (backward
in time) parabolic partial differential equation with mixed second-order derivative
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terms for the option price V D V.S1; S2; : : : ; Sn; t/ (see, e.g. [8]),

@V

@t
C 1

2

nX

iD1
	2i S2i

@2V

@S2i
C

nX

i;jD1
i<j

�ij	i	jSiSj
@2V

@Si@Sj
C

nX

iD1
rSi
@V

@Si
� rV D0;

with Si > 0, t 2 Œ0;TŒ and r � 0 denoting the riskless interest rate. When examining
a European Put basket option, the final condition is given by

V.S1; : : : ; Sn;T/ D max

�

K �
nX

iD1
!iSi; 0

�

;

where the asset weights satisfy
nP

iD1
!i D 1 and additionally!i > 0 for i D 1; : : : ; n if

we have short-selling restrictions. Suitable boundary conditions are discussed later.
The transformations

xi D �

	i
ln

�
Si

K

�

; 
 D T � t and u D er
 V

K
; (2)

where � > 0 is a constant scaling parameter, yield the (forward in time) parabolic
partial differential equation

u
 � �2

2

nX

iD1

@2u

@x2i
� �2

nX

i;jD1
i<j

�ij
@2u

@xi@xj
C �

nX

iD1

�
	i

2
� r

	i

�
@u

@xi
D0; (3)

where x 2 R
n and 
 2 ˝
 D�0;T�. Under the same transformations the initial

condition for a European Put basket is given by

u.x1; : : : ; xn; 0/ D max

�

1 �
nX

iD1
!ie

	ixi
� ; 0

�

: (4)

When looking for numerical methods to approximate solutions to problem
(3), (4), subject to suitable boundary conditions, finite difference schemes can
be employed, at least for space dimensions up to three. Standard discretisations,
however, only yield second-order convergence in terms of the spatial discretisation
parameter. Alternatively, high-order compact schemes can be used which only use
points on a compact computational stencil, while having fourth-order consistency in
space, see for example [1, 3, 4, 6, 7] and the references therein. A drawback is that
the derivation of high-order compact schemes (and their numerical stability analy-
sis) is algebraically demanding, hence most works in this area restrict themselves
to the one-dimensional case. An additional complication is present in (3) in form of
the mixed second-order derivative terms.
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In a forthcoming paper [2] we derive new high-order compact schemes for a
rather general class of linear parabolic partial differential equations with mixed
second-order derivative terms and time- and space-dependent coefficients in arbi-
trary space dimension n 2 N. In the present paper we focus on the multi-dimensional
Black-Scholes model (3), (4). We present a new high-order compact scheme which
is second-order accurate in time and fourth-order accurate in space. To ensure high-
order convergence in the presence of the initial condition (4) with low regularity we
employ the smoothing operators of Kreiss et al. [5]. Numerical examples for pricing
European Put options on a basket of two underlying assets confirm that a standard
second-order finite difference scheme is significantly outperformed.

2 Discrete Two-Dimensional Black-Scholes Equation

For the discretisation of (3) with n D 2 we replace the spatial domain by the
rectangle ˝ D Œx.1/min; x

.1/
min� � Œx.2/min; x

.2/
min� with �1 < x.i/min < x.i/min < 1 for i D 1; 2.

On ˝ , we define the grid

G.2/
h D ˚

.x.1/i1
; x.2/i2

/ 2 ˝ j x.k/ik
D x.k/min C ikh; 1 � ik � Nk; k D 1; 2

�
; (5)

where h > 0, Nk 2 N and x.k/max D x.k/min C Nkh for k D 1; 2. By
ı
G
.2/

h we denote the

interior of G.2/
h . We present the coefficients of a semi-discrete scheme of the form

i1C1X

j1Di1�1

i2C1X

j2Di2�1

h OMj1;j2@
Uj1;j2 .
/C OKj1;j2Uj1;j2 .
/
i

DQg.x; 
/;

at time 
 for each point x 2 ı
G
.2/

h for the two-dimensional Black-Scholes equation

using n D 2 in (3). By Uj1;j2 .
/ we denote the approximation of u.x.1/i1
; x.2/i2

; 
/ after

semi-discretisation in space with
�
x.1/i1
; x.2/i2

� 2 G.2/
h .

The general idea underlying the derivation of the high-order compact scheme
is to operate on the differential equation (3) as an additional relation to obtain
finite difference approximations for high-order derivatives in the truncation error.
Inclusion of these expressions in a central difference method for Eq. (3) increases
the order of accuracy to fourth order while retaining a compact stencil. A detailed
derivation of this scheme and a thorough von Neumann stability analysis are
presented in a forthcoming paper [2]. In the two-dimensional case we obtain the
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following coefficients

OKi1;i2 D � 2�2�212
3h2

C 5�2

3h2
C
�
	1
2

� r
	1

�2

3
C
�
	2
2

� r
	2

�2

3
;

OKi1˙1;i2 D �2�212
3h2

˙
�
�
	1
2

� r
	1

�

3h
�
�
�
	2
2

� r
	2

�
�12

3h
�
�
	1
2

� r
	1

�2

6
� �2

3h2
;

OKi1;i2˙1 D �2�212
3h2

˙
�
�
	2
2

� r
	2

�

3h
�
�
�
	1
2

� r
	1

�
�12

3h
�
�
	2
2

� r
	2

�2

6
� �2

3h2
;

OKi1˙1;i2�1 D ˙
�
	2
2

� r
	2

� �
	1
2

� r
	1

�

12
�
�
�
	2
2

� r
	2

�

12h
˙
�
�
	1
2

� r
	1

�

12h

�
�
�
	1
2

� r
	1

�
�12

6h
˙
�
�
	2
2

� r
	2

�
�12

6h
� �2

12h2
˙ �2�12

4h2
� �2�212

6h2
;

OKi1˙1;i2C1 D
�
�
	2
2

� r
	2

�

12h
�
�
	2
2

� r
	2

� �
	1
2

� r
	1

�

12
˙
�
�
	1
2

� r
	1

�

12h

C
� �12

�
	1
2

� r
	1

�

6h
˙
�
�
	2
2

� r
	2

�
�12

6h
� �2

12h2
� �2�12

4h2
� �2�212

6h2
;

as well as

Mi1C1;i2˙1 DMi1�1;i2�1 D ˙�12

24
; Mi1;i2 D2

3
;

Mi1˙1;i2 D 1

12
�

h
�
	1
2

� r
	1

�

12�
; Mi1;i2˙1 D 1

12
�

h
�
	2
2

� r
	2

�

12�
:

Additionally, Qg.x; 
/ D 0 for x 2 ı
G
.2/

h and 
 2 ˝
 . After presenting the high-
order compact discretisation for the spatial interior we now discuss the boundary
conditions.

3 Discretisation of the Boundary Conditions

The first boundary we discuss is Si D 0 for some i 2 f1; 2g at time t 2 Œ0;TŒ. Once
the value of the asset is zero, it stays constant over time, see (1). If only one asset
reaches its minimum value, using Si D 0 for i 2 f1; 2g in the multi-dimensional
Black-Scholes equation with n D 2 leads to the one-dimensional Black-Scholes
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equation for the asset Sj with j D f1; 2g n i. One can either transform the solution of
the one-dimensional Black-Scholes partial differential equation using (2) or derive
a fourth-order compact scheme for these boundaries similarly to the space interior.
If both asset values are minimal, we have

u.x.1/min; x
.2/
min; 
/ D u.x.1/min; x

.2/
min; 0/

for 
 2�0; 
max� after transforming with (2).
Upper boundaries are boundaries with Si D Smax

i > 0 with i 2 f1; 2g at time
t 2 Œ0;TŒ. For a sufficiently large Smax

i , we can approximate

@V .S1; S2; t/

@Si

ˇ
ˇ
ˇ
SiDSmax

i

	0; (6)

with Sk 2 	
Smin

k ; Smax
k



for k D f1; 2g n fig. If only one underlying asset Si reaches

its maximum value, using (6) in the two-dimensional Black-Scholes differential
equation leads to the one-dimensional Black-Scholes differential equation for the
underlying asset Sj with j D f1; 2g n fig. One can either transform the solution of
this equation using (2) or transform the one-dimensional Black-Scholes differential
equation using (2) and derive a fourth-order compact scheme for these boundaries.
When both underlying assets reach their maximum value, we have

u.xmax
1 ; xmax

2 ; 
/ Du.xmax
1 ; xmax

2 ; 0/

for 
 2�0; 
max� after using the transformations (2). Since the boundaries behave
similar, we have

u.xmin
1 ; xmax

2 ; 
/ Du.xmin
1 ; xmax

2 ; 0/; u.xmax
1 ; xmin

2 ; 
/ Du.xmax
1 ; xmin

2 ; 0/;

for 
 2�0; 
max�.

4 Time Discretisation

We use an equidistant time grid of the form 
 D k
 for k D 0; : : : ;N
 with
N
 2 N. Using a Crank-Nicolson-type time discretisation with step size
 leads to

i1C1X

j1Di1�1

i2C1X

j2Di2�1

�
OMj1;j2 C 


2
OKj1;j2

�

UkC1
j1;j2

D
i1C1X

j1Di1�1

i2C1X

j2Di2�1

�
OMj1;j2 � 


2
OKj1;j2

�

Uk
j1;j2

C .
/g.x/
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at each point
�
x.1/i1
; x.2/i1

� 2 G.2/
h , where only points of the compact stencil are used.

By Uk
i1;i2

we denote the approximation of u.x.1/i1
; x.2/i2

; 
k/. For the Crank-Nicolson
type time discretisation this compact scheme has consistency order two in time and
four in space. Thus, using 
 2 O

�
h2
�
, leads to fourth-order consistency in terms

of the spatial stepsize h > 0.

5 Numerical Experiments

In this section we present numerical experiments for the Black-Scholes European
Puts basket option in space dimension n D 2. According to [5], we cannot expect
fourth-order convergence if the initial condition u0 is only in C0 .˝/. In [5] suitable
smoothing operators are identified in Fourier space. Since the order of consistency
of our high-order compact schemes is four, we use the smoothing operator ˚4 (see
[5]), given by its Fourier transformation

O̊
4.!/ D

 
sin
�
!
2

�

!
2

!4 �

1C 2

3
sin2

�!

2

��

:

This leads to the smoothed initial condition given by

Qu0 .x1; x2/ D 1

h2

3hZ

�3h

3hZ

�3h

˚4

� x

h

�
˚4

� y

h

�
u0 .x1 � x; x2 � y/ dxdy;

for any stepsize h > 0, where ˚4.x/ denotes the Fourier inverse of O̊
4.!/. If u0 is

smooth enough in the integrated region around .x1; x2/ 2 ˝ , we have Qu0 .x1; x2/ D
u0 .x1; x2/. Thus it is possible to identify the points where smoothing is necessary
for a given initial condition. This approach reduces the necessary computations
significantly. Note that as h ! 0, the smoothed initial condition Qu0 converges to the
original initial condition u0 given in (4). Hence the approximation of the smoothed
problem tends towards the true solution of (3).

For examining the numerical convergence rate we use the relative l2-error
kUref � Ukl2=kUrefkl2 , as well as the l1-error kUref � Ukl1 , where Uref denotes
a reference solution on a fine grid and U is the approximation. We determine
the numerical convergence order of the schemes as the slope of the linear least
square fit of the individual error points in the loglog-plots of error versus number
of discretisation points per spatial direction. We compare the high-order compact
scheme to a standard second-order scheme, which results from applying the standard
central difference operators directly in (3) with n D 2. We use the following
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Fig. 1 Absolute l1-error and relative l2-error for two-dimensional Black-Scholes Basket Put with
smoothed initial condition

parameters,

	1 D 0:25; 	2 D 0:35; � D :25; r D log.1:05/; !1 D 0:35 D 1� !2:

and K D 10. We set the parabolic mesh ratio 
=h2 D 0:4, but emphasise
that neither the von Neumann stability analysis presented in [2] nor additional
numerical experiments reveal any restrictions on this relation, indicating uncon-
ditional stability of the scheme. We use different values �12 D �0:8; �12 D 0

and �12 D 0:8 for the correlation. In Fig. 1 we show plots of the l1-error and
the relative l2-error. The high-order compact scheme performs highly similar for
the three different correlation values, the points are almost identical. The numerical
convergence orders for the high-order compact scheme range between 3:62 and 3:73
for the l1-error, and between 3:87 and 3:94 for the relative l2-error. The high-order
compact scheme significantly outperforms the standard second-order discretisation
in all cases.
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Mathematical Formulation of Bioventing
Optimal Design Strategies

Filippo Notarnicola

Abstract Bioventing is a technology used to abate the presence of pollutants in
the subsoil. Microorganisms biodegrade the pollutant but the biochemical reaction
requires oxygen and so an airflow is induced in the subsoil by means of injection
and/or extraction wells.

Costs, final result and decontamination time are reliant on contaminant type, soil
permeability and several other factors, but oxygen subsoil concentration plays a very
important role. For this reason a rational choice of well locations and flow rates is
required.

The mathematical definition of the optimal design problem will be set-up starting
from a simplified mathematical model describing the bioventing system.

A formal definition of decontaminated subsoil will be given and the set of
system control variables will be identified. Optimization strategies such as cost
minimization and time optimization will be mathematically described.

Keywords Bioventing • Optimal design

1 Introduction and the Simplified Mathematical Model

In bioventing, the pollutant is removed from the subsoil by bacterial activity and
the process can be enhanced by adding oxygen into the soil using air injection
wells. The literature regarding bioventing is very vast and involves many aspects:
microbial, biochemical, geophysical and so on [3, 4, 6, 8].

This publication concerns the problem of designing a subsoil bioventing inter-
vention that is, starting from the knowledge of soil characteristics and pollutant
concentration, to identify appropriate well locations and well air flow rates useful
to achieve predetermined aims. Different goals can be pursued in the design phase.
Starting from the mathematical model describing the physical phenomenon, two
optimization strategies will be proposed: the first one reduces the remediation cost

F. Notarnicola (�)
Istituto per le Applicazioni del Calcolo - Consiglio Nazionale delle Ricerche, Via Amendola
122-d, 70123 Bari, Italy
e-mail: f.notarnicola@ba.iac.cnr.it

© Springer International Publishing AG 2016
G. Russo et al. (eds.), Progress in Industrial Mathematics at ECMI 2014,
Mathematics in Industry 22, DOI 10.1007/978-3-319-23413-7_153

1103

mailto:f.notarnicola@ba.iac.cnr.it


1104 F. Notarnicola

and the second one reduces the remediation time. Here, as a first step, we do not
analyze the analytical or computational procedures to solve the optimal problem,
but we describe the two design objectives giving a formal mathematical definition
of them.

The mathematical model outlined in this paper is based on the continuum
approach for the fluid flow in porous media [1, 5] and it is non stationary, multi
phase and multi component. It is a simplified version of the general model in [7]
and it is based on the following simplifying assumptions.

Three different phases are present: the air gas phase, the water liquid phase and
the pollutant liquid phase. The water and the pollutant phases are considered to
be immiscible and therefore, although both are liquid, they are treated as distinct
phases. Only air is in the gas phase, composed of two components, oxygen and non-
oxygen. The micro-organisms which biodegrade the pollutant grow where oxygen
and hydrocarbons are available and they are subject to Fickian diffusion.

There are nine unknowns of the system and they depend on space and time:

• H, C, G the water, pollutant and gas phase saturations,
• XO and XN , the gas (air) relative oxygen and non oxygen fractions,
• pH , pC, pG the water, pollutant and gas phase pressures,
• B, the bacteria concentration

Using mass conservation and the expression of the generalized Darcy law for
multiphase flow it is possible to write the following continuity equations. For the
water, the pollutant, the oxygen and the non-oxygen fractions of the air we have:

@

@t
.˚H�H/ D div

�

�H
kH

�H
K .gradpH � �H g/

�

C div .˚ DH grad H�H/

C 1

YH
˚�OXOG ˚�C C B (1)

@

@t
.˚C�C/ D div

�

�C
kC

�C
K .gradpC � �C g/

�

C div .˚ DC grad C�C/

�
�
1

YC
g.C;O/B C MC ˚�OXOG ˚�C C B

�

(2)

@

@t
.˚GXO�O/ D div

�

XO�O
kG

�G
K .gradpG � �G g/

�

C div .˚ DG grad GXO�O/

�
�
1

YO
fg.C;O/� dg B C MO ˚�OXOG ˚�C C B

�

C rO (3)

@

@t
.˚GXN�N/ D div

�

XN�N
kG

�G
K .gradpG � �G g/

�

C div .˚ DG grad GXN�N/

CrN (4)
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Each of the above equations contains: the Darcy term, the diffusive/dispersive term,
the source term describing the biochemical reaction due to the bacteria activity and,
finally, the source terms representing injection or extraction wells, that is: rO, rN .

In each point of the space domain for water, pollutant, gas saturations and for the
oxygen and non oxygen gas relative fractions, the following two equalities hold:

H C C C G D 1 (5)

XO C XN D 1 (6)

The bacteria spatial concentration satisfies the following diffusion and reaction
continuity equation:

@

@t
B D DB div grad B C g.C;O/B � dB (7)

where DB is the bacteria diffusion coefficient and g.C;O/ (a positive function
usually based on Monod type terms, [7]) and d (a positive constant) represent the
microorganism growth and decay rate, respectively.

In a porous media system at the interface between different phases there is a
difference of pressure (see [1, pp. 441–449], [5, pp. 50–60]) called capillary pressure
which depends on the phase saturations and porous media characteristics. If we
assume that the water phase H wets the pollutant phase C and that C wets the gas
phase G then for the capillary pressures pcCH and pcG C , we have:

pcCH D pC � pH D f1.H;C;G/ (8)

pcG C D pG � pC D f2.H;C;G/ (9)

The two functions f1.H;C;G/ and f2.H;C;G/ are considered known and several
expressions of them have been proposed (see [5, pp. 54–60]).

The nine Eqs. (1)–(9) describe the simplified bioventing system and the following
parameters appear in the equations:

• K the intrinsic permeability tensor;
• kH , kC , kG the relative permeability of water, pollutant and gas phases;
• �H , �C , �G the dynamic viscosity of water, pollutant and gas phases;
• �H , �C , �G, �O, �N the density of water, pollutant, gas, oxygen and non-oxygen

part of the gas phase, respectively. The gas phase density, �G D �OXO C �NXN ;
• DH , DC , DG the dispersion tensor of water, pollutant and gas phases;
• g D .0; 0;�g/T the gravitational acceleration vector;
• MC , MO the hydrocarbon and oxygen metabolic consumption constants;
• YC , YO the hydrocarbon and oxygen yield coefficients.

Air is injected or extracted by N active wells and we suppose that the bioventing
model is written in a spatial three dimensional domain. Each one of the N wells,
identified by the index i D 1; : : : ;N, has horizontal position .xi; yi/ and consists of
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a vertical segment of length li (the air permeable zone) located at a depth zi from the
ground level. Therefore each well is spatially described by .xi; yi; zi; li/. Moreover,
for the well i, qi is the total volumetric air flow rate injected or extracted and it is
uniformly distributed along the segment li.

For reasons of optimization, the flow rates of the wells can change during the
decontamination intervention: then we suppose that the terms qi depend on time.
Let us denote, at time t, the vector of the flow rates of the N wells with q.t/ and the
vector—constant in time—of the geographical descriptions of the N wells with w:

q.t/ D .q1.t/; : : : ; qN.t// w D Œ.x1; y1; z1; l1/; : : : ; .xN ; yN ; zN ; lN/�
(10)

If s D .x; y; z/ is a point in the three dimensional spatial domain, we denote the
function describing, in space and time, the air source term with˙.s; tI q.t/;w/. The
presence of q.t/ and w in ˙.s; tI q.t/;w/ shows that its definition depends on the N
wells. Now, by denoting the oxygen fraction of the air in the atmosphere with p , we
can finally define the external source terms in Eqs. (3) and (4):

rO.s; t/ D p˙.s; tI q.t/;w/ rN.s; t/ D .1 � p/˙.s; tI q.t/;w/ (11)

2 Design Optimization and Control

The final goal of the decontamination is to lead the pollutant under a level fixed
by laws and regulations, in all the points of the polluted regions; the biochemical
decontamination reaction requires oxygen and, therefore, air is injected in the
subsoil by means of wells.

2.1 Control Variables and Space State Definitions

The bioventing process will be controlled by ruling the air velocity flow field, that is
choosing convenient geographical positions and air flow rates of the wells: it follows
that w and q.t/, used to define˙.s; tI q.t/;w/, are the control variables of the system
and all the unknowns depend on them.

In theory N, the number of the wells, could change during the decontamination
intervention but, in this paper, we consider it N as fixed. The value of N should be
sufficiently high and the optimal control procedure will select the strictly necessary
active wells imposing a null flow rate to the others.

For physical reasons the control variables q.t/ and w are subject to constraints.
The flow rates of the wells are limited by the pump equipment power. If Mt is the
maximum total flow rate available for the bioventing intervention and M is the
maximum flow rate of each single well then, for q.t/, we have the following set
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of the admissible time dependent vector functions:

Q D ˚
q.t/ W RC ! R

N
ˇ
ˇ
ˇ

NX

iD1

jqi.t/j � Mt; jqi.t/j � M .i D 1; : : : ;N/; t > 0
�

(12)

We explicitly observe that the flow rates of the wells can assume positive or negative
values for injection or extraction wells, respectively.

Moreover, the set of the admissible control values for the well positions is:

Wc D ˚
w D Œ.x1; y1; z1; l1/; : : : ; .xN ; yN ; zN ; lN/� 2 R

4N
ˇ
ˇ
ˇ

0 � li � L and Zmin � zi � Zmax for i D 1; : : : ;N
�

(13)

where the constraints on li limit the vertical active portion of the wells; limitations
are also imposed to the depths zi, due to subsoil characteristics.

To solve the system (1)–(9) an initial condition is required. Denoting a point in
the spatial domain with s D .x; y; z/, let S0 D �

H0.s/;C0.s/;G.s/;X0O.s/;X
0
N.s/,

p0H.s/; p
0
C.s/; p

0
G.s/;B

0.s/
�

a spatial initial configuration of all the nine unknowns
of the model at the time t D 0; in the framework of the control theory S0 is the
initial state of the system. In the subsequent definitions we shall consider the initial
state S0 as assigned and fixed. Now, for the initial condition S0, suppose that the
functions H.s; t/, C.s; t/, G.s; t/, XO.s; t/, XN.s; t/, pH.s; t/, pC.s; t/, pG.s; t/, B.s; t/
are the solution of the differential problem (1)–(9) in correspondence to the well
source terms rO and rN which, in turn, depend on the vector function q.t/ 2 Q and
on the constant vector w 2 Wc.

The goal of a decontamination intervention is the removal of the pollutant
inside the contaminated domain and, therefore, we will focus our attention on the
pollutant spatial concentration. Then, if C.s; t/ is the solution of the system (1)–(9)
in correspondence to the initial condition S0 and wells description q and w, and
C.s;T/ is the space distribution of the pollutant saturation at a fixed time T, we
define the space state of the pollutant at time T as the following space dependent
function:

eC.sI T; S0;q;w/ D C.s;T/ (14)

We observe that in eC.sI T; S0;q;w/ the values T; S0;q;w are explicitly mentioned
to show the dependence of the pollutant space state from those values. From this
definition it follows thateC.sI 0; S0;q;w/ D C0.s/.

For a given initial condition S0, we would like to define the set of the pollutant
reachable space states at time T whose elements are obtained in correspondence to
an admissible system control:

R.T/ D
n
eC.sI T; S0;q;w/ is a space state of the pollutant at time T

ˇ
ˇ
ˇ

.q;w/ 2 Q � Wc and T > 0
o

(15)
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The set R.T/ contains several possible spatial contaminant distributions: but only
some of them can be associated to a decontaminated state of the soil. Therefore the
set of the acceptable contaminant states at time T will be defined, that is the subset
A.T/ � R.T/, containing the contaminant reachable space states which, at time T,
fulfills laws and regulations. If the law requires the pollutant level to be below a
fixed constant PL, we have:

A.T/ D
n
eC.sI T; S0;q;w/ 2 R.T/

ˇ
ˇ
ˇ k C.s; t/k1 � PL for t � T

o
(16)

where C.s; t/ is the pollutant solution of the system (1)–(9) which is connected with
eC.sI T; S0;q;w/ and, therefore, such that C.s;T/ D eC.sI T; S0;q;w/. Observe that
if eC.sI T; S0;q;w/ 2 A.T/ and C.s; t/ is its related contaminant solution function
then, from the definition (16), it follows that T is not necessarily the exact time
when C.s; t/ achieves a decontaminate state. In other words, if T 0 < T and A.T 0/
is the set of the acceptable contaminant states at time T 0, it is also possible that
C.s;T 0/ D eC.sI T 0; S0;q;w/ 2 A.T 0/. On the other hand, at time T, the set A.T/
could be empty if, for example, the time T is excessively short.

Now, we define the set whose elements are all the acceptable contaminant states
up to time T:

A.T/ D
(
[

0�
�T

A.
/

)

(17)

In what follows we shortly denote the elements of A.T/ as CA.s/. Finally, for
each initial condition of the system S0, we can define the set of the control variables
which lead the system to an acceptable contaminant state within a time T:

� .S0;T/ D ˚
.q;w/ 2 Q � Wc

ˇ
ˇ
ˇ exists CA.s/ 2 A.T/

�
(18)

If the set A.T/ is empty the same is for � .S0;T/.

2.2 Cost and Time Optimization

We suppose that the total cost of the decontamination intervention consists of the
costs of realizing wells, of the cost of the air pumping equipment and of the cost of
the total volume of the used pumped air.

If we consider that the control variables of the system are q and w we have that,
starting from a fixed initial state S0, for each decontaminate state CA.s/ 2 A.T/ the
cost function depends on the values .q;w/ 2 � .S0;T/ associated with CA.s/.
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Then, if N is the maximum number of the active wells, the cost function is:

J.q;w/ D me C Nmw C mu

NX

iD1

Z T

0

jqi.t/jdt (19)

where me is the expense for the pumping equipment, mw is the cost to realize a
single well and mu is the cost to pump a unitary air volume. The integral in (19)
involves the absolute value of qi since we suppose that mu is the same for positive or
negative values of qi.t/. Finally, if we assume that the goal of the control problem is
to minimize the total decontamination cost, we have to find:

min
.q;w/2� .S0;T/

J.q;w/ (20)

Now the problem of seeking the minimal intervention time will be defined.
Consider a value of time T and suppose that the set A.T/ is not empty. From
definition (18) it follows that for each pair of control variables .q;w/ 2 � .S0;T/
there is at least one element CA.s/ 2 A.T/. Moreover, CA.s/ comes from a solution
C.s; t/ of the system (1)–(9) and, as shown at about the end of Sect. 2.1, the element
CA.s/ may not be the only element in A.T/ related with the same function C.s; t/.

Then, for each .q;w/ 2 � .S0;T/ and T > 0, it is possible to define the following
set of decontamination times:

�.q;w;T/ D ˚
0 � 
 � T

ˇ
ˇ
ˇ exists CA.s/ 2 A.T/ such that CA.s/ D eC.sI 
; S0;q;w/

�

(21)

Moreover, for each .q;w/ 2 � .S0;T/, the function �.q;w/ D inf �.q;w;T/ can
be defined. Therefore, the minimal intervention time can be found by seeking:

min
.q;w/2� .S0;T/

�.q;w/ (22)

3 Conclusion

In this paper a mathematical model describing a bioremediation system has been
reported in order to consider the optimal design problem.

For the bioventing, the control variables have been identified, a cost function and
the related cost optimal control problem have been mathematically defined.

Moreover, another optimization criterion has been described, that is the mini-
mization of the remediation intervention time having available some fixed limited
technical resources.

The solutions of the two optimization problems described in this paper appear
to be difficult from a mathematical and computational point of view. Further
developments may consist of easier to manage optimization procedures or of
dividing the two procedures into sub steps which are easier to approach.
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Numerical Simulation of Heat Transfer
in Underground Electrical Cables

R. Čiegis, G. Jankevičiūtė, A. Bugajev, and N. Tumanova

Abstract The aim of this project is to develop a virtual modelling tool which
can be used to construct optimal design of power transmission lines and cables.
They should meet the latest power transmission network technical and economical
requirements. The mathematical model is based on a general heat conduction
equation describing the diffusion, convection and radiation processes. We take
into account a linear dependence of the resistance on temperature. The velocity
of convective transport of the heat in air regions is obtained by solving a coupled
thermoconvection problem including the heat conduction problem and a standard
Navier-Stokes model of the flow in air. The changes of material coefficients in
soil due to influence of heating are taken by solving a simplified mass balance
equation for flows in porous media. The FVM is used to solve the obtained
system of differential equations. Discretization of the domain is done by applying
“aCute” mesh generator, which is a modification of the well-known Triangle mesh
generator. The discrete schemes are implemented by using the OpenFOAM tool.
Parallel versions of basic algorithms are also investigated. Results of computational
experiments of simulation of real industrial underground cables are presented.

Keywords Heat transfer • Optimal design • Power transmission lines and cables

1 Introduction

This research is aimed to develop design rules for power transmission lines and
cables, which have to meet the latest power transmission network technical and
economical requirements. At present the power lines are over-dimensioned by up
to 60 % in terms of transmitted power. However, today, as the new distributed
generating capacities are installed e.g. large wind farms, bio-gas plants or waist-
to-energy plants, the infrastructure of power grid must be re-designed or new
optimization strategies for the available grid developed. Power cables for power
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distribution applications are still rated according to IEC 287 and IEC 853 standards,
which use the Neher and McGrath methods from 1957 [1, 10], relaying on the
thermal equivalent circuit technique. However, today there are many applications
where analytical and heuristic formulas cannot describe precisely enough the con-
ditions under which the cables are installed. An example could be an underground
cable route, where the installation conditions for a cable are different only for a
short distance including only a short crossing of the road. The present standards
require that the cable’s current-carrying capacity must be reduced due the worst
case conditions. Today the cost effective designing of cable installations comes us
an urgent need, since the copper price level has reached its maximum since decades.
At the same time the safety of the design is also must be guaranteed. Thus a direct
simulation of cables including all specific conditions under which the cables are
operating is needed. Some approaches of direct simulation are presented in [7, 8],
where finite element and finite volume methods are applied for numerical simulation
of underground cables.

The knowledge of dynamics (in time) of heat distribution in/around electrical
cables is necessary to optimize the usage of electricity transferring infrastructure. It
is important to determine various parameters of the cable networks: maximal electric
current for the cable; optimal cable parameters in certain circumstances; cable life
expectancy and many other engineering factors.

2 Mathematical Models

A good review on mathematical models for simulation of heat transfer in under-
ground and overhead electrical cables is presented in [8]. Here we will describe
the most important details on high voltage cables and their installation condi-
tions. Figure 1 illustrates a typical high voltage cable, consisting of conduc-
tor (most often copper or aluminum), conductor screen, insulation layer (cross-
linked polyethylene), insulation screen, metallic shielding (copper tape/wire, alu-
minum/lead sheath) and outer covering (polyvinyl chloride, polyethylene, nylon).

Various installation environments are considered in applications. Our main
interest is to simulate the following environments: (a) cables in air, (b) cables
directly buried, (c) cables in pipe and the pipe is directly buried, (d) cable groups
(duct banks).

There are two possible arrangements of cables in the installation: (a) single core
arrangement and (b) three-core arrangement. In each case a group of cables can be
arranged horizontally or vertically (see, Fig. 2).

In recent years a new interesting technology is applied to improve the cooling
of high-voltage cables [12]. The forced cooling systems are developed employing
general principle: solid body or other medium is placed near cable or it’s conductor
resulting the abstraction of excess heat from the conductor. This can be implemented
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Fig. 1 A typical structure of high-voltage (110 kV) cables consisting of six main layers

Fig. 2 Examples of cables layout topologies: (a, b) three single core cables are arranged
horizontally; (c) three single core cables are arranged vertically; (d) three-core cable

by the following means:

1. Copper or aluminum slab is put under or over the cables. These metals are char-
acterized by high thermal conductivity coefficient, thus help to avoid overheating,
especially in case of transient current increase.

2. Pipes with water are arranged around the cables. Water is pumped and it’s
velocity is adjustable.

3. Special duct with fluid (oil) flowing along the cable is installed in the cable itself.
The fluid serves for the abstraction of excess heat from the conductor.
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Now we will describe basic mathematical models which are used in our tool for
simulation of heat transfer in different environments.

2.1 Heat Transfer in Solids

Electric current flowing through cable generates heat. It’s distribution in time and
space is described by heat equation in heterogeneous medium. Since the bungle
of cables consisting of metal cores and various insulation layers is placed in a
medium, we assume that the coefficients of thermal conductivity, material density
and specific heat capacity are discontinuous piece-constant functions depending on
spatial coordinates.

Since the heat transfer mechanism in the underground electrical cables is quite
complicated and many processes can be described only approximately, the structure
of cables also can be simplified. For most cases it is enough to take one slice of
isolation material. The length of a cable (or many cables) is much bigger than its
diameter, thus effects along the cable’s length can be neglected. A sand or soil area
is much bigger than cables’ area, so two-dimensional models are sufficient for the
analysis. However, properties of different filler should be taken into account, we
consider sand, wet and dry soil and other materials.

For heat transfer in underground cables we assume the diffusion to be the main
transfer mechanism. A mathematical model of the heat source is described by the
Joule–Lenz law. Then the mathematical model of non-stationary heat-transfer is
given by the parabolic differential equation [2, 3]:

8
ˆ̂
<

ˆ̂
:

c�
@T

@t
D r � .�rT/C q0.1C ˛.T � T�//I2; t 2 Œ0; tmax�; x 2 ˝;

T.x; 0/ D T0; when x 2 ˝;
T and �rT are continuous, when x 2 ˝;

(1)

here x D .x1; x2/, T.x; t/ is temperature in the Kelvin scale, �.x/ > 0 is the
heat conductivity coefficient, q.x; t;T/—the source function. �.x/ > 0 is the mass
density, c.x/ > 0 is the specific heat capacity, r � .�rT/ defines the diffusion
operator, T0 is the initial temperature. We take into account a linear dependence of
the resistance on temperature, T� is the reference temperature and I is the electrical
current. Due to different properties of materials included into the model, coefficients
�; c; � are discontinuous and their values may vary 1000 times. That makes the
simulation task very challenging.

Various boundary conditions are applied to describe the heat flow through
boundaries of the domain:

• T.x; t/ D Tb1 for the upper boundary, T.x; t/ D Tb2 for the lower boundary,
@T
@x1

D 0 for the left and right boundaries are applied for modelling boundary
conditions in winter (Tb1 D Tb2) or summer (Tb1 > Tb2).
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• Boundary conditions of the third type � @T
@x2

D ˛.T.x; t/� Tair/ are applied on the
upper boundary to evaluate the cooling effects of wind in air.

Numerical approximation of various boundary conditions is considered in [4].

2.2 Cable in Pipe

Figure 3 shows a single cable placed at the bottom of a plastic pipe buried in the soil.
The plastic pipe is placed in the center of the soil domain. Due to its relatively low
heat conduction coefficient a plastic pipe represents a significant thermal resistance
for the cooling of the cable. The main heat transfer mechanism in air is described by
air circulation inside the plastic pipe. Velocities of the free convection process are
computed by solving the Navier-Stokes equations (the conservation of continuity,
momentum and energy equations) in the air area. The air flow is usually modelled
as compressible non-reacting fluid. In order to the mathematical model simpler, we
assume the air to be incompressible for small velocities (less than 80–100 m/s).
Assuming the velocities are not large, the model of laminar incompressible flow is
given by the following system of equations [2]:

r � u D 0; (2)

�
@u
@t

C �ur � u � r � .�ru/ D �rp � �˛g.T � T0/; (3)

�c
�@T

@t
C r � .uT/

�
� r � .�rT/ D q; (4)

where �.x/ > 0 is the density of material in particular area, u.x; t/ is velocity of
the flow, p is the pressure, � is the dynamic viscosity, ˛ is the thermal expansion

Fig. 3 A single cable in
directly buried pipe
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coefficient. The heat conduction equation (4) is extended to the whole domain. In
the soil, pipe or cable area term r � .uT/ is zero, resulting to the non-stationary
problem (1).

2.3 Heat Transfer in Soil

In most papers the soil is considered as solid material. Here we simulate a full
model of heat and water transfer in variable saturated soil. The porous medium is
considered to be rigid and unsaturated, hence two phases are present: liquid (water)
and gas (water vapor and air). The temperature of the solid, liquid and gas phases
are considered to be in local thermal equilibrium. The Richards equation is obtained
from the mass conservation equation for liquid phase and Darcy law [6]:

"
@�wSl

@t
C r �

�

��wK
kl

rel.S
l/

�w

� � rpc.Sl/� �wg
�
�

D 0; (5)

where " is porosity of the porous medium, �w is density of the water, Sl is saturation
of the liquid phase, pc is capillary pressure, K is intrinsic permeability tensor of the
porous medium,�w is viscosity of the water, g is vector of gravitational acceleration.
In general, the capillary pressure also depends on the temperature pc D pc.Sl;T/.

For the description of the heat transfer, the energy conservation is used

.�c/eff
@T

@t
C
�

�wK
kl

rel.S
l/

�w

�rpc.Sl/C �wg
�
�

� rT D r � ��eff rT
�C q; (6)

where .�c/eff is the effective heat capacity, �eff is the effective heat conductivity. The
soil-atmosphere interface is an important boundary condition affecting subsurface
movement of liquid water and heat under field conditions.

3 Numerical Approximations

The obtained systems of PDEs are solved by using Finite Volume Method. For
implementation of constructed discrete schemes we have used OpenFOAM (Open
source Field Operation And Manipulation) tool [11]. It is a C++ toolbox (library)
targeted for the development of customized numerical solvers for partial differential
equations. Since mathematical models (1)–(6) consists of different models in
different regions, application of OpenFOAM functionality requires some non-trivial
modifications of basic models presented in the library of cases. For example in order
to approximate heat conduction equation in solid medium (1), two sub-tasks should
be solved accurately. First, the numerical fluxes of the discrete solution must be
orthogonal to the boundary of finite volumes. In our solver this problem is solved by
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using a proper Delaunay triangulation of the domain. Discretization of the domain
is done by applying “aCute” mesh generation tool, which is modification of the
well-known Triangle mesh generator. Second, a special interpolation should be used
for definition of discontinuous coefficients � in diffusion term, namely harmonic
version of the interpolation formula.

The given model requires to solve multi-physics problems in different subre-
gions. The robust, efficient and accurate numerical simulation of such processes
makes big challenges for selection of appropriate mathematical and numerical
methods, and for software implementation part of the project. Since we are
mostly interested in solving non-stationary problems, the so-called loosely coupled
schemes are used for approximation systems of multi-physics problems. Alter-
natives can be to use solvers based on fixed-point iterations or to implement
monolithic solvers based on implicit time-approximation schemes. A good review
on monolithically-coupled numerical algorithms is given in [9].

Parallelization in OpenFOAM is robust and implemented at a low level using
MPI library. Solvers are built using high level objects and, in general, don’t require
any parallel-specific coding. They will run in parallel automatically. Thus there is no
need for users to implement standard steps of any parallel code: decomposition of
the problem into subproblems, distribution of these tasks among different processes,
implementation of data communication methods. OpenFOAM employs a common
approach for parallelization of numerical algorithms—domain decomposition. The
mesh and its associated fields are split into sub-domains, which are allocated to
different processes. Results of computational experiments with parallel version
of the solver are presented in [5]. There was tested the parallel performance of
the conjugate gradient solver with diagonal incomplete Cholesky preconditioner
(DIC/CG) and generalized geometric-algebraic multigrid (GAMG) solver. GAMG
showed better times, however DIC/CG linear solver is to be recommended for
the parallel computations on parallel computing systems with large number of
processors and cores. The weighting factors (supported by OpenFOAM) in mesh
partitioning algorithm allow efficient utilization of heterogeneous computing nodes
for our parallel application.

4 Computational Experiments

Here we present results of simulation of heat transfer in one electrical cable which
is placed at the bottom of a plastic pipe buried in the soil. We have simulated the
heat transfer during three summer months, when the soil is assumed to be semi-
dry, boundary conditions are taken T D 293K, and the electrical current is equal
to 470A. Thus the solution practically reached a stationary phase. Figure 4 shows
a distribution of temperature and a velocity field for a single cable placed at the
bottom of a plastic pipe buried in the soil.

Figure 5 shows a distribution of temperature for different arrangements of trefoil
cable under the same conditions.
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Fig. 4 Simulation results for a single cable in directly buried pipe: (a) distribution of temperature,
(b) velocity field

Fig. 5 Simulation results for trefoil cables: (a) electrical current I D 609 A, (b) I D 675 A
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Numerical Study of Forced MHD Convection
Flow and Temperature Around Periodically
Placed Cylinders

Harijs Kalis and Maksims Marinaki

Abstract In this paper we consider 2D stationary boundary value problems for the
system of magnetohydrodynamic (MHD) equations and the heat transfer equation.
The viscous electrically conducting incompressible liquid moves between infinite
cylinders with square or round sections placed periodically. We also consider similar
2D MHD channel flow with periodically placed obstacles on the channel walls.
We analyse the 2D forced and free MHD convection flow and temperature around
cylinders and obstacles in homogeneous external magnetic field. The cylinders,
obstacles and walls of the channel with constant temperature are heated. The
distributions of electromagnetic fields, forces, velocity and temperature fields have
been calculated using the method of finite differences.

The goal of such investigation is to obtain the distributions of stream function,
temperature, velocity and the vortex formation in the plane of the cross-section
between the cylinders and obstacles as function of the external magnetic field and
of the direction of the gravitation.

Keywords Electroconductive liquid • Heat transfer • Magnetohydrodynamic
convection flow

1 Introduction

In many physical experiments and technological applications it is important to
mix and heat an electroconductive liquid: liquid-metals (steel, mercury, lithium),
liquid magnetic materials, electrolyte, water, air. Liquid metals are considered to be
the most promising coolants for high temperature applications, like nuclear fusion
reactors, because of the inherent high thermal diffusivity, thermal conductivity and
hence, excellent heat transfer characteristics.

In the developed mathematical models vortex-type structures appear in liquid
flows, as well as in problems related to energy conversion in new technological
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devices. MHD convection flow of a viscous incompressible fluid around cylinder
with combined effects of heat and mass transfer is an important problem prevalent
in many engineering applications. These types of problems find their application in
nuclear reactor cooling systems and energy transport systems.

Heat exchanger systems are employed in numerous industries. Steam generation
in boiler, air cooling within the coil of the conditioner and automotive radiators
represent just some of the conventional applications of this mechanical system.
For the in-line arrangements of tube banks (cylinders) a fluid at prescribed mass
flow rate of velocity U0 and an inlet ambient temperature T0 much lower than the
wall temperature Tw enters the cylinders from the left and exits at the right. By
taking advantage of special geometrical features, such as the inherent repetitive
nature of the flow behaviour, the computational fluid domain allows the possible
exploitation of symmetric and periodic boundary conditions in speeding up the
computations and in turn enhancing the computational accuracy of the simplified
geometries. Using the conditions of symmetry and periodicity we can consider only
two cylinders. The heat transfer significant influence on the fluid flow behaviour
without the magnetic field is investigated in [3]. We consider the viscous electrically
conducting incompressible liquid. The liquid moves on the plane .x; y/ in the Ox-
axis direction between infinite cylinders (tube banks) placed periodically in the
.x; y/ plane. The cross-section of the cylinders are square or circle. We consider
2D stationary boundary value problems for the system of magnetohydrodynamic
(MHD) equation. We analyse the 2D flow and temperature around these cylinders
in homogeneous external magnetics field, depending on direction of the gravitation.

This process of the magnetohydrodynamics (MHD) is considered with the so-
called inductionless approximation. This would mean that the action of a moving
liquid on the external magnetic field can be neglected [2].

The external magnetic field, Lorentz force, dimensionless stationary Navier-
Stokes equations, numerical domain with two cylinders and the system of three
equations for calculating the stream function, vorticity and temperature are defined.

The solution of the problem is obtained using the method of finite differences,
Gauss-Seidel iterations and specific boundary conditions for vorticity function.
Some numerical results are analysed.

2 Mathematical Model

The magnetic field creates the Fx.t; x; y/;Fy.t; x; y/ components of the Lorentz
force F.

From the vector of Lorentz force F D J � B; J D� .E C V � B/ for the 2D
magnetic field we can obtain

Jz D 	.VxBy � VyBx C Ez/; Fx D �ByJz; Fy D BxJz;

where Ez D const; Jz are the azimuthal components of the electric field vector E
and the density vector of the electric current J, Bx;By are the components of the
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magnetic induction vector B for the homogeneous magnetic field, 	 is the electric
conductivity, Vx; Vy are the components of the velocity vector V:

The external homogeneous 2D magnetic field has two components of the
induction in the following dimensionless form
Bx D B0 cos.˛/;By D B0 sin.˛/, where ˛ is the angle between the Ox-axis and
the direction of the induction vector, B0 is the magnitude of magnetic field. Then
Jz D 	.Ez C B0.Vx sin.˛/ � Vy cos.˛///:

We analyse the flow depending on two types of homogeneous magnetic field: the
field parallel to Ox-axis .˛ D 0/ and transverse field .˛ D �

2
/:

Using the vorticity function # D @Vy

@x � @Vx
@y ; one obtains

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

@Vx
@t � #Vy D � @Np

@x � 1
Re
@#

@y C Gr
Re2

T sin.ˇ/ � S sin.˛/jz;
@Vy

@t C #Vx D � @Np
@y C 1

Re
@#

@x � Gr
Re2

T cos.ˇ/C S cos.˛/jz;
@Vx
@x C @Vy

@y D 0;
@T
@t C Vx

@T
@x C Vy

@T
@y D 1

Per2T C KT
Pe j2z ;

(1)

where jz D ez C Vx sin.˛/ � Vy cos.˛/; ez are the dimensionless forms of the
azimuthal components for the electric current density and the electric field, Np D
p C 0:5V2; Re D U0L0

�
; S D 	B20L0

�U0
;Gr D ˇtg.Tw�T0/L

3
0

�2
are Reynolds, Stewart and

Grashof numbers, Pe D PrRe;Pr D ��Cp

k ;KT D 	B20L
2
0U2

0

kTw�T0
are Prandtl number and

heat source parameters. The parameter KT is considered as negligible.
The hydrodynamical stream function  can be determined via formulas

Vx D @ 

@y ;Vy D � @ 

@x : By eliminating the pressure Np from the system (1) one obtains

8
<̂

:̂

@#

@t � J. ; #/ D 1
Rer2# � Gr

Re2
. @T
@x cos.ˇ/C @T

@y sin.ˇ//C Sf ;

# D �r2 ;
@T
@t � J. ;T/ D 1

Pe r2T;

(2)

where f D sin.2˛/ @
2 

@x@y C cos2.˛/ @
2 

@x2
C sin2.˛/ @

2 

@y2
is the z-component of the vector

curlF;
J. ; v/ D @ 

@x
@v
@y � @ 

@y
@v
@x is the Jacobian of the functions  ; v; v D #I T, r2 is the

Laplace operator.
Using the boundary conditions (BCs) of symmetry and periodicity we can

consider the domain that contains only quarters of two or four picked out cylinders.
The periodically placed cylinders (PC) are arranged in the parallel series. We

consider the domain˝ D ˝1

S
˝2 (see Figs. 1 and 2), where

˝1 D f.x; y/ W l1 � x � l2; 0 � y � L1g, ˝2 D f.x; y/ W 0 � x � l;L1 � y � Lg,
0 < l1 < l2 < l; 0 < L1 < L:
Here C1 D f.x; y/ W 0 < x < l1; 0 < y < L1g and C2 D f.x; y/ W l2 < x < l; 0 < y <
L1g are quarters of cylinders,
L1 D f.x;L/ W 0 � x � lg;L2 D f.x; 0/ W l1 � x � l2g are the plane of symmetry
with BCs Vy D 0; @T

@y D # D 0;  D  0 on L1;  D 0 on L2,
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Fig. 1 Domain for parallel
placed cylinders (two
cylinders, L1 D 0:5; L D
1; l1 D 0:5; l2 D 1:5; l D 2)

Fig. 2 Domain for channel
flow (quarters of four
cylinders, L1 D 0:5; L2 D
1:5, L D 2; l1 D 0:5; l2 D
1:5; l D 2)

W1 D f.x;L1/ W 0 < x � l1g;W2 D f.x;L1/ W l2 � x < lg;W3 D f.l1; y/ W 0 < y �
L1g and W4 D f.l2; y/ W 0 < y � L1g are the walls of the cylinders with the non-slip
BCs T D 1;Vx D Vy D  D 0,
In D f.0; y/ W L1 < y � Lg is the inlet and Ot D f.l; y/ W L1 < y � Lg is the outlet
with the periodical BCs for  ; #;T;Ux;Uy.
In case of free convection  0 D 0:

For the additional channel flow with symmetry (CFS),
L2 D W5 D f.x; 0/ W l1 � x � l2g is the wall of the half-channel˝ with the non-slip
BCs T D 1;Vx D Vy D  D 0.

3 Numerical Algorithm for Solving the Problem

We consider a uniform square grid ..N C 1/ � M/ W
(1) ˝h

1 D f.xi; yj/; xi D .i � 1/h; yj D . j � 1/h; g; i D N1;N2; j D 1;M1;

.N1 � 1/h D l1; .M1 � 1/h D L1:
(2) ˝h

2 D f.xi; yj/; xi D .i � 1/h; yj D . j � 1/h; g; i D 1;N C 1; j D M1;M;
.N � 1/h D l1; .M � 1/h D L;
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where h D l1
N1�1 D l2

N2�1 D l
N�1 D L

M�1 D L1
M1�1 : In the following any unknown

function q.x; y/ is approximated by the grid function taking values qi;j 
 q.xi; yj/:

The Eq. (2) are made stationary and in the uniform grid .xi; yj/ are replaced
with difference equations of second order approximation in 5-point stencil and the
numerical calculations are carried out by using Gauss-Seidel iterations with under-
relaxation for vorticity and temperature.

The difference equations of second order approximation in 5-point stencil are in
the following form:

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

4�i;j D NS�i;j C h2#i;j;
Re
4

Ji;j.�; #/� 4#i;j C NS#i;j D
D Ha2..sin.˛//2d2y�i;j C .cos.˛//2d2x�i;j � 0:25 sin.2˛/d2x;y�i;j/C
C Grh

Re .cos.ˇ/dxTi;j C sin.ˇ/dyTi;j/;
Pe
4

Ji;j.�;T/ � 4Ti;j C NSTi;j D �KTh2.ez C h�1.cos.˛/dx�i;j C sin.˛/dy�i;j/
2;
(3)

where NSqi;j D qi;j�1 C qi;jC1 C qi�1;j C qiC1;j; q D � I TI #;
d2x�i;j D 2�i;j � �iC1;j � �i�1;j; d2y�i;j D 2�i;j � �i;jC1 � �i;j�1;
d2xy�i;j D �iC1;jC1 C �i�1;j�1 � �i�1;jC1 � �iC1;j�1;
dxqi;j D 0:5.qiC1;j � qi�1;j/; dyqi;j D 0:5.qi;jC1 � qi;j�1/; q D � I T;
Ji;j.�; q/ D .�iC1;j � �i�1;j/.qi;jC1 � qi;j�1/ � .qiC1;j � qi�1;j/.�i;jC1 � �i;j�1/;
q D #I T; Ha D p

Re � S: is the Hartman number.

The numerical calculations for (3) are carried out by Gauss-Seidel iterations with
under-relaxation for #;T functions :

#m
i;j D !1#

z
i;j C .1� !1/#

m�1
i;j ;Tm

i;j D !2T
z
i;j C .1 � !2/Tm�1

i;j ;m D 1; 2; � � � ;

where #z
i;j;T

z
i;j are the grid functions value in central mesh points, obtained in the

m-th iteration, !1; !2 2 .0; 1/ are the relaxation coefficients.
The discrete BCs [1] with O.h2/ on the walls w are computed in the following

form:

#m
w D �

2h
.�4�m

w�1 C �m
w�2 C 3�w/C #m�1

w ;

where �m
w�1; �m

w�2 are the values of �i;j for one or two step h distance from the wall
in the interior normal direction. On the corner of the wall the value of # is equal to
the average value of two nearest # values of the wall.

The velocity components are obtained in the following way:

Vxi;j D 1

h
.�i;jC1 � �i;j/;Vyi;j D �1

h
.�iC1;j � �i;j/;V D

q
.Vx/2 C .Vy/2:
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The dimensionless fluid volumes between the two sections x D 0;

x D l� D 0:5.l1 C l2/ are Q1 D
LZ

L1

Vx.0; y/dy D Q2 D
LZ

0

Vx.l�; y/dy D 1:

4 Some Numerical Results

Numerical results were obtained for l1 D 0:5; l2 D 1:5; l D 2;L D 1;L1 D 0:5 for
flow with symmetry, Re D 40I 100; S D 0I 2:5I 20; Pr D 4 (for electrolyte);
Gr D 0I 25;000; ˇ D 0I ˙�

2
; ˛ D 0I �

2
; !1; !2 2 Œ0:1; 0:4�:

Calculations and their graphical visualization were made by means of the computer
program MATLAB for regular grid:

h D 0:0125;N1 D 41;N2 D 121;N D 161;M1 D 41;M D 81:

We apply the iterations with maximal errors � 10�7 for � and � 10�4 for #
and T (the number of iterations 2 Œ10;000; 100;000�, running time �5–10 min).
The convergence might be further improved by considering ADI-type methods.
In Figs. 3, 4, 5, 6, 7 and 8 we show the obtained levels of stream function and
temperature for different values of parameters.

One can conclude, that for large values of the Ha number on the walls the
Hartman boundary layers develop and the flow then becomes vortex-free (Fig. 4).

Fig. 3 Levels of stream function in PC at Re D 100; S D 20; ˛ D 0; Gr D 0
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Fig. 4 Levels of stream function in PC at Re D 100; S D 20; ˛ D �
2
; Gr D 0
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Fig. 5 Levels of stream function in PC for free convection at Re D 40; S D 0; Gr D
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Fig. 7 Levels of temperature in PC for free convection at Re D 40; S D 0; Gr D 25;000;
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Fig. 8 Levels of temperature in CFS for free convection at Re D 40; ˛ D 0; S D 25; Gr D
25;000; ˇ D �
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If ˛ D �
2

, vorticity and integral heat quantity decrease in the magnetic field (Fig. 6);
for ˛ D 0 the vorticity increases while the integral heat quantity decreases in the
magnetic field (Figs. 3 and 8). For ˇ D �

2
and free convection the central flow moves

in x-direction and the vortex between cylinders rotates clockwise; similar behaviour
is observed for temperature (Figs. 5 and 7).

5 Conclusions

• The 2D MHD free convection flow and temperature fields have been calculated
in case of periodically placed cylinders (PC) and obstacles in the channel (CFS).

• It is noticed that in the transverse magnetic field the vorticity and the integral heat
quantity both decrease whereas in the longitudinal magnetic field the decrease is
seen only in regard to heat quantity (the vorticity then increases noticeably).

• In the strong transverse magnetic field the vortexes were not observed.
• The integral heat quantity for the CFS convection is greater compared to the PC

convection.
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On Detecting the Shape of an Unknown Object
in an Electric Field

Jukka-Pekka Humaloja, Timo Hämäläinen, and Seppo Pohjolainen

Abstract The problem discussed in this paper is detecting the shape of an unknown
object in a 2-dimensional static electric field. For simplicity, the problem is defined
in a partially rectangular domain, where on a part of the boundary the potential
and/or its normal derivative are known. On the other part of the boundary the
boundary curve is unknown, and this curve is to be determined. The unknown part
of the boundary curve describes the shape of the unknown object.

The problem is defined in the complex plane by an analytic function w D f .z/ D
u.x; y/ C iv.x; y/ with the potential u as its real part. Then the inverse function is
given as f�1.w/ D x.u; v/ C iy.u; v/, where the functions x and y are harmonic in
a rectangle with an unknown boundary condition on one boundary. The alternating-
field technique is used to solve the unknown boundary condition.

Keywords Alternating-field technique • Boundary reconstruction problem •
Shape detection

1 Introduction

The problem discussed in this paper is detecting the shape of an unknown object
in a 2-dimensional static electric field. For simplicity, the problem is defined in
a partially rectangular domain, where on a part of the boundary the potential and
its normal derivative are known, on the second part of the boundary homogeneous
Neumann boundary conditions are used. On the third part of the boundary the
potential is known, but the boundary curve is unknown, and this curve is to be
reconstructed. The unknown part of the boundary curve describes the shape of the
unknown object.
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There are quite a number of different approaches for solving such bound-
ary reconstruction problems, e.g., the method of fundamental solutions [1], the
boundary element method [5] or using an indicator function derived from Green’s
identities [3]. However, our efforts to apply these methods to the problem at hand
have been rather unsuccessful. A more suitable method for our problem was found
out to be the alternating-field technique on the inverted plane [4], where the region
of the problem is conformally mapped to a rectangle in the inverted plane. In
the inverted plane all the boundaries of the region are fixed, instead we have an
unknown boundary condition on the boundary corresponding the free boundary
in the original problem. The missing boundary condition is determined using the
iterative alternating-field technique. We will adjust the technique presented in [4] to
our problem and demonstrate its functionality on a few test cases.

2 Problem Formulation

Let a; b 2 R such that a < b and let h W Œa; b� ! R such that h 2 C.Œa; b�/. Now,
define domain R by

R D f.x; y/ 2 R
2 j x 2 Œa; b�; y 2 Œ0; h.x/�g: (1)

Let the lines x D a and x D b be perfectly insulated and the line y D 0 be perfectly
conducting. If a constant voltage potential u0 D 1 is applied to the curve y D h.x/,
then u0 generates the electric field e D �ru, where the electrical potential u satisfies
the following mixed boundary value problem:

r2u D 0 in R;
@xu D 0 on x D a and x D b;

u D 0 on y D 0;

u D 1 on y D h.x/:

(2)

When h is known and sufficiently regular, it is well-known that the mixed
boundary value problem given in Eq. (2) has a unique solution. However, if h is
unknown, but instead we are given an additional boundary condition �@uy D g.x/
on the line y D 0 with g W Œa; b� ! R, the inverse problem of finding h is nonlinear
and ill-posed. Additionally, in practice we do not actually know the entire function g
but only its values at some discrete points xi 2 Œa; b�. The geometry for the problem
is displayed in Fig. 1.
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Fig. 1 The problem on the region R

3 Problem on the Inverted Plane

Since the region R is simply connected, the harmonic potential u has a harmonic
conjugate v in R such that the complex potential w D u C iv is analytic there. The
component functions u and v are known to be connected by the Cauchy-Riemann
equations @xu D @yv and @yu D �@xv, and thus, it is possible to determine the
boundary conditions for v from the boundary conditions of u [2].

It can be seen directly from the Cauchy-Riemann equations that the equipotential
lines of u are the lines where @nv D 0 and conversely, the lines where @nu D 0

are the equipotential lines of v. It yet remains to determine the values of v on the
equipotential lines x D a and x D b. From the boundary condition @nu D g.x/
on the line y D 0 we obtain g.x/ D �@yu D @xv and thus, the change in the
value of v between the lines x D a and x D b is given by

R b
a g.x/dx which can

be evaluated, e.g., using Simpson’s rule. Since the values of v can be determined
up to an additive constant, we may assign v.x D a/ D � R b

a g.x/dx D V and
v.x D b/ D 0. Furthermore, we may obtain the value of v anywhere on the line
y D 0 from v.x/ D � R b

x g.s/ds, which becomes necessary when we determine the
boundary conditions for the inverted problem.

Now we have harmonic conjugates u and v which are real and imaginary parts
of the analytic function w D f .z/ D u C iv. If the function f is invertible in R
and if f 0.z0/ ¤ 0 at each point z0 2 R, then f has an analytic inverse f�1.w/ D
x.u; v/ C iy.u; v/ such that f�1Œ f .z/� D z [2]. Since the inverse of f is analytic in
f .R/, its component functions x and y are harmonic conjugates there, i.e.,

@uux C @vvx D 0 and @uuy C @vvy D 0 (3)
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Fig. 2 The inverted problems for x and y on the region Q

and

@ux D @vy and @vx D �@uy (4)

The region in the inverted plane is a rectangle u 2 Œ0; 1�; v 2 Œ0;V� as shown
in Fig. 2, where also the boundary conditions for the inverted problems are given.
The boundary conditions y D 0, x D a and x D b are obtained directly
from the geometry of the original problem, and the corresponding homogeneous
Neumann boundary conditions are obtained from the Cauchy-Riemann equations
(4). Furthermore, there is an additional boundary condition x D x.v/ on the line
u D 0, which is the inverse of v D v.x/ D � R b

x g.s/ds. In practice the values of
x.v/ are only required at some discrete points vi, which can be interpolated from
v D v.x/, e.g., by using splines.

The unknown boundary conditions x D X.v/ and y D Y.v/ on the line u D 1

represent the unknown boundary curve which is now mapped to a fixed line. With
different values of v we will obtain points .x; y/ on the z-plane, which construct the
curve y D h.x/. The unknown boundary conditions are to be determined using the
alternating-field technique which is described next.

4 Alternating-Field Technique

The alternating-field technique is described in [4] by Nilson and Tsuei. The
procedure given in the following is schematically similar to the one in [4], but some
steps are altered due to differences in the geometries of the problems. In outline,
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the alternating-field technique is an iterative procedure, where we find convergent
estimates for X.v/ and Y.v/ by solving Laplace’s equation, by turns, for x and y. The
convergence of X.v/ and Y.v/ is measured by the change in the arc length parameter
s given by

si D
iX

kD1

p
X.vk/2 CY.vk/2; (5)

i.e., s is the arc length parameter of the unknown boundary curve y D h.x/.
For the procedure, the region Q is covered by an M � N rectangular mesh of size

u D 1=.N � 1/ and v D V=.M � 1/. The mesh points are denoted by .uj; vi/

such that u1 D 0, uN D 1, v1 D V and vM D 0, and the value of x (resp. y) at a point
.uj; vi/ is denoted by xij (resp. yij). Laplace’s equation is solved as a system of linear
equations, where the coefficient matrix is in R

MN�MN , but it has only five nonzero
diagonals. Solutions can be computed effectively by using sparse LU decomposition
which needs to be computed only once for the coefficient matrices of x and y.

The steps for the iterative procedure are as follows:

0. Make an initial guess for X.v/. Note that X.vi/ 2 Œa; b� for every i 2
f1; 2; : : : ;Mg and that X.v1/ D a and X.vM/ D b. Then perform steps 1–6
to obtain the first iterates for X.v/ and Y.v/ and an initial estimate for the arc
length parameter s.

1. Assign boundary conditions for x.u; v/ field, i.e., set

x1j D a;8j 2 f1; 2; : : : ;Ng; xMj D b;8j 2 f1; 2; : : : ;Ng;
xi1 D x.vi/;8i 2 f1; 2; : : : ;Mg xi2 D xi1;8i 2 f1; 2; : : : ;Mg;
xiN D X.vi/;8i 2 f1; 2; : : : ;Mg:

(6)

2. Solve Laplace’s equation for x in Q.
3. Calculate new Y.v/ by the formula

Y.vi/ D �
1R

0

@vxijdu; i 2 f2; 3; : : : ;M � 1g;
Y.v1/ D Y.v2/; Y.vM/ D Y.vM�1/;

(7)

where

@vxij 
 x.i�1/j � x.iC1/j
2v

(8)

and the integral can be evaluated, e.g., using Simpson’s rule.
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4. Assign boundary conditions for y.u; v/ field, i.e., set

y1j D y2j;8j 2 f1; 2; : : : ;Ng; yMj D y.M�1/j;8j 2 f1; 2; : : : ;Ng;
yi1 D 0;8i 2 f1; 2; : : : ;Mg; yiN D Y.vi/;8i 2 f1; 2; : : : ;Mg; (9)

where Y.vi/ is given by Eq. (7).
5. Solve Laplace’s equation for y in Q.
6. Calculate new X.v/ by the formula

X.vi/ D xi1 C
1R

0

@vyijdu; i 2 f2; 3; : : : ;M � 1g;
X.v1/ D a; X.vM/ D b;

(10)

where

@vyij 
 y.i�1/j � y.iC1/j
2v

(11)

and the integral can be evaluated, e.g., using Simpson’s rule. Then calculate a new
arc length parameter s� from the newly obtained X.v/ and Y.v/ using Eq. (5).

7. Check convergence for s, i.e., calculate jjs� � sjj2. If necessary, set s D s� and
return to step 1. A new estimate for X.v/ is given by Eq. (10).

The usual criterion for the procedure to stop is to see, whether jjs� � sjj2 is
sufficiently small. Other possibility would be, e.g., to inspect the convergence rate
of s and determine a suitable stopping criterion based on its changes.

5 Numerical Test Cases

The procedure described in the previous section is tested on four different boundary
curves y D h.x/. The curves, as well as the approximations obtained from the
procedure, are presented in Fig. 3. In each of the cases, we have a D 0 and b D 1,
and the value of g.x/ is computed at 21 evenly spaced points on the interval Œ0; 1�.
Thus, the uv-plane is covered by a 21�21 rectangular mesh. Initial guess for X.v/ in
all the cases is x.v/ and the stopping criterion for the procedure is jjs��sjj2 < 10�10.
Data on error norms, absolute and relative maximum errors and the number of
iterations required for jjs� � sjj2 < 10�10 is displayed in Table 1 for each test case.
The numbering of the cases corresponds to the order of the images in Fig. 3.

Based on Table 1 and Fig. 3 we see that for the most part the approximated
boundary points Y agree with the actual boundary curve h.X/. However, a few
noticeable errors occur as well. These errors are mostly caused by the conformal
mapping from the xy-plane to the uv-plane. Namely, if h0.0/ ¤ 0, h0.1/ ¤ 0 or
the curve y D h.x/ contains non-smooth points, those points are non-analytical
points for the function f .z/ D u C iv and thus, the mapping f .z/ is not conformal
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Fig. 3 The boundary curves y D h.x/ for the test cases 1–4 and the approximated boundary points
obtained using the alternating-field technique

Table 1 Results for the numerical test cases

Case jjY � h.X/jj2 jjY � h.X/jj1 max
n

jY�h.X/j
h.X/

o
Iterations

1 0.0285 0.0161 0.0424 29

2 0.0458 0.0211 0.2110 18

3 0.0320 0.0256 0.0641 21

4 0.0434 0.0379 0.0866 33

at those points, which will cause errors. Most probably some errors arise from the
alternating-field technique as well. However, there are no existing stability or error
estimates for the technique, so these errors are virtually unknown. Regardless, it
would seem that the errors caused by sources other than the conformal mapping are
rather insignificant in comparison.
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Tracking of Reference Robot Trajectory Using
SDRE Control Method

Elvira Rafikova, Luiz Henrique de Vitro Gomez, and Marat Rafikov

Abstract The application of the SDRE-State Dependent Ricatti Equation method
for the tracking control of a nonholonomic mobile robot is presented in this work.
The proposed control law minimize the quadratic cost functional consisting of
tracking errors and control efforts. The numerical simulations demonstrate the
efficacy of the control method applied to track the linear and circular trajectory
reference robot.

Keywords Control problem • Robot motion • Tracking

1 Introduction

In this paper it is considered a tracking control problem applied to a differential
steering nonholonomic robot. This problem received attention in [1] in which
a locally exponentially stabilizing control was proposed. A dynamic feedback
linearization technique for wheeled mobile robot was presented in [2]. Global
tracking control laws were proposed in [3]. Model-based predictive control for the
differential steering mobile robot is presented in [4]. In [5] the switched control
is proposed for nonholonomic mobile robot. The control method considered in
this paper is SDRE-State Dependent Riccati Equation control. This strategy has
become very popular within the control community over the last decade, providing
a very effective algorithm for synthesizing nonlinear feedback controls by allowing
nonlinearities in the system states while additionally offering great design flexibility
through state dependent weighting matrices. For this method Mracek and Cloutier
[6] proved local asymptotic stability for a multivariable case system with SDRE
feedback controller. A review of SDRE method can be found in [7].
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2 Robot Model

The problem under consideration is the tracking of a reference robot trajectory for
a wheeled mobile robot of differential steering type, shown in Fig. 1. The vehicle
is equipped with two identical, parallel, nondeformable, standard wheels that are
actuated separately. Moreover, pure rolling and nonslipping contact with the ground
causes restrictions on the degree mobility of the robot which limits the initial
velocity vector set.

The kinematics of mobile robot is given by the model:

Px D v cos �
Py D v cos �

P� D !

(1)

Where
	

x y �

T

are the position and orientation coordinates of the robot and
	

V !

T

are the linear and angular velocities of the robot, respectively. The linear
and angular velocities of the robot is given by the composition of the velocities of
the right VR and left VL :

V D .VR C VL/

2
; ! D .VR C VL/

2r
(2)

Fig. 1 The differential
steering mobile robot
schematic model showing the
coordinates system
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3 Control Tracking Problem of the Differential Steering
Robot

When the robot is controlled to follow the reference robot, it usually has some state

error. This error can be expressed by vector e.t/ D 	
e1 e2 e3


T
, defined as:

e D
2

4
x � xr

y � yr

� � �r

3

5 (3)

where
	

xr yr �r


T
are the position and orientation coordinates of the reference

robot. It is considered that the reference system is the same robotic system with
desired position and velocity then it can be written in the same form as (1) :

Pxr D vr cos .�r/

Pyr D vr sin .�r/P�r D !r

(4)

Taking into account (1) and (4) the following error system is obtained:

Pe1 D vr cos .�r/ cos .e3/� vr sin .�r/ sin .e3/C u1 cos .�r/ cos .e3/�
�u1 sin .�r/ sin .e3/ � vr cos .�r/

Pe2 D vr sin .�r/ cos .e3/C vr sin .e3/ cos .�r/C u1 sin .�r/ cos .e3/C
Cu1 sin .e3/ cos .�r/ � vr sin .�r/

Pe3 D u2

(5)

where a control vector u D 	
u1 u2


T
is defined as:

u D
�
v � vr

! � !r

�

(6)

Supposing that e3 is small, cos .e3/ D 1 and sin .e3/ D e3, (5) can be presented
in following form:

2

4
Pe1
Pe2
Pe3

3

5 D A

2

4
e1
e2
e3

3

5C B
�

u1
u2

�

(7)
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where the matrices A, B are :

A D
2

4
0 0 �vr sin .�r/

0 0 vr cos .�r/

0 0 0

3

5 (8)

and

B D
2

4
cos .�r/ � e3 sin .�r/ 0

sin .�r/C e3 cos .�r/ 0

0 1

3

5 (9)

4 SDRE Control Method Applied to Trajectory Control
of the Robot

The explanation of the main idea of the method follows ahead. Consider the general
infinite-horizon, input-affine, autonomous, nonlinear regulator problem of the form.
The nonlinear system is presented in linear form with state dependent matrices:

Pe D A .e/ e C B .e/ u (10)

The minimized functional is:

J D 1

2

1Z

0

	
eTQ.e/e C uTR.e/u



dt (11)

where e 2 R
� is a state vector and matrices Q.e/ and R.e/ are positive definite

for all e .
The control u is given by equation:

u D �R�1.e/BT.e/P.e/e (12)

where the matrix P.e/ is obtained from :

P.e/A.e/C AT.e/P.e/� P.e/B.e/R�1.e/BT.e/P.e/C Q.e/ D 0 (13)

Equation (13) is a state dependent Riccati equation. According to [6] the regulator
(12) with P.e/ obtained from (13), is suboptimal.
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5 Numerical Results

The goal of this section is to obtain the suboptimal control strategy when the
reference robot trajectories are linear and circular. The numerical results are
presented in this section in order to demonstrate the efficacy of control method.

5.1 Linear Reference

The reference robot trajectory is linear when �r D const. In this case, the robot
control functions are determined in following form:

v D vr C u1
! D u2

(14)

where u1 and u2 are determined by (12) and (13).
The error system and robot tracking trajectories are presented in Figs. 2 and 3,

respectively.
In the Fig. 2 the error coordinates are driven to zero by the effort of the control in

5 s.

0 2 4 6 8 10
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

t(s)

 e
1,

 e
2,

 e
3

e1
e2
e3

Fig. 2 Error system trajectory for �r D �=4 and vr D 1
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Fig. 3 Robot tracking trajectory for �r D �=4 and vr D 1

The Fig. 3 represents the robot trajectory (solid line) successfully converging to
the reference trajectory represented by solid line with dots. The initial condition of
the robot system are x0 D �2; y0 D �1 and �0 D 3�=4.

5.2 Circular Reference

The reference robot trajectory is circular when !r D const. In this case, the robot
control functions are determined from the following form:

v D vr C u1
! D !r C u2

(15)

where u1 and u2 are determined by (12) and (13). The error system and robot
tracking trajectories are presented in Figs. 3 and 4, respectively.

In the Fig. 4 error coordinate trajectories are driven to zero in less than 3 s by the
control effort.

In Fig. 5 the line with triangular shape represent the robot trajectory converging
to the circular reference (represented by dashed line).
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Fig. 4 Error system trajectory for �r D �=4 and vr D 1
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Fig. 5 Robot tracking trajectory for �r D �=4 and vr D 1
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6 Concluding Remarks

The application of the SDRE method for the tracking control of a mobile robot
is presented in this work. The proposed control law minimize the quadratic cost
functional consisting of tracking errors and control efforts. Assuming the hypothesis
that orientation coordinate errors are small, the error system is transformed in the
form which is adequate for SDRE method. The numerical simulations show that the
proposed algorithm can be applied even when the orientation coordinate errors are
not small. The next steps of this work include the real-time implementation of the
proposed control strategy on experimental mobile robot.
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Design of Silicon Based Integrated Optical
Devices Using the Finite Element Method

Paolo Pintus

Abstract Among the components needed in photonic integrated circuits, dielectric
waveguides and small footprint ring resonators play a key role for many applications
and require sophisticated electromagnetic analysis and design. In this work, we
present an accurate vectorial mode solver based on the finite element method.
Considering a general nonreciprocal permittivity tensor, the proposed method
allows us to investigate important cases of practical interest. To compute the
electromagnetic modes, the Rayleigh-Ritz functional is derived for the non-self
adjoint case, it is discretized using the node elements and the penalty function is
added to remove the spurious solutions. Although the use of the penalty function
is well known for the waveguide problem, it has been introduced for the first
time (to the best of our knowledge) in the ring resonator modal analysis. The
resulting quadratic eigenvalue problem is linearized and solved in terms of the
propagation constant for a given frequency (i.e., � -formulation). Unlike the earlier
developed mode solvers, our approach allows us to precisely compute both forward
and backward propagating modes in the nonreciprocal case. Moreover, it avoids
time-consuming iterations and preserves matrix sparsity, ensuring high accuracy
and computational efficiency.

Keywords Electromagnetic modes • Finite element method • Modal analysis •
Optical device • Photonic integrated circuit

1 Introduction

The study of the electromagnetic field propagation in optical devices is the key
starting point to investigate photonic components before their manufacturing.
Therefore, rigorous mathematical models are very important tools to perform
precise simulations and accurate design. In this work, we present a mode solver for
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(a) (b)

Fig. 1 Device under investigation. (a) Straight waveguide. (b) Ring resonator

dielectric waveguides and micro ring resonators that are the building blocks of all
photonic integrated circuits. Those components are schematically shown in Fig. 1.

To perform their modal analysis, several numerical methods are commonly
used such as the finite element method (FEM) [6, 8], the finite difference method
(FDM) [3, 9], the method of lines (MoL) [1], and the film mode matching (FMM)
[17, 21]. Due to the possibility of using adaptive meshing, FEM shows several
advantages. It usually provides better approximation and requires less memory
to store the stiffness matrix with respect to FDM, while it is more appropriate
than MoL and FMM for modal analysis of graded index waveguides [20], and
in general for waveguides with complex cross-section geometry and refractive
index profiles [14]. In addition, it is the most suited to solve deformation and
stress problems in solids, like for the case of stress-induced effects in optical
waveguides [23].

With the FEM, the solution is numerically computed as a linear combination
of basis functions which, in electromagnetism, are usually of two kinds: node
elements (also called Lagrangian elements) and edge elements (also called Nédélec
elements) [6]. Edge elements have mainly three important advantages: (1) the
spurious solutions can be effectively removed in several electromagnetic problem
formulations, (2) the boundary conditions at material interface and conducting
surface can be easily imposed, (3) there are no difficulties in treating conducting
and dielectric edges and corners related to the field singularities [6, 13]. On the
other hand, node elements are more efficient as regards to the storage requirements
and the number of floating point operations (FLOPs) [13]. Moreover, the solutions
computed using node elements provide higher accuracy when extremely flat or
elongated elements are used in the mesh [13]. It is worth noting that in order to
completely get rid of any spurious solutions introduced by the node elements, the
penalty function can be added to the functional [18, 19]. In this work, the node
elements are used, since we do not consider waveguides or ring resonators with
field singularities (e.g., by using magnetic-field formulation) and we assume a zero-
field condition on the border. However, the method can be implemented also with
edge elements.
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2 Mathematical Model

An electromagnetic mode is a solution of the Maxwell’s equation which propagates
in a waveguide or in a ring resonator without sources. More formally, a mode is an
eigenfunction of one of the differential operators LH and LE that are defined as

ŒLHH� .r/ D r � 	"�1r .r/r � H.r/

 �

�!

c

�2
	r.r/H.r/; (1a)

ŒLEE� .r/ D r � 		�1r .r/r � E.r/

 �

�!

c

�2
"r.r/E.r/; (1b)

where r is the position vector, E and H are the electric and magnetic field, "r and
	r are the relative permittivity and relative permeability tensor, while ! and c are
the angular frequency and the speed of light in the vacuum, respectively. Those
differential operators are derived from the Maxwell’s equations, assuming linear,
instantaneous and time invariant media [7]. Because at optical frequency 	r D 1,
the normal and tangent component of H are continuous across any boundary
separating two different media [5, 11]. For this reason, the formulation of Eq. (1a)
in term of the magnetic field is preferred. As can be seen from Fig. 1, straight
waveguides and ring resonators are characterized by a continuous translational
symmetry along one direction. By considering the coordinate system in Fig. 1 (i.e.,
Cartesian coordinates for the waveguide and cylindrical coordinates for the ring), the
waveguide and the ring resonator are invariant structures with respect to the z-axis
and the �-axis, respectively. Assuming the fields propagate as harmonic waves and
taking into account the translational symmetry, the magnetic fields in the waveguide
and in the ring are

Hwg D H.x; y/ei!t��z; Hrr D H.r; z/ei!t��� ; (2)

where � 2 C is called propagation constant. Note that Hrr can be derived from Hwg

as follows x 7! r, y 7! z, and z 7! � . Here, we assumed that "r is

"wg
r .x; y/ D

0

@
"xx "xy �"xz

"xy "yy "yz

"xz �"yz "zz

1

A ; "rr
r .r; z/ D

0

@
"rr �"r� "rz

"r� "�� �"�z

"rz "�z "zz

1

A ; (3)

for the waveguide and the ring resonator problem, respectively. The tensors in
Eq. (3) have complex entries and generalize those presented by Konrad in [10],
permitting to consider also lossy materials. In addition, they include the case
presented by Lu and Fernandez [12] and allow us to investigate nonreciprocal and
anisotropic waveguides. The tensor "r is not symmetric neither adjoint, therefore
LH results non-self-adjoint. To solve the problems, we introduce the adjoint
operator

	
L a

HHa


.r/ D r �

n	
"a

r .r/

�1 r � Ha.r/

o
�
�!

c

�2
Ha.r/; (4)



1152 P. Pintus

where Ha is the adjoint field and "a
r is the adjoint permittivity tensor [2]. Because the

domain of L a
H is unchanged, the adjoint fields can be written as well as in Eq. (2),

where �a is the adjoint propagation constant. To compute the eigenfunctions of the
operator (1a), we look for the stationary points of the Rayleigh-Ritz functional [2]

F.H;Ha/ D
•

V

	r � Ha � "�1r r � H



dV �
�!

c

�2•

V

H � Ha dV; (5)

where H and Ha belongs to the Sobolev space H.curl/. To removed the spurious
solutions from the spectrum of interest, the penalty function has been added

eF.H;Ha/ D F.H;Ha/C ˛p

•

V

r � Ha r � H dV; (6)

where the constant ˛p is a free parameter and it is usually chosen equal to 1.
Equation (6) implies that H;Ha 2 H.curl/ \ H.div/.

If "a
r D "t

r, the relationships between the direct and adjoint fields are

�
Ha

x ;H
a
y ;H

a
z

�t D �
Hx;Hy;�Hz

�t
;

�
Ha

r ;H
a
� ;H

a
z

�t D �
Hr;�H� ; Hz

�
; (7)

for the waveguide and the ring resonator, respectively [15]. Because the field
amplitudes in Eq. (2) vary exclusively in the cross-section as well as "r, only the
xy and rz planes are discretized. So the magnetic fields are approximates as

Hwg
n D

nX

kD1

	
hx;k �k.x; y/ ix C hy;k �k.x; y/ iy C hz;k �k.x; y/ iz



ei!t��z; (8)

Hrr
n D

nX

kD1

p
r Œhr;k �k.r; z/ ir C h�;k �k.r; z/ i� C hz;k �k.r; z/ iz� e

i!t��� ; (9)

where n is the number of mesh nodes. The factor
p

r has been introduced to avoid
difficulties in the integration of the singular terms for the ring resonator modes [10].
To simplify the notation, let us introduce the vector of the unknown coefficients

hwg D �
hx;1 : : : hx;n hy;1 : : : hy;n hz;1 : : : hz;n

�t
; (10)

hrr D �
hr;1 : : : hr;n h�;1 : : : h�;n hz;1 : : : hz;n

�t
; (11)

for the two cases, respectively. As a result, the discretized functional (6) is

eF.H/ 
 ht
	
�2 M C � C C K



h � !2 htLh; (12)

where the matrices M, C, K and L are symmetric and explicitly reported in the
Appendix. Since the modes are the zeros of the Rayleigh-Ritz functional, we derive
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Eq. (12) with respect to the unknown vector. According to the known/unknown
parameters, an !-formulation or a � -formulation can be derived [19]. In the first
case, the propagation constant � is provided as an input parameter and .!;h/ is the
eigenvalue-eigenvector pair of a generalized eigenvalue problem. Vice versa, fixing
!, we have a quadratic eigenvalue problem (QEP) [22], where h is the eigenvector
and � its eigenvalue. To compute the modes, the QEP is linearized according to [22].

3 Numerical Results

To validate the model, we compare it with the perturbation method, which is
generally used to study nonreciprocal waveguides/ring resonators [4]. In those
optical component, the forward and backward propagating modes have different
� . Considered the nonreciprocal ring resonator presented in [16] we computed the
difference between the two propagation constant � D �C � ��, where ˙ refer
to the two directions. While the real part of � is almost negligible, its imaginary
part is different for the two directions, providing a different resonant frequency. The
plot of the imaginary part of � is shown in Fig. 2 with respect to the thickness of
the ring (Si thickness). As we can see, the results of the two methods are in good
agreement.

Fig. 2 Comparison between the perturbation method and the proposed one
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4 Conclusion

In this work we presented a vectorial mode solver for nonreciprocal and anisotropic
waveguides and ring resonators. With the described methods the mode can be
accurately computed. Moreover, solving directly the QEP avoids the use of iter-
ative approaches, speeding up simulations and improving the convergence of the
eigenvalues at the same time.
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Appendix

To compute the matrices in Eq. (12) let us define the following matrices

Rij D
“

S

�i�j dxdy; Pij D
“

S

�i�j x2dxdy; Jij D
“

S

�i
@�j

@y
dxdy;

Nij D
“

S

�i
@�j

@x
dxdy; Dij D

“

S

@�i

@y

@�j

@y
dxdy; Eij D

“

S

@�i

@x

@�j

@x
dxdy;

(13)

Zij D
“

S

@�i

@y

@�j

@x
dxdy;

where R, P, D and E are symmetric. If p D "�1r , M, L, C and K for the waveguide
problem are

M D
0

@
�pyyR pyxR 0

pxyR �pxxR 0

0 0 ˛pR

1

A ; L D
0

@
R 0 0

0 R 0

0 0 �R

1

A ;

C D
0

@
pzyJt � pyzJ pyzN � pzxJt pyxJ � pyyN � ˛pNt

pxzJ � pzyNt pzxNt � pxzN pxyN � pxxJ � ˛pJt

pxyJt � pyyNt � ˛pN pyxNt � pxxJt � ˛pJ 0

1

A ; (14)

K D
0

@
pzzD C ˛pE �pzzZ C ˛pZt pzyZ � pzxD

�pzzZt C ˛pZ pzzE C ˛pD pzxZt � pzyE
pxzD � pyzZt pyzE � pxzZ pxyZ C pyxZt � pxxD � pyyE

1

A :
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Note that the matrices for the ring resonator are defined as in Eq. (13) where x 7! r
and y 7! z. To compact the notation, we also defined the matrices

S D 3
2
R C N; T D 1

2
R C N; X D 3

2
Jt C Z; Y D 1

2
Jt C Z;

U D 9
4
R C 3

2

�
N C Nt

�C E; V D 3

4
R C 3

2
N C 1

2
Nt C E; (15)

W D 1
4
R C 1

2
N C 1

2
Nt C E:

Therefore, M, L, C and K for the ring resonator are

M D
0

@
�pzzR 0 przR
0 ˛pR 0

pzrR 0 �prrR

1

A ; L D
0

@
P 0 0

0 �P 0

0 0 P

1

A ;

C D
0

@
p�zJt � pz�J pzrJ � pzzS � ˛pSt pz�T � p�rJt

przJt � pzzSt � ˛pS 0 pzrSt � ˛pJ � prrJt

�p�zTt C pr�Jt przS � ˛pJt � prrJ p�rTt � ˛pT

1

A ; (16)

K D
0

@
p��D C ˛pU �p�rD C p�zX ˛pXt � p��Y
pr�D � pz�Xt przX C pzrXt � prrD � pzzU pz�V � pr�Y
˛pX � p��Yt �p�zVt C p�rYt p��W C ˛pD

1

A :
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Ensemble prediction system (EPS), 35–37

matrix production, 399–400
with simultaneous parameter estimation

approach, 36–38, 41–43
Epidemic model, 517–518
EPS. See Ensemble prediction system (EPS)
Equal-partitioning bundling, 211, 214, 215
Euler Backward method, 370
Euler equations, 542
Euler method, 488

discretization, 85
scheme, 209

European call option, 1030, 1033, 1035
European Emission Allowances (EUA), 333
European Network of Mathematics for Industry

and Innovation (EU-MATHS-IN)
biomedical imaging, electronics and

telecommunications, 154–156

manufacturing and service management,
152–153, 156

traffic management and sustainable energy,
153–154, 156

Evolutionary algorithms (EA), 36, 39, 456
Expansion-contraction algorithm, 184
Expectation-Maximisation algorithm, 343
eXtended Finite Element Method (XFEM),

576
Extrusion process, airlay, 993
Eye retina, modeling of

anatomy, 312–313
diseases, 312
O2 transportation, mathematical model

diffusion–reaction equation, 314
metabolic rates, 314
O2 profile (see Oxygen profiles)
three-layer model, 313

outer retina, 312
oxygen profiles, 312
sensitivity analysis, 316–317

F
Fast backprojection operator

backprojection transform, 244
Fourier analysis, 245, 248–251
for high-resolution tomographic

synchrotron experiments, 244
integral representations

Andersson’s formula, 246–248
Delta distribution, sifting property,

245
stacking operator, 246

partial-backprojection concept, 245
radon transform, 244
reconstruction time, 244

Fast corner detector, 19
Fast fault simulation (FFS)

golden circuit, 370
golden solution, 371–372
linear capacitors, 371
linear resistor, 371
modeling faulty “opens,” 373–374
sensitivity predictions, 373, 374
Sherman-Morrison formula, 373
source-stepping-by-transient method, 374
time integration, 370–371
uncertainty quantification, 375

Fast Library for Approximate Nearest
Neighbors (FLANN) library, 21

FBSDE with jumps (FBSDEJ), 76
Fereisl’s approach, 1093
Fermi coordinates, 926, 927
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Fiber
curtain/bundle

Brinkman’s Law, 974
continuum approach, 974
Darcy-like Law, 973–974
Darcy’s Law, 973
DNS and comparison quantity, 972
immersed boundary methods, 972–973
infinitely extended fiber curtain,

975–976
MxN-fiber bundle, 975–977
Navier-Stokes law/one-way coupling,

974
dynamics, 995–996
fiber-fluid interaction, 971
fiber-wall contact, 995
laydown distributions, 998, 999
orientation dynamics, 1081–1082
spinning model, 948–951
suspension flows

dissertation, 1083–1084
Folgar-Tucker equation, 1082
Navier-Stokes equation, 1082
transport-reaction equations, 1082
vanishing trace, 1083

Fiber Dynamics Simulation Tool (FIDYST)
software tool, 999

Fibre lay-down model, 954–955
Fichera theory

boundary value problem, elliptic PDE, 104
numerical results, 108–110
one-factor interest rate models, CKLS,

105–106
two-factor interest rate model, CIR,

106–108
Fictitious domain method, 575, 576, 579,

584–585
discrete formulation

discretization, 579
matrix formulation, 580

numerical experiments
convergence rates, 581
physical tests, 581–584

problem, setting of, 576, 577
continuous formulation, 577–579
uncoupling, 577

FinFET process, 687
Finite difference method (FDM), 543, 589,

1150
GPU computing, 135–137
parallel hardware, adoption

Crank-Nicolson (CN) method, 138–139
matrix-matrix operation, 137
matrix-vector operation, 137

operator methods, 139–140
traditional finite difference methods,

134–136
Finite element method (FEM), 470

components, 1150
coordinate system, 1151
differential operators, 1151
direct and adjoint fields, 1152
edge elements, 1150
modal analysis, 1150
node elements, 1150
perturbation method, 1153
propagation constant, 1151, 1153
QEP, 1153
Rayleigh-Ritz functional, 1152

Finite mixture model (FMM), 343
Finite volume (FV) method, 543–544
First-order optimality system, 458
Fixed/periodic withdrawals, 1050
Flight control system, optimization-based path

following, 607
block diagram, optimization based input

generation, 608
closed-loop approximation of, 609
implementation, 611–614
problem formulation, 609–611

Floating offshore structures
floating platform designs, 158
optimal design

aerodynamic modelling, 162
analysis chain, 158
buoyancy position, 160
flow chart, analyzer program, 159
geometry encoding, 159–161
hydrodynamic modelling, 162
structural analysis, 162–163

Floating point operations (FLOP), 136, 1150
Flow fields, 399–400
Fluid flow simulation

AMF-IMEX approach, 804–807
free-surface flow, 802
pressurised flow, 802
SME modelling equations, 803

Fluid structure interaction problem,
304

Fokker-Planck equation, 116
Folgar-Tucker equation, 1082
Forward-backward SDE (FBSDE), 76

algorithm, 92–93
FBSDEJ, 76
pricing and hedging

with jumps, 82–83
stochastic control problem, 80
wealth process, 79
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without jumps, 80–82
Fourier analysis, 248–251
Fourier-cosine method, BSDEJs

BCOS method
algorithm, 92–93
approximation, 89–90
characteristic function, 87–88
density function, 86, 88
fourier-cosine coefficient, recovery,

90–92
FBSDEJ discretization, 84–86
procedure, 83

Fourier transform (FFT), 690
Fracture models, fictitious domain methods,

575, 576, 584–585
discrete formulation

discretization, 579
matrix formulation, 580

numerical experiments
convergence rates, 581
physical tests, 581–584

problem, setting of, 576, 577
continuous formulation, 577–579
uncoupling, 577

Fredholm integral equation, 704
Free-boundary model of corrosion, 935–941
Frequency difference of arrival (FDOA)

Fermi frames, 925, 928
post-Newtonian effects

ECI, 910, 918, 928
LEO, 910, 911, 915
passive radio transmitters, 917, 918,

920–921
Synge’s world-function, 909

Froude number, 948, 950, 981, 992
Full order model (FOM), 218

G
Galerkin’s method, 378, 1090–1091
Gambit software, 30
Gas pipeline modeling

nonlinear PDE, 796–798
QLDAE, 793–796

Gas superficial velocity (GSV), 491
Gaussian normal distribution, 1050
Gauss-Leguere (GL) method, 61
Gauss-Seidel method, 379, 853
Generalized geometric-algebraic multigrid

(GAMG), 1117
Generalized polynomial chaos, 375
General-Purpose computing on Graphics

Processing Units (GPGPU)
paradigm, 208

Genetic algorithm, 775, 777
Geodesics, 905, 925–926, 929
Geometrical Brownian motions (GBM), 220
Geometrically exact (GE) beam, 962, 963, 967
Geophysical flow models, 529
German electricity market, electricity spot

price forecasting
data set, 334
methodology and results, 337–338
multivariate ARMA, 336
regularized regression approach, 334–336

Germ-grain model, 760, 763–765
Girsanov theorem, 1033
Goal programming, optimization, 1051–1052
Godunov-type FV scheme, 545
Goulours spillway Debris flow test, 894–896
GPU computing, BLAS extensions. See BLAS

extensions
GPU SPH implementation

dam-break simulation, 893, 894
vertical-slot fish pass modeling, 874–876

homogeneous accuracy, 874–875
inflow modeling, 876
laboratory model, 875
neighbors list, 874
outflow field, 876
predictor-corrector integration scheme,

874
standard Lennard-Jones repulsive

particles, 876
Graded meshes, 553, 554
Graphene, 721

acoustic phonon scattering, 742
average energy for the electric fields, 728
average velocity for the electric fields, 728
carrier moment equations, 724–725
charge transport, 742
closure problem, 725–727
collimation regime, 738
degenerate gas regime, 738–739
diffusive regime, 737
Dirac points, 742
effective-mass, 734
eigenprojections, 734
electron energy, 742
energy bands, 734, 735
Fermi integral, 736
kinetic description, 722–724
Lagrange multipliers, 726
lattice heating, 727
Maxwell-Boltzmann regime, 737
mechanical properties, 721
MEP, 725, 733–734
microscopic velocity, 742
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moment equations, 735
numerical method

Boltzmann equation, 744
collision operator discretization, 745
Fermi-Dirac distribution, 744
force term discretization, 746

numerical simulations, 727–728, 746–747
phonon moment system, 725
semiclassical velocities, 734
single distribution function, 743–744
spin-orbit particles, 731–733
total entropy, 726

Graphics processing units (GPUs) computing,
135–137

Greedy algorithm, 182–183, 812, 815
Green-Lagrange strain tensor, 322
Green’s function, 690, 823

H
Hamiltonian spectrum, 689
Han and Wu method (HW) method, 61
Heat flow

assumptions, 390
boundary layer analysis, 391–393
heat transfer coefficient, 393–395
thermophoresis, 391
water and ethylene-glycol, 390

Heat pipe
axially symmetric geometry, 496–497
Cahn-Hilliard model, 494
capillary pressure, 499
Clausius-Clapeyron formula, 496, 498
“colour function,” 494
definition, 493
Finite Element Software, 496
investigation, 497
Korteweg stress tensor, 495
liquid/vapour phase change, 495
stages, 494
system’s stationary working conditions,

497
two-fluid system, 496
vapour tension, 495

Heat transfer
cable in pipe, 1115–1116
coefficient, 268, 269, 393–395
DIC/CG, 1117
forced cooling systems, 1112–1113
GAMG, 1117
IEC 287 and IEC 853 standards, 1111–1112
installation, 1112, 1113
Neher and McGrath methods, 1112

OpenFOAM, 1116, 1117
plastic pipe buried, 1117, 1118
in soil, 1116
in solids, 1114–1115
trefoil cables, 1117, 1118

Helmholtz equation, 903, 905
Hensel-Hasegawa-Nakayama Hamiltonian,

688
Heston model, 1030
Hexarotor flight dynamics

control, 627–628
linear model time history, 629–630
non-linear model, 626, 630, 631
PSO-LQR-PD and PSO-LQR-PID

methods, 629
High-dimensional early-exercise option

contracts, 208
High-temperature solid oxide fuel cell stacks,

667
design, prerequisite for, 668
gain scheduling approach, 674
implementation, 673
interval-based slidingmode control design,

669–671
offline trajectory planning and online gain

adaptation, 671–673
one-sided barrier Lyapunov function

constraints, 671–673
predictive control approach, 667
real-time environment, 671
robust sliding mode procedure, 673

Hill-Mandel principle, 964
Histogram of Oriented Gradients (HOG), 6
Holographic patterning

applications, 291
perturbation methods

diffusion rate, 296–297
immobilization rate, 294
monomer, polymers and refractive

index, 294, 295
polymerization rate, 294, 296
refractive index modulation, 294

photopolymerization-diffusion model,
292–293

photopolymers, 291
standard monomer diffusion equation, 291
two way diffusion theory, 291–292

Homotopy method, 980
Hydrodynamic model

asymptotic regimes, 736
collimation regime, 738
degenerate gas regime, 738–739
diffusive regime, 737
Maxwell-Boltzmann regime, 737
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maximum entropy closure technique,
733–734

single-layer graphene sheet, electrons in,
734–736

spin-orbit particles, phase-space
description, 731–733

Hydrothermal fluid circulation, 589
Hydrothermal model, 590, 591
Hyperbolic conservation laws, 781

I
Immersed boundary method (IBM)

fiber curtain/bundle, 972–973, 975, 977
finite element

Cauchy stress tensor, 305
CFL stability, 304, 307
codimension zero structure, 307, 308
deformation gradient, 305
DLM formulation, 304, 306–307
fluid stress tensor, 305
fluid structure interaction problem, 304
formulation, 306
inf-sup type condition, 307
mass preservation, 304
Piola–Kirchhoff stress tensor, 305
structure stress tensor, 305

Importance weights, 36, 38
Intelligent cruise control, 634

application, to electric vehicle, 637–639
multiobjective optimal control, 635–636

scalarization, 636–637
set-oriented subdivision, 636

Interacting particle systems
biology, 454
modeling, 454
optimization, 454

Interest rate models
CIR, 106–108
CKLS, 105–106

Interval arithmetic, 660
Interval-based sliding mode control, 669–671
Inverse ill-posed problem, 233
Inverse source problem, 230–231
Irish study groups, 199–200
Iris segmentation

circle detection algorithm, 11
four circle detection, 13
four edge pixels approach, 12
integro differential operator, 10
robustness evaluation, 12

ITN-HPCFinance, 206
ITN-Strike, 206
Itô formula, 50–51

J
J-Bessel functions, 30
JSoup Library, 18
Jump diffusion process

control variate, 51–53
MC and CMC comparison, 54–55
Monte Carlo pricing, 53–54
price model, 50–51

K
Keller-Segel model, anisotropic

anisotropic diffusion tensors, 1038
chemoattractant sensitivity, 1038
chemotaxis process, 1037, 1043
density-dependent diffusion coefficient,

1038
discrete estimates, existence and

convergence, 1041–1043
E. coli cells, 504
finite volume-nonconforming finite element

scheme
chemo-attractant, 510–511
classical Uzawa’s algorithm, 508
combined scheme, 509
Dirichlet boundary conditions, 510
iterative algorithm, 507
piecewise constant functions, 507
space and time discretization, 506–507
Stokes equations, 507

isotropic diffusion tensors, 1038
Keller-Segel equations, 504
Lipschitz continuous nondecreasing

function, 1038
nonlinear CVFE scheme

2-dimensional Lebesgue measure,
1040–1041

discrete control volumes space, 1040
dual barycentric mesh, 1039
dual median mesh, 1041
triangular mesh, 1039

numerical experiment, 1043–1045
Stokes equations, 504
volume-filling effect, 505

Keller-Segel-Stokes system, 505
Keypoint matching method, 20–22
Kirchhoff-Love (KL) plate, 964
k-means clustering technique, 210–211
Kolmogorov compactness criterion, 1043
Korteweg stress tensor, 495
k � p-theory, 688, 700
Krylov subspace MOR

gas pressure and flow rate, relative error,
797, 798
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linear subsystems setup, 794
transfer functions and moments, 794–796

k-space, 691

L
Lagrange multipliers, 990
Lamé equations, 1015–1016
Large Eddy Simulation (LES), 29–33
Latin hypercube sampling (LHS), 421
Lattice quantum chrome dynamics (Lattice

QCD)
Bogacki-Shampine coefficients, 1069, 1070
Runge-Kutta methods, 1066–1068
step size control, 1068–1069
Wilson energy, 1069, 1070

LES. See Large Eddy Simulation (LES)
Leverage effect, 1030
LIBOR market models (LMM), 65. See also

SABR/LIBOR market models
Linear complementarity problem (LCP), 122,

124, 126–127
Linear discriminant analysis (LDA), 6
Linear elasticity, 1015

elliptic PDEs, 1013–1016
equilibrium equations, 1016
saddle-point matrix, 1016–1019
s.p.d. systems, 1016–1017

Linearly implicit Euler scheme, 325
Linearly implicit Rosenbrock-Wanner (ROW)

schemes, 804
Linearly implicit Runge-Kutta schemes, 325
Linear parametric systems. See Parametric

model order reduction (PMOR)
Linear quadratic regulator (LQR), 626
Linear sampling method (LSM), 232–233
Linear shoaling test, 564
Linear time invariant (LTI) system, 475
Liouville operator, 702, 703
Lipschitz continuous nondecreasing function,

1038
Liquid superficial velocity (LSV), 491
Local correlation models, 114
Local electricity generation technologies, 617
Local Lax-Friedrichs approach (LLF)

approach, 788–791
Local mass non-equilibrium model, 359
`1-optimization method, 231
Lorentz-Lorenz equation, 293
Lorenz-95 system, 36, 37, 41, 42
Low Earth Orbit (LEO) satellites, 910, 911,

915
Lower and upper bound approximation

(LUBA) method, 61

Low-field transport, 691–692
Low Reynolds corrections, 30
L1-regularizations, 231
Lüneburg lens, 902
Lyapunov function, 671–673

M
Machine direction (MD), 997
Machine learning

and data analytics methods, 1050
forecasting algorithm, 1053
information theory and, 1049–1050

Madsen-Sørensen-Peregrine (MSP) model,
563

Magnetohydrodynamic (MHD) convection
flow

azimuthal components, 1122
boundary conditions, 1123
CFS, 1124, 1126, 1129
heat exchanger systems, 1122
Lorentz force, 1122
magnetic field, 1123
MATLAB, 1126
numerical algorithm, 1124–1126
periodically placed cylinders, 1123, 1124,

1126, 1128
stream function, 1126–1128
vortex-type structures, 1121–1122
vorticity function, 1123

Mahalanobis distance, 6
Manning coefficient, 544
Market model calibration

caplets, 68
correlation parameters, 68
multi-GPU algorithm, 69
SA algorithm, 69–70
swaptions, 68–69
volatility parameters, 68

Mass conservation, 304, 490, 788, 802, 1104
Mathematical models for the environment, 529
Mathematical optimization, 605
Mathematics Application Consortium for

Science and Industry (MACSI), 200,
201, 255

Math-in
applications, 170–171
CAD/CAE, 170
corporate image, 165, 166
features, 165
goals, 166
management, 168–169
partnerships, 166–168
research activities, 165
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statistical, data analysis/decision support
techniques, 170

Matrix formulation, 580
Matrix multiplication

matrix-matrix multiplication, 136, 137
matrix-vector multiplication, 136, 137

Maximum entropy principle (MEP), 455–457,
725–727, 733–735

Maxwell-Boltzmann regime, 737
Maxwell’s fish-eye lens in (2+1)D spacetime

analytic solution for acoustic, 905–906
azimuthal angle, 903
Lüneburg lens, 902
positive refractive index, 902
radial coordinates, 903
Ricci tensor components, 902
spherical Helmholtz equation, 903, 905
variational principle, 903–904

Mean absolute error (MAE), 337
Mean absolute percentage error (MAPE), 337
Mean squared error, 337
Membrane model, 322
MEP. See Maximum entropy principle (MEP)
Merton model, 50
Mesh discretisation methods, 553
Meshfree Lagrangian particle method

capillary number, 849–850
contact angle boundary condition, 848
CSF model, 847
dynamic contact angle, 846, 849–850
Hoffman function, 848
interface particles, 849
particle distributions, 849
static contact angle, 846
surface tension force, 846–848
velocity field, 849

Mesoscopic scattering regime, 230–231
Methods for Advanced Multi-objective

Optimization for eDFY of Complex
Nano-scale Circuits (MAnON)
Project

methodology enhancements
CMOS standard cell library, 435
features, 431–432
implementation, 432–434
neural network, 433
research activities, 430–431
RSM, 434
SVMs, 433
transient analysis, 435

simulations, 430–431
statistical analysis, 408–409

Michaelis–Menten kinetics, 314
Micro and nano-electronics, 366

Microflows, biofilms
hybrid models, 399–401
numerical tests, 400–404

Microfluidic actuation
COMSOL and MATLAB, 1077
dashed line and dashed-dotted line, 1077,

1078
drop contact line, 1075
electroetting and liquid dielectrophoresis,

1073–1074
experimental coefficients, 1077, 1078
parallel-plate capacitor, 1074
sessile conductive drops, 1074
theoretical model, 1075–1077
TMPGE, 1075
Young–Laplace equations, 1074–1075

Mixed multirate methods, 474
Modeling and simulation (M&S), 687, 695,

988, 1002, 1010
Model order reduction (MOR), 206, 217

compound-step methods, 473
computational advantage, 226
electric-thermal problem

circuit modeling, 476–477
linear system, 478
ODE-integration scheme, 478
resistor’s and diode’s temperature,

478–479
thermal modeling and coupling,

477–478
voltage at node 3, 478–479

FOM, 218
goal, 217–218
LTI system, 475
Lyapunov-equations, 475
mixed multirate methods, 474
POD (See Proper Orthogonal

Decomposition (POD))
ROM, 218

Model predictive control (MPC) algorithms
centralized, 619–621
decentralized, 619–621

Modified Craig-Sneyd (MCS) scheme, 226
Modified nodal analysis (MNA), 714, 715,

854
Modified Ornstein-Uhlenbeck process

transformed modified Ornstein-Uhlenbeck
process, 115–116

transition density function, 116–118
Modified strategy, 973, 975, 976
Momentum relaxation, 688, 697, 699, 700
Mono-domain system, 321
Montecarlo (MC) analysis, 53–55, 448
MOSFET, 695, 724
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Moving mesh, parameterization layers
computational, 946, 947, 949
DELAX, 946–949
desired, 946
equidistant computational grid points, 950
fiber spinning model, 948–951
monitor function, 947
moving mesh partial differential equations,

946–950
parameter densities, 946
referential, 946

M5P algorithm, 1050–1051
Multicriteria optimization (MCO) problem,

413
Multi-moment-matching PMOR methods

frequency domain, 813
linear parametrized system, 812
multi point expansion, 813
reduced-order model

automatic generation, 815–817
a posteriori error bound, 814–815

Multi-objective optimization, 408–409
control method, 635–636

scalarization, 636–637
set-oriented subdivision, 636

solar towers heliostat field
in Andalusia, 771, 772
annual received optical radiation, 774
atmospheric attenuation, 772
flat mirrors, 770
hierarchical ray-tracing method, 773
joint pod system, 777, 778
optimisation, 774–777
reflectivity, 772
shading and blocking effects, 773
spillage losses, 772

Multiphysics simulation, 463–464, 481–483
Multivariate ARMA models, 336
Munthe-Kaas Runge-Kutta (RK-MK) method,

1068

N
NanoCOPS, 810

circuit-EM-heat couplings, 837
eddy-current field problem, 837
electro-thermal coupling, 837
field-circuit couplings, 837
field-mechanical coupling, 838
field-thermal coupling, 838
inductive couplings, 837
market demands, 836
multirate time integration, 838
pMOR, 839–840

solutions, 836
source couplings, 837
uncertainty quantification, 839–840

Nanoelectronics, 685, 810, 812
Nanofluid, heat flow

assumptions, 390
boundary layer analysis, 391–393
heat transfer coefficient, 393–395
thermophoresis, 391
water and ethylene-glycol, 390

Nanotechnology, 388, 685
microflows, biofilms

hybrid models, 399–401
numerical tests, 400–404

nanofluid, heat flow
assumptions, 390
boundary layer analysis, 391–393
heat transfer coefficient, 393–395
thermophoresis, 391
water and ethylene-glycol, 390

Natural hazard, 529
Nature’s natural order, 501–502
Navier-Stokes equation, 28, 29

one-way coupling, 974
optimal control problem

control gain, 866
control input, 867
discount factor, 863
dynamic programming equation,

863–864
governing equations, 862
L1error, 866, 867
mean flow, controlled configuration,

866
POD-model reduction, 864–865
shape functions, 862

SPH, 872, 873
Near-shore hydrodynamics, unstructured

meshes. See Boussinesq-type
equations (BTEs)

Network model, 676–677
Neumann series analysis

Neumann BC, 104
Neumann problem, 104, 163
Wigner equation, 701

boundary conditions, 703
convergence, 704–705
integral form, 702
integral representation, 703–704
physical analysis, 705–706
problem, 702

Neural network (NN)
learning plan, 440
MAnON Project, 433
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training set, 441
transient curves, 440
waveforms, 441–442

Newton-Euler equations, 626
Newton-Raphson procedure, 370
Neyman-Scott point process, 763–764
Non-dimensional equations, 392
Nonlinear CVFE scheme

2-dimensional Lebesgue measure,
1040–1041

discrete control volumes space, 1040
dual barycentric mesh, 1039
dual median mesh, 1041
triangular mesh, 1039

Nonlinear program (NLP), 612, 613
Nonlinear shallow water equations (NSWE),

544–546, 561, 562
Nonlinear shoaling test, 566–567
Nonlinear system, 659
Non-switching reaching law, 677–679
Nonsymmetric perturbation modes, 987
Nonwoven fabrics, 993

manufacturing processes
challenges, 993
dry-lay process, 993, 994
extrusion processes, 993
fiber dynamics, 995–996
fiber simulation, 997–999
fiber-wall contact, 995
numerical strategies and

implementation, 996
wet-lay processes, 993

materials, airlay process
auxetic 2D structure, 968
Dirichlet type networks, 963
3D structure, 968
energetic homogenization, 964–965
geometrically exact beam, 962, 963,

967
OPAL project, 961
shape, optimization problem, 965–966
tension tests with stochastic fiber

networks, 967
Timoshenko beam, 962, 963, 967

Normalized correlation coefficient (NCC)
method, 20

Numerical strategy, 973, 975, 977
NVIDIA Kepler, 143
Nwogu-Abbott (NA) model, 564

O
Offshore wind power, 157–158

One-dimensional carrier gases (1DEG), 689,
691

One-sided barrier Lyapunov function
constraints, 671–673

Online newspapers, web scraping
experimental tests results

Corriere della Sera, 23
hit and miss, 22
Huffington Post, 23
National Geographic, 23
website test, 21–22

localization of web item
keypoint matching method, 21, 22
template matching method, 20–21

template generation, 18
template screenshot

keypoint extraction, 19–20
web item image cut, 19

work flow, 18
OpenCV Library, 19
Open source Field Operation And

Manipulation (OpenFOAM)
tool, 287, 1116, 1117

Operator splitting (OS) method, 61
Optical imaging, tissues, 230–231
Optical phonon scattering, 742, 743
Optimal control

methods, 605
problem, 609, 611, 621, 632, 633
semiconductor design

Boltzmann transport equation, 455
classical Stratton energy transport

model, 455
design problem and analytical setting,

457
energy-transport models, 455
first-order optimality system, 458
MEP energy transport model, 456–457
Monte Carlo simulations, 455
numerical method, 458–459
sensitivity analysis, 459–461

Optimization-based path following
block diagram, optimization based input

generation, 608
implementation, 611–614
problem formulation, 609–611

Optimization of airlay processes (OPAL), 953,
961

Option pricing, 1095
Bates model

coupled stochastic differential
equations, 121

LCP, 122
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numerical data, 127–128
payoff function, 122
PIDE, 122
problem transformation and

discretization, 124–127
coupled stochastic differential equations,

121
finite differences, 61, 62
free boundary and analytical

approximation, 62
front-fixing method

boundary and initial conditions, 57, 58
finite-difference scheme, 59–60
numerical analysis, 60

GL, 61
HW, 61
LCP, 122
LUBA, 61
numerical data, 127–128
optimal exercise ratio in time, 63
OS, 61
payoff function, 122
PIDE, 122
POD

ADI MCS scheme, 224–226
GBM, 220
Heston model, 222–224
reduced ODE system, 221
risk-free interest rate, 220
stochastic volatility models, 220
2D basket option, 221–222

proposed method comparison, 61
Ševčovič’s method, 61, 62
trinomial tree, 61, 62

Order picking
AMPL, 195
assembling process, 191
CVRP, 190, 192
definition, 190
directed weighted graph, 192, 193
ESGI92, 190
fresh products, 191
Gurobi solver, 195
high rotation products, 191
integer programming model, 195
objective function, 194
online customers, 190, 191
order consolidation, 190
picking rate, 190
regular products, 191
routing, 190
storage assignment, 190
topology, 191
volume capacity constraints, 192

zoning, 190
Ordinary differential equations (ODEs), 123,

322, 521, 668, 990
Outer retina, 312–313
Oxygen profiles

consumption rates, 318
diffusion-reaction PDE system, 312
oxygen-sensitive microelectrodes, 317
sensitivity indices, 318
solution for, 314–316

P
Parameterized model order reduction (PMOR),

644–645, 839–840
flow simulations, 647
multi-moment-matching PMOR methods

(see Multi-moment-matching
PMOR methods)

problem setting, 648–650
RB method, 647–648, 650–654
types, 811–812

Pareto optimization, 414
Partial-Differential-Algebraic equations model,

714
Partial differential equations (PDEs)

adjusted model, 286–288
analytical solutions, 285
elliptic, 104
model equations, 283–284
parabolic, 103
parameter values, 285
SDE model, 286, 287

Partial integro-differential equation (PIDE),
50, 122

Particle image velocimetry (PIV), 28
Particle methods. See Smoothed Particles

Hydrodynamics (SPH)
Particles of polyvinylidene fluoride (PVDF)

manufacturing, 882
Particle swarm optimization (PSO), 626, 628,

631
Particulate system, 255
Passive radio transmitters

classical TDOA equations, 918–919
FDOA equations, 917, 918, 920–921
numerical simulations, 921–923
post-Newtonian TDOA equations, 919–921

Path following, flight control system, 607
block diagram, optimization based input

generation, 608
closed-loop approximation of, 609
implementation, 611–614
problem formulation, 609–611
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Pauli matrices, 696
Péclet number, 269, 361
P-equivalent martingale measure (P-EMM),

1031–1032
Peregrine model, 562, 563
Pharmacokinetics (PK) profiles

additional characterization, 1008, 1009
therapeutic categories, 1006
time-based therapeutic indicators, 1005

Pharmacometrics, 1001–1002
Phonon moment system, 725
Photonic integrated circuits, 1150
Photopolymerization-diffusion model,

292–293
Photothermal imaging

forward problem, 235, 236
geometrical configuration, 235, 236
gradient and topological derivative

methods, 237–241
inverse problem, 237
iterative descent method, 232
numerical approximations, 237
structural defects/inclusions detection, 232
temperature distribution, 236
thermal conductivity, 235
weight function, 237

p-i-n power diode, 714, 719
Planck constant, 722, 742
Plateau-Rayleigh mechanism, 260, 262
Poisson process, 50
Population pharmacokinetics (Pop-PK)

modeling, 1004
Portfolio simulation, 132
Post-Newtonian equations

Fermi frames, 927–929
geolocation

Cij C Dij contribution, 911–915
Ai C Bj contribution, 912–915

passive radio transmitters, 921–925
radio transmission control and surveillance,

925
Power electronic devices

charge transport, 714
device-circuit coupling conditions, 715
direct current characteristic, 718, 719
drift-diffusion approximation, 715
quasi-Newton algorithm, 715, 716
reverse recovery characteristics, 717, 718
simulated circuit, 717

Power switches, self heating simulation,
832–833

Power transmission lines and cables, 1111
Prange-Nee squared matrix, 690, 691
Pressure correction, 490

Pricing and hedging, FBSDE
with jumps, 82–83
stochastic control problem, 80
wealth process, 79
without jumps

perfect hedging in complete markets,
80

quadratic hedging in incomplete
markets, 81

terminal condition, 81–82
Principal component analysis (PCA), 6
Probability density function (PDF), 533
Problem formulation, 609–611
Process design kit (PDK), 420–421
Process variation (PV), 408–409
Proper orthogonal decomposition (POD), 861,

862
basis generation, 218, 219
Galerkin projection, 218
optimal orthonormal basis, 218
in option pricing

ADI MCS scheme, 224–226
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Heston model, 222–224
reduced ODE system, 221
risk-free interest rate, 220
stochastic volatility models, 220
2D basket option, 221–222

relative information measure, 219
Proportional-derivative (PD) control, 625, 627,

629
Proportional-integral-derivative (PID)
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Q
qpOASES Package, 612
Quadratic eigenvalue problem (QEP), 1153
Quadratic-linear differential algebraic systems

(QLDAE)
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quadratic linearization, 793

Quadratic program (QP), 612–614
Quantum chrome dynamics (QCD). See Lattice

quantum chrome dynamics (Lattice
QCD)

Quasi-Newton algorithm, 715, 716
Quasi-static finite elasticity, 322

R
Radon transform, 244
Random/floating population, 1050
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Randomized level set method, and wildland
fire propagation

Atmospheric Boundary Layer, 531
atmospheric wind, influenced, 531
Dirac-delta function, 533
evolution equation, 532
fire-break zones, 535–539
fire-induced flow, 532
heating-before-burning mechanism, 534
level-set method, 532
PDF distribution, 533
Reynolds transport theorem, 533
ROS, 532–533

RANS equation. See Reynolds-averaged
Navier-Stokes (RANS) equation
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Reaction-diffusion equation

mono-domain system, 321
reaction-diffusion-convection equations,

361
wildland fire propagation and, 532–534

Reduced basis (RB) method, 647–648,
650–654

Reduced nonlinear model
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circular reference, 1144–1145
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differential steering type, 1140
kinematics of, 1140
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Regularized regression approach, 334–336
Relative error
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Dirichlet BC, 108, 109
without BC, 108, 110
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964–968
Residential energy system (RES), 618–619
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MPC algorithms, 619–620
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decentralized, 621

Response Surface Model (RSM), 423–424,
434

Reynolds-averaged Navier-Stokes (RANS)
equation, 29–33, 485–486

Reynolds number, 28, 391, 948, 950, 973, 975,
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Reynolds transport theorem, 533
Riemann problem, 545
Riemann tensor, 927
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free surface flow, 785
friction slope, 785
pressure flow, 785
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Roughness power spectrum, 690, 691
2(3)-ROW-scheme, 474
Runge-Kutta (RK) methods, 545, 1066–1069
RUSHIL wind tunnel experiment, 27, 28

S
SABR/LIBOR market models
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calibration

caplets, 68
correlation parameters, 68
multi-GPU algorithm, 69
SA algorithm, 69–70
swaptions, 68–69
volatility parameters, 68

correlation structure, 66
drift terms, 67
dynamics, 65–66
forward rates, 65–66
function parameterizations, 68
numerical results, 70–73
stochastic volatility model, 65
volatility, 67
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Saint-Venant equations, 784, 803
Sandoz accident, 783
Satellite imagery, shadow detection
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pipeline

geographic coordinates, 1061
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Landsat images, 1058, 1059, 1061
potential shadow pixels, 1060
shadow mask, 1060, 1061
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Science Foundation Ireland, 198
Semi-classical transport, 689
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low-field transport, 691–692
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approximation error, 439
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input variables, 439
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637
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vs. cublasSgemm, 142
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performance results, 146–147

Sgemv4 computation, 141–143
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equations, 802, 803
Shape detection
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boundary curve, 1131
geometry for, 1132, 1133
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Shear strain, 696–699
Sherman-Morrison formula, 373
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Silicon

k � p approach, 700
model
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spin lifetime and the momentum
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spin-orbit interaction, 696, 698
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697, 698

spin lifetime, 695
spin relaxation mechanisms and
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Simulated annealing (SA) global optimization

algorithm, 69–70
Single instruction multiple data (SIMD), 136
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677–679
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663–666

for state and parameter estimation, 660–662
Smagorinsky sub-grid scale model, 30
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electricity demand modeling
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DNOs, 341–342
electricity consumption prediction,

345–348
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preprocessed smart meter data, 342
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Smile effect, 1030
Smoothed particles hydrodynamics (SPH)

dam-break simulation
fluid/solid interaction, 894
Goulours spillway Debris flow test case,

894–895
homogeneous accuracy, 893–894
unified semi-analytical boundary

conditions, 890–893
vertical-slot fish pass modeling

GPU SPH implementation
boundary conditions, 875
homogeneous accuracy, 874–875
inflow modeling, 876
laboratory model, 875
neighbors list, 874
outflow field, 876
predictor-corrector integration scheme,

874
standard Lennard-Jones repulsive

particles, 876
mass continuity equation, 873
Navier-Stokes equations, 872, 873
validation data, 877–878
weakly-compressible SPH, 873

snopt software, 966
Soft Skills, 174
Solar power tower (SPT) systems

description, 180
heliostat field design

expansion-contraction algorithm, 184
Greedy algorithm, 182–183
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operation, 180
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joint pod system, 777, 778
optimisation, 774–777
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shading and blocking effects, 773
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system

electromagnetic evidences, 597–599
fluid flows patterns, 600, 601
geochemical evidences, 599, 600
settings, 595–596

Solid–liquid mass transfer process, 356,
358

SonaeMC, order picking. See Order picking
Sparse grid, 334–336
Spatial epidemic propagation model

discretization scheme, 522
epidemic wave, 524–525
Neumann boundary conditions, 522
qualitative properties, discrete versions of,

522–523
simplified model, properties of, 519–521
SIR model, 517–518
spatial Taylor series, 518
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accuracy and computational complexity,

322
interleaved SDC, 323
multi-rate integration, 326
numerical results, 326–327
spatio-temporal adaptivity, 322
time discretization, 322–323
time stepping, 322

Spectral element/hp method (SEM), 554, 555
Spin lifetime, 697, 699
Spin-orbit interaction, 696, 698, 731–733
Spin relaxation, silicon films
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and momentum relaxation time ratio, 698,
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partnership, 176
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Squared matrix element, 689–690
Standard Newton method, 489
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State dependent Ricatti Equation (SDRE)

method. See Reference robot
trajectory

Statistical shape analysis, 758
Stochastic collocation techniques, 375, 378
Stochastic correlation processes (SCP)

modified Ornstein-Uhlenbeck process
transformed modified Ornstein-

Uhlenbeck process, 115–116
transition density function, 116–118

pricing quantos, 118–120
Stochastic differential equations (SDE), 50,

286, 287
Stochastic geometry, 758
Stochastic grid bundling method (SGBM), 206

Bermudan option pricing problem,
208–209

bundling
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214–216
k-means clustering technique, 210–211,

214, 215
continuation values, 210
convergence, 214, 215
d-dimensional problem, 214
high-dimensional state space mapping, 210
implementation

CUDA implementation, 212
CUDA-version coding, 212
C-version coding, 212
in Matlab, 212
Monte Carlo grid generation, 212
parallel SGBM, 213–214
schematic representation, 212

option values, 210
regression and bundling, 208
stochastic grid points, 209

Stochastic process, 76, 77, 113, 114, 119, 1030
Stochastic volatility modelling, 220
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portfolio value, 1032–1033
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bubble dynamics

bubble formation, 259
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Plateau-Rayleigh mechanism, 260
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foaming properties, 258
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Stress tensor, 390
Stroud-3 rule, 839
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workflow, 197, 198
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Support vector machines (SVMs), 422, 433,

448
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Synge’s equations, 909, 926, 929
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TDOA. See Time Difference of Arrival

(TDOA)
Technology translator/facilitator, 174
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Therapeutic drug monitoring. See Dose

adaptation, probabilistic approach
Therapeutic window (TW), 1005

Thermobonding, 953
Thermophoresis, 391
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equations of, 588
numerical method, 590, 591
thermomagnetic field, 588–589

Three-dimensional bathymetries, 544
Three-dimensional carrier gases (3DEG), 689
3D TCAD, power electronic devices, 713

computed discharge profiles, 717, 718
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719
coupled model, equations for, 714–716
diode and switch models, 717
3D semiconductor devices, coupled

simulation, 719
simulation, 714, 719

Time-based therapeutic indicators, 1005
Time difference of arrival (TDOA)

magnitudes in Newtonian equations, 918,
919

method, 917
post-Newtonian equations
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corrections to distances, 921
corrections to emitted frequency, 923
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Timoshenko (TS) beam, 962, 963, 967
Töpfer’s transformation, 393
Topological derivative (TD) methods, 237–241
Total daily dose (TDD), 1005
Total variation image restoration, 231
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Transformed modified Ornstein-Uhlenbeck

process, 115–116
Transition density function, 116–118
Transmission eigenvalue problem, 232–233
TREE method, 466
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Turbulence, 28, 30, 158, 266, 282, 532, 533,
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description, 881
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PVDF manufacturing, 882
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balance relation, 884
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Vehicle tracking
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tracking results, 6
vehicle deformation, 6

Velocity correction, 490
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Verified stability analysis, 656
Vertical-slot fish pass modeling

GPU SPH implementation
boundary conditions, 875
homogeneous accuracy, 874–875
inflow modeling, 876
laboratory model, 875
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outflow field, 876
predictor-corrector integration scheme,
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fibre lay-down model, 954–955
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dimensionless model equations, 991
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W
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Application Program (WAsP)
Water network simulation

conservative finite difference space
discretisation, 786–787

LLF approach, 788–791
river alarm model

convection-diffusion-reaction equation,
784

flooded cross sectional area, 785
free surface flow, 785
friction slope, 785
pressure flow, 785
Saint-Venant equations, 784
water surface elevation, 785

semi-explicit DAE system, 787–788
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water quantity model, 784
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WENO schemes, 789

Wave propagation
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bar, 549–550
solitary wave propagation
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Weather forecast
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initialization, 39
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function, 40–41
mutation, 39
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experimental tests results
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hit and miss, 22
Huffington Post, 23
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website test, 21–22

localization of web item
keypoint matching method, 21, 22
template matching method, 20–21

template generation, 18
template screenshot

keypoint extraction, 19–20
web item image cut, 19

work flow, 18
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schemes, 789
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Wet-lay processes, 993
Whipping instability, 979, 980, 987
Wigner equation (WE), 701

boundary conditions, 702–705
convergence, 704–705
initial condition, 702, 704, 705
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integral representation, 703–704
physical analysis, 705–706
problem, 702
uniqueness, 701

Wildland fire propagation
Atmospheric Boundary Layer, 531

atmospheric wind, influenced, 531
Dirac-delta function, 533
evolution equation, 532
fire-break zones, 535–539
fire-induced flow, 532
heating-before-burning mechanism, 534
level-set method, 532
PDF distribution, 533
Reynolds transport theorem, 533
ROS, 532–533

Wilson Flow
definition, 1066
Runge-Kutta methods, 1066–1068

Wind Atlas Analysis and Application Program
(WAsP), 27, 29, 30, 32, 33

Wind flow over hills
LES, 29–33
Navier-Stokes equations, 28, 29
potential flow, 29, 30
RANS equation, 29–33
in stream-wise direction

instantaneous velocity, 31
mean velocity, 31
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Wind tunnel experiment, 27
Wishart autoregressive process, 114
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Young–Laplace equations, 1074–1075

Z
Zero-equation model, 488
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