
String Analysis for Vulnerability Detection
and Repair

Tevfik Bultan(B)

Department of Computer Science,
University of California, Santa Barbara, Santa Barbara, USA

bultan@cs.ucsb.edu

Abstract. String manipulation errors in input validation and sanitiza-
tion code are a common source for security vulnerabilities in web appli-
cations. This short survey summarizes the string analysis techniques we
developed that can automatically identify and repair such vulnerabilities.
Our approach (1) extracts client- and server-side input validation and
sanitization functions, (2) models them as deterministic finite automata
(DFA) using symbolic fixpoint computations, and (3) identifies errors
in input validation and sanitization code by either checking them with
respect to manually specified attack patterns, or by identifying inconsis-
tencies in input validation and sanitization operations at the client and
server-side. Furthermore, we developed automated repair techniques that
strengthen the input validation and sanitization checks in order to elim-
inate identified vulnerabilities. We implemented these techniques in two
tools: Stranger (STRing AutomatoN GEneratoR) and SemRep (SEMan-
tic differential REPair), which are available at: http://www.cs.ucsb.edu/
∼vlab/tools.html. Our experimental evaluation demonstrates that these
techniques are very promising: when applied to a set of real-world web
applications, our techniques are able to automatically identify a large
number of security vulnerabilities and repair them.

1 Motivation

According to the Common Vulnerabilities and Exposures (CVE) repository, web
application vulnerabilities form a significant portion of all reported computer
security vulnerabilities [8]. Additionally, Open Web Application Security Project
(OWASP) compiles a top ten list to identify the most critical security flaws in

This material is based on research sponsored by NSF under grants CCF-1423623,
CNS 1116967, CCF 0916112 and by DARPA under agreement number FA8750-15-
2-0087. The U.S. Government is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright notation thereon. The
views and conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of DARPA or the U.S. Government. Part of this research
was conducted while Tevfik Bultan was visiting Koç University in İstanbul, Turkey,
supported by a research fellowship from TÜBİTAK under the BİDEB 2221 program.

c© Springer International Publishing Switzerland 2015
B. Fischer and J. Geldenhuys (Eds.): SPIN 2015, LNCS 9232, pp. 3–9, 2015.
DOI: 10.1007/978-3-319-23404-5 1

http://www.cs.ucsb.edu/~vlab/tools.html
http://www.cs.ucsb.edu/~vlab/tools.html


4 T. Bultan

web applications [10]. According to the OWASP top ten lists compiled in 2007,
2010 and 2013, Cross-site Scripting (XSS) and SQL Injection (SQLI) are always
among the top three web application vulnerabilities.

XSS and SQLI vulnerabilities are due to improper input validation and saniti-
zation. Errors in validation and sanitization of user input can lead to vulnerabili-
ties for web applications, and since web applications are globally accessible, these
vulnerabilities can be exploited by malicious users all around the world. Differ-
ent layers of a web application interact through commands that often embed
user input and are written in many languages, such as XML, SQL, and HTML.
Hence, programs that propagate and use malicious user inputs without validation
and sanitization, or with improper validation and sanitization, are vulnerable to
attacks such as XSS and SQLI.

2 String Analysis

In order to provide a general framework for eliminating vulnerabilities related
to input validation and sanitization we have to address multiple issues, such
as, automated extraction of validation and sanitization operations from a given
web application, detecting if there is a vulnerability by automatically analyzing
extracted string operations, and automatically generating a repair that elimi-
nates the identified vulnerability. During last several years, we worked on vari-
ous aspects of this problem at the Verification Laboratory of the University of
California, Santa Barbara (http://www.cs.ucsb.edu/∼vlab/). A summary of the
techniques we developed in this domain is provided below.

Automata-Based String Analysis: First, we developed an automata-based app-
roach for the verification of string operations in PHP programs based on symbolic
string analysis [12,14,15]. String analysis is a static analysis technique that deter-
mines the values that a string expression can take during program execution at
a given program point. This information can be used to verify that string values
are sanitized properly, and to detect programming errors and security vulnera-
bilities. In our string analysis approach, we encode the set of string values that
string variables can take as Deterministic Finite Automata (DFA). We imple-
ment all string functions using a symbolic automata representation (MBDD
representation from the MONA automata package [7]) and leverage efficient
manipulations on MBDDs, e.g., determinization and minimization. Particularly,
we developed a novel algorithm for language-based replacement. Our replace-
ment function takes three DFAs as arguments and outputs a DFA. Finally, we
apply a widening operator defined on automata to approximate fixpoint compu-
tations [6]. If this conservative approximation does not match any attack patterns
(specified as regular expressions), we conclude that the program does not con-
tain any errors or vulnerabilities. Our experimental results demonstrate that our
approach works quite well in checking the correctness of sanitization operations
in real-world PHP applications. We implemented these automata-based string
analysis techniques in a tool called Stranger (STRing AutomatoN GEneratoR)
which is available at: http://www.cs.ucsb.edu/∼vlab/stranger/.

http://www.cs.ucsb.edu/~vlab/
http://www.cs.ucsb.edu/~vlab/stranger/


String Analysis for Vulnerability Detection and Repair 5

Computing Vulnerability Signatures: Based on automata-based string analysis,
we developed techniques that, given a program and an attack pattern (spec-
ified as a regular expression), generate string-based vulnerability signatures,
i.e., a characterization that includes all malicious inputs that can be used to
generate attacks [11,13]. Using forward reachability analysis, we compute an
over-approximation of all possible values that string variables can take at each
program point. Intersecting these with the attack pattern yields the potential
attack strings if the program is vulnerable. Using backward analysis we com-
pute an over-approximation of all possible inputs that can generate those attack
strings. In addition to identifying existing vulnerabilities and their causes, these
vulnerability signatures can be used to filter out malicious inputs. Our app-
roach extends the prior work on automata-based string analysis by providing
a backward symbolic analysis that includes a symbolic pre-image computation
for DFAs on common string manipulating functions such as concatenation and
replacement.

Relational String Analysis: String analysis techniques based on standard single-
track automata cannot precisely represent relational constraints that involve
multiple variables. To address this problem, we developed novel relational string
verification techniques based on multi-track automata [18,19]. Multi-track
automata recognize tuples of strings by reading multiple inputs concurrently.
Value of each string variable is represented as one of the input tracks of the
automata, which enables us to represent relational constraints on multiple vari-
ables. Using this symbolic representation we are able verify relational properties
that involve multiple string variables.

Verifying string manipulating programs is an undecidable problem in gen-
eral [18,19] and any approximate string analysis technique has an inherent ten-
sion between efficiency and precision. We developed sound abstraction techniques
for strings and string operations that allow for both efficient and precise verifica-
tion of string manipulating programs [16]. We first defined an abstraction called
regular abstraction which enables us to perform string analysis using multi-
track automata as a symbolic representation. We then introduced two other
abstractions—alphabet abstraction and relation abstraction—that can be used
in combination to tune the analysis precision and efficiency. We showed that
these abstractions form an abstraction lattice that generalizes the string analy-
sis techniques studied previously in isolation, such as string length analysis or
non-relational string analysis. Finally, we empirically evaluated the effectiveness
of these abstraction techniques with respect to several benchmarks and an open
source application, demonstrating that abstraction techniques can improve the
performance without loss of accuracy of the analysis when a suitable abstraction
class is selected.

Handling Operations on String Length: Another interesting class of properties
involve relationships among the string and integer variables. The lengths of the
strings in a regular language form a semilinear set. Since we use automata to
encode possible values of string variables, we can use this observation to encode
the lengths of string variables as semilinear sets. Moreover, we can construct



6 T. Bultan

automata that recognize these semilinear sets, i.e., recognize the possible lengths
of a string variable. We developed techniques that construct length automata
that accept the unary or binary representations of the lengths of the strings
accepted by string automata [17]. These length automata can be integrated with
an arithmetic automaton that recognizes the valuations of the integer variables
at a program point. We developed a static analysis technique that uses these
automata in a forward fixpoint computation with widening [6], and is able to
capture relationships among the lengths of the string variables and the values
of the integer variables. This composite string and integer analysis enables us to
verify properties that cannot be verified using string analysis or integer analysis
alone.

Client-side String Analysis: Client-side computation in web applications is
becoming increasingly common due to the popularity of powerful client-side pro-
gramming languages such as JavaScript. Client-side computation is commonly
used to improve an applications responsiveness by validating user inputs before
they are sent to the server. We developed string analysis techniques for check-
ing if a client-side input validation function conforms to a given policy [2]. In
our approach, input validation policies are expressed using two regular expres-
sions, one specifying the maximum policy (the upper bound for the set of inputs
that should be allowed) and the other specifying the minimum policy (the lower
bound for the set of inputs that should be allowed). Using our analysis we can
identify two types of errors (1) the input validation function accepts an input
that is not permitted by the maximum policy, or (2) the input validation func-
tion rejects an input that is permitted by the minimum policy. We implemented
our analysis using dynamic slicing to automatically extract the client-side input
validation functions from web applications, and using automata-based string
analysis to analyze the extracted functions. Our experiments demonstrate that
our approach is effective in finding errors in input validation functions that we
collected from real-world applications and from tutorials and books for teaching
JavaScript.

Differential String Analysis: Developers typically perform redundant input val-
idation in both the front-end (client) and the back-end (server) components
of a web application. As we mentioned above, client-side validation is used to
improve the responsiveness of the application, as it allows for responding without
communicating with the server, whereas server-side validation is necessary for
security reasons, as malicious users can easily circumvent client-side checks. We
developed a differential string analysis technique that (1) automatically extracts
client- and server-side input validation functions, (2) models them as DFAs, and
(3) compares client- and server-side DFAs to identify and report the inconsisten-
cies between the two sets of checks [3]. Our initial evaluation of the technique is
promising: when applied to a set of real-world web applications, our technique
was able to automatically identify a large number of inconsistencies in their
input validation functions.



String Analysis for Vulnerability Detection and Repair 7

Automated Test-Case Generation: Automata-based static string analysis tech-
niques we described above can be used to automatically compute vulnerability
signatures (represented as automata) that characterize all the inputs that can
exploit a vulnerability. However, there are several factors that limit the applica-
bility of static string analysis techniques in general: (1) undecidability of sta-
tic string analysis requires the use of approximations leading to false positives,
(2) static string analysis tools do not handle all string operations, (3) dynamic
nature of the scripting languages makes static analysis difficult. As a complemen-
tary approach to static string analysis techniques, we developed automated test-
ing techniques for checking string manipulating code [4]. In particular, we showed
that vulnerability signatures computed for deliberately insecure web applications
(developed for demonstrating different types of vulnerabilities) can be used to
generate test cases for other applications. Given a vulnerability signature repre-
sented as an automaton, we developed algorithms for test case generation based
on state, transition, and path coverage. These automatically generated test cases
can be used to test applications that are not analyzable statically, and to discover
attack strings that demonstrate how the vulnerabilities can be exploited.

Automated Vulnerability Repair: Based on automata-based static string analysis,
we developed techniques that automatically generate sanitization statements for
patching vulnerable web applications [13]. Our approach consists of three phases:
Given an attack pattern we first conduct a vulnerability analysis to identify if
strings that match the attack pattern can reach the security-sensitive functions.
Next, we compute vulnerability signatures that characterize all input strings
that can exploit the discovered vulnerability. Given the vulnerability signatures,
we then construct sanitization statements that (1) check if a given input matches
the vulnerability signature and (2) modify the input in a minimal way so that
the modified input does not match the vulnerability signature. Our approach
is capable of generating relational vulnerability signatures (and corresponding
sanitization statements) for vulnerabilities that are due to more than one input.

Although attack patterns are useful for characterizing possible attacks, they
need to be written manually, which means that they may contain errors, and
they may not be available for newer attacks. We developed an automated differ-
ential repair technique for input validation and sanitization functions that does
not require manual specification of expected behavior [1]. Differential repair can
be used within an application to repair client and server-side code with respect
to each other, or across applications in order to strengthen the validation and
sanitization checks. Given a reference and a target function, our differential
repair technique strengthens the validation and sanitization operations in the
target function based on the reference function. It does this by synthesizing three
patches: a validation, a length, and a sanitization patch. Our automated patch
synthesis algorithms are based on forward and backward symbolic string analy-
ses that use automata as a symbolic representation. Composition of the three
automatically synthesized patches with the original target function results in the
repaired function, which provides stronger validation and sanitization than both
the target and the reference functions. We implemented these automata-based



8 T. Bultan

differential repair techniques in a tool called SemRep (SEMantic differential
REPair), which is available at: https://github.com/vlab-cs-ucsb/SemRep.

Model Counting for String Constraints: Symbolic execution has become one of
the most widely used automated bug detection techniques. In order to apply
symbolic execution to analysis of string manipulating programs, it is necessary
to develop constraint solvers that can check satisfiability of string constraints.
Our automata-based string analysis techniques can be used to build a string
constraint solver. To facilitate this, we developed a string analysis library called
LibStranger (available at https://github.com/vlab-cs-ucsb/LibStranger) based
on our tool Stranger. In a recent independent empirical study for evaluating
string constraint solvers, Stranger was determined to be the best in terms of
precision and efficiency for symbolic execution of Java programs [9].

However, for quantitative and probabilistic program analyses, checking the
satisfiability of a constraint is not sufficient. In addition to checking satisfiability,
it is also necessary to count the number of satisfying solutions. Recently, we
developed a string constraint solver that, given a constraint, (1) constructs an
automaton that accepts all solutions that satisfy the constraint, (2) generates a
function that, given a length bound, gives the total number of solutions within
that bound [5]. Our approach relies on the observation that, using an automata-
based constraint representation, model counting reduces to path counting, which
can be solved precisely. We demonstrated the effectiveness of our approach on
a large set of string constraints extracted from real-world web applications. We
implemented these techniques in a tool called ABC (Automata Based model
Counter for constraints) (see http://www.cs.ucsb.edu/∼vlab/ABC/).

3 Conclusion

String manipulation is an important part of modern software systems, and errors
in string manipulating code continue to be a significant software dependabil-
ity problem. Our results demonstrate that automata-based string analysis tech-
niques are promising tools in eliminating software dependability problems that
are due to string manipulation.

References

1. Alkhalaf, M., Aydin, A., Bultan, T.: Semantic differential repair for input valida-
tion and sanitization. In: Proceedings of the International Symposium on Software
Testing and Analysis (ISSTA), pp. 225–236 (2014)

2. Alkhalaf, M., Bultan, T., Gallegos, J.L.: Verifying client-side input validation func-
tions using string analysis. In: Proceedings of the 34th International Conference
on Software Engineering (ICSE), pp. 947–957 (2012)

3. Alkhalaf, M., Roy Choudhary, S., Fazzini, M., Bultan, T., Orso, A., Kruegel, C.:
Viewpoints: differential string analysis for discovering client- and server-side input
validation inconsistencies. In: Proceedings of the International Symposium on Soft-
ware Testing and Analysis (ISSTA), pp. 56–66 (2012)

https://github.com/vlab-cs-ucsb/SemRep
https://github.com/vlab-cs-ucsb/LibStranger
http://www.cs.ucsb.edu/~vlab/ABC/


String Analysis for Vulnerability Detection and Repair 9

4. Aydin, A., Alkhalaf, M., Bultan, T.: Automated test generation from vulnerability
signatures. In: 7th IEEE International Conference on Software Testing, Verification
and Validation (ICST), pp. 193–202 (2014)

5. Aydin, A., Bang, L., Bultan, T.: Automata-based model counting for string con-
straints. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206,
pp. 255–272. Springer, Heidelberg (2015)

6. Bartzis, C., Bultan, T.: Widening arithmetic automata. In: Alur, R., Peled, D.A.
(eds.) CAV 2004. LNCS, vol. 3114, pp. 321–333. Springer, Heidelberg (2004)

7. BRICS. The MONA project. http://www.brics.dk/mona/
8. CVE. Common Vulnerabilities and Exposures. http://www.cve.mitre.org
9. Kausler, S., Sherman, E.: Evaluation of string constraint solvers in the context of

symbolic execution. In: Proceedings of the 29th ACM/IEEE International Confer-
ence on Automated software engineering (ASE), pp. 259–270 (2014)

10. Open Web Application Security Project (OWASP). Top ten project. https://www.
owasp.org/index.php/Category:OWASP Top Ten Project

11. Yu, F., Alkhalaf, M., Bultan, T.: Generating vulnerability signatures for string
manipulating programs using automata-based forward and backward symbolic
analyses. In: Proceedings of the 24th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pp. 605–609 (2009)

12. Yu, F., Alkhalaf, M., Bultan, T.: Stranger: an automata-based string analysis
tool for PHP. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015,
pp. 154–157. Springer, Heidelberg (2010)

13. Yu, F., Alkhalaf, M., Bultan, T.: Patching vulnerabilities with sanitization synthe-
sis. In: Proceedings of the 33rd International Conference on Software Engineering
(ICSE), pp. 131–134 (2011)

14. Fang, Y., Alkhalaf, M., Bultan, T., Ibarra, O.H.: Automata-based symbolic string
analysis for vulnerability detection. Formal Methods Syst. Des. 44(1), 44–70 (2014)

15. Yu, F., Bultan, T., Cova, M., Ibarra, O.H.: Symbolic string verification: an
automata-based approach. In: Havelund, K., Majumdar, R. (eds.) SPIN 2008.
LNCS, vol. 5156, pp. 306–324. Springer, Heidelberg (2008)

16. Yu, F., Bultan, T., Hardekopf, B.: String abstractions for string verification.
In: Groce, A., Musuvathi, M. (eds.) SPIN Workshops 2011. LNCS, vol. 6823,
pp. 20–37. Springer, Heidelberg (2011)

17. Yu, F., Bultan, T., Ibarra, O.H.: Symbolic string verification: combining string
analysis and size analysis. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009.
LNCS, vol. 5505, pp. 322–336. Springer, Heidelberg (2009)

18. Yu, F., Bultan, T., Ibarra, O.H.: Relational string verification using multi-track
automata. In: Domaratzki, M., Salomaa, K. (eds.) CIAA 2010. LNCS, vol. 6482,
pp. 290–299. Springer, Heidelberg (2011)

19. Fang, Y., Bultan, T., Ibarra, O.H.: Relational string verification using multi-track
automata. Int. J. Found. Comput. Sci. 22(8), 1909–1924 (2011)

http://www.brics.dk/mona/
http://www.cve.mitre.org
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

	String Analysis for Vulnerability Detection and Repair
	1 Motivation
	2 String Analysis
	3 Conclusion
	References


