
Comparative Analysis of Leakage Tools
on Scalable Case Studies

Fabrizio Biondi(B), Axel Legay, and Jean Quilbeuf(B)

Inria, Rennes, France
{fabrizio.biondi,jean.quilbeuf}@inria.fr

Abstract. Quantitative security techniques have been proven effective
to measure the security of systems against various types of attackers.
However, such techniques are often tested against small-scale academic
examples.

In this paper we analyze two scalable, real life privacy case studies:
the privacy of the energy consumption data of the users of a smart grid
network and the secrecy of the voters’ voting preferences with different
types of voting protocols.

We contribute a new trace analysis algorithm for leakage calculation
in QUAIL. We analyze both case studies with three state-of-the-art infor-
mation leakage computation tools: LeakWatch, Moped-QLeak, and our
tool QUAIL equipped with the new algorithm. We highlight the relative
advantages and drawbacks of the tools and compare their usability and
effectiveness in analyzing the case studies.

1 Introduction

The protection of privacy and data security is one of the main concerns of com-
puter science. Security often falls down to the impossibility for an attacker
to obtain a given secret value. Such an impossibility can be defined by non-
interference [18]. However this definition rejects any program which publishes
any variable whose value depends on the secret. For instance, publishing the
results of an election when each individual vote is secret breaks non-interference.
Such a yes/no approach does not consider that an attacker may have a partial
information about a secret.

Information-theoretical techniques have the advantage of considering the
secret not as an atomic object but as a known number of secret bits, allow-
ing the definition of measures of effectiveness of an attack based on the amount
of secret bits that the attack compromises. The amount of secret bits that are
compromised by an attack are known as information leakage. Leakage depends
on the information about the secret known to the attacker before the attack,
known as prior information and usually modeled as a prior probability distrib-
ution over the values of the secret. This approach dates back to Denning [16].
Different information leakage measures have been introduced, including Shannon
leakage [19], min-entropy leakage [30] and the g-leakage [1], encoding different
security properties of the system. All the tools we compare in this work can
c© Springer International Publishing Switzerland 2015
B. Fischer and J. Geldenhuys (Eds.): SPIN 2015, LNCS 9232, pp. 263–281, 2015.
DOI: 10.1007/978-3-319-23404-5 17

264 F. Biondi et al.

compute both Shannon and min-entropy leakage with no significant difference
in computation time. We compare them on the computation of Shannon leakage,
but we expect no significant difference if the tools were to be compared on the
computation of min-entropy leakage.

Among the results in the field, Köpf et al. studied leakage of side-channel
attacks [2,21], while Boreale has defined leakage for process calculi [6] and char-
acterized the best attack strategy of an adaptive attacker [9].

In this work we compare the three tools that compose the state of the art in
Shannon leakage computation: QUAIL [5] equipped with a new trace analysis
algorithm, LeakWatch [13], and Moped-QLeak [11].

QUAIL is a recent but already well established tool for precise and exact
information leakage computation, and later tools by multiple authors have used
it as comparison [13,25]. Nonetheless, QUAIL needs to produce a full Markov
chain model of the system-attacker scenario to produce a meaningful result.

LeakWatch is the most recent of a family of tools for statistical approxi-
mation of information leakage developed by Chothia et al. [12,14]. LeakWatch
analyzes Java code, requiring the programmer to annotate the code of the system
with secret and observable values, then simulates the system repeatedly using
the Java Virtual Machine and estimates the correlation between the secret and
observable values. LeakWatch follows a different perspective than QUAIL and
Moped-QLeak, since LeakWatch computes an approximated result, contrarily to
QUAIL’s arbitrary precision and Moped-QLeak’s fixed double precision. Leak-
Watch’s approximation can be improved at the cost of running more simulations,
which is time expensive.

Moped-QLeak [11] uses the Moped tool [17] to compute a symbolic summary
of the program under analysis as an Algebraic Decision Diagram (ADD), and
then computes the leakage using the ADD representation. The symbolic app-
roach is very efficient when the program can be represented in a compact way
using ADDs, and in these cases Moped-QLeak is significantly faster than the
other tools.

The first contribution of this paper is a new algorithm for precise information
leakage computation, which is able to compute information leakage following the
same Markovian semantics we introduced previously [3, Sect. 4] by performing a
depth-first search analyzing the execution traces of the system. We implemented
this algorithm in QUAIL, allowing it to compute leakage without having to build
the full Markov chain model of the system.

As a second contribution, we provide two scalable case studies for the bench-
marking of quantitative information leakage tools. Both case studies arise from
real-life privacy problems. The case studies are anonymity of user data in Smart
Grids and privacy comparison in voting protocols.

Smart Grids are in the family of interconnected objects and have received
a growing interest over the last years. Our case study is based on a real sys-
tem deployed at fortiss1 labs [22]. In our case study, we focus on the negotia-
tion between a set of prosumers and an aggregator. The prosumers (PROducer
conSUMERS) consume, store and produce energy. To stabilize the grid, the

1 http://fortiss.org.

http://fortiss.org

Comparative Analysis of Leakage Tools on Scalable Case Studies 265

prosumers negotiate with the aggregator how much energy they will exchange
with the grid for the next period of time. This exchange might expose the con-
sumption of one of the prosumers, and, in turn, allow a potential attacker to
deduce that a house is empty or that a factory has increased its production.
In that example, the difficulty is to decide not only whether the exact infor-
mation can be deduced or not, but also how well an attack can approximate
it. Measuring the leakage indicates how much of the secret is unveiled through
the negotiation phase. We show that increasing the number of prosumers also
increases security.

In the voting protocols comparison case study, we compare two different vot-
ing protocols: the Single Preference, where each voter expresses a single vote
for his favorite candidate, and the Preference Ranking, where each voter ranks
all candidates from his most to his least favorite. In both cases there are multi-
ple voters and candidates, and the secret is the preference of each voter. Both
protocols have a large number of possible secrets and outputs, so they become
cumbersome to analyze even with a small number of voters and candidates.

We compare the tools on their computation time, precision of the answer
returned, scalability and usability. Since no tool works strictly better than the
others in all category, we determine the problem classes that are better suited
to be analyzed by each tool.

2 Background: Information Leakage

The information leakage of a program is a measure quantifying how much infor-
mation an attacker infers about the program’s secret by observing the program’s
output. We assume that the attacker has access to the program’s source code,
unlimited computational power, and some prior information about the secret
(e.g. the bit size of the secret). Leakage corresponds to the reduction in the
attacker’s uncertainty about the secret.

Let h be a random variable with values in a domain D(h) representing the
value of the secret and o be a random variable with values in a domain D(o)
modeling the value of the output. The information the attacker has on the secret
is modeled by a discrete probability distribution, i.e. for a discrete random vari-
able X a function π : D(X) → [0, 1] such that

∑
x∈D(X) π(x) = 1. The infor-

mation that the attacker has on the secret before the attack is modeled by the
prior distribution π(h) while the information the attacker has after observing
the output is modeled by the posterior distribution π(h|o). We consider the
prior distribution as given, since it is part of the model of the attacker. Let U be
an uncertainty measure defined on probability distributions, including Shannon
entropy, min-entropy, and g-vulnerability. Computing leakage for the measure
U reduces to computing the prior and posterior distributions and applying the
formula

LeakageU = U(π(h)) − U(π(h|o)) (1)

= U(π(h)) −
∑

ō∈D(o)

π(o = ō)U(π(h|o = ō)) (2)

266 F. Biondi et al.

In this work we want to compute Shannon leakage, and thus we use Shannon
entropy as the measure of uncertainty: U(π(x)) =

∑
x∈D(X) π(x) log2 π(x).

3 Quantitative Information Leakage Tools

We introduce the quantitative information leakage computation tools that will
be tested on the case studies.

3.1 QUAIL

QUAIL [5] computes Shannon and min-entropy leakage of a program written
in an imperative WHILE language. The language allows the user to program
naturally with constants, arrays, and loops, which is syntactic sugar for QUAIL’s
if-goto Markovian semantics. Given the prior information of the attacker, QUAIL
represents the program as a Markov chain, and computes the information leakage
from the Markov chain with an arbitrary number of precision digits.

Syntax. We present the syntax of the QUAIL imperative language we use to
model programs. We distinguish the variables in public and private variables
according to their level of abstraction: public variables have precise values, while
private variables have sets of possible values. The observable variable o is public,
while the secret variable h is private. Let v range over names of variables and x
range over reals from [0; 1]. Let L (resp. H) be a set of assignments of values to
public variables (resp. assignments of sets of values to private variables).

Let label, l0 and l1 denote any program point and f (g) pure arithmetic
(Boolean) expressions. Assume a standard set of expressions and the following
statements:

stmt ::= public intn v := k | private intn v | v := f(L) | v := rand x |
skip | goto label | return | if g(L, H) then goto la

else goto lb

The first statement declares a public variable v of size n bits with a given
value k, while the second statement similarly declares a private variable h of size
n bits with allowed values ranging from 0 to 2n − 1. We assume a standard type
system to verify that values of n-bit variables do not exceed 2n − 1. The third
statement assigns to a public variable the value of expression f depending on
public variables; assignment to private variables or depending on the value of
private variables is not allowed. The fourth statement assigns zero with proba-
bility x, and one with probability 1−x, to a 1-bit public variable. The return
statement outputs values of all public variables and terminates. A conditional
branch first evaluates an expression g dependent on private and public variables,
and it jumps to label la if g is true and to label lb otherwise. Since only a single
variable scope exists, loops can be added in a standard way as syntactic sugar.

As a contribution, we present a method to compute information leakage of
a program by analyzing the execution traces of the program. We introduce the

Comparative Analysis of Leakage Tools on Scalable Case Studies 267

Markovian semantics of our language by means of a function computing the
successors of each state. Then we explain how we perform a depth-first explo-
ration of the traces of the system, obtaining a set Q of final states that represent
all possible output states of the system. Finally, we show how to compute the
posterior entropy from Q.

Fig. 1. Successor function for each state in the Markovian trace semantics.

Semantics. The Markovity of the semantics allows us to define states contain-
ing enough information to determine a probability distribution over all traces
originating from any state.

Definition 1. A state in a Markovian semantics is a tuple (pc, L,H, p) where
pc ∈ N

0 is the program counter, L a set of assignments of values to public
variables, H an set of assignments of sets of values to private variables, and
0 ≤ p ≤ 1 is the probability of the state.

The initial state of the semantics is (1, ∅, ∅, 1). The set of successor states of a
state (pc, L,H, p) depends on the statement pointed at by the program counter
pc. States pointing to a return statement have 0 successors, states pointing
to a rand or if statement have up to 2 successors, and any other state has 1
successor. The successor function defining the semantics of the language is shown
in Fig. 1. If a state has zero probability, e.g. when a conditional is always true,
it is removed from the set of successors.

We call a state final if it has no successors, meaning that the program counter
of the state points to a return statement. The trace analysis terminates when
a final state is encountered. This means that the analysis terminates if and only
if the program under analysis terminates, so non-terminating programs cannot

268 F. Biondi et al.

be analyzed with this technique. Non-termination of the program under analysis
raises other issues in leakage computation [4], and is not considered here.

Conditional states and random assignment states have two successors. The
successors of a conditional state correspond to the guard being true or false. Since
the guard can depend on the secret, both successor states may have positive
probability depending on the prior distribution π(h) on the secret, which is
available at this time. The successors of a random assignment state correspond
to the bit being set to 0 or 1. In both cases the probability of each successor
state is computed and one of the successor states with non-zero probability is
chosen to be the next step in the analysis. Successors with probability zero are
dropped, pruning unreachable leaves from the trace tree.

Because of the Markovian semantics, each state contains the information to
compute the probability distribution over its outgoing transitions. The proba-
bility of a trace is computed as the product of the probabilities of the transi-
tions composing the trace. In the successor states of the conditional statement,
H|g(L,H) (resp. H|¬g(L,H)) represents the assignment function obtained by
removing from the sets of values assigned to the private variables those values
that contradict (resp. respect) the guard g(L,H). Similarly, Pr(g(L,H) |π(h))
(resp. Pr(¬g(L,H) |π(h))) refers to the probability that the guard g(L,H) is
true (resp. false) considering the prior probability distribution π(h) on the pri-
vate variables.

When the analysis of a single trace terminates, the corresponding final state
(p̄c, L̄, H̄, p̄) is produced, in which pc points to a return statement. The sets
of allowed values assigned to the private variables in H̄ have been appropriately
reduced to account for the conditional statements visited by the trace.

Depth-First Trace Exploration. We perform a depth-first exhaustive explo-
ration of the execution traces of the system, starting from the initial state
(1, ∅, ∅, 1). Each trace is explored until it gets to a final state, then the final
state gets added to the multiset Q of final states. When all traces have been
explored, the full multiset of final states Q of the system is produced. We then
use Q to compute the posterior entropy of the system using Algorithm 1 pre-
sented below. The leakage of the system is computed as the difference between
the prior and posterior entropy, as explained in Sect. 2.

Note that the exploration also depends on the prior distribution π(h): values
of the secret with a probability zero in the prior distribution are not explored.
This behavior is intended, as is avoids unnecessarily exploring traces that have
probability zero.

The depth-first exploration algorithm can be parallelized to take advantage
of multicore architectures and is implemented in the current release of QUAIL,
available at http://project.inria.fr/quail. Since this new algorithm is hundreds
of times faster than the previous QUAIL implementation, we consider is as the
standard QUAIL algorithm.

Posterior Uncertainty Computation. We show how to compute the pos-
terior uncertainty U(π(h|o)) of a system with a secret h and an observable o,

http://project.inria.fr/quail

Comparative Analysis of Leakage Tools on Scalable Case Studies 269

Data: uncertainty measure U , multiset Q of final states
Result: posterior uncertainty U(π(h|o))

1 Initialize π(o) and all π(h, o = ō) to zero;
2 forall the s = (pc, L, H, p) ∈ Q do
3 Let ō = L(o), {k1, ..., kn} = H(h);
4 Set π(o = ō) ← π(o = ō) + p;
5 for i = 1...n do
6 Set π(h = ki, o = ō) ← π(h = ki, o = ō) + p/n;
7 end

8 end
9 For each ō ∈ D(o) let π(h|o = ō) ← π(h, o = ō)/π(o = ō);

10 Return U(π(h|o)) =
∑

ō∈D(o) π(o = ō)U(π(h|o = ō))

Algorithm 1. Posterior uncertainty computation

given the uncertainty measure U and a multiset Q of final states of the system.
Q encodes the posterior joint probability of all variables in the system and can
be produced by the depth-first exploration algorithm presented above.

Let (pc, L,H, p) be a final state in Q, where L represents the assignments of
given values to the public variables, H the assignments of sets of values to the
private variables, and p the joint probability of such assignments. Since different
traces may produce the same final assignments to variables (L,H), the joint
probability of these assignments is the sum of the probabilities of all such final
states. To apply the formula (2) U(π(h|o)) =

∑
ō∈D(o) π(o = ō)U(π(h|o = ō)),

we need to compute the marginal probability distribution π(o) and for each
observable output ō ∈ D(o) s.t. π(o = ō) > 0 the corresponding conditional
probability distribution on h, i.e. π(h|o = ō).

Algorithm 1 computes π(o) and each π(h|o = ō) by analyzing a multiset of
final states. For each state (pc, L,H, p) the value of the observable variable o and
set of values of the secret variable h are analyzed (lines 2–8). The probability
of observing the value ō of the observable variable in the state is increased by p
(line 4), and the probability of observing each of the n values of the secret variable
conditioned on ō is increased by p/n (line 6). Finally, the probability on each
subdistribution π(h, o = ō) is normalized to 1 by dividing it by π(o = ō) to obtain
the conditional probability π(h|o = ō) (line 9) since P (X|Y) = P (X,Y)/P (Y).

Theorem 1. Algorithm 1 terminates and outputs the posterior uncertainty
U(π(h|o)) of the posterior distribution represented by Q.

3.2 LeakWatch

LeakWatch [13] estimates the leakage of a Java program with secrets and obser-
vations by running it several times for each possible value of the secret and
inferring a probability distribution on the observations for each secret. The tool
automatically terminates the analysis when the precision of the estimation is
deemed sufficient, but different termination conditions can be used.

270 F. Biondi et al.

For small secrets, LeakWatch gives reliably approximates the leakage of com-
plex Java programs. For larger secret, i.e. more than 10 bits, LeakWatch takes
more time to return a value. However, the user can decide an acceptable error
level for the tool to reduce the computation time necessary to obtain an answer.
Also, if the tool is terminated prematurely, it can still provide an answer, even if
it will be potentially quite imprecise. This makes LeakWatch the only tool of the
three considered that can always provide an answer in a time-limited scenario,
since QUAIL and Moped-QLeak generate a leakage result only if they complete
their execution.

Finally, LeakWatch provides many command-line options for tuning the
analysis parameters. In particular, one of the options displays the current estima-
tion of the leakage at regular intervals, which can be very useful when developing.

Syntax and Usage. The syntax is the same as the Java language, with the
additional commands secret(name,value) to declare a secret with a given
name and value, and observe(value) to declare an observation of a given
value. The analysis evaluates how much information leaks from the secret to the
observable values. In particular, LeakWatch can compute leakage from a point
of a program to another point of the program, and not necessarily from the start
to the termination of the program.

To run LeakWatch, a Java programa annotated with secret and observable
statements has to be compiled linking the LeakWatch library:

javac -cp leakwatch-0.5.jar:. MyClass.java
The tool is then run passing the name of the compiled class as a parameter:

java -jar leakwatch-0.5.jar MyClass
The tool returns its leakage estimate for the Java program. Normally Leak-
Watch determines automatically when it has run enough executions. We have
used the -n parameter to fix the number of executions of the program when we
experimented with different precisions and computation times.

3.3 Moped-QLeak

Moped-QLeak [11] uses the Moped tool [17] to compute a symbolic Algebraic
Decision Diagram (ADD) representation of the summary of a program, which
contains the relation between the inputs and outputs of the program. Moped-
QLeak then computes Shannon or min-entropy leakage from this ADD repre-
sentation using two algorithms introduced by the authors. To obtain the ADD
representation of the program, Moped basically performs a fix-point iteration.

Moped’s ability to build a symbolic representation of a program depends on
the program’s complexity. When such representation is computed, Moped-QLeak
computes the information leakage with a small time overhead. On the other hand,
some programs are not easy to reduce to a symbolic representation, and in this
case Moped-QLeak’s computation does not terminate within a reasonable time.

The ADD-based representation of probability distributions allows Moped-
QLeak to analyze examples with large secret and observation spaces. In partic-
ular, the authors test it with 32-bit secrets and observables, whereas QUAIL’s

Comparative Analysis of Leakage Tools on Scalable Case Studies 271

computation time tends to be exponential in the size of the observables and
LeakWatch’s in the size of the secret. This suggests that the ADD approach is a
key improvement on the state of the art, allowing the analysis tools to analyze
off-the-shelf programs using 32- and 64-bit variables.

3.4 Syntax and Usage

The tool analyzes programs written in a variant of Moped’s Remopla language.
We provide here a simplified version of the syntax used by Moped-QLeak.

stmt ::= skip ; | ident = exp; | pchoice (::prob->stmt)+ choicep

| do :: exp -> stmt :: else -> stmt od

| if :: exp -> stmt :: else -> stmt fi

The if and do constructs from Remopla, originally non-deterministic in Moped,
have been made deterministic in Moped-QLeak. The language has also been
enriched with a probabilistic choice operator, pchoice which allows the pro-
grammer to probablistically define the next statement (e.g. by giving a prob-
ability prob to each statement). Remopla supports loops, arrays and integers
of arbitrary size. The language is normally used to encode systems for model
checking against temporal logics.

The language does not provide constructs to declare secrets and observables,
but assume that all global variables are at the same time secret and observable.
More precisely, the initial values are considered as the input and the final values
as the output. In practice, a variable is made secret by assigning it the same
value in all final states.

Moped-QLeak is executed on a Remopla file MyFile.rem by calling
mql -shannon MyFile.rem

where -shannon specifies that the tool will compute and return the Shannon
leakage.

4 Case Studies

We evaluate the three tools described in the previous Section with two scalable
case studies2. The case studies have been chosen because they model real-life sys-
tems and the results computed are representative of realistic security concerns.
In order to compare them, we consider the following criteria:

Speed. Evaluating the time required by the tool to provide a result;
Accuracy. Evaluating the precision of the result returned by the tool;
Scalability. Evaluating how the tool behaves on larger instances of the case

studies;
Usability. Evaluating the easiness of modeling and the usefulness of the error

messages from the compiler.

2 The files used for our experiments are available at https://project.inria.fr/quail/
casestudies/.

https://project.inria.fr/quail/casestudies/
https://project.inria.fr/quail/casestudies/

272 F. Biondi et al.

4.1 Case Study A: Smart Grids

Aggregator

Prosumer 2Prosumer 1 Prosumer 3

plan

plan

plan

excess

excess

excess

Fig. 2. Smart grid overview

A Smart grid is an energy net-
work where every node may pro-
duce, store and consume energy. Nodes
are called prosumers (PROducer con-
sSUMERS). The Living Lab demon-
strator [22] is an instance of such a
prosumer, whose data can be accessed
online3. The prosumers periodically
negotiate with an aggregator in charge

of balancing the consumption and production among several prosumers. Figure 2
depicts a grid with 3 prosumers. Each prosumer declares its plan, that is, how
much it intends to consume or produce during the next period of time. The
aggregator sends to each house the value indicating the excess of energy pro-
duction or consumption. An excess of 0 indicates that the plans are feasible and
terminates the negotiation. Otherwise, the prosumers adapt their plan accord-
ingly and send the updated version. Smart grid and smart sensors raise several
security and privacy concerns. The platform can ensure the information can-
not flow directly between prosumers [10]. However, stability requires a feedback
from the aggregator that potentially conveys information about other prosumer,
where only the software can limit information leakage. In general, knowing the
consumption of a particular household may reveal some sensitive information
about the house (presence of people in the house, type of electrical devices . . .).
Therefore, the consumption of a prosumer should remain secret. The privacy of
a prosumer with respect to the aggregator can be ensured in several ways [29].
However, each prosumer receives some information about the consumption of
other prosumers through the excess value sent back by the aggregator.

Table 1. Consumption of
houses wrt size

Size Case A Case B

Small 1 1
Medium 2 3
Large 3 5

An attacker might use the information
obtained through the grid in order to decide
whether a given house is occupied or not. In our
scenario, we assume different types of houses with
different consumptions. Each house is modeled by
a private boolean value, which is true if the house
is occupied. An occupied house consumes a fixed
amount of energy, according to its type. An empty
house does not consume anything. Table 1 presents how much a given house con-
sumes, in two different cases that we consider.

For this experiment, we assume that the attacker observes the global con-
sumption of the quarter. We consider different targets for the attack and thus
different secrets. Either the attacker targets a single house of a given type (i.e. S,
M or L) and only the bit corresponding to the presence in that house is secret,
or the attacker wants to obtain informations about all the houses and the whole
array of bits indicating the presence in each house is secret.

3 livinglab.fortiss.org.

https://www.livinglab.fortiss.org

Comparative Analysis of Leakage Tools on Scalable Case Studies 273

Table 2. Leakage of presence information
through the global consumption

Case Nb of

houses

Single house leakage Global

leakage

Global

leakage/bit

S M L

A 3 0.7500 0.7500 0.7500 2.7500 0.9166

A 6 0.0688 0.1466 0.2944 3.4210 0.5701

A 9 0.0214 0.0768 0.1771 3.7363 0.4151

A 12 0.0135 0.0544 0.1273 3.9479 0.3289

B 3 1.0000 1.0000 1.0000 3.0000 1.0000

B 6 0.1965 0.1965 0.3687 4.0243 0.6707

B 9 0.0241 0.0808 0.2062 4.3863 0.4873

B 12 0.0074 0.0510 0.1443 4.6064 0.3838

Table 3. Time to compute or
approximate the leakage for a large
house

Case House Time Time Time

Nb QUAIL LW mql

A 3 0.1 s 0.3 s 0.02 s

A 6 0.3 s 0.3 s 0.02 s

A 9 0.6 s 0.4 s 0.02 s

A 12 1.6 s 0.4 s 0.03 s

B 3 0.2 s 0.3 s 0.02 s

B 6 0.3 s 0.5 s 0.02 s

B 9 0.6 s 0.4 s 0.02 s

B 12 1.7 s 0.4 s 0.03 s

Usability. We model the above scenario in the three tools. We consider two ver-
sions depending on the target. The program is rather simple to model, the only
noticeable difference between the tools language is the declaration of unobserv-
able variables. When targeting all the houses, the secret is an array of boolean.
When targeting a single house, the secret is a single boolean. Both targets are
supported by all the tools. However, the presence in the other houses is not a
secret, but still an unknown and unobservable input of the program. In QUAIL,
the private keyword allows the programmer to declare directly such variables.
With LeakWatch, we chose these values randomly but do not declare them as
secret. In Moped-QLeak, we choose these values randomly, as in LeakWatch.

Table 2 presents the leakage for the Smart grid case study. The first two
columns indicate the case, as presented in Table 1 and the number of houses
in the model. For a model with N houses, there are N/3 houses of each type.
The columns S, M and L indicates the leakage of the variable representing the
presence in a house of the corresponding type. The column “Global leakage”
contains the leakage of the whole array of presence information bits and the
column “Global leakage/bit” indicates the average leak per bit of secret.

In Case B with only 3 houses, the presence information can be deduced from
the global consumption information, which is indicated by a leakage of 1 for
each presence bit. Otherwise, the average leakage per bit from a global attack

Table 4. Average relative error and computation time over 100 runs for computing
the leakage of the presence in a large house within 12 houses in Case B.

Tool mql QUAIL LeakWatch

Nb. of
Simulations

- - Default 1000 2000 5000 10000 20000 50000

Error 0% 0 % 14.0 % 10.4 % 6.4 % 4.8 % 2.8 % 2.1 % 1.4 %

Time 0.031 s 1.7 s 0.4 s 0.7 s 1.0 s 2.1 s 3.7 s 6.9 s 16.6 s

274 F. Biondi et al.

is more important that the information obtained by focusing on a single house.
This means than obtaining information about the whole array, for instance the
number of occupied houses, is easier than obtaining information about a single
bit, i.e. presence information of a single house. In both cases, the leakage, and
thus the loss of anonymity of prosumers, diminishes when the number of houses
increases.

Speed. In Table 3 we show the time needed by QUAIL, LeakWatch and Moped-
QLeak for computing the leakage of the presence information in a house of size
L. Moped-QLeak takes around 20 ms to compute this value, LeakWatch takes
between 300 and 500 ms and QUAIL takes between 100 and 1700 ms, depending
on the size of the model. Furthermore, Moped-QLeak and QUAIL compute the
exact leakage value, whereas LeakWatch computes an approximation. For a more
precise comparison, we need to take precision into account.

Accuracy. We compare QUAIL, LeakWatch and Moped-QLeak on computing the
leakage of the presence information of a single large house, in Case B. QUAIL
takes 1.7 s to compute the exact leakage. With the default parameters, Leak-
Watch takes 0.4 s to compute an approximation with a relative error of 14 %
(average on 100 runs). It requires 500 to 700 simulations.

To compare execution times with respect to errors, we did an additional
experiment, where we requested LeakWatch to run more simulations. For each
requested number of simulations we provide in Table 4 the average relative error
(over 100 runs) and the time needed for the computation. We see that for an
equivalent amount of time, LeakWatch provides a result with a relative error of
4 to 6 %, whereas QUAIL returns the exact result. Moped-QLeak is the fastest
and most precise.

Scalability. Finally, we evaluate the scalability of the tools by increasing the
number of houses until the analysis time reaches 1 h. For this experiment, we
evaluate the leakage of the presence information, in Case B, for a single house
of size L (1 bit secret), or for all the houses simultaneously (N bits of secret).
The results are shown in Table 5.

Table 5. Maximal size analyzable in one
hour

Target LW QUAIL mql

L-size house 150000 27 234
All houses 15 12 150

We see that LeakWatch can han-
dle a very large number of houses when
computing the leakage from a small
secret, but is not much more scalable
than QUAIL with a large secret. Recall
that LeakWatch provide an approxima-
tion of the leakage, whereas QUAIL and
Moped-QLeak provide the exact value. Moped-QLeak scales relatively well with
both a small and a large secret to analyze.

4.2 Case Study B: Voting Protocols

In an election, each voter is called to express his preference for the competing
candidates. The voting system defines the way the voters express their prefer-
ence: either on paper in a traditional election, or electronically in e-voting. After

Comparative Analysis of Leakage Tools on Scalable Case Studies 275

the votes have been cast, the results of the vote are published, usually in an
aggregated form to protect the anonymity of the voters. Finally, the winning
candidate or candidates is chosen according to a given electoral formula.

In this section we present two typologies of voting, representing two ways in
which the voters can express their preference: in the Single Preference protocol
the voters declare their preference for exactly one of the candidates, while in
the Preference Ranking protocol each voter ranks the candidate from his most
favorite to his least favorite.

Single Preference. This protocol typology models all electoral formulae in
which each of the N voters expresses one vote for one of the C candidates, includ-
ing plurality and majority voting systems and single non-transferable vote [24].
The votes for each candidate are summed up and only the results are published,
thus hiding information about which voter voted for which candidate. The can-
didate or candidates to be elected are decided according to the electoral formula
used.

The secret is an array of integers with a value for each of the N voters. Each
value is a number from 0 to C−1, representing a vote for one of the C candidates.
The observable is an array of integers with the votes obtained by each of the C
candidates.

The protocol is simple, and its information leakage can be computed formally,
as shown by the following lemma:

Lemma 1. The information leakage for the Single Preference protocol with n
voters and c candidates corresponds to

−
∑

k1+k2+...+kc=n

n!
cnk1!k2! . . . kc!

log2

(
n!

cnk1!k2! . . . kc!

)

While the lemma provides a formula to “manually” compute the leakage, it is
very hard to find such a formula for an arbitrary process. Therefore automated
tools should be employed.

Preference Ranking. This protocol typology models all electoral formulae in
which each of the n voters expresses an order of preference of the c candidates,
including the alternative vote and single transferable vote systems [24]. In the
Preferential Voting protocol the voter does not express a single vote, but rather
a ranking of the candidates; thus if the candidates are A, B, C and D the voter
could express the fact that he prefers B, then D, then C and finally A. Then each
candidate gets c points for each time he appears as first choice, c − 1 points for
each time he appears as second choice, and so on. The points of each candidate
are summed up and the results are published.

The secret is an array of integers with a value for each of the N voters. Each
value is a number from 0 to C!−1, representing one of the possible C! rankings of
the C candidates. The observable is an array of integers with the points obtained
by each of the C candidates.

276 F. Biondi et al.

Table 6. Voting protocols: percent of secret leaked by Single Preference (on the left)
and Preference Ranking (on the right) computed with the QUAIL tool. Timeout is set
at 1 h.

Experimental Results

Usability. We model the two voting systems, where the secret is the votes, and
the observable the results. In single preference voting, the secret is an array of
integer that represent individual votes. The range of this integer corresponds
to the number of candidates. In QUAIL, it is possible to declare the range
of a secret integer. In LeakWatch, each vote is drawn uniformly in the range
and then declared secret. In Moped-QLeak, this case requires more work. The
range of a secret integer depends on the chosen size bits. A special variable,
out of domain, is set to true if one of the votes is not in the valid range
and the corresponding input is not considered. Furthermore, when using this
variable, it’s not possible to use local variables, which is indicated by the error
message “The first computed value is not a constant.”. The impossibility to use
local variables and the imprecision of the error message increased considerably
the modelling time.

For the Preferential Voting, we were not able to produce a Moped-QLeak pro-
gram that terminates. We suspect that Moped is unable to compute a symbolic
representation of the Preferential Voting protocol due to its inherent complexity.
Indeed, this program decodes an integer between 0 and the factorial of the num-
ber of candidates into a sorted list of the candidates, to assign the corresponding
points to the candidates.

Accuracy. Table 6 shows the percentage of the secret leaked by the Single Pref-
erence and Preference Ranking protocols for different numbers of voters and
candidates. The results for 2 candidates are identical, since in this case in both
protocols the voters can vote in only 2 different ways. The results obtained for
Single Preference are correct with respect to the formula stated in Lemma 1.
The table shows that the Single Preference protocol leaks a larger part of its
secret than the Preference Ranking protocol.

Table 7 shows the percent error of the leakage value obtained with Leak-
Watch. Indeed, LeakWatch computes an approximation of the leakage based on
simulation, whereas QUAIL and Moped-QLeak compute the exact value. Fur-
thermore, the leakage computed by LeakWatch for a given program may change

Comparative Analysis of Leakage Tools on Scalable Case Studies 277

Table 7. Percent error of the leakage obtained by LeakWatch relatively to the exact
value for Single Preference (on the left) and Preference Ranking (on the right). Timeout
is set to 1 h.

Table 8. Time in seconds needed to compute the leakage for Single Preference with
QUAIL (left), LeakWatch (middle) and Moped-QLeak (right). Timeout is set to 1 h.

at each invocation of the tool, because LeakWatch samples random executions.
Here, LeakWatch slightly underestimates the leakage, by 2 to 5 %.

Speed. We compare the execution time of the three tools in Table 8 for Single
Preference and in Table 9 for Preference Ranking. These execution times have
been obtained on a laptop with a i7 quad-core running at 3.3 GHz and 16 GB
of RAM. The results show that QUAIL is significantly faster than LeakWatch
on these examples. This shows that QUAIL performs better than LeakWatch
with large secrets, in line with previous results [5]. For single preference, Moped-
QLeak clearly outperforms QUAIL on large examples. The results for Moped-
QLeak in the preferential voting case studies are missing from Table 9 because
the tool did not terminate in this case study, even with the smallest instance of
2 voters and 2 candidates.

Scalability. Concerning the Scalability, we see that QUAIL and Moped-Qleak are
more scalable than LeakWatch, since the latter times out in Tables 8 and 9. For
Single Preference, QUAIL stops at 7 voters and 6 candidates, due to an error.
Moped-QLeak finished with 12 voters and 6 candidates but returned -inf as
leakage value, instead of 11. With 9 voters and 6 candidates, the result has
approximately 1 bit of errors. Therefore, we conjecture that the -inf value is

278 F. Biondi et al.

Table 9. Time in seconds needed to compute the leakage for Preference Ranking with
QUAIL (on the left) and LeakWatch (on the right). Timeout is set to one hour.

a precision error. On these examples, no tool seems to be much more scalable
than the others, due to various reasons.

5 Conclusions

In this paper, we provided two scalable case studies for the leakage computation
and used them for comparing the existing tools able to perform such an approx-
imation. We have compared the state of the art in information leakage tools –
LeakWatch, QUAIL and Moped-QLeak – on their speed, accuracy, scalability
and usability in addressing the case studies. We summarize here our observations
and experience with the tools.

Speed. Concerning the execution time, Moped-QLeak is usually the fastest tool
in providing an exact result. However, in the preferential voting example Moped-
QLeak was unable to terminate its analysis in less than one hour even for the
smallest instances of the problem. We can note that LeakWatch is faster than
QUAIL on small secrets (e.g. 1 bit) but QUAIL outperforms LeakWatch on
larger secrets. Finally, LeakWatch is very fast on small secrets, but its result
and evaluation of the system (presence or absence of leakage) tends to change
between different executions of the tool.

Accuracy. The tool giving the most accurate result is QUAIL because it supports
arbitrary precision. LeakWatch provides an approximated result and therefore
is imprecise by definition. Moped-QLeak does not implement arbitrary precision
analysis, and consequently suffers from approximation errors. For instance, we
found an error in the order of 1 bit on the majority voting protocol with 9 voters
and 6 candidates, for which we have the exact result. Also, for the same protocol
with 12 voters and 6 candidates Moped-QLeak reported a leakage of negative
infinity bits, which we conjecture is caused by approximation and division-by-
zero errors in the computation.

Scalability. For small secrets, LeakWatch scales better than the other tools ana-
lyzed. In the Smart Grid case study, we managed to analyze the leakage for an

Comparative Analysis of Leakage Tools on Scalable Case Studies 279

aggregation of 150000 houses in less than one hour.However, the returned result
is obtained statistically, and varies from one execution to the other.

For large secrets, the winner is Moped-QLeak, as it scales much better than
QUAIL on the Smart Grid case study. However, for the voting protocol, QUAIL
manages to analyze only two voters less than Moped-QLeak (6 against 8), before
approximation issues make Moped-QLeak’s results incorrect.

Usability. Since all the tools studied here are academic tools who are still in their
early years, usability is not necessarily the main concern of their developers.
However, we have found some important discrepancies in this area.

The most usable tool is LeakWatch, especially if the program to analyze is
already written in Java. In that case, it is sufficient to annotate the program in
order to declare the secrets and the observable values. Furthermore, LeakWatch
has a command line option to display the current results based on the traces
collected so far, which is convenient when the analysis time is very long.

QUAIL has its own language, which is an imperative WHILE language with
arrays and constants. QUAIL allows the explicitly declaration of variables as
observable, public, private or secret, with a specific range of allowed values. Fur-
thermore, QUAIL has a command-line option to change the values of constants
declared in a program, which comes in handy when performing batch experi-
mentation.

Using Moped-QLeak has been more problematic because of some issues with
the Remopla language. In particular, the range of the secrets cannot be deter-
mined, instead the program has to raise an out of domain exception when
the values are not in the expected range. Also, all integer variables have the
same length, defined in the DEFAULT INT BITS constant. Finally, some error
messages are misleading and slow down the modelling process.

To conclude, Moped-QLeak is the fastest tool, because it uses a suitable
data structure (Algebraic Decision Diagrams) for representing the executions.
However, this data structure may become a problem with complex program, as
shown by the preference ranking example, which Moped-QLeak cannot analyze,
contrarily to the other tools. The other tools, QUAIL and LeakWatch are more
usable. QUAIL, which also has its own dedicated language, provide some specific
constructs for declaring the visibility and range of a variable.

We believe that reimplementing QUAIL with a better data structure for
probability distributions, like the ADDs used in Moped-QLeak, would provide a
fast and usable tool for performing leakage analysis. The statistical techniques
used in LeakWatch should also be integrated to allow approximated results for
large instances.

6 Related Tools

We discuss some security-related automated tools and their relation with the
work presented in this paper.

The STA tool developed by Boreale et al. [7] is similar in intent to the
algorithms we propose, since it also uses symbolic trace analysis. More recent

280 F. Biondi et al.

work by Boreale et al. [8] introduces a semiring-based semantics able to perform
compositional quantitative analysis of non-deterministic systems, but no tool is
available at the moment.

Efficient tools have been developed by Phan and Malacaria for information-
theoretical analysis of systems. The tools squifc [25], QILURA [26], and jpf-
qif [27] use SMT solving to perform a symbolic analysis of C or Java code
and to compute channel capacity of programs, where the channel capacity is
the maximum information leakage achievable for any prior distribution over the
secret and randomness of the system. Since the tools compute channel capacity
and not Shannon leakage of randomized systems, they have not been included
in our comparison.

McCamant et al. have obtained interesting results in detecting leakage of
information by implicit flow by applying dynamic and quantitative taint analy-
sis techniques [20,23]. Again, their techniques have not been included in this
evaluation since they do not compute information-theoretical leakage measures
like Shannon and min-entropy leakage.

References

1. Alvim, M.S., Chatzikokolakis, K., Palamidessi, C., Smith, G.: Measuring informa-
tion leakage using generalized gain functions. In: Chong, S. (ed.) CSF, pp. 265–279.
IEEE (2012)

2. Backes, M., Doychev, G., Köpf, B.: Preventing side-channel leaks in web traffic: A
formal approach. In: NDSS. The Internet Society (2013)

3. Biondi, F., Legay, A., Malacaria, P., W ↪asowski, A.: Quantifying information leak-
age of randomized protocols. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.)
VMCAI 2013. LNCS, vol. 7737, pp. 68–87. Springer, Heidelberg (2013)

4. Biondi, F., Legay, A., Nielsen, B.F., Malacaria, P., Wasowski, A.: Information
leakage of non-terminating processes. In: Raman and Suresh [28], pp. 517–529

5. Biondi, F., Legay, A., Traonouez, L.-M., W ↪asowski, A.: QUAIL: a quantitative
security analyzer for imperative code. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 702–707. Springer, Heidelberg (2013)

6. Boreale, M.: Quantifying information leakage in process calculi. Inf. Comput.
207(6), 699–725 (2009)

7. Boreale, M., Buscemi, M.G.: Experimenting with STA, a tool for automatic analy-
sis of security protocols. In: SAC, pp. 281–285. ACM (2002)

8. Boreale, M., Clark, D., Gorla, D.: A semiring-based trace semantics for processes
with applications to information leakage analysis. Math. Struct. Comput. Sci.
25(2), 259–291 (2015)

9. Boreale, M., Pampaloni, F.: Quantitative information flow under generic leakage
functions and adaptive adversaries. In: Ábrahám, E., Palamidessi, C. (eds.) FORTE
2014. LNCS, vol. 8461, pp. 166–181. Springer, Heidelberg (2014)

10. Bytschkow, D., Quilbeuf, J., Igna, G., Ruess, H.: Distributed MILS architectural
approach for secure smart grids. In: Cuéllar [15], pp. 16–29

11. Chadha, R., Mathur, U., Schwoon, S.: Computing information flow using symbolic
model-checking. In: Raman and Suresh [28], pp. 505–516

12. Chothia, T., Guha, A.: A statistical test for information leaks using continuous
mutual information. In: CSF, pp. 177–190. IEEE Computer Society (2011)

Comparative Analysis of Leakage Tools on Scalable Case Studies 281

13. Chothia, T., Kawamoto, Y., Novakovic, C.: LeakWatch: estimating information
leakage from Java programs. In: Kuty�lowski, M., Vaidya, J. (eds.) ICAIS 2014,
Part II. LNCS, vol. 8713, pp. 219–236. Springer, Heidelberg (2014)

14. Chothia, T., Kawamoto, Y., Novakovic, C., Parker, D.: Probabilistic point-to-point
information leakage. In: CSF, pp. 193–205. IEEE (2013)

15. Cuéllar, J. (ed.): SmartGridSec 2014. LNCS, vol. 8448. Springer, Heidelberg (2014)
16. Denning, D.E.: A lattice model of secure information flow. Commun. ACM 19(5),

236–243 (1976)
17. Esparza, J., Kiefer, S., Schwoon, S.: Abstraction refinement with Craig interpola-

tion and symbolic pushdown systems. J. Satisfiability, Boolean Model. Comput. 5,
27–56 (2008). Special Issue on Constraints to Formal Verification

18. Goguen, J.A., Meseguer, J.: Security policies and security models. In: IEEE Sym-
posium on Security and Privacy, pp. 11–20. IEEE Computer Society (1982)

19. Gray III, J.W.: Toward a mathematical foundation for information flow security.
In: IEEE Symposium on Security and Privacy, pp. 21–35 (1991)

20. Kang, M.G., McCamant, S., Poosankam, P., Song, D.: DTA++: dynamic taint
analysis with targeted control-flow propagation. In: NDSS. The Internet Society
(2011)

21. Köpf, B., Mauborgne, L., Ochoa, M.: Automatic quantification of cache side-
channels. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358,
pp. 564–580. Springer, Heidelberg (2012)

22. Koss, D., Sellmayr, F., Bauereiß, S., Bytschkow, D., Gupta, P.K., Schätz, B.: Estab-
lishing a smart grid node architecture and demonstrator in an office environment
using the SOA approach. In: SE4SG. ICSE, pp. 8–14. IEEE (2012)

23. Newsome, J., McCamant, S., Song, D.: Measuring channel capacity to distinguish
undue influence. In: Chong, S., Naumann, D.A. (eds.) PLAS. ACM (2009)

24. Norris, P.: Electoral Engineering: Voting Rules and Political Behavior. Cambridge
University Press, Cambridge (2004). Cambridge Studies in Comparative Politics

25. Phan, Q., Malacaria, P.: Abstract model counting: a novel approach for quantifica-
tion of information leaks. In: Moriai, S., Jaeger, T., Sakurai, K. (eds.) ASIACCS,
pp. 283–292. ACM (2014)

26. Phan, Q., Malacaria, P., Pasareanu, C.S., d’Amorim, M.: Quantifying information
leaks using reliability analysis. In: Rungta, N., Tkachuk, O. (eds.) SPIN, pp. 105–
108. ACM (2014)

27. Phan, Q., Malacaria, P., Tkachuk, O., Pasareanu, C.S.: Symbolic quantitative infor-
mation flow. ACM SIGSOFT Softw. Eng. Notes 37(6), 1–5 (2012)

28. Raman, V., Suresh, S.P. (eds.) FSTTCS, vol. 29. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik (2014)

29. Rottondi, C., Fontana, S., Verticale, G.: A privacy-friendly framework for vehicle-
to-grid interactions. In: Cuéllar [15], pp. 125–138

30. Smith, G.: On the foundations of quantitative information flow. In: de Alfaro, L.
(ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 288–302. Springer, Heidelberg (2009)

	Comparative Analysis of Leakage Tools on Scalable Case Studies
	1 Introduction
	2 Background: Information Leakage
	3 Quantitative Information Leakage Tools
	3.1 QUAIL
	3.2 LeakWatch
	3.3 Moped-QLeak
	3.4 Syntax and Usage

	4 Case Studies
	4.1 Case Study A: Smart Grids
	4.2 Case Study B: Voting Protocols

	5 Conclusions
	6 Related Tools
	References

