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Preface

This volume contains the proceedings of SPIN 2015, the 22nd International SPIN
Symposium on Model Checking of Software, which was held August 24–26, 2015, in
Stellenbosch, South Africa.

While the earlier meetings in the series focused—not exclusively, but primarily—on the
use of SPIN and PROMELA, the scope of recent symposia has been broadened significantly.
SPIN now attracts a much wider range of papers around the topic of software model
checking, but it retains a healthy balance between theoretical advances and practical
considerations.

SPIN 2015 received 27 submissions. Each one was reviewed by three Program
Committee members, some of whom consulted with external reviewers. After a thor-
ough and vivid discussion phase, the committee decided to accept 18 papers. Of these,
there are 14 regular papers and four tool or new idea papers.

In addition to the presentations of the accepted papers, two invited talks were given
by Tefvik Bultan (University of California, Santa Barbara) on “String Analysis for
Vulnerability Detection and Repair,” and by Shaz Qadeer (Microsoft Research) on
“Programming Devices and Services with P.” An invited tutorial was given by Michael
Tautschnig (Queen Mary University of London) on “CBMC: Bounded Model
Checking of Concurrent C Programs.”

The volume editors would like to thank all members of the Steering Committee, the
Program Committee, as well as the external reviewers for their hard work that led to
the selection of this year’s program. We are also grateful for the generous support
of the National Research Foundation (NRF), grant KIC-97478, the Council of Scien-
tific and Industrial Research (CSIR) through the Center for AI Research (CAIR),
Microsoft Research, and the Amazon Development Center Cape Town.

August 2015 Bernd Fischer
Jaco Geldenhuys
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CBMC: Bounded Model Checking
of Concurrent C Programs

Michael Tautschnig

Queen Mary University of London, London, UK
michael.tautschnig@qmul.ac.uk

Abstract. CBMC implements bit-precise bounded model checking for C pro-
grams and has been developed and maintained for more than ten years. Only
recently support for efficiently checking concurrent programs, including support
for weak memory models, has been added. CBMC verifies the absence of
violated assertions under a given loop unwinding bound by reducing the
problem to a Boolean formula. The formula is passed to a SAT solver, which
returns a model if and only if the property is violated.

In the tutorial I provide an overview of the key components of CBMC,
underlining its straightforward pipeline. Then a number of examples are pre-
sented, including floating point and concurrent programs. CBMC is also ame-
nable to full software systems, such as analysing a SAT solver, and was most
recently applied across the entire Debian/GNU Linux distribution.

1 Introduction

The C Bounded Model Checker (CBMC) [2] demonstrates the violation of assertions in
C programs, or proves safety of the assertions under a given bound. CBMC implements
a bit-precise translation of an input C program, annotated with assertions and with
loops unrolled to a given depth, into a formula. If the formula is satisfiable, then an
execution leading to a violated assertion exists. By default, satisfiability of the formula
is decided using MiniSat 2.2.0 [3].

2 Obtaining CBMC

Bounded model checkers such as CBMC reduce questions about program paths to
constraints that can be solved by off-the-shelf SAT or SMT solvers. With the SAT back
end, and given a program annotated with assertions, CBMC outputs a CNF formula the
solutions of which describe program paths leading to assertion violations. An overview
of the system architecture can be found in [7].

CBMC is maintained by Daniel Kroening with patches supplied by the community.
It is made publicly available under a BSD-style license. The source code and binaries
for popular platforms are available at http://www.cprover.org/cbmc.

http://www.cprover.org/cbmc


3 Selected Recent Applications

While CBMC has won the TACAS Software Verification Competition (SV-COMP)
2014, it is also being applied to full software systems rather than well-defined
benchmark settings. CBMC is part of the tool chain analysing the Debian/GNU Linux
distribution, as presented in [6]. With our implementation of partial orders [1], CBMC
gained support for concurrent systems. Examples of its application include the analysis
of asynchronous hardware/software systems [4] and interrupt-driven systems [5].
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String Analysis for Vulnerability
Detection and Repair

Tevfik Bultan

Department of Computer Science, University of California,
Santa Barbara, USA

bultan@cs.ucsb.edu

Abstract. String manipulation errors in input validation and sanitization code
are a common source for security vulnerabilities in web applications. This short
survey summarizes the string analysis techniques we developed that can auto-
matically identify and repair such vulnerabilities. Our approach (1) extracts
client- and server-side input validation and sanitization functions, (2) models
them as deterministic finite automata (DFA) using symbolic fixpoint computa-
tions, and (3) identifies errors in input validation and sanitization code by either
checking them with respect to manually specified attack patterns, or by identi-
fying inconsistencies in input validation and sanitization operations at the client
and server-side. Furthermore, we developed automated repair techniques that
strengthen the input validation and sanitization checks in order to eliminate
identified vulnerabilities. We implemented these techniques in two tools:
Stranger (STRing AutomatoN GEneratoR) and SemRep (SEMantic differential
REPair), which are available at: http://www.cs.ucsb.edu/*vlab/tools.html. Our
experimental evaluation demonstrates that these techniques are very promising:
when applied to a set of real-world web applications, our techniques are able to
automatically identify a large number of security vulnerabilities and repair them.

This material is based on research sponsored by NSF under grants CCF-1423623, CNS 1116967, CCF
0916112 and by DARPA under agreement number FA8750-15-2-0087. The U.S. Government is
authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any
copyright notation thereon. The views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of DARPA or the U.S. Government. Part of this research was conducted
while Tevfik Bultan was visiting Koç University in İstanbul, Turkey, supported by a research
fellowship from TÜBİTAK under the BİDEB 2221 program.

http://www.cs.ucsb.edu/~vlab/tools.html


Programming Devices and Services with P

Shaz Qadeer

Microsoft Research, Redmond, USA
qadeer@microsoft.com

Asynchronous programming is essential for building a wide range of important soft-
ware, such as device drivers, distributed services, embedded systems, and user inter-
faces. A difficult challenge in asynchronous programming is appropriate handling
of the nondeterminism due to concurrency and timing of external input. The P language
[3] makes it easier to tackle this challenge. It allows the programmer to specify the
system as a collection of interacting state machines, which communicate with each
other using events. P unifies modeling and programming into one activity for the
programmer. A P program can not only be compiled into executable code but also be
validated using systematic testing. The high-coverage testing techniques [1, 4, 5, 6]
implemented in P have the capability to generate and reproduce within minutes, race
conditions that could take months or even years to manifest in a live system.

P has been used to develop software systems in various Microsoft product groups.
Examples include the USB 3.0 drivers that ship with Windows and low-level firmware
in upcoming devices. With no change to the programming model and a few changes to
the runtime, we have also used P to implement reliable fault-tolerant distributed ser-
vices. The P system is available open-source at https://github.com/p-org/P.

The P approach to protocol design and implementation is a domain-specific lan-
guage and a compiler to executable C code. While this approach allows considerable
flexibility in the design of the language, it also introduces two barriers to adoption.
First, a programmer must learn the syntax and the semantics of P. Second, since it is
unlikely that an application can be written entirely in P, she must also learn the explicit
foreign-function interface between P and its host language C. As an alternative design,
the language P# [2] incorporates features of P as an extension to the C# language,
allowing programmers to program mostly with familiar C# syntax and freely mix P#
and C# code. The P# system is available open-source at https://github.com/p-org/
PSharp.

References
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String Analysis for Vulnerability Detection
and Repair

Tevfik Bultan(B)

Department of Computer Science,
University of California, Santa Barbara, Santa Barbara, USA

bultan@cs.ucsb.edu

Abstract. String manipulation errors in input validation and sanitiza-
tion code are a common source for security vulnerabilities in web appli-
cations. This short survey summarizes the string analysis techniques we
developed that can automatically identify and repair such vulnerabilities.
Our approach (1) extracts client- and server-side input validation and
sanitization functions, (2) models them as deterministic finite automata
(DFA) using symbolic fixpoint computations, and (3) identifies errors
in input validation and sanitization code by either checking them with
respect to manually specified attack patterns, or by identifying inconsis-
tencies in input validation and sanitization operations at the client and
server-side. Furthermore, we developed automated repair techniques that
strengthen the input validation and sanitization checks in order to elim-
inate identified vulnerabilities. We implemented these techniques in two
tools: Stranger (STRing AutomatoN GEneratoR) and SemRep (SEMan-
tic differential REPair), which are available at: http://www.cs.ucsb.edu/
∼vlab/tools.html. Our experimental evaluation demonstrates that these
techniques are very promising: when applied to a set of real-world web
applications, our techniques are able to automatically identify a large
number of security vulnerabilities and repair them.

1 Motivation

According to the Common Vulnerabilities and Exposures (CVE) repository, web
application vulnerabilities form a significant portion of all reported computer
security vulnerabilities [8]. Additionally, Open Web Application Security Project
(OWASP) compiles a top ten list to identify the most critical security flaws in

This material is based on research sponsored by NSF under grants CCF-1423623,
CNS 1116967, CCF 0916112 and by DARPA under agreement number FA8750-15-
2-0087. The U.S. Government is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright notation thereon. The
views and conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of DARPA or the U.S. Government. Part of this research
was conducted while Tevfik Bultan was visiting Koç University in İstanbul, Turkey,
supported by a research fellowship from TÜBİTAK under the BİDEB 2221 program.

c© Springer International Publishing Switzerland 2015
B. Fischer and J. Geldenhuys (Eds.): SPIN 2015, LNCS 9232, pp. 3–9, 2015.
DOI: 10.1007/978-3-319-23404-5 1
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4 T. Bultan

web applications [10]. According to the OWASP top ten lists compiled in 2007,
2010 and 2013, Cross-site Scripting (XSS) and SQL Injection (SQLI) are always
among the top three web application vulnerabilities.

XSS and SQLI vulnerabilities are due to improper input validation and saniti-
zation. Errors in validation and sanitization of user input can lead to vulnerabili-
ties for web applications, and since web applications are globally accessible, these
vulnerabilities can be exploited by malicious users all around the world. Differ-
ent layers of a web application interact through commands that often embed
user input and are written in many languages, such as XML, SQL, and HTML.
Hence, programs that propagate and use malicious user inputs without validation
and sanitization, or with improper validation and sanitization, are vulnerable to
attacks such as XSS and SQLI.

2 String Analysis

In order to provide a general framework for eliminating vulnerabilities related
to input validation and sanitization we have to address multiple issues, such
as, automated extraction of validation and sanitization operations from a given
web application, detecting if there is a vulnerability by automatically analyzing
extracted string operations, and automatically generating a repair that elimi-
nates the identified vulnerability. During last several years, we worked on vari-
ous aspects of this problem at the Verification Laboratory of the University of
California, Santa Barbara (http://www.cs.ucsb.edu/∼vlab/). A summary of the
techniques we developed in this domain is provided below.

Automata-Based String Analysis: First, we developed an automata-based app-
roach for the verification of string operations in PHP programs based on symbolic
string analysis [12,14,15]. String analysis is a static analysis technique that deter-
mines the values that a string expression can take during program execution at
a given program point. This information can be used to verify that string values
are sanitized properly, and to detect programming errors and security vulnera-
bilities. In our string analysis approach, we encode the set of string values that
string variables can take as Deterministic Finite Automata (DFA). We imple-
ment all string functions using a symbolic automata representation (MBDD
representation from the MONA automata package [7]) and leverage efficient
manipulations on MBDDs, e.g., determinization and minimization. Particularly,
we developed a novel algorithm for language-based replacement. Our replace-
ment function takes three DFAs as arguments and outputs a DFA. Finally, we
apply a widening operator defined on automata to approximate fixpoint compu-
tations [6]. If this conservative approximation does not match any attack patterns
(specified as regular expressions), we conclude that the program does not con-
tain any errors or vulnerabilities. Our experimental results demonstrate that our
approach works quite well in checking the correctness of sanitization operations
in real-world PHP applications. We implemented these automata-based string
analysis techniques in a tool called Stranger (STRing AutomatoN GEneratoR)
which is available at: http://www.cs.ucsb.edu/∼vlab/stranger/.

http://www.cs.ucsb.edu/~vlab/
http://www.cs.ucsb.edu/~vlab/stranger/


String Analysis for Vulnerability Detection and Repair 5

Computing Vulnerability Signatures: Based on automata-based string analysis,
we developed techniques that, given a program and an attack pattern (spec-
ified as a regular expression), generate string-based vulnerability signatures,
i.e., a characterization that includes all malicious inputs that can be used to
generate attacks [11,13]. Using forward reachability analysis, we compute an
over-approximation of all possible values that string variables can take at each
program point. Intersecting these with the attack pattern yields the potential
attack strings if the program is vulnerable. Using backward analysis we com-
pute an over-approximation of all possible inputs that can generate those attack
strings. In addition to identifying existing vulnerabilities and their causes, these
vulnerability signatures can be used to filter out malicious inputs. Our app-
roach extends the prior work on automata-based string analysis by providing
a backward symbolic analysis that includes a symbolic pre-image computation
for DFAs on common string manipulating functions such as concatenation and
replacement.

Relational String Analysis: String analysis techniques based on standard single-
track automata cannot precisely represent relational constraints that involve
multiple variables. To address this problem, we developed novel relational string
verification techniques based on multi-track automata [18,19]. Multi-track
automata recognize tuples of strings by reading multiple inputs concurrently.
Value of each string variable is represented as one of the input tracks of the
automata, which enables us to represent relational constraints on multiple vari-
ables. Using this symbolic representation we are able verify relational properties
that involve multiple string variables.

Verifying string manipulating programs is an undecidable problem in gen-
eral [18,19] and any approximate string analysis technique has an inherent ten-
sion between efficiency and precision. We developed sound abstraction techniques
for strings and string operations that allow for both efficient and precise verifica-
tion of string manipulating programs [16]. We first defined an abstraction called
regular abstraction which enables us to perform string analysis using multi-
track automata as a symbolic representation. We then introduced two other
abstractions—alphabet abstraction and relation abstraction—that can be used
in combination to tune the analysis precision and efficiency. We showed that
these abstractions form an abstraction lattice that generalizes the string analy-
sis techniques studied previously in isolation, such as string length analysis or
non-relational string analysis. Finally, we empirically evaluated the effectiveness
of these abstraction techniques with respect to several benchmarks and an open
source application, demonstrating that abstraction techniques can improve the
performance without loss of accuracy of the analysis when a suitable abstraction
class is selected.

Handling Operations on String Length: Another interesting class of properties
involve relationships among the string and integer variables. The lengths of the
strings in a regular language form a semilinear set. Since we use automata to
encode possible values of string variables, we can use this observation to encode
the lengths of string variables as semilinear sets. Moreover, we can construct
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automata that recognize these semilinear sets, i.e., recognize the possible lengths
of a string variable. We developed techniques that construct length automata
that accept the unary or binary representations of the lengths of the strings
accepted by string automata [17]. These length automata can be integrated with
an arithmetic automaton that recognizes the valuations of the integer variables
at a program point. We developed a static analysis technique that uses these
automata in a forward fixpoint computation with widening [6], and is able to
capture relationships among the lengths of the string variables and the values
of the integer variables. This composite string and integer analysis enables us to
verify properties that cannot be verified using string analysis or integer analysis
alone.

Client-side String Analysis: Client-side computation in web applications is
becoming increasingly common due to the popularity of powerful client-side pro-
gramming languages such as JavaScript. Client-side computation is commonly
used to improve an applications responsiveness by validating user inputs before
they are sent to the server. We developed string analysis techniques for check-
ing if a client-side input validation function conforms to a given policy [2]. In
our approach, input validation policies are expressed using two regular expres-
sions, one specifying the maximum policy (the upper bound for the set of inputs
that should be allowed) and the other specifying the minimum policy (the lower
bound for the set of inputs that should be allowed). Using our analysis we can
identify two types of errors (1) the input validation function accepts an input
that is not permitted by the maximum policy, or (2) the input validation func-
tion rejects an input that is permitted by the minimum policy. We implemented
our analysis using dynamic slicing to automatically extract the client-side input
validation functions from web applications, and using automata-based string
analysis to analyze the extracted functions. Our experiments demonstrate that
our approach is effective in finding errors in input validation functions that we
collected from real-world applications and from tutorials and books for teaching
JavaScript.

Differential String Analysis: Developers typically perform redundant input val-
idation in both the front-end (client) and the back-end (server) components
of a web application. As we mentioned above, client-side validation is used to
improve the responsiveness of the application, as it allows for responding without
communicating with the server, whereas server-side validation is necessary for
security reasons, as malicious users can easily circumvent client-side checks. We
developed a differential string analysis technique that (1) automatically extracts
client- and server-side input validation functions, (2) models them as DFAs, and
(3) compares client- and server-side DFAs to identify and report the inconsisten-
cies between the two sets of checks [3]. Our initial evaluation of the technique is
promising: when applied to a set of real-world web applications, our technique
was able to automatically identify a large number of inconsistencies in their
input validation functions.
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Automated Test-Case Generation: Automata-based static string analysis tech-
niques we described above can be used to automatically compute vulnerability
signatures (represented as automata) that characterize all the inputs that can
exploit a vulnerability. However, there are several factors that limit the applica-
bility of static string analysis techniques in general: (1) undecidability of sta-
tic string analysis requires the use of approximations leading to false positives,
(2) static string analysis tools do not handle all string operations, (3) dynamic
nature of the scripting languages makes static analysis difficult. As a complemen-
tary approach to static string analysis techniques, we developed automated test-
ing techniques for checking string manipulating code [4]. In particular, we showed
that vulnerability signatures computed for deliberately insecure web applications
(developed for demonstrating different types of vulnerabilities) can be used to
generate test cases for other applications. Given a vulnerability signature repre-
sented as an automaton, we developed algorithms for test case generation based
on state, transition, and path coverage. These automatically generated test cases
can be used to test applications that are not analyzable statically, and to discover
attack strings that demonstrate how the vulnerabilities can be exploited.

Automated Vulnerability Repair: Based on automata-based static string analysis,
we developed techniques that automatically generate sanitization statements for
patching vulnerable web applications [13]. Our approach consists of three phases:
Given an attack pattern we first conduct a vulnerability analysis to identify if
strings that match the attack pattern can reach the security-sensitive functions.
Next, we compute vulnerability signatures that characterize all input strings
that can exploit the discovered vulnerability. Given the vulnerability signatures,
we then construct sanitization statements that (1) check if a given input matches
the vulnerability signature and (2) modify the input in a minimal way so that
the modified input does not match the vulnerability signature. Our approach
is capable of generating relational vulnerability signatures (and corresponding
sanitization statements) for vulnerabilities that are due to more than one input.

Although attack patterns are useful for characterizing possible attacks, they
need to be written manually, which means that they may contain errors, and
they may not be available for newer attacks. We developed an automated differ-
ential repair technique for input validation and sanitization functions that does
not require manual specification of expected behavior [1]. Differential repair can
be used within an application to repair client and server-side code with respect
to each other, or across applications in order to strengthen the validation and
sanitization checks. Given a reference and a target function, our differential
repair technique strengthens the validation and sanitization operations in the
target function based on the reference function. It does this by synthesizing three
patches: a validation, a length, and a sanitization patch. Our automated patch
synthesis algorithms are based on forward and backward symbolic string analy-
ses that use automata as a symbolic representation. Composition of the three
automatically synthesized patches with the original target function results in the
repaired function, which provides stronger validation and sanitization than both
the target and the reference functions. We implemented these automata-based



8 T. Bultan

differential repair techniques in a tool called SemRep (SEMantic differential
REPair), which is available at: https://github.com/vlab-cs-ucsb/SemRep.

Model Counting for String Constraints: Symbolic execution has become one of
the most widely used automated bug detection techniques. In order to apply
symbolic execution to analysis of string manipulating programs, it is necessary
to develop constraint solvers that can check satisfiability of string constraints.
Our automata-based string analysis techniques can be used to build a string
constraint solver. To facilitate this, we developed a string analysis library called
LibStranger (available at https://github.com/vlab-cs-ucsb/LibStranger) based
on our tool Stranger. In a recent independent empirical study for evaluating
string constraint solvers, Stranger was determined to be the best in terms of
precision and efficiency for symbolic execution of Java programs [9].

However, for quantitative and probabilistic program analyses, checking the
satisfiability of a constraint is not sufficient. In addition to checking satisfiability,
it is also necessary to count the number of satisfying solutions. Recently, we
developed a string constraint solver that, given a constraint, (1) constructs an
automaton that accepts all solutions that satisfy the constraint, (2) generates a
function that, given a length bound, gives the total number of solutions within
that bound [5]. Our approach relies on the observation that, using an automata-
based constraint representation, model counting reduces to path counting, which
can be solved precisely. We demonstrated the effectiveness of our approach on
a large set of string constraints extracted from real-world web applications. We
implemented these techniques in a tool called ABC (Automata Based model
Counter for constraints) (see http://www.cs.ucsb.edu/∼vlab/ABC/).

3 Conclusion

String manipulation is an important part of modern software systems, and errors
in string manipulating code continue to be a significant software dependabil-
ity problem. Our results demonstrate that automata-based string analysis tech-
niques are promising tools in eliminating software dependability problems that
are due to string manipulation.
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Abstract. WedescribeASTRA(see http://rw4.cs.uni-saarland.de/∼rtc/
astra/), a tool for the static analysis of infinite-state graph transforma-
tion systems. It is based on abstract interpretation and implements clus-
ter abstraction, i.e., it computes a finite overapproximation of the set of
reachable graphs by decomposing them into small, overlapping clusters
of nodes. While related tools lack support for negative application con-
ditions, accept only a limited class of graph transformation systems, or
suffer from state-space explosion on models with (even moderate) con-
currency, ASTRA can cope with scenarios that combine these three chal-
lenges. Applications include parameterized verification and shape analysis
of heap structures.

Keywords: Abstract interpretation · Graph transformation systems ·
Parameterized verification · Shape analysis · Tools

1 Introduction

Graph transformation is an intuitive formalism: One begins with a start graph
and, by nondeterministic choice, matches and applies transformation rules to
it, based on subgraph replacement. We are mainly interested in analysis of the
graphs reachable by successive application of rules, to verify safety properties,
for example.

One of the applications of graph transformation is modelling parameterized
concurrent systems. Reasoning about such systems is hard because the state
space is infinite. Hence, abstraction methods are required. In this paper, we
present ASTRA, our tool for abstraction of graph transformation systems.

A number of tools are available that use abstract interpretation (each based
on a different abstraction) to compute a finite over-approximation of the reach-
able graphs: AUGUR [7] uses a petri net based abstraction and had success
with interesting examples of concurrent systems; it does not, however, support
negative application conditions. hiralysis [5] is based on partner abstraction.
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It does offer negative application conditions and can analyze some concurrent
systems, but requires input grammars to satisfy some rather restrictive “friendli-
ness” properties. GROOVE [9] has an implementation of neighborhood abstrac-
tion, which has no such restriction, supports negative application conditions, but
analysis of systems with concurrency leads to state space explosion.

2 Cluster Abstraction

Our tool, ASTRA, implements cluster abstraction [3]: We consider each node in
the graph (to become the core node of a cluster) plus its respective adjacent nodes
(to become the periphery). We merge two or more adjacent nodes into summary
nodes if both their labels and configuration (spoke) of edges to the core node
are equal. If, by this summarization, two merged nodes disagree on to existence
of some edge to a third node, we replace it by a 1

2 edge. After summarization,
we are left with clusters of bounded size, and we eliminate any duplicate cluster
by assuming (as a further overapproximation) that there can be any number of
concrete instances. An example is shown in Fig. 1. The initial graph is abstracted
in this way, and then rule application is lifted to the abstraction.

In this paper we describe ASTRA 2.0. An earlier version, ASTRA 1.0 [2],
implemented a less precise precursor to cluster abstraction that assumed all
edges in the periphery to be 1

2 .
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Fig. 1. An example of how a cluster is obtained by abstracting the concrete graph with
respect to one specific node (here, the i-labelled one). The tool lifts the application of
graph transformation rules to this abstraction. We represent node summarization as
thick circles, the 1

2
nodes as dashed lines.

3 Architecture and Usage

ASTRA is a command-line program that expects a start graph and graph trans-
formation rules as input and outputs the clusters from the analysis. When run-
ning the analysis, it abstracts the start graph, then enters its main loop. The
main loop searches for abstract matches; each left hand side node of each rule
is matched against the core node of any cluster from the current working set,
and the remaining nodes are matched to a subset of the respective peripheral
nodes. In addition, one further cluster with unmatched core node, but matched
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peripheral nodes is materialized. Those matches are then combined into a par-
tial concretization, with several checks done to rule out cases where no full
concretization exists. Not all such cases are detected by the tool; but the result
is still a valid over-approximation.

All clusters produced by rule application are added to a temporary set. After
each iteration, the tool then, optionally, applies a post-pass reduction step to
the temporary set, inspecting it for clusters that can be eliminated or refined.
Finally, the temporary set is joined with the working set.

The tool indicates progress as it goes from rule to rule, and from iteration to
iteration. After each iteration, the current working set is dumped to disk, which
is useful for inspecting the current state of the analysis when running the tool
on complex cases that take some time.

The main loop is executed iteratively until the working set remains unchanged,
i.e., a fixpoint has been reached. (Given the finite size of the abstract domain, ter-
mination is guaranteed, but subject to, like with all abstractions, processor speed
and memory size.) The tool then dumps the output to disk, prints statistics and
exits. Given the finite size of the abstract domain, termination is guaranteed.

3.1 Input File Format

ASTRA uses the same ASCII-based input file format as hiralysis (see [5] Fig.
B.1, p. 160), extended by additional application conditions. For example, the
constraint partner(x1)=neg(out,p) restricts rules to apply only if the node
matched by x1 has no outgoing edge with label p.

Consider the following toy case as a running example. The input:

nodelabels n,Error,i; edgelabels e,p;
empty; // start graph
create [{x1:n,x2:n,x3:i},

{(x1,x2):e,(x2,x3):e,(x3,x1):e,(x1,x3):p,(x2,x3):p}];// init
rule [{x1:i,x2:n},{(x1,x2):e}], // insert

[{x1:i,x2:n,x3:n},{(x1,x3):e,(x3,x2):e,(x3,x1):p}];
rule [{x1:n},{},partner(x1)=neg{(out,p)}], [{x1:n,x2:Error},{}];

This example models singly-linked ring buffers into which an unbounded number
of nodes are inserted dynamically. One special node is indicated with the label i.
New nodes are inserted next to it with a back pointer. Here, we want to use astra
to verify the safety property that each node has such a back pointer. We achieve
this with the second rule. It uses a negative application condition to generate an
error label if a node lacks the back pointer.

As can be seen, the input file format is mainly based on graphs, which are
sets of node names, each with a label, and sets of edges (the name being a pair
of node names), each with an edge label. The rules specify the subgraph to be
replaced and the subgraph by which it is replaced. The node names imply a
mapping from the left hand side to the right hand side.
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3.2 Command-Line Interface

For our case study, consider the following tool run:

$ ./astra -Os -Op test023.gts
0 [ 2/ 2] = 100
1 [ 2/ 2] = 100
2 [ 2/ 2] = 100

done.
6 clusters, 5 matches, 1 active rules,
6 rule applications, 2 iterations

The $ indicates the shell prompt; the remaining line is entered by the tool user. In
this case, ASTRA is run on the input file of our running example (test023.gts).

In the example, we specify analysis options -0s and -0p, instructing ASTRA
to apply a simple peripheral constraint satisfiability check and post-pass reduc-
tion, respectively. For our experiments, this proved to be the most practical
option set, providing the best speed/precision trade-off. Removing one of the
two options lead to drastic decrease in precision, while adding any other lead to
merely minuscule gains. Only in specific cases where the analysis would otherwise
run into state-space explosion, further analysis options were useful.

Option -n can be used to specify a cutoff iteration after which to prematurely
terminate the analysis. This is useful to inspect the intermediate result. Run
ASTRA without arguments for further details about the available options.

3.3 Status Report

For each iteration, while running, the current iteration number, current rule,
total number of rules and progress (current rule divided by total number of
rules) is printed. After finishing the iteration, the number of clusters added
and modified (i.e., with peripheral constraints weakened) is printed. Note that
clusters added by the initial graph and by rules with empty left hand side are only
accounted for in the final statistics printed after the fixpoint has been reached.

3.4 Output File Formats

ASTRA supports DOT (as used by the graph layout tool Graphviz), GML (as
used by OGDF and the GoVisual Diagram Editor, respectively), GDL (as used
by VCG and its successor aiSee) and GraphML (as used by yEd and yComp,
respectively). In addition, the tool supports its own native output format that
is similar to the input format.

The output can be loaded or processed with any tool supporting any of those
formats. The most common use will be a graph layout tool to inspect the output,
but it can as well provide invariants for other analyses, like hiralysis [4].

For our running example, the tool outputs six clusters, visualized in Fig. 2.
In addition to the full analysis, we show the intermediate results obtained by
using option -n.
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Fig. 2. Analysis results on running example.

These drawings were done by METAPOST, based on an experimental out-
put module built into ASTRA that does primitive circular graph drawing. For
common use, aiSee and yEd have proven most useful, especially the organic and
hierarchical layout engines.

4 Experimental Evaluation

We already ran the tool on various test cases from the literature in [3], including
AVL trees, red-black trees, firewalls, public/private servers, dining philosophers,
resources, mutual exclusion, singly-linked lists, circular buffers, Euler walks, and
the merge protocol. The merge protocol, our main example, is a distributed
car platooning coordination protocol that establishes a logical communication
hierarchy on top of the physical communication medium. Analysis of the protocol
is hard because of its massively distributed nature, caused by the vast range of
topological configurations that may evolve concurrently.

However, all inputs from that case study were written by hand. To demon-
strate the robustness of our tool, we apply it to graph transformation systems

Table 1. Benchmark analysis statistics. cl. = clusters, m. = abstract matches, rule
app. = rule applications, it. = iterations.

Benchmark # cl # m # rule app # it. Time

Synchronous, leader-controlled 22509 75359 36685213 135 9 m 34.200 s

Synchronous, follower-controlled 24957 82569 43679468 144 22 m 30.200 s

Asynchronous,leader-controlled 142326 850889 1006759383 202 13136 m 1.260 s

Asynchronous,follower-controlled 58023 296310 83499253 157 3972 m 37.560 s
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generated automatically from higher level models of the merge protocol, specified
in the DCS formalism [6,8]. We used the tool dcs2gts [1] to translate the DCS
models into graph transformation systems suitable for analysis with ASTRA.
We include two new variants, follower-controlled merge.

Synchronous (leader-controlled) merge in our former case study consisted of
402 rules (plus 3 for checking safety properties), the asynchronous version 313
(plus 2). The large number is caused by the fact that many rules are generated
from templates that iterate over all node labels. The automatically generated
versions use 788 and 835 rules, respectively. In contrast, the number of clusters
in the analysis result increased from 873 to 22509 (factor 26) and from 3069
to 142326 (factor 46). This is because the automatically generated version uses
intermediate steps to model topology changes. While those steps are serialized
by special labels, and thus pose no combinatorial challenge, our analysis shows
that the tool does well with all those intermediate configurations absent in the
manually created inputs. See Table 1 for the full results.

5 Conclusions and Future Work

We have seen how ASTRA can be used to analyze a simple graph transformation
system, modelling insertion of elements into ring buffers. In contrast to related
tools, it is not restricted to graph transformation systems of a special form, it
supports negative application conditions and it does well when facing models
involving concurrency. Our experimental evaluation showed that it is capable of
handling very complex inputs generated automatically from higher-level specifi-
cations.

Future Work: Our tool already has experimental support for generating an
abstract labelled transition system of clusters, but the theory for actually using
those with a model checker has still to be worked out. We would also like to pro-
vide more powerful application conditions, in particular non-existence of edges
between two specific nodes and restrictions on the periphery of a node.

A promising way to considerably speed up analysis is parallelization. The
structure of the analysis is very well suited for this and we expect a parallelized
version to scale almost linearly.

Acknowledgments. We thank Dmytro Puzhay for assistance with the implementa-
tion work and Jörg Bauer-Kreiker for providing his hiralysis test cases. Conny Clausen
managed copyright clearance with Saarland University to obtain permission for releas-
ing the tool under a Free Software license. Reinhard Wilhelm provided valuable com-
ments for a draft version of this paper.
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Abstract. Counterexample-guided abstraction refinement (CEGAR)
is a property-directed approach for the automatic construction of an
abstract model for a given system. The approach learns information
from infeasible error paths in order to refine the abstract model. We
address the problem of selecting which information to learn from a given
infeasible error path. In previous work, we presented a method that
enables refinement selection by extracting a set of sliced prefixes from
a given infeasible error path, each of which represents a different reason
for infeasibility of the error path and thus, a possible way to refine the
abstract model. In this work, we (1) define and investigate several promis-
ing heuristics for selecting an appropriate precision for refinement, and
(2) propose a new combination of a value analysis and a predicate analy-
sis that does not only find out which information to learn from an
infeasible error path, but automatically decides which analysis should
be preferred for a refinement. These contributions allow a more system-
atic refinement strategy for CEGAR-based analyses. We evaluated the
idea on software verification. We provide an implementation of the new
concepts in the verification framework CPAchecker and make it publicly
available. In a thorough experimental study, we show that refinement
selection often avoids state-space explosion where existing approaches
diverge, and that it can be even more powerful if applied on a higher
level, where it decides which analysis of a combination should be favored
for a refinement.

1 Introduction

Abstraction is a key concept to enable the verification of real-world software
(cf. [3,4,14,25]) within reasonable time and resource limits. Slam [5], for exam-
ple, uses predicate abstraction [21] for creating an abstract model of the software.
The abstract model is often constructed using Counterexample-guided abstrac-
tion refinement (CEGAR) [17], which iteratively refines an (initially coarse)
abstract model using infeasible error paths (property-directed refinement). This
technique is integrated in many successful software-verification tools, e.g., Slam
[5], Blast [7], and CPAchecker [9]. In the refinement step of the CEGAR frame-
work, Craig interpolation [18,26] is often used to extract the information that
needs to be tracked by the analysis [11,22]. Formula interpolation yields for two
contradicting formulas an interpolant formula that contains less information than
the first formula, but is still expressive enough to contradict the second formula.
In verification, we can use information from interpolants over an infeasible error
c© Springer International Publishing Switzerland 2015
B. Fischer and J. Geldenhuys (Eds.): SPIN 2015, LNCS 9232, pp. 20–38, 2015.
DOI: 10.1007/978-3-319-23404-5 3
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1 extern int nondet_int();
2 extern int f(int x);
3 int main() {
4 int b = nondet_int();
5 int i = 0;
6 if (b) {
7 while (i < 1000) {
8 f(i++);
9 }

10 }
11 if (i != 0) {
12 if (!b) {
13 assert(0);
14 }
15 }
16 }

true

true

true

b!=0

b!=0

true

true

i==0

i==0

false

b!=0 false

false false

Fig. 1. From left to right, the input program, an infeasible error path, and a “good”
and a “bad” interpolant sequence for the infeasible error path

path to refine the abstract model, and iteratively augment the abstraction until
it is strong enough so that the specification can be proven.

In order to avoid state-space explosion and divergence during program analy-
sis, we need to keep the precision of the analysis as abstract and concise as possi-
ble. Existing approaches that use interpolation to extract precision information
from infeasible error paths assign a lot of choice to the interpolation engine, i.e.,
an infeasible error path might contain several reasons for its infeasibility, some of
which might be easier to track than others and thus might be more beneficial for
the further progress of the analysis [13]. Our work addresses the choice between
different precisions — a concept that we refer to as refinement selection.

Figure 1 shows this via an example: For the given program, an analysis based
on CEGAR, with an initially empty precision, may find the shown infeasible
error path. The infeasibility of this path can be explained independently by the
valuations of the variables i and b, as shown by the two example interpolant
sequences. In general, and also in this example, it is advisable to track infor-
mation about boolean variables1, like the variable b, rather than loop-counter
variables, such as variable i, because the latter may have far more different valua-
tions, and tracking loop counters would usually lead to expensive loop unrollings.
The given error path of the program can be eliminated from further exploration
by tracking the loop-counter variable i, which might force unrolling the loop in
further iterations of CEGAR. If we instead choose to track the boolean vari-
able b, then the path can be eliminated and it is guaranteed that the loop is not
unrolled. In the next CEGAR iteration, variable i will be added to the precision
in order to stop the exploration at line 11. After that, the program is proved
correct. In existing work, the decision which variable to track depends solely on
the interpolation engine.
1 In the programming language C, a boolean variable is modeled by an integer vari-

able b for which b==0 represents the value false and b!=0 represents the value true
(cf. [2] for a discussion of more fine-grained types for C).



22 D. Beyer, S. Löwe, and P. Wendler

For the error path in this example, we would like the verifier to refine using
the interpolant sequence shown on the left, and avoid interpolant sequences such
as the one on the right, which references the loop counter. However, interpola-
tion engines cannot distinguish between “good” or “bad” interpolant sequences,
because they do not have access to external information such as if a specific
variable is a loop counter and should therefore be avoided. Furthermore, the
result of an arbitrary interpolation query is not directly controllable from the
outside, and thus we might end up with a refinement that leads to divergence of
the analysis.

It is possible instead to send several queries to the interpolation engine, each
targeted at a different reason of infeasibility, and then choose the result that
is expected to be “good” for the further construction of the abstract model.
Our previous work introduced the notion of sliced prefixes [13] together with an
approach to extract a set of such infeasible sliced paths for one given infeasible
error path. Each of these infeasible sliced paths can be used for refining the
abstract model, and the choice influences the effectivity and the efficiency of
the analysis significantly. This work investigates refinement selection, yielding
the following contributions:

• We present several heuristics for intra-analysis refinement selection, for
which we conduct a thorough evaluation that reveals significant effectiveness
improvements for both a predicate analysis and a value analysis.

• We define a novel combination of analyses, where inter-analysis refinement
selection decides which analysis in the combination of analyses is refined.

• We provide an implementation that is publicly available in the open-source
software-verification framework CPAchecker.

Related Work. We categorize the related approaches into approaches that
manipulate error paths, interpolation approaches to be implemented inside the
interpolation engine, or outside the interpolation engine, approaches based on
unsat cores, and combination approaches.

Extraction of Paths. The most related approaches to refinement selection are
works that manipulate infeasible error paths. Path slicing [24] is a technique
that weakens the path constraints before interpolation by removing facts that
are not important for the infeasibility of the error path. This technique produces
one infeasible sliced path for one infeasible error path. We need several infeasible
sliced paths in order to create a space of choice for refinement selection. Sliced
path prefixes [13] is a method that produces a set of infeasible sliced paths, i.e.,
a set of infeasible sliced prefixes of the original infeasible error path. One of our
heuristics (deep pivot location) is similar to counterexample minimization [1].

Interpolant Strength. The strength of interpolants [20] can be controlled by com-
bining proof transformations and labeling functions, so that essentially, from the
same proof of infeasibility, different interpolants can be extracted. However, it
is not yet clear from the literature how to exactly exploit the strength of inter-
polants in order to improve the performance of software verification [20,27].
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In contrast to our approach, interpolant strength is restricted to predicate
analysis, requires changes to the implementation of the underlying interpola-
tion engine, and no available interpolation engine provides this feature.

Exploring Interpolants. Exploring interpolants [27] in interpolant lattices is a
technique to systematically extract a set of interpolants for a given interpolation
problem, with the goal of finding the most abstract interpolant. Similar to our
proposed technique, for a single interpolation problem, the input to the inter-
polation engine is remodeled to obtain not only a single interpolant for a query,
but a set of interpolants. This technique also does not require changes to the
underlying interpolation engine, but is restricted to predicate analysis. Yet, this
technique could be applied together with refinement selection to generate first
the most abstract interpolant for each infeasible sliced path and then select the
most appropriate refinement.

Unsatisfiability Cores. Satisfiability modulo theory (SMT) solvers can extract
unsatisfiability cores [16] from a proof of unsatisfiability, and there is an analogy
between a set of unsatisfiability cores extracted from a formula and a set of
infeasible sliced paths [13]. The concept of infeasible sliced paths is more general,
because it is applicable also to domains not based on SMT formulas, such as
value domains [13]. While SMT solvers typically strive for small unsatisfiability
cores [16], this alone does not guarantee a verifier to be effective. It would be
interesting to extract several unsatisfiability cores during a single refinement,
with the goal of performing refinement selection, as proposed in this work.

Combination of Value Analysis and Predicate Analysis. A CEGAR-based com-
bination of a value analysis and a predicate analysis, with refinement of the
abstract model in one of the two domains for every found infeasible error path,
has been proposed before [11]. However, so far there was no path-based selection
which domain should be refined: the strategy was to refine first, if possible, the
(supposedly cheaper) value analysis, and only refine the predicate analysis if the
value analysis could not eliminate the infeasible error path. This analysis may
diverge, if the value analysis needs to track a loop-counter variable, for example.
The predicate analysis, which might have eliminated the infeasible error path
without unrolling the loop, would have not even been considered. With our new
approach, we can systematically select the abstract domain that is the most
appropriate for refinement, for every single infeasible error path.

2 Preliminaries

Programs, Control-Flow Automata, States. We use basic definitions from
previous work [13]. We restrict the presentation to a simple imperative program-
ming language, where all operations are either assignments or assume operations,
and all variables range over integers. A program is represented by a control flow
automaton (CFA). A CFA A = (L, l0, G) consists of a set L of program loca-
tions, which model the program counter, an initial program location l0 ∈ L,
which models the program entry, and a set G ⊆ L × Ops × L of control-flow
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edges, which model the operations that are executed when control flows from
one program location to the next. The set of program variables that occur in
operations from Ops is denoted by X. A verification problem P = (A, le) consists
of a CFA A, representing the program, and a target program location le ∈ L,
which represents the specification, i.e., “the program must not reach location le”.

A concrete data state of a program is a variable assignment cd : X → Z,
which assigns to each program variable a value from the set Z of integer values.
A region φ is a formula that represents a set of concrete data states. For a
region φ and a CFA edge (l, op, l′), we write SPop(φ) to denote the strongest
postcondition. Each program analysis comes with an own implementation of SP,
each with possibly different expressive power. For example, a program analysis
that is restricted to the theory of linear arithmetics will provide a strongest
postcondition that uses formulas in the theory of linear arithmetic.

Paths,SlicedPaths,Precisions. Apath σ is a sequence 〈(op1, l1), . . . , (opn, ln)〉
of pairs of an operation and a location. The path σ is called program path if for
every i with 1 ≤ i ≤ n there exists a CFA edge g = (li−1, opi, li) and l0 is the initial
program location, i.e., the pathσ represents a syntacticwalk through theCFA.The
semantics of a path σ = 〈(op1, l1), . . . , (opn, ln)〉 and an initial region φ is defined
as the successive application of the strongest postcondition to each operation of
the path: SPσ(φ) = SPopn

(. . . SPop1
(φ) . . .). A path σ is feasible if SPσ(true) is not

contradicting. A program path σ = 〈(op1, l1), . . . , (opn, le)〉, which ends in le, is
called error path, and a program is considered safe (the specification is satisfied) if
there is no feasible error path.

A sliced path is a path that results from a path by omitting pairs of
operations and locations from the beginning or from the end, and pos-
sibly replacing some assume operations by no-op operations. Formally, a
path φ = 〈(op′

j , l
′
j), . . . , (op

′
w, l ′w)〉 is called a sliced path of a path σ =

〈(op1, l1), . . . , (opn, ln)〉 if j ≥ 1, w ≤ n, and for all j ≤ i ≤ w, φ.l ′i = σ.li and
(φ.op′

i = σ.opi or (φ.op′
i = [true] and σ.opi is an assume operation)) holds.

The definition of sliced paths is inspired by path slicing [24] and sliced pre-
fixes [13]. To ensure that any standard interpolation-based refinement procedure
can be used, the following proposition is necessary: Let σ be an infeasible path
and φ be an infeasible sliced path of σ, then all interpolant sequences for φ are
also interpolant sequences for σ. The proof for this proposition follows directly
from the respective proof for infeasible sliced prefixes [13]. This property allows
to replace a refinement procedure that uses only the original infeasible path, by
a procedure that uses a set of infeasible sliced paths.

Previously, we introduced one possible approach to extract a set of infeasible
sliced paths from one infeasible path: generating infeasible sliced prefixes [13].
It was only defined for a value analysis, however, it can be extended to any
analysis that provides a representation of sets of concrete data states and an
operator SP for computing strongest postconditions. The predicate analysis ful-
fills these requirements, allowing us to implement Alg. ExtractSlicedPrefixes [13]
and Alg. 1 (Refine+) for the predicate analysis. Other approaches for
generating infeasible sliced paths from an infeasible path are equally applica-
ble for refinement selection.
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Algorithm 1. Refine+(σ), adopted from [13]
Input: an infeasible error path σ = 〈(op1, l1), . . . , (opn, ln)〉
Output: a precision π ∈ L → 2Π

Variables: a set Σ of infeasible sliced paths of σ,

a set τ of pairs of an infeasible sliced path and a precision

1: Σ := ExtractSlicedPaths(σ)

2: // compute precisions for each infeasible sliced path

3: for each φj ∈ Σ do

4: τ := τ ∪ (φj ,Refine(φj)) // cf. standard Alg. Refine, e. g., from [13]

5: // select a refinement based on original path, infeasible sliced paths, and resp. precisions

6: return SelectRefinement(σ, τ)

A precision is a function π : L → 2Π , where Π depends on the abstract
domain used by the analysis. It assigns to each program location some analysis-
dependent information that defines the level of abstraction. For example, if using
predicate abstraction, the set Π is a set of predicates over program variables.

Counterexample-Guided Abstraction Refinement. CEGAR [17] is a
technique used for automatic, iterative refinement of an abstract model and aims
at automatically finding a suitable level of abstraction that is precise enough to
prove the specification while being as abstract as possible to enable an efficient
analysis. It is based on the following components: a state-space exploration algo-
rithm, which computes the abstract model, a precision, which determines the
current level of abstraction, a feasibility check, which decides if an error path
is feasible, and a refinement procedure to refine the precision of the abstract
model.

The state-space exploration algorithm computes the abstract state space that
is reachable according to the current precision, which initially is coarse or even
empty. If all program states have been exhaustively checked, and no error was
found, then the CEGAR algorithm terminates and reports the verdict true,
i.e., the program is correct. Otherwise, i.e., if an error path was found in the
abstract state space, this error path is passed to the feasibility check, and if the
path is feasible, then this error path represents an actual violation of the speci-
fication and the CEGAR algorithm terminates with verdict false. If, however,
the error path is infeasible, i.e., does not correspond to a concrete program exe-
cution, then the precision was too coarse and needs to be refined. The refinement
procedure takes as input the infeasible error path and returns a new precision
that is strong enough that the state-space exploration algorithm will not explore
that infeasible error path again in the next CEGAR iterations. The refinement
procedure is often based on interpolation [18], which was first applied to the
predicate domain [22], and later to the value-analysis domain [11].
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Extracting good precisions from the infeasible error paths is key to the
CEGAR technique. Experiments have shown that the heuristic for refinement
selection influences significantly the quality of the precision, and thus, the effec-
tiveness of the analysis [13]. Here, we are interested in studying such heuristics.

3 Refinement Selection Using Heuristics

CEGAR needs a module Refine that takes as input an infeasible program path
and yields as output a precision that is used for refinement of the abstract model.
Instead of using an infeasible program path directly for a standard interpolation-
based refinement, and being stuck with the arbitrary and potentially “bad” inter-
polants that the internal heuristics of an interpolation engine produce, we use a
new module Refine+. Algorithm 1 can be substituted for the refinement proce-
dure of CEGAR-based analyses. This new module first extracts a set of infeasible
sliced paths by calling method ExtractSlicedPaths, which are more abstract than
the original program path. (ExtractSlicedPrefixes [13] is one possible implementa-
tion of method ExtractSlicedPaths.) Second, Alg. Refine+ calculates the precision
for each infeasible sliced path (using a regular refinement procedure) and stores
the pairs in set τ . Third, the algorithm selects the precision that is the most
promising from τ , i.e., which will hopefully prevent the analysis from diverging.
The selection is implemented in a method SelectRefinement and uses details from
the precisions, e.g., which variables are referenced in the precision. Each imple-
mentation of SelectRefinement, i.e., each heuristic, receives as input the original
infeasible path as well as the set of all pairs of infeasible sliced paths and respec-
tive precisions. The remainder of this section presents some possible heuristics
that can be used to implement SelectRefinement.

Selection by Domain-Type Score of Precision. Our first heuristic inspects
the types of variables in the resulting precisions and prefers refinements with
simpler or smaller types. In C, the type of a variable is quite coarse and distin-
guishing variables on a more fine-grained level can be beneficial for verification.
For example, the C type int is typically used even for variables with a boolean
character. For this purpose, domain types [2] have been proposed, which refine
the type system of a programming language and allow to classify program vari-
ables according to their actual range or usage in a program. With domain types,
one can distinguish between variables that are used as booleans, variables that
are used in equality relations only, in arithmetic expressions, or in bit-level oper-
ations, and variables that share characteristics of a loop counter [19,28,29].

Loop counters are a class of variables that a program analysis should ideally
omit in many cases from the abstract model of a program. Because loop-counter
variables occur in assume operations at the loop exit, they often relate to a
reason of infeasibility of a given infeasible error path. Thus, those variables
are often included in the interpolant sequence that a standard interpolation
engine might produce, forcing the program analysis to track them. Therefore, a
promising heuristic is to avoid precisions that contain loop counters, and prefer
precisions with only variables of “simpler” (e.g., boolean) types. The rationale
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behind this heuristic is that variables with only a small number of different
valuations have less values to grow the state-space, and therefore are to be
preferred. If, however, reasoning about the specification demands unrolling a
loop, then the termination of the verification process may be delayed by first
refining towards other, irrelevant properties of the program.

In order to compute the domain-type score for a precision π : L 	→ 2Π, we
first define a function δ : X 	→ N \ {0} that assigns to each program variable its
domain-type score. The domain type for all program variables can be inferred
by an efficient data-flow analysis [2], and we use low score values for variables
with small ranges (e.g., boolean variables), and a specifically high value for loop
counters. Thus, we define the domain-type score of a precision as the product
of the domain-type scores of every variable that is referenced in the precision:
DomainTypeScoreOfPrecision(π, δ) =

∏

x referenced in π

δ(x).

This function, as well as the design of function δ, are mere proposals for
assessing the quality of a precision. However, we experimented with several dif-
ferent implementations for both functions, and come to the conclusion that the
most important requirement to be fulfilled is that precisions with only boolean
variables should be associated with a low score, and precisions referencing loop-
counter variables should be penalized with a high score.

Selection by Depth of Pivot Location of Precision. The structure of a
refinement, i.e., which parts of the path and the state space are affected, can
also be used for refinement selection. For example, refining close to the error
location may have a different effect than refining close to the program entry. We
define the pivot location of an infeasible error path σ as the first location in σ
where the precision is not empty. If using lazy abstraction [23], this is typically
the location from which on the reached state space is pruned and re-explored
after the refinement. The depth of this pivot location can be used for comparing
possible refinements and selecting one of them. Formally, for a precision π for a
path σ = 〈(op1, l1), . . . , (opn, ln)〉, the depth of the pivot location is defined as
PivotDepthOfPrecision(π, σ) = min {i | π(li) 
= ∅}. (The minimum always exists
because there is always at least one location with a non-empty precision.)

Selecting a refinement with a deep pivot location (close to the end of the
path) is similar to counterexample minimization [1]. It has the advantage that
(if using lazy abstraction) less parts of the state space have to be pruned and re-
explored, which can be more efficient. Furthermore, the precision will specify to
track preferably information local to the error location and thus avoid unfolding
the state space in other parts of the program. However, preferring a deep pivot
location may have negative effects if some information close to the program entry
is necessary for proving program safety (e.g., initialization of global variables).
Refining at the beginning of an error path might also help to rule out a large
number of similar error paths with the same precision, which might otherwise
be discovered and refined individually.

Selection by Width of Precision. Another heuristic that is based on the
structure of a refinement is to use the number of locations in the infeasible error
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path for which the precision is not empty, which we define as the width of a
precision. This corresponds to how long on a path the analysis has to track
additional information during the state-space exploration, and thus correlates
to how long the precision contributes to the state-space unfolding. Similarly
to the depth of the pivot location, this heuristic also deals with some form of
“locality”, but instead of using the locality in relation to the depth, it uses
the locality in relation to the width. Formally, for a precision π produced for
a path σ = 〈(op1, l1), . . . , (opn, ln)〉 the width of the precision is defined as
WidthOfPrecision(π, σ) = 1 + max I − min I, where I = {i | π(li) 
= ∅} is the
set of indices along the path with a non-empty precision.

It may seem that narrow precisions are in general preferable, because it means
tracking additional information only in a small part of the state space. However,
narrow precisions favor loop counters because in many loops the statements for
assigning to the loop counter are close to the loop-exit edges. Thus, selecting a
narrow precision often leads to loop unrollings.

Selection by Length of Infeasible Sliced Path. Selecting the shortest or
longest infeasible sliced path, respectively, are two simple heuristics for refine-
ment selection as well.

Further Heuristics. We presented and motivated several promising heuristics,
but other heuristics are possible as well. For example, in the RERS challenge
2014, a heuristic specifically tailored to the characteristics of the event-condition-
action systems in that competition, improved the effectiveness of CPAchecker

and allowed it to obtain good results2. This shows that using domain knowledge
in the refinement step of CEGAR is a promising direction, and a specific heuristic
for refinement selection is a suitable place to define this.

4 Refinement Selection for Combination of Analyses

A combination of different analyses, such as a value analysis and a predicate
analysis, can be beneficial because different facts necessary to prove program
correctness can be handled by the analysis that can track a fact most effi-
ciently [8,11]. The refinement step is a natural place for choosing which of the
analyses should track new information. Thus we extend the idea of refinement
selection from an intra-analysis selection to an inter-analysis selection.

This concept, which can be broken down into four phases, is depicted in
Figure 2, which shows an example combination of a value analysis (VA) and
a predicate analysis (PA). The first phase is the standard exploration phase
of CEGAR. The composite analysis performs the state-space exploration, con-
structing the abstract model using the initial, empty precision for all component
analyses. In the figure, we refer to the precisions as πVA and πPA for the value
analysis and the predicate analysis, respectively.
2 Results available at http://www.rers-challenge.org/2014Isola/

http://www.rers-challenge.org/2014Isola/
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Fig. 2. Refinement selection for combination of analyses, here, consisting of a value
analysis and a predicate analysis

If the outcome of the state-space exploration is the verdict true (the model
fulfills the specification) or the verdict false (the model contains a concrete
error path) then the analysis terminates. If the model contains an infeasible
error path σ, then the model is inconclusive and, according to the CEGAR
algorithm, a refinement is initiated.

With the refinement step, the second phase begins, which also marks the
starting point of our novel approach for inter-analysis refinement selection.
There, for all component analyses, we extract infeasible sliced paths stem-
ming from the infeasible error path σ. Each program analysis provides its own
strongest-postcondition SP, with each having different expressive power, and
therefore, the set of infeasible sliced paths might differ for each analysis. For
example, with SPVA we can extract paths that are infeasible due to non-linear
arithmetic, while with SPPA we get paths that are infeasible due to contradicting
range predicates.

In the third phase, for each infeasible sliced path from the previous phase, a
precision (i.e., a possible refinement) is computed by delegating to the default
refinement routine Refine of the respective analysis. At the end of the third phase,
the set τ contains the available refinements (as pairs of infeasible sliced paths
and precisions) for all of the component analyses.

In the fourth phase, one suitable precision π (in the example, either πVA

or πPA) is selected from the set τ , which is added to the respective precision
of the component analysis for state-space exploration, finishing one iteration of
CEGAR. A proper strategy for refinement selection can be crucial for the effec-
tiveness of the composite analysis, because there is no analysis superior to all
other analysis for any given program, but one analysis may be a good fit for one
class of programs, but less suitable for another class, while it can be the other way
around for a second analysis. Suppose, for example, an infeasible error path that
can only by excluded by tracking that a certain variable is within some interval.
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Refining the value analysis would mean to enumerate all possible values of this
variable, whereas the predicate analysis could track this efficiently using inequal-
ity predicates. The following evaluation provides evidence that inter-analysis
refinement selection can be superior to statically preferring the refinement of
one analysis, which is an improvement over our previous work [11].

5 Evaluation

In the following, we present the results of applying refinement selection to several
analyses. In order to evaluate the presented heuristics for refinement selection,
we have integrated them into the open-source software-verification framework
CPAchecker [9]3. We also implemented refinement selection for the predicate
analysis [10] in CPAchecker , such that it is now supported for both the value
analysis [11] and the predicate analysis.

Setup. For benchmarking we used machines with two Intel Xeon E5-2650v2
eight-core CPUs with 2.6 GHz and 135 GB of memory. We limited each veri-
fication run to two CPU cores, 15 min of CPU time, and 15 GB of memory.
BenchExec [12] was used as benchmarking framework to ensure accurate, repro-
ducible results. We used the tag cpachecker-1.4.6-spin15 of CPAchecker

and provide the tool, the benchmarks, and the full results on our supplementary
web page4.

Benchmarks. For evaluating the refinement-selection heuristics and our novel
combination of analyses, we use a subset of the 5 803 C programs from SV-
COMP’15 [6]. We select those tasks that deal with reachability properties,
and exclude the categories “Arrays”, “HeapManipulation”, “Concurrency”, and
“Recursion”, because they are not supported by both analyses we evaluate. Fur-
thermore, we present here only results for those tasks where a refinement selec-
tion is actually possible, i. e., where at least one refinement with more than one
infeasible sliced path is performed. Thus, the set of all verification tasks in our
experiments contains 2 828 and 2 638 tasks for the predicate and value analysis,
respectively.

Configuration. We use the approach of extracting infeasible sliced pre-
fixes [13] for generating infeasible sliced paths during refinement (method
ExtractSlicedPaths in Alg. 1). In order to properly evaluate the effect of the
precisions that are chosen by the refinement-selection heuristic, we configure the
analysis to interpret the precision globally, i. e., instead of a mapping from pro-
gram locations to sets of precision elements, the discovered precision elements
get used at all program locations. Note that this does not change the precision as
seen by the refinement-selection heuristic, but only the precision that is given to
the state-space exploration. For the same reason, we also restart the state-space
3 Available under the Apache 2.0 License from http://cpachecker.sosy-lab.org/
4 http://www.sosy-lab.org/∼dbeyer/cpa-ref-sel/

http://cpachecker.sosy-lab.org/
http://www.sosy-lab.org/~dbeyer/cpa-ref-sel/
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exploration with the refined precision from the initial program location after
each refinement. Otherwise, i.e., if we used lazy abstraction and re-explored
only the necessary part of the state space, not only the new precision but also
the amount of re-explored state space would differ depending on the selected
refinement, which would have an undesired influence on the performance.

The predicate analysis is configured to use single-block encoding [10], because
for larger blocks there is no single error path per refinement, but instead a
sequence of blocks which encode a set of potential error paths. As we do not
yet have an efficient technique to extract infeasible sliced paths from a sequence
of blocks, using refinement selection is not applicable in an ABE configuration.
The predicate analysis uses SMTInterpol [15] as SMT solver and interpolation
engine.

Refinement-Selection Heuristics. We experiment with implementations of the
procedure SelectRefinement in Alg. 1 based on the heuristics from Sect. 3, specif-
ically such that it returns the precision for a (1) short or (2) long infeasible sliced
path, the precision with a (3) good or (4) bad domain-type score5, a precision
that is (5) narrow or (6) wide, or a precision with a (7) shallow or (8) deep
pivot location. For comparison, we report the results of using random choice
as heuristic for refinement selection. We also experiment with combinations of
heuristics, where at first a primary heuristic is asked, and if this does not lead
to a unique selection, a secondary heuristic is used as a tie breaker to select one
of those refinements that were ranked best by the primary heuristic. e heuris-
tics “good domain-type score” and “narrow precision” for these combinations.
In all configurations of refinement selection, if necessary, we use the length of
the infeasible sliced path as a final tie breaker, and select from equally ranked
refinements the one with the shortest infeasible sliced path6.

In the following, we compare the potential of these selection heuristics against
each other, as well as against the case where the choice of refinement is solely
left to the interpolation engine, i. e., where no refinement selection is performed
and the precision extraction is based on the complete, original infeasible error
path.

Refinement Selection for Predicate Analysis. We evaluate the presented
heuristics for refinement selection when applied to the predicate analysis. Table 1
shows the number of verification tasks that the predicate analysis could solve
without refinement selection, and with refinement selection using the heuris-
tics and combinations of heuristics listed above. The table lists the results
for the full set of 2 828 verification tasks (column “All Tasks”) that fit the
criterion defined above, as well as for several subsets corresponding to those
categories of SV-COMP’15 (“ControlFlowInteger”, “DeviceDrivers64”, “ECA”,

5 We do not expect the precision with a bad domain-type score to be actually useful,
we report its results merely for comparison.

6 Experiments showed no relevant difference between selecting the shortest or the
longest infeasible sliced path in case of a tie in the primary selection heuristic.



32 D. Beyer, S. Löwe, and P. Wendler

Table 1. Number of solved verification tasks for predicate analysis without and with
refinement selection using different heuristics

Heuristic
Tasks All Tasks ControlFlowInt. DD64 ECA ProductLines Seq.

2 828 35 679 1 140 597 244

— (No Refinement Selection) 1 142 34 473 162 325 43

Length of Sliced Path
Short 1 278 34 429 261 375 78
Long 1 325 18 484 322 330 73

Domain-Type Score
Good 1 291 34 493 247 339 76
Bad 1 161 23 404 259 298 79

Width of Precision
Narrow 1 302 28 431 329 347 64
Wide 1 297 27 480 309 309 76

Depth of Precision
Shallow 1 237 25 466 251 341 57
Deep 1 260 28 421 313 352 45

Random 1 352 34 473 303 350 86

Combinations
Good&Narrow 1368 30 494 329 338 75
Narrow&Good 1 354 28 474 330 355 65
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Fig. 3. Quantile plot showing the results for predicate analysis without and with refine-
ment selection using different heuristics

“ProductLines”, and “Sequentialized”), where refinement selection has a signif-
icant impact. Numbers written in bold digits highlight the best configuration(s)
in each column. Figure 3 shows a plot with the quantile functions for the most
interesting refinement-selection heuristics on the full set of tasks. In this figure,
for each configuration the right end of the graph marks the number of tasks that
the configuration could solve, and the area below the graph indicates the sum
of the runtime for all solved verification tasks. Thus, in general a graph that is
lower and stretches further to the right indicates a better configuration.
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Refinement Selection Matters. For the full set of tasks, the analysis without
refinement selection performs worse than all other refinement selection heuris-
tics, even worse than the intentionally bad heuristic “bad domain-type score”.
Figure 3 shows that the analysis without refinement selection scales badly. While
it is competitive for easier tasks (below 60 s of CPU time), it solves only a rel-
atively small number of tasks with a runtime between 60 s and 900 s. Addition-
ally, this configuration is not the best for any of the shown subsets, except for
“ControlFlowInteger”, where it is tied for first with others. This shows that the
heuristics of the interpolation engine (with which we are stuck without diligent
refinement selection) are not well-suited for verification, and that practically any
deviation away from the heuristics of interpolation engine pays off, as witnessed
by the relatively good results for the other heuristics.

Discussion. As Table 1 shows, none of the basic heuristics works best for all
classes of programs, but instead in each subset a different heuristic is the best.
In the following, we would like to highlight and explain a few interesting results
for some subsets of tasks and heuristics. Note that the following discussion is
based on the investigation of some program samples and our understanding of
the characteristics of the programs in the SV-COMP categories, and we do not
claim that our explanations are necessarily applicable to all programs.

The programs of the subset “DeviceDrivers64” contain many functions and
loops, and aspects about the specification are encoded in global boolean vari-
ables that are checked right before the error location. Hence, the heuristic “good
domain-type score” is effective because it successfully selects precisions with the
“easy” and relevant boolean variables. The heuristics “long sliced path”, “wide
precision”, and “shallow depth” all happen to work well, too, because those
relevant variables are initialized at the beginning and read directly before the
error location, meaning that corresponding infeasible sliced paths will be long,
and resulting precisions containing them will be “shallow” and “wide“ (starting
to track information close to the program entry, and all the way to the error
location). Their opposing heuristics tend to prefer precisions about less relevant
local variables.

The subset “ECA” contains artificial programs that represent event-
condition-action systems with up to 200 000 lines of code. Most of these pro-
grams have only a few variables, and in the majority of programs all variables
have the same domain type, and thus the heuristic using the domain-type score
cannot perform a meaningful selection here and degenerates to a heuristic about
the number of distinct variables in the precision. Note also that relying on
the interpolation heuristics of the SMT solver works particularly bad for these
programs.

The programs of the subset “ProductLines” encode state machines and con-
tain a high amount of global variables. In case they contain a specification vio-
lation, the bug is often rather shallow, although the full state space is quite
complex. This explains why the heuristic “short sliced path” works especially
well here, because this heuristic leads to exploring the state space as close as
possible to the initial program location, driving the verification towards shallow
bugs.
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Combination of Refinement-Selection Heuristics. The above results show that it
is worthwhile to experiment with combinations of heuristics in order to find a
configuration that works well for a wide range of programs. We used the two
heuristics “good domain-type score” and “narrow precision”, which are not only
two of the most successful basic heuristics for the predicate analysis, but are
also somewhat complimentary (one has a weak spot where the other is strong,
and vice versa). Indeed, regardless of the order in which the two heuristics are
combined, the combination is more successful than the basic configurations if
applied to the category of all tasks. The combination with “good domain-type
score” as primary and “narrow precision” as secondary heuristic manages to
solve 226 (20 %) more tasks than without refinement selection and is best or
close to best in most subsets of tasks.

Refinement Selection for Value Analysis. We now compare the different
refinement-selection heuristics if used together with a value analysis. The results
are shown in Table 2, which is structured similarly to Table 1, but contains results
only for the full set of 2 638 tasks and for the subsets corresponding to the SV-
COMP’15 categories “DeviceDrivers64”, “ECA”, and “ProductLines”, because
for the remaining categories there is no relevant difference in the results for
the value analysis. First it can be seen that the configuration without refine-
ment selection is comparatively good for the value analysis, as opposed to the
predicate analysis, where it is the worst configuration. This can be explained
by the fact that the interpolation engine for the value analysis is implemented
in CPAchecker itself and is thus designed and tuned specifically for software
verification, whereas the predicate analysis uses an off-the-shelf SMT solver as
interpolation engine, which is not designed specifically for software verification.
However, for specific subsets of tasks, refinement selection is also effective for
the value analysis.

Similarly to the predicate analysis, none of the heuristics is the best for all
classes of programs. Again, the basic heuristic that works best on the set of
all tasks is “good domain-type score”, which is especially well-suited for the
subset “DeviceDrivers64” for the same reasons explained above. In fact, note
that for the basic heuristics and subsets of tasks presented in Tables 1 and 2,
the number of tasks solved by the value analysis often correlates closely to the
number of tasks solved by the predicate analysis. One notable exception is the
subset “ECA”, for which the heuristic “good domain-type score” works well for
the value analysis, but not for the predicate analysis. The reason for this dif-
ference is that the value analysis solves far more instances than the predicate
analysis, and for some of the harder “ECA” problems, which the predicate analy-
sis cannot solve, but the value analysis can, there exist variables with different
domain-types. Hence, the heuristic “good domain-type score” is more effective.

Finally, the combination of the refinement-selection heuristics “good domain-
type score” and “narrow precision” is again the most effective configuration for
the set of all tasks, although the increase over the heuristic “good domain-type
score” alone is not as large as for the predicate analysis.



Refinement Selection 35

Table 2. Number of solved verification tasks for value analysis without and with
refinement selection using different heuristics

Heuristic
Tasks All Tasks DeviceDrivers64 ECA ProductLines

2 638 578 1 140 597

— (No Refinement Selection) 1 726 408 575 453

Length of Sliced Path
Short 1 644 422 488 450
Long 1 627 484 508 361

Domain-Type Score
Good 1 760 494 572 408
Bad 1 518 410 474 359

Width of Precision
Narrow 1 685 422 507 470
Wide 1 605 483 491 355

Depth of Precision
Shallow 1 658 471 518 383
Deep 1 725 414 534 488

Random 1 622 433 527 378

Combinations
Good&Narrow 1767 494 569 418
Narrow&Good 1 714 492 507 428

Refinement Selection for Combination of Analyses. We now evaluate
the effectiveness of using refinement selection for a combination of analyses. We
compare four different analyses: (1) a sole predicate analysis without refinement
selection, (2) a combination of a value analysis and a predicate analysis (both
without refinement selection), where refinements are always tried first with the
value analysis and the predicate analysis is refined only if the value analysis
cannot eliminate an infeasible error path, (3) the same combination of a value
analysis and a predicate analysis, but now with refinement selection used inde-
pendently in both domains, and (4) our novel combination that is defined in
Sect. 4 of a value analysis and a predicate analysis, where refinement selection
is not only used within each domain but also to decide which domain to prefer
in a refinement step. For all configurations with refinement selection, we use the
combination of the heuristics “good domain-type score” and “narrow precision”.
We keep the same setup for the experiment as before, but use a new selec-
tion criteria, namely, we only consider verification tasks where an inter-analysis
refinement selection is actually possible, i. e., where the analysis based on our
novel combination needs to perform at least one refinement.

Results. Table 3 shows the results for this comparison. Confirming previous
results [11], even a combination of value analysis and predicate analysis with-
out refinement selection (row “VA ‖ PA”) is more effective than the predicate
analysis alone (row “PA”). However, this combination also has a weak spot,
as it fails often in “DeviceDrivers64” due to state-space explosion where the
predicate analysis alone succeeds. Row “VA+ ‖ PA+” shows that using refine-
ment selection is effective not only when applied to individual analyses, but
also for combinations of analyses. Finally, the fourth configuration (row
“(VA+ ‖ PA+)+”) takes the idea of refinement selection to the next level.
While in the other combinations the value analysis is always refined first, and the
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Table 3. Number of solved verification tasks for combinations of analyses without and
with refinement selection (PA: predicate analysis; VA: value analysis)

Analysis
Tasks All Tasks DD64 ECA Loops ProductLines Seq.

3 568 1 245 1 139 120 597 261

PA 1 826 1 027 161 80 325 42
VA ‖ PA 2 288 992 495 69 421 115
VA+ ‖ PA+ 2 386 1074 517 68 404 126
(VA+ ‖ PA+)+ 2389 1 068 519 79 404 121

predicate analysis only if the value analysis cannot eliminate an infeasible error
path, our novel combination uses refinement selection to decide whether a refine-
ment for the value or for the predicate analysis is thought to be more effective.
On the full set of tasks, this approach just barely beats the previous approach,
but the encouraging results in the subset “Loops” show that it works as intended.
In this subset the plain predicate analysis is best (row “PA”), and a naive com-
bination is less suited for such programs (rows “VA ‖ PA” and “VA+ ‖ PA+”).
If, however, we apply inter-analysis refinement selection to decide which analysis
to refine for a given error path, as done by our novel approach, then this does
not only clearly out-perform the plain predicate analysis on “All Tasks”, but
it also matches the effectiveness of the predicate analysis for programs where
reasoning about loops is essential.

6 Conclusion

We presented refinement selection, a method that guides the construction of an
abstract model in a direction that is beneficial for the effectivity and efficiency
of the verification process. The refinement selection works as follows: We start
with a given infeasible error path as it occurs in CEGAR. Then, we extract for
this infeasible error path a set of sliced paths, and, instead of computing a refine-
ment precision for the original path only, we compute a refinement precision for
each sliced path. Next, we assess all refinement precisions according to some
heuristics that implement design choices of what is considered a “good” refine-
ment precision. Finally, we select the most promising precision for the model
construction.

This paper defines a variety of heuristics for utilizing the potential of refine-
ment selection and we evaluated the ideas on a large benchmark set and two
commonly-used verification methods: predicate analysis and value analysis. The
experimental results demonstrate that we can improve the performance and the
number of solved tasks significantly by selecting an appropriate refinement with-
out any further changes to the analysis. Furthermore, if using a combination of
a value and a predicate analysis, refinement selection can now be used to sys-
tematically select the most appropriate domain for refining the abstract model.

Refinement selection opens a fundamentally new view on verification of mod-
els with different characteristics: Instead of using portfolio checking, or trying
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several different abstract domains, we can, in one single tool, fully automati-
cally self-configure the verifier, according to the property to be verified and the
abstract domain that can best analyze the paths that are encountered during
the analysis.

Outlook. It would be interesting to investigate heuristics that use dynamic infor-
mation from the analysis. For example, instead of penalizing a loop-counter
variable according to its domain type, we could delay the penalty until a certain
threshold is reached on the number of values for this variable, similar to dynamic
precision adjustment [8]. Especially for the predicate analysis, it is interesting
to investigate heuristics that not only look at the domain type, but also how the
variables are referenced in the precision (e.g., an equality predicate for a loop
counter usually leads to loop unrolling, an inequality might avoid loop unrolling).
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Abstract. With Helena, we introduced a modeling approach for
distributed systems where components dynamically collaborate in ensem-
bles. Conceptually, components participate in a goal-oriented collabora-
tion by adopting certain roles in the ensemble. To verify the goal-directed
behavior of ensembles, we propose to systematically translate Helena
specifications to Promela and verify them with the model-checker Spin.
In this paper, we report on tool support for an automated transition from
Helena to Promela. Relying on the Xtext workbench of Eclipse, we
provide a code generator from the domain-specific-language Helena-
Text to Promela. The generated Promela model simulates the two
layers, components and their adopted roles from Helena, and allows
dynamic role creation as well as asynchronous communication of roles.

1 Introduction

Ensemble-based systems are distributed systems of components which dynam-
ically collaborate in groups. In Helena [5], components are thought of as a
basic layer providing computing power or storage resources. Collaborations are
modeled by ensembles, where components adopt (possibly concurrently) different
roles to actively participate in ensembles. The concept of roles allows to focus on
the particular tasks which components fulfill in collaborations and to structure
implementation by realizing roles as threads executed on top of components [9].

Ensembles always collaborate for some global goal. Such goals are often tem-
poral properties and are therefore specified in linear temporal logic (LTL) [11].
To allow verification of Helena models for goals, we already proposed in [6] to
translate Helena to Promela and check satisfaction of goals with the model-
checker Spin [7]. We proved the correctness of the translation for a simplified
variant of Helena which restricts ensemble specifications to their core concepts.

In this paper, we report on the extension of the translation to full Helena
and its automation based on the Xtext workbench of Eclipse. With the extended
translation, we are able to simulate the two layers of Helena, components and
their adopted roles, in Promela. Due to the automation of the translation, we
augment Helena ensemble specifications with immediate verification support
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in Spin. To this end, an Eclipse plug-in is implemented which produces an exe-
cutable Promela specification from a Helena ensemble specification written
in the domain-specific language HelenaText [8].

2 Helena in a Nutshell

We introduce the concepts of the Helena approach at a peer-2-peer network
supporting the distributed storage of files which can be retrieved upon request.

Components: The foundation of Helena ensembles [5] are components char-
acterized by their type, e.g., component type Peer in Fig. 1. Such a type manages
associations to other components, e.g., the association neighbor in our example.
It stores basic information, that is useful in all roles the component can adopt,
in attributes, e.g., the attribute hasFile. Lastly, it provides operations which can
be invoked by its roles, e.g., the operation printFile (not shown).

Roles: A role type rt is a tuple (rtnm, rtcomptypes, rtattrs, rtmsgs): rtnm is
the name of the role type; the set rtcomptypes determines the component types
which can adopt the role; the set rtattrs allows to store data that is only relevant
for performing the role; the set rtmsgs determines the outgoing and incoming
messages supported by the role. In our example, we have three role types which
can all be adopted by components of the type Peer (cf. Fig. 1): The peer adopting
the role Requester wants to download the file, peers adopting the role Router

forward the request through the network, and the peer adopting the role Provider

provides the file. Only the role type Requester has an attribute. Outgoing and
incoming messages are annotated as arrows for all role types.

Ensemble Structures: To define the structural characteristics of a collabo-
ration, an ensemble structure specifies the role types whose instances form the
ensemble, determines how many instances of each role type may contribute by
a multiplicity, and defines the capacity of the input queue of each role type. We
assume that between two role types the messages which are output on one side
and input on the other side can be exchanged. For our example, instances of
the three aforementioned role types collaborate (cf. Fig. 1). Thereby, an ensem-
ble has to employ exactly one requesting peer, arbitrarily many routers, and
possibly one router as determined by the multiplicities associated to each role
type.

Ensemble Specifications: The behavior of a role is specified by a process
expression built from the null process nil, action prefix a.P , guarded choice
if(guard1) {P1} or(guard2) {P2} (branch is nondeterministically selected if sev-
eral branches are executable), and process invocation [6]. Guards are predicates
over component or role attributes. There are actions for creating (create) and
retrieving (get) role instances, sending (!) or receiving (?) messages, and invok-
ing operations of the owning component. These actions must fit to the declared
ensemble structure, e.g., messages can be only sent by roles which declare them.
Additionally, state labels are used to mark a certain progress of execution in
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Fig. 1. Ensemble structure for the p2p example in graphical notation

the role behavior. Figure 2 shows the behavior specification of a Router. Initially,
a router can receive a request for an address. Depending on whether its owner
has the file, it either creates a provider role instance and sends it back to the
requester in Pprovide or forwards the request to another router in Pfwd if possible.

Router = ?reqAddr(Requester rq)() .

( .hasFile) {Pprovide}
(! .hasFile) {Pfwd}

Pprovide = p← (Provider, ) . rq!sndAddr(p)() .

P = ( (Router , .neighbor)) { }
(! (Router , .neighbor)) {Pcreate}

Pcreate = r← (Router, .neighbor) . r!reqAddr(rq)() . Router

Fig. 2. Role behavior of a Router for the p2p example

A complete collaboration is given by an ensemble specification consisting of
an ensemble structure Σ and a set of role behaviors, one for each role type in
Σ. The complete specification of the example can be found in [10].

Semantics: Ensemble specifications are semantically interpreted by labeled
transition systems, i.e., ensemble automata [5,6]. Ensemble states capture the
currently existing role instances with their data and control states. Transitions
between ensemble states are triggered by role instance creation or retrieval, com-
munication actions, and operation calls. The communication style (synchronous
or asynchronous) is determined by the size of the input queues of the role types.

Goal Specifications: Goals are expressed by LTL formulae over particular
Helenapropositions: A state label proposition is of the form rt[n]@label. It is
satisfied if there exists a role instance n of type rt whose next performed action
is the state label label. An attribute proposition must be boolean and is built
from arithmetic and relational operators, data constants, and propositions of
the form rt [n]:attr (or ct [n]:attr). An attribute proposition rt [n]:attr is satisfied
if there exists a role instance n of type rt such that the value of its attribute
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attr evaluates to true (and analogously for component attributes). LTL for-
mulae and their satisfaction are inductively defined from Helena propositions,
propositional operators ¬ and ∧ and LTL operators X,�,♦,U and W as usual.

For the p2p example, we want to express that the requester will always receive
the requested file if the file is available in the network. We assume a network of
three peers and formulate the following achieve goal in LTL which refers to the
values of the attribute hasFile of component type Peer and role type Requester:

(Peer[1]:hasF ile ∨ Peer[2]:hasF ile ∨ Peer[3]:hasF ile) ⇒ ♦Requester[1]:hasF ile).

3 Translation from Helena to Promela

To verify Helena specifications for their intended goals, we rely on the model-
checker Spin [7]. In [6], we discussed that the translation of a simplified variant
of Helena to Promela preserves satisfaction of LTL\X, the fragment of LTL
that does not contain the next operator X. This translation abstracts from the
underlying component-based platform and considers only role types and their
interactions. In role behaviors, guarded choice and arbitrary process invocations
are not allowed and any notion of data is omitted. To cope with these features,
we propose to represent components and roles by two kinds of processes in
Promela. They differ in communication abilities and behavior since components
are only storage and computing resources while roles are active entities.

Communication Abilities: (1) Components only interact with roles, but not
with other components. Roles advise components to adopt other roles, request
references to already adopted roles from their owning components, or invoke
operations on them. Thus, each Promela process for a component relies on a
dedicated synchronous channel self , only used for communication between itself
and its adopted roles. The roles refer to the channel under the name owner.
(2) Roles interact by exchanging directed messages on input queues. Thus, each
Promela process for a role relies on a dedicated (possibly asynchronous) channel
self in addition to the aforementioned channel owner to model its input queue.
Since channels are global in Promela, but input queues are local in Helena,
special care has to be taken that this channel is only available to processes which
are allowed to communicate with the corresponding role in Helena.

Behavior: (1) The Promela process for a component implements a do-loop to
wait for requests from its roles on the self channel. Depending on the request,
it runs some internal computation and sends a reply. E.g., to adopt a role,
it creates a new channel and spawns a new process (representing the role) to
which it hands over its own self channel as the role’s owner channel and the
newly created channel as the role’s self channel. Afterwards, it sends the role’s
self channel to the role requesting the adoption such that the two roles can
communicate via this channel. (2) The Helena role behaviors must be reflected
by the corresponding Promela process. In [6], we proposed to translate action
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prefix to sequential composition, nondeterministic choice to the if -construct, and
recursive behavior invocation to a goto to the beginning of the role behavior.
Sending and receiving messages was mapped to message exchange on the self
channel of roles and role creation to process creation with the run-command. To
extend this to full Helena, guarded choice is translated to the if -construct with
the guard as first statement. Arbitrary process invocation is realized by jumping
to labels marking the beginning of processes. On the level of actions, we extend
message exchange by data relying on user-defined data types in Promela. To
cope with the component level of Helena, a new role is created by issuing an
appropriate request on the owning component and spawning the new role process
from there. The introduction of components also allows us to implement role
retrieval and operation calls by corresponding requests from role to component.

LTL\X Preservation: Similarly to the simplified translation in [6], all Helena
constructs are directly translated to Promela while introducing some additional
silent steps like gotos. These do not hamper stutter trace equivalence and thus
satisfaction of LTL\X is preserved, though not formally shown here.

4 Automation of the Translation

To automate the translation, a code generator, taking a HelenaText [8] ensem-
ble specification as input, was implemented on top of the Xtext workbench of
Eclipse relying on Xtend as a template language.

Component Types: For each component type, the excerpt of the Xtend tem-
plate in Fig. 3 generates a new process type in Promela. Most importantly, this
process type implements a do-loop (line 4–10) where it can repeatedly receive
requests from its adopted roles via its self channel. Depending on the type of the
received request, i.e., req.optype, it either executes an operation (line 7), adopts
a new role (line 9), or retrieves an already existing one (line 10).

Fig. 3. Excerpt of the Xtend template for the translation of component types

Role Types: For each role type, the Xtend template in Fig. 4 generates a new
process type in Promela. Two parameters for the owner and self channels are
declared (line 2) and the role behavior is translated (line 3), e.g., action prefix
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is represented by sequential composition (line 4–6) and guarded choice by an if -
construct (line 7–14). Furthermore, the generation of the reception of messages
and create actions is shown in the right part of Fig. 4 since they represent two
different types of communication: An incoming message is represented by a user-
defined data type Msg (line 2), to cope with data parameters, and is received
on the self channel (line 3). The role checks whether the received message was
actually expected (line 4) and unpacks its parameters (line 5–7). For a create
action, the component crt.comp is asked to adopt a role of type crt.roleInst.type

(line 12). The component is responsible for creating the role (cf. Fig. 3) and sends
back the self channel of the newly created role (line 13). The implementation
of the generator and the HelenaText specification of the p2p example as well
as its generated Promela translation can be found in [10].

Fig. 4. Excerpt of the Xtend template for the translation of role types

5 Conclusion

We presented how to verify Helena specifications for goals specified by LTL for-
mulae with the model-checker Spin. We defined a translation of Helena specifi-
cations and its two-layered architecture into Promela which was implemented
on top of Xtext. In first experiments with larger case studies, the application
of Spin scales well with the size of the Helena model since the state space only
grows by a constant factor compared to Helena. For future work, we especially
want to add support for relating the Spin output back to Helena.

Our approach is in-line with the goal-oriented requirements approach KAOS
[11]. However, KAOS specifications are translated to the process algebra FSP
which cannot represent directed communication and dynamic process creation.
Furthermore, techniques for verifying ensemble-based systems have been pro-
posed. In [4], ensembles are described by simplified SCEL programs and trans-
lated to Promela, but the translation is neither proved correct nor automated
and cannot cope with dynamic creation of components. DFINDER [2] imple-
ments efficient strategies exploiting compositional verification of invariants to
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prove safety properties for BIP ensembles, but again does not deal with dynamic
creation of components. DEECo ensembles [1] are implemented with the Java
framework jDEECo and verified with Java Pathfinder [2]. Thus, they do not need
any translation. However, since DEECo relies on knowledge exchange rather than
message passing, they do not verify any communication behaviors.

References

1. Bures, T., Gerostathopoulos, I., Hnetynka, P., Keznikl, J., Kit, M.: DEECO: an
ensemble-based component system. In: CBSE 2013, pp. 81–90. ACM (2013)

2. Combaz, J., Bensalem, S., Kofron, J.: Correctness of service components and
service component ensembles. In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P.
(eds.) Software Engineering for Collective Autonomic Systems. LNCS, vol. 8998.
Springer, Switzerland (2015)

3. De Nicola, R., et al.: The SCEL language: design, implementation, verification. In:
Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Collective Autonomic Systems.
LNCS, vol. 8998, pp. 3–71. Springer International Publishing, Switzerland (2015)

4. De Nicola, R., Lluch Lafuente, A., Loreti, M., Morichetta, A., Pugliese, R., Senni,
V., Tiezzi, F.: Programming and Verifying Component Ensembles. In: Bensalem,
S., Lakhneck, Y., Legay, A. (eds.) From Programs to Systems. LNCS, vol. 8415,
pp. 69–83. Springer, Heidelberg (2014)

5. Hennicker, R., Klarl, A.: Foundations for Ensemble Modeling – The Helena App-
roach. In: Iida, S., Meseguer, J., Ogata, K. (eds.) Specification, Algebra, and Soft-
ware. LNCS, vol. 8373, pp. 359–381. Springer, Heidelberg (2014)

6. Hennicker, R., Klarl, A., Wirsing, M.: Model-checking helena specifications with
spin. In: LRC 2015, LNCS, Springer (2015, to appear). http://goo.gl/a1dya2

7. Holzmann, G.: The Spin Model Checker. Addison-Wesley, Boston (2003)
8. Klarl, A., Cichella, L., Hennicker, R.: From Helena Ensemble Specifications to

Executable Code. In: Lanese, I., Madelaine, E. (eds.) FACS 2014. LNCS, vol. 8997,
pp. 183–190. Springer, Heidelberg (2015)

9. Klarl, A., Hennicker, R.: Design and implementation of dynamically evolving
ensembles with the helena framework. In: ASWEC 2014, pp. 15–24. IEEE (2014)

10. Klarl, A., Hennicker, R.: The Helena Framework (2015). http://goo.gl/a1dya2
11. van Lamsweerde, A.: Requirements Engineering: From System Goals to UML Mod-

els to Software Specifications. Wiley, USA (2009)

http://goo.gl/a1dya2
http://goo.gl/a1dya2


Büchi Automata and Hashing



Fast, Dynamically-Sized Concurrent Hash Table
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Abstract. We present a new design and a C++ implementation of a
high-performance, cache-efficient hash table suitable for use in implemen-
tation of parallel programs in shared memory. Among the main design
criteria were the ability to efficiently use variable-length keys, dynamic
table resizing to accommodate data sets of unpredictable size and fully
concurrent read-write access.

We show that the design is correct with respect to data races, both
through a high-level argument, as well as by using a model checker to
prove crucial safety properties of the actual implementation. Finally, we
provide a number of benchmarks showing the performance characteristics
of the C++ implementation, in comparison with both sequential-access
and concurrent-access designs.

1 Introduction

Many practical algorithms make use of hash tables as a fast, compact data struc-
ture with expected O(1) lookup and insertion. Moreover, in many applications,
it is desirable that multiple threads can access the data structure at once, ide-
ally without causing execution delays due to synchronisation or locking. One
such application of hash tables is parallel model checking, where the hash table
is a central structure, and its performance is crucial for a successful, scalable
implementation of the model checking algorithm. Moreover, in this context, it
is also imperative that the hash table is compact (has low memory overhead),
because the model checker is often primarily constrained by available memory:
therefore, a more compact hash table can directly translate into the ability to
model-check larger problem instances. Another desirable property is an ability
to dynamically resize (grow) the hash table, in accordance with changing needs
of the model checking algorithm as it explores the state space. Finally, it is often
the case that the items (state vectors) stored in the hash table by the model
checker have a dynamic size, for which it is difficult to predict an upper bound.
Hence, we need to be able to efficiently store variable-length keys in the hash
table.

While the outlined use-case from parallel model checking was our original
motivation, a data structure with the same or similar properties is useful in
many other applications.

This work has been partially supported by the Czech Science Foundation grant No.
15-08772S.
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1.1 Related Work

As we demonstrate in Sect. 4, our design is highly competitive, improving on the
state of the art in parallel data structures, as represented by the venerable Intel
Threading Building Blocks library [1]. The design presented in this paper offers
faster sequential access, better multi-threaded scalability and reduced memory
overhead. Most of these attributes can be derived from the fact that our design
is based on an open hashing scheme, in contrast to almost all existing concurrent
hash tables. Often, concurrent hash table designs take advantage of the simplicity
of concurrent access to linked lists (e.g. [2], but also the designs in Intel TBB [1]),
leading to a closed hashing scheme. Alternatively, a concurrent, open-hashing
table based on our earlier (sequential) design has been described in [3], but while
providing very good performance and scalability, it was limited to statically pre-
allocated hash tables (i.e. with a fixed number of slots). Our design, however,
does not explicitly deal with key removal: a standard ‘tombstone’ approach can
be used, although it may also be possible to leverage the scheme proposed in [4],
where authors focus on deletion in a concurrent (but fixed size) hash table with
open addressing.

A more closely related design (without an implementation, however) was
presented in [5]. In this paper, the authors present a concurrent hash table
based on open hashing and arrive at solutions that are in many cases similar to
ours. Especially the approach to ensuring that resize operations do not interfere
with running inserts is very similar – in this particular case, we believe that the
extensive and detailed correctness proofs done in [5] would transfer to our design
with only minor adjustments. Our present paper, however, places more emphasis
on the implementation and its practical consequences. By comparing notes with
existing work on the subject, we can conclude that the design approach is sound
in principle; while we did basic correctness analysis on the design, our main
concern was correctness of the implementation. Unlike existing work, we make
use of software model checking to ascertain that the implementation (and by
extension, the design) is indeed correct.

2 Design

There are many considerations that influence the design of a data structure.
Our first priorities were performance and scalability of concurrent access; in
both cases, it is important to consider the hardware which will execute the code.

First, we need to realize that modern multi-core and SMP systems exhibit a
deep memory hierarchy, with many levels of cache. Some of this cache is shared
by multiple cores, some is private to a particular core. This translates into a
complex memory layout. To further complicate matters, multi-CPU computers
nowadays often use a non-uniform access architecture even for the main memory:
different parts of RAM have different latency towards different cores. Most of
this complexity is implicitly hidden by the architecture, but performance-wise,
this abstraction is necessarily leaky.
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Moreover, the gap between the first and the last rungs of the hierarchy is huge:
this means that compact data structures often vastly outperform asymptotically
equivalent, but sparse structures. Due to cache organisation constraints, memory
cells that live close to each other are usually fetched and flushed together, as part
of a single “cache line”. They are also synchronised together between core-private
caches. A modern data structure should therefore strive to reduce to an absolute
minimum the number of cache lines it needs to access in order to perform a
particular operation. On the other hand, when concurrency is involved, there
is a strong preference to have threads use non-overlapping sets of cache-line-
sized chunks of memory, especially in hot code paths. Cache-line awareness has
also been used in design of other data structures; in the context of hash tables,
papers [3,6] discuss this topic in more detail.

2.1 Hash Functions

A hash table is represented as a vector of values in memory, associated with a
function that maps keys to indices within this vector. The function is known as a
hash function and should possess a number of specific properties: the distribution
of key images should be uniform across the entire length of the vector, a small
change in the key should produce a large change in the value, the function should
be fast to compute and such a function should be available for an arbitrary index
range.

In practice, to implement the last criterion, hash functions for hash tables
are usually implemented over the range of all 32 (64, 128 bit) integers in such a
way that the remainder of division by an arbitrary integer n (or at least a power
of two) will yield a uniform distribution in {1, ..., n}. The current practice is to
use a purpose-built lookup function, either providing 64 (lookup3 [7] is a good
candidate) or even 128 bits of output (the currently best available are spooky
hash [8] and the city hash [9]).

2.2 Open vs Closed Hashing

Even with the best lookup function, hash collisions, and more importantly, index
collisions will happen in a dynamic hash table. Hence, an important part of the
hash table design is dealing with such collisions, and there are two main options:
open and closed hashing (also known as open and closed addressing). With a
closed hashing scheme, each position in the hash table is a “bucket” – capable of
holding multiple values at the same time. This is implemented using an auxiliary
data structure, usually a linked list. While closed hashing is easier to implement
and to predict, it usually gives poor performance. An alternative is to make
each position in the table only hold at most one value at a time, using alternate
positions for items that cause a collision. Instead of using a single fixed position
for each value, the hash table has a list of candidate indices. The most common
such series are h + ai + b where i is the sequence number of the index, h is the
index assigned by a lookup function and a, b are arbitrary constants (a linear
probing scheme). Another common choice is h + ai2 + bi + c, obviously known
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as quadratic probing. An important property of a probing scheme is that it does
not (significantly) disrupt the uniform distribution of values across indices. In
case of a quadratic function and a hash table with a size that is a power of 2, a
simple set of constraints can be shown to give a good distribution [10].

2.3 Cache Performance

There are many considerations when choosing a good hash table implementation
for a particular application. In model checking, as well as many other use cases,
the hash table often becomes very big, and as such, it usually cannot fit in
the CPU cache entirely. For that reason, it is very important that all hash
table operations have as much spatial and temporal locality as possible, to make
best possible use of the CPU cache. The very nature of a hash table means
that insert or lookup operations on different keys will access entirely different
memory regions: this is unavoidable. However, with a naive implementation, even
a single lookup or insert can cause many cache misses: a closed-hashing scheme,
for example, will need to traverse a linked list during collision resolution, which
is a notoriously cache-inefficient operation. Even if we would use a different
auxiliary data structure, we would still face at least one level of indirection
(pointer dereference), causing an extra cache miss. With open hashing and a
linear probing function, we can expect a high degree of spatial locality in the
collision resolution process: all candidate positions can be fetched in a burst read
from a continuous block of memory. In fact, this is a cache-optimal solution, as
it only incurs the one unavoidable initial cache miss per lookup.

However, linear probing has other problems: the property that makes it cache
efficient also means that it has a strong tendency to create uneven key distrib-
ution across the hash table. The clumping of values makes the collision chains
long, and even though it is cache-efficient, the linear complexity of walking the
chain will dominate after reaching a certain chain length. In contrast, a quadratic
scheme will scatter the collision chain across the table (consequently, the collision
chains will be shorter but cause more cache misses during traversal than with a
linear scheme). Hence, as a compromise, a hybrid probing function can be used:
a quadratic function with a linear tail after each “jump”: h+ q(�i / b�)+ i mod b
where q is a quadratic function and b is a small multiple of cache line size. This
has the advantage of scattering keys across the table, but in small clumps that
load together into cache, without seriously compromising uniformity.

2.4 Variable-Length Keys

If there is substantial variation in key size, it is inefficient to store the entire key
inline in the hash table, and impossible if no upper bound on key size is known.
This means that we need to store pointers in the table and the key data becomes
out-of-line. Unfortunately, this has disastrous effects on cache performance: each
key comparison now requires an extra memory fetch, since in order to find a key
in the table, we need to compare it to each element in the collision chain.
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To negate this effect, we can store the actual hash value of each key inline
in the table: this way, we can first compare the hash values, without incurring a
memory fetch. In the vast majority of cases, a 64-bit hash will only test as equal
if the actual keys are equal – we will only pay the price of an extra memory fetch
in the cases where the keys are actually equal, which is at most once per lookup,
and in only a tiny fraction of cases where the keys are distinct. The main reason
this optimisation works is that most collisions in the hash table are not due to
identical hash values for distinct keys (as stated, those are very rare), but due
to different hashes leading to the same index in the hash table, which is much
smaller than 264 elements.

Even though efficient, this approach doubles the memory overhead of the
hash table, storing a pointer and an equal-sized hash value for each key. This is
especially problematic on 64-bit machines, making the overhead 16 bytes per slot
when using a 64-bit hash value. Moreover, a 64-bit hash value is needlessly big,
a much smaller, 32 or even 16 bit value would provide nearly the same value in
terms of avoided cache misses, as long as the part of the hash saved in the cell is
distinct from the part used for computation of a cell index. On most platforms,
though, this will require arranging the hash table in terms of cache lines, as 96
or 80 bit slots will cause serious mis-alignment issues. With the knowledge of
a cache-line size, we can organise the hash table into “super-slots” where each
super-slot fits in a cache line, and packs the pointers first and the corresponding
hash values next, in the tail.

On 64-bit machines, though, there is another option, which avoids most of
the layout complexity at the table level. Contemporary CPUs only actually use
48 bits out of the 64 bit pointer for addressing, the rest is unused. While it is
strongly discouraged to use these 16 extra bits for storing data (and CPU vendors
implement schemes to make it hard), this discouragement is more relevant at the
OS level. At the expense of forward portability of the hash table implementation,
we could use these 16 bits to store the hash value, reconstructing the original
pointer before dereferencing it. Finally, it is also possible to use an efficient
pointer indirection scheme, which explicitly uses 48-bit addressing in a portable,
forward-compatible fashion [11].

2.5 Capacity and Rehashing

As we have already said, a hash table is normally implemented as a vector,
whether it contains single-value slots or multi-value buckets. As such, this vector
has a certain size, and as keys are added into the table, it becomes increasingly
full. The ratio of slots taken to slots available is known as a load factor, and most
hash table implementations perform reasonably well until load of approximately
0.75 is reached (although factors as high as 0.9 can be efficient [12]). At a certain
point, though, each hash table will suffer from overlong collision chains. This
problem is more pronounced with open hashing schemes: in the extreme, if there
is only one free slot left, an open hashing scheme may need to iterate through
the entire vector before finding it. There are three options on how to avoid
this problem: the most efficient one is to approximately know the number of
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keys that we’ll store beforehand. However, this is often impossible, so some
implementations (especially in case of model checkers) resolve to allocating all
available memory for the hash table. However, this does not work for the case
of dynamically sized keys stored outside of the table proper, or more generally,
whenever there is no good way to split memory allocation between the hash
table and other components. Furthermore, such static resource allocation can
be rather inappropriate on machines used by multiple users in a non-exclusive
manner.

Therefore, in most cases, we need to be able to resize the table. This is usually
done in the manner of a traditional dynamic array, only the values are not copied
but rehashed into the newly allocated vector, which is usually twice the size of
the current one.

Rehashing the entire table is at best a linear operation, but amortises over
insertions down to a constant per insert. In real-time applications, gradual
rehashing schemes are used to avoid the latency of full rehashing. However,
in most application, latency is of no concern and monolithic rehashing is in
fact more efficient. As a small bonus, rehashing the table will break up existing
collision chains and give the table an optimal uniform layout.

2.6 Concurrent Access

As we have discussed, open hashing is more cache efficient, and compared to a
simple closed hashing scheme is also more space efficient. However, closed hash-
ing has an important advantage: linked lists are a data structure easily adapted
for lock-free concurrent access. Hence, most concurrent hash table implementa-
tions are based on closed hashing. The situation with open hashing is consid-
erably more complex. It is relatively straightforward to implement a fixed-size
hash table (i.e. for the scenario where we know the size of the working set in
advance). Since this is not the case in DIVINE [13], we have implemented a
(nearly) lock-free, resizable open-hashed table, to retain the advantages of open
hashing, while at the same time gaining the ability to share the closed set of the
graph exploration algorithm among multiple threads.

Let us first discuss how a fixed-size open-hashed table can accommodate
concurrent access. The primary data race in a non-concurrent table is between
multiple inserts: it could happen that two insert operations pick the same free
slot to use, and both could write their key into that slot – this way, the insert
that wrote later went OK; however, the first insert apparently succeeds but
the key is actually lost. To prevent this, write operations on each slot need to
be serialised. The simple way to achieve this is with a lock: a spinlock over a
single bit is simple and efficient on modern hardware, and since each hash table
slot has its own lock, contention will be minimal. Using a lock is necessary in
cases where the key cannot be written atomically, i.e. it is too long. If the key
fits within a single atomic machine word, a locking bit is not required, and an
atomic compare-and-swap can be used to implement writing a slot. When a lock
is used, the lock is acquired first, then the value to be inserted and the locked slot
are compared and possibly written. When using a compare-and-swap, in case it
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fails, we need to compare the keys – concurrent inserts of the same key could
have occurred, and the same key must not be inserted at two different indices.

Concurrent lookups are by definition safe, however we need to investigate
lookups concurrent with an insert: it is permissible that a lookup of an item
that is being inserted at the same time fails, since there is no happens-before
relationship between the two (this is in fact the definition of concurrency). It
can be easily seen that an insert of a different key cannot disrupt a lookup of
a key that is already present: all inserts happen at the end of a collision chain,
never in the middle where they could affect a concurrent lookup.

In cases where variable-length keys are used based on the scheme suggested
in Sect. 2.4, lock-free access is only possible for variants where the pointer and
the hash (if present) are located next to each other in memory, i.e. a hash-free
(pointers only) table, or the 64 bit + 64 bit variant (only on machines with
atomic 128-bit compare-and-swap), or the variant with the pointer and the hash
combined into a single 64 bit value.

2.7 Concurrency vs Resizing

The scheme outlined in the last section does not take the need for resizing
and subsequent rehashing into account. The first problem of a concurrent resize
operation is that we cannot suspend running inserts, as this would require a
global lock. However, insert as a whole is not, and cannot be made, an atomic
operation: only the individual probes are atomic. As a consequence, if we were
to re-allocate the table at a different address and de-allocate the existing one,
a concurrent insert could be still using the already freed memory. Since we
cannot interrupt or cancel an insert running in a different thread, nor can we
predict when will it finish, the best course of action is to defer the de-allocation.
Unfortunately, even if we avoid writing into invalid memory, the same set of
circumstances can cause an insert to be lost, since at the point it is written,
the copying (rehashing) of the table might have progressed beyond its slot (and
since the probing order is not, and cannot be made, monotonic, this cannot be
prevented).

In order to clean up unused memory as soon as possible, and to solve the
“lost insert” problem, we can, after each insert, verify that the currently active
table is the same as the table that was active when the insert started. When
they are the same, no extra work needs to be done, and the insert is successful:
this case is the same as with a fixed-size table. If, however, the active table has
changed, the insert has to be restarted with the new table. Additionally, we can
use the opportunity to also clean up the old table if it is no longer used – if there
are no further threads using the table. To reliably detect this condition, we need
to associate an atomic reference counter with each table generation. The counter
reflects the number of threads which consider a given generation to be the latest,
and is only incremented and decremented at most once per thread.

Finally, if an insert has been restarted and succeeds, but the reference count
on the old table pointer is not yet zero, the thread doing the insert can optionally
help rehashing the table. This way, the resize operation can be executed safely in
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parallel, greatly reducing the time required: since an individual insert is already
thread-safe, it is sufficient to slice the old table into sections and let each thread
rehash keys from a non-overlapping subset of slices. The assignment of slices to
threads can be implemented using a standard concurrent work queue.

3 Implementation

We have implemented the design laid out in the previous section1, in order
to evaluate and verify it, and also for use in the DIVINE model checker. We
provide pseudocode for the most important parts of the implementation (see
Algorithm 1), but for full details we refer the reader to the C++ implementation,
which is unfortunately too extensive to be included here. The basic design of a
sequential open-hashing hash table is very straightforward, including rehashing:
the table is entirely stored in a sequential area of memory, consisting of fixed-
size cells. For long or variable-length keys, the cells contain a pointer to the
data itself; small fixed-size keys can be stored directly. Rehashing is realised by
allocating a new, empty hash table of a larger size (usually a small multiple of
the current size) and invoking the ‘insert’ procedure for each element present in
the current table. When all elements have been rehashed this way, the old table
can be de-allocated.

Our implementation follows the same scheme, but with a few provisions to
deal with data races arising in concurrent use. These have been outlined in
Sects. 2.6 and 2.7 – the implementation follows the design closely. We use either
locked cells with 64 bits of hash, or atomic 64 bit cells which store a 48 bit pointer
and 16 bits of a hash (a different part of a 128 bit hash value than used for index
calculation is used in this case). Alternative cell designs can be provided using
C++ templates. When resizing takes place, any thread which attempts to an
insertion or a lookup will help with rehashing; chunks of the hash table to be
rehashed are assigned dynamically to participating threads. To track the load
of the hash table, we use a thread-local counter which is synchronized with a
shared atomic counter every 1024 insertions.

To better illustrate the principles behind those provisions, we provide a
schematic of the table layout in memory (Fig. 1), as well as an example course
of a concurrent insert operation in Figs. 2 and 3 and a scheme of the concurrent
resize algorithm in Figs. 4, 5 and 6.

3.1 Verification

In order to ensure that the hash table works as expected, we have used DIVINE
to check some of its basic properties. The properties are expressed as small C++
programs – basically what a programmer would normally call a unit test. They
are usually parametric, with the parameters governing the size and parameters
of the data structure as well as the way it is used.
1 The C++ source code for the hash table implementation can be found online:

https://divine.fi.muni.cz/trac/browser/bricks/brick-hashset.h#L481.

https://divine.fi.muni.cz/trac/browser/bricks/brick-hashset.h#L481
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1 Function ReleaseMemory(index) is
2 if refCount[ index ] - 1 = 0 then
3 deallocate row at index;

4 Function Rehash() is
5 while segment is available do
6 for cell ∈ segment do
7 lock the cell;
8 if cell is not empty then
9 mark cell as invalid;

10 insert cell to the new row;

11 if was it the last segment then
12 ReleaseMemory(currentRow - 1);
13 unlock the growing lock;

14 Function Grow(newIndex) is
15 lock the growing lock;
16 if current row has changed then
17 unlock;
18 return false;

19 row[ newIndex ] ← array[ NextSize(oldSize) ];
20 refCount[ newIndex ] ← 1;
21 allow rehashing;
22 Rehash();
23 return true;

24 Function InsertCell(value, hash, index) is
25 for attempt ← 0 . . .maxAttempts do
26 cell ← row[ index ][ Index(hash, attempt) ];
27 if cell is empty then
28 if store value and hash into cell then
29 return (Success, cell);
30 if index �= currentRow then
31 return (Growing)

32 if cell is (value, hash) then
33 return (Found, cell);
34 if index �= currentRow then
35 return (Growing)

36 return (NoSpace)

37 Function Insert(value, hash, index) is
38 while true do
39 res ← InsertCell(value, hash, index);
40 switch res.first do
41 case Success
42 return (res.second, true);
43 case Found
44 return (res.second, false);
45 case NoSpace
46 if Grow(index + 1) then
47 index ← index + 1;
48 break ;

49 case Growing
50 Rehash();
51 UpdateIndex();

Algorithm 1. Pseudocode for key procedures.

Clearly, the parameter space for various properties is infinite, and admit-
tedly, even for fairly small values the verification problem becomes very large.
Nevertheless, most bugs happen in boundary conditions, and these are identical
for all parameter instantiations upwards of some structure-specific minimum.

The second limitation is that we can only currently verify the code under
the assumption of sequential consistency. At first sight, this may seem like a
severe limitation – on a closer look, though, it turns out that the vast majority
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0
1
2
2CR

#5

#4

#3

#2

#1

hash valueF

The hash table consists of two parts – global (shared) data and thread-local data.
The global data are shown inside the big rectangle. All rows of the table are accessible
through a row index, which is shown in the left part of the global data rectangle. There
are two columns for each row – one holds a reference counter while the other stores
a pointer to the row itself. The pointer CR (current row) points to a globally valid
row of the hash table (this reference is not included in the reference count). Every row
consists of cells, where every cell has three fields: flag, hash, and value. The flag may
have four possible values: empty (e), writing (w), valid (v), and invalid (i).
The thread-local data are represented by small rectangles labeled #1 – #5, each be-
longing to one thread. Every thread needs to remember which row it is currently using.

Fig. 1. Overall layout of the hash table.

1. Both threads #1 and #2 are access-
ing the second cell; thread #3 is accessing
fourth cell:

0 0e 0 0e 0 0e 0 0e

#1

insert( 1 )
hash = 2

#2

insert( 5 )
hash = 2

#3

insert( 7 )
hash = 4

2. Thread #1 has atomically modified the
flag of the cell from ‘empty’ to ‘writing’
and stored a hash of the value so that
thread #2 cannot modify the content of
the cell and is forced to wait until the
pending writing operation finishes:

0 0e 2 0w 0 0e 0 0e

#1

insert( 1 )
hash = 2

#2

insert( 5 )
hash = 2

#3

insert( 7 )
hash = 4

Fig. 2. Insertion algorithm, part 1.

of relevant memory accesses is already tagged as sequentially consistent using
appropriate std::atomic interfaces (this translates to appropriate architecture-
specific memory access instructions that guarantee sequential consistency on
the value itself, as well as working as a memory fence for other nearby memory
accesses). In this light, the limitation is not quite fatal, although of course it
would be preferable to obtain verification results under a relaxed memory model.
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3. Thread #1 stored the value, thread #2
is still waiting. Thread #3 has atomically
modified the flag of the cell to ‘writing’:

0 0e 2 1w 0 0e 4 0w

#1

insert( 1 )
hash = 2

#2

insert( 5 )
hash = 2

#3

insert( 7 )
hash = 4

4. Thread #1 has changed the flag of the
cell to ‘valid’ and finished the insert op-
eration. Thread #2 found that the val-
ues are different and by using quadratic
lookup, it turned to the fourth cell. Mean-
while, thread #3 has stored the value:

0 0e 2 1v 0 0e 4 7w

#2

insert( 5 )
hash = 2

#3

insert( 7 )
hash = 4

5. Thread #3 has finished the insert op-
eration. Thread #2 is comparing hashes:

0 0e 2 1v 0 0e 4 7v

#2

insert( 5 )
hash = 2

6. Thread #2 found an empty cell,
changed the flag and stored the hash:

2 0w 2 1v 0 0e 4 7v

#2

insert( 5 )
hash = 2

7. Thread #2 has finished the insert op-
eration:

2 5v 2 1v 0 0e 4 7v

Fig. 3. Insertion algorithm, part 2.

1. The initial situation: all five threads are
pointing to the second row which is also
the current row. Thread #5 starts an in-
sert operation:

0
5

CR

#5

#4

#3

#2

#1

11 7 18 910

insert( 2 )
hash = 3

2. As the current row is full, thread #5
signalized that the table needs to be
grown, allocated a new row, and changed
the value of CR to this new row:

0
5

CR

#5

#4

#3

#2

#1

insert( 2 )
hash = 3

11 7 18 910

Fig. 4. Resizing the hash table, part 1.

For verification of the concurrent hashset implementation, we have opted for a
property parametrised with three numbers, T – the number of threads accessing
the shared data structure, N – the number of items each of those threads inserts
into the data structure, and O – the number of overlapping items.
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3. Thread #5 has split the original row
into segments and started rehashing the
first available segment. Thread #3 was
about to start an insert operation, but as
the table is growing, it is impossible to in-
sert new items; thread #3 hence started
rehashing the next available segment:

0
5

CR

#4

#2

#1

i 11 i 18 9

#5insert( 2 )
hash = 3

#3insert( 13 )
hash = 4

#5 #3

10 7

4. Thread #2 was about to start an in-
sert operation, but it also started rehash-
ing the next (and last, in this case) avail-
able segment. Meanwhile, thread #3 has
finished rehashing and is waiting for the
table to be unlocked:

0
5

CR

#4

#2

#1

i 11 i i 9

#5insert( 2 )
hash = 3

#3insert( 13 )
hash = 4

#5

insert( 6 )
hash = 2

#2

10 7 18

5. After the last thread finished rehash-
ing, thread #5 unlocked the table and up-
dated its current row index. From this mo-
ment on, the table is ready for insert and
find operations (please note the reference
counts for table rows: only one thread is
now using the current row, so the previous
row cannot be deallocated yet):

0
4

CR

#4

#2

#1

i i i i i

#5insert( 2 )
hash = 3

#3insert( 13 )
hash = 4

insert( 6 )
hash = 2

1 10 7 1811 9

6. Thread #5 has finished its insert oper-
ation. The detail of the cell shows how an
invalid state is encoded:

0
4

CR

#4

#2

#1

i i i i

#5

#3insert( 13 )
hash = 4

insert( 6 )
hash = 2

1

0 0i

i

10 7 1811 92

7. Both thread #2 and #3 have updated
their current row indices, as well as the
reference counters of the corresponding
rows:

0
2

CR

#4

#2

#1

i i i i

#5

#3insert( 13 )
hash = 4

insert( 6 )
hash = 7

3

i

10 7 1811 92

8. Both thread #2 and #3 have finished
their insert operations. Threads #1 and
#4 are about to perform a find operation,
while their thread-local row pointer is still
pointing at the old row:

0
2

CR

#4

#2

#1

i i i i

#5

#3

3

i

find( 5 )

find( 13 )

10 7 1811 92 13 6

Fig. 5. Resizing the hash table, part 2.
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9. Thread #4 has updated its current row
index and decided that the value 5 is not
present in the table:

0
1

CR

#4

#2

#1

i i i i

#5

#3

4

i

find( 13 )

10 7 1811 92 13 6

10. Finally, thread #1 has updated its
current row index and deallocated the old
row. It also found the value 13 present in
the table:

0
0

CR

#4

#2

#1

#5

#3

5 10 7 1811 92 13 6

Fig. 6. Resizing the hash table, part 3.

We verified our C++ implementation directly, the only differences from the
version of the hash table as used in DIVINE2 is that when resizing new table size
is 2 times old table size, whereas in DIVINE hash table would grow faster for
small sizes and that initial table size is 2 slots to make table sufficiently compact
for verification and allow verification of a case with 2 resizes.

The C++ program we used in our verification3 is relatively straightforward;
first, we would allocate hash table and spawn T − 1 worker threads, each set
up to insert a specific range of items (possibly overlapping with the ranges of
other threads). The last worker is then executed in the main thread to avoid
unnecessary thread interleaving. After it finishes, the remaining worker threads
are joined and the final state of the hash table is checked: we iterate over the
underlying array and check if all the inserted values are present exactly once.

Given the C++ program described above, we used DIVINE for its verification.
While DIVINE cannot directly read C++ programs, it can read and verify LLVM
bitcode and uses a standard C++ compiler (clang) for translating C++ into
LLVM. Besides the checks (assertions) in the driver program itself, the hash
table implementation contains a few assertions of its own, which were checked
as well.

In this particular scenario, we can observe the huge impact of the exponential
state space increase. For T = 3, N = 1, verification of the above test-case took
multiple days using 32 cores, generated over 716 million states and used about
80GiB of RAM. On the other hand, verification for T = 2, N = 1 finishes in less
than 3 min and generates fewer than 100 000 states. Verification for T = 2, N = 3
2 Doubts could arise when using a model checker which uses the hash table to be

verified internally. An analysis of failure modes of the hash table along with the
properties of the model checking algorithm indicate that this could not cause the
model checker to miss a valid counterexample. Nonetheless, the entire issue is easy
to side-step by using a much simpler sequential hash table and just waiting longer
for the result.

3 The code can be found online at https://divine.fi.muni.cz/trac/browser/examples/
llvm/hashset.cpp.

https://divine.fi.muni.cz/trac/browser/examples/llvm/hashset.cpp
https://divine.fi.muni.cz/trac/browser/examples/llvm/hashset.cpp
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finishes in 8 h on 32 cores and uses 14GiB of RAM, while generates roughly 120
million states.

This means that out of the desirable properties, we were able to verify that a
cascade of two growths (possibly interleaved) is well-behaved when two threads
access the table – using T = 2, N = 3 – in this scenario, a single thread can
trigger a cascade of 2 growths, while other threads are inserting items. We were
also able to verify that a single growth is correct (it does not lose items) in pres-
ence of 3 threads (test-case T = 3, N = 1), and that insertion of overlapping sets
of elements from 2 threads is correct (does not lose items or cause duplicated
elements – a test-case with T = 2, N = 1, O = 1. A scenario with 2 cascaded
growths and 3 threads, however, seems to be out of our reach at this time. Nev-
ertheless, the verification effort has given us precious insight into the behaviour
of our concurrent hash table implementation.

While the hash table described in this paper was in a design and prototyping
phase, we have encountered a race condition in the (prototype) implementa-
tion. The fact that there is a race condition was discovered via testing, since
it happened relatively often. The problem was finding the root cause, since the
observable effect of the race condition happened later, and traditional debugging
tools do not offer adequate tools to re-trace the execution back in time.4 In the
end, we used DIVINE to obtain a counterexample trace, in which we were able
to identify the erroneous code.

4 Benchmarks

Earlier, we have laid out the guiding principles in implementing scalable data
structures for concurrent use. However, such considerations alone cannot guar-
antee good performance, or scalability. We need to be able to compare design
variants, as well as implementation trade-offs and their impact on performance.
To this end, we need a reliable way to measure performance.

The main problem with computer benchmarks is noise: while modern CPUs
possess high-precision timers which have no impact on runtime, modern operat-
ing systems are, without exceptions, multitasking. This multitasking is a major
source of measurement error. While in theory, it would be possible to create
an environment with negligible noise – either by constructing a special-purpose
operating system, or substantially constraining the running environment, this
would be a huge investment. Moreover, we can, at best, hope to reduce the
errors in our measurement, but we can hardly eliminate them entirely.

One way to counteract these problems is to choose a robust estimator, such as
median, instead of the more common mean. However, since we only possess finite
resources, we can only obtain limited samples – and even a robust estimator is
bound to fluctuate unless the sample is very large. Ideally, we would be able
to understand how good our estimate is. If our data was normally distributed
4 An extension to gdb to record execution exists, but we were unable to use it suc-

cessfully. Either the window in which time reversal was possible was too narrow, or
the memory and time requirements too high.
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(which we know is, sadly, not the case) we could simply compute the standard
deviation and base a confidence interval for our estimator on that. However,
since we need a computer for running the benchmarks anyway, we can turn to
bootstrapping: a distribution-independent, albeit numerically intensive method
for computing confidence intervals.

While bootstrapping gives us a good method to compute reliable confidence
intervals on population estimators, it does not help to make those confidence
intervals tighter. Given a sample with high variance, there are basically two ways
to obtain a tighter confidence interval: measure more data points, or eliminate
obvious outliers. While a bigger sample is always better, we are constrained by
resources: each data point comes at a cost. As such, we need to strike a balance.
In the measurements for this paper, we have removed outliers that fell more
than 3 times the interquartile range (the distance from the 25th to the 75th
percentile) of the sample from the mean, but only if the sample size was at least
50 measurements, and only if the confidence interval was otherwise more than
5% of the mean.

To assess performance of the final design with concurrent resizing, we have
created a number of synthetic benchmarks. As the baseline for benchmarking,
we used implementation of std::unordered_set provided by libc++ (labelled
“std” in results). Additionally, we have implemented a sequential open-hashed
table based on the same principles as the final design, but with no concurrency
provisions (tables “scs” and “sfs”) – this allowed us to measure the sequential
overhead of safeguarding concurrent access.

Since std::unordered_set is only suitable for sequential access, as a base-
line for measuring scalability, we have used a standard closed-hashing table
(labelled as “cus”, from concurrent_unsorted_set) and a similar design pri-
marily intended for storing key-value pairs, concurrent_hash_map (labelled
“chm”), both implementations provided in Intel Threading Building Blocks [1].
The final designs presented here are labelled “ccs” and “cfs”. The middle letter
indicates the size of the hash table cell c for “compact” and f for “fast”: the
“fast” variant uses a hash cell twice as wide as a pointer, storing a full-sized
(64b) hash inside the cell. The “compact” variant uses a truncated hash that
fits in the spare bits inside a 64-bit pointer. (The hash inside cells is only useful
in hash tables with out-of-line keys; for integer-keyed tables, they are simply
overhead).

As the common performance measure, we have chosen average time for a
single operation (an insert or a lookup). For benchmarking lookup at any given
load factor, we have used a constant table with no intervening inserts. Four types
of lookup benchmarks were done: miss (the key was never present in the table),
hit (the key was always present) and a mixture of both (12 hit chance, and 1

4
hit chance). For insertions, we have varied the amount of duplicate keys: none,
25 %, 50 % and 75 %.

All of the insertion benchmarks have been done in a variant with a pre-sized
table and with a small initial table that grew automatically as needed. Finally,
all of the benchmarks outlined so far have been repeated with multiple threads
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Fig. 7. Performance measurements with integer-sized keys. From top left, clockwise:
(1) comparison of sequential performance of various hashtable designs (2) insertion
with 50 % key duplicity rate, with 1 million items and a pre-sized hashtable with half
a million cells (3) insertion with no key repeats, 16M items (4) behaviour of the final
design (ccs) as a function of hash table size and a number of threads (no reserve, the
hashtable is resized dynamically). The implementations are labelled as follows: std =
std::unordered set, scs = sequential compact set, sfs = sequential fast set, ccs = con-
current compact set, cfs = concurrent fast set, cus = tbb::concurrent unordered set

and chm = tbb::concurrent hash map. Please consult the electronic version of this
paper or http://divine.fi.muni.cz/benchmarks for easier-to-read plots.

performing the benchmark using a single shared table, splitting workload equiv-
alent to the sequential benchmarks, distributed uniformly across all threads. All
the benchmarks have been done on multiple different computers, with a differ-
ent number of CPU cores and different CPU models, although we only report
results for a single computer – a 12-core (2 sockets with 6 cores each) Intel Xeon
machine.5 We have chosen 4 plots to include in this paper; they can be seen in
Fig. 7, along with descriptions.

5 The full data set will be eventually published online, but is too extensive to fit in a
paper. Please check http://divine.fi.muni.cz/benchmarks.

http://divine.fi.muni.cz/benchmarks
http://divine.fi.muni.cz/benchmarks
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5 Conclusions

We have described, implemented and verified a hash table suitable for both small
and large data sets, with fully concurrent lookup and insertion and with dynamic,
concurrent resizing. The benchmarks we have done show that both the design and
the implementation are highly competitive, and our experience with using the
hash table as presented here in the implementation of a parallel explicit-state
model checker confirms that it is well-suited for demanding applications. The
C++ source code of the implementation is available online6 under a permissive
BSD-style licence. The provided code is production-ready, although for use-cases
where item removal is required, it would need to be adapted using one of the
approaches described in existing literature.
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Abstract. In explicit model checking, systems are typically described in
an implicit and compact way. Some valid information about the system
can be easily derived directly from this description, for example that some
atomic propositions cannot be valid at the same time. The paper shows
several ways to apply this information to improve the Büchi automaton
built from an LTL specification. As a result, we get smaller automata
with shorter edge labels that are easier to understand and, more impor-
tantly, for which the explicit model checking process performs better.

1 Introduction

LTL model checking can be formulated as the problem of deciding whether
a given system has an erroneous behavior specified by an LTL formula ϕ. In
the automata-based approach to model checking, ϕ is translated into an equiv-
alent Büchi automaton Aϕ called property automaton. The original problem
then reduces to deciding whether there exists a behavior of the system accepted
by Aϕ. In explicit model checking, this is achieved by building a synchronous
product of the system and the property automaton, and checking whether the
product contains any reachable accepting cycle. This emptiness check can be
done by several algorithms including the well-known Nested Depth-First Search
(NDFS) [12] implemented in the model checker Spin [11]. The synchronous prod-
uct is often constructed on-the-fly, i.e., simultaneously with the emptiness check
and according to its needs. The product construction and the emptiness check
form typically the most expensive part of the whole model checking process as
the product to be explored is often very large. The actual difficulty of the check
depends not only on the number of states in the product, but also on the number
of transitions, the number and positions of accepting states, and other charac-
teristics of the product. As the property automaton Aϕ is a component of the
product, the difficulty partly depends on the size and other characteristics of Aϕ.

For several decades, developers of algorithms and tools to translate LTL
formulas into Büchi automata have aimed to produce small automata in short
time. More recently, there was also a shift into producing automata that are
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more deterministic, as Sebastiani and Tonetta [16] identified a relation between
the performance of the model checking and the determinism of the property
automata. As a result, current LTL to Büchi automata translators like Spot [6]
and LTL3BA [2] produce relatively small automata that are often deterministic.

One way to create property automata that further accelerate the model check-
ing process is to provide more information for the translation than just the LTL
formula. For example, we have recently shown that the position of accepting
states in the property automaton can be adjusted according to the expected
result of the model checking process: if we expect that the system has no erro-
neous behavior specified by ϕ, we can move the accepting states of Aϕ further
from its initial state to accelerate the model checking [4]. Analogously, relocation
of accepting states in the opposite direction can speed up the model checking
process if the system contains an error specified by ϕ.

In this paper, we try to improve the property automata using partial infor-
mation about the behaviors of the system. More precisely, we use information
about combinations of atomic propositions (and their negations) that cannot
occur in any state of the system. For example, x = 5 and x > 10 cannot hold at
once. Similarly, a process cannot be in two different locations at the same time.
Information about these incompatible propositions can often be easily obtained
from an implicit description of the system, i.e., without building its state space.

We show that this a priori knowledge about incompatible propositions can
increase the efficiency of explicit model checking of linear-time properties by
refining the specification to be checked. In Sect. 3, we show how to perform this
refinement when the specification is given either by an LTL formula (or even a
PSL formula) or by a Büchi automaton (or other kind of an ω-automaton). We
talk about formula refinement or automaton refinement, respectively.

By refinement, we get a property automaton that may have fewer edges or
even fewer states than the initial property automaton. All these changes often
have a positive effect on the rest of the model checking process, as documented
by experimental evaluation in Sect. 4.

As a side effect of the specification refinement, we typically obtain automata
with long edge labels. Section 5 shows that complex edge labels have a small, but
measurable negative effect on the execution time of Spin. Fortunately, Sect. 5 also
introduces a method that employs the information about incompatible proposi-
tions to simplify the labels.

Finally, Sect. 6 discusses some interesting cases discovered during our inten-
sive experiments.

2 Preliminaries

Let AP be a finite set of atomic propositions. Besides atomic propositions talking
about values of program variables (like x = 5 or y < 10) and their relations
(like x < y or x·y = z+2), we also work with atomic propositions of the form
p@loc saying that process p is in location loc.

Let B = {�,⊥} represent Boolean values. An assignment is a function � :
AP → B that valuates each proposition. BAP is the set of all assignments.
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We assume familiarity with Linear-time Temporal Logic (LTL) [15]. Our
examples use mainly the temporal operators Fϕ (meaning that ϕ eventually
holds) and Gϕ (saying that ϕ always holds), but the results are valid for property
formulas of any linear-time logic including the linear fragment of PSL [1].

A Büchi automaton (BA or simply an automaton) is a tuple A = (Q, q0, δ, F ),
where Q is a finite set of states, q0 ∈ Q is the initial state, δ ⊆ Q × BAP × Q is
a transition relation labeling each transition by an assignment, and F ⊆ Q is a
set of accepting states. Every triple (r1, �, r2) ∈ δ is called a transition from r1
to r2 under �. As an implementation optimization, and to simplify illustrations,
we often use edges labeled by Boolean formulas to group transitions with same
sources and destinations: an edge (r1, a∨¬b, r2) represents all transitions from r1
to r2 labeled with assignments � such that �(a) = � or �(b) = ⊥. To shorten the
notation of edge labels, we write ā instead of ¬a and we omit ∧ in conjunctions
of atomic propositions (e.g., ab̄ stands for a ∧ ¬b). An infinite sequence π =
(r1, �1, r2)(r2, �2, r3) . . . ∈ δω where r1 = q0 is a run of A over the word �1�2 . . ..
The run is accepting if some accepting state appears infinitely often in π. A word
is accepted by A if there is an accepting run of A over that word. The language
of A is the set L(A) of all words accepted by A.

Kripke structures are a low-level formalism representing finite state systems.
A Kripke structure is a tuple S = (S, s0, R, L), where S is a finite set of states,
s0 ∈ S is the initial state, R ⊆ S × S is a transition relation, L : S →
BAP is a labeling function. A product of a Kripke structure S = (S, s0, R, L)
and an automaton A = (Q, q0, δ, F ) is the automaton S ⊗ A defined as (S ×
Q, (s0, q0), δ′, S×F ), where δ′ = {((s1, q1), l, (s2, q2)) | (s1, s2) ∈ R, (q1, l, q2) ∈ δ,
L(s1) = l}.

3 Specification Refinement

Assume that we have a Kripke structure S and an LTL formula ϕ that describes
the infinite erroneous behaviors we do not want to see in S. Let AP(ϕ) denote the
set of atomic propositions in ϕ. A typical explicit model checker translates ϕ as a
Büchi automaton Aϕ, and then constructs a product S⊗Aϕ while simultaneously
checking whether the language of this product is empty or not. As the product
accepts all behaviors of the system also accepted by the automaton Aϕ, the
system contains an error if and only if L(S ⊗ Aϕ) 
= ∅.

In practice, the system S is often described in some high-level formalism,
which can be a programming language or a dedicated modeling language like
Promela [11, Chap. 3]. This high-level description is translated into (the relevant
part of) the corresponding Kripke structure during construction of the product.

The high-level description already provides some relevant information about
the system. In particular, one can detect that some combinations of propositions
in AP(ϕ) and their negations are never valid at the same time. For instance,
x > 10, y < 5, and x < y cannot hold together. This information follows directly
from the atomic propositions themselves. However, a static analysis of the system
can identify more impossible combinations. For instance, the analysis can find
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out that if a process p is in a location loc, then local variable p:x has value 0, and
thus atomic propositions p@loc and p:x > 0 never hold together. In the following,
we assume that we are given a constraint κ, which is a Boolean formula over
AP(ϕ) satisfied by all combinations of atomic propositions except the invalid
combinations. For example, the constraints corresponding to the two instances
mentioned above are ¬((x > 10)∧ (y < 5)∧ (x < y)) and ¬((p@loc)∧ (p:x > 0)).

One can frequently detect sets of atomic propositions that are mutually exclu-
sive. For example, atomic propositions saying that a process p is in various loca-
tions (e.g., p@loc1, p@loc2, and p@loc3) are always mutually exclusive. Similarly,
atomic propositions talking about values of the same variable (e.g., x > 10 and
x < 5) are often contradictory. For a set E of mutually exclusive propositions
(also called exclusive set), we define the constraint as:

excl(E) =
∧

u,v∈E
u�=v

¬(u ∧ v)

While such a constraint may seems obvious to the reader, tools that trans-
late LTL formulas into Büchi automata do not analyze the semantics of atomic
propositions and thus they do not know that x > 10 and x < 5 are incompatible.

3.1 Formula Refinement

The refinement of an LTL formula ϕ with respect to a constraint κ is the formula
rκ(ϕ) defined by

rκ(ϕ) = ϕ ∧ Gκ.

where the knowledge about the constraint is made explicit.
This extra information allows tools that translate LTL formulas into automata

to produce smaller automata. For instance the Büchi automaton of Fig. 1(a) was
generated by Spot [6] from the formula F(Ga ∨ (GFb ↔ GFc)). If the formula is
refined with a constraint built for the exclusive set {a, b, c}, then the translator
produces the smaller automaton from Fig. 1(b): the edge between states 3 and 5
labeled by bc is known to be never satisfiable, and the state 0 is found to be super-
fluous (its incoming edges would be labeled by ab̄c̄, so this part of the automaton
is covered by state 2 already).

3.2 Automaton Refinement

Alternatively, the refinement can be performed on the property automaton A.
This allows the specification of erroneous behaviors to be supplied directly as
an automaton. Given an automaton A and a constraint κ, we obtain the refined
automaton rκ(A) by replacing any edge (r1, �, r2) of A by (r1, � ∧ κ, r2) and
removing the edge whenever the new label reduces to false. Figure 1(c) shows
the result of applying this to the automaton of Fig. 1(a). Note that as the edge
labels are Boolean functions, they accept many representations: we display them
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Fig. 1. Automata for ϕ = F(Ga ∨ (GFb ↔ GFc)) and κ = excl({a, b, c}).

as some irredundant sums-of-products1 by convention. In this case, state 0 is not
removed, but it can be removed if we run some simplification algorithms (such as
simulation-based reductions [3]), which are often employed in LTL to automata
translators. The result of this simplification pass is then again in Fig. 1(b).

If as(A) denotes the operation that simplifies an automaton A using the
same simplification algorithms that are used by a tool translating ϕ into Aϕ,
one would expect that Arκ(ϕ) = as(rκ(Aϕ)) always holds (as in the example of
Fig. 1(b)). This is not true in practice for two reasons:

– Some translators have LTL rewriting rules that may react strangely to the
refined formula, sometimes to the point of producing larger automata.

– Some translators include automata simplification algorithms (such a WDBA-
minimization [5,6]) that can only be applied when the formula is known, so
they cannot be run on arbitrary automata.

1 A sum-of-product is irredundant if all its products are prime implicants, and no
product can be removed without changing the function [13].
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Table 1. Considered LTL-to-BA translators, for reference.

Translator Version Command

Spin [9,11] 6.3.2 spin

LTL2BA [10] 1.1 ltl2ba

LTL3BA [2] 1.1.2 ltl3ba

LTL3BA-det ltl3ba -M0

Spot [6] 1.99b ltl2tgba -s

Spot-det ltl2tgba -s --deterministic

Nonetheless, both formula refinement or automaton refinement have three notice-
able effects on the model checking process:

– First, the removal of unsatisfiable transitions saves the model checker from
having to repeatedly evaluate the labels of these transitions during the product
construction, only to finally ignore them.

– Second, the automaton constructed with formula or automaton refinement
is often smaller than the original automaton (for example, removing some
transitions can make two states equivalent and such states can be merged).
This can have a very positive effect on the model checking process.

– Last, the longer labels produced by this refinement may take longer to evaluate
depending on how the model checker is implemented. This is the only negative
effect, and we fix it in Sect. 5.

4 Experimental Evaluation

First we describe the general setting of our experiments. Then we show the
impact of formula refinement and automaton refinement. Finally, we compare
the two refinement approaches.

Benchmark. Our benchmark is made of 3316 verification tasks (i.e., a model
plus a specification) where some propositions are referring to different locations
of a single process so that we can construct exclusive sets. These tasks employ 101
instances of 16 parametrized models from Beem [14]; 50 tasks use specifications
from Beem, the others combine Beem models with random LTL formulas.

Tools. In our experiments, we use four LTL-to-BA translators presented in
Table 1. Two of the translators, namely LTL3BA and Spot, are used with two
settings: the default ones and the settings with the suffix “-det” that aim to
produce more deterministic automata. All translators are restricted by 20 min
timeout. For formula refinement and automata refinement, we use tools ltlfilt
and autfilt from Spot 1.99.1 For emptiness checks, we use the same ver-
sion of Spin with the maximum search depth set to 100 000 000, memory limit
20 GiB, option -DNOSTUTTER (see Sect. 6.3 for the explanation), and partial-order

https://spot.lrde.epita.fr/
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Table 2. Statistics of fails and successfully solved verification tasks with and without
formula refinement.

Translator Original tasks (S, ϕ) Refined tasks (S, rκ(ϕ)) Both tasks
solved

Translation
timeouts

Spin
fails

Tasks
solved

Translation
timeouts

Spin
fails

Tasks
solved

Spin 801 232 2283 926 201 2189 2183

LTL2BA 5 341 2970 2 302 3012 2929

LTL3BA 0 80 3236 0 55 3261 3227

LTL3BA-det 0 34 3282 0 27 3289 3279

Spot 2 27 3287 0 19 3297 3286

Spot-det 2 26 3288 0 19 3297 3287

reduction enabled for tasks with next-free formulas. Emptiness check is always
restricted by 30 min timeout.

Hardware. All computations are performed on an HP DL980 G7 server with
8 eight-core processors Intel Xeon X7560 2.26GHz and 448 GiB DDR3 RAM.
The server is shared with other users and its variable workload has led to a
high dispersion of measured running times. Hence, instead of running times, we
use the number of transitions visited by Spin, which is stable across multiple
executions and should be proportional to the running time.

Additional data and detailed information about this benchmark are available
at: http://fi.muni.cz/∼xstrejc/publications/spin2015/

4.1 Impact of Formula Refinement

For each verification task (S, ϕ) and each translator of Table 1, we translate ϕ to
automaton Aϕ and run Spin on S and Aϕ. Then we refine the formula to rκ(ϕ)
and repeat the process. Table 2 shows the numbers of translation timeouts, Spin
fails (this number covers the cases when Spin timeouts or runs out of memory or
reaches the maximum search depth), and successfully solved verification prob-
lems. The data indicates that formula refinement has a mostly positive effect on
the model checking process: for all but one translator, the refinement increases
the number of successfully solved tasks (we discuss the case of Spin translator
in more details in Sect. 6.2). Nevertheless, the number of tasks solved both with
and without formula refinement is always smaller that the number of solved
original tasks, which means that the effect of formula refinement is negative in
some cases. In the rest of this section, for each translator we consider only the
tasks counted in the last column of the table, i.e., tasks solved both with and
without formula refinement.

We now look at the effect of formula refinement on the sizes of property
automata. Table 3 shows that the property automaton for a refined formula
has very frequently fewer states than the automaton for the original formula.
However, we cannot easily tell whether states are removed simply because they

http://fi.muni.cz/~xstrejc/publications/spin2015/
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Table 3. Effect of formula refinement on property automata. For each translator and
each verification task, we compare the size of Aϕ with the size of Arκ(ϕ) and report
on the number of cases where the refinement resulted in additional states (+states) or
fewer states (−states). In case of equality, we look at the number of edges or transitions.

Effect Spin LTL2BA LTL3BA LTL3BA-det Spot Spot-det

+states 514 41 15 148 13 17

−states 168 1482 1679 1723 1722 1720

=states,+edges 37 17 0 0 9 10

=states,−edges 43 337 293 326 345 344

=states,=edges,+trans. 153 211 283 173 280 280

=states,=edges,−trans. 1226 785 899 848 849 848

No size change 42 56 58 61 68 68

are inaccessible after refinement (i.e., the constraint κ removed all the transitions
leading to a state) or if the refinement enabled additional simplifications as in
Fig. 1. In the former case, the refinement would have a little impact on the size
of the product: it is only saving useless attempts to synchronize transitions that
can never be synchronized while building this product.

Finally, we turn our attention to the actual effect of formula refinement on
performance of the emptiness check implemented in Spin. For each translator
and each verification task, let t1 be the number of transitions visited by Spin
for the original task and t2 be the same number for the refined task. Scatter
plots of Fig. 2 show each pair (t1, t2) as a dot at this coordinates. The color2

of each dot says whether the property automaton for the refined formula has
more or less states than the automaton for the original formula. The data is
shown separately for each translator. We also distinguish the tasks with some
erroneous behavior from those without error. As many dots in the scatter plots
are overlapping, we present the data also via improvement ratios t2/t1. Values
of t2/t1 smaller than 1 correspond to cases where formula refinement actually
helped Spin, while values larger than 1 correspond to cases where the refinement
caused Spin to work more. Figure 3 gives an idea of the distribution of these
improvement ratios in our benchmark. On this figure, all improvement ratios
for a given tool are sorted from lowest to highest, and then they are plotted
using their rank as x coordinate, and using a logarithmic scale for the ratio.
One can immediately see on these curves that there is a large plateau around
y = 1 corresponding to the cases where there is no substantial improvement.
In the tasks without error, there are usually many cases with ratio below 0.95
(definite improvement), and very few cases above 1.05 (cases where refinement
hurt more than it helped). A special class of cases that are improved are those
that are found equivalent to false after refinement: those usually have a very
high improvement ratio, as the exploration of the product is now limited to a

2 We suggest viewing these figures in color using the electronic version of this article.
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single transition (after which Spin immediately realizes that the empty never
claim cannot be satisfied). Note that in tasks with error, the refined formula
cannot be equivalent to false as all states of an erroneous behavior comply with
the constraint. Relatively high numbers of these “false” cases imply that the
formula refinement technique is an effective sanity check detecting specifications
unsatisfiable under given constraints.3 Table 4 gives counts of improvement ratios
in these classes.

Table 4. Distribution of the improvement ratios for formula refinement. The counts
of false cases are not included in the <0.95 classes.

Without error With error

False <0.95 [0.95,1.05] >1.05 All <0.95 [0.95,1.05] >1.05 All

Spin 0 30 1257 50 1337 27 708 111 846

LTL2BA 61 462 1179 48 1750 288 602 289 1179

LTL3BA 374 401 1101 7 1883 194 942 208 1344

detLTL3BA 382 264 1255 12 1913 186 993 187 1366

Spot 384 300 1213 20 1917 244 902 223 1369

detSpot 385 297 1218 18 1918 248 903 218 1369

Figures 2 and 3 and Table 4 show that for tasks without error, formula refine-
ment has negative effect only very rarely and such effect is relatively small. The
positive effect is more frequent and substantial in many cases. The table implies
that LTL3BA and Spot can profit more from the refinement as they identify rad-
ically more false cases and they have significantly less cases with negative effect
than the other translators (some of the negative cases are discussed in Sect. 6).
This observation can be explained by advanced simplification techniques imple-
mented in LTL3BA and Spot.

In the tasks with erroneous behaviors, we observe that the number of improved
cases is almost balanced by the number of degraded cases (except for Spin). This
can be explained by the fact that refining an LTL formula my change the shape of
the output automaton, and thus change its transition order. Therefore the model
checker may have more or less luck in finding an erroneous run. When such a run
is found, Spin ends the computation without exploring the rest of the product.

4.2 Impact of Automaton Refinement

As mentioned before, automaton refinement itself only cuts off some parts of the
automaton that are not used in the product. It has a bigger effect only when sim-
plification algorithms are executed after the refinement. In our experiments, we
combined automaton refinement with the automata simplifications implemented
in Spot.
3 The high number of “false” cases is due to the use of random formulas. In real tasks,

such a false case would likely indicate a bug in the specification.
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Table 5. Statistics of fails and successfully solved verification tasks with and without
automata refinement.

Original tasks (S, A) Refined tasks (S, as(rκ(A))) Both tasks
solved

Spin
fails

Tasks
solved

Simplification of
rκ(A) timeouts

Spin
fails

Tasks
solved

291 9061 12 99 9241 9038

Table 6. Effect of automaton
refinement on property automata.

Effect

+states 0

−states 4955

=states,+edges 0

=states,−edges 1013

=states,=edges,+trans. 0

=states,=edges,−trans. 2400

No size change 670

Table 7. Distribution of the improvement
ratios for automaton refinement.

Without error With error

False 906 0

<0.95 853 735

[0.95, 1.05] 3251 2743

>1.05 5 545

All 5015 4023

To measure the effect of automaton refinement, we prepared the benchmark
as follows. We took the 3316 verification tasks used before. For every task, we
translated the formula with all considered translators and simplified the pro-
duced automata using Spot. The simplification is here applied to make the com-
parison of model checking with and without automaton refinement fair: without
this step we could not really distinguish the effect of automata refinement (fol-
lowed by simplification) from the effect of simplification itself. If the automaton
translation and simplification successfully finishes, we get a pair of a model and
a simplified automaton. In the rest of this section, we call such pairs verification
tasks. After removing duplicates, we have 9352 verification tasks.

For each task, we run Spin with the original automaton. Then we refine and
simplify the automaton and run Spin again. While automaton refinement is very
cheap, its simplification can be quite expensive. So we apply a 20 min timeout.
Table 5 provides numbers of Spin fails on original tasks, timeouts of refined
automata simplifications, and Spin failures on refined tasks. In the following, we
work only with tasks solved both with and without automaton refinement.

As in the previous section, Table 6 presents the effect of automaton refinement
and simplification on the sizes of property automata. The refined and simplified
automata are smaller in the vast majority of cases and never bigger.

The effect of automaton refinement and simplification on performance of
emptiness check in Spin is presented in Figs. 4 and 5, and Table 7 in the same way
as previously. On tasks without error, the effect is similar to formula refinement:
it is often positive and almost never negative. On tasks with error, the positive
effect is more frequent than the negative one.
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Table 8. Statistics of fails and successfully solved verification tasks with formula refine-
ment and automaton refinement.

Tasks with formula refinement Tasks with automaton refinement

Automaton
construction
timeouts

Spin
fails

Tasks
solved

Automaton
construction
timeouts

Spin
fails

Tasks
solved

Both
tasks
solved

0 19 3297 35 25 3256 3256

4.3 Comparison of Formula and Automaton Refinement

Here we compare the formula refinement and automaton refinement using Spot
for the formula translation. For each of the 3316 considered tasks, we refine
the formula, translate it by Spot, and run Spin. Then we take the task again,
translate the original formula by Spot, refine and simplify the automaton, and
run Spin. Table 8 provides statistics about automata construction timeouts (this
comprises Spot timeouts and, in the case of automaton refinement, also simpli-
fication of refined automata timeouts), Spin timeouts, and solved tasks. Both
approaches detected 380 identical cases where the refined specification reduces
to false. In the following, we present the data from the 3256 − 380 = 2876 tasks
solved by both approaches and not trivially equivalent to false.

Table 9, Figs. 6 and 7, and Table 10 are analogous to the tables and figures
in the previous sections (the position of original tasks in the previous sections is
taken by tasks with formula refinement). Table 9 says that automaton refinement
often produces property automata with more states than formula refinement.
However, Fig. 6 and Table 10 show that the overall effect of automata and formula
refinement on performance of Spin is fully comparable, slightly in favor of formula
refinement.
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5 Label Simplification

As mentioned in Sect. 3, a side-effect of specification refinement is that edges get
more complex labels. This is visible when comparing the automaton of Fig. 1(b)
to the one of Fig. 1(a). For example the self-loop on state 3 is labeled by āc̄ ∨ b̄c̄
instead of the original c̄. In our experiment, the overall average length of an edge
label (counted as the number of occurrences of atomic propositions in the label)
in the automata Arκ(ϕ) for refined formulas is 6.58, while the average label length
in the corresponding automata Aϕ for unrefined formulas is only 4.20. When
executing Spin, the labels are compiled into C code to match system transitions
during the construction of the synchronized product. For example, Fig. 8 depicts

Table 9. Comparison of automata pro-
duced by formula refinement and automa-
ton refinement (+states counts tasks where
as(rκ(Aϕ)) has more states than Arκ(ϕ)

and so on).

Effect

+states 315

−states 82

=states,+edges 52

=states,−edges 51

=states,=edges,+trans. 26

=states,=edges,−trans. 428

No size change 1922

Table 10. Distribution of the improve-
ment ratios for automaton refinement
over formula refinement.

Without error With error

<0.95 44 133

[0.95, 1.05] 1399 970

>1.05 71 259

All 1514 1362
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if (!(((!((((int)((P1 *)Pptr(f_pid(1)))->_p)==27))&&

!((((int)((P1 *)Pptr(f_pid(1)))->_p)==5)))||

(!((((int)((P1 *)Pptr(f_pid(1)))->_p)==27))&&

!((((int)((P1 *)Pptr(f_pid(1)))->_p)==9)))))) ...

if (!( !((((int)((P1 *)Pptr(f_pid(1)))->_p)==27)))) ...

Fig. 8. Code listings of a pan.m file. The upper part resulted from the edge labeled by
āc̄ ∨ b̄c̄ and the last line is from label c̄.

the C code corresponding to the labels āc̄ ∨ b̄c̄ and c̄. Clearly, longer labels can
slow down the verification process without influencing any Spin statistics like
visited transitions and stored states. However, the expected slowdown should be
only small as checking the labels is much cheaper than computing successors for
states of the system or storing the states.

To eliminate the slowdown, we simplify the labels in a step that can be
though of as the converse of refinement: instead of using a given constraint
to make labels more precise, we use it to make them less precise and shorter,
but equivalent to the original labels under the given constraint. For instance,
bc̄ can be shortened as b if we know that b and c cannot be both true in the
model. This simplification can be implemented by performing Boolean function
simplification with don’t care information: we do not care if the simplified label
additionally covers some variable assignments that can never happen in the
system. Concretely, we have implemented the simplification in Spot using the
Minato-Morreale algorithm [13]. The algorithms inputs two Boolean functions
f� and �f� and produces an irredundant sum-of-product that covers at least
all the assignments satisfying f�, and that is not satisfiable by at least all the
assignments not satisfying �f�. To simplify a label � using a constraint κ, we call
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aē

e

dē
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Fig. 9. An uncommon case where Arκ(ϕ) is much smaller than Aϕ, and yet Spin per-
forms better with Aϕ.



80 F. Blahoudek et al.

the algorithm with f� = � ∧ κ and �f� = ¬� ∧ κ. Figure 1(d) shows the result
of applying this label simplification (denoted as function ls) to Fig. 1(b).

We applied the label simplification to automata obtained by formula refine-
ment and the average label length drops to 3.19, which is even lower that the
mentioned value for automata without refinement. We selected several cases with
high reduction of label length and run Spin several times with automata before
and after label simplification on a weaker, but isolated machine to get reliable
running times. In these tests, Spin runs up to 3.5 % slower with automata before
label simplification.

6 Interesting Cases

In this section we investigate several interesting cases where using refinement
caused worse performance.

6.1 The Case of Strongly Connected Components

Figure 9 shows an interesting case that we discovered among the few tasks with-
out error where the refined formula translated by Spot degrades the perfor-
mance of Spin. In this case, Spin performs better with the automaton Aϕ of
Fig. 9(a) than with the smaller automaton Arκ(ϕ) of Fig. 9(b). Please note that
the automaton presented in Fig. 9(a) is a pruned version of the real automaton,
in which we removed all transitions that do not appear in the product with the
model. For instance, in this pruned automaton it is obvious that the state 7 can
be merged with state 8, but the presence of other edges in the original automaton
prevented this simplification.

The reason Spin works better with the larger of these two automata is related
to the emptiness check used. The emptiness check procedure used in Spin by
default is based on two nested depth-first searches [12]: the main DFS, which
we shall call blue, explores the product (on-the-fly) and every time it would
backtrack from an accepting state s (i.e., all successors of s have been explored
by the blue DFS) it starts a second, red DFS from s. If the red DFS reaches
any state on the blue DFS search stack, then a reachable and accepting cycle is
found (since s is reachable from all states on the blue DFS search stack) and the
algorithm reports it as a counterexample. Otherwise, the red DFS terminates
and the blue DFS can continue. The two DFS always ignore states that have
been completely explored by an instance of the red DFS, so a state is never
visited more than twice.

In the automaton of Fig. 9(b), whenever the blue DFS backtracks a state of
the product that is synchronized with state 12, it has to start a red DFS that will
explore again states synchronized with 13 and previously explored by the blue
DFS (states synchronized with 12 and 14 will be ignored as they have already
been seen by a previous red DFS). This re-exploration of states synchronized
with 13 is something that (i) did not happen in the original automaton because
there is no accepting state above the corresponding state 3, and (ii) is useless
because there is no way to get back to state 12 after moving to state 13.



On Refinement of Büchi Automata for Explicit Model Checking 81

The NDFS algorithm could be patched to avoid this problem by simply
constraining the red DFS to explore only the states of the product whose pro-
jection on the property automaton belongs to the same strongly connected com-
ponent as its starting accepting state. This optimization was already suggested
by Edelkamp et al. [7,8] with the additional trick that if the current SCC is
known to be weak (i.e., its states are all accepting and or all non-accepting),
then running a red DFS is not needed at all, as the blue DFS is guaranteed to
find any accepting cycle by itself. In the scenarios described by Figs. 9(a) and
(b), all the SCCs have a single state, so the product automaton will be weak and
the red DFS should not be needed. Computing the strongly connected compo-
nents of the property automaton can be done in time that is linear to the size
of that automaton (typically a small value) before the actual emptiness check
starts, so this is a very cheap way to improve the model checking time.

6.2 Problems with LTL Simplifications

A special class of interesting cases consists of formulas where formula refinement
leads to bigger automata. Such cases are surprisingly often connected with issues
in the earliest phases of LTL to automata translation, namely in formula pars-
ing or simplification. For example, LTL3BA implements several specific formula
reduction rules applied after all standard formula reductions. If such a rule is
applied, the reduced formula is checked again for possible application of some
reduction rule, but only on its top level. Hence, some reductions are not applied
when the input formula is refined with a constraint. This is considered as a bug
and it will be fixed in the next release of LTL3BA.

LTL2BA has even more problems with formula simplifications as it is
sensitive to superfluous parentheses. For instance, the command ltl2ba -f
’<>([]<>X p)’ generates an automaton with 2 states, while the equivalent
ltl2ba -f ’<>[]<>X p’ produces an automaton with 4 states. This is because
the presence of parentheses causes another pass of formula reduction to occur.

Table 3 indicates that Spin’s translator benefits less than the other trans-
lators from addition of constraints. Part of the problem, it seems, is due to a
change that was introduced in Spin 6 to allow LTL formulas embedding atomic
propositions with arbitrary Promela conditions. As a consequence of this change,
many parenthetical blocks are now considered as atomic propositions by Spin’s
translator, and simplifications are therefore missed. For instance, the formula
(aR b)∧G(¬(a∧b)) is translated as if ¬(a∧b) was an independent atomic propo-
sition. While Spin 5 translates this formula into an automaton with one state
and one edge, Spin 6 outputs an automaton with two states and three edges,
where the edge connecting the states has unsatisfiable label ¬(a ∧ b) ∧ a ∧ b.

6.3 Problem with Spin

During our experiments, we discovered a handful of cases where equivalent never
claims would cause Spin to produce different results: e.g., a counterexample for
automata built by some tools, and no counterexamples for (equivalent) automata
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built by other tools. Sometime the automata would differ only by the order in
which the transitions are listed. In turned out that this bug4 was due to a rare
combination of events in the red DFS in the presence of a deadlock in the system.
While it will be fixed in Spin 6.4.4, the fix came too late for us: our benchmark
takes more than a week of computation. All the presented results are computed
by compiling the Spin verifier with -DNOSTUTTER, which effectively means that
we ignore deadlock scenario, and we are safe from this bug.

7 Conclusions

We have reported on the effect of using information about impossible combi-
nations of propositions in the model to improve model checking. We proposed
two techniques: refinement is the process of making this information explicit in
the property automaton, while label simplification is the process of making this
information implicit. Our experiments show that these two operations, that can
be combined, have a positive effect on the model checking process. By refine-
ment we are able to obtain automata that are usually smaller, and then by label
simplification we shorten the labels of the automata to speedup the process of
transition matching during model checking.

The refinement can also be used as a sanity check: when a refinement leads
to a property automaton with no accepting state, it usually represent a bug in
the specification.

In the experiments, we only considered incompatibilities between atomic
propositions that denote a process being in different locations. More sources
of incompatibilities could be considered, such as atomic propositions that refer
to different variable values.

We could also extend the principle to more than just incompatible proposi-
tions: for instance from the model we could extract information about the validity
of atomic propositions in the initial state, the order of locations in a process,
or learn the fact that some variable will always be updated in a monotonous
way (e.g., can only be increased). All these informations can be used to pro-
duce stricter property automata that disallow these impossible behaviors, and
we think these automata should offer more opportunity for simplifications, and
should also contribute to better sanity checks.

We demonstrated the usefulness of refinement to model checking, but we
believe it should also be useful in other contexts like probabilistic model checking
or controller synthesis.

Acknowledgments. The authors would like to thank Tomáš Babiak and Jǐŕı Barnat
for discussions and tool support. Frantǐsek Blahoudek and Jan Strejček have been
supported by The Czech Science Foundation grant GBP202/12/G061.

4 http://spinroot.com/fluxbb/viewtopic.php?pid=3316.
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Abstract. An ω-regular language is stutter-invariant if it is closed by
the operation that duplicates some letter in a word or that removes some
duplicate letter. Model checkers can use powerful reduction techniques
when the specification is stutter-invariant.

We propose several automata-based constructions that check whether
a specification is stutter-invariant. These constructions assume that a
specification and its negation can be translated into Büchi automata,
but aside from that, they are independent of the specification formalism.
These transformations were inspired by a construction due to Holzmann
and Kupferman, but that we broke down into two operations that can
have different realizations, and that can be combined in different ways.
As it turns out, implementing only one of these operations is needed to
obtain a functional stutter-invariant check.

Finally we have implemented these techniques in a tool so that users
can easily check whether an LTL or PSL formula is stutter-invariant.

1 Introduction

The notion of stutter-invariance (to be defined formally later) stems from model
checkers implementing partial-order reduction techniques (e.g., [6, Chap. 10] or
[4, Chap. 8]). If a model checker knows that the property to verify is stutter-
invariant, it is sufficient to check that property only on a selected subset of
the executions of the model, often achieving a great speedup. Such partial-order
reductions are implemented by explicit model checkers such as Spin [18, Chap. 9],
LTSmin [21], or DiVinE [5], to cite a few. Detecting stutter-invariant properties
has also usages beyond partial-order reductions; for instance it is used to optimize
the determinization construction implemented in the tool ltl2dstar [20].

To activate these optimizations, tools must decide if a property is stutter-
invariant. The range of available options for this check depends on how the
property is specified.

Linear-time Temporal Logic (LTL) is a common specification formalism for
verification tools. It is widely known that any LTL formula that does not use the
next-step operator X (a.k.a. an LTL\X formula) is stutter-invariant; this check is
trivial to implement. Unfortunately there exist formulas using X that are stutter-
invariant (for instance ‘F(a ∧ X(¬a ∧ b))’) and whose usage is desirable [23].

c© Springer International Publishing Switzerland 2015
B. Fischer and J. Geldenhuys (Eds.): SPIN 2015, LNCS 9232, pp. 84–101, 2015.
DOI: 10.1007/978-3-319-23404-5 7
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Dallien and MacCaull [8] built a tool that recognizes a stuttering LTL for-
mula if (and only if) it matches one of the patterns of Păun and Chechik [23].
This syntactical approach is efficient, but incomplete, as not all stutter-invariant
formulas follow the recognized patterns.

A more definite procedure was given by Peled and Wilke [24] as a construc-
tion that inputs an LTL formula ϕ with |ϕ| symbols and n atomic propositions,
and outputs an LTL\X formula ϕ′ with O(4n|ϕ|) symbols, such that ϕ and ϕ′

are equivalent iff they represent a stutter-invariant property. This construction,
which proves that any stutter-invariant formula can be expressed without X, was
later improved to nO(k)|ϕ| symbols, where k is the X-depth of ϕ, by Etessami
[13]. If a disjunctive normal form is desired, Tian and Duan [29] give a variant
with size O(n2n|ϕ|). To decide if an LTL formula ϕ is stutter-invariant, we build
ϕ′ using one of these constructions, and then check the equivalence of ϕ and
ϕ′. This equivalence check can be achieved by translating these formulas into
automata. This approach, based on Etessami’s procedure, was implemented in
our library Spot [10], but some practical performance issues prompted us to look
into alternative directions.

Extending this principle to a more expressive logic is not necessarily easy.
For instance, a generalization of the above procedure to the linear fragment of
PSL (the Property Specification Language [1]) was proposed by Dax et al. [9],
but we realized it was incorrect1 when we recently implemented it in Spot. Still,
Dax et al. [9] provide a syntactic characterization of a stutter-invariant subset
of PSL (which is to PSL what LTL\X is to LTL) that can be used to quickly
classify some PSL formulas as stutter-invariant.

For most practical uses these linear-time temporal formulas are eventually
converted into ω-automata like Büchi automata, so one way to avoid the intrica-
cies of the logic is to establish the stutter-invariance directly at the automaton
level. This is the approach used for instance in ltl2dstar [20]. The property
ϕ and its negation are both translated into Büchi automata Aϕ and A¬ϕ; then
the automaton Aϕ is transformed (using a procedure inspired from Holzmann
and Kupferman [19]) into an automaton A′

ϕ that accepts the smallest stutter-
invariant language over-approximating the language of ϕ. The property ϕ is
stutter-invariant iff Aϕ and A′

ϕ have the same language, which can be checked
by ensuring that the product A′

ϕ ⊗ A¬ϕ has an empty language. This procedure
has the advantage of being independent of the specification formalism used (e.g.,
it can work with LTL or PSL, and will continue to work even if these logics are
augmented with new operators).

In this paper, we present and compare several automata-based decision proce-
dures for stutter-invariance, inspired from the one described above. We show that

1 While testing our implementation we found Lemma 2 of [9] to be incorrect w.r.t.
the ∩ operator. A counterexample is the SERE r = a ∩ (a; a) since L�(r) = ∅ but
L�(κ(r)) = {a}. Also Lemma 4 is incorrect w.r.t. the� operator; a counterexample
is the PSL formula a � b which gets rewritten as a+ � b: two stutter-invariant
formulas with different languages. We are in contact with the authors. (Note that
these lemmas are numbered 4 and 9 in the authors’ copy.).

http://www.daxc.de/eth/paper/09atva.pdf
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the transformation of Aϕ to A′
ϕ is better seen as two operations: one that allows

letters to be duplicated, and another that allows duplicate letters to be skipped.
These two operations can then be recombined in many ways, giving seven deci-
sion procedures. Rather surprisingly, some of the proposed checks require only
one of these two operations: as a consequence, they are easier to implement than
the original technique.

We first define stutter-invariant languages, and some operations on those
languages in Sect. 2. The main result of Sect. 2, Theorem 1, gives several char-
acterizations of stutter-invariant languages. In Sect. 3, we introduce automata
to realize the language transformations described in Sect. 2. This gives us seven
decision procedures, as captured by Theorem 2. In Sect. 4 we describe in more
details the similarities between one of the proposed checks and the aforemen-
tioned construction by Holzmann and Kupferman, and we also point to some
other related constructions. Finally in Sect. 5 we benchmark our implementation
of these procedures.

2 The Language View

We use the following notations. Let Σ be an alphabet, and let Σω denote the set
of infinite words over this alphabet. Since we only consider infinite words, we will
simply write word from now on. Given a word w ∈ Σω, we denote its individual
letters by w0, w1, w2, . . . and write w = w0w1w2 . . . using implicit concatenation.
Given some letter � ∈ Σ and a positive integer n, we use �n as a shorthand for
the concatenation �� . . . � of n copies of �, and �ω for the concatenation of an
infinite number of instances of �. A language L over Σ is a set of words, i.e.,
L ⊆ Σω. Its complement language is L = Σω\L.

Definition 1 (Stutter-Invariant Language). A language L is stutter-
invariant iff it satisfies the following property:

∀n0 ≥ 1,∀n1 ≥ 1,∀n2 ≥ 1, . . . , (w0w1w2 . . . ∈ L ⇐⇒ wn0
0 wn1

1 wn2
2 . . . ∈ L)

In other words, in a stutter-invariant language L, duplicating any letter or
removing any duplicate letter from a word of L will produce another word of L.
When L is not stutter-invariant, we say that L is stutter-sensitive.

The following lemma restates the above definition for stutter-sensitive lan-
guages.

Lemma 1. A language L is stutter-sensitive iff there exists n0 ≥ 1, n1 ≥ 1,
n2 ≥ 1, . . . such that either

1. there exists a word w0w1w2 . . . ∈ L such that wn0
0 wn1

1 wn2
2 . . . 
∈ L

2. or there exists a word wn0
0 wn1

1 wn2
2 . . . ∈ L such that w0w1w2 . . . 
∈ L.

Proposition 1. A language L is stutter-invariant iff L is stutter-invariant.

Proof. Assume by way of contradiction that L is stutter-invariant but L is not.
Applying Lemma 1 to L, there exists n0 ≥ 1, n1 ≥ 1, . . . such that either
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1. there exists a word w0w1 . . . ∈ L such that wn0
0 wn1

1 . . . 
∈ L; but this means
wn0

0 wn1
1 . . . ∈ L and because L is stutter-invariant we must have w0w1 . . . ∈ L

which contradicts the fact that this word should be in L;
2. or there exists a word wn0

0 wn1
1 . . . ∈ L such that w0w1 . . . 
∈ L, but then

w0w1 . . . ∈ L implies that wn0
0 wn1

1 . . . should belong to L as well, which is
also a contradiction.

The same argument can be done with L and L reversed. �

Proposition 2. If L1 and L2 are stutter-invariant then L1 ∪ L2 and L1 ∩ L2

are stutter-invariant.

Proof. Immediate from Definition 1. �

We now introduce new operations that we will combine to decide stutter-
invariance.

Definition 2. For a word w = w0w1w2 . . ., Instut(w) = {wn0
0 wn1

1 wn2
2 . . . |

∀i, ni ≥ 1} denotes the set of words built from w by allowing any letter of
w to be duplicated (i.e., the stuttering of w can be increased).

Conversely, Destut(w) = {u0u1u2 . . . ∈ Σω | there exists n0 ≥ 1, n1 ≥
1, n2 ≥ 1, . . . such that w = un0

0 un1
1 un2

2 . . .} denotes the set of words built from w
by allowing any duplicate letter to be removed (i.e., the stuttering of w can be
decreased).

We extend these two definitions to languages straightforwardly using
Instut(L) =

⋃
w∈L Instut(w) and Destut(L) =

⋃
w∈L Destut(w).

The following lemmas are immediate from the definition:

Lemma 2. For any two words u and v, u ∈ Instut(v) ⇐⇒ v ∈ Destut(u).

Lemma 3. For any language L, we have L ⊆ Destut(L) ⊆ Instut(Destut(L)),
L ⊆ Instut(L) ⊆ Destut(Instut(L)), and Instut(Destut(L)) = Destut(Instut(L)).

Lemma 4. For any language L, we have L ⊆ Instut(L) ∩ Destut(L).

To illustrate that Lemma 4 cannot be strengthened to L = Instut(L) ∩
Destut(L), consider the language L = {a2bω, a4bω}. Then Instut(L) = {aibω |
i ≥ 2}, Destut(L) = {aibω | 1 ≤ i ≤ 4}, and Instut(L) ∩ Destut(L) = {aibω | 2 ≤
i ≤ 4} 
= L.

We now show that L 
= Instut(L) ∩ Destut(L) is only possible if L is stutter-
sensitive.

Proposition 3. L is a stutter-invariant language iff Instut(L) = L = Destut(L).

Proof. (=⇒) If L is stutter-invariant, the words added to L by Instut(L) or
Destut(L) are already in L by definition. (⇐=) If L = Instut(L) and L =
Destut(L) there is no way to find a counterexample word for Lemma1. �
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Note that Instut(L) = Destut(L) is not a sufficient condition for L to be
stutter-invariant. For instance consider the stutter-sensitive language L = {aibω |
i is odd} for which Instut(L) = Destut(L) = {aibω | i > 0}.

Proposition 4. If a language L is stutter-sensitive, then either Instut(L)∩L 
= ∅
or Destut(L) ∩ L 
= ∅.
Proof. Applying Lemma 1 to L, there exists n0 ≥ 1, n1 ≥ 1, . . . such that either

1. there exists a word w0w1 . . . ∈ L such that wn0
0 wn1

1 . . . 
∈ L, which implies
that Instut(L) ∩ L 
= ∅;

2. or there exists a word wn0
0 wn1

1 . . . ∈ L such that w0w1 . . . 
∈ L, which implies
that Destut(L) ∩ L 
= ∅.

So one of Instut(L) or Destut(L) has to intersect L. �
Proposition 5. If a language L is stutter-sensitive, then Instut(L) ∩
Instut(L) 
= ∅.
Proof. By Proposition 4, since L is stutter-sensitive we have either Instut(L)∩L 
=
∅ or Destut(L) ∩ L 
= ∅.

– If Instut(L) ∩ L 
= ∅, then there exists a word u ∈ L, and a word v ∈ L such
that u ∈ Instut(v). Since u ∈ L we have u ∈ Instut(L); however we also have
u ∈ Instut(v) ⊆ Instut(L). So u ∈ Instut(L) ∩ Instut(L).

– If Destut(L) ∩ L 
= ∅, then there exists a word u ∈ L and a word v in L such
that u ∈ Destut(v). By Lemma 2, we have v ∈ Instut(u). Therefore we have
v ∈ Instut(u) ⊆ Instut(L) and v ∈ L ⊆ Instut(L), so v ∈ Instut(L) ∩ Instut(L).

In both cases Instut(L) ∩ Instut(L) is non-empty. �
Proposition 6. If a language L is stutter-sensitive, then Destut(L) ∩
Destut(L) 
= ∅.
Proof. Similar to that of Proposition 5. �
Theorem 1. For any language L, the following statements are equivalent.

(1) L is stutter-invariant
(2) L = Instut(L) = Destut(L)
(3) Destut(Instut(L)) ∩ L = ∅
(4) Instut(Destut(L)) ∩ L = ∅
(5) Instut(L) ∩ Instut(L) = ∅
(6) Destut(L) ∩ Destut(L) = ∅.
Proof. (1) ⇐⇒ (2) is Proposition 3; (2) =⇒ (3) ∧ (4) is immediate; (2) =⇒
(5) ∧ (6) follows from Proposition 1 which means that the hypothesis (2) can
be applied to L as well; (3) =⇒ (1) and (4) =⇒ (1) both follow from the
contraposition of Proposition 4 and from Lemma 3; (5) =⇒ (1) and (6) =⇒ (1)
are Propositions 5 and 6. �

The most interesting part of this theorem is the last two statements: it is
possible to check the stutter-invariance of a language using only Instut or only
Destut. In the next section we show different implementations of these operations
on automata.
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3 The Automaton View

Specifications written in linear-time temporal logics like LTL or (the linear frag-
ment of) PSL are typically converted into Büchi automata by model checkers (or
specialized translators). Below we define the variant of Büchi automata we use
in our tool: Transition-based Generalized Büchi Automata or TGBA for short.

The TGBA acronym was coined by [16], although similar automata have
been used with different names before (e.g., [7,14,22]). As their name implies,
these TGBAs have a generalized Büchi acceptance condition expressed in terms
of transitions (instead of states). While these automata have the same expres-
siveness as Büchi automata (i.e., they can represent all ω-regular languages),
they can be more compact; furthermore they are the natural product of many
LTL-to-automata translation algorithms [2,7,11,14,16].

The transformations we define on these automata should however not be
difficult to adapt to other kinds of ω-automata.

Definition 3 (TGBA [16]). A Transition-based Generalized Büchi Automaton
(TGBA) is a tuple A = 〈Σ,Q, q0,F , δ〉 where:

– Σ is a finite alphabet,
– Q is a finite set of states,
– q0 ∈ Q is the initial state,
– δ ⊆ Q × Σ × Q is a transition relation labeling each transition by a letter,
– F = {F1, F2, . . . , Fn} is a set of acceptance sets of transitions: Fi ⊆ δ.

A sequence of transitions ρ = (s0, w0, d0)(s1, w1, d1) . . . ∈ δω is a run of A if
s0 = q0 and for all i ≥ 0 we have di = si+1. We say that ρ recognizes the word
w = w0w1 . . . ∈ Σω.

For a run ρ, let Inf(ρ) ⊆ δ denote the set of transitions occurring infinitely
often in this run. The run is accepting iff Fi ∩ Inf(ρ) 
= ∅ for all i, i.e., if ρ visits
all acceptance sets infinitely often.

Finally the language of A, denoted L (A), is the set of words recognized by
the accepting runs of A.

Figure 1 shows some examples of TGBAs that illustrate the upcoming defin-
itions. The membership of transitions to some acceptance sets is represented by
numbered and colored circles. For instance, automaton A1 in Fig. 1(a) has two
acceptance sets F1 and F2 that respectively contain the transitions marked with

and . This automaton accepts the word (abba)ω but rejects (aba)ω, so its
language is stutter-sensitive.

We now propose some automata-based implementations of the operations
from Definition 2. The next three constructions we define in the rest of this
section, cl (Definition 4), sl (Definition 5), and sl2 (Definition 6), implement
respectively Destut, Instut, and again Instut.

Definition 4 (Closure). Given a TGBA A = 〈Σ,Q, q0, {F1, F2, . . . , Fn}, δ〉,
let cl(A) = 〈Σ,Q, q0, {F ′

1, F
′
2, . . . , F

′
n}, δ′〉 be the closure of A defined as follows:
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Fig. 1. An example TGBA A1, with its closure, self-loopization, complement, closed
complement, and the product between the two closures. L (A1) is stutter-sensitive.
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– δ′ is the smallest subset of Q × Σ × Q such that
• δ ⊆ δ′,
• if (x, �, y) ∈ δ′ and (y, �, z) ∈ δ′, then (x, �, z) ∈ δ′.

– each F ′
i is the smallest subset of δ′ such that

• Fi ⊆ F ′
i ,

• if (x, �, y) ∈ δ′, (y, �, z) ∈ δ′, and either (x, �, y) ∈ Fi or (y, �, z) ∈ Fi then
(x, �, z) ∈ F ′

i .

Figure 1(d) illustrates this construction which can be implemented by modifying
the automaton in place: for every pair of transitions of the form ,
add a shortcut transition that allows to skip one of the duplicated
letters on a run without affecting the acceptance of this run. When the transition

already exists, we just need to update its membership to acceptance
sets. So in effect, these changes let the automaton accept all shorter words that
can be constructed from an accepted words by removing a duplicate letter.

In the worst case (e.g., the states of A form a ring with transitions of the form
(x, �, x + 1 mod n) for all letters �), cl(A) ends up with |Q2| × |Σ| transitions.

Definition 5 (Self-Loopization). Given a TGBA A = 〈Σ,Q, q0,
{F1, F2, . . . , Fn}, δ〉, let sl(A) = 〈Σ,Q′, q0, {F ′

1, F
′
2, . . . , F

′
n}, δ′〉 be the “ self-

loopization” of A defined by:

– Q′ = (Q × Σ) ∪ {q0},
– δ′ = {((x, �1), �2, (y, �2)) | �1 ∈ Σ, (x, �2, y) ∈ δ}

∪ {((y, �), �, (y, �)) | (x, �, y) ∈ δ} ∪ {(q0, �, (y, �)) | (x, �, y) ∈ δ, x = q0},
– F ′

i = {((x, �1), �2, (y, �2)) ∈ δ′ | (x, �2, y) ∈ Fi}.

Figure 1(f) illustrates this construction. For each transition, letters are “pushed”
in the identifier of the destination state, ensuring that all transitions entering
this state have the same letter, and then a self-loop with this letter is added
if it was not already present on the original state. Note that the only self-loop
that belong to acceptance sets are those that already existed in the original
automaton: this ensures that the stuttering we introduce can only duplicate
letters a finite amount of times.

With this construction, a state is duplicated as many times as its number
of different incoming letters. In the worst case the automaton size is therefore
multiplied by |Σ|.

The following definition gives another automata-transformation that imple-
ments Instut, but in such a way that is it easy to modify the automaton in
place.

Definition 6 (Second Self-Loopization). For a TGBA A = 〈Σ,Q, q0,
{F1, F2, . . . , Fn}, δ〉, let sl2(A) = 〈Σ,Q′, q0, {F ′

1, F
′
2, . . . , F

′
n}, δ′〉 be another “ self-

loopization” of A with:



92 T. Michaud and A. Duret-Lutz

Table 1. Characteristics of automata constructed from A = 〈Σ, Q, q0, F , δ〉.

Reachable states Transitions Language

cl(A) |Q| O(|Q|2 × |Σ|) Destut(L (A))

sl(A) O(|Q| × |Σ|) O(|δ| × |Σ|) Instut(L (A))

sl2(A) O(|Q| + min(|Q| × |Σ|, |δ|)) Θ(|δ|) Instut(L (A))

– Q′ = Q ∪ (Q × Σ),
– δ′ = δ ∪ ⋃

(x,�,y)∈δ
(x,�,x) �∈δ∧(y,�,y) �∈δ

{(x, �, (y, �)), ((y, �), �, (y, �)), ((y, �), �, y)},

– F ′
i = Fi ∪ {(x, �, (y, �)) ∈ δ′ | (x, �, y) ∈ Fi}.

Figure 1(g) illustrates this construction. For each transition such that

x and y have no self-loop over �, we add , therefore allowing �

to appear twice or more. Note again that the added self-loop does not belong to
any accepting set, so that � can only be stuttered a finite amount of times.

The number of transitions of sl2(A) is at most 4 times the number of transi-
tions in A. The number of states of the form (y, �) that are added is obviously
bounded by |Q| × |Σ| but also by |δ| since we may add at most one state per
original transition. This implies sl2(A) has O(|Q|+min(|Q|× |Σ|, |δ|)) reachable
states. In automata with a lot of self-loops (which is frequent when they rep-
resent LTL formulas), it can happen that very few additions are necessary: for
instance automaton A1 from Fig. 1(a) requires no modification, while automaton
A1 (Fig. 1(b) and (g)) requires only one extra state.

Table 1 summarizes the characteristics of these three constructions, that sat-
isfy the following proposition:

Proposition 7. For any TGBA A we have L (cl(A)) = Destut(L (A)) and
L (sl(A)) = L (sl2(A)) = Instut(L (A)).

To fully implement cases (3)–(6) of Theorem 1 we now just need to discuss
the product and emptiness check of TGBAs, which are well known operations.

The product of two TGBAs is a straightforward synchronized product in
which acceptance sets from both sides have to be preserved, therefore ensuring
that a word in the product is accepted if and only if it was accepted by each of
the operands.

Definition 7 (Product of Two TGBAs). Let A and B be two TGBAs
on the same alphabet: A = 〈Σ,QA, qA

0 , {F1, F2, . . . , Fn}, δA〉 and B =
〈Σ,QB , qB

0 , {G1, G2, . . . , Gm}, δB〉. The product of A and B, denoted A ⊗ B,
is the TGBA 〈Σ,Q,F , q0, δ〉 where:

– Q = QA × QB,
– q0 = (qA

0 , qB
0 ),
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– δ = {((x1, x2), �1, (y1, y2)) | (x1, �1, y1) ∈ δA, (x2, �2, y2) ∈ δB, �1 = �2},
– F = {F ′

1, F
′
2, . . . , F

′
n, G′

1, G
′
2, . . . , G

′
m} where F ′

i = {(x1, x2), �, (y1, y2) ∈ δ′ |
(x1, �, y1) ∈ Fi} and G′

i = {(x1, x2), �, (y1, y2) ∈ δ′ | (x2, �, y2) ∈ Gi}.
Proposition 8. If A and B are two TGBAs, then L (A⊗B) = L (A)∩L (B).

Figure 1(e) shows an example of product.
Deciding whether a TGBA has an empty language can be done in linear

time with respect to the size of the TGBA [7,26,28]. One way is to search for
a strongly connected component that is reachable from the initial state, and
whose transitions intersects all acceptance sets. The reader can verify that the
product automaton from Fig. 1(e) has a non-empty language (for instance the
word a(ba)ω is accepted thanks to the cycle around 05 and 24 ).

We can now state our main result:

Theorem 2. Let ϕ be a property expressed as a TGBA A, and assume we know
how to obtain A. Testing ϕ for stutter-invariance is equivalent to testing the
emptiness of any of the following products:

– cl(sl(A)) ⊗ A,
– sl(cl(A)) ⊗ A,
– cl(sl2(A)) ⊗ A,
– sl2(cl(A)) ⊗ A,
– sl(A) ⊗ sl(A),
– sl2(A) ⊗ sl2(A),
– cl(A) ⊗ cl(A).

Proof. Consequence of Theorem 1 (3)–(6), and Propositions 7 and 8. �

In a typical scenario, ϕ is a property specified as LTL or PSL, and from
that we can obtain Aϕ and its negation A¬ϕ by just translating ϕ and ¬ϕ using
existing algorithms.

4 Comparison with Other Automata-Based Approaches

As mentioned in the introduction, an automata-based construction described by
Holzmann and Kupferman [19] was used by Klein and Baier [20] to implement a
stutter-invariance check in ltl2dstar. Since our constructions have been heavily
inspired by this construction, it makes sense that we discuss the similarities and
differences.

Holzmann and Kupferman’s construction starts from a Büchi automaton
(i.e., with state-based acceptance) such as A2 in Fig. 2(a). This automaton is
first converted into a Büchi automaton with labels on states and multiple initial
states, such as the automaton B2 pictured in Fig. 2(b). From B2, they produce
the stuttering over-approximation B′

2 in Fig. 2(c). This last step essentially con-
sists in making two copies of the automaton: one non-accepting (the left part
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Fig. 2. Illustration of the similarities between the Holzmann and Kupferman’s con-
struction (top row), and the composition of what we defined as cl and sl (bottom row).

of B′
2), and one non-accepting (the right part of B′

2, in which we grayed out some
states that are not reachable in this example and need not be constructed). The
non-accepting part has self-loops on all its states, and is also closed in such a
way that if there exists a path of states labeled by �1�1 . . . �1�2, there should
exist a transition between the first and the last state. Additionally if this path
visits an accepting state in the original automaton, there should be a transition
to the accepting copy of the last state.

Now we can compare the transformation of A2 into B′
2 and the transformation

of the equivalent2 TGBA A3 into cl(sl(A3)) presented at the bottom of Fig. 2.
The transformation of A2 into B2 combined with the addition of self-loops later
in B′

2 corresponds to the transformation of A3 into sl(A3). The only difference

2 A1, A2, and A3 are equivalent automata. The only reason we used two acceptance
sets in A1 was to demonstrate how cl deals with multiple acceptance sets.
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is that we keep a single initial state. Then, the closure of B′
2 corresponds to our

cl operation, with two differences:

– First, using transition-based acceptance we do not have to duplicate states to
keep track of paths that visit accepting states. The gain is not very important,
since B′

2 can have at most twice the number of states of B2. However one
should keep in mind that the duplication of states between B2 and B′

2 increases
the non-determinism of the automaton, and this will be detrimental to any
later product.

– Second, there is not an exact correspondence between the shortcuts added in
B′

2 and those added by cl due to subtle semantic differences between automata
with transition-labels and automata with state-labels. For instance in Fig. 2(f),

there is a transition 0a 2bb that is a shortcut for 0a 1b 2bb b but
that has no counterpart in Fig. 2(c) because a b b is not labeled by
a word of the form �1�1 . . . �1�2.

To conclude this informal comparison, cl(sl(A)) can be considered as an adap-
tation of the Holzmann and Kupferman [19] construction to TGBA. Our contri-
bution is the rest of Theorem 2: the fact that a different implementation of sl is
possible (namely, sl2), and the fact that we can implement a stutter-invariance
check using only one of the operators cl, sl, or sl2. Furthermore, our experiments
in the next section will show that running sl(cl(A)) is more efficient than cl(sl(A))
(because the intermediate automaton is smaller).

The variant of Holzmann and Kupferman’s construction implemented in
ltl2dstar 0.6 actually only checks stutter invariance one letter at a time. The
problem addressed is therefore slightly different [20]: they want to know whether
a language is invariant by repeating any occurrence of a given letter �, or remov-
ing any duplicate occurrence of �. In effect the automaton is cloned three times:
the main copy is the original Büchi automaton, and every time a transition is
labeled by �, the automaton makes non-deterministic jumps into the two other
copies that behaves as in Holzmann and Kupferman’s construction.

Similar stuttering-checks for a single letter � can be derived from any of the
procedures we proposed. It suffices to modify cl, sl, or sl2 so that they add only
self-loop or shortcuts for �.

Peled et al. [25, Thoerem 16] also presented an automaton-based check similar
to cl(sl(A)), although in a framework that is less convenient from a developer’s
point of view: the transformation of an automaton into its stutter-invariant over-
approximation is achieved via multi-tape Büchi automata.

Finally, there is also a related construction proposed by Etessami [12,
Lemma 1] that provides a normal form for automata representing stutter-
invariant properties. The construction could be implemented using cl(sl(A)) (or
Holzmann and Kupferman’s construction) as a base, but the result is then fixed
to ensure that one cannot arrive and depart from a state using the same let-
ter. The latter fix (which is similar to some reduction performed while con-
structing testing automata [15,17]) is only valid if the property is known to be
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stutter invariant: when applied to a non-stutter invariant property, the result-
ing automaton is not an over-approximation of the original one, so building a
stutter-invariance check on that procedure would require a complete equivalence
check instead of an inclusion check.

5 Evaluation

We evaluate the procedures of Theorem 2 in the context of deciding the stutter
invariance of LTL formulas. LTL formulas are defined over a set AP of Boolean
propositions (called Atomic Propositions), and the TGBAs that encode these
formulas are labeled by valuations of all these propositions. In this context we
therefore have Σ = 2AP .

Our motivation is very practical. Since version 1.0, Spot distributes a
tool called ltlfilt with an option --stutter-invariant to extract stutter-
invariant formulas from a list of LTL formulas [10]. Our original implementa-
tion was based on Etessami’s rewriting function τ ′ [13]: if an LTL formula ϕ
uses the X operator, we compute τ ′(ϕ) and test the equivalence between ϕ and
τ ′(ϕ) by converting these formulas and their negations into TGBA and testing
L (Aτ ′(ϕ) ⊗ A¬ϕ) = ∅ ∧ L (A¬τ ′(ϕ) ⊗ Aϕ) = ∅. However this equivalence3 test
proved to be quite slow due to the translation of τ ′(ϕ) and its negation, which
are often very large formulas.

Furthermore Spot also supports PSL formulas for which we would also like
to decide stutter invariance. The checks based on automata transformations
discussed in this paper therefore solve our two problems: they are faster, and
they are independent on the logic used.

In this section we show to which extent ltlfilt --stutter-invariant was
improved by the use of automata-based checks, and compare the various checks
suggested in Theorem 2 to reveal which one we decided to use by default.

It should be noted that those benchmarks are completely implemented in
Spot (See Appendix A for tool support), in which transition-based general-
ized Büchi acceptance is the norm, so we did not implement any technique
for automata with state-based acceptance. We also know of no other publicly
available tool that would offer a similar service, and to which we could compare
our results.4

We opted to implement cl, sl, sl2, and ⊗ as separate functions that take
automata and produce new automata, the best as we could, using the TGBA
data structure in the current development version of Spot. In the cases of cl and
sl2 our implementation modifies the input automaton in place to save time. We
use Couvreur’s algorithm [7] for emptiness check.
3 Unlike automata-based constructions such as cl(sl(A)), the formula τ ′(ϕ) is not nec-

essarily an over-approximation of ϕ, so the equivalence check between ϕ and τ ′(ϕ)
cannot be replaced by a simple inclusion check.

4 The only actual implementation of a construction similar to the one of Holzmann
and Kupferman [19] that we know about is in ltl2dstar[20], but it decides only
stutter-invariance for one letter at a time, is used to improve Safra’s construction,
and is not directly accessible to the user.
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Table 2. Time to classify 500 random LTL formulas that all use the X operator and
have the given number of atomic propositions.

|AP | = 1 |AP | = 2 |AP | = 3

L (Aτ ′(ϕ) ⊗ A¬ϕ) = ∅ ∧ L (A¬τ ′(ϕ) ⊗ Aϕ) = ∅ 0.32 s 40.62 s >4801 s (OOM)

L (A¬(ϕ↔τ ′(ϕ))) = ∅ 1.18 s 3347.92 s

L (cl(sl(Aϕ)) ⊗ A¬ϕ) = ∅ 0.61 s 1.91 s 6.14 s

L (sl(cl(Aϕ)) ⊗ A¬ϕ) = ∅ 0.61 s 1.91 s 6.10 s

L (cl(sl2(Aϕ)) ⊗ A¬ϕ) = ∅ 0.61 s 1.89 s 5.97 s

L (sl2(cl(Aϕ)) ⊗ A¬ϕ) = ∅ 0.61 s 1.91 s 5.97 s

L (sl(Aϕ) ⊗ sl(A¬ϕ)) = ∅ 0.61 s 1.92 s 6.18 s

L (sl2(Aϕ) ⊗ sl2(A¬ϕ)) = ∅ 0.61 s 1.90 s 5.99 s

L (cl(Aϕ) ⊗ cl(A¬ϕ)) = ∅ 0.60 s 1.89 s 5.94 s

Number of stutter-invariant formulas found 234 162 112

Our first experiment is to compare the speed of the proposed automata-based
checks to the speed achieved in our previous implementation. For Table 2 we pre-
pared three files of 500 random formulas with a different number of atomic proposi-
tions, all using the X operator (otherwise they would be trivially stutter-invariant,
and there is no point in running our algorithms), then we used our ltlfilt
tool [10] with option --stutter-invariant to print only the stutter-invariant for-
mulas of this list. The reported time is the user’s experience, i.e., it accounts for the
complete run of ltlfilt (including parsing of input formulas, stutter-invariance
check, and output of stutter-invariant formulas) and differs only by the stutter-
invariance check performed. As the first line of this table demonstrates, testing
the equivalence of ϕ and τ ′(ϕ) as we used to quickly becomes impractical: the
experiment with |AP | = 3 aborted after 80 min with an out-of-memory error.5

It was recently pointed to us that Etessami [13] does not suggest to test the
equivalence of ϕ and τ ′(ϕ), but to test whether ϕ ↔ τ ′(ϕ) is a tautology, i.e.,
whether ¬(ϕ ↔ τ ′(ϕ)) is satisfiable. This alternative approach is not practical
in our implementation. The second line of Table 2 shows the cost of translating
¬(ϕ ↔ τ ′(ϕ)) into a TGBA and testing its emptiness6: the run-time is actu-
ally worse because in order to be translated into an automaton, the formula
¬(ϕ ↔ τ ′(ϕ)) has first to be put into negative normal form (i.e., rewriting the

5 Measurements were done on a dedicated Intel Xeon E5-2620 2 GHz, running Debian
GNU/Linux, with the memory limited to 32 GB (out of the 64 GB installed).

6 A better implementation of this check would be to construct the automaton for
ϕ ↔ τ ′(ϕ) on-the-fly during its emptiness check, as done in dedicated satifiability
checkers [27]. Alas, the implementation of our algorithm for translating LTL/PSL
formulas into TGBA is not implemented in a way that would allow an on-the-fly
construction. So this experiment should not be read as a dismissal of the idea of
testing whether L (A¬(ϕ↔τ ′(ϕ))) = ∅ but simply as a justification of why we used
L (Aτ ′(ϕ) ⊗ A¬ϕ) = ∅ ∧ L (A¬τ ′(ϕ) ⊗ Aϕ) = ∅ in our former implementation.
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Table 3. Cross-comparison of the checks of Theorem 2 on 40000 random LTL formulas
with X. A value v on line (x) and column (y) indicates that there are v cases where
check (x) was more than 10 % slower than check (y). In other words, a line with many
small numbers indicates a check that is usually faster than the others.

Run time

(1) (2) (3) (4) (5) (6) (7) Total Median

L (cl(sl(Aϕ)) ⊗
A¬ϕ) = ∅

(1) 24615 38158 38593 1999 35200 39660 45.8 s 162µs

L (sl(cl(Aϕ)) ⊗
A¬ϕ) = ∅

(2) 244 38343 38832 91 34965 39813 34.9 s 135µs

L (cl(sl2(Aϕ)) ⊗
A¬ϕ) = ∅

(3) 536 419 7413 67 10297 29495 11.0 s 57µs

L (sl2(cl(Aϕ)) ⊗
A¬ϕ) = ∅

(4) 264 163 671 30 10223 28880 10.2 s 55µs

L (sl(Aϕ) ⊗
sl(A¬ϕ)) = ∅

(5) 33410 39112 39746 39909 38403 39977 59.4 s 208µs

L (sl2(Aϕ) ⊗
sl2(A¬ϕ)) = ∅

(6) 2689 2564 16896 18621 580 26693 11.7 s 64µs

L (cl(Aϕ) ⊗
cl(A¬ϕ)) = ∅

(7) 16 13 3487 2993 11 2409 7.3 s 39µs

↔ operator and pushing negation operators down to the atomic propositions),
which means the the resulting formula has a size that is the sum of the sizes of
each of the formulas ϕ, ¬ϕ, τ ′(ϕ), and ¬τ ′(ϕ) used in the first line.

On the other hand, all the tests from Theorem 2 show comparable run times
in Table 2: this is because most of the time is spent in the creation of Aϕ and
A¬ϕ, and the application of cl, sl, and sl2 only incurs a minor overhead.

We then conducted another evaluation, focused only on the checks from
Theorem 2. In this evaluation, that involves 40000 unique LTL formulas (10000
formulas for each |AP | ∈ {1, 2, 3, 4}) using the X operator, we first translated
Aϕ and A¬ϕ, and then measured only the time spent by each of the checks (i.e.,
the run time of cl, sl, sl2, the product, and the emptiness check). The resulting
measurements allow to compare the 7 checks on each of the 40000 formulas, as
summarized by Table 3.

The benchmark data, as well as instructions to reproduce them can be found
at http://www.lrde.epita.fr/∼adl/spin15/. In addition to source code, this page
contains CSV files with complete measurements, and a 16-page document with
more analysis than we could do here.

Based on this evaluation, we decided to use L (cl(A) ⊗ cl(A¬ϕ)) = ∅, the
last line in the table, as our default stutter-invariance check in ltlfilt. The
operation cl seems to be more efficient than the other two because it can be
performed in place without adding new states. The table also suggests that
checks that involve the sl operation (i.e., the one that duplicates each state
for each different incoming letter) should be avoided. sl2 seems to be a better
replacement for sl as it can be implemented in place.

http://www.lrde.epita.fr/~adl/spin15/
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Different implementations of these checks could be imagined. For instance the
composed constructions like sl2(cl(A)) or cl(sl2(A)) could be done in such a way
that the outer operator is only considering the transitions and states that were
already present in A. The product and emptiness check used for cl(A) × cl(A)
could be avoided when it is detected that neither A nor A have been altered by
cl (likewise with sl2). Also the sl and sl2 constructions, as well at the product,
could be all computed on-the-fly as needed by the emptiness check, so that only
the parts of sl(A) and sl(A) that is actually needed to prove the product empty
(or not) is constructed.

6 Conclusion

We have presented seven decision procedures that can be used to check whether
a property (for which we know an automaton and its complement) is stutter-
invariant. A typical use case is to decide whether an LTL or PSL property is
stutter-invariant, and we provide tools that implement these checks. The first
variant of these procedures is essentially an adaptation of a construction by
Holzmann and Kupferman [19] to the context of transition-based acceptance.
But we have shown that this construction can actually be broken down into two
operators: cl to allow longer words and sl to allow shorter words, that can accept
different realizations (e.g., sl2), and that can be combined in different ways.

In particular, we have shown that it is possible to implement a stutter-
invariance check by implementing only one operation among cl, sl, or sl2. This
idea is new, and it makes any implementation easier. The implementation we
decided to use in our tool because it had the best performance in our benchmark
uses only the cl operation.

The definition of cl, sl and sl2 we gave trivially adapt to ω-automata with any
kind of transition-based acceptance, such as those that can be expressed in the
Hanoi Omega Automata format babiak.15.cav, and that our implementation
fully supports. Indeed, those three operations preserve the acceptance sets seen
infinitely (and finitely) often along runs that are equivalent up to stuttering,
so it is not be a problem if those acceptance sets are used by pairs in a Rabin
or Streett acceptance condition, for instance. The acceptance condition used is
relevant only to the emptiness check used.

To implement a check in a framework using state-based acceptance, we rec-
ommend using the sl2(A)⊗sl2(A) check, because the definition of sl2(A) is trivial
to adapt to state-based acceptance: the acceptance sets simply do not have to
be changed. As we saw in Sect. 4, the operations cl and sl are less convenient to
implement using state-based acceptance since one needs to add additional states
to keep track of the accepting sets visited by some path fragments. Furthermore,
sl2(A) has the advantage that it can be implemented by modifying A in place.

Acknowledgments. The authors are indebted to Joachim Klein and Akim Demaille
for some influencing comments on the first drafts of this article, and to Etienne Renault,
Souheib Baarir and the anonymous reviewers of ICALP’15 and SPIN’15 from some
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A Tool Support

All the checks described in this article are implemented in Spot 1.99.1 which can
be obtained from https://spot.lrde.epita.fr/.

Stutter-invariance of LTL or PSL formulas can be tested on-line without
installing anything:

1. Load https://spot.lrde.epita.fr/trans.html.
2. Type an LTL or PSL formula.
3. Select “Desired Output: Formula” and then “property information”.
4. Scan the resulting properties for “syntactic stutter invariant” (this means the

formula belongs to LTL\Xor siPSL), “stutter invariant” or “stutter sensitive”.
In the latter two cases, the automata-based check had to be performed.

If Spot is installed, the tool ltlfilt can be used from the command-line
to make the same decision. For instance ltlfilt -f ’ϕ’ --stutter-invariant
will print ϕ back iff ϕ is stutter-invariant.

Similarly the tool autfilt can be used to apply the operations cl, sl, and sl2
to any automaton (with any acceptance condition). The corresponding options
are --destut, --instut, and --instut=2 respectively.
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Abstract. Multi-core processors have penetrated the modern
computing platforms in several dimensions. Such systems aim to achieve
high-performance via running computations in parallel. However, the
performance of such systems is often limited due to the congestion in
shared resources, such as shared caches and shared buses. In this paper,
we propose MESS, a performance debugging framework for embedded,
multi-core systems. MESS systematically discovers the order of memory-
access operations that expose performance bugs due to shared caches.
We leverage both on single-core performance profiling and symbolic con-
straint solving to reveal the interleaved memory-access-pattern that leads
to a performance bug. Our baseline framework does not generate any
false positive. Besides, its failure to find a solution highlights the absence
of performance bugs due to shared caches, for a given input. Finally,
we propose an approximate solution that dramatically reduces debug-
ging time, at the cost of a reasonable amount of false positives. Our
experiments with several embedded software and a real-life robot con-
troller suggest that we can discover performance bugs in a reasonable
time. The implementation of MESS and our experiments are available
at https://bitbucket.org/sudiptac/mess.

1 Introduction

It is notoriously difficult to understand and discover performance bugs in soft-
ware. Whereas performance bugs may appear in any application, these bugs are
critical for certain class of software, such as embedded and real-time software.
Embedded and real-time applications are, in general, constrained via several
temporal requirements. For hard real-time applications, violation of such tem-
poral constraints may lead to catastrophic effects, often costing human lives.
Apart from hard real-time applications, the existence of performance bugs may
substantially impact the quality of soft real-time applications (e.g. media play-
ers) as well as web applications. As the computing world is moving towards the
multi-core era, it has become a critical problem to develop correct and efficient
software on multi-core platforms. In this paper, broadly, we concentrate on the
efficiency of applications which run on multi-core platforms.

In multi-threaded execution, software functionality might be disrupted due
to the non-deterministic order in accessing shared data [11]. Similarly, the per-
formance of multi-core systems may highly vary due to the non-deterministic
c© Springer International Publishing Switzerland 2015
B. Fischer and J. Geldenhuys (Eds.): SPIN 2015, LNCS 9232, pp. 105–125, 2015.
DOI: 10.1007/978-3-319-23404-5 8
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order in accessing shared resources, such as shared caches. Caches are managed
at runtime and they store copies of memory blocks from the main memory. In
current generation computing platforms, caches are several magnitudes faster
than accessing the main memory. As a result, cache memory is a crucial com-
ponent to bridge the performance gap between the processor and main memory,
and to improve the overall performance of applications. However, since caches
are managed at runtime, the order of memory-access patterns play a crucial role
in deciding the content of caches. For instance, consider a shared cache which
can hold only one memory block. If accesses to m1 and m2 are interleaved in par-
allel, then the ordering (m1 · m2)∗ will always lead to cache misses. In contrast,
only the first accesses of m1 and m2 will suffer cache misses, for the ordering
(m∗

1 · m∗
2). In summary, depending on the memory-access order, there might be

a high variation on cache performance, which dramatically impacts the overall
performance of software.

In this paper, we propose a novel approach to discover interleaving patterns
that violate a given temporal constraint. For a given program input, our frame-
work automatically discovers the order of memory accesses that highlights a
performance bug. These bugs happen due to the cache sharing between cores
and they may lead to serious performance issues at runtime. A typical usage of
our framework is the reproduction of performance bugs on multi-core systems
and subsequently, improve the overall performance via classic cache manage-
ment techniques, such as cache locking [18]. We leverage on the recent advances
in constraint solving and satisfiability modulo theory (SMT) to systematically
explore memory-access patterns. We propose a baseline framework which does
not generate false alarms. Moreover, if our baseline framework terminates with-
out a solution, then we can guarantee the validity of given temporal constraints,
for the given input. We also propose an approximation that systematically par-
titions the set of constraints and solve each partition in parallel. Such a strategy
dramatically improves the solver performance. Our approximation guarantees
soundness, meaning that the absence of a solution highlights the absence of
performance bugs. Besides, our evaluation reveals that such an approximation
exhibits reasonably low false alarms.

The generation of a performance-stressing interleaving pattern involves many
technical challenges. Unlike the functionality of an application, its performance
is not directly annotated in the code. Moreover, it is infeasible to execute an
application for all possible interleaving patterns, due to an exponential number
of possibilities. To resolve such challenges, we propose a compositional approach
to discover performance bugs. Our framework broadly contains two stages. In
the first stage, we monitor the performance of each core in isolation and com-
pute a performance-summary for each core. In each performance-summary, the
timing to access the shared cache is replaced by a symbolic variable. In the
second stage, we formulate constraints that relate the order of memory accesses
with the delay to access the shared-cache. In particular, we formulate constraints
that symbolically encode necessary and sufficient conditions for a memory block
to be evicted from the shared-cache. As a result, using these constraints, we could
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determine whether a given memory block is available in the shared-cache, when
it is being accessed. In other words, we can use such constraints to bound the
delay to access the shared-cache and thereby, constraining the value of symbolic
variables, which were introduced in the first stage of our framework. Finally,
the temporal constraint is also provided as a quantifier-free formula. All the
constraints, together with the temporal constraint, is given to an SMT solver.
If the solver finds a solution, the resulting solution highlights an interleaving
pattern that violates the temporal constraint. Since SMT technology is continu-
ously evolving, we believe that such a compositional approach will be appealing
to discover performance bugs in multi-core systems.

To tackle the complexity of our systems, we also propose an approximate
solution that significantly improves the performance of our proposed framework.
For shared caches, we observed that the set of all constraints can be partitioned
systematically to solve in parallel. The general intuition is to consider parti-
tions of memory accesses which can contend in the shared-cache and solve the
constraints generated for each partition independently. By increasing the size of
each partition, the designer can reduce the number of false positives at the cost
of debugging time. Therefore, our framework gives designer the flexibility to fine
tune the precision, with respect to debugging time.

Contribution. In summary, we propose a performance debugging framework
that exposes performance issues due to shared caches. We leverage on single-
core performance profiling and symbolic-constraint solving, in order to discover
the interleaving pattern that violates a given temporal constraint. Our baseline
framework does not generate any false positive and it can also be used to prove
the absence of performance bugs for a given input. Moreover, for time-critical
code fragments, our baseline framework can be employed to derive the worst-
case interleaving pattern (in terms of shared-cache performance), for a given
input. To tackle the complexity of our constraint-based framework, we have also
proposed an approximation that dramatically increases the solver performance.
To show the generality of our approach, we have instantiated our framework for
two different caches (i) caches with least-recently-used (LRU) replacement policy
and (ii) caches with first-in-first-out (FIFO) policy. We have implemented our
entire framework on top of simplescalar [6] – an open-source, cycle-accurate,
processor simulator and Z3 [5] – an open source, SMT solver. Our experiments
with several embedded software reveals the effectiveness of our approach. For
instance, our baseline framework was able to check a variety of temporal con-
straints for a real-life robot controller [2] within 3min and our approximation
took only 20 s on average to check the same set of constraints. This makes the
idea of constraint-based formulation in performance debugging quite appealing
for research in future.

2 Overview

Background on Caches. Caches are employed between the CPU and the
main memory (DRAM) to bridge the performance gap between the CPU and
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the DRAM. A cache can be described as a three tuple 〈A,S,L〉, where A is the
associativity of the cache, S is the number of cache sets and L is the line size
(in bytes). Each cache set can hold A cache lines, leading to a total cache size
of (A · S · L) bytes. When A = 1, the respective caches are called to be directly
mapped. Data is fetched into caches at the granularity of line size (L). Therefore,
for an arbitrary memory address x, L contiguous bytes are fetched into the cache
starting from address

⌊
x
L

⌋
and we say that x belongs to the memory block

⌊
x
L

⌋
.

The number of cache sets (S) decides the location where a particular memory
block would be placed in the cache. For instance, a memory block, starting at
address M , is always mapped to the cache set M mod S. Since each cache set
can hold only A cache lines, a cache line needs to be replaced when the number
of memory blocks mapping to a cache set exceeds A. In order to accomplish this,
a replacement policy is employed when A ≥ 2. In this paper, we instantiate our
framework for two widely used replacement policies – LRU and FIFO. In LRU
policy, the memory block, that was not accessed for the longest period of time, is
replaced from the cache to make room for other memory blocks. In FIFO policy,
the memory block, which is residing in the cache for the longest period of time,
is replaced to make room for other blocks. In general, the performance of a cache
may greatly depend on the underlying replacement policy.

Terminologies. We use the following terminologies on caches throughout the
paper.

1. memory block: For an arbitrary memory reference to address x, we say that it
belongs to memory block

⌊
x
L

⌋
(L is the line size of cache, in bytes), in order

to distinguish different cache lines.
2. cache hit/miss: For an arbitrary memory reference, we say that it is a cache

hit (miss) if the referenced memory block is found (not found) in the cache.
3. cache conflict: Two memory blocks M1 and M2 conflict in the cache if they

map to the same cache set. In other words, M1 is conflicting to M2 (and vice
versa). These conflicting memory blocks might be accessed within the same
core (intra-core) or across different cores (inter-core).

4. cache-set state: Ordered A-tuple capturing the content of a cache set. For
instance, 〈m1,m2〉 captures such a tuple for caches with associativity 2. The
relative position of a memory block in the tuple decides the number of unique
cache conflicts required to evict the same from the cache. For instance, in
〈m1,m2〉, m1 requires two unique cache conflicts to be evicted from the cache,
whereas m2 requires only one. The generation of cache conflicts critically
depends on the replacement policy and the order of memory accesses.

Motivation and Challenges. Figure 1 captures an example where two pro-
grams are executing in parallel on different processor cores and sharing a cache.
For the sake of simplicity, let us assume that all the instructions in both Program
x and Program y access the same shared-cache set. In Fig. 1(a), the memory
block accessed by each instruction is shown within the brackets. In the following
discussion, we shall capture the location i of Program x via xi and the same of
Program y via yi.
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Program x
1: load   [m1]           
2: store  [m2]
3: load   [m1]          
4: store  [m1]      
5: store  [m2] 

Program y

]       

Program x
1: load   [m1]           
2: store  [m2]
3: load   [m1]          
4: store  [m1]      
5: store  [m2] 

Program y

]       

m1 m2 m1 m2

m1 m1

m1 m2 m1

Program x
1: load   [m1]           
2: store  [m2]
3: load   [m1]          
4: store  [m1]      
5: store  [m2] 

Program y

]       

m1 m2 m1

m2 m1m2

m2

m1

m1

m1 m2 m1

m1 m1m1

m2

m2

m1

(a) Two programs running in parallel (b) Interleaving pattern leading  
to 100% cache misses

 (c) Transition of cache contents leading  
to 100% cache misses

(e) Transition of cache content leading   
to cache miss at location 4 of Program x  

(using FIFO policy)

(f) Transition of cache contents leading  
to cache hit at location 4 of Program x  

(using LRU policy)

(d) Interleaving pattern that does not  
generate 100% cache misses and behaves  

differently for FIFO and LRU policy

Fig. 1. An example showing the impact of interleaving pattern on shared-cache perfor-
mance. The direction of an arrow captures the happens-before relation. Cache misses
are highlighted in bold.

Let us assume a cache with associativity (A) two and employing FIFO
replacement policy. Further assume that we want to check whether all instruc-
tions in both programs can face cache misses. Figure 1(b) captures an interleaving
pattern which leads to 100 % cache misses in both programs. The progression
of the cache content for this interleaving pattern is captured via Fig. 1(c). It is
worthwhile to note that many interleaving patterns will fail to generate 100 %
cache misses in both programs. Figure 1(d) captures one such interleaving pat-
tern. As a result, if the set of memory accesses (cf. Fig. 1(a)) appears within
a loop, the memory-access delay might change dramatically depending on the
interleaving pattern. The respective cache contents for the interleaving pattern
in Fig. 1(d) are shown via Fig. 1(e). In general, it is infeasible to perform an
exhaustive search over the set of all possible interleaving patterns, due to an
exponential number of possibilities. As a result, a systematic method is required
to check performance-related constraints, in the context of multi-core systems.
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Fig. 2. Performance debugging framework for multi-core systems
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Let us now assume that we want to check whether location x4 can face
a cache miss. Such a behaviour can also take place only for a few interleaving
patterns. Figure 1(d) captures an interleaving pattern which lead to a cache miss
at location x4 (cf. Fig. 1(e) for the transition of cache contents). Unfortunately,
if we replay the same interleaving pattern for LRU replacement policy, it will
not lead to a cache miss at location x4. This behaviour is captured via Fig. 1(f),
which demonstrates the modification of cache contents in the presence of LRU
policy. This shows the influence of the cache replacement policy to check or
invalidate temporal constraints.

To summarize, due to the presence of shared caches in multi-core systems, it is
challenging to check the validity of temporal constraints or reproduce any viola-
tion of temporal constraints in a production run. This phenomenon occurs due to
the non-determinism in the order of interleaved memory-accesses, which, in turn
leads to non-determinism in cache contention and variability in memory-access
delay. In the following, we shall give an outline of our performance debugging
framework.

Overall Framework. Fig. 2 outlines the overall design of MESS. For a given
input to each program running in parallel, our framework is used to check the
temporal constraints. We first monitor the execution on each core in isolation,
ignoring any interference from other cores. At the end of this monitoring phase,
we obtain a sequence of shared-cache accesses 〈i1, i2, . . . , iVi−1, iVi〉 for each core
i, where Vi is the total number of shared-cache accesses by core i. We also
collect the shared-cache-set states at these access points. Using the information
obtained from the monitoring phase, we build a constraint system via the theory
of quantifier-free linear integer arithmetic (QF LIA). Intuitively, this constraint
system relates the order of memory accesses with the delay to access the shared
cache. The size of our constraint system is polynomial, with respect to the number
of accesses to the shared cache. Finally, the temporal constraint can be provided
to the constraint system via quantifier-free predicates. The entire constraint
system, along with the temporal constraints, is provided to an SMT solver. If
the constraint system is satisfiable, then the solution returned by the SMT solver
captures an interleaving pattern that violates certain temporal constraints. This
solution can further be used for debugging performance on multi-core systems.

System Model. We assume a sequentially-consistent, multi-core system where
each core may have several levels of private caches and only the last-level cache
is shared across cores. Therefore, a shared-cache miss will lead to an access to
the slow DRAM. Such a design of memory-hierarchy is typical in embedded
multi-core processors [1]. In this paper, we do not address the problem of cache
coherency and any cache misses resulting from the same. Such cache misses
might appear due to the invalidation of cache lines that hold outdated data.
In summary, we first assume that programs, running on different cores, have
disjoint memory spaces. We argue that, even in the absence of cache coherency,
debugging shared-cache performance is sufficiently complex. In Sect. 4, we discuss
the required modifications in our framework in the presence of data sharing.
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3 Methodologies

In this section, we shall introduce the formal foundation of our framework. Recall
that the outcome of our framework is to compute a memory-access ordering,
leading to a performance bug. This ordering is captured among all accesses to
the shared cache.

Let us assume that we have a total of N cores, each of which might exhibit
a different sequence of shared-cache accesses. We use the notation ij to capture
the j-th shared-cache access by i-th core and Vi to capture the total number
of shared-cache accesses by core i. We also use the following notations in our
framework:

– σj
i : The memory block accessed by the shared-cache access ij .

– π(m) : Cache set where memory block m is mapped.
– ζj

i : Shared-cache-set state for cache set π(σj
i ), immediately before the access ij .

– Cj
i : The set of memory blocks, other than σj

i , mapping to the same cache set
as σj

i in the shared cache. Therefore, for any m′ ∈ Cj
i , we have m′ �= σj

i and
π(m′) = π(σj

i ).
– Oj

i : The position of the shared-cache access ij in the ordering among all
accesses to the shared cache.

– δj
i : The delay suffered by the shared-cache access ij .

For instance, in Fig. 1(b), σ1
x = m1, σ1

y = m1′, ζ1y = 〈m2,m1〉 and the
interleaving pattern is captured as follows: O1

x < O2
x < O1

y < O2
y < O3

x < O3
y <

O4
y < O4

x < O5
x. The outcome of our framework is such an interleaving pattern.

Profiling Each Core in Isolation. As outlined in the preceding section,
our framework initially records the performance of each core in isolation. The
primary purpose of this recording phase is to accurately identify accesses to
the shared cache, for each core. Therefore, while profiling each core in isolation,
ζj
i contains memory blocks accessed only within core i and ignores all memory

blocks accessed within core ī �= i.
Let us assume agej

i denotes the relative position of σj
i within ζj

i , while pro-
filing each core in isolation. If σj

i /∈ ζj
i (i.e. ij suffers a shared-cache miss), we

assign A + 1 to agej
i , where A is the associativity of the shared-cache. Subse-

quently, for each core i, we encode a performance-summary αi as a sequence
of pairs. Each such pair captures a shared-cache access ij , along with agej

i as
follows:

αi ≡ 〈(i1, age1i ), (i
2, age2i ), . . . , (i

Vi−1, ageVi−1
i ), (iVi , ageVi

i )〉 (1)

For any shared-cache access ij , it is a shared-cache miss if and only if σj
i /∈ ζj

i ,
leading agej

i being set to A + 1. Such a cache miss can happen because of the
following reasons: (i) σj

i was accessed for the first time, or (ii) σj
i was evicted

from the shared-cache by some other memory block. Recall that programs run-
ning on different cores have disjoint memory spaces. As a result, while profiling
each core in isolation, we can accurately identify shared-cache misses when σj

i
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īj̄

Shared−cache set state

ζ ji

ij
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ī σj

i = σq
p

Shared−cache set state
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Fig. 3. The direction of arrow captures the total order between accesses to the shared
cache. The left-most position in ζj

i captures the most recently used memory block.

(a) īj̄ cannot affect shared-cache set state ζj
i and therefore, it cannot generate cache

conflict to ij , if īj̄ happens after ij , (b) īj̄ can affect ζj
i only if īj̄ happens before ij ,

(c) shared-cache access pq accesses the same memory block as that of ij (i.e. σq
p = σj

i )

and therefore, access īj̄ cannot affect the relative position of σj
i within ζj

i .

was accessed for the first time. This is because, σj
i was not accessed by any other

core except core i. Next, we describe our constraint system (using QF LIA the-
ory), which formulates necessary and sufficient conditions for evicting memory
blocks from the shared-cache, leading to shared-cache misses.

Program Order Constraints. These constraints are generated to capture
the program order on each core. Note that 〈i1, i2, . . . , iVi−1, iVi〉 captures the
sequence of shared-cache accesses by core i. Therefore, the following constraints
are generated to capture the program order semantics (note that any partial
ordering between shared-cache accesses across cores, if exists, can be captured
in a similar fashion).

Θorder ≡
∧

i∈[1,N ]

∧

j∈[2,Vi]

(
Oj

i > Oj−1
i

)
(2)

Program-order constraints are generated irrespective of the cache replacement
policy. In the following, we now instantiate the constraint formulation for LRU
and FIFO policies.

3.1 Constraint System for LRU Caches

A shared-cache access ij is a cache hit if and only if ζj
i contains σj

i . Otherwise, ij

suffers a shared-cache miss. Therefore, to accurately determine the shared-cache
performance, it is crucial to track all feasible states of ζj

i . We accomplish this
by relating the order of memory accesses with the changes in cache-set states.
In order to understand the relationship between the memory-access order and
cache-set states, we first define the notion of cache-conflict generation between
two shared-cache accesses.

Definition 1. (Cache Conflict Generation) Consider a shared-cache access īj̄,
which requests memory block m̄ (i.e. σj̄

ī
= m̄). A shared-cache access īj̄ generates
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(cache) conflict to ij, only if accessing m̄ at īj̄ can affect the relative position of
σj

i within ζj
i . For instance, in Fig. 1(d), accesses to m1′ and m2′ do not generate

cache conflict to x3, but an access to m2 does (at x2).

We introduce a variable Ψ j
i (m̄) to capture whether any access to memory

block m̄ generates conflict to the shared-cache access ij . As stated in Defini-
tion 1, the memory block m̄ might be accessed more than once and therefore,
the formulation of Ψ j

i (m̄) must consider all possible places where m̄ was accessed.
Consider one such place īj̄ , where m̄ was accessed. Therefore, σj̄

ī
= m̄. Figure 3

illustrates different scenarios in LRU policy, with respect to the generation of
cache conflicts.

In particular, Figs. 3(a)–(b) capture the happens-before relationship between
accesses īj̄ and ij . It is impossible for īj̄ to affect the cache-set state ζj

i , if ij

happens before īj̄ . Moreover, if the memory block σj
i is accessed after īj̄ and

before ij , then such an access will hide the cache conflict between īj̄ and ij .
Figure 3(c) captures one such situation, where shared-cache access pq accesses
the memory block σj

i and prevents īj̄ to affect the relative position of σj
i within

cache-set state ζj
i .

In the following, we describe the formulation of constraints for an arbitrary
shared-cache access ij . The primary purpose of these constraints is to compute
the delay δj

i . Considering the intuition provided in Fig. 3, we can state that a
shared-cache access īj̄ generates conflict to the shared-cache access ij , only if
the following conditions hold:

– ψlru
cft

(
īj̄ , ij

)
: Shared-cache access īj̄ happens before the shared-cache access

ij . Therefore, Oj̄
ī

< Oj
i . This is illustrated via Figs. 3(a)–(b).

– ψlru
ref

(
īj̄ , ij

)
: There does not exist any shared-cache access pq, such that pq

accesses memory block σj
i from the shared-cache, pq happens before ij and īj̄

happens before pq. Therefore, for any shared-cache access pq, where σq
p = σj

i ,

conditions Oq
p < Oj

i and Oj̄
ī

< Oq
p cannot be satisfiable together. Otherwise,

note that pq will hide the cache conflict between īj̄ and ij , as illustrated via
Fig. 3(c).

ψlru
cft

(
īj̄ , ij

)
and ψlru

ref

(
īj̄ , ij

)
can be formalized via the following constraints:

ψlru
cft

(
īj̄ , ij

)
≡ Oj̄

ī
< Oj

i (3)

ψlru
ref

(
īj̄ , ij

)
≡

∧

p,q: σq
p=σj

i

¬
(
Oj̄

ī
< Oq

p ∧ Oq
p < Oj

i

)
(4)

We combine Constraint (3) and Constraint (4) to formulate the generation of
shared-cache conflict. Recall that Cj

i captures the set of memory blocks that map
to the same shared-cache set as σj

i . Therefore, Constraints (3)–(4) need to be
generated for each memory block in Cj

i . Formally, for each shared-cache access
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ij , we generate the following constraints to capture cache conflicts generated
across cores.

Θlru
1 (i, j) ≡

∧

ī�=i:σj̄

ī
∈Cj

i

((
ψlru

cft

(
īj̄ , ij

)
∧ ψlru

ref

(
īj̄ , ij

))
⇒

(
Ψ j

i

(
σj̄

ī

)
= 1

))
(5)

The absence of inter-core cache conflict is captured via the negation of Con-
straint (5). In particular, for any memory block m̄ ∈ Cj

i , we need to consider the
set of locations īj̄ where m̄ is accessed (i.e. σj̄

ī
= m̄). If none of these locations

satisfy either Constraints (3) or (4), we can conclude that accesses to mem-
ory block m̄ do not generate any cache conflict to shared-cache access ij . This
behaviour can be captured via the following constraints:

Θlru
0 (i, j) ≡

∧

m̄∈Cj
i

⎛

⎜
⎝

∧

ī �=i:σj̄

ī
=m̄

(
¬ψlru

cft

(
īj̄ , ij

)
∨ ¬ψlru

ref

(
īj̄ , ij

))
⇒

(
Ψ j

i (m̄) = 0
)
⎞

⎟
⎠

(6)

Finally, we need to link Constraints (5)–(6) to the absolute latency suffered by
shared-cache access ij (i.e. δj

i ). Let us assume HIT and MISS capture the shared-
cache hit latency and miss penalty, respectively. To compute the latency, we need
to check whether the set of cache conflicts generated at ij could evict the memory
block σj

i . Therefore, we generate the following constraints to formulate the delay
suffered at location ij .

Θlru
miss(i, j) ≡

⎛

⎜
⎝

∑

ī�=i: σj̄

ī
∈Cj

i

Ψ j
i (σj̄

ī
) ≥ A − agej

i + 1

⎞

⎟
⎠ ⇒ (δj

i = MISS ) (7)

Θlru
hit (i, j) ≡

⎛

⎜
⎝

∑

ī �=i: σj̄

ī
∈Cj

i

Ψ j
i (σj̄

ī
) ≤ A − agej

i

⎞

⎟
⎠ ⇒ (δj

i = HIT ) (8)

agej
i denotes the relative position of σj

i within ζj
i and agej

i=A+1, if σj
i /∈ ζj

i .
The value agej

i was collected while profiling each core in isolation (cf. Eq. (1)).
Therefore, agej

i already captures cache conflicts generated within core i and the

quantity
(
A − agej

i + 1
)

captures the minimum number of unique, inter-core

cache conflicts (as formulated via Constraint (5)) to evict σj
i from the shared

cache.

3.2 Constraint System for FIFO Caches

Unlike LRU policy, cache-set state remains unchanged for all cache hits in FIFO
policy (cf. Fig. 1(e)). As a result, the necessary conditions to generate cache
conflicts (cf. Constraints (3)–(4)) need to be modified for FIFO policy.
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ζ j̄ī σy
x

σj
i = σq

pζ ji σ j̄
ī
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Fig. 4. The direction of arrow captures the total order between accesses to the shared
cache. The left-most position in ζj

i captures the most recent memory block inserted

into ζj
i . (a) īj̄ cannot affect shared-cache set state ζj

i as īj̄ is a cache hit. Therefore, īj̄

cannot generate cache conflict to ij , (b) īj̄ can affect ζj
i only if īj̄ happens before ij and

it is a cache miss, (c) shared-cache access pq accesses the same memory block as that
of ij (i.e. σq

p = σj
i ), however, pq is a cache hit. Therefore, pq cannot hide the cache

conflict generated between īj̄ and ij .

To illustrate the difference between LRU and FIFO policy, let us consider
the scenarios in Fig. 4. For instance, in Fig. 4(a), shared-cache access īj̄ happens
before the access ij . However, īj̄ cannot affect the relative position of σj

i within
ζj
i and therefore, īj̄ cannot generate cache conflict to ij (cf. Definition 1). It is

worthwhile to note that, īj̄ would have generated conflict to ij , in the presence of
LRU policy. Figure 4(b) captures a scenario, where īj̄ was a cache miss, leading
to the generation of cache conflict to ij . Recall that, for LRU policy, if the
memory block σj

i was accessed between īj̄ and ij , then īj̄ could not generate
cache conflict to ij (cf. Constraint (4)). However in FIFO policy, as shown in
Fig. 4(c), even though access pq references σj

i and it occurs between īj̄ and ij , pq

cannot hide the cache conflict between īj̄ and ij . This is because pq was a cache
hit and therefore, it does not affect the relative position of σj

i within ζj
i .

In summary, a shared-cache access must be a cache miss if it affects the
cache-set state ζj

i . In order to realize this intuition, we formulate the follow-
ing constraints, which capture the necessary conditions for īj̄ generating cache
conflict to ij .

ψfifo
cft

(
īj̄ , ij

)
≡

(
Oj̄

ī
< Oj

i

)
∧

(
δj̄
ī

= MISS
)

(9)

ψfifo
ref

(
īj̄ , ij

)
≡

∧

p,q: σq
p=σj

i

¬
((

Oj̄
ī

< Oq
p

)
∧

(
Oq

p < Oj
i

)
∧ (

δq
p = MISS

))
(10)

Constraint (9) ensures that īj̄ incurs a cache miss, in order to generate cache
conflict to ij (cf. Figs. 4(a)–(b)). Similarly, Constraint (10) ensures that access
pq needs to be a cache miss to hide the cache conflict between īj̄ and ij (cf.
Fig. 4(c)).

The outcome of Constraints (9)–(10) may depend on the interleaving pattern,
even within a single core (i.e. ī = i). This is because, values of δj̄

ī
and δq

p may
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depend on the interleaving pattern. As a result, the generation of cache conflicts,
even within a core, may be affected with FIFO policy. Hence, unlike LRU policy,
we need to formulate cache conflict both within a core and across cores. This is
accomplished by modifying Constraints (5)–(6), so that the resulting constraints
also consider cache conflicts within cores. In particular, we remove the condition
ī �= i from Constraints (5)–(6) as follows.

Θfifo
1 (i, j) ≡

∧

ī,j̄:σj̄

ī
∈Cj

i

((
ψfifo

cft

(
īj̄ , ij

)
∧ ψfifo

ref

(
īj̄ , ij

))
⇒

(
Ψ j

i

(
σj̄

ī

)
= 1

))

(11)

Θfifo
0 (i, j) ≡

∧

m̄∈Cj
i

⎛

⎜⎜⎝
∧

ī,j̄:σ
j̄
ī
=m̄

(
¬ψfifo

cft

(
īj̄ , ij

)
∨ ¬ψfifo

ref

(
īj̄ , ij

))
⇒
(
Ψj

i (m̄) = 0
)
⎞

⎟⎟⎠ (12)

Finally, we link Constraints (11)–(12) to compute the memory-access latency.
Intuitively, we check whether the total amount of cache conflict can evict the
memory block accessed by ij . This can be formalized via the following con-
straints.

Θfifo
miss(i, j) ≡

⎛

⎝

⎛

⎝
∑

m̄∈Cj
i

Ψ j
i (m̄) ≥ A

⎞

⎠ ∨
(
agej

i = A + 1
)
⎞

⎠ ⇒ (δj
i = MISS ) (13)

Θfifo
hit (i, j) ≡

⎛

⎝

⎛

⎝
∑

m̄∈Cj
i

Ψ j
i (m̄) < A

⎞

⎠ ∧
(
agej

i �= A + 1
)
⎞

⎠ ⇒ (δj
i = HIT ) (14)

A is the associativity of the cache. Recall that agej
i=A+1, if σj

i /∈ ζj
i and agej

i

was measured while investigating each core in isolation (cf. Eq. 1). Therefore,
the condition agej

i=A+1 guarantees to include the first-ever cache miss of σj
i .

Once σj
i enters the cache, it takes at least A unique cache-conflicts to evict it

from the cache.
∑

m̄∈Cj
i
Ψ j

i (m̄) accounts all unique cache-conflicts faced by σj
i ,

since it enters the cache and till ij . Therefore, Constraint (13) precisely captures
all possibilities of a cache miss at ij . The violation of Constraint (13) will result
in a cache hit at ij , as shown in Constraint (14).

Providing Temporal Constraints. For embedded software, temporal con-
straints can be provided in the form of an assertion. Therefore, our framework
will search for an ordering on symbolic variables Oj

i that violates such assertions.
In particular, we consider assertions that check the execution time against a
threshold τ . In our framework, the non-determinism in timing behaviour appears
due to the accesses to shared caches. Therefore, in our evaluation, we search for
a solution that satisfy the following constraint:

(∑
i,j δj

i ≥ τ
)
. Recall that δj

i

symbolically captures the delay suffered by shared-cache access ij . It is worth-
while to note that we can also check the timing behaviour of a code fragment,
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instead of checking the same for the entire system. In such cases, we consider
only a subset of δj

i variables relating to the code fragment.

Putting it All Together. Our formulated constraints, along with the temporal
constraint, is provided to an off-the-shelf SMT solver. As a result, any ongoing
and future improvements in the solver technology will directly boost the effi-
ciency of our approach. The SMT solver searches for a satisfying solution of the
following constraints:

Φ ≡ Θorder ∧
∧

i,j

(Θx
1 (i, j) ∧ Θx

0 (i, j) ∧ Θx
miss(i, j) ∧ Θx

hit(i, j)) ∧
⎛

⎝
∑

i,j

δj
i ≥ τ

⎞

⎠

(15)
where x ∈ {lru, fifo}, depending on the cache replacement policy. The solution
of the solver captures concrete values of symbolic variables Oj

i that satisfy Φ.
Such concrete values can be used to derive the total order among all accesses to
the shared-cache.

Complexity of Constraints. The complexity of our constraints Φ (cf. Con-
straint (15)) is dominated by the number of constraints to formulate cache
conflicts. For instance, in LRU policy, Constraints (5)–(6) dominate the total
number of constraints. Let us assume that the total number of shared-cache
accesses across all cores is K. Therefore, the size of Constraint (2) has a com-
plexity of O(K). Similarly, the total size of Constraints (7)–(8), for LRU policy
(respectively, the total size of Constraints (13)–(14) for FIFO policy) has a size of
O(K). Finally, during the formulation of cache conflict, each shared-cache access
can be compared with all conflicting shared-cache accesses. Therefore, Θlru

1 (i, j),
Θlru

0 (i, j), Θfifo
1 (i, j) and Θfifo

0 (i, j) have a worst-case size-complexity O(K2).
Since there exists a total of K shared-cache accesses, the total size of Con-
straints (5)–(6) has a complexity of O(K3). Putting everything together, our
constraint system has a worst-case size-complexity O(K3). However, our evalu-
ation reveals that the size of our constraint system is substantially lower than
the worst-case complexity.

3.3 Approximate Solution

Our approximation scheme aims to reduce the pressure on the constraint solver
by reducing the number of constraints to be solved together. The general intu-
ition of our approximation is based on the design principle of caches. In par-
ticular, we leverage the fact that two different cache sets never interfere with
each other, in terms of cache conflict. Therefore, we model the constraints for
each cache set separately and solve them in parallel. In the following, we shall
formalize the concept.

Finding a Slice of Constraints. The key idea for the approximation is to
find a slice of constraints that could be solved independently. Recall that the
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symbolic variable δj
i captures the delay suffered by shared-cache access ij . It is

worthwhile to note that the memory block accessed at ij (i.e. σj
i ) can be evicted

from the shared-cache only by memory blocks conflicting to σj
i . A memory block

m̄ conflicts to σj
i in the cache if and only if m̄ and σj

i map to the same cache set.
Therefore, we first group shared-cache accesses with respect to different cache
sets and generate the respective constraints. For instance, consider that we are
generating constraints with respect to cache set s. We shall use π(m) to capture
the cache set in which memory block m is mapped.

We slice out the program-order constraints by considering only the memory
blocks which map to cache set s. Therefore, the set of program-order constraints,
with respect to cache set s, can be defined as follows.

Γorder(s) ≡
∧

i∈[1,N ]

⎛

⎜⎝
∧

j,k∈[1,Vi]: j<k∧(π(σ
j
i )=π(σk

i )=s)∧(∀m∈[j+1,k): π(σ
j
i ) �=π(σm

i ))

Ok
i > Oj

i

⎞

⎟⎠

(16)
Let us now consider LRU cache replacement policy. The set of constraints, with
respect to cache set s, considers constraints that only influence the memory
blocks mapped to cache set s. Therefore, for cache set s, we extract the con-
straints formulated in Eqs. (5)-(8) as follows.

Γ lru
1 (s) ≡

∧

i,j:π(σj
i )=s

Θlru
1 (i, j); Γ lru

0 (s) ≡
∧

i,j:π(σj
i )=s

Θlru
0 (i, j) (17)

Γ lru
miss(s) ≡

∧

i,j:π(σj
i )=s

Θlru
miss(i, j); Γ lru

hit (s) ≡
∧

i,j:π(σj
i )=s

Θlru
hit (i, j) (18)

Finally. we gather all constraints with respect to cache set s. Our goal is to
maximize the delay faced by accessing memory blocks mapped to s. This is
performed via the following constraints and objective function.

Γ (s) ≡ Γorder(s) ∧ Γ lru
1 (s) ∧ Γ lru

0 (s) ∧ Γ lru
miss(s) ∧ Γ lru

hit (s) (19)

Δ(s) = maximize
∑

i,j: π(σj
i )=s

δj
i (20)

Note that Γ (s) includes all constraints that could influence Δ(s). We can use
recent development in SMT solving [17] to maximize the objective function cap-
tured via Eq. 20). It is also worthwhile to mention that the preceding process
can be carried out in an exactly same fashion for FIFO policy. As a result,
our approximation strategy is generic, with respect to the replacement policy
employed in a cache.

For each cache set s, we formulate Γ (s) and obtain the value of Δ(s) using
[17]. If s1, s2, . . . , sq are all different sets in the shared cache,

∑
r∈[1,q] Δ(sr) over-

approximates the total delay in accessing the shared cache. More precisely, we
state the crucial property of our approximation scheme as follows (see [3] for the
proof).
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Property 2. Let us assume {s1, s2, . . . , sq} are different sets in the shared cache.
For a given temporal constraint

∑
i,j δj

i < τ , if our baseline constraint system Φ
(cf. Constraint (15)) is satisfiable, then

∑
r∈[1,q] Δ(sr) ≥ τ . In other words, our

approximation scheme will never miss the violation of any temporal constraint.

However, it is worthwhile to mention that our approximation scheme may gen-
erate false positives. In particular,

∑
r∈[1,q] Δ(sr) might over-approximate the

maximum value of
∑

i,j δj
i . This is due to the reason that interleaving patterns,

which lead to the maximum delay for individual cache sets, may not be feasible
together. In our evaluation, we empirically evaluate the amount of pessimism in
our approximation scheme.

4 Extension

Applications with Shared Variables. Our framework handles interferences
in the shared resources, but, not in the shared variables. As a result, we do
not catch the scenario when the program control-flow changes due to updates
to shared variables. However, many embedded applications are designed by a
number of independent components and the communication occurs in terms of
reading sensor inputs or writing to output ports. In our evaluation, we show a
real-life robot controller which operates via two independent tasks – balance and
navigation. Moreover, shared memory-space across cores often bypass caches, to
avoid power consumption due to the coherence traffic [14]. If accessing the shared
memory-space bypasses cache, our framework can be easily extended for general
applications with shared variables. In order to accomplish this, we need to gen-
erate additional constraints, which encode the program control-flow observed
during a failure run (i.e. an execution scenario violating certain temporal con-
straints). This can be achieved in an exactly same fashion as shown in [15].

It is slightly more involved when accessing the shared memory-space goes
through caches. In particular, we need to add constraints that capture cache
misses due to data coherency and false sharing. This can be accomplished by
correlating writes and reads to the same memory block. Besides, we need to dis-
tinguish the first-ever shared-cache miss for a memory block via Constraint (21),
for any cache replacement policy. Without data sharing, such cache misses can
be detected during the inspection of each core in isolation.

∧

i,j

⎛

⎝
∧

p,q: σq
p=σj

i

(
Oq

p > Oj
i

)
⇒

(
δj
i = MISS

)
⎞

⎠ (21)

Constraint (21) encodes the scenario of ij being the first shared-cache access to
request memory block σj

i . This, in turn, leads to a shared-cache miss. We are
currently extending MESS to handle data sharing and cache coherency.

Performance Debugging for a Class of Inputs. With minor changes, our
framework can be extended for performance debugging on a class of inputs.
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The key to such extension is to collect path conditions [12], while monitoring
the performance of each core in isolation. For each core, such a path condition
captures the set of all inputs which lead to the respective execution scenario.
However, depending on the value of input x, the statement a[x] might access
different memory blocks, for the same path condition. Therefore, we need to
generate constraints for each such memory block, satisfying the respective path
constraint. Let us assume that array a might access memory block m1 if 0 ≤
x ≤ 2 and it accesses memory block m2 if 2 < x ≤ 5. Subsequently, to formulate
cache conflicts generated by accesses (i.e. Constraints (5)–(6) for LRU policy and
Constraints (11)–(12) for FIFO policy) to m1 and m2, we additionally constrain
via conditions (0 ≤ x ≤ 2) and (2 < x ≤ 5), respectively. For instance, we modify
Θlru

1 (i, j) to Θlru
1 (i, j) ∧ (0 ≤ x ≤ 2) for memory block m1 and to Θlru

1 (i, j) ∧
(2 < x ≤ 5) for memory block m2. In future, we aim to build such extension
to instantiate performance debugging on a set of inputs, which are captured
symbolically by path conditions.

5 Evaluation

We have implemented MESS using simplescalar [6] and Z3 constraint solver [5].
In our evaluation, we configure a multi-core system with dual-core processor,
where each core has a private level-one cache and all the cores share a level-
two cache. This is a typical design in many embedded systems, such as devices
using Exynos 5250 [4], which, in turn, contains a dual-core, ARM Cortex-A15 [1]
chip. We configure 1 KB level-one caches with associativity 2 and 2 KB level-two
cache with associativity 4. All caches have a line size of 32 bytes. Cache sizes are
chosen in a fashion such that we obtain enough accesses to the shared cache and
therefore, generate a reasonable number of constraints in our framework (see [3]
for experiments with different cache configurations). To evaluate our framework,
we have chosen medium to large size programs from [13], which are generally
used to validate timing analyzers. We have also used a robot controller from [2].
which contains two tasks — balance (to help the robot to keep it in upright
position) and navigation (to drive the robot through rough terrain). These two
tasks are assigned to different cores in our configured dual-core system.

Experimental Setup. For our evaluation with programs from [13], we run
jfdctint on one core and choose different programs to run on the other core.
We use such a setup in order to check the influence of the same inter-core cache
conflicts on different programs. For the robot controller, we run balance and
navigation on two different cores. The first two columns in Table 1 list the set
of programs and the respective size of source code. We monitor the execution on
each core by instrumenting memory accesses in Simplescalar. At the end of the
execution, we generate a summary of memory performance for each core, which,
in turn are used to generate constraints. The generated constraints are solved
via Z3. All evaluations have been performed on an Intel I7 machine, having 8 GB
of RAM and running ubuntu 14.04 operating systems.
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Table 1. Evaluation of our baseline framework: “lines of C code” considers the sum
of source code of two programs running on two different cores, “#violations” cap-
tures the number of violations within the set of 30 temporal constraints {∑i,j δj

i <

200, . . . ,
∑

i,j δj
i < 3100}.

Program Total

lines

of C

code

Shared-

cache

repl.

policy

#shared-

cache

access

Size of

constraints

#violations Time to

generate

constraints

(secs)

Solver time

(secs)

Max./Geo.

Mean

cnt+

jfdctint

642 LRU 432 2111 22 1.17 25.01/1.84

FIFO 432 6586 22 9.52 161.83/15.73

expint+

jfdctint

532 LRU 433 2166 23 1.22 10.84/2.16

FIFO 433 6643 23 9.62 576.56/20.02

qurt+

jfdctint

541 LRU 448 2817 30 1.88 24.81/3.16

FIFO 448 7272 30 9.38 31.77/11.59

matmult+

jfdctint

538 LRU 436 2283 28 1.31 244.39/1.91

FIFO 436 6758 28 9.69 15495.83/

12.82

fdct+

jfdctint

614 LRU 479 3943 30 2.99 17.49/5.01

FIFO 479 8418 30 11.85 44.31/21.44

nsichneu+

jfdctint

4628 LRU 1679 40087 30 49.2 17120.46/

7904.08

FIFO 1679 44562 30 15.35 27534.20/

15174.8

balance+

navigation

2098 LRU 772 3881 30 0.23 155.17/63.94

FIFO 773 6770 30 0.56 389.68/184.32

Basic Results. Table 1 outlines the basic evaluation of our framework. We set
the shared-cache miss-penalty (hit-latency) to be 100 (1) cycles. Recall that
we aim to check the validity of temporal constraints

∑
i,j δj

i < τ . We generate a
number of temporal constraints by varying τ from 200 to 3100 cycles, at a step of
100 cycles and for each such temporal constraint, we invoke our framework. Note
that τ captures all possibilities between two to thirty one shared-cache misses.
Besides, in

∑
i,j δj

i , we only consider shared-cache accesses ij , whose latency
were unknown during the investigation of each core in isolation (cf. Column 4
in Table 1). Therefore, any shared-cache access ij , which incurs the first-ever
cache miss of the respective memory block σj

i , is not included in
∑

i,j δj
i . In

Table 1, we report the maximum and geometric mean over the time to check all
temporal constraints. For several cases, this maximum time was recorded for a
valid temporal constraint, meaning that the solver failed to find a violation. We
can observe that, for many scenarios, the solver returns a solution in reasonable
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Table 2. Efficiency and precision of our approximation. TO denotes timeout (>5 h).
“Max. #constraints” capture the maximum number of constraints solved by Z3 over
all invocations.

Program Replacement

policy of the

shared-cache

Max.

#con-

straints

Solver

time (in

seconds)

Max.

delay(
max

∑
i,j δj

i

)

(in CPU

cycles)

baseline approx baseline approx baseline approx

cnt+

jfdctint

LRU 2111 154 23.58 4.39 2394 3285

FIFO 6586 513 116.49 14.35 2300≤X<2400 3285

expint+

jfdctint

LRU 2166 207 10.84 4.77 2494 3385

FIFO 6643 526 409.39 14.58 2400≤X<2500 3385

qurt+

jfdctint

LRU 2817 305 565.91 9.2 3884 6161

FIFO 7272 631 TO 29.03 ≥3900 6061

matmult+

jfdctint

LRU 2283 154 244.39 5.23 2988 4473

FIFO 6758 513 15495.83 15.98 2900≤X<3000 4473

fdct+

jfdctint

LRU 3943 304 TO 22.31 ≥6200 10116

FIFO 8418 599 TO 66.4 ≥6200 10116

nsichneu+

jfdctint

LRU 40087 2862 TO 764.56 ≥10000 31500

FIFO 44562 3137 TO 926.45 ≥10000 31500

balance+

navigation

LRU 3881 442 93.32 12.81 12800≤X<12900 13200

FIFO 6770 818 182.68 25.08 12200 12200

time. However, with large number of constraints, the solver takes long time to
find a solution. For instance, with program nsichneu, such a scenario happens
due to its large size and a substantial number of accesses to the shared-cache. In
general, finding a solution for FIFO policy takes longer time compared to LRU
policy, due to a larger constraint-size.

Evaluation of the Approximate Solution. Table 2 compares our approxima-
tion and the baseline framework. As clearly observed, our approximation dra-
matically reduces the debugging time, compared to the baseline framework. This
is due to the partitioning of constraints with respect to different cache sets. Such
constraint partitioning drastically reduces the number of constraints to be solved
together, leading to a substantial reduction of pressure to Z3. As our approxima-
tion may generate false positives, we also compare the precision of our approx-
imation compared to the baseline framework. In order to do this, we compare
the maximum delay computed by our approximation with the maximum delay
computed by the baseline framework. This maximum delay captures the sum of
all delays to access the shared-cache. For our baseline framework, obtaining such
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maximum delay may incur large overhead (we used symba [17] to compute the
maximum delay). In such cases, we use the time taken by the solver to validate
a temporal constraint

∑
i,j δj

i < τ . This means that the maximum delay cannot
exceed τ − 1. For instance, in Table 2, 2300≤X<2400 indicates that the solver
found a solution for

∑
i,j δj

i ≥ 2300, but not for
∑

i,j δj
i ≥ 2400. The respective

debugging-time captures the time taken by the solver for
∑

i,j δj
i ≥ 2400. Finally,

we use a timeout of five hours for the solver. For instance, the timeout event hap-
pens for the program fdct. From Table 2, we also observe that the precision of
our approximation scheme is reasonable, in the context of validating embedded
software. Finally, we note that with the current state-of-the-art solutions (e.g.
using [17]), discovering the exact worst-case ordering among memory accesses
(in terms of performance), is not very efficient.

Notes on Scalability. We have implemented a proof-of-concept of MESS. We
have also shown an approximation, which dramatically improves the solver per-
formance, with a reasonable loss of precision. We believe that several optimiza-
tions are still possible. In particular, as shown in [15], other optimizations for
parallel constraint-solving is feasible. We are exploring such techniques to further
improve the efficiency of MESS.

6 Related Work

Testing and debugging of multi-threaded applications has been an active topic
of research for the last few years [15,19,20,23,24]. Unlike these approaches, our
work concentrates on resource sharing in parallel architectures, rather than data
sharing in parallel applications. However, to consider shared data in our frame-
work, an approach similar to [15] can be integrated easily into our constraint
system. Our work is also orthogonal to efforts in program synthesis, such as
the approach taken in [8]. Instead of generating correct and optimal programs
from their specification [8], we aim to discover performance bugs in the original
implementation of software.

Modeling shared-cache performance has been an active topic of research in
the past few years [21,22]. Unlike our approach, these works do not provide
strong guarantees on the presence or absence of performance bugs due to shared
caches. Such guarantees are crucial for time-critical code fragments. Recent
works on performance testing aim to generate performance-stressing execution
in sequential [7] or parallel applications [10,16]. These works are not directly
applicable to reproduce or debug performance bugs. Besides, in this paper, we
provide strong guarantees on the absence of performance bugs, when a given
temporal constraint is not invalidated by the solver.

Works on worst case execution time (WCET) analysis, for multi-core systems
[9], predicts the maximum execution time of an application over all possible
inputs and interleavings. In this paper, our goal is orthogonal and we aim to
discover, for a given input, the interleaving pattern that causes the violation of
temporal constraints. Therefore, our work has a significant testing and debugging
flavour compared to WCET analysis.
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In summary, previous works on automated debugging have mostly concen-
trated on functionality bugs or performance bugs on single-core systems. In this
paper, we propose a systematic debugging approach that highlights performance
bugs on multi-core systems, with a specific focus on shared caches.

7 Conclusion

In this paper, we have proposed MESS, a constraint-based framework to debug
memory performance in multi-core systems. MESS systematically finds the inter-
leaving pattern that causes the violation of temporal constraints. An appealing
feature of our framework is its ability to provide guarantees on the absence of
performance bugs, such as the validity of temporal constraints, for a given input.
We have also integrated an approximation scheme, which, with a reasonable loss
of precision, improves the debugging time by several magnitudes. In general,
this opens up several opportunities to improve the debugging time enforced by
MESS. Our evaluation with several embedded software and also with a real-life
robot controller shows the effectiveness of our approach. Finally, since the per-
formance of constraint solvers is continuously improving, we believe that MESS
proposes a promising approach for performance debugging on multi-core sys-
tems. In future, we aim to build on our approach to consider shared data and
other crucial shared resources in multi-core systems, such as shared buses. We
also aim to use MESS to automatically synthesize fixes of performance bugs.
One possible approach would be to synthesize barriers. The primary purpose of
such barriers will be to satisfy a given temporal constraint, via restricting certain
interleaving patterns.
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Abstract. This work presents the Digital-Systems Verifier (DSVerifier),
which is a verification tool developed for digital systems. In particular,
DSVerifier employs the bounded model checking technique based on sat-
isfiability modulo theories (SMT) solvers, which allows engineers to verify
the occurrence of design errors, due to the finite word-length approach
employed in fixed-point digital filters and controllers. This tool consists
in an additional module for the efficient SMT-based context-bounded
model checker and presents command-line and graphical user interface
(GUI) versions. Indeed, the GUI version is essential for reporting prop-
erty violations, together with associated counterexamples. DSVerifier is
implemented in C/C++ and uses JavaFX for providing GUI support.

1 Introduction

Digital filters and controllers are currently used in a wide variety of applica-
tions, due to some advantages over their analog counterparts, such as improved
reliability, sensitivity, flexibility, and cost. However, errors may be introduced
during the quantization process, given that such systems are typically imple-
mented in microcomputers, microprocessors, digital signal processors, and field-
programmable gate arrays. Thus, hardware choice, computational representation
(e.g., direct and delta forms), and other implementation features (e.g., number of
bits, fixed- or floating-point arithmetic, and sample rate) have a strong influence
on precision and performance figures.

Implementations of digital systems are especially susceptible to finite word-
length (FWL) effects (e.g., overflows, limit cycles, and poles and zeros sensitiv-
ity), which thus reduce their reliability and efficiency. For instance, the presence
of limit cycles, in digital systems, reduces semiconductor lifespans and increases
energy consumption. Besides, pole-zero positions also affect the system dynamics
and fundamental requisites, such as stability.

In order to avoid performance degradation, engineers usually invest a great
deal of time and effort during the design phase, aiming to solve problems caused
by FWL effects. Although one finds a myriad of design tools, there is a clear
lack of initiatives for validating digital systems, w.r.t. implementation aspects.
In particular, software engineering techniques typically disregard the platform
in which the (embedded) system software operates and restrict itself to verify
software in isolation [1].
c© Springer International Publishing Switzerland 2015
B. Fischer and J. Geldenhuys (Eds.): SPIN 2015, LNCS 9232, pp. 126–131, 2015.
DOI: 10.1007/978-3-319-23404-5 9
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Alur et al. [2,3] introduced the earliest application of model checking for dig-
ital systems, represented by timed automata. Those influential studies inspired
the development of various model checking tools for hybrid automatas and cyber-
physical systems, e.g., UPPAAL [4], Open-Kronos [5], and Maellan [6]. However,
such approaches are usually employed for high-level verification and have not
been used for verifying resilience, i.e., system robustness related to implementa-
tion aspects. One may notice there is still a gap, regarding verification tools and
methodologies to check for implementation aspects of embedded systems.

The present paper addresses this problem with the Digital-Systems Verifier
(DSVerifier)1, which is a bounded model checking (BMC) tool based on satis-
fiability modulo theories (SMT). DSVerifier is a powerful tool for supporting
the design and verification steps of digital systems, which is more reliable and
less laborious than traditional simulation tools (e.g., Matlab [7]), since it offers
formal guarantees and is completely automatic.

In previous studies [8–10], an SMT-based BMC approach related to overflow,
limit cycle, time constraints, stability, and minimum phase, in digital filters and
controllers, was already discussed, and a novel methodology for verifying digital
systems was presented. In contrast, this paper tackles implementation and usage
aspects, related to a tool that provides support for the same methodology.

2 The Digital-Systems Verifier (DSVerifier)

DSVerifier is an internal module for the efficient SMT-based context-bounded
model checker (ESBMC) [11], with the goal to add support for digital-system ver-
ification. The complete verification tool includes four components from ESBMC,
together with DSVerifier, which are represented as dashed white boxes in Fig. 1:
C parser, GOTO Program, GOTO Symex, and SMT solver.

The DSVerifier module is included before the C parser (gray box), as seen
in Fig. 1. This module provides functions, which are related to quantization in
fixed-point arithmetic and different digital-system realizations, and makes use
of ESBMC as a verification engine, in order to check for properties related to
overflow, limit cycle, time constraints, stability, and minimum phase.

In summary, DSVerifier performs three main procedures: initialization, vali-
dation, and instrumentation. When DSVerifier receives the digital-system speci-
fication, the first step is to initialize its internal parameters for quantization, that

Fig. 1. An overview of the verification architecture.

1 Available at http://www.dsverifier.org.

http://www.dsverifier.org
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is, it computes the maximum and minimum representable numbers for the cho-
sen FWL format. Then, during validation, DSVerifier checks whether all required
parameters, for the verification procedure, were correctly provided. In the last
step, DSVerifier adds explicit calls to the verification engine (for the evaluated
properties), using functions available in ESBMC (e.g., ESBMC assume and
ESBMC assert), in order to check for property violations.

Once the mentioned procedures are finished, an ANSI-C code file is generated,
which can be verified by any C model-checker that supports bit-vector reasoning.
This file is directly sent to the C parser module (see Fig. 1) and follows the
normal ESBMC verification flow. In the present work, ESBMC is used, since it
is the most efficient tool for reasoning about bit-vector programs, according to
the last edition of the software verification competition [12]. If the verification
framework finds a property violation, it produces a counterexample; otherwise,
the evaluated design can be embedded into a computer-based system.

2.1 DSVerifier Features

The current version of DSVerifier supports five verification properties, regarding
three direct- and delta-form implementations of digital systems, which include
the cascade form. The following verifications are supported:

– Overflow. If a sum or product exceeds the number representation, then the
resulting value will not be correctly stored. DSVerifier ensures the absence of
overflows, by formally verifying every sum and product;

– Limit Cycle. There can be persistent oscillations in the output of a system
with constant input. DSVerifier is able to check for zero-input limit cycles, for
any initial condition;

– Stability. DSVerifier may be used for verifying digital-system stability, con-
sidering FWL effects on pole locations, i.e., on the system dynamics;

– Minimum phase. DSVerifier may perform a similar analysis for system zeros,
in order to verify minimum phase for digital controllers;

– Time constraints. DSVerifier is able to investigate whether a specific com-
putational realization respects time constraints.

2.2 DSVerifier-Aided Design Methodology

Using DSVerifier, a development engineer may verify if a digital-controller (or
filter) design will present the desired performance, when it is embedded into
a given hardware, considering the chosen implementation characteristics. An
overview of the proposed methodology can be seen in Fig. 2. In step 1, a digital
system is initially designed, with any available design technique or tool. Later,
the necessary implementation characteristics have to be defined, as shown in
steps 2 and 3: FWL format (number of bits in the integer and fractional parts),
dynamic range, and realization form (direct or delta). The mentioned definitions
are then fed to the DSVerifier engine, along with hardware specifications and
other verification parameters, such as verification time (i.e., maximum time that
the verification process takes) and properties to be checked. Once the configu-
ration has been set up, in step 4, the verification process is then started, in step
5, with the chosen model checking tool (ESBMC is used as back-end).
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Fig. 2. Proposed methodology for digital-system verification.

DSVerifier then checks the desired properties and, in step 6, returns the
verification result, which is ‘successful’ if there is no property violation in the
proposed implementation; otherwise, it returns that the verification ‘failed’ and
shows a counterexample, which contains inputs and states that led the system to
the found property violation. With this counterexample, other implementation
options (i.e., realization and representation) can be chosen, in order to avoid
that failure. This process is repeated until the digital controller implementation
does not present any failures, as shown in Fig. 2.

Note that this methodology has been applied to open-loop systems, where
the design under verification is unwound k times, together with a property, in
order to form an SMT formula, which is then passed to the SMT solver. The
verification of stability and minimum-phase is complete and sound, since it does
not depend on system outputs and inputs. However, the verification of other
property types is typically unsound, unless some induction technique is used.

2.3 DSVerifier Usage

In order to explain the DSVerifier workflow, the following second-order controller,
which can be found in a set of benchmarks available online2, will be used:

H(z) =
2.813z2 − 0.0163z1 − 1.872

z2 + 1.068z1 + 0.1239
. (1)

It was designed for an induction motor plant (extracted from an example avail-
able in Ogata [13]), with a sampling period of 0.5 s.

Command-Line Version. In this version, users must provide a description
ANSI-C file, as shown in Fig. 3 for the digital controller represented by Eq. (1).
This file contains the digital-system specification (ds), with numerator (ds.b =
{2.813, −0.0163, −1.872}) and denominator (ds.a = {1.0, 1.068, 0.1239}), and
2 http://www.dsverifier.org/benchmarks.

http://www.dsverifier.org/benchmarks
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the implementation specification itself (impl), which contains the number of bits
in the integer (impl.int bits = 4) and precision (impl.frac bits = 10) parts and
the input range (impl.min = −5 and impl.max = 5).

#include<d s v e r i f i e r . h>
d i g i t a l s y s t em ds = {

. a = { 1 . 0 , 1 . 068 , 0 .1239 } , /∗ denominator ∗/

. a s i z e = 3 , /∗ denominator l e n g t h ∗/

. b = { 2 .813 , −0.0163 , −1.872 } , /∗ numerator ∗/

. b s i z e = 3 /∗ numerator l e n g t h ∗/
} ;
implementation impl = {

. i n t b i t s = 4 , /∗ i n t e g e r b i t s ∗/

. f r a c b i t s = 10 , /∗ p r e c i s i on b i t s ∗/

. min = −5.0 , /∗ minimum input ∗/

.max = 5 .0 /∗ maximum input ∗/
} ;

Fig. 3. A digital-system verification input file for DSVerifier.

In the command-line version, DSVerifier is invoked as:

dsverifier <file> --realization <i> --property <j> --x-size <k>

where < file > is the digital-system specification file, < i > is the chosen real-
ization, < j > is the property to be verified, and < k > is the verification bound,
i.e., the number of times the digital system will be unwound. Currently, 12 real-
izations are supported: direct form I (DFI), direct form II (DFII), transposed
direct form II (TDFII), delta direct form I (DDFI), delta direct form II (DDFII),
transposed delta direct form II (TDDFII), cascade direct form I (CDFI), cas-
cade direct form II (CDFII), cascade transposed direct form II (CTDFII), cas-
cade delta direct form I (CDDFI), cascade delta direct form II (CDDFII), and
cascade transposed direct form II (CTDDFII). Furthermore, 5 different proper-
ties can be chosen: overflow, limit cycle, stability, minimum phase, and timing.
Most verifications consider only FWL effects, based on the number of bits spec-
ified by the user; however, time-constraint verifications also consider hardware
parameters such as processor clock, instruction count, and cycles per instruction.

Graphical User Interface (GUI). In order to facilitate the digital-system ver-
ification, a GUI was developed for DSVerifier, aiming to improve usability and,
consequently, attract more digital-system engineers. The user can provide all
required parameters for digital-system verifications: digital-system specification,
information about the target processor, and the desired properties to be checked.
Another interesting feature is the parallel execution of verification tasks, which
has the potential to decrease the total verification time spent by DSVerifier. The
GUI also provides graphical verification of results and counterexamples with
error trace, which help adjust the verified design. It is worth noticing that users
can even access documentation, benchmarks, and publications about the tool,
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which are also available on the DSVerifier website. In terms of software pack-
age installation, it is necessary to have at least the Java RunTime Environment
Version 8.0 Update 40 (jre1.8.0 40)3, due to the JavaFX components.

3 Conclusion

DSVerifier was presented as an SMT-based BMC tool for verifying and validating
digital systems, which supports extensive verification of different properties and
realization forms. With this tool, a development engineer can verify, during the
design phase, if the proposed digital system will present an expected behavior,
when it is embedded into a given hardware architecture.

DSVerifier can be regarded as an automated and reliable alternative, when
compared with traditional simulation tools. It is freely available for download
(Linux x86-64 and x86 versions), including documentation, benchmarks, exper-
imental results presented in previous studies, publications, and source code. For
future work, other properties, hardware platforms, and BMC tools will be inte-
grated into DSVerifier, in addition to support for closed-loop systems [14].
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Abstract. Smartphones connected to Internet should work properly for
days without a reset. One of the most critical non-functional properties to
ensure the correct behavior is energy consumption. However, currently
there is a lack of automated techniques to check whether the actual
mobile consume is within the expected limits. To apply runtime verifi-
cation techniques in this context, we need (a) detailed profiles of con-
sumptions for specific actions in apps of interest (such as activate GPS,
send a data packet to the network, etc.); (b) a method to automati-
cally generate sufficiently representative use cases of the mobile behavior;
(c) a language to describe the expected behavior in terms of energy con-
sumption (energy properties); and (d) a method to monitor the mobile
execution traces and analyze them against the energy properties. We
aim to construct a tool chain addressing all these steps. We have already
designed and implemented a model-based approach to automatically gen-
erate execution traces in mobile devices using Spin. This paper focuses
on the formalization and analysis of energy properties with a specifi-
cation language inspired by the interval logic. The paper presents this
logic, the implementation of runtime verification using Büchi automata,
and the practical use of the whole tool chain for model-based runtime
verification of energy-related properties. Spin is a main ingredient for
generating the test cases and checking the properties.

Keywords: Runtime verification · Interval logic · Energy consumption ·
Analysis of traces

1 Introduction

Smartphones are becoming the main devices for accessing contents on the Inter-
net and for personal communication. The number of smartphones has surpassed
the number of desktop computers and laptops and is quickly increasing and it
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is expected to reach 2 billions by the end of 2015. This huge number together
with user dependence on those devices makes it most important to measure and
reduce their energy consumption. There is a need to contribute to the reduction
of global energy consumption in the mobile networks1, to extend the life of the
device and to increase the user satisfaction. Expected energy consumption in
smartphones is mainly due to the hardware, such as CPU, touch screen, GPS,
WIFI and 3G/4G communication chipsets. Currently, many research efforts are
oriented towards designing better batteries, but also towards optimizing mobile
network protocols to reduce energy consumption. However, very often energy
consumption is also due to errors in the design or the implementation of the
software in the smartphone, including the operating system and the applica-
tions (or apps).

There are erroneous practices in mobile phone software that lead to unex-
pected use of energy. These energy bugs where studied in detail in [15], where the
authors present a taxonomy of energy bugs and highlight many of their causes,
including programming errors, inappropriate API usage, flaws in the design of
applications or the operating system, or complicated interactions between the
smartphone hardware components of smartphones. The work in [22] confirmed
that energy bugs are basically the same for all smartphone operating systems.

The need to keep the smartphone working properly for days, weeks or even
months without a reset makes this application domain appealing for practitioners
in model checking, runtime verification and other formal automated methods for
early detection of execution errors. However, the application of such techniques
to analyze non-functional properties like energy consumption is still not mature.

Many works focus on some kind of monitoring to characterize the energy
consumption profiles of apps [5,16,19,21]. However there is a lack of automated
techniques to check that the actual consumption is within the expected limits for
all the app use cases, or even for the combined execution of apps. One promising
approach to verify energy consumption is the use of models to conduct test
case generation and execution. For instance, a vision paper by Wilke et al. [20]
introduced such ideas with the name Model Based Energy Testing (MBET).

Wilke et al. focused their MBET method on the use of abstract interpretation
and static analysis to derive information that allows the prediction of energy
consumption. They define the method for general Java programs and suggest
that some profiling will help to implement the method for each specific computing
platform.

We propose a MBET method focusing on runtime verification with real exe-
cution of test cases in the smartphones. To do that we need (a) detailed energy
profiles of actions performed by the smartphone (e.g. network usage, GPS posi-
tioning); (b) an automatic method to execute the expected sequences without
user intervention (test case generation and execution); (c) a language to describe
the properties on the traces in terms of energy consumption (language for energy
properties); and (d) a method to monitor the execution trace in the smartphone

1 According to Gardner’s report ICT (Information and Communications Technology)
consumes 2 % of energy in the world and it is increasing 6 % every year.
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and to check the energy properties (runtime verification engine). We aim to
construct a tool chain addressing all these steps. Many results for step (a) are
now available, which we can reuse and complement with our own measurements.
Regarding step (b) we have already defined a method for model-based test case
generation and execution that can be implemented using Spin [8].

This paper contains two main novelties. The first one is the design and for-
malization of a new interval logic to specify energy properties (step c). The idea
behind this logic is to describe properties on trace executions regarding external
continuous variables such as the battery consumption. We introduce a method
to define intervals of states based on propositions and then to map such inter-
vals to time intervals where the continuous variables, like energy, are observed.
The second contribution is the implementation of a runtime verification engine
to check this logic on real traces of the device using Spin (step d). The values
of the continuous variable current energy consumption are obtained by using a
physical power analyzer connected to the smartphone. We implement the run-
time checking by translating the interval formula into a Büchi automata and then
making the real execution trace available to the Spin verification algorithm. The
method to inject the real traces plus the external continuous variable to Spin
follows the approach used in [1]. As far as we know, this is the first completed
work to apply a model based runtime verification method to check for energy
consumption in smartphones, and it is also a novel combination of Spin with a
physical measurement instrument.

The rest of the paper is organized as follows. Section 2 introduces our com-
plete framework for MBET and identifies the components previously designed and
implemented and those developed in this paper. Section 3 describes the interval
logic for specification of energy properties. Section 4 describes the implementation
of the tool chain and its use through the use of a case study. Finally, Sects. 5 and 6
contain comparisons with related work and conclusions, respectively.

2 Model-Based Analysis Framework

The work presented in this paper is part of the process outlined in Fig. 1. This
figure summarizes our approach to MBET, where we use real controlled execu-
tions on the device as the source of traces for the verification work.

The leftmost part of the figure represents the first step of the process: the
generation and execution of test cases. Execution traces are generated from
test cases generated using a model-based approach. We model the possible user
flows within one or more apps using several independent state machines which
can call one another. This loose coupling between state machines enables an
easier composition of flows like the ones found on real applications, where some
screens may be reached from more than one place. This model is translated
into a Promela specification which is explored by Spin to generate all possible
test cases described in the model. Each test case corresponds to a user sequence
actions that must be performed in the device in order to carry out the test, such
as pressing buttons or entering text in input fields. This workflow for test case
generation is described in more detail in [8].
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Fig. 1. Proposed architecture

The resulting test cases can be executed on real devices, where the executions
are monitored by the runtime verification engine using several instrumentation
techniques. These instrumentations vary in their granularity, ranging from pars-
ing logcat traces [2] (Android’s standard logging facility for apps and the sys-
tem), to observing individual calls to Java methods using the Java Debugging
Interface [14] (JDI), as in [1]. The results of this monitorization are timed traces,
i.e. sequences of states observed in a device, where each state includes an addi-
tional timestamp with the exact time in which it was produced. These states
are not complete images of a device but rather a subset of information which is
relevant to the apps and properties under analysis.

The runtime verification engine runs in a computer, and is connected to the
smartphones via USB or WiFi. This engine can also collect additional measure-
ments during the execution of the test cases. In this work, we connected the
smartphones to a power analyzer, a N6705B DC Power Analyzer from Keysight
Technologies, that can measure power consumption in real time, and which can
be queried by the runtime engine. Using the timestamps of the traces, the run-
time engine can combine the power consumption measurements in order to pro-
duce enriched traces, i.e. traces that combine information from multiple source
into a single, unified sequence of states.

The resulting enriched traces are given to a set of observers [7], namely
automata that check functional and nonfunctional properties (such as energy
properties). To make energy properties easier to describe for users, we have
defined a new interval logic to express them in a compact and user-friendly
manner. The observer that evaluates these properties has been implemented
with Spin. First, properties expressed with this interval logic are translated into
the Büchi automata supported by Spin (the never claim process). Secondly, the
enriched timed traces are provided to Spin using a special Promela specifica-
tion that can reconstruct execution traces from an external system as if they
were generated by the Promela specification. This way, Spin can check energy
properties on the execution traces observed on the smartphones and other mea-
surement devices. The following section describes this interval logic.
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3 Formalization and Analysis of Energy Properties

The operational semantics of programming languages is usually defined by means
of labelled transition systems (LTSs). A LTS is a tuple P = 〈Σ,

−�−→,L, s0〉 where:

– Σ is the set of states,
– L is the set of transition labels,
– −�−→⊆ Σ × L × Σ is the transition relation, and
– s0 ∈ Σ is the initial state.

The operational semantics of an LTS P (O(P )) is defined as the set of all
possible maximal execution traces that can be constructed iteratively applying
transition relation from the initial state, that is, O(P ) = {π|π = s0

l0�−→ s1
l1�−→

· · · }. Set O(P ) contains both infinite traces, and finite traces that correspond to
executions that end successfully/erroneously. Each trace can be also described
as a map π : N → Σ that associates each natural number with the corresponding
state in the trace, that is, π(i) = si. In the following, since we do not need to
use transition labels, we drop them from the transition relation −�−→.

Usually, verification techniques, such as model checking, evaluate properties
over traces abstracting the real time when each state occurs. This is sufficient to
analyze, for instance, LTL properties. However, for some other properties, such
as real time properties or memory or battery consumption properties, time is a
parameter that has to be taken into account.

To formalize this, let us assume that c : R≥0 → R is a quantitative magni-
tude whose value evolves continuously with time. Thus, c(t) ∈ R represents the
value of c in time instant t. We are now interested in specifying and evaluating
properties on variable c related to an execution trace π. To do this, we have to
synchronize the execution of π with the continuous evolution of c, as shown in
the following definition.

Definition 1. Given a trace π ∈ O(P ), an execution e of π is given by a func-
tion e[π] : N → R≥0 that associates each state π(i) of π with the time instant
e(π)(i) ∈ R≥0 in which it occurs2. Functions e(π) satisfy that e[π](i) ≤ e[π](j)
iff i < j, that is, successive states occur at successive instants.

Observe that each trace π may have many associated executions e(π) that
relate states to different time instants. We now explain how execution functions e
may be used to synchronize traces with continuous variables that evolve in paral-
lel with trace executions, making it possible to analyze non-functional properties
on the traces.

Given a variable c : R≥0 → R which evolves continuously with time, and an
execution, e[π], of a trace π, we synchronize c and π by relating each state
si to the value of c in the instant when si occurs e[π](i). The diagram in
Fig. 2 illustrates this synchronization. The upper row shows the states of trace
π = s0 �−→ s1 �−→ · · · , emphasizing in its discrete character. The middle row
2 We assume that e[π](i) represents the time instant when state si is created.
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π =
s0 s1 s2 s3 s4 · · ·

e(π) =
t0 t1 t2 t3 t4 · · ·

c =
c(t0) c(t1) c(t2) c(t3) c(t4)

· · ·

Fig. 2. Synchronization of trace π and continuous variable c using e[π]

shows the time passing, with each state si associated by means of e(π) with the
time instant when it occurs. Finally, the lowest row shows the evolution of a
continuous variable c in time, and how it is possible to relate each state si to
the corresponding value c(ti) that takes place at the instant ti.

3.1 Specification of Energy Properties with Interval Logic

In this section, we introduce the specification language to be used to describe
properties on trace executions regarding external continuous variables such as
the battery consumption. We assume that traces π are finite sequences of states
having an ending state o that repeats forever, that is, for each trace π, there exists
a natural number n > 0 (the length of the trace denoted as length(π)) such that
(1) π(n − 1) 	= o3, and (2) ∀k ≥ n.π(k) = o. Finally, we also assume that if π
is a finite trace of length n, execution functions e(π) associate the ending, and
successive, states of π with the time instant when the last non-ending state took
place, that is, ∀k ≥ n.e(π)(k) = e(π)(n − 1).

We make use of interval calculus to specify properties [6]. The domain of
interval logic is the set of time intervals Intv defined as {[t1, t2]|t1, t2 ∈ R, t1 ≤
t2}. An interval variable v is defined as a function v : Intv → R that associates
each interval with a real number. For instance, a continuous variable c : R≥0 → R

can be used to define interval variables, such as, for instance, diff c : Intv → R

given as diff c([t1, t2]) = c(t2) − c(t1). Thus, for example, if c is the identity
function, diff c defines the interval length function.

We can construct interval expressions describing properties on intervals by
using a set of interval variables, relational, boolean operators and real constants.
For instance, if K is a constant, diff c ≤ K : Intv → {true, false} defines the
property on intervals [t1, t2] that is true iff c(t2) − c(t1) ≤ K.

In the sequel, given a trace π, we use state intervals such as I = [i, j] (with
i ≤ j) to represent the subtrace of π from state π(i) to π(j). Clearly, given a
state interval I = [i, j] of π, and an execution e[π], we can construct e(π)(I) =
[e(π)(i), e(π)(j)] which gives us the time interval from the creation of state si to
the creation of state sj in execution e(π). Thus, state intervals and executions of
traces provide time intervals on which we can evaluate interval expressions such
as diff c ≤ K.

3 To simplify the presentation, we assume that finite traces have at least one non-
ending state s0.
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The rest of the section is devoted to introducing the so-called formula inter-
vals which constitute the language used to specify state intervals. The idea is as
follows. Assume that the continuous variable c mentioned above represents the
energy consumed by device during an execution, and that we want to check that
a WiFi session consumes less than a threshold K. To do this, we first need to
specify the system states where the WiFi session takes place. Given a trace π,
each WiFi session involves a state interval I during which WiFi is active. Once
we have located the state interval I of π, using an execution function e(π), we
can evaluate the interval expression diff c ≤ K on the time interval e(π)(I).

In the sequel, we introduce the so-called proposition intervals as a description
language of state intervals on traces. To do this, we assume a set of state formulae
Prop, and a satisfaction relation |=⊆ Σ × Prop such that (s, p) ∈|= iff state s
satisfies p. As usual, we write (s, p) ∈|= as s |= p. In addition, we assume that the
ending state o does not satisfy any formula of Prop, that is, ∀p ∈ Prop.o 	|= p.

In the following, given two state formulae p, q ∈ Prop, we use state proposi-
tion intervals, denoted as [p, q] to identify state intervals inside traces as follows.

Definition 2. Given a trace π, we say that state interval I = [i, j] of π satisfies
[p, q], written as π ↓ I |= [p, q], iff the following conditions hold:

1. π(i) |= p
2. ∀i < k < j.π(k) 	|= q
3. π(j) |= q

that is, [i, j] is a state interval of π such that π(i) satisfies p, and π(j) is the
first state after π(i) that satisfies q.

Now, given a finite trace π, we define π ⇓ [p, q] as the finite sequence of state
intervals of π, written as I0 · I1 · · · Im−1, that satisfy [p, q] in the sense that has
just been described, that is, ∀0 ≤ i < m.π ↓ Ii |= [p, q].

We need the following definition to formalize how π ⇓ [p, q] is constructed.

Definition 3. Given p ∈ Prop, a finite trace π of length n, and k ≥ 0, π ↓k p
is the first state of π that occurs after (including) π(k) and that satisfies p, if it
exists, or symbol ∞, otherwise. We can inductively define π ↓k p as:

1. π ↓k p = k, iff π(k) |= p
2. π ↓k p = π ↓k+1 p iff k < n, π(k) 	|= p
3. π ↓k p = ∞ iff k ≥ n.

Definition 4. Given a finite trace π, and two state formulae p, q, the sequence of
state intervals determined by p, q, π ⇓ [p, q], is inductively defined from operator
⇓k with k ≥ 0, as it is described below.

1. π ⇓k [p, q] = ε ⇐⇒ π ↓k p = ∞, or π ↓k p = j ∧ π ↓j+1 q = ∞4

2. π ⇓k [p, q] = [j, l] · (π ⇓l+1 [p, q]) ⇐⇒ π ↓k p = j ∧ π ↓j+1 q = l

We define π ⇓ [p, q] as π ⇓0 [p, q].

4 ε represents the empty sequence.
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Thus, two state formulae p, q ∈ Prop determine a sequence of state intervals
π ⇓ [p, q] on each trace π. Given a trace π and an execution e(π), the following
definition describes how interval expressions (such as diff c ≤ K) can be spec-
ified to be checked on the time intervals determined by the state intervals of π
given by π ⇓ [p, q]. For instance, if swifi and ewifi are two state formulae that
are satisfied by the states which switch the wifi connection on/off, respectively,
π ⇓ [swifi , ewifi ] is the sequence of state intervals of π on which the wifi is active.

The following definition states when an execution of a trace e(π) satisfies an
interval expression Φ such as diff c ≤ K. We consider three types of expressions.
An execution trace e(π) satisfies formula (1) [[Φ]][p,q] iff the first state interval
determined by π ⇓ [p, q] and e(π) satisfies Φ, (2) ∀[[Φ]][p,q] iff all the time intervals
determined of π ⇓ [p, q] and e(π) satisfy Φ; ∃[[Φ]][p,q] iff it exists a state interval
given the sequence π ⇓ [p, q] and e(π) that satisfies Φ. Recall that if I = [i, j] is a
state interval of π, e(π)(I) is the time interval [e(π)(si), e(π)(sj)]. For instance,
if Φ = diff c ≤ K, [[Φ]][swifi,ewifi] establishes that the time interval determined
by the first state interval on which [swifi , ewifi ] holds must satisfy Φ.

Definition 5. Let Φ and [p, q] be an interval expression and a state proposition
interval, respectively. Let e(π) be an execution of a finite trace π. Then

1. We say that e(π) satisfies Φ on the time intervals determined by [p, q], and
denote it as e(π) |= [[Φ]][p,q] iff = I1 · · · In with n > 0 and Φ(e(π)(I1)) holds.

2. We say that e(π) satisfies ∃Φ on the time intervals determined by [p, q], and
denote it as e(π) |= ∃[[Φ]][p,q] iff [p, q] ⇓ π = I1 · · · In with n ≥ 0 and ∃1 ≤
i ≤ n.Φ(e(π)(Ii)) holds.

3. We say that e(π) satisfies ∀Φ on the time intervals determined by [p, q], and
denote it as e(π) |= ∀[[Φ]][p,q] iff [p, q] ⇓ π = I1 · · · In with n ≥ 0 and ∀1 ≤
i ≤ n.Φ(e(π)(Ii)) holds.

3.2 From Interval Properties to LTL

In this section, we discuss how the interval properties can be practically evaluated
on execution traces. Each type of interval property can be described by an LTL
formula to be given to the model checker. To simplify the presentation of the
formulae, we have defined proposition Φ(p, q) as:

Φ(p, q) ≡ p ∧ (¬q U (q ∧ Φ))

Intuitively, Φ(p, q) is the LTL representation of property: “p holds on the
current state, q will be true in a future state and, at that moment, the time
interval determined by p and q will satisfy Φ”, as the following diagram illustrates:

p

si

¬q ¬q ¬q q ∧ Φ

sj

For [[Φ]][p,q] properties, we use the following LTL specification:

[[Φ]][p,q] ≡ (¬p) U Φ(p, q) (1)
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The intended meaning of this formula is as follows. We first search for the
first state (si) on which p holds, then we search for the first state following si
on which q holds (sj). These two states si and sj determine a time interval. If
Φ is true on this interval, then formula [[Φ]][p,q] holds. Otherwise, that is, if it
is not possible to find either si or sj , or if the time interval does not satisfy Φ,
the formula is false. The following sequence shows a trace that satisfies [[Φ]][p,q].
Note that we use solid arrows to identify intervals, and dashed arrows otherwise.

π =
¬p ¬p ¬p p

si

¬q ¬q q ∧ Φ

sj

For the property ∃ [[Φ]][p,q], we use the following LTL specification:

∃ [[Φ]][p,q] ≡ Φ(p, q) ∨ ♦(¬p ∧ �Φ(p, q)) (2)

that is, Φ(p, q) should be true either in the first state or in some future instant.
Note that � represents the “next” operator, which, in our case, is safe to use
since we do not analyze concurrent programs, but rather linear execution traces.
The use of � is needed to assure that formula Φ(p, q) is evaluated on a maximal
time interval determined by p and q, that is, the state on which p is true, if it
is not the initial state, must be preceded by a state that does not satisfy p. The
following sequence shows an example of a trace for which Φ(p, q) holds on the
second time interval determined by p and q.

π =
¬p p ¬q ¬q q ∧ ¬Φ p

si

¬q ¬q q ∧ Φ

sj

Finally, the LTL formula for ∀ [[Φ]][p,q] is given by:

∀ [[Φ]][p,q] ≡ p → Φ(p, q) ∧ �((¬p ∧ �p) → �Φ(p, q)) (3)

that is, all maximal intervals determined by [p, q] properties in their ending
points should satisfy Φ at the instant when the right ending point occurs. The
following sequence shows a trace having two time intervals, determined by p and
q, for which Φ is true. Note that last state is labelled with symbol o to indicate
that the trace does not contain any state interval after [si2 , sj2 ] satisfying [p, q].

π =
¬p p

si1

¬q ¬q q ∧ Φ

sj1

p

si2

¬q ¬q q ∧ Φ

sj2 o

4 Tool Chain Implementation

In this section we present the implementation of the architecture for model-based
energy testing we proposed in Sect. 2, and how all the pieces fit together5. To
5 The implementation and examples are available online: http://morse.uma.es/tools/

draco.

http://morse.uma.es/tools/draco
http://morse.uma.es/tools/draco
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Fig. 3. Fragment of app model for test case generation

guide this description, we will use a simple case study: an Android app devel-
oped internally to help characterize the energy profile of common tasks. The app
contains several configurable test scenarios which can be executed and traced.
We will show how our proposal can be used to check the energy consumption
of a certain sequence of actions within a test case. We describe this using the
following interval property, which will influence some decisions later on:

[energy(t2) − energy(t1) < P ][[testStep=START,testStep=END]]

This property is of the form [[Φ]][p,q], whose translation to LTL was shown
in Eq. 1, in Sect. 3.2. Recall from the previous section that t1 and t2 are the time
instants that correspond to the start and end of an interval, respectively.

4.1 Test Case Generation

The first step is to create the test cases which will be executed and analyzed. We
generate the test cases automatically from a model of the app, which describes
the possible user flows of a user within our app. The app model would be cre-
ated by the app developer or tester. For our case study the model is straight-
forward, navigating the app until one of the available test scenarios is selected
and executed a number of times. The transitions of this model are associated
with controls present in the app screens, such as buttons or menus, indicating
which user action must be performed at each step of the test case. Figure 3 shows
a fragment of the model, with several state machines connected by transitions
fired when the user interacts with the corresponding control in the screenshots.

This model is automatically translated into a Promela specification, which
is explored by Spin in order to generate all possible test cases exhaustively. The
resulting test cases are translated into Java classes that can be installed and
executed in the smartphone to perform each test case. Listing 1.1 shows part of
a test case obtained from the model in Fig. 3, in particular a user selecting the
HTTP test scenario listed, and then running the selected test with one of the
available configurations. More details about this workflow for model-based test
case generation can be found in [8].
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1 public void TestSampleApphttpClic1() throws UiObjectNotFoundException {
2 UiObject control = new UiObject(new UiSelector ()

.className("android.widget.TextView").index (0)

.textContains("HttpDownlo"));
3 control.click();
4 Log.v("TESTCASEGENERATOR","CONTROL -httpClick");
5 }
6 public void TestSampleApprunClic2() throws UiObjectNotFoundException {
7 UiObject control = new UiObject(new UiSelector ()

.className("android.widget.TextView").index (0)

.descriptionContains("Available tests"));
8 control.click();
9 Log.v("TESTCASEGENERATOR","CONTROL -runClick");

10 }

Listing 1.1. Part of automatically generated test case

4.2 Implementation of Interval Properties in Spin

The interval properties described in Sect. 3 have been implemented in Spin, so
it can be used as one of the observers that can check for properties over the
execution traces obtained from a smartphone. In particular, we use our previous
work on the analysis of execution traces with Spin [10,17] as the starting point
for this implementation. In this work, instead of analyzing a regular system
model, we used a Promela specification that communicated with an external
system in order to extract and reconstruct the states of its execution trace in the
Spin’s global state for its analysis. This Promela specification was instantiated
from a template using information about the system under test, such as the
variables comprising a state and the properties to analyze. Listing 1.2 shows a
simplified fragment of the Promela specification for our case study.

The core of the Promela specification is a single loop, shown on lines 18
to 33 in Listing 1.2. The first branch of the loop is a c code block (line 19) which
updates the global variables (lines 1 to 4) with the values of a new state. Thus,
after each iteration, the next state is available as part of Spin’s global state.
This c code block may load a new state received from the external system,
but it may also fetch a previously visited state if Spin has backtracked during
the exploration. Note that execution traces are linear, but the addition of a
never claim automata may produce several branches that need to be explored.
See [10,17] for more details on this approach. This never claim automata is the
key to evaluating interval properties. The automata, not shown in the Promela
fragment, is obtained by negating and translating the LTL formula from Eq. 1.

Continuous variables are treated as regular variables: for each continuous
variable c there is a floating point variable c in Spin’s global state, and when
a new state is obtained at ti, the values of each c variable is update with the
value of c(ti). While Promela does not support floating point variables, we can
add them to Spin’s global state using c state declarations. Note that the usual
caveats regarding floating point variables (e.g. comparing for equality) still apply
and should be taken into account when writting properties. In our case study,
we have one continuous variable, called energy (line 3).
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1 c_state "short _interval" "Global"
2 c_state "short testStep" "Global"
3 c_state "double energy" "Global"
4 c_state "double energy_t1" "Global"
5
6 void update_interval(struct state* newState) {
7 if (!(now.testStep == START) && (newState ->testStep == START))
8 newState ->_interval = 1;
9 else if (!(now.testStep == END) && (newState ->testStep == END)) {

10 newState ->_interval = 0;
11 }
12 void update_energy_t1(struct state* newState) {
13 if (!now._interval && newState ->_interval)
14 newState ->energy_t1 = newState ->energy;
15 }
16
17 init {
18 do
19 :: (running) -> c_code {
20 now.currentState ++;
21 if (now.currentState > lastState) {
22 if (! wasRunning) {
23 now.running = 0;
24 } else {
25 readNewState ();
26 lastState ++;
27 callUpdateFunctions ();
28 }
29 } /* else: backtracked */
30 updateSpinStateFromStateStack();
31 }
32 :: (! running) -> break
33 od
34 }

Listing 1.2. Fragment of Promela specification for execution trace analysis

When Φ is evaluated in an interval [t1, t2], the initial and final values of any
continuous variable c, i.e. c(t1) and c(t2), must be available. On the one hand,
since Φ is evaluated at t2, global variable c already contains the c(t2) value. On
the other hand, c(t1) will be available in a new variable c t1, which is created and
updated automatically. In our case study, the corresponding variable for keeping
track of energy(t1) is energy t1 (line 4). These new variables are updated when a
new interval is entered, using a so-called update function. These are C functions
that are invoked (line 27) after a new state is read from the execution trace
(line 25), but before it is copied over to Spin’s global state (line 30), and has
access to both the previous and the new states.

In addition, another variable is automatically introduced, interval (line 1),
which is also updated using an update function. This variable is true when an
interval has been entered, but not yet exited, and false otherwise. The update
functions of interval variables only update their values when interval changes
from false to true, i.e. at the time instant t1 where a new interval is entered.

The update function for interval and energy t1 are shown on lines 6
and 12, respectively. These functions show how interval is updated by check-
ing the conditions of the interval [testStep = START, testStep = END], and
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Fig. 4. Power analyzer connected to a smartphone

how energy t1 is updated only when entering an new interval. In these func-
tions, struct state* newState is a pointer to a struct that contains all the
system and interval variables, which is a subset of the contents of the now
struct. Update functions are always called in order, so that the new value of
interval computed by update interval is available to the following functions
(update energy t1).

4.3 Monitoring and Analysis

Once we have our test cases and our energy observer implemented with Spin, we
can proceed to the next step. The generated test cases are installed on the target
smartphone: a Samsung Galaxy S4. This device is connected to a computer that
controls and monitors the tests, and to a N6705B DC Power Analyzer from
Keysight Technologies.

The power analyzer is connected to the smartphone instead of the battery
as shown in Fig. 4, and it supplies the required power. This power analyzer pro-
vides an SCPI (Standard Commands for Programmable Instruments) interface
accessible over a computer network, which the runtime engine uses to extract
periodic energy measurements.

In the computer, the test controller and runtime verification engine are exe-
cuted as separate programs. Both programs use the Android Debug Bridge (adb)
tool connected via USB to perform their tasks. As we said, the engine and
observers usually only require a relevant subset of the full state present on the
device. For our case study we are only interested in high level events fired when
a user event is performed during a test case, in addition to the energy measure-
ments. When one of these events is fired, a variable called testStep is updated,
and the latest energy measurements are sent along with the new state. To per-
form this step, we have to implement some additional instrumentation code. This
code checks the live logcat traces [2] from the smartphone, looking for a certain
pattern that indicates a new test step. Since our execution trace reconstruction
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for Spin does not support string variables, the string that describes the new step
is transformed into a integer representation. The general observer architecture
is outlined in [7].

For this case study, we are interested in the power consumption for one of
app’s tests scenarios, in which a file of fixed length is downloaded from a local
server over WiFi. We use the interval property declared at the beginning of this
section, which for our implementation would be written as:

[$energy - $energy_t1 < P] [[$testStep == START, $testStep == END]]

Note that in the property we use $ as a prefix for variables present in the
execution trace. In this property, the interval is given by $testStep == START,
where START is the user action performed in the test case that initiates the down-
load test scenario, and $testStep == END, which represents the end of the test
scenario. testStep is an integer variable which included in the execution trace
presented to Spin, and START and END are integer representations of the relevant
logcat trace lines. The interval formula to be checked on all intervals, $energy -
$energy t1 < P, uses the continuous variable energy, which is extracted from
the power analyzer. This measurement is taken at regular intervals, 1000 times
per second, and is also included in the enriched execution trace.

Listing 1.3 shows part of a runtime verification log trace. First the user event
selecting a test scenario from the list, and then a user event running the selected
test. The log trace shows how, for each detected user event, the variables are
sent to Spin to reconstruct the next state. The messages are sent encoded using
a custom communication protocol, e.g. each variable is referred by a given id
instead of its name. For instance, variable testStep has been given id 2, energy
has id 6, and the current Unix timestamp in milliseconds is encoded in variable 5.

The time spent in the execution and analysis of test cases can be roughly
divided between the instrumentation, the analysis with Spin, and the execution
of the test cases. In our experiments we found that the impact of the model
checking algorithm for the interval formulae is negligible. Since the model to be
analyzed by Spin is essentially one single sequence of with no branching (save
by the branching induced by the never claim automata), the state space to be
explored is significantly smaller than that of other realistic Promela models.
Most of the time spent can be attributed to the automatic execution of the test
cases on the smartphone, using the UIautomator framework [3].

Instrumentation can also have significant influence on the global analysis
time. For the case study shown here, we only needed to observe the live logcat
traces from the smartphone. However, we can include additional information
that is significantly slower to acquire, such as tracing each Java method that is
entered or exited during the execution of the test cases [1]. Although this tracing
can be filtered to only certain Java packages, we experienced serious slowdowns
with real applications such as Facebook.

Other factors such as background tasks or CPU throttling mechanisms [4],
e.g. changing the frequency depending on the current computational load, can
also interfere with the energy measurements. To facilitate repeatable analyses
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1 pLogLevel: 0 pTag: TESTCASEGENERATOR pLogMessage:
V/TESTCASEGENERATOR (13414): CONTROL -httpClick: 01/05/2015 16:39:28
void com.UMA.RuntimeEngine.AndroidMobile .SmartPhoneMonitoring
.RegisterAndroidLog(String ,String ,String ,String)

2 may 01, 2015 4:39:59 PM
com.UMA.RuntimeEngine.Observer.Spin.ProtocolClientHelper sendReport

3 measure { id: 2, intValue: 702221648 }
4 measure { id: 5, longValue: 1430498399008 }
5 measure { id: 6, doubleValue: 6.753239800596 E13 }
6
7 pLogLevel: 0 pTag: TESTCASEGENERATOR pLogMessage:

V/TESTCASEGENERATOR (13485): CONTROL -runClick: 01/05/2015 16:39:28
void com.UMA.RuntimeEngine.AndroidMobile .SmartPhoneMonitoring
.RegisterAndroidLog(String ,String ,String ,String)

8 may 01, 2015 4:40:05 PM
com.UMA.RuntimeEngine.Observer.Spin.ProtocolClientHelper sendReport

9 measure { id: 2, intValue: 114991181 }
10 measure { id: 5, longValue: 1430498405000 }
11 measure { id: 6, doubleValue: 6.433557098917 E13 }

Listing 1.3. Runtime verification log trace

with real devices, users are encouraged to keep a controlled environment, e.g. by
removing unused apps or using a fixed CPU frequency.

5 Related Work

There are many references to previous research on estimating power consumption
of mobile devices and mobile applications by using some kind of monitoring
tools. Phatak et al. [15] provided one of the first classifications of energy bugs
for hardware and software, and they proposed a roadmap towards developing a
systematic diagnosing framework for treating these energy bugs. Later, Phatak
and other authors presented the eprof tool [16], a fine grained energy profiler
being used to gain insight of energy usage of smartphone.

Parally Yepang Liu [9] also studied characterized energy bugs (e.g., their
types and manifestation) and identified common patterns. They implemented a
static code analyzer, PerfChecker, to detect and identify bug patterns.

The E-loupe project [5,12] explores an alternative that mitigates the ill-
effects of an energy hungry application. The framework consists in monitoring
data in the mobile which is then processed in the cloud in order to detect risk
of energy rain and to produce information to isolate the dangerous applications.

Memory leaks can be also a reason for energy consumption. In [21] the authors
design a light memory leak detector that focuses on activity leak and a priority
adjustment module to prioritize killing leaking apps. In a different way [23] built
a framework to detect energy leaks using dynamic taint analysis (a form of
information flow analysis).

Finally, [11,19,22] studied the energy consumed between different mobile
platforms. The first one compares the energy bugs, the second compares the
energy efficiency, and the last one developed a power estimation method based
on battery traces.
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In our runtime model based framework, we also need to monitor energy
consumption, like most of the previous proposals. However we do not use this
output directly, but as an input to a more sophisticated analysis. We use the
interval logic to represent energy properties to drive the identification of bad
behaviors of the applications running the smartphone. As result, our runtime
verification technique is useful detect leak apps in a very precise way: we can
provide the exact the execution sequence of one or several apps that causes the
system to loos more energy than expected.

Model checking has also been applied to estimate the energy consumption
in wireless sensor networks. In [18] the authors use a UPPPAAL model of the
network that include aspects like time, bandwidths, and energy. Then they use
model checking with different scenarios to predict the influence of a given set
of parameters on energy consumption. In particular, they focus on sensors and
routers. Nakajima [13] has recently introduced two new formalisms to deal with
this problem, the power consumption automaton to represent the system under
analysis and a version of LTL (Linear Time temporal Logic) with freeze quanti-
fiers to represent expected energy consumption. The presence of time and energy
in the models and formulae make this model checking problem undecidable, and
the author proposes several practical subsets to run verification. Compared with
these works, our approach upholds the idea of one specific logic to represent
energy properties and the model checking mechanics to check this logic. How-
ever, instead of exploring a model of a system, we deal with execution traces
extracted from real devices with precise energy consumption measures for each
sampling period.

6 Conclusions and Future Work

The analysis of energy consumption in smartphones using formal method tech-
niques has attracted little attention in the past. Our proposal draws from model
checking and runtime verification, combining the specification power of logic
with automated analysis techniques, to check real execution traces against some
expected energy consumption and produce counterexamples. This work can be
done using real devices and real applications. A minor effort is required to model
the behavior of the applications, in order to take advantage of our model-based
testing approach to generate test cases that will lead to execution traces. Our
proposal addresses all these issues and produces a complete tool chain for auto-
mated model-based energy testing.

This paper has presented a novel approach to specify energy properties over
real execution traces. The proposed logic, based on interval logic, does not allow
the use of temporal operators, which we did not require for our case study. How-
ever, we believe the use of LTL formulae to define the intervals is feasible within
our approach, and will consider such extensions in future works. Further work
is planned to include additional continuous variables to the execution traces,
such as network bandwidth or memory use, instead of considering just energy
consumption.
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20. Wilke, C., Götz, S., Reimann, J., Aßmann, U.: Vision paper: towards
model-based energy testing. In: Whittle, J., Clark, T., Kühne, T. (eds.)
MODELS 2011. LNCS, vol. 6981, pp. 480–489. Springer, Heidelberg (2011).
http://dx.doi.org/10.1007/978-3-642-24485-8 35

21. Xia, M., He, W., Liu, X., Liu, J.: Why application errors drain battery easily?: a
study of memory leaks in smartphone apps. In: Proceedings of the Workshop on
Power-Aware Computing and Systems, HotPower 2013, pp. 2:1–2:5. ACM, New
York (2013). http://doi.acm.org/10.1145/2525526.2525846

22. Zhang, J., Musa, A., Le, W.: A comparison of energy bugs for smartphoneplat-
forms. In: 2013 1st International Workshop on the Engineering of Mobile-Enabled
Systems (MOBS), pp. 25–30, May 2013

23. Zhang, L., Gordon, M.S., Dick, R.P., Mao, Z.M., Dinda, P., Yang, L.: Adel: an
automatic detector of energy leaks for smartphone applications. In: Proceedings
of the Eighth IEEE/ACM/IFIP International Conference on Hardware/Software
Codesign and System Synthesis, CODES+ISSS 2012, pp. 363–372. ACM, New
York (2012). http://doi.acm.org/10.1145/2380445.2380503

http://doi.acm.org/10.1145/2307636.2307661
http://doi.acm.org/10.1145/2307636.2307661
http://dx.doi.org/10.1177/0037549714557054
http://dx.doi.org/10.1007/978-3-642-24485-8_35
http://doi.acm.org/10.1145/2525526.2525846
http://doi.acm.org/10.1145/2380445.2380503


Heuristics and Benchmarks



Directed Model Checking for PROMELA
with Relaxation-Based Distance Functions

Ahmad Siyar Andisha1, Martin Wehrle2, and Bernd Westphal3(B)

1 corix AG, 4562 Biberist, Switzerland
2 University of Basel, Basel, Switzerland

3 Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany
westphal@informatik.uni-freiburg.de

Abstract. Directed model checking uses distance functions to guide
the state space exploration to efficiently find short error paths. Dis-
tance functions based on delete-relaxation have successfully been used
for, e. g., model checking timed automata. However, such distance func-
tions have not been investigated for formalisms with rich expression
languages as provided by PROMELA. We present a generalization of
delete-relaxation-based distance functions to a subclass of PROMELA.
We have evaluated the resulting search behavior on a large number of
models from the BEEM database within the HSF-SPIN model checker.
Our experiments show significantly better guidance compared to the pre-
viously best distance function available in HSF-SPIN.

1 Introduction

A main obstacle for model checking tools is the state space explosion problem.
A countermeasure is to use the memory efficient state space traversal procedure
depth-first search (DFS). However, if the task is not to verify a property but
to falsify it, DFS often performs badly in practice because it may unnecessarily
search large error free regions of the state space first. In addition, reported error
paths are often unnecessarily long, which makes it difficult for humans to under-
stand the causes of an error. A technique to mitigate these problems is called
directed model checking (DMC) and has been introduced by Edelkamp et al. [4].
Directed model checking applies a distance function to estimate the distance
from a given state to an error state, and explores states with shortest estimated
distance first. Guided by the distance function, error paths can often be found
after exploring only a small fraction of the overall state space which results in
time and memory savings. Furthermore, reported error paths are often shorter
than those reported by so-called uninformed algorithms (like DFS) due to the
guidance. Typically, there is a trade-off between the precision of the distance
estimate and the cost of computing the distance function for a given state. An
example for a computationally cheap distance function for PROMELA models
is called hc and is implemented in HSF-SPIN [4], a directed model checker based
on version 3 of the PROMELA model checker SPIN. The hc function estimates
the distance between a given state and the end state of the model’s never claim.
c© Springer International Publishing Switzerland 2015
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A class of distance functions which is successful in the area of artificial intel-
ligence (AI) planning is based on delete relaxation [2]. Kupferschmid et al. [5]
generalized this relaxation to simple statements over variables with arbitrary
domains for a limited class of timed automata. In the latter context, the relax-
ation is based on collecting all values ever assigned to a variable along a path,
yielding set-valued domains for variables and the current location. More formally,
given a (concrete) state s, h+(s) denotes the length of the shortest path under
the relaxation from s to an error state in the transition system over set-valued
variables. h+(s) is often an accurate estimate of the length of a shortest path
between s and an error state in the transition system over concrete states. As
the computation of h+ is NP-hard [3], Kupferschmid et al. considered approxi-
mations thereof, which showed favorable performance compared to the distance
functions proposed by Edelkamp et al. [4] in the area of timed automata, and
which have also found their way into timed automata model checking tools [6].
Although the idea of DMC roots in AI planning and relaxation-based distance
functions have shown to be useful outside of AI planning, their potential has
not yet been explored for PROMELA, i. e., for a richer expression language than
considered until now.

In this work, we explore a generalization of relaxation-based distance func-
tions to the PROMELA formalism. We have evaluated an implementation of our
distance function (which generalizes the hL function proposed by Kupferschmid
et al. and is called hL

P in the following) in HSF-SPIN on a large number of
BEEM models. Our implementation supports an expressive subset of PROMELA
(cf. [1]), which is sufficiently rich to cover a large range of models from the BEEM
database [7]: Currently supported are basic control flow (if, goto), channel syn-
chronisation, static processes, basic data types (no arrays, no structs), and most
operators (except for modulo) in expressions. Our results show that hL

P often
provides significantly better guidance towards error states compared to HSF-
SPIN’s previously best-performing distance function in our experiments.

2 Relaxation for PROMELA

We start by defining relaxed states for PROMELA, which are the basis for the
definition of our distance function hL

P . In the PROMELA semantics, a (concrete)
state assigns to each process a process location, and to each variable and channel
a value. We use, e. g., s(x) to denote the value assigned to variable x in state s.
In contrast, a relaxed state s+ assigns to each process a set of process locations,
and to each variable and channel a set of values, i. e. s+(x) denotes a set of
values from the domain of x. We say that relaxed state s+ subsumes a state
s, denoted by s � s+, if and only if each component of s is an element of
the corresponding component of s+, e. g., if for each variable x, s(x) ∈ s+(x).
PROMELA expressions are existentially evaluated over relaxed states: Relaxed
state s+ supports value v for expression expr if there exists a state s such that s �
s+ and expr evaluates to v over s. Note that a relaxed state may hence support
both true and false for a Boolean expression. Statements obtain a collecting
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a = {0}, b = {0}, c = {}

{0}, {0}, {0}

{0, 1}, {0}, {0}

{0, 1, 2}, {0}, {0}

{0, 1}, {0}, {0, 1}

{0, 1}, {0, 1}, {0, 1}

. . .

. . .. . .. . .

c!a

a++

a++

c!a

c?b

a++

c!aa++ a++

c!a,c?b

c?b

c?b

c!a

c!a,c?b

Fig. 1. Relaxed transition system of the PROMELA program shown in Listing 1.1.

semantics on relaxed states. The effect of assignment x = expr on relaxed state
s+ is defined as adding all values of expr supported by s+ to the set s+(x). Note
that we thereby obtain a conservative generalization of [5].

int a=0, b=0; chan c=[1] of {int};

active proctype S() { again: c!a; a++; goto again; }

active proctype R() { again: c?b; goto again; }

Listing 1.1. Two processes S and R.

The above interpretation of expressions and statements on relaxed states
induces a transition system over relaxed states, called the relaxed transition
system. It has the property that for each path π in the transition system over
concrete states, there exists a path π+ in the relaxed transition system with the
same length such that the i-th relaxed state in π+ subsumes the i-th state in π.
That is, the relaxed transition system is an over-approximation of the concrete
transition system: According to the idea of relaxation, the value sets in relaxed
successor states grow monotonically. Thus, each statement that can be executed
in a state s can also be executed in any relaxed state which subsumes s. An
error path from relaxed state s+ is a path which begins with s+ and ends with a
relaxed state which subsumes termination of the model’s never claim. Following
the literature, we denote the shortest length of an error path from the relaxation
s+ of state s by h+(s). We call a relaxed state s+ the relaxation of s if and only
if s+ is the smallest relaxed state wrt. set-inclusion which subsumes s.

For an example, consider the PROMELA model in Listing 1.1. Process S
repeatedly sends the value of variable a on channel c and increments a. Process
R repeatedly receives a value from c and assigns it to variable b. In the relaxation,
the variables and the channel become set-valued. Figure 1 shows a fragment of
the computation tree of the relaxed transition system rooted at relaxed state
{0}, {0}, {}. Edges are labeled with the executed statements. The relaxed state
{0}, {0}, {} is the relaxed state of the concrete initial state in which channel c
is empty. Thus only the send statement c!a is executable. Executing c!a yields
the relaxed state {0}, {0}, {0}. From this relaxed state on, channel c is always
both empty and full, thus the synchronization in R is always enabled. So is the
increment of a; executing it yields the relaxed state {0, 1}, {0}, {0}, i. e. the old
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Algorithm 1. Computation of hL
P .

Input : Concrete state s.
Output: Distance estimate l ∈ N0 ∪ {∞} to a relaxed error state.

1 l ← 0; s+0 ← process locations, variables, and channels of s;

2 while never claim not terminated in s+l do
3 s+′ ← s+l ;

4 for statement t enabled in s+l do
5 s+′ ← s+′ ∪ effect of t on s+l ;

6 if s+′ = s+l then
7 return ∞;

8 l ← l + 1; s+l ← s+′;

9 return l;

value of a is not deleted but collected. The example particularly shows that the
channels’ capacities become unbounded in the relaxation.

As the computation of h+(s) is NP-hard [3], we consider the distance func-
tion hL

P , which is an approximation of h+. The computation of hL
P is provided in

Algorithm 1. While h+ is defined by the relaxed transition system of a PROMELA
program, hL

P is defined by an acceleration of the relaxed transition system: Given
a relaxed state s+, its relaxed successor state s+′ is the union of the effects of exe-
cuting all statements enabled in s+ to s+ (cf. Algorithm 1, Line 4 ff.). Note that a
concrete state s′ � s+′ is not necessarily reachable from any concrete state s � s+,
and if s′ is reachable from s then the shortest concrete path may be longer than 1.
As an example, consider again Listing 1.1 with the never claim ¬(a = 2 ∧ b = 1),
i. e., error states have the property a = 2 and b = 1.

– Reaching the error state from s0 takes at least 6 steps in the concrete system,
e. g., witnessed by the statement sequence c!a, a++, c?b, c!a, c?b, a++.

– Shortest error paths in the delete-relaxation (i. e., in the relaxed transition
graph in Fig. 1) have length 5, i. e., h+(s0) = 5, e. g., witnessed by c!a, a++,
c!a, c?b, a++. Compared to the concrete, several values can be sent in parallel
in the relaxation, hence one fewer receive step for setting the value of b is
required (in the above sequence, b receives {0, 1} via statement c?b).

– The relaxed distance function delivers an estimate of 4, i. e., hL
P (s0) = 4:

After starting with c!a, all the statements c!a, c?b and a++ are repeatedly
applicable in parallel in the following, yielding the sequence of relaxed states
{0}, {0}, {} (initial relaxed state), {0}, {0}, {0} after one step, {0, 1}, {0}, {0}
after two steps, {0, 1, 2}, {0}, {0, 1} after three steps, and finally the relaxed
error state {0, 1, 2, 3}, {0, 1}, {0, 1, 2} after four steps.

– In contrast, hc is quite sensitive to (the model of) the never claim N . Assuming
N consists of two locations and an edge between them guarded by a = 2∧b =
1, hc can only deliver 0 or 1, yielding an uninformed guidance.
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Algorithm 1 computes hL
P (s) by taking as s+0 the relaxed state of s and

iterating the accelerated transition relation. It always terminates because either
a relaxed error state is found (Line 2) or a fixpoint is reached (Line 6). While
an error need not exist, a fixpoint always exists because the state space of a
PROMELA model is finite and in the relaxation, states grow monotonically.

3 Evaluation

We have implemented hL
P in the HSF-SPIN model checker to investigate the

following research questions: To which extent can hL
P improve the guidance of

the state space traversal compared to hc, the best-performing distance func-
tion in our experiments previously available in HSF-SPIN? Does the improved
guidance pay off in shorter error paths? Ultimately, does the improved guid-
ance pay off in terms of shorter model checking runtime? The latter question
addresses the issue of the increased overhead to compute hL

P in every encountered
state: Compared to hc, the computation of hL

P naturally becomes more expen-
sive because of the more precise treatment of the (rather expressive) structures
handled by PROMELA. In particular, this is the case for the more sophisticated
handling of linear arithmetic and the resulting subsumption checks for checking
the enabledness of statements and the effects supported by statements. To inves-
tigate these questions, we have applied hL

P on faulty PROMELA models from the
BEEM database [7] (12 domains, more than 80 model instances in total), using
greedy best first search (GBFS). The models stem from application areas such
as mutual exclusion algorithms, controller software, puzzles and communication
protocols. For computational efficiency, our implementation of hL

P additionally
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Fig. 2. ×: x, y ∈ R, i. e., hc and hL
P reported a path within the time limit, �: x ∈ R,

y failed to find an error. (Athlon 64 2.4 GHz; mem. limit: 3 GB, time limit: 30 min.)



158 A.S. Andisha et al.

applies interval abstraction: If x has been assigned the values a and b with a < b,
then we keep the whole interval [a, b] instead of {a, b} as x’s relaxed value.

In order to compactly provide the results, we visualize the data by scatter
plots in Fig. 2. All axes are scaled logarithmically. Each cross represents one
successful run of both distance functions for one model instance, i. e., a run which
neither violates our memory limit nor times out. A cross below the diagonal
line indicates that hL

P performs better (i. e., shorter path, fewer explored states,
less time, less memory) than hc on this model instance, a cross above this line
indicates the opposite. A cross on the diagonal line indicates that both distance
functions perform equally. We observe a significantly improved guidance of the
state space traversal with hL

P in terms of the number of explored states, which
pays off in terms of a lower memory consumption, and also in reduced lengths
of the error paths. In particular, we observe that the improvement is sometimes
in the range of several orders of magnitude. The better guidance stems from
the more accurate distance values delivered by hL

P (e. g., in the bopdp problem
instances, hL

P ’s values range from 0 to 39, whereas hc yields values between 0
and 1). More details are available online [1]. As discussed, the improved guidance
naturally comes with an increased overhead to compute hL

P . However, while the
overhead does not always pay off, we also observe that there exist models where
hL
P can remarkably reduce the runtime. In addition, there are models which could

be handled by hL
P , whereas hc failed to find an error (triangles in Fig. 2).

4 Conclusions

In this paper, we have explored a generalization of delete-relaxed distance func-
tions for PROMELA. Our evaluation in HSF-SPIN on models from the BEEM
benchmark suite show a significantly improved guidance compared to HSF-
SPIN’s previously best-performing distance function in our experiments. While
the improved guidance mostly pays off in terms of shorter error paths and lower
memory consumption, the benefits in terms of overall runtime are somewhat less
significant due to the encountered computational overhead. It will be interesting
to further investigate the correlation between this time overhead and the model
structure, e. g., the language features used in a given PROMELA model.

Acknowledgments. The authors thank G. J. Holzmann for valuable clarifications of
semantical and technical questions on PROMELA and SPIN.
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Abstract. Proper benchmarking and resource measurement is an
important topic, because benchmarking is a widely-used method for the
comparative evaluation of tools and algorithms in many research areas.
It is essential for researchers, tool developers, and users, as well as for
competitions. We formulate a set of requirements that are indispens-
able for reproducible benchmarking and reliable resource measurement
of automatic solvers, verifiers, and similar tools, and discuss limitations of
existing methods and benchmarking tools. Fulfilling these requirements
in a benchmarking framework is complex and can (on Linux) currently
only be done by using the cgroups feature of the kernel. We provide
BenchExec, a ready-to-use, tool-independent, and free implementation of
a benchmarking framework that fulfills all presented requirements, mak-
ing reproducible benchmarking and reliable resource measurement easy.
Our framework is able to work with a wide range of different tools and
has proven its reliability and usefulness in the International Competition
on Software Verification.

1 Introduction

Performance evaluation is an effective and inexpensive method for assessing
research results [13], and in some communities, like high-performance com-
puting1, transactional processing in databases2, natural-language requirements
processing3, and others, performance benchmarking is standardized. Tools for
automatic verification, such as solvers and verifiers, are also evaluated using
performance benchmarking [3], i.e., measuring execution time, memory con-
sumption, and other performance characteristics. Benchmarking is necessary for
comparing different tools of the same domain, evaluating and comparing differ-
ent features or configurations of the same tool, or for finding out how a single
tool performs on different inputs or during regression testing. The ability to
limit resource usage (e.g., memory consumption) of a tool during benchmark-
ing is also a requirement for reproducible experiments. To receive reproducible
results from experiments, a benchmarking infrastructure should guarantee that
the data are obtained by reliable and valid measurement. Also competitions, like
SAT-COMP [1], SMT-COMP [2], and SV-COMP [3], require exact measuring
of resource consumption, and, in order to guarantee fairness, need to enforce the

1 https://www.spec.org/
2 http://www.tpc.org/
3 http://nlrp.ipd.kit.edu/
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agreed resource limits accurately. For example, in the International Competition
on Software Verification (SV-COMP), all tools are limited to 15 min of CPU
time and 15 GB of RAM [3]. Results from the tools are only counted if none of
these limits exceeded.

Results are reproducible if it is guaranteed that the same results can be
obtained later again (assuming a deterministic tool) by re-running the bench-
marks on a machine with the same hardware and the same software versions.
Reproducibility of experimental results requires reliable measurement. We call a
measurement reliable, if the measurement method ensures accuracy (small sys-
tematic and random measurement error, i.e., no bias or “volatile” effects, resp.)
and sufficient precision [7] (cf. also ISO 3534-2:2006). While it may appear that
measuring execution time is trivial, a closer look reveals that quite the contrary
is the case. In many circumstances, measuring the wall time, i.e., the elapsed
time between start and end of a task, is not enough because this does not allow
to compare the resource usage of multi-threaded tools, and may be inadvertently
influenced by input/output operations (I/O). Measuring the CPU time is more
meaningful but also more difficult, especially if child processes are involved. Fur-
thermore, characteristics of the machine architecture such as hyper-threading
or non-uniform memory access can non-deterministically affect results and need
to be considered carefully in order to obtain reproducible results. Obtaining
reliable measurement values on memory consumption is even harder, because
the memory that is used by a process may increase or decrease at any point
in time. Similarly, the limits on memory consumption must not be exceeded at
any point in time during the execution of the tool. Again, child processes add
further complications. Another important aspect is the potentially huge hetero-
geneity between different tools in a comparison: tools are written in different
programming languages, require different libraries, may spawn child processes,
write to storage media, or perform other I/O. All of this has to be considered
in the design of a benchmarking environment, ideally in a way that does not
exclude any tools from being benchmarked.

1.1 Contributions

In this work, we present the following contributions towards reproducible bench-
marking for all scenarios that are described above:

• A set of necessary requirements that need to be fulfilled for reliable measure-
ment and reproducible benchmarking are identified (Sect. 2).

• We show that some existing methods for resource measurements and limita-
tions do not fulfill these requirements and lead to invalid experimental results
in practice (Sect. 3).

• We describe how to implement a benchmarking environment on a Linux sys-
tem which fulfills all mentioned requirements (Sect. 4).

• The open-source implementation BenchExec is provided, a set of ready-to-use
tools that fulfill the requirements for reproducible benchmarking. The tools
were already used successfully in practice by competitions (Sect. 5).

https://github.com/dbeyer/benchexec/
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1.2 Restrictions

In order to guarantee reproducible benchmarking, we need to introduce a few
restrictions. However, we argue that there are important classes of tools that
need to be benchmarked and for which these restrictions are acceptable, for
example automatic solvers, verifiers, and similar tools. We only consider the
benchmarking of tools that adhere to the following restrictions: The tool (1) is
CPU-bound, i.e., if compared to CPU usage, input and output operations from
and to storage media are negligible, and input and output bandwidth does not
need to be limited nor measured (this assumes the tool does not make heavy
use of temporary files); (2) does not perform network communication during the
execution; (3) does not spread across several machines during execution, but is
limited to a single machine; and (4) does not require user interaction.

These restrictions are acceptable, because (1) reading from storage media,
apart from the input file, is not expected from tools in the target domains. In case
a tool produces much output (e.g., by creating large log files), this would primar-
ily have a negative impact on the performance of the tool itself, and thus does not
need to be restricted by the benchmarking environment. Sometimes, I/O cannot
be avoided for communicating between several processes, however, for perfor-
mance this should be done without any actual storage I/O anyway (e.g., using
pipes). Not supporting network communication is acceptable, because (2) we
expect tools not to use any network communication. While it is in principle pos-
sible for a tool to offload work to remote servers [4], this would mean to exclude
the offloaded work from benchmarking. In contrast to other ways that are shown
in this paper that may allow circumventing limits imposed by the benchmarking
framework, using network communication does not occur accidentally. Bench-
marking a distributed tool (3) is much more complex and out of scope. However,
techniques and ideas from this paper as well as our tool can be used on each
individual host as part of a distributed benchmarking framework.

We do not consider security concerns. We assume the executed tool to be
trusted, i.e., it will not maliciously try to interfere with measurements or other
running processes. This could be addressed by running our benchmarking frame-
work and the tool under different user accounts, but then the benchmarking
framework needs additional rights (usually root access) that may not be avail-
able in every environment. We also do not consider the task of providing the
necessary execution environment to the tool, i.e., the system administrator of
the machines has to ensure that all necessary packages and libraries needed to
run a tool are available in the correct versions. Furthermore, we assume that
enough memory is installed to handle the operating system (OS), the bench-
marking environment, and the benchmarked process(es) without swapping, and
that no CPU-intensive tasks are running outside the control of the benchmarking
environment. All I/O is assumed to be local, because network shares can have
unpredictable performance.

These are well-justified requirements, needed for safe operation of our bench-
marking environment, and fulfilled by setups of competitions like SV-COMP.
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2 Requirements for Reliable Benchmarking

There exist two major difficulties that we need to consider for benchmarking.
The first problem is that a tool may arbitrarily spawn child processes, and a
benchmarking framework needs to handle this. Using child processes is com-
mon practice. For example, verifiers might start preprocessors, such as CPP, or
solvers, like an SMT-backend, as child processes. Some tools start several child
processes, each with a different analysis or strategy, running in parallel, while
some verifiers spawn a separate child process to analyze counterexamples. In
general, a significant amount of the resource usage can happen in one or many
child processes that run sequentially or in parallel. Even if a tool is assumed
to not start child processes, for comparability of the results with other tools it
is still favorable to use a generic benchmarking framework that handles child
processes correctly.4

The second problem occurs if the benchmarking framework should assign
specific hardware resources to tool runs, especially if such runs are executed in
parallel and the resources need to be divided between them. Today’s machine
architectures can be complex and a sub-optimal resource allocation can neg-
atively affect the performance and lead to non-deterministic and thus non-
reproducible results. Examples for differing machine architectures can be seen
on the supplementary web page.5

In the following, we list five specific requirements that address these problems
and need to be followed for reproducible benchmarking. This list should serve
as a checklist not only for implementors of benchmarking frameworks, but also
for assessing the quality of experimental results in research reports.

2.1 Measure and Limit Resources Accurately

Time. The CPU time of a tool must be measured and limited accurately, includ-
ing the CPU time of all child processes started by the tool.

Memory. For benchmarking, we are interested in the peak resource consump-
tion of a process, i.e., in the smallest amount of resources with which the tool
could successfully be executed with the same result. Thus the memory usage
of a process is defined as the peak size of all memory pages that occupy some
system resources. This means, for example, that the size of the address space of
a process should not be measured and limited, because it may be much larger
than the actual memory usage, for example due to memory-mapped files or due
to allocated but unused memory pages (which do not actually take up resources
because the Linux kernel lazily allocates physical memory for a process only
when a virtual memory page is first written to, not when it is allocated). The
4 Our experience from competition organization shows that developers of complex

tools are not always aware of how their system spawns child processes and how to
properly terminate them.

5 http://www.sosy-lab.org/∼dbeyer/benchmarking

http://www.sosy-lab.org/~dbeyer/benchmarking
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size of the heap, however, may be too low if data are stored on the stack, and the
so-called resident set of a process (the memory that is currently kept in RAM)
does not include pages that are in use but swapped out.

If a tool spawns several processes, these can use shared memory such that
the total memory usage of a group of processes is less than the sum of their
individual memory usages. Shared memory occupies system resources only once
and thus needs to be counted only once by the benchmarking framework.

Setting a limit on the memory usage is important and should always be done,
because otherwise the amount of memory available to the tool is the amount of
free memory in the system, which varies over time and depends on lots of external
factors, preventing reproducible results.

2.2 Terminate Processes Reliably

If a resource limit is violated, it is necessary to reliably terminate the tool includ-
ing all of its child processes. Even if the tool terminates itself, the benchmarking
environment needs to ensure that all child processes are also terminated. Other-
wise a child process could keep running and occupy CPU and memory resources,
which might influence later benchmarks on the same machine.

2.3 Assign Cores Deliberately

Special care is necessary for the selection of CPU cores that are assigned to
one tool run. For the OS, a core is a processing unit that allows execution of
one thread. This means that if the CPU supports hyper-threading (i.e., the
execution of several threads at the same time in the same physical CPU core),
each of the virtual cores is treated as a separate core (processing unit) by the
OS, i.e., the OS does not distinguish between virtual cores and physical cores.
However, because two threads on different virtual cores in the same physical
CPU core can influence the performance of each other, there should never be
two simultaneous tool executions on two virtual cores of one physical core (just
like there should never be two simultaneous tool executions sharing one virtual
core). To show that this is important, we executed benchmarks using the verifier
CPAchecker on a machine with hyper-threading, and on purpose forced two
parallel executions of the verifier on the same physical core. This increased the
used CPU time by 41 %. More details on this benchmark can be found in the
appendix.

Another restriction that should be followed is that the cores for one run
should not be split across several CPUs if the run does not need more cores than
one CPU can provide, because communication between cores on the same CPU
is faster than between different CPUs, and cores share certain caches.

2.4 Respect Non-uniform Memory Access

Systems with several CPUs often have an architecture with non-uniform memory
access (NUMA), which also needs to be considered by a benchmarking environ-
ment. In a NUMA architecture, a single processor or a group of processors can
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access parts of the system memory locally, i.e., directly, while other parts of the
system memory are remote, i.e., they can only be accessed indirectly via another
CPU, which is slower. The effect is that once a processor has to access remote
memory, this leads to a performance degradation depending on the load of the
inter-CPU connection and the other CPU. Hence, a single run of a tool should
be bound to memory that is local to its assigned CPU cores, in order to avoid
non-deterministic delays stemming from remote memory access. To show that
this is important, we executed benchmarks using the verifier CPAchecker on
a machine with two CPUs and NUMA, and on purpose assigned the cores of
one CPU and the memory attached to the other CPU to each run of the tool,
such that all memory accesses were indirect. This increased the used CPU time
by 11 %. More details on this benchmark can be found in the appendix.

2.5 Avoid Swapping

Swapping out memory must be avoided during benchmarking, because it may
degrade performance in a non-deterministic way. This is especially true for the
benchmarked process(es), but even swapping of an unrelated process can nega-
tively affect the benchmarking, if the benchmarked process has to wait for more
free memory to become available. Absolutely preventing swapping can typically
only be done by the system administrator by turning off all available swap space.
In theory, it is not even enough to ensure that the OS, the benchmarking environ-
ment, and the benchmarked processes all fit into the available memory, because
the OS can decide to start swapping even if there is still memory available, for
example, if it decides to use some memory as cache for physical disks. However,
for benchmarking CPU-bound tools, with high CPU and memory usage, and
next to no I/O, this is unlikely to happen with modern OS. Thus, the main
duty of the benchmarking environment is to ensure that there is no overbooking
of memory, and that memory limits are enforced effectively. It is also helpful if
the benchmarking environment monitors swap usage during benchmarking and
warns the user of any swapping.

3 Limitations of Existing Methods

Some of the existing tools and methods available on Linux systems for measuring
resource consumption and for enforcing resource limits of processes have sev-
eral problems that make them unsuitable for benchmarking, especially if child
processes are involved. Any benchmarking environment needs to be aware of
these limitations and avoid using naive methods for resource measurements.

3.1 Measuring Resources May Fail

Time. Measuring wall time is simple with high precision using standard tools
and methods that operating systems and most programming languages provide.
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Measuring CPU time of the main process of a tool, for example using the
tool time or a variant of the system call wait (which returns the CPU time after
the given process terminated), does not reliably include the CPU time of child
processes that were spawned by the main process. The Linux kernel only adds
the CPU time used by child processes to that of the parent process after the child
process has terminated and the parent process waited for the child’s termination
with a variant of the system call wait. If the child process has not yet terminated
or the parent did not explicitly wait for its termination, the CPU time of the
child is lost. This is a typical situation that might happen for example if a verifier
starts an SMT solver as a child process and communicates with the solver via
stdin and stdout. When the analysis finishes, the verifier would terminate the
solver process, but usually would not bother to wait for its termination. A tool
that runs different analyses in parallel in child processes would also typically
terminate as soon as the first analysis returns a valid result, without waiting for
the other analyses’ termination.6 In these cases, a large share of the total CPU
time is spent by child processes but not included in the measurement.

Memory. Some Linux tools only provide a view on the current memory usage
of individual processes, but we need to measure the peak usage of a group of
processes. Calculating the peak usage by periodically sampling the memory usage
and reporting the maximum is inaccurate, because it might miss peaks of mem-
ory usage. If the benchmarked process started child processes, one has to recur-
sively iterate over all child processes and calculate the total memory usage. This
contains several race conditions that can also lead to invalid measurements, for
example, if a child process terminates before its memory usage could be read.
In situations where several processes share memory pages (e.g., because each of
them loaded the same library, or because they communicate via shared mem-
ory), we cannot sum up the memory usage of all processes. Thus, without keeping
track of every memory page of each process, manually filtering out pages that
do not occupy resources because of lazy allocation, and counting each remaining
page exactly once, the calculated value for memory usage is invalid.

3.2 Enforcing Limits May Fail

For setting resource limits, some users apply the tool ulimit, which uses the
system call setrlimit. A limit can be specified for CPU time as well as for
memory, and the limited process is forcefully terminated by the kernel if one
of these limits is violated. However, similar to measuring time with system call
wait, limits imposed with this method affect only individual processes, i.e., a
tool that starts n child processes could use n times more memory and CPU
time than allowed. Limiting memory is especially problematic because either
6 We experienced this when organizing SV-COMP’13, for a portfolio-based verifier.

Initial CPU time measurements were significantly too low, which was luckily discov-
ered by chance. The verifier had to be patched to wait for its sub-processes and the
benchmarks had to be re-run.
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the size of the address space or the size of the data segment (the heap) can be
limited, which do not necessarily correspond to the actual memory usage of the
process, as described above. Limiting the resident-set size (RSS) is no longer
supported.7 Furthermore, if such a limit is violated, the kernel terminates only
the one violating process, which might not be the main process of the tool. In
this case it depends on the implementation of the tool how such a situation is
handled: it might terminate itself, or crash, or even continuously re-spawn the
terminated child process and continue. Thus, this method is not reliable.

It is possible to use a self-implemented limit enforcement with a process that
samples CPU time and memory usage of a tool with all its child processes,
terminating all processes if a limit is exceeded, but this is inaccurate and prone
to the same race conditions described above for memory measurement.

3.3 Terminating Processes May Fail

In order to terminate a tool and all its child processes, one could try to (tran-
sitively) enumerate all its child processes and terminate each of them. However,
finding and terminating all child processes of a process may not work reliably
for two reasons. First, a process might start child processes faster than the
benchmarking environment is able to terminate them. While this is known as a
malicious technique (“fork bomb”), it may also happen accidentally, for example
due to a flawed logic for restarting crashed child processes of a tool. The bench-
marking environment should guard against this, otherwise the machine might
become unusable. Second, it is possible to “detach” child processes such that
they are no longer recognizable as child processes of the process that started
them. This is commonly used for starting long-running daemons that should not
retain any connection to the user that started them, but also might happen inci-
dentally if a parent process is terminated before the child process. In this case,
an incomplete benchmarking framework could miss to terminate child processes.

The process groups of the POSIX standard (established with the system call
setpgid) are not reliable for tracking child processes. A process is free to change
its process group, and tools using child processes often use this feature.

4 State-of-the-Art Benchmarking with Cgroups

We listed aspects that are mandatory for reproducible benchmarking, and
explained flaws of existing methods. In the following, we present a technology
that should be used to avoid these pitfalls.

Control groups (cgroups) are a feature of the Linux kernel for managing
processes and their resource usage, which is available since 2007 [11]. Differently
from all other interfaces for these tasks, cgroups provide mechanisms for manag-
ing groups of processes and their resources in an atomic and race-free manner,
and are not limited to single processes. All running processes of a system are

7 http://linux.die.net/man/2/setrlimit

http://linux.die.net/man/2/setrlimit
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grouped in a hierarchical tree of cgroups8, and most actions affect all processes
within a specific cgroup. Cgroups can be created dynamically and processes can
be moved between them. There exists a set of so-called controllers in the kernel,
each of which affects and measures the consumption of a specific resource by the
processes within each cgroup. For example, there are controllers for measuring
and limiting CPU time, memory consumption, and I/O bandwidth.

The cgroups hierarchy is made accessible to programs and users as a directory
tree in a virtual file system, which is typically mounted at /sys/fs/cgroups.
Usual file-system operations can be used to read and manipulate the cgroup
hierarchy and to read resource measurements and configure limits for each of
the controllers (via specific files in each cgroup directory). Thus, it is easy to use
cgroups from any kind of tool, including shell scripts. Alternatively, one can use
a library such as libcg9, which provides an API for accessing and manipulating
the cgroup hierarchy. Settings for file permission and ownership can be used to
fine-tune who is able to manipulate the cgroup hierarchy.

When a new process is started, it inherits the current cgroup from its parent
process. The only way to change the cgroup of a process is direct access to the
cgroup virtual file system, which can be prevented using basic file-system per-
missions. Any other action of the process, whether changing the process group,
detaching from its parent, etc., will not change the cgroup. Thus, cgroups can be
used to reliably track the set of (transitive) child processes of any given process
by putting this process into its own cgroup. We refer to the manual for details.10

The following cgroup controllers are relevant for reliable benchmarking:

cpuacct measures the accumulated CPU time that is consumed by all processes
in each cgroup. A time limit cannot be defined, but can be implemented in the
benchmarking environment by periodically checking the accumulated time.

cpuset allows to restrict the processes in each cgroup to a subset of the available
CPU cores. On systems with more than one CPU socket and NUMA, it allows
to restrict the processes to specific parts of the physical memory.

freezer allows to freeze all processes of a cgroup in a single operation. This can
be used for reliable termination of a group of processes by freezing them first,
sending all of them the kill signal, and afterwards unfreezing (“thawing”) them.
This way the processes do not have the chance to start other processes because
between the time the first and the last process receive the kill signal none of
them can execute anything.

memory allows to restrict maximum memory usage of all processes together in
each cgroup, and to measure current and peak memory consumption. If the
defined memory limit is reached by the processes in a cgroup, the kernel first
tries to free some internal caches that it holds for these processes (for example

8 Actually, independent hierarchies are currently supported. We restrict ourselves to
the single-hierarchy case because independent hierarchies are going to be deprecated.

9 http://libcg.sourceforge.net/
10 https://www.kernel.org/doc/Documentation/cgroups/

http://libcg.sourceforge.net/
https://www.kernel.org/doc/Documentation/cgroups/
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disk caches), and then terminates at least one process. Alternatively, instead
of terminating processes, the kernel can send an event to a registered process,
which the benchmarking framework can use to terminate all processes within the
cgroup. The kernel counts only actually used pages towards the memory usage,
and because the accounting of memory is done per memory page, shared memory
is handled correctly (every page the processes use is counted exactly once).

The memory controller allows to define two limits for memory usage, one
on the amount of physical memory that the processes can use, and one on the
amount of physical memory plus swap memory. If the system has swap, both
limits need to be set to the same value. If only the former limit is set to a specific
value, the processes could use so much memory plus all of the available swap
memory (and the kernel would automatically start swapping out the processes if
the limit on physical memory is reached). Similarly, for reading the peak memory
consumption, the value of physical memory plus swap memory should be used.
Sometimes, the current memory consumption of a cgroup is not zero even after
all processes of the cgroup have been terminated, if the kernel decided to still
keep some pages of these processes in its disk cache. To avoid influencing the
measurements of other runs by this, a cgroup should be used only for a single
run and deleted afterwards, with a new run getting a new, fresh cgroup.11

The numbering system of the Linux kernel (which is also used for restricting
CPU cores with the cpuset controller) for a system with n physical cores across
all CPU sockets is as follows: The id i for i ∈ [0, . . . , n − 1] is assigned to the
first virtual core (processing unit) of the i-th physical core in the system, and,
in case there are physical cores with more than one virtual core, the id i + n
is assigned to the second virtual core of the i-th physical core, and so on. For
example, consider a system with 2 CPU sockets with 8 physical cores each and
2 virtual cores per physical core. There are 16 physical cores in the system, so
ids 0–15 refer to the first virtual core of each of the physical cores, and ids 16–31
refer to the other virtual cores. The ids belonging to the first CPU are 0–7
and 16–23, the ids 8–15 and 24–31 belong to the second CPU. The ids of a pair
of processing units on the same physical core differ by 16 in this machine, e.g.,
(virtual) cores 0 and 16 belong to the same physical core and should be used
together. This information can be extracted from certain files in the directories
/sys/devices/system/cpu/cpu<id>/topology/ or from /proc/cpuinfo.

5 BenchExec: A Framework for Reliable Benchmarking

In the following, we describe our implementation of a cgroups-based benchmark-
ing framework that fulfills the requirements from Sect. 2 by using the techniques
from Sect. 4. It is available as open source under the Apache 2.0 License on
GitHub12.

BenchExec consists of two parts, both written in Python. The first is respon-
sible for benchmarking a single run of a given tool, including the reliable
11 Or clear the caches with drop caches.
12 https://github.com/dbeyer/benchexec/

https://github.com/dbeyer/benchexec/
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limitation and accurate measurement of resources. This part is also designed
such that it is easy to use from within other benchmarking frameworks. The
second part is responsible for benchmarking a whole set of runs, i.e., running
one or more tools on a collection of input files by delegating each run execution
to the first part, which is responsible for a single run, and then aggregating the
results.

5.1 System Requirements

In order to use the cgroup-based benchmarking framework BenchExec, a few
requirements are necessary that may demand for assistance by the administra-
tor of the benchmarking machine. Apart from running a Linux kernel, cgroups
including the four controllers listed in the previous section must be enabled
and the account for the benchmarking user needs the permissions to manipulate
(a part of) the cgroup hierarchy. Any Linux kernel version of the last years is
acceptable, though there have been performance improvements for the memory
controller in version 3.313, and cgroups in general are still getting improved,
thus, using a recent kernel is recommended. If the benchmarking machine has
swap, swap accounting must be enabled for the memory controller. For enabling
cgroups and giving permissions, we refer to standard Linux documentation.

After these steps, no further root access is necessary and everything can
be done with a normal user account. Thus, it is possible to use machines for
benchmarking that are not under own administrative control. By creating a spe-
cial cgroup for benchmarking and granting rights only for this cgroup, it is also
possible for the administrator to prevent the user from interfering with other
processes and to restrict the total amount of resources that the benchmarking
may use. For example, one can specify that a user may use only a specific sub-
set of CPU cores and amount of memory for benchmarking, or partition the
resources of shared machines among several users.

5.2 Benchmarking a Single Run

We define a run as a single execution of a tool, with the following input:

• the full command line, i.e., the path to the executable with all arguments, and
optionally,

• the content supplied to the tool via stdin,
• the limits for CPU time, wall time, and memory, and
• the list of CPU cores and memory banks to use.

Executing a run produces the following output:

• the exit code of the main process,
• output written to stdout and stderr by the tool, and
• the CPU time, wall time, and peak memory consumption of the tool.

13 http://lwn.net/Articles/484251/

http://lwn.net/Articles/484251/
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The program runexec executes a run with the given input, provides the output,
and ensures (using cgroups) adherence to the specified resource limits, reliable
cleanup of processes after execution (i.e., no process survives), and accurate
measurement of the resource usage. This program is runnable stand-alone, in
which case the inputs are passed as command-line parameters. Alternatively,
runexec is usable as a Python module for a more convenient integration into
other Python-based benchmarking frameworks.

An example command line for executing a tool on all 16 (virtual) cores of
the first CPU of a dual-CPU system, with a memory limit of 16 GB on the first
memory bank and a time limit of 100 s is:

runexec --timelimit 100 --memlimit 16000000000
--cores 0-7,16-23 --memoryNodes 0 -- <TOOL_CMD>

The output of runexec then looks as follows (log on stderr, result on stdout):

2015-01-20 10:35:35 - INFO - Starting command <TOOL_CMD>
2015-01-20 10:35:35 - INFO - Writing output to output.log
exitcode=0
returnvalue=0
walltime=1.51596093178s
cputime=2.514290687s
memory=130310144

In this case, the run took 1.5 s of wall time, and the tool used 2.5 s of CPU
time and about 130 MB of RAM before returning successfully (exit code 0). The
same could be achieved from within a Python program with three lines of code
by importing runexec as a module as explained in the documentation14.

5.3 Benchmarking a Collection of Runs

Benchmarking typically consists of processing tool runs on hundreds or thou-
sands of input files, and there may be several different tools or several configu-
rations of the same tool that run on the same input files.

The program benchexec executes a collection of runs. It receives as input

• a collection of input files,
• the name of the tool to use,
• command-line arguments for the tool to specify the configuration,
• any limits for CPU time, wall time, memory, and number of CPU cores, and
• the number of runs that should be executed in parallel.

These inputs are given in XML format; an example can be seen in the tool
documentation14. Additionally, a tool-specific Python module needs to be writ-
ten that contains functions for creating a command-line string for a run (includ-
ing input file and user-defined command-line arguments) and for determining the

14 https://github.com/dbeyer/benchexec/blob/master/doc/INDEX.md

https://github.com/dbeyer/benchexec/blob/master/doc/INDEX.md
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result from the exit code and any output of the tool. Such a module typically
has under 50 lines of Python code, and needs to be written only once per tool.
We are often also interested in classifying the result into expected and incorrect
answers. BenchExec currently supports this for the domain of automatic soft-
ware verification, where it gets as input a property to be verified in the format
used by SV-COMP [3]15.

As an extension, benchexec and its input format also allow to specify differ-
ent configuration options for subsets of the input files, as well as several different
tool configurations at once, each of which will be benchmarked against all input
files.

The program benchexec first tries to find a suitable allocation of the available
resources (CPU cores and memory) to the number of parallel runs. It checks
whether there are enough CPU cores and memory in the system to satisfy the
core and memory requirements for all parallel runs. Then it assigns cores to
each parallel run such that a run is not spread over different CPU sockets and
different runs do not use virtual cores that belong to the same physical core, if
this is possible. For memory, it ensures that enough memory is available for all
runs and that every run uses only memory that is directly connected to the CPU
socket(s) on which the run is executed (to avoid measurement problems due to
NUMA). Thus, benchexec automatically guarantees valid resource allocations.

Afterwards, benchexec uses runexec to execute the benchmarked tool on
each input file with the appropriate command line, resource limits, etc. It also
interprets the output of the tool and determines whether the result was correct.
The result of benchexec is a table (in XML format) that contains all information
from the executed runs: returned result, exit code, CPU time, wall time, and
memory usage. The output of the tool for each run is available in separate files.
Additional information such as current date and time, the host and its system
information (CPU and RAM), and the effective resource limits are also recorded.

The program table-generator allows to produce tables from the results of
one or more executions of benchexec. If several result sets are given, they are
combined and presented one per column group in the table, allowing to easily
compare the results, for example, across different configurations or revisions of a
tool, or across different tools. Each line of the generated table contains the result
for one input file. There are columns for the output of the tool, the CPU time,
the wall time, the memory usage, etc. These tables are written in two formats.
A CSV-based format allows further processing, such as with gnuplot or R for
producing plots and statistical evaluations, a spreadsheet program, or LATEX
for producing a paper by using a package for CSV import. The second format
is HTML, which allows the user to view the tables conveniently with nothing
more than a browser. The HTML table is interactive and generates scatter and
quantile plots for selected columns, allows columns and rows to be filtered, and
provides access to the text output of the tool for each individual run. Examples
of such tables can be seen on the supplementary webpage.16

15 Tools that do not support this specification format can also be benchmarked. In this
case, the specification is used by BenchExec only to determine the expected result.

16 http://www.sosy-lab.org/∼dbeyer/benchmarking#tables

http://www.sosy-lab.org/~dbeyer/benchmarking#tables
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If a tool outputs more interesting data (e.g., time statistics for individual
parts of the analysis, number of created abstract states, or SMT queries), those
data can also be added to the generated tables if a function is added to the
tool-specific Python module which extracts such data values from the output
of the tool. All features of the table (such as generating plots) are immediately
available for the columns with such data values as well.

5.4 Discussion

We would like to discuss a few of the design decisions and goals of BenchExec.
BenchExec aims at not impacting the external validity of benchmarks by

avoiding to use an overly artificial environment (such as a virtual machine) or
influencing the benchmarked process in any way (except for the specified resource
limits). Resource limitations and measurements are done using the respective
kernel features that are present and active on a standard machine anyway.

We designed BenchExec with extensibility and flexibility in mind. Support
for other tools and result classifications can be added with a few lines of Python
code. The program runexec, which does the actual benchmark execution and
resource measurement, can be used separately as a stand-alone tool or a Python
module, for example within other benchmarking frameworks. Result data are
present as CSV tables, which allows processing with standard software.17

We choose not to base BenchExec on a container solution such as LXC or
Docker because, while these provide resource limitation and isolation, they typ-
ically do not focus on benchmarking. With containers, a fine-grained controlling
of resource allocation as well as measuring of resource consumption may be dif-
ficult or impossible. Furthermore, requiring a container solution to be installed
would significantly limit the amount of machines on which BenchExec can be
used, for example, because on many machines (especially in bigger HPC clus-
ters) the Linux kernel is too old, or such an installation is not possible due
to administrative restrictions. Using cgroups directly minimizes the necessary
version requirements, the installation effort, and the necessary access rights.18

We use XML as input and output format because it is a structured for-
mat that is readable and writable by both humans and tools, and it is self-
documenting. Users can also use comments in the input file. We can store not
only customized result data, but also additional meta data in the result file. This
allows to document information about the benchmarking environment, which is
important in scientific work because it increases the reproducibility and trust of
the results.

Python was chosen as programming language because it is expected to be
available on every relevant Linux machine, and it is easy to write the tool-specific
module even for people that do not have much experience in programming.
17 For example, BenchExec is used to automatically check for regressions in the integra-

tion test-suite of CPAchecker.
18 We successfully use BenchExec on four different clusters, each under different admin-

istrative control and with software as old as SuSE Enterprise 11 and Linux 3.0, and
on the machines of the student computer pool of our department.
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6 Related Work

Besides the issues that we discussed, there are more sources of non-deterministic
effects that may influence performance measurement, such as size of environment
variables and order of objects during linking [9].

For computer networking, the Mininet Hi-Fi project [6] also advocates repro-
ducible experiments in their community. In order to achieve resource isolation
of processes that belong to different virtual hosts, the project relies on cgroups.

In the verification community, there exist several benchmarking tools that
have the same intent and features as our benchmarking framework. However,
as of April 2015, no tool we investigated fulfills all requirements for reliable
benchmarking, which are presented in Sect. 2. In the following, we discuss several
existing benchmarking tools in their latest versions as of April 2015. Our selection
is not exhaustive, because there exist many such tools.

The tool RunLim19, in version 1.7, allows to benchmark another executable
and limits both CPU time and memory. It does so by sampling time and memory
consumption recursively for a process hierarchy, and thus cannot guarantee accu-
rate measurements and limit enforcement. The tool cannot terminate a process
hierarchy reliably, because it only terminates the main process with kill. The
tool pyrunlim20, a port of RunLim to the Python programming language, has
a few more features, such as setting the CPU affinity of a process, and aims
at killing process hierarchies more reliably. However, in the latest version 2.11,
it does not use cgroups and also takes sample measurements recursively over
process hierarchies, which —like all sampling-based methods— is not accurate.

The Satisfiability Modulo Theories Execution Service (SMT-Exec)21 was
a solver execution service provided by the SMT-LIB initiative. For enforcing
resource limits, SMT-Exec used the tool TreeLimitedRun22. It uses the system
calls wait and setrlimit, and thus, is prone to the restrictions argued in Sect. 3.

StarExec [12], a web-based service developed at the Universities of Iowa and
Miami, is the successor of SMT-Exec. The main goal of StarExec is to facilitate
the execution of logic solvers. The Oracle Grid Engine takes care of queuing and
scheduling runs. For measuring CPU time and memory consumption, as well as
enforcing resource limits, StarExec delegates to runsolver23 [10], available in
version 3.3.5, that also is prone to the limitations (Sect. 3).

The CProver Benchmarking Toolkit (CPBM)24, available in version 0.5, ships
helpers for verification-task patch management and result evaluation, and also
supports benchmarking. However, the limits for CPU time and memory are
enforced by ulimit25, and thus, the benchmarking is not accurate.

19 http://fmv.jku.at/runlim/
20 http://alviano.net/2014/02/26/
21 http://smt-exec.org
22 http://smtexec.cs.uiowa.edu/TreeLimitedRun.c
23 http://www.cril.univ-artois.fr/∼roussel/runsolver/
24 http://www.cprover.org/software/benchmarks/
25 c.f. verify.sh in the CPBM package

http://fmv.jku.at/runlim/
http://alviano.net/2014/02/26/
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http://smtexec.cs.uiowa.edu/TreeLimitedRun.c
http://www.cril.univ-artois.fr/~roussel/runsolver/
http://www.cprover.org/software/benchmarks/
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The Versioning Competition Workflow Compiler (VCWC) [5] is an effort to
create a fault-tolerant competition platform that supports competition maintain-
ers in order to minimize their amount of manual work. This project, in the latest
development version26, defines its own benchmarking container, also relying on
ulimit to enforce time limits. If the administrator of the benchmarking machine
manually designed and created a cgroup hierarchy that enforces an appropriate
partitioning of CPU cores and memory nodes, and defined a memory limit, the
scripts of VCWC can execute runs within these existing cgroups, but they can-
not automatically create the appropriate cgroups like BenchExec. Furthermore,
measurement of CPU time and memory, as well as termination of processes, is
not implemented with cgroups, and hence, may fail.

The tool BenchKit [8], available in version β2, is also used for competitions,
where participants submit a virtual-machine (VM) image with their tool and all
necessary software. BenchKit executes the tool within an instance of this VM
and measures the resource usage of the tool and the OS in the VM together. Our
framework executes all tools natively on the host system and allows precise mea-
surement of the resource consumption of the tool in isolation, without influence
from factors such as the VM’s OS. BenchKit measures CPU time and memory
consumption of the VM using sampling with the performance monitoring tool
sysstat27. BenchKit does not ensure that the CPU cores and the memory for a
run are assigned such that hyper-threading and NUMA are respected. For each
single run with BenchKit, i.e., each pair of tool and input file, a new VM has
to be booted, which on average takes 40 s to complete [8]. Execution of a tool
inside a VM can also be slower than directly on the host machine. Our approach
based on cgroups has a similar effect of isolating the resource usage of individual
runs but comes at practically zero overhead. Our tool implementation was suc-
cessfully used in SV-COMP’15, in which 54 000 runs were executed, consuming
a total of 120 CPU days [3]. Using BenchKit in this competition would have
imposed an overhead of 25 CPU days for the 54 000 runs. When also counting
runs that were executed by the competition organizers during the testing phase,
the total increases to 170 000 runs and a prohibitive overhead.

7 Conclusion

The goal of this work is to establish a technological foundation for performance
evaluation of tools that is based on modern technology and makes it possible to
reliably measure and control resources in a reproducible way in order to obtain
scientifically valid experimental data. First, we established reasons why there is
a need for such a benchmarking technology in the area of automatic verification.
Tool developers, as well as competitions, need reliable performance measure-
ments to evaluate their research results. Second, we motivated and discussed
several requirements that are indispensable for reproducible benchmarking and
resource measurement, and also identified limitations and restrictions of existing
26 git revision 9d58031 from 2013-09-13, c.f. https://github.com/tkren/vcwc/
27 http://sebastien.godard.pagesperso-orange.fr/

https://github.com/tkren/vcwc/
http://sebastien.godard.pagesperso-orange.fr/


176 D. Beyer, S. Löwe, and P. Wendler

methods. We demonstrate, using rather simple experiments on a large set of tool
runs, the high risk of invalidating measurements if certain technical constraints
are not taken care of. Such problems have been detected in practice, and nobody
knows how often they went unnoticed, and how many wrong conclusions were
drawn from flawed benchmarks. In order to overcome the existing deficits and
establish a scientifically valid method, we presented our lightweight implementa-
tion BenchExec, which is built on the concept of Linux cgroups. The implemen-
tation fulfills all requirements for reproducible benchmarking, since it avoids the
pitfalls that existing tools are prone to. This is a qualitative improvement over
the state-of-the-art, because existing approaches may produce arbitrarily large
(systematic and random) measurement errors, e.g., if sub-processes or NUMA
are involved.

BenchExec is not just a prototypical implementation. The development of
BenchExec was driven by the demand for reproducible scientific experiments in
our research projects (for the CPAchecker project, we execute about 2 million
tool runs per month in our research lab) and during the repeated organization of
the International Competition on Software Verification (SV-COMP). Especially
in the experiments of SV-COMP, we learned how difficult it can be to accu-
rately measure resource consumption for a considerable zoo of tools that were
developed using different technologies and strategies. BenchExec makes it easy
to tame the wildest beast, and was successfully used to benchmark 22 tools in
SV-COMP’1528, with all results approved by the 77 authors of these tools.

Acknowledgement. We thank Hubert Garavel, Jiri Slaby, and Aaron Stump for their
helpful comments regarding BenchKit, cgroups, and StarExec, respectively.

Appendix: Impact of Hyper-threading and NUMA

To show that hyper-threading and non-uniform memory access (NUMA) can
have a negative influence on benchmarking if not handled appropriately, we exe-
cuted benchmarks using the predicate analysis of the verifier CPAchecker29 in
revision 15 307 from the project repository30. We used 4011 C programs from
SV-COMP’15 [3] (excluding categories not supported by CPAchecker) and a
CPU-time limit of 900 s. Tables with the full results and the raw data are avail-
able on our supplementary webpage.31

Note that the actual performance impact will differ according to the resource-
usage characteristics of the benchmarked tool. For example, a tool that uses only
very little memory but fully utilizes its CPU core(s) will be influenced more by
hyper-threading than by non-local memory, whereas for a tool that relies more
on memory accesses it might be the other way around. In particular, the results
for CPAchecker that are shown here are not generalizable and show only that
28 List on http://sv-comp.sosy-lab.org/2015/participants.php
29 http://cpachecker.sosy-lab.org
30 https://svn.sosy-lab.org/software/cpachecker/trunk
31 http://www.sosy-lab.org/∼dbeyer/benchmarking#benchmarks

https://github.com/dbeyer/benchexec/
http://sv-comp.sosy-lab.org/2015/participants.php
http://cpachecker.sosy-lab.org
https://svn.sosy-lab.org/software/cpachecker/trunk
http://www.sosy-lab.org/~dbeyer/benchmarking#benchmarks
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there is such an impact. Because the quantitative amount of the impact is not
predictable and might be non-deterministic, it is important to rule out these
factors for reproducible benchmarking in any case.
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Fig. 1. Scatter plot showing the influ-
ence of hyper-threading for 2 472 runs of
cpachecker: the data points above the
diagonal show a performance decrease due
to an inappropriate assignment of CPU
cores during benchmarking

Impact of Hyper-threading. To
show the impact of hyper-threading,
we executed benchmarks on a machine
with a single Intel Core i7-4770
3.4 GHz CPU socket (with four phys-
ical cores and hyper-threading) and
33 GB of memory. We executed the
verifier twice in parallel and assigned
one virtual core and 4.0 GB of mem-
ory to each run. In one instance of
the benchmark, we assigned each of
the two parallel runs a virtual core
from separate physical cores. In a sec-
ond instance of the benchmark, we
assigned each of the two parallel runs
one virtual core from the same phys-
ical core, such that both runs had
to share the hardware resources of
one physical core. A scatter plot with
the results is shown in Fig. 1. For the
2 472 programs from the benchmark
set that CPAchecker could solve on
this machine, 13 h of CPU time were necessary using two separate physical cores
and 19 h of CPU time were necessary using the same physical core, an increase
of 41 % caused by the inappropriate core assignment.

Impact of NUMA. To show the impact of non-uniform memory access, we
executed benchmarks on a NUMA machine with two Intel Xeon E5-2690 v2
2.6 GHz CPUs with 63 GB of local memory each. We executed the verifier twice
in parallel, assigning all cores of one CPU socket and 60 GB of memory to each
of the two runs. In one instance of the benchmark, we assigned memory to each
run that was local to the CPU the run was executed on. In a second instance of
the benchmark, we deliberately forced each of the two runs to use only memory
from the other CPU socket, such that all memory accesses were indirect. For
the 2 483 programs from the benchmark set that CPAchecker could solve on
this machine, 19 h of CPU time were necessary using local memory and 21 h of
CPU time were necessary using remote memory, an increase of 11 % caused by
the inappropriate memory assignment. The wall time also increased by 9.5 %.
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Abstract. We study the problem of determining whether from a run of
a concurrent program, we can predict alternate deadlocking executions
of it. We show that if a concurrent program adopts nested locking, the
problem of predicting deadlocks is efficiently solvable without exploring
all interleavings.

In this work we present a fundamentally new predictive approach to
detect deadlocks in concurrent programs, not based on cycle detection in
lock-graphs [1]. The idea is to monitor an arbitrary run of a concurrent
program, use it to predict alternate runs that could be deadlocking, and
reschedule them accurately. We implement our prediction algorithm in
a tool called PickLock, which is a modular extension of the Penelope
framework [32].

We show experimentally that PickLock scales well and is effective
in predicting deadlocks. In particular, we evaluate it over 13 benchmark
concurrent programs and find about 11 deadlocks by using only a single
test run as the prediction seed for each benchmark.

1 Introduction

A common cause for unreactiveness in concurrent programs is deadlocked con-
figurations. Deadlocks in a shared-memory concurrent program are unintended
conditions that can be mainly classified into two types: resource-deadlocks and
communication deadlocks. A set of threads is resource-deadlocked if each thread
deadlocked is waiting for a resource, like a lock, held by another thread in the set,
which forms a cycle of lock requests. In communication deadlocks some threads
wait for messages that do not get sent because the sender threads are blocked
or they have already sent the messages before receiving threads start to wait.
In [23] the authors illustrate that it could be really hard to precisely detect all
kinds of deadlocks by the same techniques. In this study we focused only on
resource deadlocks, from now on referred to as deadlocks.

Deadlocks are very common in concurrent programs— Lu et al. [27] showed
that a relevant number of errors (about 30 %) found in a characteristic study of
concurrency bugs on a collection of software systems can be attributed to dead-
locks. Moreover, avoiding other concurrency problems like races and atomicity-
violations often involves introducing new synchronizations, which in turn can
introduce new deadlocks [27,28].
c© Springer International Publishing Switzerland 2015
B. Fischer and J. Geldenhuys (Eds.): SPIN 2015, LNCS 9232, pp. 179–199, 2015.
DOI: 10.1007/978-3-319-23404-5 13



180 F. Sorrentino

Deadlocks often occur under subtle interleaving patterns that the program-
mer has not taken into consideration. There are too many interleavings to test
for, even for a single concurrent program on a single input, making concurrency
testing a difficult problem. With the rise of multicore hardware platforms, finding
solutions to this problem is very important, as testing is still the most effective
way of finding bugs today. Current testing technologies such as stress testing are
inadequate in exposing such subtle interleavings.

In this study, we focus on prediction techniques for discovering deadlocks—
we observe an arbitrary execution of a concurrent program and from it predict
alternate interleavings that can deadlock. We show that if a concurrent program
adopts nested locking policies (i.e., locks are released by threads in the reverse
order in which they were acquired), the problem of predicting potential dead-
locks involving any number of threads is efficiently solvable without exploring all
interleavings. Nested locking is guaranteed on Java (using synchronized blocks
or methods) and C#.

Deadlocks can be detected using dynamic analysis [10,14,15,24,28], model
checking [18,22], runtime monitoring [36], static analysis [19,29,31,37] or a com-
bination thereof. Analysis based on lock order graphs [1] or a combination of
them with happen-before relation has been already explored [15]. Static analy-
sis and model checking are both typically complete (no false negatives), and
model checking in addition is typically sound (no false positives). However,
model checking is computationally expensive making the entire state space explo-
ration impractical (resulting in false negative). In order to reduce the state space
abstractions are performed introducing false positive. Precision is gained using
dynamic techniques, even if may still yield false positives, as well as false neg-
atives, and requires code instrumentation that results in a slow down of the
analyzed program. Dynamic confirmation techniques work well in confirming if
a potential deadlock is a real one. Recent deadlock detection techniques [24,28]
use lock-set based strategies to predict potential deadlocks. Unfortunately, the
re-execution phase they provide is weak, largely because such re-execution phases
are based on time triggered approaches.

The solution we propose for predicting potential deadlocks and for confirming
them is not based on the simple cycle lock requests detection like most of the
deadlocks detection work available in the literature [1,13,14,19,25,34,35,37].
It instead involves taking a concurrent program and a test harness, executing
the program under test to get an arbitrarily interleaved execution, and then
predicting alternate executions leading to deadlocks. Finally, in order to check if
a real deadlock has been found, the program being tested is re-executed precisely
under these predicted deadlocking schedules.

The main contribution of this paper is the prediction algorithm, which rea-
sons at an abstract level in order to efficiently and accurately predict deadlock-
ing schedules. The algorithm is based on lock-sets and acquisition histories (the
latter are a kind of hierarchical lock-set information), which only ensure that
the predicted run respects lock acquisitions and releases in the run. In other
words, the predicted runs are certainly not guaranteed to be feasible in the
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original program— if the original program had threads that communicated
through shared variables in a way that orchestrated the control flow, the pre-
dicted runs may simply not be feasible. However, in the absence of such commu-
nication, the predicted runs do respect the locking semantics and hence assure
feasibility at that level of abstraction. To realize a more precise prediction we
could have used a more sophisticated mechanism, such as the one that uses
constraint solvers we proposed in [20]. However, we decided to pursue scalabil-
ity and use a more lightweight solution here. The crucial observation is that
acquisition histories give not only enough traction to detect alternate deadlock-
ing interleavings (which entirely eliminates false positives), but also provide an
effective mechanism to re-schedule the precise interleaving under which deadlock
will occur.

We have implemented this methodology in a tool, PickLock, that monitors
and reschedules interleavings for Java programs. The infrastructure of the tool is
partially built on the Penelope framework, presented in [32]. We have applied
PickLock to a suite of multi-threaded Java programs and showed that it is
efficient and effective in predicting deadlocking schedules. The methodology we
present is language-independent and can be applied to other contexts as long as
nested locking policies are used.

2 Related Work

Prior work on deadlock detection in concurrent programs have exploited different
techniques: dynamic (including postmortem) analysis, model checking and static
analysis.

Static approaches attempt to detect possible deadlocks directly on the source
code and do not require the execution of the application being tested [12,19,29,
31,37]. Even if this approach exhaustively explores all potential deadlocks, it
suffers from high false positives, aggravating the user. For example, Williams
et al. in [37] report that on 100,000 potential deadlocks only 7 were real dead-
locks. In order to reduce the number of false positives numerous directions have
been explored. Williams et al. [37] have used heuristics to try to remove some of
the false positives but these have the potential of removing some real deadlocks.
von Praun [34] uses a context-sensitive lock-set and a lock graph in his app-
roach. To reduce false positives they suppress certain deadlocks based on lock
alias set information, again potentially removing real deadlocks. RacerX [19] is
a static data race and deadlock detection tool for concurrent programs written
in C. Additional programmer’s annotations are used to inject the programmer’s
intent and consequently suppress false positives and improve the RacerX’s accu-
racy. More recently, Naik et al. [29] combine a suite of static analysis techniques
to cut the false positive rates. Unfortunately, scalability and problems related to
conditional statements still remain a drawback of static analysis.

Several researchers have explored a model-checking approach to detect dead-
locks in concurrent programs using model checker such as SPIN and Java
Pathfinder [18,22,33,39]. Joshi et al. [23] monitor the annotated conditional
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variables as well as lock synchronization and threading operations in a program
to generate a trace program containing not only thread and lock operations but
also the value of conditionals. Then they apply Java Pathfinder to check all
abstracted and inferred execution paths of the trace program to detect dead-
locks. However, the technique proposed requires manual effort to design and add
annotations, which can be error-prone, and suffers from the scalability issue to
handle largescale programs. Dynamic analysis techniques have been extensively
explored as well [10,14,15]. With this approach the execution of one or more
runs of a concurrent program are monitored to determine if a deadlock may
occur in another execution of the program. Bensalem et al. [14,15] find potential
deadlocks in Java programs by finding cycles in the lock graph generated during
program execution. All cycles in the lock graph are considered to be potential
deadlocks, generating false positives (as well as false negative). They use the
happen-before relation to improve the precision of cycle detection and use a
guided scheduler to confirm a deadlock. Farchi et al. [10] proposed an approach
where they generate a lock graph across multiple runs of the code. Deadlocks
prediction is done searching cycles in this graph; unfortunately, this approach
may also produce false alarms. MulticoreSDK [28] and DeadlockFuzzer [24] use
lock-set based strategies to predict potential deadlocks. Once a potential dead-
lock has been found, deadlock confirmation, avoidance, or healing strategies can
be applied. Neither approaches are capable of completing large executions, more-
over the rescheduling phase is not robust enough to guarantee that the right time
to trigger a deadlock is used.

MagicFuzzer [16] is a dynamic resource deadlock detection technique based
on locks dependencies. It locates potential deadlock cycle from an execution,
it iteratively prunes lock dependencies that have no incoming or outgoing rela-
tions with other lock dependencies. Similarly to our approach it has a trace
recording phase, a potential deadlock detection phase and a deadlock confirma-
tion phase — which avoids false positives. However, like most of the techniques
based on cycle detection, the detection phase is not precise, even assuming that
the communication between threads occurs only through locks, overloading the
confirmation phase. ConLock [38] is the most recent work that implements pre-
dictive detection techniques following our same motivations. ConLock analyzes
a given cycle and the execution trace that produce the cycle. It generates a
set of constraints and a set of nearest scheduling points. Then, it schedules a
confirmation run with the aim to not violate a reduced set of constraints from
the chosen nearest scheduling points. ConLock is able to detect false positives,
however the confirmation phase still lacks of robustness (deadlocks are hit with
a probability >71%).

3 Motivating Example

It is very common to incur a deadlock when programs misuse APIs offered by
third-party libraries [25,37]. Even if the program does not contain logic bugs per
se, the interaction of methods defined in synchronized classes may still result
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public synchronized boolean addAll(Collection c){
modCount++;
· · ·
Object[] a = c.toArray();
· · ·

}
public synchronized Object[] toArray(){

return Arrays.copyOf(elementData, elementCount);
}

· · ·
T1 : acq(l1)
· · ·
T1 : acq(l2)
· · ·
T1 : rel(l2)
· · ·
T1 : rel(l1)
· · ·

· · ·
T2 : acq(l2)
· · ·
T2 : acq(l1)
· · ·
T2 : rel(l1)
· · ·
T2 : rel(l2)
· · ·

(a) (c)

public boolean containsAll 1(Collection c){
Iterator e = c.iterator();
while(e.hasNext())

synchronized(c){
· · ·

}
}

public synchronized boolean containsAll(Collection coll){
return c.containsAll 1(coll);

}

(b)

ρ

ρ′

Fig. 1. (a) – Simplified code for addAll and toArray of the Vector library of Java 1.4.
(b) – Simplified code for containsAll and containsAll 1 of the Collections library of
Java 1.4. (c) – Observed execution ρ of the program under test (dotted arrows indicate
the predicted run ρ′generated from ρ).

in deadlocks. This is a general problem for all synchronized Collection classes
in the JDK, including the Vector library. Since Vector is a synchronized class,
programmers could easily assume that concurrent accesses to vectors are not a
concern. However, potential deadlocks could still be present and hidden from the
calling application.

In Fig. 1(a), we show a simplified version of the methods addAll and toArray
as defined in the JDK library. addAll appends all of the elements in the specified
collection c to the end of this Vector. Internally it calls the method toArray,
which returns an array containing all the elements in this Vector in the correct
order. As the addAll needs to be multi-thread safe, it follows that locks for the
vector being added to and the parameter need to be acquired. Specifically, the
method acquires the lock associated with the vector being added to first, and
then it acquires the lock associated with the parameter. Similarly, in Fig. 1(b),
we report a simplified version of the methods containsAll and containsAll 1
(in AbstractCollection.java) as defined in the JDK. containsAll acquires the lock
associated with this vector first, then from inside the method containsAll 1 it
acquires the lock associated with the specified collection c.

Let us assume that in the program under test there are two threads that
execute concurrently and use two vectors V1 and V2. T1 wants to add all elements
of V2 to V1, calling the method V1.addAll(V2), while T2 concurrently invokes the
method V2.containsAll(V1), in order to check if the vector V2 contains all the
elements of V1.

In Fig. 1(c), we report a possible observed run ρ (focus on the solid arrows) of
the program under test. We are assuming that the code of T1 is entirely executed



184 F. Sorrentino

followed by the code of T2 (this execution does not deadlock). Our prediction
algorithm observes the synchronization events (such as locks acquire/release) but
suppresses the semantics of computations entirely and does not observe them.
They have been replaced by “...” symbols in the figure as they play no role in
our analysis.

Given the observed run ρ, we ask whether there exists an alternative run ρ′

in which a deadlock potentially occurs. Our prediction algorithm will predict a
run ρ′ in which the acquisition of the lock associated with V1 (let us say l1) by
T1 is followed by the acquisition of the lock associated with V2 (let us say l2)
done by T2 (illustrated by the dotted arrows in the Fig. 1(c)).

Once a potential deadlocking run is found, in the last phase of PickLock,
our re-execution engine will orchestrate the execution of the program under test
to follow the predicted run. The program under test will then deadlock inside
the JDK, producing a concrete deadlocking interleaving.

4 Preliminaries

In this Section we introduce some notations that will be used in the rest of the
paper. Then, we elaborate on some observations that motivate our various design
choices.

4.1 Prediction Model

We assume a countably infinite set of thread identifiers T = {T1, T2, . . .} and a
countably infinite set of global locks L = {l1, l2, . . .}, used in a nested fashion
(i.e. threads release locks in the reverse order in which they were acquired).

PickLock observes three kinds of actions for a given thread Ti, defined as:

ΣTi
= {Ti:acq(l), Ti:rel(l)| l ∈ L} ∪ {Ti: tc Tj | Tj ∈ T }

Action Ti:acq(l) represents acquiring the lock l and the action Ti:rel(l) represents
releasing of the lock l, by thread Ti. The action Ti : tc Tj denotes the thread
Ti creating the thread Tj . We define Σ =

⋃
Ti∈T ΣTi

as the set of actions of
all threads. A word w in Σ∗, in order to represent a run, must satisfy several
syntactic restrictions, represented by the following definitions. (σ|A denotes the
word σ projected to the letters in A).

Definition 1 (Lock-Validity). A run ρ ∈ Σ∗ is lock-valid if it respects the
semantics of the locking mechanism. Formally, let Σl = {Ti:acq(l), Ti:rel(l) | Ti ∈
T } denote the set of locking actions on lock l. Then ρ is lock-valid if for every
l ∈ L, ρ|Σl

is a prefix of
[⋃

Ti∈T (Ti:acq(l) Ti:rel(l))
]∗

This definition specify a semantic property on locks that the predicted run should
respect, the nested nature is automatically forced from the initial assumption
(i.e. the original run uses locks in a nested fashion) and from the program order
constraint.
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Definition 2 (Creation-Validity). A run ρ ∈ Σ∗ over a set of threads T is
creation-valid if every thread is created at most once and its events happen after
this creation, i.e., for every Ti ∈ T , there is at most one occurrence of the form
Tj: tc Ti in w, and, if there is such an occurrence, then all occurrences of letters
of ΣTi

happen after this occurrence.

Let ρ be a global execution, let {ρT }T∈T be its set of local executions and
e = (T, i) be an event in ρT . Then we say that the j’th action (1 ≤ j ≤ |ρ|) in ρ
is the event e (or, Event(ρ[j]) = e = (T, i)), if ρ[j] = T :a (for some action a) and
ρT [1, i] = ρ[1, j]|T . In other words, the event e = (T, i) appears at the position j
in ρ in the particular interleaving of the threads that constitutes ρ. Reversely, for
any event e in {ρT }T∈T , let Occur(e, ρ) denote the (unique) j (1 ≤ j ≤ |ρ|) such
that the j’th action in ρ is the event e, i.e. Event(ρ[j]) = e. Therefore, we have
Event(ρ[Occur(e, ρ)]) = e, and Occur(Event(ρ[j])) = j. Finally, let Tid(e, ρ)
denote the thread T ∈ T executing the event e in ρ.

While the run ρ defines a total order on the set of events in it (E,≤), there
is an induced total order between the events of each thread. We formally define
this as �i for each thread Ti, as follows: for any em, en ∈ E, if em and en belong
to thread Ti and m ≤ n then em �i en. The partial order that is the union of
all the program orders is �= ∪Ti∈T �i.

Given an execution ρ over a set of locks L and threads T , we would like
to infer alternative executions ρ′ from ρ that deadlock. Our prediction model
respect lock-validity, creation-validity and the program-order of the original run.

Definition 3 (Prediction Model [32]). Let ρ be a run over a set of threads
T and locks L. A run ρ′ is inferred from ρ if (i) for each Ti ∈ T , ρ′|Ti

is a
prefix of ρ|Ti

, (ii) ρ′ is lock-valid, (iii) creation-valid. We will refer to the set of
executions inferred from ρ with Infer(ρ).

Notice that our prediction model is an abstraction of the problem of finding
alternate executions that are deadlocking in the concrete program. Not all the
executions in Infer(ρ) may be valid/feasible in the original program (this could
happen if the threads communicate using other mechanisms). In this sense we
talk about potential deadlocks. A more precise prediction model can be obtained
adding to Definition 3 the data-validity constraints (for more details we refer the
reader to [20,30]). However, our rescheduling phase takes care of this problem,
getting rid of the false positives.

4.2 Lock-Sets and Acquisition-Histories

Let ρT indicate the local execution of T . Consider ρT (for any T ), the lock-
set held after ρT is the set of all locks T holds: LockSet(ρT ) = {l ∈ L |
∃k.ρT [k] = T :acq(l), there is no j, k < j ≤ i s.t . ρT [j] = T :rel(l)}. The acquisi-
tion history [26] of the execution of a thread has more nuanced information, and
will play a crucial role in both detecting deadlocks and finding re-executions of
the program that manifest the deadlocks. The acquisition history of ρT records,
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T1 T2

Acq l1 Acq l2

Acq l2 Acq l1

...
...

e1 = (T1, i) e2 = (T2, j)

f1 = (T1, i
′) f2 = (T2, j

′)

AHl2(ρT2 [1, j]) : l2 −→ {l1}
AHl1(ρT1 [1, i]) : l1 −→ {l2}

AHl1 �∼c AHl2

LockSet(ρT1 [1, i]) = {l1}

...
...

LockSet(ρT2 [1, j]) = {l2}

(LockSet(ρT1 [1, i]) ∩ LockSet(ρT2 [1, j])) = ∅

Rel l1Rel l2

...
...

Fig. 2. Lock-sets and acquisition histories associated with a deadlocking configuration
of threads T1 and T2.

for each lock l held by T at the end of ρT , the set of locks that T acquired (and
possibly released) after the last acquisition of the lock l.

Formally, the acquisition history of ρT , AH(ρT ) : LockSet(ρT ) → 2L, where
AHl(ρT ) is the set of all locks l′ ∈ L such that ∃k.ρT [k] = T :acq(l) and there is
no j > k such that ρT [j] = T :rel(l) and ∃h > k.ρT [h] = T :acq(l′).
Two acquisition histories AHl(ρT1) and AHl′(ρT2) are said to be not compatible,
denoted as AHl(ρT1) �∼c AHl′(ρT2), if there exist two locks l and l′ such that
l′ ∈ AHl(ρT1) and l ∈ AHl′(ρT2). They are otherwise said to be compatible.

4.3 Relation Between Co-reachability and Deadlock

A result by Kahlon et al. [26] argues that global reachability of two threads
communicating via nested locks is effectively and precisely solvable by extracting
locking information from the two threads. In particular, it states that there is
an execution that ends with event e1 in one thread and event e2 in the other
thread, if, and only if, the acquisition histories at e1 and e2 are compatible and
the lock-sets held are disjoint.

Lemma 1 (Kahlon et al. [26]). Let ρ be an execution of a concurrent program
P and let T1 and T2 be two different threads. Let e1 = (T1, i) be an event of thread
T1 and e2 = (T2, j) be an event of thread T2 of these local executions.

Then the event e1 and e2 of T1 and T2 respectively are co-reachable in P
if, and only if, LockSet(ρT1 [1, i]) ∩ LockSet(ρT2 [1, j]) = ∅, and the acquisition
history of ρT1 [1, i] and the acquisition history of ρT2 [1, j] are compatible.

This pairwise reachability result is the base of our approach and the following
Theorem is a direct consequence of it.

Theorem 1. There is a potential deadlocking run ρ′ ∈ Infer(ρ) involving two
threads if, and only if, ∃ e1 = (T1, i), e2 = (T2, j) s.t. LockSet(ρT1 [1, i]) ∩
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LockSet(ρT2 , [1, j]) = ∅ and the acquisition histories of ρT1 [1, i] and ρT2 [1, j]
are not compatible.

Proof. One side of the implication follows from the Lemma1. If there is a dead-
lock, involving T1 and T2, it means that we reached an event f1 = (T1, i

′) and
an event f2 = (T2, j

′) in the local executions in which the two threads are not
allowed to make further operations (Fig. 2). From the Lemma 1, it follows that
lock-sets at f1 and f2 are disjoint and the acquisition histories of ρT1 [1, i′] and
ρT2 [1, j′] are compatible. Moreover, because the threads T1 and T2 are blocked,
the operation that they are trying to do is an acquire of some lock (the release
is not a blocking operation).

In particular, T1 and T2 are trying to acquire different locks, because if they
were trying to acquire the same lock at least one of the threads would have been
able to move. The fact that T1 (resp. T2) can not make an acquire implies that
it is requiring a lock, l2 (resp. l1) owned by T2 (resp. T1). It follows that at
ρT1 [1, i′ + 1] and ρT2 [1, j′ + 1], the lock-sets are not disjoint. From the nested
nature of the locking policies, it follows that there exists a point in ρT1 in which
l2 is released, that has the same lock-set of f1, let us say e1. Similarly, there
exists a point in ρT2 in which l1 is released, that has the same lock-set of f2,
let us say e2. It follows that at e1 and e2 the lock-sets are disjoint (they were
disjoint also in f1 and f2). Because T1 held l1 while acquired l2 and T2 held l2
while acquired l1 then l1 and l2 are such that the acquisition histories of ρT1 [1, i]
and ρT2 [1, j] are not compatible, that completes this side of the proof.

It remains to prove that when ∃e1, e2 satisfying the hypothesis then there
exist an event, f1, executed by T1 with Occur(f1, ρ) < Occur(e1, ρ), and an
event, f2, executed by T2 with Occur(f2, ρ) < Occur(e2, ρ), such that T1 and T2

are deadlocked.
Let us pick the e1 e2 such that (Occur(e1, ρ) + Occur(e2, ρ)) is minimal,

moreover for the sake of exposition we can assume that there is a unique pair
of locks (l1, l2) such that the acquisition histories of ρT1 [1, i] and ρT2 [1, j] are
not compatible. We need to prove that f1 and f2 respectively in T1 and T2 are
co-reachable and deadlocking.

From the assumption it follows that in ρT1 and in ρT2 , before that the events
e1 and e2 are respectively executed, the locks l1 and l2 are acquired in reverse
order by T1 and T2. We can assume that the execution orders are those depicted
in Fig. 2.

We pick as f1 the event right before the acquisition of l2 in ρT1 and the
event right before the acquisition of l1 in ρT2 as f2. f1 and f2 are deadlocking by
definition. In order to prove that they are co-reachable, from Lemma1, we need
to prove:

1. LockSet(ρT1 [1, i′]) ∩ LockSet(ρT2 [1, j′]) = ∅.
2. acquisition histories at ρT1 [1, i′] and ρT2 [1, j′] are compatible.
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Due to the nested nature of the locking policies, the event f1 occurs after
the acquisition by T1 (resp. T2) of l1 (resp. l2), belonging to LockSet(ρT1 [1, i])
(resp. LockSet(ρT2 [1, j])). It follows LockSet(ρT1 [1, i]) ⊆ LockSet(ρT1 [1, i′]) and
LockSet(ρT2 [1, j]) ⊆ LockSet(ρT2 [1, j′]).

By contradiction, let us assume that LockSet(ρT1 [1, i′])∩LockSet(ρT2 [1, j′]) �=
∅. That is, it exists a lock l3 such that l3 ∈ LockSet(ρT1 [1, i′])∩LockSet(ρT2 [1, j′]).
But from the inclusions stated above it follows that l3 ∈ LockSet(ρT1 [1, i]) ∩
LockSet(ρT2 [1, j]) that contradicts the hypothesis.

We can conclude that the lock-sets are disjoint when T1 is at ρT1 [1, i′] and T2

is at ρT2 [1, j′]. It remains to prove the point 2. Let us assume by contradiction
that exist l1 and l2 such that the acquisition histories at ρT1 [1, i′] and ρT2 [1, j′]
are not compatible. We found two events satisfying the hypothesis, moreover
Occur(f1, ρ) < Occur(e1, ρ) and Occur(f2, ρ) < Occur(e2, ρ) it follows that
(Occur(e1, ρ) + Occur(e2, ρ)) was not minimal, contradicting the assumption.

4.4 The Importance of Acquisition Histories

Potential deadlocks could be detected using a multitude of approaches. The ques-
tion we want to address in this Section is: “Why use acquisition histories?”. The
ideal prediction algorithm would predict potential deadlocks that are feasible at
least with respect to the synchronization mechanisms.

The majority of the approaches that have been proposed are based on cycle
detection in lock order graphs [11,12,15]. In a lock order graph, a node represents
a lock. A directed edge from node l1 to node l2 labeled T represents that, during
the execution, the thread T acquires the lock l2 while holding the lock l1. For
the rest of this Section we consider deadlocks involving only two threads for the
sake of exposition. Let us consider a program in which two threads T1 and T2

run concurrently and they use four locks l1, l2, l3 and l4. Given an execution
ρ of such program, in Fig. 3(a) we report the local executions ρT1 and ρT2 and
the lock order graph associated with it (b). The classic technique based on cycle
detection [11,12,15,16,24,28], first constructs a lock order graph. Then it detects
whether there are any cycles on the graph (in Fig. 3(b) dotted lines are detected
cycles). Finally, it tries to trigger the potential deadlock using active scheduling
strategies.

Consider the local executions in Fig. 3(a). Two potential deadlocks are
reported by the lock order graph-based algorithms as the one presented in [15].
The authors try to reduce false positives by ignoring cycles protected by a gate
lock (i.e. lock that needs to be taken by each thread before the cycle is entered).
Unfortunately, in this example there are such gate locks and it highlights the
main difference between our algorithm and the others (we are able to filter out
this false positive).
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T1 T2

Acq l1

Acq l2

Acq l2

Acq l3

Rel l2

Rel l3

Acq l3

Acq l4

Rel l4

Rel l1

Acq l1

Acq l4

g1 g2

h1 h2

...
...

l1

l2 l3

l4

(a)

(b)

T1 T1

T1

T1T2

T2

T2

T2

Fig. 3. (a) – A problematic scenario for the next lock
required and the cycle detection approaches. (b) – Lock
order graph associated with the execution on the left (dot-
ted lines are detected cycles).

Another simple algo-
rithm to detect poten-
tial deadlocks keeps
the set of locks (for
each event) held by
the thread when an
event is executed (simi-
lar to what we do), and
also keeps the infor-
mation about next lock
required. A potential
deadlock is found when
given two events e1
and e2 (executed by
two distinct threads),
they have disjoint lock-
sets and the next lock
required at e1 (resp. e2)
is in the lock-set associated with e2 (resp. e1). Even the next lock required app-
roach will report the potential deadlock at (g1, g2) such as the false potential
deadlock (h1, h2). MagicFuzzer [16] is the most recent technique based on lock
order graph. With respect to its competitors, this approach is more efficient
because the size of the graph built is one order of magnitude smaller. It itera-
tively prunes lock dependencies that each have no incoming or outgoing edge.
However, even this approach will wrongly report the two potential deadlocks.

The algorithm we propose is precise and lightweight. Precise because it will
report a potential deadlock configuration only when it is feasible (at least respect
to the synchronization mechanisms), potentially saving significant aggravation
to the user if a manual inspection of the potential deadlocks is required (or if
a re-execution phase is provided). It is light-weight because it just tracks lock-
sets and some small additional data, acquisition histories. Deadlock prediction
algorithms would keep track of at least lock-sets in order to avoid false positive
due to gate locks. One can develop an algorithm that executes the run till the
last lock-free point, and then tries to create the deadlock. However, we still need
a mechanism to generate the run with the deadlock. This is what acquisition
histories helps us do.

4.5 Concise Deadlock Prediction

A set of threads is deadlocked if each thread in the set requests a lock, held
by another thread in the set, forming a cycle of lock requests. A cycle with n
components is a sequence, but there are n total permutations of the components
to represent the same cycle. Detecting one permutation suffices to represent the
cycle. In a cycle, each thread can occur only once [16]. We can then use a thread-
driven approach to consider only one permutation in place of the whole set of
permutations representing the same cycle.
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Additionally, the algorithm we propose predicts deadlocks which have the
minimal number of threads involved (as contrasted with algorithms based on
cycle detection). Our algorithm is run repeatedly, it starts looking for deadlocks
involving only two threads. If no deadlocks are found the algorithm proceeds
looking for deadlocks involving three threads and so on until a potential dead-
lock is found or all the possible combinations of threads have been considered.
If the potential deadlock predicted is real, this feature will be very helpful for
the developer through the debugging process. More details will be discussed in
the next Section.

5 Prediction Algorithms

Given an execution ρ with nested locking, we would like to infer other executions
ρ′, containing a deadlock, from ρ. Theorem 1 allows us to engineer an efficient
algorithm to predict deadlocking executions. Our algorithm is based on the pair-
wise reachability, which is solvable compositionally by computing lock-sets and
acquisition histories for each thread. In this Section we will consider first the
prediction of deadlocks involving only two threads and then the more general
case involving any number of threads.

5.1 Deadlocks Prediction: 2-threads

The aim of the algorithm is to find two deadlocking events, executed by two
distinct threads, given an observed execution ρ. Notice that we are looking for
potential deadlocks at this point. These deadlocks may not be feasible in the
original program (this could happen if the threads communicate using other
mechanisms; for example, if a thread writes a particular value to a global variable
which another thread uses to choose an execution path).

The algorithm is divided into three phases. In the first phase, it gathers
the lock-sets and acquisition histories by examining the events of each thread
individually. In the second phase, it tests the compatibility of the lock-sets and
acquisition histories of every pair of witnesses e1 and e2 in different threads,
collected in the first phase. In the third phase from such e1 and e2 it rolls back
to two co-reachable events, f1 in T1 and f2 in T2, such that the two threads are
deadlocked.

Phase I. In the first phase, the algorithm gathers witnesses for each thread T .
The algorithm gathers the witnesses by processing the local executions ρT in a
single pass. It continuously updates the lock-set and acquisition history, adding
events to the set of witnesses, making sure that there are no events with the same
lock-set and acquisition history. The set of witnesses, indicated with AH1

ρ , is a
set of 3-tuples {((T, i),LockSet(ρT [1, i]), AH(ρT [1, i])) | T ∈ T , 1 ≤ i ≤ |ρT |}.
We use corresponding projection functions ev(x), ls(x) and ah(x) to extract the
components from x ∈ AH1

ρ .
Note that phase I considers every event at most once, in one pass, in a

streaming fashion, and hence runs in time linear in the length of the execution.
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1 for each x, y ∈ AH1
ρ do

2 if Tid(ev(x)) > Tid(ev(y)) then
3 if ls(x) ∩ ls(y) = ∅ ∧ ah(x) 	∼c ah(y) then
4 pass the pair (ev(x), ev(y)) to the third phase;
5 end

Fig. 4. Phase II: prediction algorithm.

Phase II. In the second phase, the algorithm checks whether there are pairs of
not compatible witnesses collected in the first phase. More precisely, it checks
whether, for any pair of threads T1 and T2, there is an event e1 executed by
T1 and an event e2 executed by T2 in AH1

ρ that have disjoint lock-sets and not
compatible acquisition histories. The existence of any such pair of events would
mean (by Theorem 1) that there is a potential deadlock configuration involving
the threads T1 and T2.

The algorithm runs the procedure in Fig. 4 for finding deadlocks. Notice that
the condition > (in place of �=) on line 2 avoids reporting redundant deadlocks, as
mentioned in Sect. 4.5. This reduction is sound because the lock-sets intersection
and the acquisition history’s compatibility are commutative operations.

Phase III. In the third phase, the algorithm retrieves two deadlocking events
f1, f2 from a pair of events (e1, e2) generated in the second phase. Acquisition
histories and the lock-sets of e1 and e2 are used to backtrack until an appropriate
deadlocking configuration (f1, f2) is found. The algorithm stops the backtracking
process when the two events f1 and f2 have disjoint lock-set and compatible
acquisition histories.

In particular, given a pair of events (e1, e2) indicating the presence of a
deadlock (i.e. e1 and e2 have disjoint lock-set and not compatible acquisition
histories) we want to retrieve a pair of deadlocking events (f1, f2). Let us call
a cut-point the pair of events in the execution (f1, f2) such that there is an
alternate schedule that can reach exactly up to f1 and f2 simultaneously. Any
schedule that reach exactly up to f1 and f2 simultaneously gives a deadlock.

The algorithm to retrieve the cut-point runs the procedure in Fig. 5. Essen-
tially T1 and T2 are backtracked at the events were the problematic locks were
acquired (lines 2–3). Let us assume that T1 holds l1 when acquires l2 at f1 =
(T1, i

′). Similarly, T2 holds l2 when acquires l1 at f2 = (T2, j
′).

If LockSet(ρT1 [1, i′]) ∩ LockSet(ρT2 [1, j′]) = ∅ ∧AH(ρT1 [1, i′]) ∼c AH(ρT2

[1, j′]), we have found two co-reachable deadlocking point (line 6) and we return
the pair (f1, f2) (line 7).

If the f1 and f2 are not co-reachable (line 4) then it can not be due to the
fact that T1 and T2 are holding a common lock (due to the nested nature of
the locks acquisition and the properties of e1 and e2). The only explanation is
that AH(ρT1 [1, i′]) �∼c AH(ρT2 [1, j′]). Because we know that LockSet(ρT1 [1, i′])∩
LockSet(ρT2 [1, j′]) = ∅ it follows that there is another deadlock involved, i.e.
there is another pair of events in AH1

ρ that will be considered in Phase II. Then
we can interrupt the retrieving process (line 5).
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Parameters e1 = (T1, i),e2 = (T2, j)
1 for each l1, l2 s.t. l2 ∈ AH1(l1) and l1 ∈ AH2(l2) with AH1 ∈ AH(ρT1 [1, i]) and AH2 ∈ AH(ρT2 [1, j]) do
2 f1 = (T1, i′) in ρT1 with i′ < i and the action performed is T1 : acquire(l2)
3 f2 = (T2, j′) in ρT2 with j′ < j and the action performed is T2 : acquire(l1)
4 if AH(ρT1 [1, i′]) 	∼c AH(ρT2 [1, j′]) then
5 return null;
6 else LockSet(ρT1 [1, i′]) ∩ LockSet(ρT2 [1, j′]) = ∅ ∧ AH(ρT1 [1, i′]) ∼c AH(ρT2 [1, j′]) then
7 return the cut-point (f1, f2);
8 end

Fig. 5. Phase III.

5.2 Deadlocks Prediction: n-threads

class Philo {
public static void main(String[] args) {

Fork F1 = new Fork();
Fork F2 = new Fork();
Fork F3 = new Fork();
Fork F4 = new Fork();
new Philosopher(1, F1, F2).start();
new Philosopher(2, F2, F3).start();
new Philosopher(3, F3, F4).start();
new Philosopher(4, F4, F1).start();

}
}

class Philosopher extends Thread {
int id;
Fork F1, F2;
public Philosopher(int i, Fork f1, Fork f2) {

this.F1 = f1;
this.F2 = f2;
this.id = i;

}
public void Dine() {

System.out.println(id);
}
public void run() {

synchronized (F1) {
synchronized (F2) {

Dine();
}

}
}

}

class Fork { public int num; }

Fig. 6. Dining philosophers [17].

Unfortunately, the lock-set/acquisition
history analysis we considered is unable
to catch potential deadlocks involving
more than two threads. We illustrate
the n-threads deadlock prediction using
the classical Dining Philosophers Prob-
lem. Four philosophers, identifiable by
a unique id i ∈ {1, 2, 3, 4}, sit at a
table around a bowl of spaghetti. A
fork is placed between each pair of
adjacent philosophers. A philosopher i
can only eat spaghetti when she has
both left and right forks (resp. Fi and
F ((i + 1) mod 4)). When the philoso-
phers get hungry is not deterministic.
Each fork can be held by only one
philosopher and so a philosopher can
use the fork only if it’s not being used by
another philosopher. When a philoso-
pher i is hungry she tries to acquire
her left fork first F (i), and once she
obtained that she tries to acquire the
right fork F ((i + 1) mod 4). After she
finishes eating, she needs to put down
both the forks so they become avail-
able to others. In particular, she puts
the right fork down first and then the
left fork. The code for the program is
adapted from [17] and it is reported
in Fig. 6.

Let us consider Fig. 7(a). All the acquisition histories associated with the
events of T1, T2, T3 and T4 are pairwise compatible, and the lock-sets are pairwise
disjoint. It follows that no potential deadlocks are found in this case. The problem
is that the elements in AH1

ρ are built from single thread information, therefore
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AH2 ⊇ {l2 −→ {l3}}

LS1 : {l1}

LS2 : {l2}

LS3 : {l1, l2}
AH3 ⊇ {l1 −→ {l2, l3}}

AH1 ⊇ {l1 −→ {l2}}
T1 T2

Acq l1

Acq l2

Acq l2

Rel l2

Rel l2Rel l1

Rel l3

...
...

...
...

Acq l3

Acq l3

Rel l3

Acq l1

Rel l1

Acq l4

Acq l4

Rel l4

Rel l4

T3 T4

* **

*

**

(a) (b)

Fig. 7. (a) Local executions ρT for the four threads involved in the Dining Philosophers
program of Fig. 6. (b) Composition of acquisition histories and locks-sets for threads
T1 (at *) and T2 (at **).

in order to increase the power of the lock-set/acquisition history analysis, we
need a set whose elements synthesize the information of multiple threads. We
present in the following the algorithm for the detection of potential deadlocks
involving multiple threads.

Let us consider two elements x, y ∈ AH1
ρ such that T1 = Tid(ev(x)) and

T2 = Tid(ev(y)) are distinct, the intersection of the lock-sets ls(x) and ls(y) is
empty and the acquisition histories in ah(x) and ah(y) are compatible.

Definition 4. We say that x and y can be composed when the following condi-
tions hold:

– ∃l, l′ ⊆ L s.t. l ∈ ls(x) and l′ ∈ ls(y)
– l′ is in some acquisition history defined in ah(x).

Before going through the details of the composition, we need to slightly
modify the definition of the witnesses set as defined in the previous Section in
order to gather composed elements. In particular, the first component of the
set AH1

ρ was the event (Tj , i), where Tj was the thread executing the event. In
place of the single thread Tj executing the event now we define a subset of T
containing the thread executing the event. Notice that Theorem1 still holds if
we adapt the requirement of events executed by different threads to require that
Tid(ev(x)) ∩ Tid(ev(y)) = ∅.

When two elements x and y ∈ AH1
ρ can be composed the resulting element

is z = ((Tid(ev(x)) ∪ Tid(ev(y)), (Occur(ev(x), ρ) + Occur(ev(y), ρ))), ls(x) ∪
ls(y),merge(ah(x), ah(y))).

Figure 7(b) shows how the merge procedure, i.e. the composition of acquisi-
tion histories, is realized. The intuition behind this is that once we find x, y ∈
AH1

ρ , with Tid(ev(x)) = T1 and Tid(ev(y)) = T2 respectively, that can be com-
bined; we can assume that all the events executed by T1 (up to Occur(ev(x), ρ)
and T2 (up to Occur(ev(y), ρ) are executed by a unique thread T ′. Then, we
collect events, lock-set and acquisition history of such super thread T ′.

The new set AH2
ρ is defined as the union of AH1

ρ and all the elements obtain-
able by the composition of pairs of elements in AH1

ρ .
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Theorem 2. There is a potential deadlocking run ρ′ ∈ Infer(ρ) involving 3 (or
4) threads if, and only if, ∃x, y ∈ AH2

ρ such that Tid(ev(x)) ∩ Tid(ev(y)) = ∅,
the LockSets ls(x) and ls(y) are disjoint and the acquisition histories in ah(x)
and ah(y) are not compatible.

In order to report only one permutation in place of the whole set of permuta-
tions representing the same cycle, we add some restrictions to the composition
procedure. In particular, ∀i ∈ Tid(ev(x)) and ∀j ∈ Tid(ev(y)) we require i < j.

The result can be generalized for potential deadlocking run involving n > 1
threads. In particular, in order to detect potential deadlocks involving n threads
where 2m−1 ≤ n ≤ 2m for some integer m > 1, requires inductively constructing
and analyzing the set AHm

ρ . A deadlock involving n threads is found building
O(log(n)) sets.

Dining Philosophers. In order to explain our algorithm for the prediction of
deadlocks involving more than 2 threads we use the dining philosophers problem
introduced in the previous Section. At the first round the algorithm generates the
set of witnesses AH1

ρ . No deadlocks are found in this round because ∀x, y ∈ AH1
ρ

LockSets ls(x) and ls(y) are disjoint and the acquisition histories in ah(x) and
ah(y) are compatible.
The algorithm then proceeds with the second round, generating AH2

ρ . AH2
ρ ,

contains all the elements of AH1
ρ and the elements obtained from the composition

of T1 and T2, T2 and T3 and T3 and T4. Notice that the elements obtainable from
the composition of T4 and T1 are discarded by the restriction we introduced at
the end of Sect. 5.2. Moreover, no other compositions exist.

Among the elements of AH2
ρ there are x = (({T1, T2}, i), {l1, l2}, {l1 →

{l2, l3}, l2 → {l3}}) and y = (({T3, T4}, j), {l3, l4}, {l3 → {l4, l1}, l4 → {l1}}).
x and y satisfy the Theorem 2, so a potential deadlock is found.

At the moment PickLock does not implement the phases II and III for the
case when n > 2. PickLock is fully implemented for the two threads deadlock
case, and all experiments in Table 1 were conducted using this full implementa-
tion of the deadlock prediction algorithms involving exactly 2 threads. We did
not implement the n > 2 case as we have not found practical examples where
this was necessary. We did apply prediction algorithms for deadlocks involving
n > 2 threads (i.e. only phase I), but did not detect any potential deadlocks in
these benchmarks.

6 Implementation

In this Section, we present an overview of the structure of PickLock. Many of
the components are developed upon our previous work, Penelope [32]. Here,
we will briefly review the monitoring and rescheduling phases as they largely
derive from [32]. We then focus on the schedule generation phase that provides
the main core of this work and includes the algorithms presented in the Sect. 5.
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Monitoring: We implemented our monitoring instrumenter using the Bytecode
Engineering Library (BCEL) [3]. Every class file in bytecode is (automatically)
transformed so a call to a global monitor is made after each relevant action is
performed. These relevant actions include thread creations, entry/exit to syn-
chronized blocks, and methods. Thread creation events are used to capture the
hard causality constraint of thread creation. Specifically, if a predicted run is
not feasible with respect to the thread creation it will be filtered out from the
set of predicted runs.

Rescheduling Predicted Schedules: The scheduler is implemented using
BCEL [3]; we instrument the scheduling algorithm into the Java classes using
bytecode transformations so that the events that were monitored interact with
the scheduler. At each point according to the predicted run, the scheduler orches-
trates the appropriate thread to perform an exact sequence of events. Each
thread stops at the first relevant event and waits for a signal from the scheduler
to proceed. Only then does the thread execute the number of events it was asked
to execute. The thread then notifies the scheduler, releases the processor, and
waits for further instructions.

Once the execution reaches the potential deadlocking points, the scheduler
releases all threads to execute as they please. There is a timeout mechanism
after which the status of the threads is checked and, if a real deadlock is found,
PickLock will report it to the user.

Schedule Generation: After finding a pair of deadlocking events (f1, f2)
(Sect. 5), PickLock generates alternate schedules that reach these events con-
currently and hopefully expose deadlocks. Schedules that reach the deadlocking
events concurrently are theoretically possible (indeed the Theorem 1 relies on
the existence of such a schedule [21,26]). Our scheduling algorithm guarantees
that the predicted deadlock is reproduced if in the original program the threads
do not use mechanisms other than locks to communicate. However, note that the
rescheduling phase controls only the interleaving of the program’s statements, by
instrumenting a controller of threads and rewriting the program. External non-
determinism caused by the OS, events, etc. is not controlled, and it is not con-
trolled by this current PickLock release. Our algorithm synthesizes a schedule
that also (heuristically) ensures maximum conformance to the original observed
execution. Building schedules that adhere as much as possible to the causal order
of the original observed execution is crucial to building feasible schedules— the
program under test may have many causal orderings such as communications
that need to be respected to ensure feasibility. Experiments in this paper and
earlier papers on Penelope [20,21,32] show that most predicted runs are indeed
feasible and validate our choices and algorithms.

In order to achieve such results we use a pruning technique for the runs
that removes a large prefix of them while maintaining the property that any run
predicted from the suffix will still be feasible. Consider an execution ρ and a pair
of deadlocking events α = (f1, f2). The idea behind pruning is to first construct
the causal partial order of events of ρ and then remove two sets of events from
it. The first set consists of events that are causally after f1 and f2. The second
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Table 1. Experimental results for deadlocks prediction using PickLock.

Application(LOC) Base

time

Number

of

threds

Number

of syncs

events

Number

of

observed

events

Time

to

moni-

tor

Number

of

predicted

runs

Number of

schedulable

predictions

Total

time

Deadlocks

found

Elevator (566) 7.3 s 3 6.6K 14K 7.4 s 0 - 7.6 s 0

7.3 s 5 22K 30K 7.4 s 0 - 7.5 s 0

19.2 s 5 138K 150K 19.4 s 0 - 19.9 s 0

RayTracer (1.5K) 5.0 s 10 20 648 5.0 s 0 - 5.2 s 0

3.6 s 20 40 1.7K 4.4 s 0 - 4.1 s 0

42.4 s 10 20 648 42.5 s 0 - 43.1 s 0

DBCP 1.2.1 (168K) 1.6 s 4 216 1.5K 1.8 s 2 1 4.1 s 1

Vector (1.3K) <1 s 4 108 525 <1 s 1 1 1.0 s 1

<1 s 4 12 63 <1 s 1 1 1.1 s 1

Stack(1.4K) <1 s 4 112 527 <1 s 1 1 1.1 s 1

<1 s 4 14 69 <1 s 1 1 1.3 s 1

StringBuffer(1.4K) <1 s 3 18 82 <1 s 1 1 1.2 s 1

<1 s 4 16 75 <1 s 1 1 1.1 s 1

ArrayList (1.6K) < 1 s 4 60 783 < 1 s 1 1 1.2 s 1

PrintWriter (1.2K) < 1 s 4 14 80 < 1 s 1 1 1.2 s 1

HashMap (1.3K) < 1 s 4 28 138 < 1 s 1 1 1.3 s 1

Java Logging

(43K)

<1 s 5 228 1.4K < 1 s 2 2 2.3 s 1

Apache

FtpServer(22K)

60 s 4 20 582 1m 1 s 0 - 1m 2 s 0

Hedc (30K) 1.71 s 7 198 774 1.74 s 0 - 1.73 s 0

Weblech v.0.0.3

(35K)

4.91 s 3 114 1.6K 4.92 s 0 - 4.95 s 0

set is a causally prefix-closed set of events (a configuration) that are causally
before f1 and f2, and in which all the locks are free at the end of execution of
this configuration. The intuition behind this is that such a configuration can be
replayed in the newly predicted execution precisely as it occurred in the original
run, and then stitched to a run predicted from the suffix, since the suffix will
start executing in a state in which no locks are held.

Let f ′
1 and f ′

2 be the last events in T1 and T2, respectively, that are before f1
and f2, in the local executions, with lock-sets empty. The crux of the scheduling
phase is then to schedule from f ′

1 and f ′
2 through f1 and f2.

The algorithm, borrowed from [32], works by building a graph of causal edges
between events. For every lock l in the lock-set of f2, if l occurs in the acquisition
history of f1 with respect to some lock l′, then we know that after the last
acquisition of l′ by T1 there was an acquisition (followed by a release) of the
lock l. Hence we know that we must schedule the last release of lock l′ in T1

(say event f ′′
1 ) before the last acquisition of l in T2 (say f ′′

2 ). We capture this by
adding a causal edge from f ′′

1 to f ′′
2 . Similarly, we examine the lock-set of f1 and

the acquisition history of f2 and throw in causal edges.
It turns out that since the acquisition histories are compatible, this graph

will by acyclic, and hence there is a schedule that respects these orderings. The
algorithm simply topologically sorts this graph to obtain a schedule (in the
implementation, the topological sorting gives preference to the ordering in the
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original execution— if f ′′
1 and f ′′

2 have no causal ordering, we pick f ′′
1 first if f ′′

2

occurred before f ′′
1 in the original schedule).

7 Evaluation

We ran PickLock on a benchmark suite of 13 concurrent programs against
several test cases and input parameters. Experiments were performed on an
Apple MacBook with 2.4 Ghz Intel Core i5 processors and 4 GB of memory,
running OS× 10.7.3 and Sun’s Java HotSpot 32-bit Client VM 1.5.0.

The benchmarks are all concurrent Java programs that use synchronized
blocks and methods as means of synchronization. They include Elevator from
ETH [35], RayTracer from the Java Grande MT benchmarks [8], Vector, Stack,
StringBuffer, ArrayList, PrintWriter and Hashmap from Java Collections
Framework, Logging from Java Library, DBCP from the Apache Commons Project
[2], Apache FtpServer from [7], Hedc from [5] and Weblech from [9].

The concurrent program Elevator simulates multiple lifts in a building;
RayTracer renders a frame of an arrangement of spheres from a given view point;
DBCP is the Database Connection Pool in the Apache Commons suite; Apache
FtpServer is a FTP server by Apache; and Vector, Stack, StringBuffer,
Logging, ArrayList, PrintWriter and Hashmap are Java libraries; Hedc is a
Web crawler application and Weblech is a websites download tool.

Our tool was also applied to other programs. For example, Colt [6] and Pool
from the Apache Common Project [4] in three different releases 1.2, 1.3, 1.5.
However, no deadlocks were found and to the best of our knowledge no resource
deadlocks have been reported for these programs. Because no additional insights
were given by these programs we did not report them in the Table 1.

Table 1 provides information about the benchmarks for deadlocks as well as
information about all three phases: monitoring, run prediction, and scheduling.
For the monitoring phase, the number of threads, the number of synchroniza-
tion events, and the total number of observed events are reported, as well as the
monitoring time. For the prediction phase, we report the number of potential
deadlocks found. In the scheduling part, we report the total number of schedu-
lable predictions. Finally, we present the total time for the test and the number
of deadlocks found.

PickLock found all previously known deadlocks in the benchmarks ana-
lyzed. More details about the test harnesses used and the deadlocks found
are available at http://web.engr.illinois.edu/∼sorrent1/papers/SPIN15.html. We
ran the programs under the test harness several times, and found none of the
reported bugs in any of these benchmarks by merely running tests randomly.
PickLock predicts about 11 deadlocking executions, a successful attempt at
finding deadlocks on these benchmarks. The runtime overhead for the testing is
minimal, around 10 % of the base run time. This is in contrast to similar tools
(e.g. Jade [29]) analyzing the same benchmarks. PickLock does not produce
false positives. If a deadlock is reported by PickLock, it is a real deadlock.

http://web.engr.illinois.edu/~sorrent1/papers/SPIN15.html
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Abstract. In precursory work we have developed causality checking,
a fault localization method for concurrent system models relying on
the Halpern and Pearl counterfactual model of causation that identifies
ordered occurrences of system events as being causal for the violation of
non-reachability properties. Our first implementation of causality check-
ing relies on explicit-state model checking. In this paper we propose a
symbolic implementation of causality checking based on bounded model
checking (BMC) and SAT solving. We show that this BMC-based imple-
mentation is efficient for large and complex system models. The technique
is evaluated on industrial size models and experimentally compared to
the existing explicit state causality checking implementation. BMC-based
causality checking turns out to be superior to the explicit state variant in
terms of runtime and memory consumption for very large system models.

1 Introduction

In precursory work we have defined a fault localization and debugging technique
for concurrent system models called causality checking [16,18]. Causality check-
ing relies on counterfactual reasoning à la Lewis [21], i.e., an event is considered
a cause for some effect in case (a) whenever the event presumed to be a cause
occurs, the effect occurs as well, and (b) when the presumed cause does not
occur, the effect will not occur either (counterfactual argument). This simple
form of counterfactual reasoning is inadequate to represent logically complex
causal structures. In their seminal work [12], Halpern and Pearl have defined a
model for causation, based on counterfactual reasoning, that encompasses log-
ically complex relationships amongst events. In our precursory work we have
adopted their model and (a) related it to models of concurrent computation, in
particular transition systems and traces, (b) extended it to accommodate the
order of events occurring as a causal factor, and (c) included the non-occurrence
of events as a potential causal factor. The key ingredients of our causality check-
ing algorithm are a complete enumeration of all traces leading to a property
violating state, as well as an enumeration of all traces not leading to such a
state, in order to establish the counterfactual argument.

c© Springer International Publishing Switzerland 2015
B. Fischer and J. Geldenhuys (Eds.): SPIN 2015, LNCS 9232, pp. 203–221, 2015.
DOI: 10.1007/978-3-319-23404-5 14
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An application of causality checking is fault localization within system mod-
els. While a model checker will return a simple counterexample for a (non-)
reachability property, causality checking will return a temporal logic formula
representing the events that are considered to be causal, as well as their order of
occurrence in case the order is determined to be causal. The causalities computed
by causality checking are much more succinct than counterexamples produced by
model checkers and contain more precise error location information than single
counterexamples.

We have implemented causality checking up to the work described in this
paper most efficiently in the SpinCause tool [20] that relies on explicit state
model checking and is based on SpinJa [14], a Java re-implementation of the
explicit state model checker SPIN [13]. We have embedded causality checking in
our QuantUM tool as the core analysis engine. QuantUM reads system archi-
tecture models given in UML or SysML directly out of industrial design tools,
such as IBM Rational Rhapsody, performs a reachability analysis for undesired
system states using the causality checking components, and outputs the com-
puted causalities as temporal logic fomulae and fault trees [17]. An application of
QuantUM is the support of safety cases in the analysis of safety-critical system
and software architectures [4,16].

We have applied SpinCause inside the QuantUM context to various industrial
sized case studies. At the upper end of the size scale of those case studies the
memory consumption of SpinCause starts to be a limiting factor. It is the objec-
tive of this paper to propose an implementation of causality checking using an
alternative model checking technology, in particular one that relies on bounded
model checking (BMC) [6], a symbolic representation of the state space and
SAT-solving as a verification engine, in order to evaluate whether this gives us a
causality checking implementation which is superior to the explicit state variant
in terms of memory consumption.

To this end we define an iterative BMC-based causality checking algorithm.
As argued above, in the explicit state causality checking implementation all
traces through a system need to be generated. The BMC-based causality check-
ing algorithm presented in this paper uses the underlying SAT-solver invoked by
the bounded model checker in order to generate the causal event combinations in
an iterative manner. In the course of an iteration only those error traces are gen-
erated that contain new information regarding the cause to be computed whereas
traces that do not provide new information are automatically excluded from fur-
ther consideration by constraining the SAT-solver with what is already known
about the causal relationships amongst events. With this approach a large num-
ber of error traces that would otherwise need to be considered and stored in the
explicit state approach can remain unconsidered, which contributes to the mem-
ory efficiency of this BMC-based causality checking implementation. We have
implemented our algorithm as an addition to the NuSMV2 model checker [9],
which encompasses a BMC component, and evaluate its performance using var-
ious case studies from various domains and of different sizes. It turns out that
for the largest models analyzed the BMC-based implementation requires up to
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two orders of magnitude less memory than the explicit state implementation.
As a consequence, causality checking now scales to a class of significantly more
complex models that could previously not be analyzed.

Structure of the Paper. In Sect. 2 we will present the technical foundations of
our work. In Sect. 3 we describe the proposed iterative BMC-based approach to
causality checking. In Sect. 4 we experimentally evaluate the BMC-based causal-
ity checking approach by comparing its performance to the explicit-state causal-
ity checking implementation. Related work will be discussed in Sect. 5 before we
conclude in Sect. 6.

2 Preliminaries

2.1 Running Example

We will illustrate the formal framework that we present in this paper using the
running example of a simple railroad crossing system. In this system, a train
can approach the crossing (Ta), enter the crossing (Tc), and finally leave the
crossing (Tl). Whenever a train is approaching, the gate shall close (Gc) and
will open again when the train has left the crossing (Go). It might also be the
case that the gate fails (Gf). The car approaches the crossing (Ca) and crosses
the crossing if the gate is open (Cc) and finally leaves the crossing (Cl). We are
interested in finding those events that are causal for the hazard that the car and
the train are in the crossing at the same time.

2.2 System Model

The model of concurrent computation that we use in this paper is that of a
transition system:

Definition 1 (Transition System [2]). A transition system M is a tuple (S,
A, →, I, AP, L) where S is a finite set of states, A is a finite set of actions/events,
→⊆ S ×A × S is a transition relation, I ⊆ S is the set of initial states, AP is the
set of atomic propositions, and L∶S→ 2AP is a labeling function.

We use the notation s
α
�→ s′ to denote (s,α, s′) ∈ →.

Definition 2 (Execution Trace [2]). An execution trace π in transition sys-
tem M is defined as an alternating sequence of states s ∈ S and actions a ∈ A

ending with a state. π = s0 α1 s1 α2 s2 ... αn sn, s.t. si
αi+1
��→ si+1 for all 0 ≤ i < n.

An execution sequence which ends in a property violation is called an error
trace or a counterexample. In the railroad crossing example, s0

Ta
�→ s1

Gf
�→ s2

Tc
�→

s3
Ca
�→ s4

Cc
�→ s5 is a counterexample, because the train and the car are inside

the crossing at the same time.
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2.3 Linear Temporal Logic

Linear Temporal Logic (LTL) [22] is a propositional modal logic based on a linear
system execution model. An LTL formula can be used to express properties of
infinite paths in a given system model.

Definition 3 (Syntax of Linear Temporal Logic). An LTL formula ϕ over
a set of atomic propositions AP is defined according to the following grammar:

ϕ ∶∶= TRUE ∣ a ∣ ϕ1 ∧ϕ2 ∣ ϕ1 ∨ϕ2 ∣ ¬ϕ ∣ ◯ϕ ∣ ◻ϕ
∣ ◇ϕ ∣ ϕ1 U ϕ2

where a ∈ AP.

The operators ◯, ◻, ◇ and U are used to express temporal behavior, such as
“in the next state sth. happens”(◯), “eventually sth. happens”(◇) and “sth. is
always true”(◻). The U-operator denotes the case that “ϕ1 has to be true until
ϕ2 holds”. We use M ⊧l ϕ to express that an LTL formula ϕ holds on a system
model M and π ⊧l ϕ for a execution trace in M .

The properties that are expressible in LTL can be separated into two classes,
safety and liveness properties. Safety properties can be violated by a finite prefix
of an infinite path, while liveness properties can only be violated by an infinite
path. For now, causality checking has only been defined for safety properties,
namely the non-reachability of an undesired state, which can be characterized
using an LTL formula. For instance, the non-reachability property that we want
to express in the railroad crossing example is that the train and the car shall
never be in the crossing at the same time: ◻¬(Tc ∧Cc).

2.4 Event Order Logic

Event Order Logic (EOL) is a linear time temporal logic that is used in causal-
ity checking to specify the ordered event occurrences that are computed to be
causal. Every EOL formula can be translated into an equivalent standard LTL
formula [3].

Definition 4 (Syntax of the Event Order Logic). Simple event order logic
formulae are defined over the set A of event variables:

φ ∶∶= a ∣ φ1 ∧ φ1 ∣ φ1 ∨ φ2 ∣ ¬φ

where a ∈ A and φ, φ1 and φ2 are simple EOL formulae. Complex EOL formulae
are formed according to the following grammar:

ψ ∶∶= φ ∣ ψ1 ∧ ψ1 ∣ ψ1 ∨ψ2 ∣ ψ1 � ψ2 ∣ ψ1 �[ φ
∣ ψ1 �] φ ∣ ψ1 �< φ �> ψ2

where φ is a simple EOL formula and ψ, ψ1 and ψ2 are complex EOL formulae.
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We define that a transition system M satisfies the EOL formula ψ, written as
M ⊧e ψ, iff ∃π ∈ M . π ⊧e ψ. The informal semantics of the operators can be
given as follows.

– ψ1 �ψ2: ψ1 has to happen before ψ2.
– ψ1 �[ φ: ψ1 has to happen at some point and afterwards φ holds forever.
– φ �

]
ψ1: φ has to hold until ψ1 holds.

– ψ1 �< φ �> ψ2: ψ1 has to happen before ψ2, and φ has to hold all the time
between ψ1 and ψ2.

For example, the formula Gc � Tc states that the gate has to close before the
train enters the crossing. The full formal semantics definition for EOL is given
in [19].

2.5 Event Order Normal Form

In order to enable the processing of EOL formulas and counterexamples in the
BMC-based causality checking algorithm it is necessary to define a normal form
for EOL formulas that we refer to as the event order normal form (EONF) [3,16].
EONF permits the unordered and- (∧) and or-operator (∨) only to appear in a
formula if they are not sub formulas in any ordered operator or if they are sub
formulas of the between operators �< and �>.

Definition 5. Event Order Normal Form (EONF) [3,16] The set of EOL for-
mulas over a set A of event variables in event order normal form (EONF) is
given by:

φ ∶∶=a ∣ ¬φ φ∧ ∶∶=φ ∣ ¬φ∧ ∣ φ∧1 ∧ φ∧2

ψ ∶∶=φ ∣ φ1 � φ2 ∣ φ1 �[ φ2 ∣ φ1 �] φ2 ∣ φ1 �< φ2 �> φ3

ψ∧ ∶∶=ψ ∣ φ∧ ∣ ψ∧1 ∧ ψ∧2 ∣ ψ∧1 ∨ψ∧2

where a ∈ A and φ are simple EOL formulas only containing single events and
φ∧, φ∧1 , φ∧2 and φ∧3 are EOL formulas only containing the ∧-operator, ψ is
a EOL formula containing the ordered operator, and ψ∧, ψ∧1 and ψ∧2 are EOL
formulas containing the ∧-operator and/or the ∨-operator which can be combined
with formulas in EONF containing ordered operators.

Every EOL formula can be transformed into an equivalent EOL formula in EONF
by rewriting using the equivalence rules defined in [3,16]. For instance, the EOL
formula Ta �Gc �Tc can be expressed in EONF as ψEONF = (Ta �Gc) ∧ (Gc �
Tc) ∧ (Ta �Tc).

2.6 Causality Reasoning

Our goal is to identify events that cause a system to reach a property violating
state. We hence need to define the notion of causality that we will base our
approach on. The notion of causality that we use, as proposed in [15], is based
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on counterfactual reasoning and the notion of actual cause defined by Halpern
and Pearl in [12]. It not only considers the occurrence of events to potentially be
causal, but also the order in which they occur as well as their non-occurrence.
For example, an event a may always occur before an event b for an error to
happen, but if b occurs first and a afterwards there is no error. In this case,
a occurring before b is considered to be causal for the error to happen. Work
described in [19] defines when, according to this extended causality notion, an
EOL formula ψ describes a causal process for the violation of a non-reachability
property, specified using an LTL formula. The causal process [12] consists of the
events causing the violation and all events mediating between the causal events
and the property violation. Notice that in case there are multiple instances of
event occurrences belonging to the same event type in the model, the multiple
instances are discriminated. For instance, if along a trace to events of type Gc
can be observed, we refer to them as Gc1 and Gc2. Otherwise it would not be
possible to distinguish between two separate occurrences of the same type of
event using standard LTL semantics, which EOL is based on.

Definition 6 (Cause for a Property Violation [12,18]). Let π, π′ and π′′ be
paths in a transition system M . The set of event variables is partitioned into sets
Z and W . The variables in Z are involved in the causal event chain for a property
violation while the variables in W are not. The valuations of the variables along
a path π are represented by valz(π) and valw(π), respectively. ψ∧ denotes the
rewriting of an EOL formula ψ where the ordering operator � is replaced by
the normal EOL operator ∧, all other EOL operators are left unchanged. An
EOL formula ψ consisting of event variables X ⊆ Z is considered to be a cause
for an effect represented by the violation of an LTL property ϕ, if the following
conditions hold:

– AC 1: There exists an execution π for which both π ⊧e ψ and π /⊧l ϕ
– AC 2.1: ∃π′ s.t. π′ /⊧e ψ ∧(valx(π) /=valx(π′)∨valw(π) /=valw(π′)) and π′ ⊧l ϕ.

In other words, there exists an execution π′ where the order and occurrence
of events is different from execution π and ϕ is not violated on π′.

– AC 2.2: ∀π′′ with π′′ ⊧e ψ ∧ (valx(π) =valx(π′′)∧valw(π) /=valw(π′′)) it holds
that π′′ /⊧l ϕ for all subsets of W . In words, for all executions where the events
in X have the value defined by valx(π) and the order defined by ψ, the value
and order of an arbitrary subset of events on W has no effect on the violation
of ϕ.

– AC 3: The set of variables X ⊆ Z is minimal: no subset of X satisfies condi-
tions AC 1 and AC 2.

– OC 1: The order of events X ⊆ Z represented by the EOL formula ψ is not
causal if the following holds: π ⊧e ψ and π′ /⊧e ψ and π′ /⊧e ψ∧.

The EOL formula Gf∧((Ta∧(Ca�Cc))�<¬Cl�>Tc) is a cause for the occurrence
of the hazard in the railroad crossing example since it fulfills all of the above
defined conditions (AC 1-3, OC 1) for the corresponding system model that we
defined.
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2.7 Bounded Model Checking

The basic idea of Bounded Model Checking (BMC) [6] is to find error traces,
also called counterexamples, in executions of a given system model where the
length of the traces that are analyzed are bounded by some integer k. If no
counterexample is found for traces of some length l ≤ k, then l is increased until
either a counterexample is found, or l = k. The BMC problem is translated into
a propositional satisfiability problem and can be solved using propositional SAT
solvers. Modern SAT solvers can handle satisfiability problems in the order of
106 variables.

Given a transition system M , an LTL formula f and a bound k, the proposi-
tional formula of the system is represented by [[M,f]]k. Let s0, ..., sk be a finite
sequence of states on a path π. Each si represents a state at time step i and con-
sists of an assignment of truth values to the set of state variables. The formula
[[M,f]]k encodes a constraint on s0, ..., sk such that [[M,f]]k is satisfiable iff π
is a witness for f . The propositional formula [[M,f]]k is generated by unrolling
the transition relation of the original model M and integrating the LTL property
in every step si of the unrolling. The generated formula [[M,f]]k of the whole
system is passed to a propositional SAT solver. The SAT solver tries to solve
[[M,f]]k. If a solution exists, this solution is considered to be a counterexample
of the encoded LTL property.

3 BMC-based Causality Checking

3.1 EOL Matrix

For the BMC-based causality computation with bound k we consider sequences
of event occurrences πe = e1e2e3 . . . ek derived from paths of type π = s0

e1
�→

s1
e2
�→ s2 . . .. We use a matrix in order to represent the fact that certain events

occur as well as the ordering of the event occurrences along a trace. This matrix
is called EOL matrix.

Definition 7 (EOL Matrix). Let E = {e1, e2, e3, . . . , ek} an event occurrence
set and πe = e1e2e3 . . . ek a trace over event occurrences. For integers i /= j a
function o is then defined as follows:

o(ei, ej) = {
{TRUE} if ei � ej

∅ otherwise

The EOL matrix ME is constructed from o as follows:

M E =

⎛

⎜
⎜
⎜

⎝

∅ o(e1, e2) ⋯ o(e1, ek)

o(e2, e1) ∅ ⋯ o(e2, ek)

⋮ ⋮ ⋱ ⋮

o(ek, e1) o(ek, e2) ⋯ ∅

⎞

⎟
⎟
⎟

⎠

where the generated entries in the matrix are either sets of event occurrences or
the constant set {TRUE}. The empty set ∅ is also permitted which means no
relation for the corresponding event occurrences was found.
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Definition 8 (Union of EOL Matrices). Let ME ,ME1 ,ME2 be EOL Matri-
ces with all identical dimensions. The EOL matrix ME is the union of ME1 and
ME2 according to the following rule:

ME(i,j) = ME1(i,j) ∪ME2(i,j) (1)

for every entry (i, j) in the matrices.

The union of two EOL matrices represents the component-wise disjunction of
two matrices. The EOL matrix ME for an example event sequence in the railroad
crossing π = Ca Cc Gf and a refinement EOL Matrix M ′

E = ME ∪MEπ′
using the

sequence π′ = Gf Ca Cc is created as follows:

e1 = Ca
e2 = Cc
e3 = Gf

ME =

⎛

⎜

⎝

∅ {TRUE} {TRUE}
∅ ∅ {TRUE}
∅ ∅ ∅

⎞

⎟

⎠

M ′

E =

⎛

⎜

⎝

∅ {TRUE} {TRUE}
∅ ∅ {TRUE}

{TRUE} {TRUE} ∅

⎞

⎟

⎠

.(2)

3.2 EOL Matrix to Propositional Logic Translation

In order to use the information stored in the EOL Matrix in the BMC-based
causality checking algorithm a translation from the matrix into propositional
logic is needed. First the Matrix is translated into an EOL formula in EONF
and afterwards the EOL formula is translated into propositional logic.

Definition 9 (Translation from EOL Matrix to EOL Formula). Let ME

a EOL matrix which contains the EOL formula ψE and the event set E. ME(i,j)

is the set of events in the entry (i, j) in ME and e
(i,j) ∈ ME(i,j). ei and ej denote

the ordered events, respectively. Then ψE is defined as follows:

ψE =

i=k

⋀
i=0

j=k

⋀
j=0

{
ei ∧ ej if e

(i,j) = {TRUE} and e
(j,i) = {TRUE} and i /= j

ei � ej if e
(i,j) = {TRUE} and e

(j,i) /= {TRUE} and i /= j.

Lemma 1. An EOL formula ψE obtained via Definition 9 from an EOL matrix
ME is always in Event Order Normal Form (EONF).

Proof. Sketch: A proof can easily be given using an inductive argument over the
rules for the construction of the EOL matrix (Definition 7) and the construction
of formula ψE (Definition 9).

Using this translation the EOL Matrix from Eq. 2 is translated into the fol-
lowing EOL formula in EONF: ψEONF = (Ca � Cc) ∧ (Gf ∧ Ca) ∧ (Gf ∧ Cc).
The generated EOL formula can be efficiently translated into an equivalent LTL
formula as it was shown in [3].

As mentioned in Sect. 2.3, only safety properties are considered for the BMC-
based causality checking approach. Since safety properties can only be violated
by finite prefixes of system executions, it is necessary to adapt the definition of
a bounded semantics for LTL as defined in [6] for our purposes:
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Definition 10 (Bounded Semantics for LTL). Let k ≥ 0, and let π be a
prefix of an infinite path and πe = e0e1e2 . . . the sequence of events of π. Let
ψLTL an LTL formula obtained by translating an EOL formula ψ into LTL.
ψLTL is valid along π up to bound k, represented by π ⊧0

k ψLTL, if the following
holds:

π ⊧i
k p iff p = ei

π ⊧i
k ¬p iff p /= ei

π ⊧i
k f ∧ g iff π ⊧i

k f and π ⊧i
k g

π ⊧i
k f ∨ g iff π ⊧i

k f or π ⊧i
k g

π ⊧i
k ◻f iff ∀j, i ≤ j ≤ k. π ⊧

j
k f

π ⊧i
k ◇f iff ∃j, i ≤ j ≤ k. π ⊧

j
k f

π ⊧i
k ◯f iff i < k and π ⊧i+1

k f

π ⊧i
k fUg iff ∃j, i ≤ j ≤ k. π ⊧

j
k g and ∀n, i ≤ n ≤ k. π ⊧n

k f

The standard translation scheme for translating LTL into propositional logic
for a given bound k as described in [6] is used in order to convert the LTL
formula ψLTL into a propositional logic formula.

3.3 The BMC-Based Causality Checking Algorithm

According to condition AC 1 it is necessary to know that there exists a coun-
terexample trace which leads to the violation of the considered non-reachability
property. In addition, in order to satisfy condition AC 2, however, there need to
exist other traces with other events and orderings that do not lead into a violat-
ing state. As a consequence, all combinations of events have to be known. In the
explicit state causality checking approach [18] all paths through a system need
to be computed in order to find all causal events and orderings for a property
violation. In order to avoid the explicit computation of all possible paths in the
state graph we propose the use of an iterative scheme involving BMC and sym-
bolic constraints on the underlying SAT solver. The symbolic constraint is used
in order to find only those paths that contain new information on event orderings
and occurrences. This new information is used to strengthen the constraints on
the SAT Solver.

Figure 1 presents the informal iteration scheme of the proposed algorithm.
The inputs are the model M , the property φ and an upper bound kmax for the
maximum length of the considered paths. The algorithm starts at level k = 0:

Step 1: Generation of Traces. The model M together with the LTL property
φ and the bound k is converted into a propositional logic formula [[M,¬φ]]k.
[[M,¬φ]]k is inserted into a SAT solver. The SAT solver tries to find a path that
fulfills the given formula. If such a path is found, the algorithm has discovered
a counterexample and continues at step 2. Otherwise, the bound k is increased
until the first counterexample is found or the maximum bound kmax is reached.
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Fig. 1. The iteration schema of the BMC-based causality checking algorithm

Step 2: Matching of EOL Matrices. When a new path π is discovered the
set of events E1 occurring on this trace is compared to the already known EOL
matrices, if any. If there is an EOL matrix ME2 covering a set of events E2

and if E1 = E2, then the newly discovered orderings of events in E1 is used to
refine the EOL matrix E2 according to the operation E2 ∶= E2 ∪ E1 as defined
in Definition 8. If there is no matching matrix, a new EOL matrix is created
representing a new class of causes [18] containing the ordering of events in π.

Step 3: Combination of New Constraints. All EOL matrices MEi
are

translated into EOL formulas ψMEi
according to Definition 9. The translated

EOL formulas ψMEi
are combined disjunctively. In order to exclude the already

found orderings from being found again in the next iteration, the result is negated
which results in ϕ′ = ¬(ψME1

∨ ψME2
∨ . . . ∨ ψMEn

) with n the number of EOL
matrices that have been computed so far.

Step 4: Constraining the SAT Solver. The formula ϕ′ is translated into
a propositional logic formula [[ϕ′]]k for a given bound k. [[ϕ′]]k is then used
as an additional constraint for the SAT Solver (Definition 10). Afterwards, the
algorithm iterates and continues with Step 1.

When the algorithm terminates, the result is stored in the EOL matrices
MEi

,0 ≤ i ≤ n where n is the number of EOL matrices found during the search.

3.4 Soundness and Completeness

We show that the results generated with the described algorithm are sound up to
the pre-defined maximum bound k. Afterwards we will discuss the completeness
of the BMC-based causality algorithm.

We first introduce the concept of a candidate set which is a collection of
all counterexamples to the considered non-reachability property that have been
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Fig. 2. Three example traces for the EOL-formula ψ = Ca�Cc�Ta�Gc�Tc. Trace 1
is the minimal trace. While trace 2 (non-minimal) ends in a property violation, trace
3 does not.

computed. The elements occurring along the elements of this set are candidates
for being causal for the considered property violation.

Definition 11 (Candidate Set (Adapted from [19])). Let n the number
of EOL matrices MEi

,0 ≤ i ≤ n available at some point during the causal-
ity computation, ¬φ the negation of an LTL reachability property, and ∑C the
set of all counterexamples to the validity of ¬φ available in the considered sys-
tem model. The disjunction of all EOL formulas ψ = ⋁

n
i=0 ψMEi

generated from
the matrices MEi

, is a compact description of all computed counterexamples.
The candidate set CS(¬φ) = {π ∈ ∑C ∣ ∀π′ ∈ ∑C .π′ ⊆ π ⇒ π′ = π} contains the
minimal set of counterexamples through the system that satisfy ψ.

Notice that the candidate set is minimal in the sense that removing an event
from some trace in the candidate set means that the resulting trace no longer is
a counterexample.

Theorem 1. The candidate set satisfies the conditions AC 1, AC 2.1, AC3 and
OC specified in Definition 6.

Proof. Soundness w.r.t. AC 1: Let ¬φ the negated LTL property and ψ the EOL
formula representing the candidate set CS(¬φ). According to Definition 11, all
counterexamples π ∈ CS(¬φ) are traces satisfying π ⊧l ¬φ. π ⊧e ψ holds by
the definition of the creation of the EOL Matrices. Therefore AC1 holds for all
π ∈CS(¬φ).

The proofs for the conditions AC 2.1, AC 3 and OC 1 can be constructed in
a similar way as shown in [19]. ⊓⊔

What remains to be shown is the soundness with respect to condition AC 2.2,
which we shall address next.

Event Non-occurrence Detection. According to the AC 2.2 test the occur-
rence of events that are not considered as causal must not prevent the effect from
happening. In other words, the non-occurrence of an event can be causal for a
property violation. Therefore, we have to search such events and include their
non-occurrence in the EOL formulas. In Fig. 2 an example is presented which
explains this procedure for an EOL formula ψ = Ca � Cc � Ta �Gc � Tc. Trace
1 is the minimal trace ending in a property violation. Trace 2 is non-minimal
and also ends in a property violation with the events Ca, Cc, Ta, Gc, Gf, Tc.



214 A. Beer et al.

In trace 3 a new event Cl appears between Cc and Ta and no property viola-
tion is detected. This means that the appearance of the event has prevented
the property violation. In order to transform this appearance into a cause for
the hazard, the occurrence is negated and introduced into the EOL formula
ψ = . . .Cc �< ¬Cl �> Ta . . . The new clause states that “if between ‘the car is on
the crossing’ and ‘the train is approaching the crossing’, ‘the car does NOT leave
the crossing’, the hazard does happen”. In other words: The non-occurrence of
Cl is causal for the property violation.

A second pass of the algorithm needs to be performed in order to find these
non-occurrences. For this second pass the input parameters have to be altered
compared to the first pass. The EOL Matrix definition also needs to be extended
in order to account for the possible non-occurrence of events.

Definition 12 (Extended EOL Matrix). Let E = {e1, e2, e3, . . . , ek} an event
set and πe = e1e2e3 . . . ek the corresponding sequence. The function o is defined
for entries where i /= j and the function d is defined for entries where i = j:

o(ei, ej) =

⎧
⎪⎪⎪
⎨
⎪⎪⎪⎩

{TRUE} if ei � ej

φ if ei �< φ �> ej

∅ otherwise
d(ei) = {

φ if φ �
]
ei

∅ otherwise

The EOL matrix ME is created as follows:

ME =

⎛

⎜
⎜
⎜

⎝

d(e1) o(e1, e2) ⋯ o(e1, ek)

o(e2, e1) d(e2) ⋯ o(e2, ek)

⋮ ⋮ ⋱ ⋮

o(ek, e1) o(ek, e2) ⋯ d(ek)

⎞

⎟
⎟
⎟

⎠

where the generated entries in the matrix are sets of events or the constant set
{TRUE}. The empty set ∅ indicates that no relation for the corresponding event
configuration was found.

The function o returns true if e1 occurs before e2 and returns φ if e1 occurs
before e2 and φ is true between e1 and e2. The function d returns φ if φ is
always occurring before ei. According to the extended EOL Matrix definition
it is possible to insert EOL formulas of the form ei �< φ �> ej and φ �

]
ei into

the matrix. This can be used to insert conditions such as ψ = Cc �< ¬Cl �> Ta.
The special case e�

[
φ is not considered here because this will never occur when

analyzing safety properties, which is what we focus on in this paper. If a hazard
state is reached no future occurrence of any event can prevent the hazard. The
formula e �

[
φ would encode such a behavior.

Definition 13 (Extended Translation for AC 2.2). Let ME an EOL matrix
which contains the EOL formula ψE and the event set E. ME(i,j) is the set of
events in the entry (i, j) in ME and e

(i,j) ∈ ME(i,j). ei and ej denote the ordered
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events, respectively. Then ψE is defined as follows:

ψE =

i=k

⋀
i=0

j=k

⋀
j=0

⋀

∀e
(i,j)

∈ ME(i,j)

⎧
⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

ei ∧ ej if e
(i,j) = TRUE and e

(j,i) = TRUE and i /= j
ei � ej if e

(i,j) = TRUE and e
(j,i) /= TRUE and i /= j

ei �< φ �> ej if φ = e
(i,j) and i /= j

φ �
]
ei if e

(i,j) = φ and i = j

The translation from EOL formulas into LTL and further into propositional logic
is done according to Definition 10.

Input Parameters to the Non-occurrence Detection. In the second pass of the
algorithm, the input parameters for the SAT solver have to be changed. Now
the algorithm searches for paths in the system that do not end in a property
violation, while fulfilling the EOL formulas that have been found so far. For
instance, in Fig. 2 trace 3 also fulfills the displayed EOL formula. In order to
find those paths the inputs to the SAT solver are the original LTL property φ,
the original EOL formulas ψMEi

, the model and the bound k. The paths obtained
with this method contain the events that prevent the property violation. These
events are inserted into a matching EOL matrix. Since the EOL matrices are
used to search for the new paths there is always a matching matrix available to
the algorithm. The matching of EOL matrices for the AC2.2 condition is defined
as follows.

Definition 14 (Matching of Paths to EOL Matrix for AC2.2.). Let π be
a path discovered by the second pass, Eπ the set of events occurring on π and Ei

the event sets of all n EOL matrices. Then the matching EOL matrix is defined
according to the following function:

match(π) = {MEi
∣∃i,0 ≤ i ≤ n. ∀j,0 ≤ j ≤ n, mi = max (∣Ej ∩Eπ ∣)}

The match function returns the EOL matrix MEi
whose event set Ei has the

largest number of common events with the event set Eπ. Note that there is
always a unique maximum for this number: From the definition of the matching
of EOL matrices in the first and the second pass of the algorithm two paths
containing the same events are merged into one EOL matrix. This means all
EOL matrices contain a unique set of events.

The refinement of the matching EOL matrix is conducted according to Def-
initions 8 and 12.

Theorem 2 (Soundness w.r.t. AC2.2). For every EOL matrix ME with the
number of events i = ∣E∣ the condition AC 2.2 is fulfilled for a maximum number
of events x that prevent the property violation from happening and x = kmax − i.

Proof. Sketch: Let π ∈CS(¬φ) be a path of length i in the candidate set of the
property violation and kmax the upper bound on the search depth. If i = kmax−1
and there exists a single event that prevents the hazard from happening, the
algorithm finds exactly those traces containing this single event and all orderings
when processing level kmax. If i = kmax−x, the same argument applies, and up to
x events are found that can prevent the error from happening. ⊓⊔
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Data: φ the property, S the model, kmax the maximum depth of the search
Result: The causal events for a property violation stored in Mlist

1 k := 0;
2 ψ := FALSE; /*EOL formula*/

3 Mlist := empty List of EOL matrices;
4 while k < kmax do
5 π := solve(¬φ, S, ¬ψ, k); /* invoke SAT solver */

6 while π is not empty do
7 m := getMatchingMatrix(Mlist, π); /*Definition 8*/

8 refineEOLMatrix(m, π); /*Definition 7*/

9 ψ := getEOLformula(Mlist); /*Definition 9,10*/

10 π := solve(¬φ, S, ¬ψ, k);

11 end
12 π := solve(φ, M , ψ); /* invoke SAT solver, second pass */

13 while π is not empty do
14 m := getMatchingMatrixAC2 2(Mlist, π); /*Definition 14*/

15 refineEOLMatrixAC2 2(m, π); /*Definition 12*/

16 ψ := getEOLformulaAC2 2(Mlist); /*Definition 13,10*/

17 π := solve(¬φ, S, ¬ψ, k);

18 end
19 k =∶ k + 1;

20 end
Algorithm 1. BMC-based causality checking algorithm

Completeness. With BMC-based causality checking we can only find event
combinations and their orderings up to a predefined bound kmax.

Theorem 3. All EOL matrices discovered with the BMC-based algorithm are
complete in terms of conditions AC1, AC2.1, AC2.2, AC3 and OC1 up to the
bound kmax.

Proof. Sketch: A proof can be built via structural induction over the generation
of the EOL matrices using the minimality argument of the discovered counterex-
amples.

The completeness of condition AC2.2 is linked to the soundness of this con-
dition and can be proven up to a certain number of events that prevent the
property violation from happening. The completeness depends on the number
of events in all EOL matrices and the upper bound kmax. For example, in Fig. 2
trace 3 is at least one step longer than the path resulting in a property violation.
This means that if, for example, the maximum bound for the algorithm is set
to 5, trace 1 violating the property is found, but trace 3 is not found.

The Algorithm. The pseudo code for the BMC-based causality checking algo-
rithm is presented in Algorithm 1. The function solve (Line 5, 10, 12 and 17)
converts the input parameters into propositional logic formulas and runs the SAT
solver. The result of solve is a path of length k satisfying the given constraints.
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4 Evaluation

In order to evaluate the proposed approach, we have implemented the BMC-
based causality checking algorithm within the symbolic model checker NuSMV2
[9] which also implements BMC. Our CauSeMV extension of NuSMV2 computes
the causality relationships for a given NuSMV2 model and an LTL property. The
models that we analyze are the Railroad example from Sect. 2.1, an Airbag Con-
trol Unit [1], an Airport Surveillance Radar System (ASR) [4] and a automotive
Electronic Control Unit (AECU) that we developed together with an industrial
partner. The NuSMV models used in the experiments were automatically syn-
thesized from higher-level design models using the QuantUM tool [17]. The ASR
model consists of 3 variants. In the first variant there is only one computation
channel for the radar screen (ASR1). In the second and third variant models
there are two identical computation channel to raise the availability of the sys-
tem. In the first two channel variant model the availability of a second channel is
modeled by a counter counting component errors (ASR2a), while in the second
variant the second channel is a complete copy of the first channel (ASR2b).

All experiments were performed on a PC with an Intel Xeon Processor with 8
Cores (3.60 Ghz) and 144 GBs of RAM. We compare our results with the results
for the explicit state causality checking approach presented in [18], which were
performed on the same computer. For all case studies, a maximum bound of
k = 20 is chosen. For the considered case studies this value of k is sufficient to
compute all relevant causalities. The explicit approach is prallelized using all 8
cores, while the BMC-based approach only uses one core.

In Table 1 the sizes of the different analyzed models are shown. Additionally
we compare the number of paths that have to be stored for the explicit causality
computation to the iterations needed in the BMC-based setting. For the AECU
and the ASR2b the number of traces in the explicit case could not be computed,
because the experiments run out of memory.

Figure 3 lists the eol formulas that were computed by the BMC-based causal-
ity checking approach. The cause for the occurrence of the considered hazard
(a system state in which Tc and Cc hold) is the disjunction of cause 1 and cause
2. Cause 1 represents the case where both the car and the train are approaching
the crossing, the car stays on the crossing until the gate closes, and finally the
train enters the crossing. Cause 2 represents the case where the gate fails at an
arbitrary point in time and the car and the train approach and enter the crossing
in any possible order. Both causes are consistent with the results obtained by
the explicit state causality checking implementation [18] for the same model.

Discussion. Table 2 presents a comparison of the computational resources
needed to perform the explicit and the BMC-based causality checking approaches.
In order to make the values comparable we limit the search depth for the explicit
approach to kmax = 20 as we have done for the BMC-based approach.

The results illustrate that for the comparatively small railroad crossing model,
the airbag model as well as the ASR1 model the explicit state causality checking
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Table 1. Model sizes in the explicit case and iterations needed for the BMC-based
approach.

States Transitions Paths (explicit) Iterations (BMC-based)

Railroad 133 237 47 6

Airbag 155,464 697,081 20,300 24

ASR1 1 ⋅ 106 7 ⋅ 106 1 ⋅ 106 27

ASR2a 4,6 ⋅ 107 3,3 ⋅ 108 1.5 ⋅ 107 32

AECU 7.5 ⋅ 107 8.6 ⋅ 108 - 70

ASR2b 1 ⋅ 1012 1 ⋅ 1013 - 208

Fig. 3. Causalities computed for the Railroad Crossing case study.

outperforms the BMC-based approach both in terms of time and memory. For
the ASR2 and the AECU models the BMC-based approach uses less memory
and finishes the computation faster than in the explicit case. These results reflect
a frequently encountered observation when comparing explicit state and sym-
bolic BMC techniques: For small models explicit state model checking is faster
and uses less memory since the bounded model checker faces a lot of memory
overhead due to the translation of the system into propositional logic. On the
other hand, for large models such as ASR2 and AECU the explicit techniques
need a lot of memory in order to explicitly store all paths needed to compute
the causality classes while the SAT/BMC-based symbolic approach represents
whole sets of paths symbolically using propositional logic formulas.

Table 2. Experimental results comparing the explicit state approach to the BMC-
based approach for kmax = 20. OOM: experiment ran out of available memory.

RT (sec.) Mem. (MB)

Railroad explicit 0.73 17.9

BMC-b. 17.16 121.55

Airbag explicit 1.61 18.53

BMC-b. 34.55 192.36

ASR1 explicit 9.24 50.97

BMC-b. 50.97 303.34

RT (sec.) Mem. (MB)

ASR2a explicit 91.22 826.73

BMC-b. 186.48 300.54

AECU explicit 238.13 10,900.00

BMC-b. 63.0 183.7

ASR2b explicit OOM OOM

BMC-b. 2,924.74 1,452.45
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Threats to Validity. The current prototypical tool implementation of the
BMC-based causality checking approach, which was used to carry out the exper-
iments described above, is in a somewhat preliminary state. As we argued earlier
in the paper, we need to discriminate repeated occurrences of some event type.
This requires modifications to the code of the NuSMV, in particular to routines
that accomplish the unrolling of the transition relation. The NuSMV code is
not designed to be easily modifiable, which is why the proper unrolling account-
ing for discernible event occurrences of the same type has not yet been fully
implemented. As a consequence, the current implementation computes incorrect
results for those models for which there are execution paths with repeated occur-
rences of some event type. However, we believe that this qualitative problem has
no significant impact on the quantitative results regarding memory consumption,
which are our main concern in this paper. In any event, out of the considered
case studies, only the AECU case study contains such events, in all other models
this does not happen and the computed causalities are hence correct.

5 Related Work

In [5,10,11] a notion of causality was used to explain the violations of properties
in different scenarios. While [5,11] use symbolic techniques for the counterexam-
ple computation, they focus on explaining the causal relationships for a single
counterexample and thus only give partial information on the causes for a prop-
erty violation. All of the aforementioned techniques rely on the generation of the
counterexamples prior to the causality analysis while our approach computes
the necessary counterexamples on-the-fly. Also, our approach is the first and, as
far as we know, currently only one that relates the Halpern and Pearl model of
causation to the model of transition system and which considers the ordering of
events to be potentially causal. In [7,8], a symbolic approach to generate Fault
Trees [23] is presented. In this approach all single component failures have to
be known in advance while in our approach these failures are computed as a
result of the algorithm. They do not use an explicitly defined notion of causality,
contrary to what we do. The ordering and the non-occurrence of events can not
be detected in this approach as being causal for a property violation.

6 Conclusion and Future Work

We have discussed how causal relationships in a system according to the causal-
ity checking approach that we previously developed can be established using
symbolic system and cause representations together with bounded model check-
ing. The BMC-based causality checking approach presented in this paper was
evaluated on six case studies, four of them industrially sized, and compared to
the explicit state causality checking approach. It was observed that BMC-based
causality checking outperforms explicit state causality checking on large models
both in terms of computation time and memory consumption.
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In future work the influence of different SAT solving strategies on the speed of
discovering new event orderings in the system have to be evaluated. Furthermore,
we plan to transform the EOL formulas in EONF into a compact representation
in order to enable an automatic Fault Tree generation.

Acknowledgements. We wish to acknowledge early discussions with John Rushby
and Alessandro Cimatti on solving causality checking using bounded model checking.
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Abstract. We extend recent approaches for calculating the probability
of program behaviors, to allow model counting for complex data struc-
tures with numeric fields. We use symbolic execution with lazy initial-
ization to compute the input structures leading to the occurrence of a
target event, while keeping a symbolic representation of the constraints
on the numeric data. Off-the-shelf model counting tools are used to count
the solutions for numerical constraints and field bounds encoding data
structure invariants are used to reduce the search space. The technique is
implemented in the Symbolic PathFinder tool and evaluated on several
complex data structures. Results show that the technique is much faster
than an enumeration-based method that uses the Korat tool and also
highlight the benefits of using the field bounds to speed up the analysis.

Keywords: Model counting · Probabilistic software analysis · Symbolic
execution

1 Introduction

Model counting is the problem of computing the number of solutions (models)
that satisfy a set of constraints. Model counting has found applications in worst
case execution time estimation [27], increasing parallelism [38], quantitative
information flow analysis [34], and many others.

We focus here on another important application, namely Probabilistic Soft-
ware Analysis (PSA) [7,15,21,36]. PSA is an emerging technique to quantify
the probability of reaching program events of interest assuming that program
inputs follow given probabilistic distributions [15]. The input distributions allow
data from real world observations to be incorporated in the analysis of pro-
grams that interact with their environment, as well as to encode uncertainty in
design assumptions about the usage profile of a program, including the interac-
tions with third-party components and systems. PSA is useful in many domains
including debugging, cryptographic protocols, cyber-physical systems, biology,
and reliability analysis [21].
c© Springer International Publishing Switzerland 2015
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Recent PSA techniques [15,16,18,28] use symbolic execution of the program
to collect symbolic constraints on the inputs that lead to the occurrence of target
program events. The number of satisfying assignments for these constraints are
then calculated using model counting procedures. This gives a measure of how
likely it is for an input distributed according to a given probabilistic distribution
to satisfy the constraints.

Most work on probabilistic symbolic execution has focused on integers and
used off-the-shelf model counting tools for computing the number of integer
values within the volume of a convex polytope, e.g. LattE [2], to compute prob-
abilities [15,16,18,28]. Recent techniques have been introduced to estimate the
(approximate) number of solutions for floating point constraints [7]. However
these techniques can not directly be applied to complex data structures, such as
lists and trees. Analysis of programs that manipulate complex data is well studied
with many approaches available, see e.g. shape analysis [40], specification-based
testing [9] and constraint solving [24], among others. However model counting
for data structures has not been addressed so far.

In this paper we propose a model counting procedure for a combination of
heap and numeric constraints collected along a symbolic execution of a program.
A simple approach is to enumerate all the possible data structures up to a given
size and then to check their validity against the given constraints. However this
becomes quickly intractable for large solution sets. We instead propose an app-
roach based on symbolic execution and lazy initialization [25] to generate and
thus count data structures that satisfy mixed heap and numeric constraints;
we further use off-the-shelf model counting procedures [2] for the numeric con-
straints.

Lazy initialization extends symbolic execution with the ability of handling
input data structures: it constructs the heap as the program paths are explored,
and defers concretization of symbolic heap objects as much as possible. It pro-
duces symbolic heaps that are pairwise non-isomorphic while guaranteeing that
no relevant states are missed. It can thus be used as a powerful procedure for
generating and counting all the structures (up to a given bound). We further use
relational field bounds [35] to reduce the search space for the solutions. Intu-
itively, field bounds restrict the number of choices that lazy initialization needs
to consider when it concretizes a part of the heap.

We have implemented the model counting procedure in the Symbolic
PathFinder tool-set [32] and have evaluated it on several complex data structure
subjects from the literature. The experiments show that our proposed approach
scales much better than an optimized enumeration-based method that uses the
Korat tool [9]. The experiments also show the benefits of relational bounds on
the overall cost of model counting.

2 Background

2.1 Symbolic Execution

Symbolic Execution [12,26] is a program analysis technique that executes pro-
grams on unspecified inputs, by using symbolic inputs instead of concrete data.
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The state of a symbolically executed program is defined by the (symbolic) values
of the program variables, a path condition (PC), and a program counter. The
path condition is a (quantifier-free) boolean formula over the symbolic inputs; it
accumulates constraints on the inputs to follow that path. The program counter
defines the next statement to be executed.

A symbolic execution tree characterizes the execution paths followed during
symbolic execution. The tree nodes represent program states and the arcs the
transitions between states due to the execution of program instructions. Typ-
ical applications of symbolic execution include test case generation and error
detection, with many tools available [10,20,32,37]. Symbolic execution of loop-
ing programs may result in an infinite symbolic execution tree. For this reason,
symbolic execution is typically run with a (user-specified) bound on the search
depth. Our work on probabilistic software analysis uses the symbolic execution
tool Symbolic PathFinder (SPF) [32].

Lazy Initialization. SPF uses lazy initialization [25] to handle dynamic input
data structures (e.g., lists and trees). The components of the program inputs are
initialized on an “as-needed” basis. The intuition is as follows. To symbolically
execute method m of class C, SPF creates a new object o of class C, leaving all
its fields uninitialized. When a reference field f of type T is accessed in m for the
first time, SPF non-deterministically sets f to null, to a new object of type
T with uninitialized fields, or to an alias to a previously initialized object of
type T. This enables the systematic exploration of different heap configurations
during symbolic execution. Here we will also consider an optimized form of lazy
initialization called Bounded Lazy Initialization (BLISS) [35] that uses relational
bounds and SAT solving to reduce the number of possible structures to consider.
BLISS reduces the time and memory requirements over lazy initialization and
therefore makes the techniques for counting discussed here tractable.

2.2 Probabilistic Software Analysis

We build on our previous work from [7,15,18], that uses symbolic execution
for PSA. The goal of the analysis is: (1) to identify the symbolic constraints
characterizing the inputs that make the execution satisfy a given property, and
then (2) to quantify the probability of satisfying the constraints. For simplicity,
we assume the satisfaction of the target property to be characterized by the
occurrence of a target event (e.g. successful termination or failure), but our
work extends to bounded LTL [41] as well.

The analysis works with a limited budget of symbolic paths, obtained with a
bounded symbolic execution of the program. Some of these paths lead to failure
and some of them to success (termination without failure). These path conditions
are classified in two disjoint sets: PCs = {PCs

1,PCs
2, . . . ,PCs

m} and PCf =
{PCf

1 ,PCf
2 , . . . ,PCf

p}. The path conditions may not cover the full input domain
due to inherent incompleteness in the analysis, e.g. due to non-terminating loops
or non-exhaustive path exploration. These remaining paths are called grey paths
and are used in [15] to quantify the confidence one can put in the bounded
symbolic analysis.
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Probabilistic Usage Profiles. The constraints generated with symbolic exe-
cution are analyzed to quantify the likelihood of an input to satisfy them, where
the inputs are distributed according to given usage profiles [15]. A usage profile
is a probabilistic characterization of the software interactions with the external
world, e.g. the users or the physical execution environment. It assigns to each
valid combination of inputs its probability to occur during execution. Usage pro-
files can be specified based on physical phenomena, known sensor parameters or
other domain specific knowledge about the program and its deployment context.
They can also be built automatically based on observed data from past usages
of the program [5,19].

In [15], we assumed that all the input variables range over finite discrete
domains, whose joining is generically indicated as D. We relaxed this assumption
in more recent work [7]. We profile the expected usage for the program through
a profile UP, which is a set of pairs 〈ci, pi〉 where ci is a usage scenario defined
as a (constraint representing a) subset of D and pi (pi ≥ 0) is the probability
that a user input belongs to ci. We further require, for simplicity, {ci} to be a
complete partition of D, and thus

∑
i pi = 1. Intuitively, UP is the distribution

over the input space. Notice that ci could contain even a single element of D,
allowing for the finest grained specifications of UP.

Given the output of symbolic execution, the probability of success can be
defined as the probability of executing the program (P ) with an input satisfy-
ing any of the successful path conditions, given the profile UP. This definition
can be formalized as Prs(P ) =

∑
i Pr(PCs

i | UP). An analogous definition is
provided for the probability of failure, Prf (P ). The probability of grey paths is
1−(Prs(P )+Prf (P )) and it quantifies the ratio of elements of the input domain
for which neither success nor failure have been revealed for the current analysis.
This information is a measure of the confidence we can put on the probability
estimation, under the current exploration bound.

Computing Probabilities with Model Counting. To compute the proba-
bilities of path conditions, we use a quantification procedure for the generated
constraints. In [15] we used model counting techniques, i.e. LattE [14], to cal-
culate the exact number of points of a bounded (possibly very large) discrete
domain that satisfy linear constraints. Recently [7], we developed quantification
procedures for the analysis of programs that have mixed integer and floating
point constraints of arbitrary complexity.

To compute the probability of a path (described by PC) we use the fact
that UP defines a partition of the input domain and then, from the law of total
probability [33]:

Pr(PC | UP) =
∑

i

Pr(PC | ci) · pi

Furthermore, from the definition of conditional probability [33]: Pr(PC | ci) =
Pr(PC ∧ ci)/Pr(ci).

To use model-counting techniques for the computation of the conditional
probabilities, let us define for a constraint c the function �(c) that returns the
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number of elements of D satisfying c. �(·) is always a finite non negative integer
because we assumed D finite and countable. Under this same assumption, Pr(c)
is, by definition [33], �(c)/�(D) (where �(D) is the size of the non-empty input
domain). Thus, one can express the probability of success as:

Prs(P ) =
∑

i

Pr(PCs
i | UP) =

∑

i

∑

j

Pr(PCs
i | cj) ·pj =

∑

i

∑

j

�(PCs
i ∧ cj)

�(cj)
·pj .

3 Approach

We describe here how the probabilistic software analysis is extended to handle
programs that take as input structured data types, e.g. lists or trees.

3.1 Usage Profiles

Usage profiles (UP) for data structures are defined with the help of Java predi-
cates (i.e., boolean methods) that define data structure properties that partition
the input state space. To each element of this partition a probability value is
assigned, with the sum of those values being equal to 1. For example, for a pro-
gram with an input list, the UP may specify that the input list is non-null 90 %
of the time (and null 10 %). Alternatively, the UP may specify that the list is
acyclic say 95 % (and cyclic 5 %), or that the list is “small” (number of nodes
less than 10) most of the time (90 %) and “large” (number of nodes greater than
10) rest of the time (10 %) etc.

As before, we restrict ourselves to finite input domains, which for data struc-
tures also lead to a limited number of possible heap nodes for the input. It is
the responsibility of the user to ensure that the predicates in the UP define
a partition of the input domain (i.e. a division of the domain as the union of
non-overlapping non-empty subdomains).

3.2 Symbolic Constraints

SPF can analyze programs with unbounded data structures as inputs, using lazy
initialization [25]. The result of symbolic execution is a set of paths, each char-
acterized by a path condition that encodes both numeric and heap constraints.

The numeric constraints are generated whenever a branching condition on
primitive (numeric) fields is evaluated. The heap constraints are generated during
the lazy initialization of instructions that perform a first access to an uninitialized
field (i.e., bytecodes aload, getfield, and getstatic).

The heap constraints can have the following forms:

– ref = null. Reference ref points to null.
– ref �= null. Reference ref is non null.
– ref1 = ref2. References ref1 and ref2 are aliased (point to the same object).
– ref1 �= ref2. References ref1 and ref2 are not aliased.
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PC1 in.next = null ∧ in �= null
PC2 in.next = in ∧ in �= null
PC3 in.next �= in ∧ in.next �= null ∧ in �= null ∧ in.elem ≤ in.next.elem
PC4 in.next.next = null ∧ in.next �= in ∧ in.next �= null ∧ in �= null ∧ in.elem > in.next.elem
PC5 in.next.next = in ∧ in.next �= in ∧ in.next �= null ∧ in �= null ∧ in.elem > in.next.elem
PC6 in.next.next = in.next ∧ in.next �= in ∧ in.next �= null ∧ in �= null ∧ in.elem > in.next.elem
PC7 in.next.next �= in ∧ in.next.next �= in.next ∧ in.next.next

�= null ∧ in.next �= in ∧ in.next �= null ∧ in �= null ∧ in.elem > in.next.elem

Fig. 1. Symbolic paths from method swapNode.

Example. Consider the Java code in Listing 1.1 [25] that declares a class Node
for a linked lists. Fields elem and next represent the node’s integer value and a
reference to the next node in the list, respectively. Method swapNode destruc-
tively updates its input list, referenced by the implicit parameter this, accord-
ing to a numeric condition on the first two nodes.

Listing 1.1. List example.
1 class Node {
2 int elem;
3 Node next;
4

5 Node swapNode() {
6 if(elem > next.elem) {
7 Node t = next;
8 next = t.next;
9 t.next = this;

10 return t;
11 }
12 return this;
13 }
14 }

Symbolic execution with lazy initialization results in seven symbolic paths
(see Fig. 1), due to the if condition and the different aliasing possibilities in
the input

These symbolic execution paths together represent all possible actual execu-
tions of swapNode. The PCs represent an isomorphism partition of the input
space, e.g., PC7 describes all (cyclic or acyclic) input lists with at least three
nodes such that the first element is greater than the second element. The analy-
sis reports a failure for PC1 – the method raises an unhandled NullPointer
Exception. There are no grey paths (since there are no loops).

As an illustration of lazy initialization consider the symbolic execution of
next = t.next; for the symbolic heap configuration depicted in the root of
the tree in Fig. 2. In the figure a “blob” indicates field next pointing to it is
uninitialized (it has not been accessed yet by the symbolic execution along this
path). “E0” and “E1” represent some fresh symbolic values for the numeric
field elem; a “?” means that a field of numeric (or other primitive) type has
not been initialized yet. Dashed arrows depict a branching of nondeterministic
choices, describing all the possible instantiations of the symbolic structure. Since
t.next is uninitialized, SPF uses “lazy initialization” to assign it either null,
a new symbolic object with uninitialized fields, or an object created during a pre-
vious initialization (resulting for our example in two instances of circular lists).
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Fig. 2. Lazy initialization.

Intuitively, this means that SPF makes four different assumptions about the
shape of the input list according to different aliasing possibilities and it explores
all of them systematically. The PCs are updated according to these choices.
Once t.next has been initialized the execution proceeds according to the Java
semantics.

3.3 Model Counting for Data Structures

Though the counting-based probabilistic analysis method from Sect. 2 can be
applied on any finite input domain, we need an efficient procedure for counting
data structures. In the worst case a complete (and expensive) enumeration of all
the possible input instances (up to a pre-specified bound) might be performed.
A less expensive alternative, that we proposed in [15] is to use Korat [9] for
the data structure enumeration. Korat is a tool that performs constraint-based
generation of structurally complex test inputs for Java programs. Korat’s goal
is to systematically generate all complex test data structures (within prescribed
bounds) for the purpose of testing. Although Korat was not designed for model
counting we can use it to compute all input data structures that satisfy a com-
plex predicate within pre-defined bounds. The predicate is written as a boolean
method often called repOk, whose body can embed any arbitrarily complex
computation. The finitization of the input domain is accomplished by specific
Korat methods to specify bounds on the size of input data structures as well as
on the domain of primitive fields.

Thus we can encode the constraints provided by symbolic execution together
with the constraints from the usage profile as a repOK predicate and run Korat
to count the data structures that satisfy the constraints for the given finiti-
zation. Experiments with this approach (see Sect. 4) show that it often scales
poorly when the path constraints contain a combination of heap and numeric
constraints, and the numeric domains are very large. This is due to the enumera-
tion of the valid values for integer fields performed by Korat. In the next section
we propose an efficient alternative method.
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3.4 Model Counting Using Lazy Initialization

We propose to use symbolic execution with lazy initialization to efficiently gen-
erate and count the data structures that satisfy given constraints. The core
insight is to use lazy initialization to enumerate the structures, but to keep the
constraints on the numeric fields of the structures symbolic; the valid assignments
for these symbolic fields can then be counted with an off-the-shelf model count-
ing procedure, such as LattE [2]. LattE implements Barvinok’s algorithm [4],
which constructs a generating function suitable for determining the number of
points within a convex polytope without enumeration.

To count the number of solutions to a set of mixed heap and numeric con-
straints, we apply symbolic execution with lazy initialization to a boolean method
encoding the constraints (similar to the repOk method in Korat). The model
counting procedure requires thus two inputs:

Method repOk: Java boolean method encoding the constraints; returns true
if the structure satisfies the constraints (e.g. the list is acyclic).

Finitization: Domain bounds for both reference and numeric data (e.g., a list
may have up to 5 nodes, whose elements are between 1 and 10).

For example, if we want to count all the acyclic lists having at most 6
nodes, whose elements are between 1 and 10, we would use the code reported in
Listing 1.2.

Listing 1.2. Counting acyclic lists.
1 class List{
2 Node head;
3 boolean repOkacyclic(){
4 Set<Node> nodes = new HashSet<Node>();
5 Node iterator = head;
6 while(iterator!=null){
7 // check acyclic
8 if(!nodes.add(iterator))
9 return false;

10 //check bounds
11 if(iterator.elem<1||iterator.elem>10)
12 return false;
13 if(nodes.size>6)
14 return false;
15

16 iterator=iterator.next;
17 }
18 return true;
19 }
20

21 public static void main(String[] args){
22 List L0 = new List();
23 L0=(List) Debug.makeSymbolicRef(‘‘L0’’,L0);
24 if(L0!=null)
25 assert (L0.repOkacyclic());
26 }
27 }

The symbolic execution of the program in Listing 1.2 collects as successful
path conditions (i.e. not leading to an exception) all the symbolic structures
representing an acyclic list with at most 6 nodes, whose elements are integers
between 1 and 10.
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The main method summarizes the steps required for counting these struc-
tures:

1. Create a symbolic instance of the structure. In SPF syntax, see lines 22 and 23.
2. Execute the method repOkacyclic. This step drives the execution toward

exploring all the valid structures, expanding and concretizing all of them, i.e.
leaving only symbolic numeric variables to be analyzed.

3. Preempt the execution from exploring structure outside the valid domain or
not satisfying the constraints. For brevity, we just assert the repOkacyclic
predicate.

The total number of acyclic lists can thus be obtained applying established
model counting solutions on the success path conditions, which now predicate
only on the numeric fields. The result in this case would be 6,543,210 acyclic
lists out of 7,654,321 lists with up to 6 nodes (and elements between 1 and 10).

Note that encoding the repOk is subtle, as it not only encodes the given
constraints but it also includes code to enumerate all the structures up to bounds
given in the finitization. Similar to Korat, the structure of the repOk is crucial
to the efficiency of the method. If repOk would first enumerate all structures
and only then determine if they are valid (according to the given constraints)
our approach would not benefit from lazy initialization (but it would still benefit
from solving the numeric constraints separately).

In our implementation we provide a code skeleton for enumerating all data
structures (to which users can add their constraints). Input bounds are provided
in a configuration file. Internally SPF backtracks when the bounds on heap nodes
are reached. Bounds on numeric fields are fed directly to the constraint solvers.

3.5 Probabilistic Software Analysis

Counting the instances of a data structure satisfying a given predicate enables
us to compute the probability of target program events to occur, given a specific
usage profile.

As an example let us compute the probability of failure (in this case, throwing
a NullPointerException) when executing the swapNode method of List-
ing 1.1. Assume a usage profile that specifies that the input list is acyclic with
probability 0.9 and it is cyclic with remaining probability 0.1. There is only one
failure symbolic path (revealed by a null pointer exception in the evaluation of
the if condition). The path condition for the failure path, as revealed by SPF, is

input �= null ∧ input.next = null

Since this path condition is only satisfiable for acyclic lists, we get the prob-
ability of failure Prf (P ):

0.9 · �(input �= null ∧ input.next = null ∧ acyclic(input))
�(acyclic(input))
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The results of model counting are �(input �= null ∧ input.next = null ∧
acyclic(input)) = 10 and �(acyclic(input)) = 1, 111, 111 , for lists with up to 6
nodes and elem ranging over 1..10, giving probability of failure 8.1 · 10−6.

One can argue that we should simply correct the error in method swapNode
(for example adding a null check). However imagine a scenario where this
method is part of a large code base and that usage (calling context) of the
method indicates that the probability of the list being null is very small. In such
cases PSA becomes very useful, for example, to “rank” the errors according to
the likelihood of occurrence, allowing developers to focus on high probability
errors first. More example applications of PSA will be discussed in Sect. 4.

Embedded Usage Profiles. In the computation above we have followed the
approach in [15] and computed the effects of the UP after the path constraints
have been collected. An alternative way introduced in [28] consists in embedding
the usage profile as “preconditions” (assume statements) in the code. Listing 1.3
shows an example of embedded UP for the analysis of the swapNode method.
For the usage profile that states that the input list is acyclic 90 % of the time
(and cyclic 10 %) We use a symbolic variable, up, uniformly distributed in the
range 1 ≤ up ≤ 100, for controlling the distribution of the input values.

Listing 1.3. Embedded UP for the List example.
1 List L0 = new List();
2 L0=(List)Debug.makeSymbolicRef("L0",L0);
3 if(up<=90){
4 Debug.assume(L0!=null && L0.repOkacyclic());
5 }else{
6 Debug.assume(L0!=null && L0.repOkcyclic());
7 }
8 L0.swapNode();

The assume statements are implemented using the built-in Debug.assume()
method from SPF [32]. The failure probability can then be computed using model
counting for the numeric constraints encoded in the path conditions for the fail-
ure paths.

Both ways for handling UPs are supported in our tool with analogous per-
formance overhead, leaving to the developer the choice whether keeping the UP
and the code separated or included in the same file.

3.6 Optimizations

In this section we describe optimizations included in our analysis that allow us
to improve scalability.

BLISS (Bounded Lazy Initialization with Sat Support) [35], is an optimiza-
tion specifically tailored to improve the lazy initialization of data structures
during symbolic execution. Data structures usually obey strong restrictions on
their structure and stored data, under the form of class invariants. Some typical
invariants are “the items in this list are sorted”, or “if a node is red, then both its
children are black”(for red–black trees). BLISS exploits known class invariants
to compute tight bounds on the data structure fields. Intuitively, a tight field
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bound is a relational upper bound (set of pairs) on the (relational) semantics
of Java class fields. A tight field bound for a Java field f , is a binary relation
between unique field identifiers that only relates pairs 〈i1, i2〉 that are feasible,
i.e., for which there exists a structure satisfying both the class invariant and the
canonical labeling of identifiers, that includes in the memory heap objects with
identifiers i1 and i2 such that i1.f = i2.

During lazy initialization, whenever an object o is dereferenced through a
(symbolic) object field f , three possibilities have to be considered, namely [25]:

– o.f is initialized as the null value,
– o.f is initialized as a pre existing object o′ in the memory heap, and
– o.f is initialized as a new object o′′.

The tight field bounds allow to reduce the choices in the first and second
case (the latter being the most expensive). BLISS prunes those symbolic execu-
tions where the (partially) symbolic memory heap contains enough information
to determine it can not be extended into a feasible heap. Intuitively, the con-
crete parts of the partially symbolic heap are translated as constraints that are
conjoined with an automatically generated propositional description of the class
invariant. A satisfiability checker is used to determine whether the symbolic parts
of the heap can be concretized into a fully concrete memory heap satisfying the
class invariant. Those partially symbolic heaps producing a negative outcome
can be safely pruned from the symbolic execution process. BLISS can improve
lazy initialization significantly [35] and occupies a natural place in the context
of this work.

As already mentioned, in this paper we focus on integer constraints, whose
models are counted with Latte [2] (to cope with floating-point numbers and
nonlinear constraints, it is straightforward to use qCoral [7] in place of Latte).
The complexity is in terms of the number of variables and the number of con-
straints. For large constraints, the procedure could be very time consuming. We
address this problem by first simplifying the constraints and using a divide-
and-conquer approach [15] that divides large path conditions into independent
constraints which can then be solved independently. Intuitively two constraints
are independent if the sets of variables they constrain have no intersection. The
approach facilitates caching and reusing counting results.

4 Implementation and Experience

In this section we report an experimental comparison of an implementation of
our approach with Korat (Sect. 4.1) and a set of case studies demonstrating its
applicability for probabilistic software analysis (Sect. 4.2).

We implemented our approach on top of SPF [32] v6. The collection of
path conditions followed by the probability computations are implemented by
means of JPF listeners. Experiments were performed on a workstation with Intel
Core i7-2600 processor with a 3.40 GHz clock speed and 8 GB DDR3 RAM,
running Linux 3.2.0. 6 GB of heap memory were allocated for the Java virtual
machine. All the times are in seconds. TO means the execution has been inter-
rupted after a timeout of 5 h. OOM means the execution ran out of memory.
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4.1 Comparing with Korat

We compared the result and execution time of our approach, with and without
BLISS (denoted SPF and SPF+BLISS), versus Korat on counting the valid
instances of four known data structures showing different complexity dimensions:
linked list, red-black tree, binomial heap and AVL tree. We vary the number of
nodes in each structure and the size of the domain of values that can be stored.
We remark that Korat has not been designed for model counting, but its smart
enumeration capabilities can be used for this goal [15] making it a good baseline
for comparison. For BLISS we used the field bounds from previous studies.

The results are reported in Table 1. The columns SPF, SPF+BLISS, and
Korat report the analysis time for our approach with and without BLISS and
for Korat, respectively.

LinkedList. This data structure implements a doubly linked list where each node
contains an integer field. Korat fails to explore the whole input domain within
5 h for all the cases where the list was composed of 10 nodes and the integer
domain contained 20 or more elements. On the other hand, SPF-based analyses
terminate in less than 2 s for all the considered cases. Notably, due to the simplic-
ity of this structure, the benefit of adding BLISS does not yield any perceivable
improvements.

RedBlackTree. Red-black trees are significantly more complex than linked lists,
both because of the higher number of references involved and the preservation
of their invariants, which requires rebalancing techniques to guarantee the red-
black property [13]. The main bottleneck of Korat remains on the size of the
integer domain, when the number of nodes grows. On the other hand, for smaller
integer domains the increased complexity of the structure has a modest impact
on the performance of Korat. The number of nodes has instead a significant
impact on the performance of SPF-based tools, with SPF running out of memory
already with 8 nodes. Introducing BLISS reduces significantly the execution time
and memory consumption in this case, since it prevents the symbolic execution
to explore unnecessary invalid structures. This allows it to cope with larger
instances.

BinomialHeap. Despite being operationally simpler than red-black trees, bino-
mial heaps can also be characterized by a set of invariants making BLISS more
effective in detecting invalid structures before their complete exploration. This
results in a shorter execution time of SPF+BLISS with respect to SPF. Notice
how SPF and SPF+BLISS scale better than Korat even for small sizes of the
integer domain.

AVLTree. AVL trees are search trees whose rebalancing is triggered by the vio-
lation of a simpler invariant than red-black trees (the heights of the subtrees of
every node can differ by at most one). In this case BLISS produces a smaller
improvement compared to the case of red-black trees, though still reducing the
analysis time of SPF. Korat achieves a good scalability over this structure,
though if does not scale for larger instances where the integer domain has 20
elements or more.
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Table 1. Comparison of SPF, SPF+BLISS, and Korat (time in seconds).
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In summary, for SPF-based techniques varying the size of the integer domain
does not produce significant variations in the analysis time, while an enumeration-
based approach unable to symbolically abstract the integer fields of the struc-
tures suffers scalability issues even for relatively small integer domains (20 or 50
elements). On the other hand, the complexity of the references structure is the
main bottleneck of SPF-based tools, which are required to enlarge the scope of
symbolic execution, reducing the benefits of lazy initialization. The use of BLISS
is particularly beneficial when rich invariants (which impose strong requirements
on structures) are available, allowing to prune symbolic execution paths heading
toward the exploration of invalid structures.

4.2 Probabilistic Analysis

Probabilistic software analysis can be used for answering questions like:

1. Which program methods are worth focusing on to improve the software respon-
siveness perceived by the users?

2. How likely is a bug to show up when the program is used according to a specific
profile?

3. What is the perceived reliability of software for different classes of usages?

In this section we report three example applications of our probabilistic soft-
ware analysis technique by casting these question on small program snippets
manipulating data structures to show the applicability scope of this technique.

1. Rotations in a Red-Black Tree. Red-black trees are kept almost balanced
after every insertion or deletion [13]. This is achieved by a potentially expensive
rotation operation. Considering the insertion of an integer value within the range
0 − 20 into a tree having from 0 to 4 nodes, how frequently should we expect a
rotation will be required to rebalance the tree?

Though this is just an example, answering this kind of question allows one
to quantify the frequency a certain method is expected to be invoked during a
program execution. This would help assessing the global impact of improving
the efficiency of a specific method, and support the decisions of a developer.

In this example, the problem space is given by the set of all the valid trees
with up to 4 nodes and the finite subset of integers between 0 and 20. This space
counts 567, 882 elements. Out of them, inserting the integer value into the tree
requires at least one rotation operation in 168, 112 cases, about 29.6%.

This type of information can also be exploited to compute a complexity index
for operations on data structures tailored to specific usage profiles the program
is expected to handle.

2. Assessing the Criticality of an Actual Bug. Class BinomialHeap used
as part of the examples in this paper was first used as part of a benchmark in
[39]. In [17] it was determined that method extractMin had a subtle bug that
required a binomial heap with at least 13 nodes to be exposed. An example of
an input exposing this bug is given in [17, Fig. 6]. A consequence of this bug
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is that upon execution of extractMin, the resulting binomial heap no longer
satisfies its required property (attribute size no longer reflects the actual number
of nodes in the binomial heap).

Although there is a bug in this structure, how likely is this bug to actually
show up when the extractMin method is invoked?

In order to count the number of inputs that lead to a failure state (one in
which attribute size does not model the actual number of nodes in the resulting
binomial heap), we analyzed the code in Listing 1.4.

Listing 1.4. Bug in BinomialHeap (BH).
1 public static void main(String[] args) {
2 BH B0 = new BH();
3 B0 = (BH) Debug.makeSymbolicRef("B0", B0);
4 if (B0 != null && B0.repOk()){
5 B0.extractMin();
6 assert B0.size == B0.numNodes());
7 }
8 }

Executing symbolically the main method allows the repOk to generate all
valid structures. Those structures that violate the assert statement generate
errors that are caught by the underlying JVM, which then stores the numeric
path conditions for further counting of failing instances. Table 2 presents our
results.

When 12 or less elements are inserted in the heap, the bug will never show up
(confirming previous evaluations regarding this bug [23,35]). So users following
this behavior will not notice the presence of the bug.

When at least 13 elements are inserted, there is the chance for the bug to
show up. However, how likely this is to occur in practice heavily depends on
the size of the domain allowed for the integer values. Indeed, the bug does not
systematically occur for every possible set of elements. Looking at Table 2, when
only integers between 0 and 13 are allowed (with each value having the same
probability), more than 80 % of the executions will violate the assertion. These
figures can also be used to assed the difficulty of catching such bug with naive
randomized testing.

In Table 2, we report for each given numbers of nodes and integer values,
the number of valid inputs in the state space, the number of inputs leading to
a failure, as well as the probability of running into a faulty outcome. Running
time is presented under the form t1 + t2, with t1 the time required to compute
the number of valid inputs, and t2 the time required to compute the failing ones.
Notice also in this case how times increase as the number of nodes increases,
yet remain stable for a number of nodes despite the number of integer values
considered.

3. Impact of Different Usage Profiles. In the following we consider the
impact of different usage profiles on the running example of the List from
Listing 1.1. We consider the case where we have at most 6 nodes and numeric
values in the range 1..10.

In Sect. 3.5 we evaluate the probability of throwing an exceptions when execut-
ing the method swapNode on the List example. The usage profile we considered
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Table 2. Number of inputs exposing the extractMin bug.

Nodes Ints # Valid # Failing Fail prob Time (s)

12 0..12 70,401,948,540 0 0 28 + 74

0..20 14,829,486,591,568 0 0 28 + 73

0..30 1,269,649,449,162,048 0 0 28 + 71

13 0..13 1,921,213,899,450 1,546,032,456,492 0.804 49 + 151

0..20 278,713,724,302,816 235,789,399,182,528 0.845 49 + 142

0..30 36,285,348,047,086,752 31,636,080,812,285,208 0.871 48 + 147

was: 10 % cyclic lists and 90 % acyclic lists. Since we had 1,111,111 acyclic lists
and for 10 cases of these the exception is thrown (see Sect. 3.5), while none of the
6,543,210 acyclic ones lead to an exception, the failure probability under this pro-
file can be computed as:

Prf (P ) = .10 · 0/6543210 + .9 · 10/1111111 = 8.1 · 10−6

How does this probability change if the input lists were distributed differently?
Let us consider the case where we have 90% chance of a list being not null and
10% chance that the list is null. Obviously there is only one list that is null and
the remaining 7, 654, 320 cases are not null. Therefore, we obtain the following
probability for failure:

Prf (P ) = .9 · 10/7654320 + .1 · 0/1 = 1.1758 · 10−6

The last case is where we use the length of the list in the usage profile. Let
us consider there is an 80% chance that the list length is less than 4, and a 20%
chance the list has at least 4 nodes (and no more than 6 as per the finitization).
There are 4, 321 lists with up to 3 nodes and 7, 650, 000 lists of size 4 and more.
Notice that none of the lists with 4 or more nodes can cause an exception. The
probability for exception is thus:

Prf (P ) = .8 · 10/4321 + .2 · 0/7650000 = 1.85 · 10−3

Concluding, the different usage profiles make a substantial difference in the
probability of an exception being thrown for the analyzed null pointer derefer-
ence. This illustrates the importance of usage profiles when performing proba-
bilistic software analysis, which is in turn able to provide quantitative results
tailored for each different (probabilistic) assumption about the usage of the
software.

5 Threats to Validity

We used data structures as examples. These and similar examples have been
frequently used as case studies in the evaluation of SPF and come as examples
with the Korat distribution, making them appropriate for the comparison.
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Computing bounds and writing declarative invariants pose extra burden on
the users of SPF+BLISS. This is not a part of the technique, and the user
may decide not to use the BLISS optimization. Yet BLISS naturally fits in this
research as one may conclude from the experiments reported in Table 1.

We did not verify the implementation. For all the subjects where at least two
of the three methods completed the analysis within the time bound of 5 h, the
resulting counts matched, cross validating their correctness for the cases under
investigation.

6 Related Work

Several model counting tools are available but they do not support data struc-
tures directly. Birnbaum et al. [6] present an algorithm for counting (boolean)
models of propositional formulas. Barvinok’s algorithm uses Integer Linear Pro-
gramming (ILP) to count integer models [4]. As already mentioned, LattE [14]
implements (an enhanced version of) Barvinok’s algorithm. RelSat solves
instances of propositional SAT using constraint satisfaction problem (CSP) look-
back techniques [1].

Several (dynamic) symbolic execution techniques encode data-structure con-
straints using a theory of select/store (e.g. KLEE [10]). In such techniques there
is no need to explicitly initialize the references as they can deal with symbolic
references. Note however that the counting of data-structure models can not be
done simply on the symbolic formulas, using e.g. [11] for counting over SMT
constraints. E.g. one can not simply count all the (cyclic and acyclic) lists up to
size 100 by applying SMT-based model counting over a constraint that encodes
“true”. Instead, our procedure, that blends explicit enumeration with symbolic
reasoning, could be used.

The SMC tool [29] addresses constraints on strings. It counts model for con-
straints written in a string language expressive enough to model constraints
arising from JavaScript applications and UNIX C utilities. It uses a technique
that leverages generating functions as a basic primitive for combinatorial count-
ing, and it is therefore quite different than our approach, which aims at handling
arbitrary data structures.

Our work is also related to probabilistic program analysis [21], probabilistic
abstract interpretation [30] and probabilistic model checking [22]. We discuss
this below.

Probabilistic analysis based on symbolic execution has been described in e.g.,
[15,18,36]. Geldenhuys et al. [18] considered uniform distributions for the inputs,
linear integer arithmetic constraints, and used LattEMacchiato [14] to count solu-
tions of path conditions produced during symbolic execution. Sankaranarayanan
et al. [36] and Filieri et al. [15] proposed similar techniques to compute proba-
bilities of violating program assertions. Both techniques remove the restriction
of uniform distributions. As with [18] both approaches only consider linear con-
straints. Sankaranarayanan et al. developed algorithms based on Linear Pro-
gramming (LP) solvers for under and over-approximations of probabilities.
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Filieri et al. used the LattEtool to compute probabilities. Follow-on work pro-
vides treatment of nondeterminism [28] and describes statistical exploration of
symbolic paths [16]. Another simulation-based approach for the analysis of prob-
abilistic programs has been proposed in [31].

The technique in [7] proposed a compositional quantification of the solution
space based on Monte Carlo estimation. The approach can deal with arbitrarily
complex numeric constraints over floating-point domains. Bouissou et al. [8]
and Adje et al. [3] handle non-linear numeric constraints with a combination of
abstraction based on affine and p-box arithmetic. The approach relies on the use
of noise variables to represent the uncertainty of non-linear computations.

Lazy initialization is related to materialization of summary nodes in shape
analysis [40]. However its application to model counting is new.

7 Conclusions

We presented an technique for model counting over constraints on complex data
structures with numeric fields. The technique uses symbolic execution with lazy
initialization to compute the satisfying heap structures, while keeping the con-
straints on numeric data symbolic. The valid assignments for the numeric con-
straints are then solved with off-the-shelf model counting procedures that target
numeric domain. Further field bounds and various constraint optimizations are
used to speed-up the technique. Experimental results highlighted the benefits of
the proposed technique.

There are many avenues for future work. First note that it is the responsibility
of the user to write the complex (Java) predicates; further the user needs to make
sure that the predicates in the usage profile are disjoint. To ease this burden we
have defined patterns for some commonly used predicates (such as acyclic and
size for linked lists) that can be used and modified easily. In the future we
would like to explore established logics, such as separation logic, to simplify the
specification task. We will then need to synthesize the Java predicates encoding
them. We also plan to explore runtime analysis to derive profiles directly from
running systems. Further we plan to apply the model counting technique in the
security domain.
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28. Luckow, K., Păsăreanu, C.S., Dwyer, M.B., Filieri, A., Visser, W.: Exact and
approximate probabilistic symbolic execution for nondeterministic programs. In:
ASE, pp. 575–586. ACM (2014)

29. Luu, L., Shinde, S., Saxena, P., Demsky, B.: A model counter for constraints over
unbounded strings. In: PLDI, p. 57 (2014)

30. Monniaux, D.: An abstract Monte-Carlo method for the analysis of probabilistic
programs. In: POPL, pp. 93–101 (2001)

31. Nori, A.V., Hur, C.-K., Rajamani, S.K., Samuel, S.: R2: an efficient mcmc sampler
for probabilistic programs. In: AAAI Conference on Artificial Intelligence (AAAI).
AAAI, July 2014

32. Pasareanu, C.S., Visser, W., Bushnell, D.H., Geldenhuys, J., Mehlitz, P.C., Rungta,
N.: Symbolic pathfinder: integrating symbolic execution with model checking for
Java bytecode analysis. Autom. Softw. Eng. 20(3), 391–425 (2013)

33. Pestman, W.R.: Mathematical Statistics. De Gruyter, Berlin (2009)
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Abstract. Parameterisation in three-valued model checking (PMC)
allows to establish logical connections between unknown parts in state
space models. The application of parameterisation enhances the precision
of models without increasing their state space, but it leads to an expo-
nential growth of the number of model checking instances that have to be
checked consecutively. Here, we introduce a technique for PMC via par-
allel SAT solving which enables us to significantly reduce the time over-
head of PMC by exploiting similarities among the instances. We define
bounded semantics and a propositional logic encoding of PMC. More-
over, we introduce a concept for sharing clauses between the instances of
parallel SAT-based PMC. Our experiments show that our new approach
leads to a practically relevant speed-up of parameterised three-valued
model checking.

1 Introduction

Three-valued predicate abstraction [18,22] is an established technique in software
verification. It proceeds by generating a state space model of the system to be
analysed over the values true, false and unknown, where the latter value is used
to represent the loss of information due to abstraction. The evaluation of tem-
poral logic properties on such models is known as three-valued model checking
(3MC) [7,9,10]. In case of an unknown result in verification, the abstraction is
iteratively and automatically refined by adding more predicates over the vari-
ables of the system until a level of abstraction is reached where the property can
be either definitely proved or refuted. Refinement does, however, not guarantee
that eventually a three-valued model can be constructed that is both precise
enough for a definite outcome and small enough to be manageable with the
available computational resources.

In [23] we introduced parameterised three-valued model checking (PMC) as
an extension of 3MC. Predicates and transitions in PMC models can be either
associated with the values true, false, unknown, or with expressions over Boolean
parameters. Parameterisation is an alternative way to state that the value of cer-
tain predicates or transitions is actually not known and that the checked property
has to yield the same result under each possible parameter instantiation. PMC
is thus conducted via evaluating a property under all parameter instantiations
and checking whether the results are consistent. Parameterisation particularly
c© Springer International Publishing Switzerland 2015
B. Fischer and J. Geldenhuys (Eds.): SPIN 2015, LNCS 9232, pp. 242–259, 2015.
DOI: 10.1007/978-3-319-23404-5 16
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allows to establish logical connections between unknowns in the abstract model:
While unknown parts in 3MC are never related to each other, the parameteri-
sation approach enables to represent facts like ‘a certain pair of transitions has
unknown but complementary truth values’, or ‘the value of a predicate is un-
known but remains unchanged along all states of a certain path’. Such facts can
be automatically derived from the system to be verified, and covering these facts
in a model can be crucial for the success and the efficiency of model checking. We
showed that combining classical refinement and parameterisation in abstraction-
based model checking is highly suited for obtaining the necessary precision for
a definite result while keeping the state space small. However, parameterisation
generally leads to an exponential increase in time complexity, since any property
of interest must be checked for each possible parameter instantiation.

Here, we introduce a technique for parameterised three-valued model check-
ing via parallel SAT solving which enables us to considerably reduce the time
overhead of PMC by effectively exploiting similarities between the occurring
instances. Our approach is based on bounded model checking (BMC) [4]. We
define bounded semantics for PMC and we introduce a parameterised proposi-
tional encoding of PMC problems. In order to obtain the overall result of an
encoded PMC problem, the satisfiability of each possible parameter instantia-
tion of the encoding is tested and it is checked whether all single results are
consistent.

An integral part of modern satisfiability solving algorithms is conflict-driven
clause learning [5]: SAT solvers search for a satisfying assignment of the input
formula by successively selecting unassigned Boolean variables, assigning them
to either true or false, and propagating the resulting constraints to the clauses of
the formula. In case the solver decisions lead to an unsatisfied clause, a so-called
conflict clause is learned and added to the formula. Then the solver tracks back
by revising a former assignment decision and continuing the search from this
point. Clause learning enables to quickly prune parts of the search space and
is thus crucial for the performance of SAT solving. In our approach, we exploit
the fact that the instances associated with a parameterised encoding exhibit
considerable similarities in terms of large common subformulae. Thus, a conflict
clause that was learned during the SAT test of one instance can be shared with
another instance that is SAT checked at the same time, provided that the new
clause was derived based on a common part of the two instances.

We implemented a parallel SAT-based model checker for PMC problems. The
checks of the instances of a parameterised encoding are performed concurrently
and clauses that have been learned are are shared between the instances. In
experiments we show that our concept of clause sharing in parallel SAT-based
PMC leads to substantial savings in verification time.

2 Background

We start with an introduction to pure and parameterised three-valued models.
The key feature of these models is a third truth value ⊥ (i.e. unknown) for transi-
tions and labellings, which is used to model uncertainty. The parameterised case
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additionally allows Boolean parameter expressions for transitions and labellings,
which enables to establish logical connections between unknown parts.

Definition 1 (Parameterised Three-Valued Kripke Structure). A para-
meterised three-valued Kripke structure over a set of atomic predicates AP
and a set of Boolean parameters X = {x1, . . . , xm} is a parameterised tuple
M(

m

x) = (S, s0, R(
m

x), L(
m

x)) where

– S is a finite set of states and s0 ∈ S is the initial state,
– R(

m

x) : S × S → {true,⊥, false} ∪ B(X) is a transition function with ∀s ∈
S : ∃s′ ∈ S : R(

m

x)(s, s′) ∈ {true,⊥} ∪ B(X) where B(X) denotes the set of
Boolean expressions over X,

– L(
m

x) : S×AP → {true,⊥, false}∪B(X) is a labelling function that associates
a truth value or a parameter expression with each predicate in each state.

Note that (
m

x) is an abbreviation for the parameter tuple (x1, . . . , xm). An
instantiation of a parameterised three-valued Kripke structure M(

m

x) is a pure
three-valued Kripke structure M(

m

a) where (
m

a) ∈ {true, false}m. Hence, all para-
meters are substituted by Boolean truth values. However, predicates and transi-
tions that were not parameterised in M(

m

x) may still hold the value unknown in
M(

m

a). A structure is also pure if X = ∅. If the tuple of parameters is clear from
the context we will just refer to M , R, L. An example for a pure three-valued
Kripke structure M and a parameterised Kripke structure M(x1) is depicted
below.

s0M ::

s2

s1

p = ⊥

p = true

p = false

⊥

true

⊥

true

true

s0M (x1) ::

s2

s1

p = ⊥

p = true

p = false

x1

true

¬x1

true

true

In abstraction-based model checking a parameterised three-valued Kripke struc-
ture can be obtained by refining a pure three-valued Kripke structure [23]. For
instance, if the transitions (s0, s1) and (s0, s2) of our example structure M corre-
spond to a complementary branch (e.g. if-then-else or while-do) in the modelled
system, then M(x1) is a sound refinement of M .

In the following, we first introduce model checking for pure three-valued
Kripke structures and then generalise it to the parameterised case. A path π of
a pure three-valued Kripke structure M is an infinite sequence of states s0s1s2 . . .
with R(si, si+1) ∈ {true,⊥}. πi denotes the i-th state of π, whereas πi denotes
the i-th suffix πiπi+1πi+2 . . . of π. By ΠM we denote the set of all paths of
M starting in the initial state. We use the temporal logic LTL for specifying
properties with regard to paths.

Definition 2 (Syntax of LTL). Let AP be a set of atomic predicates and
p ∈ AP . The syntax of LTL formulae ψ is given by

ψ ::= p | ¬ψ | ψ ∨ ψ | ψ ∧ ψ | Xψ | Gψ | Fψ | ψUψ.
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Due to the extended domain of truth values in three-valued Kripke structures,
the evaluation of LTL formulae is not based on classical two-valued logic. In
three-valued model checking we operate under the three-valued Kleene logic L3

[12] whose semantics is given by the truth tables below.

∧ true ⊥ false
true true ⊥ false
⊥ ⊥ ⊥ false
false false false false

∨ true ⊥ false
true true true true
⊥ true ⊥ ⊥
false true ⊥ false

¬
true false
⊥ ⊥
false true

L3 has a reflexive truth ordering ≤L3 (in words: ‘less or equally true as’) with
false ≤L3 ⊥ ≤L3 true. Based on L3, LTL formulae can be evaluated on paths
of three-valued Kripke structures according to the following definition.

Definition 3 (Three-Valued Evaluation of LTL). Let M = (S, s0, R, L)
over AP be a pure three-valued Kripke structure. Then the evaluation of an
LTL formula ψ on a path π ∈ ΠM , written [π |= ψ], is defined as follows

[π |= p] := L(π0, p)
[π |= ¬ψ] := ¬ [π |= ψ]
[π |= ψ ∨ ψ′] := [π |= ψ] ∨ [π |= ψ′]
[π |= Gψ] :=

∧
i∈N

(R(πi, πi+1) ∧ [
πi |= ψ

]
)

[π |= Fψ] :=
∨

i∈N
(
[
πi |= ψ

] ∧ ∧i−1
j=0 R(πj , πj+1))

Due to space limitations we have omitted the definitions for the operators ∧, X
and U. The complete definitions can e.g. be found in [21,25]. The evaluation of
LTL formulae on entire three-valued Kripke structures is what is called three-
valued model checking (3MC) [7,9].

Definition 4 (Three-Valued LTL Model Checking). Let M = (S, s0, R, L)
over AP be a three-valued Kripke structure. Moreover, let ψ be an LTL formula
over AP . The universal value of ψ in M , written [M |=U ψ], is defined as

[M |=U ψ] :=
∧

π∈ΠM

[π |= ψ]

The existential value of ψ in M , written [M |=E ψ], is defined as

[M |=E ψ] :=
∨

π∈ΠM

[π |= ψ]

Universal model checking can always be transferred into existential model check-
ing based on the equation [M |=U ψ] = ¬ [M |=E ¬ψ].

In 3MC there exist three possible outcomes: true, false and ⊥. For our
example Kripke structure M we get [M |=U G¬p] = ¬[M |=E Fp] = ⊥ and
[M |=U GF¬p] = ¬[M |=E FGp] = ⊥. Hence, M is not precise enough for a
definite result in these verification tasks. G¬p is a temporal logic formula that is
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a typical example of a universal safety property, whereas GF¬p is an example of
a liveness property. Safety and liveness are the most vital requirements in soft-
ware verification. In our approach, we therefore particularly focus on these two
kinds of properties, or rather their existential counterparts Fp and FGp. From
now on, we only consider the existential case, since it is the basis for bounded
model checking which we later apply.

3MC reduces to two-valued model checking (2MC) if the Kripke structure
M is actually two-valued, i.e. R−1(⊥) = ∅ and L−1(⊥) = ∅. In this case, only
definite outcomes are possible. Moreover, 3MC can always be reduced to two
instances of 2MC if the LTL formula is restricted to LTL+, which is the negation-
free fragment of LTL. LTL+ formulae are evaluated on complement-closed Kripke
structures. In these structures each p ∈ AP has a complementary p̄ ∈ AP
such that L(s, p) = ¬L(s, p̄). Every Kripke structure can be straightforwardly
extended to a complement-closed one, without increasing the number of states.
For the evaluation on complement-closed Kripke structures, each LTL formula
can be transferred into an equivalent LTL+ formula. Thus, the restriction to
LTL+ does not limit the expressiveness of our approach. The reduction of 3MC to
two instances of 2MC is based on completions of complement-closed structures.

Definition 5 (Completion). Let M = (S, s0, R, L) over AP be a three-valued
Kripke structure. Then Mp = (S, s0, R

p, Lp) is the pessimistic completion and
Mo = (S, s0, R

o, Lo) is the optimistic completion with ∀s, s′ ∈ S and ∀p ∈ AP :

Lp(s, p) :=

{
false if L(s, p) = ⊥
L(s, p) else

Rp(s, s′) :=

{
false if R(s, s′) = ⊥
R(s, s′) else

Lo(s, p) :=

{
true if L(s, p) = ⊥
L(s, p) else

Ro(s, s′) :=

{
true if R(s, s′) = ⊥
R(s, s′) else

From [8] we now get the following theorem that allows us to reduce three-valued
model checking to two-valued model checking.

Theorem 1. Let M = (S, s0, R, L) be a complement-closed three-valued Kripke
structure and ψ an LTL+ formula. Then the following holds:

[M |=E ψ] =

⎧
⎪⎨

⎪⎩

true if [Mp |=E ψ] = true

false if [Mo |=E ψ] = false

⊥ else

Hence, if a formula holds for the pessimistic completion we can conclude that
it also holds for the three-valued Kripke structure. The same applies to false
results obtained for the optimistic completion. All definitions wrt. pure 3MC can
be straightforwardly generalised to parameterised three-valued model checking
(PMC) [23], since PMC reduces to multiple instances of pure 3MC. In PMC we
consider all parameter instantiations of a parameterised Kripke structure.
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Definition 6 (Parameterised Three-Valued LTL+ Model Checking). Let
M(

m

x) = (S, s0, R(
m

x), L(
m

x)) be a parameterised three-valued Kripke structure over
AP and X = {x1, . . . , xm}. Moreover, let ψ be an LTL+ formula over AP . The
existential value of ψ in M(

m

x), written [M(
m

x) |=E ψ], is defined as

[M(
m

x) |=E,k ψ] :=

⎧
⎪⎨

⎪⎩

true if ∀(
m

a) ∈ {t, f}m ([M(
m

a) |=E,k ψ] = true)
false if ∀(

m

a) ∈ {t, f}m ([M(
m

a) |=E,k ψ] = false)
⊥ else

Thus, if checking a temporal logic property yields true for all instantiations, this
result is transferred to the parameterised Kripke structure. The same holds for
false results for all instantiations. In all other cases PMC returns unknown. For
our example M(x1), we get [M(x1) |=E Fp] = true since Fp holds existentially
for both M(true) and M(false). By the same argumentation we can show that
[M(x1) |=E FGp] also yields true. In contrast to the pure three-valued M ,
the parameterised M(x1) captures the fact that the transition values of (s0, s1)
and (s0, s2) are unknown but also complementary, which gives us the necessary
precision for the definite verification results. In the remainder of this work we
will show how PMC problems can be encoded in propositional logic and then
efficiently solved via SAT solving with clause sharing. A prerequisite for the
encoding is to bound the length of the considered paths in model checking.

3 Bounded Semantics

Bounded model checking (BMC) [3,4] via satisfiability solving requires to con-
sider finite prefixes of paths, bounded in length by some k ∈ N. Such finite
prefixes π0 . . . πk can still represent infinite paths if the prefix has a loop, i.e. the
last state πk has a successor state that is also part of the prefix.

Definition 7 (k-Loop). Let π be a path of a three-valued Kripke structure M
and let l, k ∈ N with l ≤ k. Then π has a (k, l)-loop if R(πk, πl) ∈ {true,⊥} and
π is of the form u · vω where u = π0 . . . πl−1 and v = πl . . . πk. Moreover, π has
a k-loop if there exists an l ∈ N with l ≤ k such that π has a (k, l)-loop.

For the bounded evaluation of temporal logic formulae on paths of Kripke struc-
tures we have to distinguish between paths with and without a k-loop.

Definition 8 (Three-Valued Bounded Evaluation of LTL+). Let M =
(S, s0, R, L) over AP be a complement-closed three-valued Kripke structure, let
k ∈ N and let π be a path of M without a k-loop. Then the k-bounded evaluation
of an LTL+ formula ψ on π, written

[
π |=i

k ψ
]
where i ∈ N with i ≤ k denotes

the current position along the path, is inductively defined as follows

[
π |=i

k p
]

:= L(πi, p)
[
π |=i

k ψ ∨ ψ′] :=
[
π |=i

k ψ
] ∨ [

π |=i
k ψ′]

[
π |=i

k Gψ
]

:= false
[
π |=i

k Fψ
]

:=
∨k

j=i([π |=j
k ψ] ∧ ∧j−1

l=i R(πl, πl+1))
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If π has a k-loop, then [π |=i
k ψ] := [πi |= ψ]. Moreover, the existential value of

ψ in M under the bounded semantics is [M |=E,k ψ] :=
∨

π∈ΠM
[π |=0

k ψ].

The bounded evaluation of LTL+ approximates the unbounded evaluation wrt.
the truth ordering of L3: [M |=E,k ψ] ≤L3 [M |=E ψ]. Hence, all true results
in three-valued BMC can be transferred to the corresponding unbounded case,
whereas unknown and false results do not allow to draw such conclusions about
the unbounded case. At least, a false result for a bound k tells us that there is
definitely no path prefix of length k for which ψ holds. Moreover, a false result
can be transferred to the unbounded case, if k has reached a completeness thresh-
old, which can be derived based on M and ψ [4]. For instance, the completeness
threshold for a safety formula ψ is linear in the number of states of M . If all
possible values for k are considered, then the bounded semantics is equivalent to
the unbounded one: [M |=E ψ] =

∨
k∈N

[M |=E,k ψ]. The bounded semantics
for 3MC can be straightforwardly extended to the parameterised case, as PMC
reduces to multiple instances of pure 3MC.

Definition 9 (Bounded Parameterised Three-Valued Model Checking).
Let M(

m

x) = (S, s0, R(
m

x), L(
m

x)) be a parameterised three-valued Kripke structure
over AP and X = {x1, . . . , xm}. Moreover, let ψ be an LTL+ formula over AP
and k ∈ N. The existential value of ψ in M(

m

x) under the bounded semantics,
written [M(

m

x) |=E,k ψ], is defined as

[M(
m

x) |=E,k ψ] :=

⎧
⎪⎨

⎪⎩

true if ∀(
m

a) ∈ {t, f}m ([M(
m

a) |=E,k ψ] = true)
false if ∀(

m

a) ∈ {t, f}m ([M(
m

a) |=E,k ψ] = false)
⊥ else

BMC is typically performed incrementally, i.e. the bound is iteratively increased
until the property of interest can be either proven or the completeness threshold
is reached. For our running example from the previous section, we require the
following iterations in order to prove that Fp holds existentially for M(x1).

[M(x1) |=E,0 Fp] = ⊥ [M(x1) |=E,1 Fp] = ⊥ [M(x1) |=E,2 Fp] = true

For k = 0 we can only consider the state s0 where p is ⊥. For k = 1 the prefixes
(s0s1) and (s0s2) are considered. Here Fp holds for the instantiation M(true)
but not for M(false). Thus, the overall result is still ⊥. For k = 2 we get under
both instantiations a prefix where finally p holds. Next, we will see how bounded
PMC can be reduced to satisfiability solving.

4 Propositional Logic Encoding

Now we reduce bounded parameterised three-valued model checking to the new
satisfiability problem SATX3. For a parameterised three-valued Kripke structure
M(

m

x) = (S, s0, R(
m

x), L(
m

x)) over AP and X, an LTL+ formula ψ and a bound
k ∈ N, a propositional logic formula [[M(

m

x), ψ]]k is constructed such that

[M(
m

x) |=E,k ψ] = SATX3([[M(
m

x), ψ]]k)
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[[M(
m

x), ψ]]k is defined over a set of Boolean atoms, the set of Boolean parameters
X, and the constants true, false and ⊥. Hence, [[M(

m

x), ψ]]k is parameterised wrt.
X. We will show that solving SATX3 reduces to solving classical SAT for each
possible parameter instantiation. First, we give a step-by-step description on
how [[M(

m

x), ψ]]k is constructed for a given bounded PMC problem.
A propositional logic encoding of bounded model checking problems for

Kripke structures with three-valued labelling functions was introduced in [25].
Here we generalise it to our parameterised three-valued Kripke structures. The
construction of [[M(

m

x), ψ]]k is divided into the translation of the Kripke structure
M(

m

x) into a formula [[M(
m

x)]]k and the translation of the temporal logic prop-
erty ψ into a formula [[ψ]]k. We start with the encoding of the Kripke structure
M(

m

x) = (S, s0, R(
m

x), L(
m

x)), which first requires to encode its states as Boolean
formulae. For this, we introduce a set of Boolean atoms {A,B, . . .}. Let L be the
set of propositional logic formulae over {A,B, . . .} and the constants true and
false. Then an encoding of the states of a Kripke structure is defined as follows.

Definition 10 (State Encoding). Let M(
m

x) = (S, s0, R(
m

x), L(
m

x)) be a para-
meterised Kripke structure. A Boolean encoding of its states corresponds to an
injective mapping e : S → L where ∀s ∈ S : e(s) is a conjunction of literals.

The states s0, s1, and s2 of our example structure M(x1) can be encoded over the
set of atoms {A,B} as follows: e(s0) = ¬A∧¬B e(s1) = ¬A∧B e(s2) = A∧¬B.

An assignment is a mapping τ : {A,B, . . .} → {true, false}. For instance,
the assignment τ(A) = false and τ(B) = true characterises the state s1, since
it is the only assignment that makes the encoding e(s1) true. An entire Kripke
structure can now be translated into the formula [[M(

m

x)]]k that characterises
path prefixes of length k in M(

m

x). Since we consider states as parts of such
prefixes, we have to extend the encoding of states by index values i ∈ {0, . . . , k}
where i denotes the position along a path prefix. For example, e(s1)i = ¬Ai ∧Bi

refers to s1 as the i-th state of a certain prefix. Moreover, we get an extended
set of indexed atoms {A0, B0, . . . , Ak, Bk, . . .}.

Definition 11 (Kripke Structure Encoding). Let M(
m

x) = (S, s0, R(
m

x),
L(

m

x)) be a parameterised three-valued Kripke structure and e an encoding of
its states. We define Init0 as the predicate characterising the initial state of
M(

m

x) with

Init0 := e(s0)0

and Ti,i+1 as the predicate that characterises the transitions of M(
m

x) with

Ti,i+1 :=
∨

s∈S

∨

s′∈S
e(s)i ∧ e(s′)i+1 ∧ R(

m

x)(s, s′).

Then the entire encoding of M(
m

x) for a bound k ∈ N is defined as

[[M(
m

x)]]k := Init0 ∧
∧k−1

i=0
Ti,i+1
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Thus, for our example M(x1) we get Init0 = ¬A0 ∧ ¬B0 and Ti,i+1 = (¬Ai ∧
¬Bi∧¬Ai+1∧¬Bi+1∧true)∨(¬Ai∧¬Bi∧¬Ai+1∧Bi+1∧¬x1)∨(¬Ai∧¬Bi∧Ai+1∧
¬Bi+1∧x1)∨(¬Ai ∧Bi ∧Ai+1∧¬Bi+1∧true)∨(Ai ∧¬Bi ∧Ai+1∧¬Bi+1∧true).

As we can see, each clause of Ti,i+1 encodes a transition of the Kripke struc-
ture, where the last literal, resp. constant, of each clause encodes the value of
the transition. The assignment τ(A0) = false, τ(B0) = false, τ(A1) = true
and τ(B1) = false characterises that the first transition of a k-prefix s0 . . . sk is
the transition (s0, s2) which is parameterised by x1.

The second part of the encoding concerns the temporal logic formula ψ.
Again, we need to distinguish the cases where ψ is evaluated on a path prefix
with and without a loop.

Definition 12 (LTL+Encoding without Loop). Let p be an atomic predi-
cate, ψ and ψ′ LTL+ formulae, and k, i ∈ N with i ≤ k.

[[p]]ik :=
∨

s∈S e(s)i ∧ L(s, p) [[Gψ]]ik := false

[[ψ ∨ ψ′]]ik := [[ψ]]ik ∨ [[ψ′]]ik [[Fψ]]ik :=
∨k

j=i[[ψ]]jk

For instance, encoding the LTL+ formula Fp for our example Kripke structure
M(x1) and for bound k = 2 yields the following propositional logic formula

[[Fp]]02 =
∨2

i=0 ((¬Ai ∧ ¬Bi ∧ ⊥) ∨ (¬Ai ∧ Bi ∧ false) ∨ (Ai ∧ ¬Bi ∧ true))

Encoding temporal logic formulae for the evaluation on prefixes with a loop
additionally requires to explicitly refer to the starting position l of the loop.

Definition 13 (LTL+Encoding with Loop). Let p be an atomic predicate,
ψ and ψ′ LTL+ formulae, and k, i, l ∈ N with i, l ≤ k.

l[[p]]ik :=
∨

s∈S e(s)i ∧ L(s, p) l[[Gψ]]ik :=
∧k

j=min(i,l) l[[ψ]]jk

l[[ψ ∨ ψ′]]ik := l[[ψ]]ik ∨ l[[ψ′]]ik l[[Fψ]]ik :=
∨k

j=min(i,l) l[[ψ]]jk

For our example we have that l[[Fp]]02 = [[Fp]]02 for each possible l. Thus, in this
particular case a distinction between loop and loop-free prefixes is not necessary.
For the overall encoding we get [[M(x1),Fp]]2 := [[M(x1)]]2 ∧ [[Fp]]02

The general case requires to distinguish between loop and loop-free prefixes.
For this, a subformula Tk,l (similar to the transition encoding) is used that
characterises all (k,l)-loops of the encoded structure. The general encoding is

[[M(
m

x), ψ]]k := [[M(
m

x)]]k ∧ ([[ψ]]0k ∨
k∨

l=0

(Tk,l ∧ l[[ψ]]0k))

Since [[M(
m

x), ψ]]k is not only defined over atoms but also over parameters from
X and the constant ⊥, standard satisfiability testing is not straightforwardly
applicable. Thus, we define our new satisfiability problem SATX3 for our propo-
sitional logic encoding, which reduces to multiple instances of classical SAT.
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Definition 14 (SATX3). Let F = [[M(
m

x), ψ]]k be a propositional logic encoding
of a bounded PMC problem [M(

m

x) |=E,k ψ]. Then

SATX3(F ) :=

⎧
⎪⎨

⎪⎩

true if ∀(
m

a) ∈ {t, f}m (SAT([[M(
m

x), ψ]]pk[(
m

x)/(
m

a)]) = true)
false if SAT([[M(

m

x), ψ]]ok) = false

⊥ else

where [[M(
m

x), ψ]]pk is the pessimistic completion of [[M(
m

x), ψ]]k, i.e. the formula
obtained by substituting all occurrences of ⊥ by false, and [[M(

m

x), ψ]]ok is the opti-
mistic completion obtained by substituting all occurrences of ⊥ by true. More-
over, [[M(

m

x), ψ]]pk[(
m

x)/(
m

a)] denotes the substitution of (
m

x) in [[M(
m

x), ψ]]pk by (
m

a).

Here SAT(F ) returns true for a propositional logic formula F if there exists an
assignment that makes the formula true, whereas it returns false if there does
not exist such an assignment. Note that SAT([[M(

m

x), ψ]]ok) = false is equivalent
to ∀(

m

a) ∈ {t, f}m(SAT([[M(
m

x), ψ]]ok)[(
m

x)/(
m

a)] = false). Hence, checking whether
SATX3 yields false requires a single SAT test only. The result of the overall
SATX3 test is equivalent to the result of the encoded model checking problem:

Theorem 2. Let M(
m

x) be a parameterised three-valued Kripke structure over a
set of atomic predicates, let ψ be an LTL+ formula, and k ∈ N. Then

[M(
m

x) |=E,k ψ] = SATX3([[M(
m

x), ψ]]k)

Proof. See http://www.cs.up.ac.za/cs/ntimm/ProofTheorem2.pdf

Thus, bounded PMC can be reduced to multiple instances of SAT. For our
example encoding [[M(x1),Fp]]2 there exists a satisfying assignment for each
possible instantiation which allows us to conclude that [M(x1) |=E,2 Fp] = true.

5 Solving SATX3 with Parallelisation and Clause Sharing

In this section we show how the SAT checks necessary to solve SATX3 can be
simultaneously performed by a parallel composition of solvers and additionally
accelerated by clause sharing. SAT solvers require the input formula to be in
conjunctive normal form (CNF). A CNF formula F over a set Boolean variables
V is a conjunction of clauses, where each clause is a disjunction of literals. The
Tseitin transformation [24] allows to translate any propositional formula into a
SAT-equivalent CNF formula which length is linear in the size of the original for-
mula. Thus, we assume that our encoding F = [[M(

m

x), ψ]]k has been transformed
into CNF, where F is defined over the indexed atoms of the encoding, the para-
meter set X = {x1, . . . , xm} and the constants true, false and ⊥. Remember that
checking SATX3 requires to test the satisfiability of the pessimistic completion
under each possible parameter instantiation. Instantiating the parameters of the
encoding is equivalent to adding an assumption for each x ∈ X. Assumptions
can be implemented by an assignment τ : X → {true, false}. By F |τ we denote

http://www.cs.up.ac.za/cs/ntimm/ProofTheorem2.pdf
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the formula F under the assumption that the parameters are instantiated with
regard to τ . The set of assumptions over X that we have to consider is

ASS = {
⋃m

i=1
{(xi, ai)} | ai ∈ {true, false}}

For our running example we get ASS = {τ1, τ2} with τ1 = {(x1, false)} and
τ2 = {(x1, true)}. Checking SATX3 requires to distinguish the cases where ⊥ is
assigned to true resp. false. Only for the pessimistic case ⊥ = false we need
to consider each possible parameter instantiation. We thus extend the domain
of our assumptions to X ∪{⊥} and introduce the pessimistic set of assumptions
ASSp := {τ ∪ {(⊥, false)} | τ ∈ ASS} and the optimistic assumption τo =
{(⊥, true)}. The problem SATX3 for F can now be reformulated as follows

SATX3 (F ) :=

⎧
⎨

⎩

true if ∀τ ∈ ASSp (SAT (F |τ ) = true)
false if SAT (F |τo) = false

⊥ else.

The number of SAT instances induced by SATX3 is exponential in the number of
parameters. Thus, in a sequential scenario parameterisation can lead to an expo-
nential growth of computation time. Since all these instances are independent
problems, SAT solving can be done concurrently. Provided that parallel process-
ing is available to a sufficient extent, the runtime overhead of parameterisation
can thus be significantly reduced. For our example we need three processors in
order to entirely suspend the overhead induced by parameterisation:

T0

(
F |{(⊥,true)}

)

‖ T1

(
F |{(x1,false),(⊥,false)}

)

‖ T2

(
F |{(x1,true),(⊥,false)}

)

Here T0 to T2 are solver threads executed concurrently that return whether
the input formula is satisfiable or not. Note that it is not always necessary for
all threads to terminate in order to solve SATX3. In case T0 returns false we
already know that the overall result is false, in case T1 and T2 return contrary
results the overall result is ⊥, and if T1 and T2 both return true then we also
get true for SATX3.

This method can be additionally accelerated by exploiting the fact that the
SAT instances associated with SATX3 exhibit similarity in the sense of common
subformulae. Modern SAT solvers are based on the search for a satisfying assign-
ment of the input CNF formula by incrementally selecting unassigned variables,
assigning them by either true or false, and propagating the resulting constraints
to the clauses of the formula. In case the solver decisions lead to an unsatis-
fied clause, a so-called conflict clause is learned via resolution and added to the
set of clauses. Moreover, the solver tracks back by revising a former assignment
decision and continuing the search from this point until a satisfying assignment
is found or the search space is entirely explored. Such a conflict-driven clause
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learning (CDCL) [5] can help the solver to quickly prune certain branches of the
search space and is thus crucial for the performance of satisfiability solving.

Learned clauses can also be reused or shared. In incremental SAT solving [11]
a set of similar input formulae is processed by consecutively executed solvers.
The inputs typically have a common subformula F while the differences are
expressed by adding different assumptions τ1, . . . τn to F . These assumptions
are fixed assignments which are never revoked during the solving process for
an input F |τi . This guarantees that all conflict clauses learned in assumption-
based incremental SAT solving inherently contain the assumptions they depend
on. Hence, learned clauses can be reused without any restriction since changing
from one assumption τ to another assumption τ ′ does not affect the clauses of
F but automatically disables conflict clauses that are not compatible with τ ′.
In the context of parallel SAT solving the concept of clause sharing has been
introduced [13,15]. In this approach multiple copies of the input formula are
checked concurrently. Generated conflict clauses can be shared, which enables to
prune the search space at multiple points at the same time. Clause sharing has
also been considered for parallel (non-parameterised) BMC [2,26]. Here multiple
solvers check the same BMC encoding but for different bounds. Similar to incre-
mental SAT solving the differences are expressed via assumptions and learned
clauses are shared via a global database or message passing.

For our parameterised scenario we adopt the concept of assumption-based
clause sharing. We already reduced SATX3 to multiple SAT instances consisting
of the common formula F and different assumptions that characterise the pos-
sible parameter instantiations and the optimistic resp. pessimistic completion.
Hence, all learned conflict clauses can be shared in a parallel scenario and thus
used to prune the search space of multiple instances at the same time. Next, we
will discuss the implementation of our approach and we will see how the runtime
performance of parallel SAT-based bounded PMC can significantly profit from
clause sharing.

6 Implementation and Experimental Results

We have prototypically implemented a SAT-based bounded LTL model checker
for parameterised three-valued models which employs the Java-based solver
library Sat4j [14]. The checker iterates over the bound k, starting with k = 0,
until a definite result can be obtained or a predefined threshold for k is reached.
In each iteration, after constructing a parameterised encoding F of a bounded
PMC problem, each instance F |τo , F |τ1 , . . . , F |τn is processed by a solver thread.
In the basic mode of our implementation the threads are executed in parallel
whereby learned clauses are not shared. In the enhanced mode we additionally
apply clause sharing. For this purpose, the solvers save copies of learned clauses
in a global database D. The solvers provided by Sat4j inherently employ conflict-
driven clause learning. Such CDCL solvers regularly restart while processing a
SAT instance. Restarts typically happen after having learned a certain amount
of clauses. For our clause sharing approach we use these restarts as the points
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of synchronisation with D: Every time a solver restarts, it waits for read access
to D. Then, it reads the clauses that have been placed into D by other solvers
since its own most recent restart. (Remember that the assumption-based app-
roach ensures that the solver will only make use of those clauses from D for
pruning its search space that were learned based on assumptions compatible to
its own assumption τ .) Finally, the solver waits for exclusive read-write access
to D and adds the clauses that have been learned by itself since its last restart.
The shorter a conflict clause the stronger it prunes the search space. To keep
the clause sharing mechanism efficient and the communication overhead caused
by exclusively accessing D small, we currently only share unit (single-literal)
clauses. In both the basic and the enhanced mode a k-bounded iteration termi-
nates when the solver processing the optimistic completion of F returns false,
or when all solvers processing an instance of the pessimistic completion return
true, or as soon as the so far single results already indicate an overall unknown
result. In the latter case, the (k + 1)-bounded encoding is constructed and its
instances are processed in the subsequent iteration. Algorithm 1 illustrates the
general procedure of a single iteration. Here the input variable mode indicates
whether each solver thread synchronises with the initially empty shared clause
database D at a restart (enhanced) or not (basic).

Data: parameterised encoding F , assumption set ASS = {τo, τ1, . . . , τn},
mode ∈ {basic, enhanced}, shared clause database D = ∅

Result: truth value of SATX3(F )
begin

start new solver thread T0(F |τo ,mode)
for i = 1 to n do

start new solver thread Ti(F |τi ,mode)
end
upon event

T0 returns false do
return false

T1 to Tn return true do
return true

∃ Ti, Tj where Ti returns true and Tj returns false do
return ⊥

end
end

Algorithm 1. SolveSATX3

In our experiments we compared the runtime performance of the basic and the
enhanced mode for encodings with increasing numbers of parameters. The items
of our benchmark set correspond to parameterised three-valued BMC problems
with fixed bounds that we encoded with our tool according to the definitions
from Sect. 4. For each item pmc-1 to pmc-9 we considered variants with 1 to 8
parameters, i.e. with 1+21 to 1+28 instances. The variants were constructed by
applying different parameterisations to the Kripke structure of the underlying
BMC problem. We transformed the SAT encodings into CNF. The resulting
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parameterised propositional logic formulae consisted of up to 40000 variables
and 150000 clauses. For all possible instantiations of a parameterised three-
valued encoding a solver thread was created and the satisfiability was checked
concurrently. Our experiments were conducted on a 2.6 GHz quad-core Intel Core
i5 with 8 GB. The results for our benchmark set are shown in the diagrams below.
Note that a logarithmic scale is used for the runtime axis. A table containing
the numerical results of our experiments can be found online1.
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The items pmc-1 to pmc-3 represent PMC problems that yield true for each
parameter variant (1 to 8). Hence, the termination of each variant necessitated
that all solvers processing a parameter instance of the pessimistic completion
returned true. Obtaining true results in SAT-based PMC generally involves the
highest computational effort because of the high number of solvers that need
to terminate. As shown by the diagrams, the runtime in the basic mode grows
approximately exponentially with each additional parameter. For variants with
a small number of parameters the runtimes of the basic and the enhanced mode
are nearly on the same level. However, for variants with a higher number of
1 http://www.cs.up.ac.za/cs/ntimm/Table.pdf.

http://www.cs.up.ac.za/cs/ntimm/Table.pdf
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parameters, i.e. a higher number of solvers that can share learned clauses, the
enhanced mode pays off: The solving time still grows with each additional para-
meter but is always orders of magnitude shorter then the basic approach runtime.

The items pmc-4 to pmc-6 represent PMC problems that yield unknown
for the parameter variants 1 to 7 and true for the variant with 8 parameters.
Hence, the last parameter variant finally brought the required precision for a
definite result. The termination of the variants 1 to 7 necessitated that two
solvers processing a parameter instance of the pessimistic completion returned
contrary results (true and false). Also here we observed an exponential growth
in runtime per additional parameter in the basic mode and a significantly better
performance in the enhanced mode, provided that a certain number of parame-
ters, i.e. cooperating solvers is present. In addition, we observed that solving the
variant with 8 parameters in the enhanced mode involves an exceptional increase
in runtime, which complies with the fact that obtaining a true result (variant 8)
generally requires more computational effort than obtaining an unknown result
(variants 1 to 7). This exceptional increase in runtime is not observable in the
basic mode where computational costs are generally high. Also for variant 8 the
enhanced approach with clause sharing is orders of magnitude faster than the
basic approach.

The items pmc-7 to pmc-9 represent problems that yield unknown for the
variants 1 to 7 and false for variant 8. Thus, the termination of variant 8 neces-
sitated that the solver processing the optimistic completion returned false. For
this set of items we made the same observations as for the previous benchmark
items with regard to the general performance advantage of the enhanced mode.
Additionally, we observed that solving variant 8 involved no significant increase
or even a decrease in runtime. This is consistent with the fact that obtaining a
false result in SAT-based PMC only requires the solver processing the optimistic
completion to terminate with false.

In summary, our experiments showed that, regardless of the final verification
result, clause sharing can considerably improve the runtime performance of par-
allel SAT-based PMC. The savings in solving time are particularly significant for
variants with a higher number of parameters where solver cooperation in terms
of sharing clauses is possible to a large extent. This enables us to benefit from
the extra precision of parameterisation in three-valued model checking, without
suffering from a substantial overhead in solving time.

7 Related Work

SAT-based BMC [3,4] was originally introduced for the bounded evaluation of
properties on two-valued models. Later, BMC has also been defined for pure
three-valued models [17,25]. A number of approaches have been proposed to
accelerate SAT solving in general and SAT-based BMC in particular. Conflict-
driven clause learning (CDCL) [5] is a concept for using clauses that were learned
during the test of a single SAT instance for pruning its search space. In incremen-
tal SAT solving [11] a series of similar SAT instances is solved sequentially. The
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differences between the instances are expressed by considering the same input
formula under different assumptions. On this basis, clauses learned via CDCL
can be reused when solving subsequent instances. Parallel SAT solving [6,16,19]
is an approach to solve a single instance by dividing it into disjoint parts that
are then processed by a set of solvers. In early works [6], CDCL was used by
each solver for solely pruning its own search space. Later approaches [16,19]
considered parallel solving with clause sharing : Learned clauses are ex- changed
in order to increase the overall performance. In SAT-based BMC, CDCL has
been applied in the sense that clauses learned for a k-bounded instance Fk are
reused when solving the instance Fk+1 [1,20]. Also here assumptions are used
to express the differences between Fk and Fk+1. This idea has been transferred
to a parallel setting where solvers concurrently operate on BMC instances with
different bounds, and synchronisation with a shared clause database happens
at the restarts of the solvers [2,26]. While these works deal with two-valued
models, our approach considers parameterised three-valued models. Parameter-
isation opens another dimension for sharing clauses. We adopted assumption-
based clause sharing and applied it between the parameter instances associated
with PMC. Since these instances share large common subformulae, this enables
us to accelerate the performance of SAT-based PMC.

8 Conclusion and Outlook

Parameterisation [23] is a concept for enhancing the precision of abstraction-
based three-valued model checking by capturing facts in the model that can be
derived from the software system to be verified. The application of parameter-
isation does not increase the state space but it leads to an exponential growth
of the number of model checking runs. In this paper, we introduced a technique
for PMC via parallel SAT solving. We defined a propositional logic encoding
of bounded PMC problems and we proved that our encodings are sound in
the sense that satisfiability results can be straightforwardly transferred to the
encoded model checking problem. The number of SAT instances associated with
an encoding is still exponential in the number of parameters. However, these
instances exhibit considerable similarities in the sense of common subformulae.
We showed that the concept of assumption-based clause sharing, which exploits
such similarities in order to achieve a better performance in parallel SAT solv-
ing, can be transferred to our parameterised scenario. We presented a prototype
tool for satisfiability-based PMC with clause sharing. In our experiments, we
demonstrated that clause sharing leads to a significant acceleration of PMC.
Thus, our new SAT-based approach enhances PMC as it allows us to profit from
the extra precision of parametrisation in three-valued model checking, without
creating a noticeable runtime overhead. Since we showed that PMC is reducible
to multiple instances of classical SAT, our approach will also benefit from future
improvements in SAT solver technology.

So far, we conducted our experiments on a single-processor system with mul-
tiple cores. We already achieved substantial runtime savings with our clause
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sharing approach by using these very limited parallel computing resources. As
future work we plan more extensive experiments on a cluster for parallel com-
puting. Moreover, we intend to extend parallelisation and clause sharing to the
satisfiability checks for the different bounds k = 0, 1, 2, . . . in bounded PMC. We
also plan to experiment with different policies with regard to size constraints
of clauses to be shared in order to discover the best trade-off between the com-
munication costs due to sharing and the speed-up due to additional pruning.
Moreover, we intend to use multiple copies of each instantiation in the parallel
composition of solver threads. We expect that this allows to increase the amount
of clauses that can be shared and thus leads to a further acceleration of the overall
solving time. Another direction for future research is to summarise the exponen-
tial number of SAT instances of the pessimistic completion to a single instance
of a quantified Boolean formula (QBF) F = ∀x1 . . . ∀xm∃v1 . . . ∃vn

(
F |(⊥,false)

)

and then to check F via a QBF solver. Though QBF is PSPACE-complete,
whereas SAT is only NP-complete, it would be interesting to study whether the
reduction to a single instance of a higher complexity class pays off in terms of
solving performance for particular PMC problems.
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Abstract. Quantitative security techniques have been proven effective
to measure the security of systems against various types of attackers.
However, such techniques are often tested against small-scale academic
examples.

In this paper we analyze two scalable, real life privacy case studies:
the privacy of the energy consumption data of the users of a smart grid
network and the secrecy of the voters’ voting preferences with different
types of voting protocols.

We contribute a new trace analysis algorithm for leakage calculation
in QUAIL. We analyze both case studies with three state-of-the-art infor-
mation leakage computation tools: LeakWatch, Moped-QLeak, and our
tool QUAIL equipped with the new algorithm. We highlight the relative
advantages and drawbacks of the tools and compare their usability and
effectiveness in analyzing the case studies.

1 Introduction

The protection of privacy and data security is one of the main concerns of com-
puter science. Security often falls down to the impossibility for an attacker
to obtain a given secret value. Such an impossibility can be defined by non-
interference [18]. However this definition rejects any program which publishes
any variable whose value depends on the secret. For instance, publishing the
results of an election when each individual vote is secret breaks non-interference.
Such a yes/no approach does not consider that an attacker may have a partial
information about a secret.

Information-theoretical techniques have the advantage of considering the
secret not as an atomic object but as a known number of secret bits, allow-
ing the definition of measures of effectiveness of an attack based on the amount
of secret bits that the attack compromises. The amount of secret bits that are
compromised by an attack are known as information leakage. Leakage depends
on the information about the secret known to the attacker before the attack,
known as prior information and usually modeled as a prior probability distrib-
ution over the values of the secret. This approach dates back to Denning [16].
Different information leakage measures have been introduced, including Shannon
leakage [19], min-entropy leakage [30] and the g-leakage [1], encoding different
security properties of the system. All the tools we compare in this work can
c© Springer International Publishing Switzerland 2015
B. Fischer and J. Geldenhuys (Eds.): SPIN 2015, LNCS 9232, pp. 263–281, 2015.
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compute both Shannon and min-entropy leakage with no significant difference
in computation time. We compare them on the computation of Shannon leakage,
but we expect no significant difference if the tools were to be compared on the
computation of min-entropy leakage.

Among the results in the field, Köpf et al. studied leakage of side-channel
attacks [2,21], while Boreale has defined leakage for process calculi [6] and char-
acterized the best attack strategy of an adaptive attacker [9].

In this work we compare the three tools that compose the state of the art in
Shannon leakage computation: QUAIL [5] equipped with a new trace analysis
algorithm, LeakWatch [13], and Moped-QLeak [11].

QUAIL is a recent but already well established tool for precise and exact
information leakage computation, and later tools by multiple authors have used
it as comparison [13,25]. Nonetheless, QUAIL needs to produce a full Markov
chain model of the system-attacker scenario to produce a meaningful result.

LeakWatch is the most recent of a family of tools for statistical approxi-
mation of information leakage developed by Chothia et al. [12,14]. LeakWatch
analyzes Java code, requiring the programmer to annotate the code of the system
with secret and observable values, then simulates the system repeatedly using
the Java Virtual Machine and estimates the correlation between the secret and
observable values. LeakWatch follows a different perspective than QUAIL and
Moped-QLeak, since LeakWatch computes an approximated result, contrarily to
QUAIL’s arbitrary precision and Moped-QLeak’s fixed double precision. Leak-
Watch’s approximation can be improved at the cost of running more simulations,
which is time expensive.

Moped-QLeak [11] uses the Moped tool [17] to compute a symbolic summary
of the program under analysis as an Algebraic Decision Diagram (ADD), and
then computes the leakage using the ADD representation. The symbolic app-
roach is very efficient when the program can be represented in a compact way
using ADDs, and in these cases Moped-QLeak is significantly faster than the
other tools.

The first contribution of this paper is a new algorithm for precise information
leakage computation, which is able to compute information leakage following the
same Markovian semantics we introduced previously [3, Sect. 4] by performing a
depth-first search analyzing the execution traces of the system. We implemented
this algorithm in QUAIL, allowing it to compute leakage without having to build
the full Markov chain model of the system.

As a second contribution, we provide two scalable case studies for the bench-
marking of quantitative information leakage tools. Both case studies arise from
real-life privacy problems. The case studies are anonymity of user data in Smart
Grids and privacy comparison in voting protocols.

Smart Grids are in the family of interconnected objects and have received
a growing interest over the last years. Our case study is based on a real sys-
tem deployed at fortiss1 labs [22]. In our case study, we focus on the negotia-
tion between a set of prosumers and an aggregator. The prosumers (PROducer
conSUMERS) consume, store and produce energy. To stabilize the grid, the

1 http://fortiss.org.

http://fortiss.org
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prosumers negotiate with the aggregator how much energy they will exchange
with the grid for the next period of time. This exchange might expose the con-
sumption of one of the prosumers, and, in turn, allow a potential attacker to
deduce that a house is empty or that a factory has increased its production.
In that example, the difficulty is to decide not only whether the exact infor-
mation can be deduced or not, but also how well an attack can approximate
it. Measuring the leakage indicates how much of the secret is unveiled through
the negotiation phase. We show that increasing the number of prosumers also
increases security.

In the voting protocols comparison case study, we compare two different vot-
ing protocols: the Single Preference, where each voter expresses a single vote
for his favorite candidate, and the Preference Ranking, where each voter ranks
all candidates from his most to his least favorite. In both cases there are multi-
ple voters and candidates, and the secret is the preference of each voter. Both
protocols have a large number of possible secrets and outputs, so they become
cumbersome to analyze even with a small number of voters and candidates.

We compare the tools on their computation time, precision of the answer
returned, scalability and usability. Since no tool works strictly better than the
others in all category, we determine the problem classes that are better suited
to be analyzed by each tool.

2 Background: Information Leakage

The information leakage of a program is a measure quantifying how much infor-
mation an attacker infers about the program’s secret by observing the program’s
output. We assume that the attacker has access to the program’s source code,
unlimited computational power, and some prior information about the secret
(e.g. the bit size of the secret). Leakage corresponds to the reduction in the
attacker’s uncertainty about the secret.

Let h be a random variable with values in a domain D(h) representing the
value of the secret and o be a random variable with values in a domain D(o)
modeling the value of the output. The information the attacker has on the secret
is modeled by a discrete probability distribution, i.e. for a discrete random vari-
able X a function π : D(X) → [0, 1] such that

∑
x∈D(X) π(x) = 1. The infor-

mation that the attacker has on the secret before the attack is modeled by the
prior distribution π(h) while the information the attacker has after observing
the output is modeled by the posterior distribution π(h|o). We consider the
prior distribution as given, since it is part of the model of the attacker. Let U be
an uncertainty measure defined on probability distributions, including Shannon
entropy, min-entropy, and g-vulnerability. Computing leakage for the measure
U reduces to computing the prior and posterior distributions and applying the
formula

LeakageU = U(π(h)) − U(π(h|o)) (1)

= U(π(h)) −
∑

ō∈D(o)

π(o = ō)U(π(h|o = ō)) (2)
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In this work we want to compute Shannon leakage, and thus we use Shannon
entropy as the measure of uncertainty: U(π(x)) =

∑
x∈D(X) π(x) log2 π(x).

3 Quantitative Information Leakage Tools

We introduce the quantitative information leakage computation tools that will
be tested on the case studies.

3.1 QUAIL

QUAIL [5] computes Shannon and min-entropy leakage of a program written
in an imperative WHILE language. The language allows the user to program
naturally with constants, arrays, and loops, which is syntactic sugar for QUAIL’s
if-goto Markovian semantics. Given the prior information of the attacker, QUAIL
represents the program as a Markov chain, and computes the information leakage
from the Markov chain with an arbitrary number of precision digits.

Syntax. We present the syntax of the QUAIL imperative language we use to
model programs. We distinguish the variables in public and private variables
according to their level of abstraction: public variables have precise values, while
private variables have sets of possible values. The observable variable o is public,
while the secret variable h is private. Let v range over names of variables and x
range over reals from [0; 1]. Let L (resp. H) be a set of assignments of values to
public variables (resp. assignments of sets of values to private variables).

Let label, l0 and l1 denote any program point and f (g) pure arithmetic
(Boolean) expressions. Assume a standard set of expressions and the following
statements:

stmt ::= public intn v := k | private intn v | v := f(L) | v := rand x |
skip | goto label | return | if g(L, H) then goto la

else goto lb

The first statement declares a public variable v of size n bits with a given
value k, while the second statement similarly declares a private variable h of size
n bits with allowed values ranging from 0 to 2n − 1. We assume a standard type
system to verify that values of n-bit variables do not exceed 2n − 1. The third
statement assigns to a public variable the value of expression f depending on
public variables; assignment to private variables or depending on the value of
private variables is not allowed. The fourth statement assigns zero with proba-
bility x, and one with probability 1−x, to a 1-bit public variable. The return
statement outputs values of all public variables and terminates. A conditional
branch first evaluates an expression g dependent on private and public variables,
and it jumps to label la if g is true and to label lb otherwise. Since only a single
variable scope exists, loops can be added in a standard way as syntactic sugar.

As a contribution, we present a method to compute information leakage of
a program by analyzing the execution traces of the program. We introduce the
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Markovian semantics of our language by means of a function computing the
successors of each state. Then we explain how we perform a depth-first explo-
ration of the traces of the system, obtaining a set Q of final states that represent
all possible output states of the system. Finally, we show how to compute the
posterior entropy from Q.

Fig. 1. Successor function for each state in the Markovian trace semantics.

Semantics. The Markovity of the semantics allows us to define states contain-
ing enough information to determine a probability distribution over all traces
originating from any state.

Definition 1. A state in a Markovian semantics is a tuple (pc, L,H, p) where
pc ∈ N

0 is the program counter, L a set of assignments of values to public
variables, H an set of assignments of sets of values to private variables, and
0 ≤ p ≤ 1 is the probability of the state.

The initial state of the semantics is (1, ∅, ∅, 1). The set of successor states of a
state (pc, L,H, p) depends on the statement pointed at by the program counter
pc. States pointing to a return statement have 0 successors, states pointing
to a rand or if statement have up to 2 successors, and any other state has 1
successor. The successor function defining the semantics of the language is shown
in Fig. 1. If a state has zero probability, e.g. when a conditional is always true,
it is removed from the set of successors.

We call a state final if it has no successors, meaning that the program counter
of the state points to a return statement. The trace analysis terminates when
a final state is encountered. This means that the analysis terminates if and only
if the program under analysis terminates, so non-terminating programs cannot
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be analyzed with this technique. Non-termination of the program under analysis
raises other issues in leakage computation [4], and is not considered here.

Conditional states and random assignment states have two successors. The
successors of a conditional state correspond to the guard being true or false. Since
the guard can depend on the secret, both successor states may have positive
probability depending on the prior distribution π(h) on the secret, which is
available at this time. The successors of a random assignment state correspond
to the bit being set to 0 or 1. In both cases the probability of each successor
state is computed and one of the successor states with non-zero probability is
chosen to be the next step in the analysis. Successors with probability zero are
dropped, pruning unreachable leaves from the trace tree.

Because of the Markovian semantics, each state contains the information to
compute the probability distribution over its outgoing transitions. The proba-
bility of a trace is computed as the product of the probabilities of the transi-
tions composing the trace. In the successor states of the conditional statement,
H|g(L,H) (resp. H|¬g(L,H)) represents the assignment function obtained by
removing from the sets of values assigned to the private variables those values
that contradict (resp. respect) the guard g(L,H). Similarly, Pr(g(L,H) |π(h))
(resp. Pr(¬g(L,H) |π(h))) refers to the probability that the guard g(L,H) is
true (resp. false) considering the prior probability distribution π(h) on the pri-
vate variables.

When the analysis of a single trace terminates, the corresponding final state
(p̄c, L̄, H̄, p̄) is produced, in which pc points to a return statement. The sets
of allowed values assigned to the private variables in H̄ have been appropriately
reduced to account for the conditional statements visited by the trace.

Depth-First Trace Exploration. We perform a depth-first exhaustive explo-
ration of the execution traces of the system, starting from the initial state
(1, ∅, ∅, 1). Each trace is explored until it gets to a final state, then the final
state gets added to the multiset Q of final states. When all traces have been
explored, the full multiset of final states Q of the system is produced. We then
use Q to compute the posterior entropy of the system using Algorithm 1 pre-
sented below. The leakage of the system is computed as the difference between
the prior and posterior entropy, as explained in Sect. 2.

Note that the exploration also depends on the prior distribution π(h): values
of the secret with a probability zero in the prior distribution are not explored.
This behavior is intended, as is avoids unnecessarily exploring traces that have
probability zero.

The depth-first exploration algorithm can be parallelized to take advantage
of multicore architectures and is implemented in the current release of QUAIL,
available at http://project.inria.fr/quail. Since this new algorithm is hundreds
of times faster than the previous QUAIL implementation, we consider is as the
standard QUAIL algorithm.

Posterior Uncertainty Computation. We show how to compute the pos-
terior uncertainty U(π(h|o)) of a system with a secret h and an observable o,

http://project.inria.fr/quail
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Data: uncertainty measure U , multiset Q of final states
Result: posterior uncertainty U(π(h|o))

1 Initialize π(o) and all π(h, o = ō) to zero;
2 forall the s = (pc, L, H, p) ∈ Q do
3 Let ō = L(o), {k1, ..., kn} = H(h);
4 Set π(o = ō) ← π(o = ō) + p;
5 for i = 1...n do
6 Set π(h = ki, o = ō) ← π(h = ki, o = ō) + p/n;
7 end

8 end
9 For each ō ∈ D(o) let π(h|o = ō) ← π(h, o = ō)/π(o = ō);

10 Return U(π(h|o)) =
∑

ō∈D(o) π(o = ō)U(π(h|o = ō))

Algorithm 1. Posterior uncertainty computation

given the uncertainty measure U and a multiset Q of final states of the system.
Q encodes the posterior joint probability of all variables in the system and can
be produced by the depth-first exploration algorithm presented above.

Let (pc, L,H, p) be a final state in Q, where L represents the assignments of
given values to the public variables, H the assignments of sets of values to the
private variables, and p the joint probability of such assignments. Since different
traces may produce the same final assignments to variables (L,H), the joint
probability of these assignments is the sum of the probabilities of all such final
states. To apply the formula (2) U(π(h|o)) =

∑
ō∈D(o) π(o = ō)U(π(h|o = ō)),

we need to compute the marginal probability distribution π(o) and for each
observable output ō ∈ D(o) s.t. π(o = ō) > 0 the corresponding conditional
probability distribution on h, i.e. π(h|o = ō).

Algorithm 1 computes π(o) and each π(h|o = ō) by analyzing a multiset of
final states. For each state (pc, L,H, p) the value of the observable variable o and
set of values of the secret variable h are analyzed (lines 2–8). The probability
of observing the value ō of the observable variable in the state is increased by p
(line 4), and the probability of observing each of the n values of the secret variable
conditioned on ō is increased by p/n (line 6). Finally, the probability on each
subdistribution π(h, o = ō) is normalized to 1 by dividing it by π(o = ō) to obtain
the conditional probability π(h|o = ō) (line 9) since P (X|Y ) = P (X,Y )/P (Y ).

Theorem 1. Algorithm 1 terminates and outputs the posterior uncertainty
U(π(h|o)) of the posterior distribution represented by Q.

3.2 LeakWatch

LeakWatch [13] estimates the leakage of a Java program with secrets and obser-
vations by running it several times for each possible value of the secret and
inferring a probability distribution on the observations for each secret. The tool
automatically terminates the analysis when the precision of the estimation is
deemed sufficient, but different termination conditions can be used.
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For small secrets, LeakWatch gives reliably approximates the leakage of com-
plex Java programs. For larger secret, i.e. more than 10 bits, LeakWatch takes
more time to return a value. However, the user can decide an acceptable error
level for the tool to reduce the computation time necessary to obtain an answer.
Also, if the tool is terminated prematurely, it can still provide an answer, even if
it will be potentially quite imprecise. This makes LeakWatch the only tool of the
three considered that can always provide an answer in a time-limited scenario,
since QUAIL and Moped-QLeak generate a leakage result only if they complete
their execution.

Finally, LeakWatch provides many command-line options for tuning the
analysis parameters. In particular, one of the options displays the current estima-
tion of the leakage at regular intervals, which can be very useful when developing.

Syntax and Usage. The syntax is the same as the Java language, with the
additional commands secret(name,value) to declare a secret with a given
name and value, and observe(value) to declare an observation of a given
value. The analysis evaluates how much information leaks from the secret to the
observable values. In particular, LeakWatch can compute leakage from a point
of a program to another point of the program, and not necessarily from the start
to the termination of the program.

To run LeakWatch, a Java programa annotated with secret and observable
statements has to be compiled linking the LeakWatch library:

javac -cp leakwatch-0.5.jar:. MyClass.java
The tool is then run passing the name of the compiled class as a parameter:

java -jar leakwatch-0.5.jar MyClass
The tool returns its leakage estimate for the Java program. Normally Leak-
Watch determines automatically when it has run enough executions. We have
used the -n parameter to fix the number of executions of the program when we
experimented with different precisions and computation times.

3.3 Moped-QLeak

Moped-QLeak [11] uses the Moped tool [17] to compute a symbolic Algebraic
Decision Diagram (ADD) representation of the summary of a program, which
contains the relation between the inputs and outputs of the program. Moped-
QLeak then computes Shannon or min-entropy leakage from this ADD repre-
sentation using two algorithms introduced by the authors. To obtain the ADD
representation of the program, Moped basically performs a fix-point iteration.

Moped’s ability to build a symbolic representation of a program depends on
the program’s complexity. When such representation is computed, Moped-QLeak
computes the information leakage with a small time overhead. On the other hand,
some programs are not easy to reduce to a symbolic representation, and in this
case Moped-QLeak’s computation does not terminate within a reasonable time.

The ADD-based representation of probability distributions allows Moped-
QLeak to analyze examples with large secret and observation spaces. In partic-
ular, the authors test it with 32-bit secrets and observables, whereas QUAIL’s
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computation time tends to be exponential in the size of the observables and
LeakWatch’s in the size of the secret. This suggests that the ADD approach is a
key improvement on the state of the art, allowing the analysis tools to analyze
off-the-shelf programs using 32- and 64-bit variables.

3.4 Syntax and Usage

The tool analyzes programs written in a variant of Moped’s Remopla language.
We provide here a simplified version of the syntax used by Moped-QLeak.

stmt ::= skip ; | ident = exp; | pchoice (::prob->stmt)+ choicep

| do :: exp -> stmt :: else -> stmt od

| if :: exp -> stmt :: else -> stmt fi

The if and do constructs from Remopla, originally non-deterministic in Moped,
have been made deterministic in Moped-QLeak. The language has also been
enriched with a probabilistic choice operator, pchoice which allows the pro-
grammer to probablistically define the next statement (e.g. by giving a prob-
ability prob to each statement). Remopla supports loops, arrays and integers
of arbitrary size. The language is normally used to encode systems for model
checking against temporal logics.

The language does not provide constructs to declare secrets and observables,
but assume that all global variables are at the same time secret and observable.
More precisely, the initial values are considered as the input and the final values
as the output. In practice, a variable is made secret by assigning it the same
value in all final states.

Moped-QLeak is executed on a Remopla file MyFile.rem by calling
mql -shannon MyFile.rem

where -shannon specifies that the tool will compute and return the Shannon
leakage.

4 Case Studies

We evaluate the three tools described in the previous Section with two scalable
case studies2. The case studies have been chosen because they model real-life sys-
tems and the results computed are representative of realistic security concerns.
In order to compare them, we consider the following criteria:

Speed. Evaluating the time required by the tool to provide a result;
Accuracy. Evaluating the precision of the result returned by the tool;
Scalability. Evaluating how the tool behaves on larger instances of the case

studies;
Usability. Evaluating the easiness of modeling and the usefulness of the error

messages from the compiler.

2 The files used for our experiments are available at https://project.inria.fr/quail/
casestudies/.

https://project.inria.fr/quail/casestudies/
https://project.inria.fr/quail/casestudies/
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4.1 Case Study A: Smart Grids

Aggregator

Prosumer 2Prosumer 1 Prosumer 3

plan

plan

plan

excess

excess

excess

Fig. 2. Smart grid overview

A Smart grid is an energy net-
work where every node may pro-
duce, store and consume energy. Nodes
are called prosumers (PROducer con-
sSUMERS). The Living Lab demon-
strator [22] is an instance of such a
prosumer, whose data can be accessed
online3. The prosumers periodically
negotiate with an aggregator in charge

of balancing the consumption and production among several prosumers. Figure 2
depicts a grid with 3 prosumers. Each prosumer declares its plan, that is, how
much it intends to consume or produce during the next period of time. The
aggregator sends to each house the value indicating the excess of energy pro-
duction or consumption. An excess of 0 indicates that the plans are feasible and
terminates the negotiation. Otherwise, the prosumers adapt their plan accord-
ingly and send the updated version. Smart grid and smart sensors raise several
security and privacy concerns. The platform can ensure the information can-
not flow directly between prosumers [10]. However, stability requires a feedback
from the aggregator that potentially conveys information about other prosumer,
where only the software can limit information leakage. In general, knowing the
consumption of a particular household may reveal some sensitive information
about the house (presence of people in the house, type of electrical devices . . . ).
Therefore, the consumption of a prosumer should remain secret. The privacy of
a prosumer with respect to the aggregator can be ensured in several ways [29].
However, each prosumer receives some information about the consumption of
other prosumers through the excess value sent back by the aggregator.

Table 1. Consumption of
houses wrt size

Size Case A Case B

Small 1 1
Medium 2 3
Large 3 5

An attacker might use the information
obtained through the grid in order to decide
whether a given house is occupied or not. In our
scenario, we assume different types of houses with
different consumptions. Each house is modeled by
a private boolean value, which is true if the house
is occupied. An occupied house consumes a fixed
amount of energy, according to its type. An empty
house does not consume anything. Table 1 presents how much a given house con-
sumes, in two different cases that we consider.

For this experiment, we assume that the attacker observes the global con-
sumption of the quarter. We consider different targets for the attack and thus
different secrets. Either the attacker targets a single house of a given type (i.e. S,
M or L) and only the bit corresponding to the presence in that house is secret,
or the attacker wants to obtain informations about all the houses and the whole
array of bits indicating the presence in each house is secret.

3 livinglab.fortiss.org.

https://www.livinglab.fortiss.org
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Table 2. Leakage of presence information
through the global consumption

Case Nb of

houses

Single house leakage Global

leakage

Global

leakage/bit

S M L

A 3 0.7500 0.7500 0.7500 2.7500 0.9166

A 6 0.0688 0.1466 0.2944 3.4210 0.5701

A 9 0.0214 0.0768 0.1771 3.7363 0.4151

A 12 0.0135 0.0544 0.1273 3.9479 0.3289

B 3 1.0000 1.0000 1.0000 3.0000 1.0000

B 6 0.1965 0.1965 0.3687 4.0243 0.6707

B 9 0.0241 0.0808 0.2062 4.3863 0.4873

B 12 0.0074 0.0510 0.1443 4.6064 0.3838

Table 3. Time to compute or
approximate the leakage for a large
house

Case House Time Time Time

Nb QUAIL LW mql

A 3 0.1 s 0.3 s 0.02 s

A 6 0.3 s 0.3 s 0.02 s

A 9 0.6 s 0.4 s 0.02 s

A 12 1.6 s 0.4 s 0.03 s

B 3 0.2 s 0.3 s 0.02 s

B 6 0.3 s 0.5 s 0.02 s

B 9 0.6 s 0.4 s 0.02 s

B 12 1.7 s 0.4 s 0.03 s

Usability. We model the above scenario in the three tools. We consider two ver-
sions depending on the target. The program is rather simple to model, the only
noticeable difference between the tools language is the declaration of unobserv-
able variables. When targeting all the houses, the secret is an array of boolean.
When targeting a single house, the secret is a single boolean. Both targets are
supported by all the tools. However, the presence in the other houses is not a
secret, but still an unknown and unobservable input of the program. In QUAIL,
the private keyword allows the programmer to declare directly such variables.
With LeakWatch, we chose these values randomly but do not declare them as
secret. In Moped-QLeak, we choose these values randomly, as in LeakWatch.

Table 2 presents the leakage for the Smart grid case study. The first two
columns indicate the case, as presented in Table 1 and the number of houses
in the model. For a model with N houses, there are N/3 houses of each type.
The columns S, M and L indicates the leakage of the variable representing the
presence in a house of the corresponding type. The column “Global leakage”
contains the leakage of the whole array of presence information bits and the
column “Global leakage/bit” indicates the average leak per bit of secret.

In Case B with only 3 houses, the presence information can be deduced from
the global consumption information, which is indicated by a leakage of 1 for
each presence bit. Otherwise, the average leakage per bit from a global attack

Table 4. Average relative error and computation time over 100 runs for computing
the leakage of the presence in a large house within 12 houses in Case B.

Tool mql QUAIL LeakWatch

Nb. of
Simulations

- - Default 1000 2000 5000 10000 20000 50000

Error 0 % 0 % 14.0 % 10.4 % 6.4 % 4.8 % 2.8 % 2.1 % 1.4 %

Time 0.031 s 1.7 s 0.4 s 0.7 s 1.0 s 2.1 s 3.7 s 6.9 s 16.6 s
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is more important that the information obtained by focusing on a single house.
This means than obtaining information about the whole array, for instance the
number of occupied houses, is easier than obtaining information about a single
bit, i.e. presence information of a single house. In both cases, the leakage, and
thus the loss of anonymity of prosumers, diminishes when the number of houses
increases.

Speed. In Table 3 we show the time needed by QUAIL, LeakWatch and Moped-
QLeak for computing the leakage of the presence information in a house of size
L. Moped-QLeak takes around 20 ms to compute this value, LeakWatch takes
between 300 and 500 ms and QUAIL takes between 100 and 1700 ms, depending
on the size of the model. Furthermore, Moped-QLeak and QUAIL compute the
exact leakage value, whereas LeakWatch computes an approximation. For a more
precise comparison, we need to take precision into account.

Accuracy. We compare QUAIL, LeakWatch and Moped-QLeak on computing the
leakage of the presence information of a single large house, in Case B. QUAIL
takes 1.7 s to compute the exact leakage. With the default parameters, Leak-
Watch takes 0.4 s to compute an approximation with a relative error of 14 %
(average on 100 runs). It requires 500 to 700 simulations.

To compare execution times with respect to errors, we did an additional
experiment, where we requested LeakWatch to run more simulations. For each
requested number of simulations we provide in Table 4 the average relative error
(over 100 runs) and the time needed for the computation. We see that for an
equivalent amount of time, LeakWatch provides a result with a relative error of
4 to 6 %, whereas QUAIL returns the exact result. Moped-QLeak is the fastest
and most precise.

Scalability. Finally, we evaluate the scalability of the tools by increasing the
number of houses until the analysis time reaches 1 h. For this experiment, we
evaluate the leakage of the presence information, in Case B, for a single house
of size L (1 bit secret), or for all the houses simultaneously (N bits of secret).
The results are shown in Table 5.

Table 5. Maximal size analyzable in one
hour

Target LW QUAIL mql

L-size house 150000 27 234
All houses 15 12 150

We see that LeakWatch can han-
dle a very large number of houses when
computing the leakage from a small
secret, but is not much more scalable
than QUAIL with a large secret. Recall
that LeakWatch provide an approxima-
tion of the leakage, whereas QUAIL and
Moped-QLeak provide the exact value. Moped-QLeak scales relatively well with
both a small and a large secret to analyze.

4.2 Case Study B: Voting Protocols

In an election, each voter is called to express his preference for the competing
candidates. The voting system defines the way the voters express their prefer-
ence: either on paper in a traditional election, or electronically in e-voting. After
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the votes have been cast, the results of the vote are published, usually in an
aggregated form to protect the anonymity of the voters. Finally, the winning
candidate or candidates is chosen according to a given electoral formula.

In this section we present two typologies of voting, representing two ways in
which the voters can express their preference: in the Single Preference protocol
the voters declare their preference for exactly one of the candidates, while in
the Preference Ranking protocol each voter ranks the candidate from his most
favorite to his least favorite.

Single Preference. This protocol typology models all electoral formulae in
which each of the N voters expresses one vote for one of the C candidates, includ-
ing plurality and majority voting systems and single non-transferable vote [24].
The votes for each candidate are summed up and only the results are published,
thus hiding information about which voter voted for which candidate. The can-
didate or candidates to be elected are decided according to the electoral formula
used.

The secret is an array of integers with a value for each of the N voters. Each
value is a number from 0 to C−1, representing a vote for one of the C candidates.
The observable is an array of integers with the votes obtained by each of the C
candidates.

The protocol is simple, and its information leakage can be computed formally,
as shown by the following lemma:

Lemma 1. The information leakage for the Single Preference protocol with n
voters and c candidates corresponds to

−
∑

k1+k2+...+kc=n

n!
cnk1!k2! . . . kc!

log2

(
n!

cnk1!k2! . . . kc!

)

While the lemma provides a formula to “manually” compute the leakage, it is
very hard to find such a formula for an arbitrary process. Therefore automated
tools should be employed.

Preference Ranking. This protocol typology models all electoral formulae in
which each of the n voters expresses an order of preference of the c candidates,
including the alternative vote and single transferable vote systems [24]. In the
Preferential Voting protocol the voter does not express a single vote, but rather
a ranking of the candidates; thus if the candidates are A, B, C and D the voter
could express the fact that he prefers B, then D, then C and finally A. Then each
candidate gets c points for each time he appears as first choice, c − 1 points for
each time he appears as second choice, and so on. The points of each candidate
are summed up and the results are published.

The secret is an array of integers with a value for each of the N voters. Each
value is a number from 0 to C!−1, representing one of the possible C! rankings of
the C candidates. The observable is an array of integers with the points obtained
by each of the C candidates.
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Table 6. Voting protocols: percent of secret leaked by Single Preference (on the left)
and Preference Ranking (on the right) computed with the QUAIL tool. Timeout is set
at 1 h.

Experimental Results

Usability. We model the two voting systems, where the secret is the votes, and
the observable the results. In single preference voting, the secret is an array of
integer that represent individual votes. The range of this integer corresponds
to the number of candidates. In QUAIL, it is possible to declare the range
of a secret integer. In LeakWatch, each vote is drawn uniformly in the range
and then declared secret. In Moped-QLeak, this case requires more work. The
range of a secret integer depends on the chosen size bits. A special variable,
out of domain, is set to true if one of the votes is not in the valid range
and the corresponding input is not considered. Furthermore, when using this
variable, it’s not possible to use local variables, which is indicated by the error
message “The first computed value is not a constant.”. The impossibility to use
local variables and the imprecision of the error message increased considerably
the modelling time.

For the Preferential Voting, we were not able to produce a Moped-QLeak pro-
gram that terminates. We suspect that Moped is unable to compute a symbolic
representation of the Preferential Voting protocol due to its inherent complexity.
Indeed, this program decodes an integer between 0 and the factorial of the num-
ber of candidates into a sorted list of the candidates, to assign the corresponding
points to the candidates.

Accuracy. Table 6 shows the percentage of the secret leaked by the Single Pref-
erence and Preference Ranking protocols for different numbers of voters and
candidates. The results for 2 candidates are identical, since in this case in both
protocols the voters can vote in only 2 different ways. The results obtained for
Single Preference are correct with respect to the formula stated in Lemma 1.
The table shows that the Single Preference protocol leaks a larger part of its
secret than the Preference Ranking protocol.

Table 7 shows the percent error of the leakage value obtained with Leak-
Watch. Indeed, LeakWatch computes an approximation of the leakage based on
simulation, whereas QUAIL and Moped-QLeak compute the exact value. Fur-
thermore, the leakage computed by LeakWatch for a given program may change
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Table 7. Percent error of the leakage obtained by LeakWatch relatively to the exact
value for Single Preference (on the left) and Preference Ranking (on the right). Timeout
is set to 1 h.

Table 8. Time in seconds needed to compute the leakage for Single Preference with
QUAIL (left), LeakWatch (middle) and Moped-QLeak (right). Timeout is set to 1 h.

at each invocation of the tool, because LeakWatch samples random executions.
Here, LeakWatch slightly underestimates the leakage, by 2 to 5 %.

Speed. We compare the execution time of the three tools in Table 8 for Single
Preference and in Table 9 for Preference Ranking. These execution times have
been obtained on a laptop with a i7 quad-core running at 3.3 GHz and 16 GB
of RAM. The results show that QUAIL is significantly faster than LeakWatch
on these examples. This shows that QUAIL performs better than LeakWatch
with large secrets, in line with previous results [5]. For single preference, Moped-
QLeak clearly outperforms QUAIL on large examples. The results for Moped-
QLeak in the preferential voting case studies are missing from Table 9 because
the tool did not terminate in this case study, even with the smallest instance of
2 voters and 2 candidates.

Scalability. Concerning the Scalability, we see that QUAIL and Moped-Qleak are
more scalable than LeakWatch, since the latter times out in Tables 8 and 9. For
Single Preference, QUAIL stops at 7 voters and 6 candidates, due to an error.
Moped-QLeak finished with 12 voters and 6 candidates but returned -inf as
leakage value, instead of 11. With 9 voters and 6 candidates, the result has
approximately 1 bit of errors. Therefore, we conjecture that the -inf value is
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Table 9. Time in seconds needed to compute the leakage for Preference Ranking with
QUAIL (on the left) and LeakWatch (on the right). Timeout is set to one hour.

a precision error. On these examples, no tool seems to be much more scalable
than the others, due to various reasons.

5 Conclusions

In this paper, we provided two scalable case studies for the leakage computation
and used them for comparing the existing tools able to perform such an approx-
imation. We have compared the state of the art in information leakage tools –
LeakWatch, QUAIL and Moped-QLeak – on their speed, accuracy, scalability
and usability in addressing the case studies. We summarize here our observations
and experience with the tools.

Speed. Concerning the execution time, Moped-QLeak is usually the fastest tool
in providing an exact result. However, in the preferential voting example Moped-
QLeak was unable to terminate its analysis in less than one hour even for the
smallest instances of the problem. We can note that LeakWatch is faster than
QUAIL on small secrets (e.g. 1 bit) but QUAIL outperforms LeakWatch on
larger secrets. Finally, LeakWatch is very fast on small secrets, but its result
and evaluation of the system (presence or absence of leakage) tends to change
between different executions of the tool.

Accuracy. The tool giving the most accurate result is QUAIL because it supports
arbitrary precision. LeakWatch provides an approximated result and therefore
is imprecise by definition. Moped-QLeak does not implement arbitrary precision
analysis, and consequently suffers from approximation errors. For instance, we
found an error in the order of 1 bit on the majority voting protocol with 9 voters
and 6 candidates, for which we have the exact result. Also, for the same protocol
with 12 voters and 6 candidates Moped-QLeak reported a leakage of negative
infinity bits, which we conjecture is caused by approximation and division-by-
zero errors in the computation.

Scalability. For small secrets, LeakWatch scales better than the other tools ana-
lyzed. In the Smart Grid case study, we managed to analyze the leakage for an
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aggregation of 150000 houses in less than one hour.However, the returned result
is obtained statistically, and varies from one execution to the other.

For large secrets, the winner is Moped-QLeak, as it scales much better than
QUAIL on the Smart Grid case study. However, for the voting protocol, QUAIL
manages to analyze only two voters less than Moped-QLeak (6 against 8), before
approximation issues make Moped-QLeak’s results incorrect.

Usability. Since all the tools studied here are academic tools who are still in their
early years, usability is not necessarily the main concern of their developers.
However, we have found some important discrepancies in this area.

The most usable tool is LeakWatch, especially if the program to analyze is
already written in Java. In that case, it is sufficient to annotate the program in
order to declare the secrets and the observable values. Furthermore, LeakWatch
has a command line option to display the current results based on the traces
collected so far, which is convenient when the analysis time is very long.

QUAIL has its own language, which is an imperative WHILE language with
arrays and constants. QUAIL allows the explicitly declaration of variables as
observable, public, private or secret, with a specific range of allowed values. Fur-
thermore, QUAIL has a command-line option to change the values of constants
declared in a program, which comes in handy when performing batch experi-
mentation.

Using Moped-QLeak has been more problematic because of some issues with
the Remopla language. In particular, the range of the secrets cannot be deter-
mined, instead the program has to raise an out of domain exception when
the values are not in the expected range. Also, all integer variables have the
same length, defined in the DEFAULT INT BITS constant. Finally, some error
messages are misleading and slow down the modelling process.

To conclude, Moped-QLeak is the fastest tool, because it uses a suitable
data structure (Algebraic Decision Diagrams) for representing the executions.
However, this data structure may become a problem with complex program, as
shown by the preference ranking example, which Moped-QLeak cannot analyze,
contrarily to the other tools. The other tools, QUAIL and LeakWatch are more
usable. QUAIL, which also has its own dedicated language, provide some specific
constructs for declaring the visibility and range of a variable.

We believe that reimplementing QUAIL with a better data structure for
probability distributions, like the ADDs used in Moped-QLeak, would provide a
fast and usable tool for performing leakage analysis. The statistical techniques
used in LeakWatch should also be integrated to allow approximated results for
large instances.

6 Related Tools

We discuss some security-related automated tools and their relation with the
work presented in this paper.

The STA tool developed by Boreale et al. [7] is similar in intent to the
algorithms we propose, since it also uses symbolic trace analysis. More recent
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work by Boreale et al. [8] introduces a semiring-based semantics able to perform
compositional quantitative analysis of non-deterministic systems, but no tool is
available at the moment.

Efficient tools have been developed by Phan and Malacaria for information-
theoretical analysis of systems. The tools squifc [25], QILURA [26], and jpf-
qif [27] use SMT solving to perform a symbolic analysis of C or Java code
and to compute channel capacity of programs, where the channel capacity is
the maximum information leakage achievable for any prior distribution over the
secret and randomness of the system. Since the tools compute channel capacity
and not Shannon leakage of randomized systems, they have not been included
in our comparison.

McCamant et al. have obtained interesting results in detecting leakage of
information by implicit flow by applying dynamic and quantitative taint analy-
sis techniques [20,23]. Again, their techniques have not been included in this
evaluation since they do not compute information-theoretical leakage measures
like Shannon and min-entropy leakage.
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Abstract. Many software systems are variational: they can be config-
ured to meet diverse sets of requirements. Variability is found in both
communication protocols and discrete controllers of embedded systems.
In these areas, model checking is an important verification technique. For
variational models (systems with variability), specialized family-based
model checking algorithms allow efficient verification of multiple vari-
ants, simultaneously. These algorithms scale much better than “brute
force” verification of individual systems, one-by-one. Nevertheless, they
can deal with only very small variational models.

We address two key problems of family-based model checking. First,
we improve scalability by introducing abstractions that simplify variabil-
ity. Second, we reduce the burden of maintaining specialized family-based
model checkers, by showing how the presented variability abstractions
can be used to model-check variational models using the standard ver-
sion of (single system) SPIN. The abstractions are first defined as Galois
connections on semantic domains. We then show how to translate them
into syntactic source-to-source transformations on variational models.
This allows the use of SPIN with all its accumulated optimizations for
efficient verification of variational models without any knowledge about
variability. We demonstrate the practicality of this method on several
examples using both the SNIP (family based) and SPIN (single system)
model checkers.

1 Introduction

Variability is an increasingly frequent phenomenon in software systems. A grow-
ing number of projects follow the Software Product Line (SPL) methodology [8]
for building a family of related systems. Implementations of such systems usually
[1] contain statically configured options (variation points) governed by a feature
configuration. A feature configuration determines a single variant (product) of
the system family, which can be derived, built, tested, and deployed. The SPL
methodology is particularly popular in the embedded systems domain, where
development and production in lines is very common (e.g., cars, phones) [8].
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Variability plays a significant role outside of the SPL methodology as well.
Many communication protocols, components and system-level programs are
highly configurable: a set of parameters is decided/implemented statically and
then never changes during execution.

These systems interpret decisions over variation point at runtime, instead of
statically configuring them. Nevertheless, since the configurations do not nor-
mally change during the time of execution, the abstract semantics of highly
configurable systems is similar to static SPLs. Thus, systems with variability,
i.e. system families, can be conceptually specified using variational models.

Since embedded systems, system-level software and communication protocols
frequently are safety critical, they require rigorous validation of models, where
model-checking is a primary validation technique. Performance of single-variant
(single-system) model checking algorithms depends on the size of the model and
the size of the specification property [2]. Classical model-checking research pro-
vides abstraction and reduction techniques to address the complexity stemming
from both the model and the specification [4,13,15]. In most of these works,
the generation of the abstract model is based on abstract interpretation theory
[11]: the semantics of the concrete model is related with the semantics of its
abstract version by using Galois connections. Provided the abstraction preserves
the property we want to check, the analysis of the smaller abstract model suffices
to decide the satisfaction of the property on the concrete model.

Unfortunately, model checking families of systems is harder than model-
checking single systems because, combinatorically, the number of possible vari-
ants is exponential in the number of features (aka, configuration parameters).
Hence, the “brute force” approach, that applies single-system model checking
to each individual variant of a family-based system, one-by-one, is inefficient.
To circumvent this problem, family-based model checking algorithms have been
proposed [6,7]. However, efficiency of these algorithms still depend on the size
of the configuration space (still inherently exponential in the number of config-
uration parameters). In order to handle variational models efficiently we need
abstraction and reduction techniques that address the third issue—the size of
the configuration space.

In this paper, we use abstract interpretation to define a calculus of property
preserving variability abstractions for variational models. Thus, we lay the foun-
dations for abstract family-based model checking of variational models. Then,
we define source-to-source transformations on the source level of input mod-
els, which enable an effective computation of abstract models syntactically from
high-level modelling languages. This makes it easier to implement than using
the semantic-based abstractions defined for (featured) transition systems [7].
We avoid the need for intermediate storage in memory of the semantics of the
concrete variational model. It also opens up a possibility of verifying properties of
variational models, so of multiple model variants simultanously, without using a
dedicated family-based model checker such as SNIP [6] (overlined purely to avoid
confusion with SPIN). We can use variability abstraction to obtain an abstracted
family-of-models (with a low number of variants) that can then be model checked
via brute force using a single-system model checker (e.g., SPIN [16]).
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We make the following contributions:

– Variability Abstractions: A class of variability abstractions for featured
transition systems, defined inductively using a simple compositional calculus
of Galois connections.

– Soundness of Abstraction: A soundness result for the proposed abstrac-
tions, with respect to LTL properties.

– Abstraction via Syntactic Transformation: A syntactic definition of the
abstraction operators as source-to-source transformations on variational mod-
els. The transformations are shown to have the same effect as applying the
abstractions to the semantics of models (featured transitions systems). This
allows the application of abstractions in a preprocessing step, without any
modifications to the model checking tools.

– Family-Based Model-Checking w/o a Family-Based Model Checker:
A method for Family-based model-checking using an off-the-shelf model-
checker. This method relies on partitioning and abstracting the variational
models until the point when they contain no variability. The default highly-
optimized implementation of SPIN can be used to verify the resulting
abstracted models.

– Experimental Evaluation: An experimental evaluation exploring the effec-
tiveness of the above method of family-based model checking with SPIN, as
well as the impact of abstractions on the scalability of the state of the art
family-based model checker SNIP.

This paper targets researchers and practitioners who already use model checking
in their projects, but, so far, have only been analyzing one variant at a time.
Although designed for SPIN, the proposed rewrite techniques shall be easily
extensible to other model checkers, including probabilistic and real-time models.
Also the designers of efficient family-based model checkers may find the method-
ology of applying abstractions ahead of analysis interesting, as it is much more
lightweight to implement, yet very effective, as shown in our experiments.

2 Background: Variational Models of Behavior

A common way of introducing variability into modeling languages is superimpos-
ing multiple variants in a single model [12]. Following this, Classen et al. present
fPromela [6], an extension of Promelawith a static configuration-time branch-
ing capable of enabling/disabling model code in variants. They generalize the
semantic model of Promela (transition systems) accordingly, including static
guard conditions over features on transitions, creating featured transition systems
(FTS). The guards determine in which variants the transitions appear. The set of
legal configurations is encoded in a separate so-called feature model [17]. They
have also proposed model-checking algorithms for verification of FTSs against
LTL properties and implemented them in the SNIP tool1.

1 https://projects.info.unamur.be/fts/.

https://projects.info.unamur.be/fts/


Family-Based Model Checking Without a Family-Based Model Checker 285

Featured Transition Systems (FTS). Let F = {A1, . . . , An} be a finite set
of Boolean variables representing the features available in a variational model.
A configuration is a specific subset of features k ⊆ F. Each configuration defines a
variant of a model. Only a subset K ⊆ 2F of configurations are valid. Equivalently,
configurations can be represented as formulae (minterms). Each configuration
k ∈ K can be represented by the term

∧
i=1..n ν(Ai) where ν(Ai) = Ai if Ai ∈ k,

and ν(Ai) = ¬Ai if Ai �∈ k. (Since minterms can be bĳectively translated into sets
of features, we use both representations interchangeably.) In software engineering
the set of valid configurations is typically described by a feature model [17], but
we disregard syntactic representations of the set K in this paper.

Example 1. Throughout this paper, we use the beverage VendingMachine

example [7]. It contains the following features: VendingMachine, denoted v, for
purchasing a drink which represents a mandatory root feature enabled in all
variants; Tea (t), for serving tea; Soda (s), for serving soda; CancelPurchase
(c), for canceling a purchase after a coin is entered; and FreeDrinks (f) for offer-
ing free drinks. Hence, F = {v, t, s, c, f}. In this example, we assume that only
configurations in the set K = {{v, s}, {v, s, t, c, f}, {v, t, c}, {v, t, c, f}} are valid.
The valid configuration {v, s} can be expressed as the formula v∧s∧¬t∧¬c∧¬f .

The behaviour of individual variants is given as transition systems.

Definition 1. A transition system is a tuple T = (S, Act, trans, I, AP, L), where
S is a set of states, Act is a set of actions, trans ⊆ S × Act × S is a transition
relation, I ⊆ S is a set of initial states, AP is a set of atomic propositions, and
L : S → 2AP is a labeling function. We write s1

λ−→ s2 when (s1, λ, s2) ∈ trans.

An execution of a transition system T is a nonempty, potentially infinite sequence
ρ = s0λ1s1λ2 . . . such that s0 ∈ I and si

λi+1−→ si+1 for all i ≥ 0. The semantics
of T , written [[T ]]TS, is the set of all executions of T .

Let FeatExp(F), denote the set of all Boolean constraints over F generated
using the grammar: ψ :: = true | A ∈ F | ¬ψ | ψ1 ∧ ψ2. For a condition ψ ∈
FeatExp(F) we write [[ψ]] meaning the set of valid variants that satisfy ψ, i.e.
k ∈ [[ψ]] iff k |= ψ and k ∈ K, where |= denotes the standard satisfaction of
propositional logic. Feature transition systems are basically transition systems
appropriately decorated with feature expressions:

Definition 2. A tuple F = (S, Act, trans, I, AP, L,F,K, δ) is a feature transi-
tion system (FTS) if (S, Act, trans, I, AP, L) is a transition system, F is the set of
available features, K is a set of valid configurations, and δ : trans → FeatExp(F)
is a total function labeling transitions with feature expressions.

The projection of an FTS F onto a variant k ∈ K, written πk(F), is a transition
system (S, Act, trans′, I, AP, L), where trans′ = {t ∈ trans | k |= δ(t)}. Projec-
tion is analogous to preprocessing of #ifdef statements in C/CPP family-based
SPLs and is naturally lifted to sets of variants. Given K

′ ⊆ K, the projec-
tion πK′(F) is the FTS (S, Act, trans′, I, AP, L,F,K′, δ), where trans′ = {t ∈
trans | ∃k ∈ K

′.k |= δ(t)}. The semantics of the FTS F , written [[F ]]FTS, is
the union of the behavior of the projections onto all valid variants k ∈ K,
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Fig. 1. The FTS of the VendingMachine.

i.e. [[F ]]FTS =
⋃

k∈K
[[πk(F)]]TS. The size of an FTS [7] is defined as: |F| =

|S| + |trans| + |expr| + |K|, where |expr| is the size of all feature expressions
bounded by O(2|F| · |trans|). In these terms, our abstractions aim to reduce the
|expr| and |K| components of the size |F|.
Example 2. Figure 1 presents an FTS describing the behavior of the Vending-

Machine. Each transition is labeled first by an action, and then by the feature
expression following a slash. For readability, the transitions included by the same
feature have the same color. The transition 3© soda/s−→ 5© is enabled by feature s.
A basic variant of this machine that only serves soda is defined by the configura-
tion {v, s}. It accepts payment, returns change, serves a soda, opens the access
compartment, so that the customer can take the soda, and closes it again.

The fLTL Logics and Properties. An LTL formula is defined as: φ :: = true |
a ∈ AP | φ1 ∧ φ2 | ¬φ | Xφ | φ1U φ2, with the following standard satisfaction
semantics defined over an execution ρ = s0λ1s1λ2 . . . (we write ρi = siλisi+1 . . .
for the i-th suffix of ρ):

ρ |= true always (for anyρ)
ρ |= a iff a ∈ L(s0),
ρ |= φ1 ∧ φ2 iff ρ |= φ1 and ρ |= φ2,

ρ |= ¬φ iff not ρ |= φ,

ρ |= Xφ iff ρ1 |= φ,

ρ |= φ1Uφ2 iff ∃k ≥ 0 : ρk |= φ2 and ∀j ∈ {0, . . . , k − 1} : ρj |= φ1

A TS T satisfies a formula φ, written T |= φ, iff ∀ρ ∈ [[T ]]TS : ρ |= φ. Other
temporal operators can be derived as usual: Fφ = true Uφ (means “some Future
state, eventually”) and Gφ = ¬F¬φ (means “Globally, always”).

In the variational case, properties may hold only for some variants. To capture
this in specifications, fLTL properties are quantified over the variants of interest:

Definition 3. A feature LTL (fLTL) formula is a pair [χ]φ, where φ is an LTL
formula and χ ∈ FeatExp(F) is a feature expression. An FTS F satisfies an fLTL
formula [χ]φ, written F |= [χ]φ, iff for all configurations k ∈ K ∩ [[χ]] we have
that πk(F) |= φ. An FTS F satisfies an LTL formula φ iff F |= [true]φ.
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Example 3. Consider the FTS F in Fig. 1. Suppose that states 5© and 6© are
labeled selected, and the state 8© is labeled open. Consider an example property
φ that after each time a beverage has been selected, the machine will eventually
open the compartment to allow the customer to access his drink: G (selected =⇒
F open). The basic VendingMachine satisfies this property: π{v,s}(F) |= φ,
while the entire variational model does not: F �|= φ. For example, if the feature
f is enabled, the state 8© is unreachable. At the same time, we have that F |=
[¬f ]φ.

3 Variability Abstractions

We shall now introduce abstractions decreasing the sizes of FTSs, in particular
the number of features and the configuration space. We show how these abstrac-
tions preserve fLTL properties allowing to speed-up the algorithms for model
checking.

A Calculus of Abstractions. For fLTL model checking, variability abstrac-
tions can be defined over the set of features F and the configuration space K and
then lifted to FTSs. This greatly simplifies the definitions. We begin with the
complete Boolean lattice of propositional formulae over F: (FeatExp(F)/≡, |=,
∨,∧, true, false). Elements of FeatExp(F)/≡ are equivalence classes of proposi-
tional formulae ψ obtained by quotienting by the semantic equivalence ≡. The
pre-order relation |= is defined as the satisfaction (entailment) relation from
propositional logic. (Alternatively, we could work with the set-theoretic defi-
nition of propositional formulae and an isomorphic complete lattice of sets of
configurations).

Join. This abstraction confounds the control-flow of all configurations of the
model, obtaining a single variant that includes all the executions occurring in
any variant. The unreachable parts of the variational model that do not occur
in any valid variant are eliminated. The information about which states belong
to which variants is lost.

Technically, the abstraction collapses the entire configuration space onto a
singleton set. Each feature expression ψ in the FTS is replaced with true if
ψ is satisfied in at least one configuration from K. The set of features in the
abstracted model is empty: αjoin(F) = ∅, and the set of valid configurations is:
αjoin(K) = {true} if K �= ∅ and αjoin(K) = {false} otherwise.

A pair of abstraction, αjoin : FeatExp(F) → FeatExp(∅), and concretization
functions, γjoin : FeatExp(∅) → FeatExp(F), are specified as follows:

αjoin(ψ) =

{
true if ∃k ∈ K.k |= ψ

false otherwise
γjoin(true) = true
γjoin(false) =

∨
k∈2F\K k

Theorem 1. 〈FeatExp(F)/≡,|=〉 −−−−−→←−−−−−
αjoin

γjoin

〈FeatExp(∅),|=〉 is a Galois connection2.

2 〈L, ≤L〉 −−−→←−−−
α

γ 〈M, ≤M 〉 is a Galois connection between complete lattices L and M
iff α and γ are total functions that satisfy: α(l) ≤M m ⇐⇒ l ≤L γ(m) for all
l ∈ L, m ∈ M .
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Ignoring Features. The abstraction αfignore
A ignores a single feature A ∈ F that

is not directly relevant for the current analysis. We confound the control flow
paths that only differ with regard to A, and we keep the precision with respect
to control flow paths that do not depend on A.

To apply this abstraction, we first need to convert the given feature expression
ψ into NNF (negation normal form), which contains only ¬,∧,∨ connectives
and ¬ appears only in literals. We write lA for the literals A or ¬A. We write
ψ[lA �→ true] to denote the formula ψ where lA is replaced with true.

The abstract sets of features and valid configurations are: αfignore
A (F) = F\

{A}, and αfignore
A (K) = {k[lA �→ true] | k ∈ K}. The abstraction and concretiza-

tion functions between FeatExp(F) and FeatExp(αfignore
A (F)) are defined as:

αfignore
A (ψ) = ψ[lA �→ true] γfignore

A (ϕ′) = (ϕ′ ∧ A) ∨ (ϕ′ ∧ ¬A)

where ψ and ϕ′ are in NNF from.

Theorem 2. 〈FeatExp(F)/≡, |=〉 −−−−−−−→←−−−−−−−
αfignore

A

γfignore
A 〈FeatExp(F\{A})/≡, |=〉 is a

Galois connection.

Sequential Composition. The composition of two Galois connections is also a
Galois connection [11]. Let 〈FeatExp(F)/≡, |=〉 −−−→←−−−

α1

γ1 〈FeatExp(α1(F))/≡, |=〉
and 〈FeatExp(α1(F))/≡, |=〉 −−−→←−−−

α2

γ2 〈FeatExp(α2(α1(F)))/≡, |=〉 be two Galois

connections. Then 〈FeatExp(F)/≡, |=〉 −−−−−−→←−−−−−−
α2◦α1

γ1◦γ2 〈FeatExp(α2(α1(F)))/≡, |=〉 is
defined as: α2 ◦ α1(ψ) = α2(α1(ψ)), γ1 ◦ γ2(ψ) = γ1(γ2(ψ)). We also have α2 ◦
α1(F) = α2(α1(F)) and α2 ◦ α1(K) = α2(α1(K)).

Syntactic Sugar. We can define an operation which ignores a set of features:
αfignore

{A1,...,Am} = αfignore
A1

◦ . . . ◦ αfignore
Am

and γfignore
{A1,...,Am} = γfignore

Am
◦ . . . ◦ γfignore

A1
.

In the following, we will simply write (α, γ) for any Galois connection
〈FeatExp(F)/≡, |=〉 −−−→←−−−

α

γ 〈FeatExp(α(F))/≡, |=〉 constructed using the oper-
ators presented in this section.

Abstracting FTSs. Given Galois connections defined on the level of feature
expressions, available features, and valid configurations, we now induce a notion
of abstraction between featured transition systems (FTSs).

Definition 4. Let F = (S, Act, trans, I, AP, L,F,K, δ) be an FTS, [χ]φ be an
fLTL formula, and (α, γ) be a Galois connection.

– We define α(F) = (S, Act, trans, I, AP, L, α(F), α(K), α(δ)), where α(δ) : trans
→ FeatExp(α(F)) is defined as: α(δ)(t) = α(δ(t)).

– We define α([χ]φ) = [α(χ)]φ.

Example 4. Consider the FTS F in Fig. 1 with the set of valid configurations K =
{{v, s}, {v, s, t, c, f}, {v, s, c}, {v, s, c, f}}. We show αjoin(F),αjoin(π[[¬f∧s]](F)),
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Fig. 2. Various abstractions of the FTS, VendingMachine.

and αfignore
{v,s,f}(F) in Fig. 2. Note that K ∩ [[¬f ∧ s]] = {{v, s}, {v, s, c}}, and

hence transitions annotated with the feature t (Tea) and f (FreeDrinks) are
not present in αjoin(π[[¬f∧s]](F)). Also note that in the case of αjoin(F) and
αjoin(π[[¬f∧s]](F)) we obtain ordinary transition systems, since all transitions
are labelled with the feature expression true.

Property Preservation. We now show that abstracted FTSs have some inter-
esting preservation properties.

Lemma 1. Let χ, ψ0, ψ1, . . . ∈ FeatExp(F), and K be a set of configurations
over F. Let k ∈ K ∩ [[χ]], such that k |= ψi for all i ≥ 0 Then there exists
k′ ∈ α(K) ∩ [[α(χ)]], such that k′ |= α(ψi) for all i ≥ 0.

By using Lemma 1, we can prove by contraposition the following result.

Theorem 3. (Abstraction Soundness). Let (α, γ) be a Galois connection.
α(F) |= [α(χ)]φ =⇒ F |= [χ]φ.

It follows from Definition 3 that a family-based model checking problem can be
reduced to a number of smaller problems by partitioning the set of variants:

Proposition 1. Let the subsets K1,K2, . . . ,Kn form a partition of the set K.
Then: F |= [χ]φ iff πKi

(F) |= [χ]φ for all i = 1, . . . , n.

Corollary 1. Let K1,K2, . . . ,Kn form a partition of K, and (α1,γ1), . . . , (αn,γn)
be Galois connections. If α1(πK1(F)) |= [α1(χ)]φ ∧ . . . ∧ αn(πKn

(F)) |= [αn(χ)]φ,
Then F |= [χ]φ.
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The above results show that, if we are successfully able to verify an abstracted
property for an abstracted FTS, then the verification also holds for the unab-
stracted FTS. Note that verifying the abstracted FTS can be a lot (even expo-
nentially) faster. If a counter-example is found in the abstracted FTS, then it
may be spurious (introduced due to the abstraction) for some variants and gen-
uine for the others. This can be established by checking which products can
execute the found counter-example.

4 High-Level Modelling Languages

It is very difficult to use FTSs to directly model very large systems. Therefore, it
is necessary to have a high-level modelling language, which can be used directly
by engineers for modelling large systems. fPromela is designed for describing
variational models; whereas TVL for describing the sets of features and config-
urations. We present fPromela and TVL and show their FTS semantics.

Syntax. fPromela is obtained from Promela [16] by adding feature vari-
ables, F, and guarded statements. Promela is a non-deterministic modelling
language designed for describing systems composed of concurrent processes that
communicate asynchronously. A Promela program, P , consists of a finite set
of processes to be executed concurrently. The basic statements of processes are
given by:

stm :: = skip | x := expr | c?x | c!expr | stm1 ; stm2 |
if :: g1 ⇒ stm1 · · · :: gn ⇒ stmn :: else ⇒ stm fi |
do :: g1 ⇒ stm1 · · · :: gn ⇒ stmn od

where x is a variable, c is a channel, and gi are conditions over variables and
contents of channels. The “if” is a non-deterministic choice between the state-
ments stmi for which the guard gi evaluates to true for the current evaluation of
the variables. If none of the guards g1, . . . , gn are true in the current state, then
the “else” statement stm is chosen. Similarly, the “do” represents an iterative
execution of the non-deterministic choice among the statements stmi for which
the guard gi holds in the current state. Statements are preceded by a declarative
part, where variables and channels are declared.

The features used in an fPromela program have to be declared as fields of
the special type features. The new guarded statement introduced in fPromela
is of the form: “gd ::ψ1 ⇒ stm1 . . . ::ψn ⇒ stmn::else ⇒ stm dg”, where
ψ1, . . . , ψn are feature expressions defined over F. The “gd” is a non-deterministic
statement similar to “if”, except that only features can be used as conditions
(guards). Actually, this is the only place where features may be used. (Hence,
“gd” in fPromela plays the same role as “#ifdef” in C/CPP SPLs [18]).

TVL [5] is a textual modelling language for describing the set of all valid
configurations, K, for an fPromela program along with all available features,
F. A feature model is organized as a tree, whose nodes denote features and edges
represent parent-child relationship between nodes. The root keyword denotes
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the root of the tree, and the group keyword, followed by a decomposition type
“allOf”, “someOf”, or “oneOf”, declares the children of a node. The meaning
is that if the parent feature is part of a variant, then “all”, “some”, or “exactly
one” respectively, of its non-optional children have to be part of that variant. The
optional features are preceded by the opt keyword. Various Boolean constraints
on the presence of features can be specified as well.

Example 5. Figure 3 shows a simple fPromela program and the corresponding
TVL model. After declaring feature variables in the fPromela program in
Fig. 3a, a process foo is defined. The first gd statement specifies that i++ is
available for variants that contain the feature A, and skip for variants with
¬A. The second gd statement is similar, except that the guard is the feature B.
The TVL model in Fig. 3b specifies four valid configurations: {Main}, {Main, A},
{Main, B}, {Main, A, B}. If we use the SNIP tool to check the assertion, i≥ 0, in
this example, we will obtain that it is satisfied by all (four) valid variants. If we
include the constraint in comments in line 5 of Fig. 3b that excludes the variant:
¬A ∧ ¬B, then the assertion i> 0 will also hold for all (three) valid variants.

Semantics. We now show only the most relevant details of fPromela seman-
tics. For the precise account of Promela semantics the reader is referred to [16].
Each fPromela program defines a so-called featured program graph (FPG),
which formalizes the control flow of the program. The FPG represents a pro-
gram graph [2] (or “finite state automaton” in [16]) in which transitions are
explicitly linked with feature expressions. The vertices of the graph are control
locations (represented by line numbers in the program) and its transition rela-
tion defines the control flow of the program. Each transition has condition under
which it can be executed, an effect which specifies the effect on the set of vari-
ables, and a feature expression which indicates in which variants this transition
is enabled. Thus, transitions are annotated with condition/effect/feature expres-
sion. The “gd” statement specifies the control flow and the feature expression
part of transitions.

Let V be the set of variables, and F be the set of features in an fPromela pro-
gram. Let Cond(V ) denote the set of Boolean conditions over V , and Assgn(V )
denote all assignments over V . Eval(V ) is the set of all evaluations of V that assign

Fig. 3. A simple fPromela program and the corresponding TVL model
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Fig. 4. The semantics of the fPromela program in Fig. 3. Note that “lx” refers to
the line number x from the program in Fig. 3a, and tt is short for true.

concrete values to variables in V . A featured program graph over V and F is a tuple
(Loc, tr, Loc0, init,K, fe), where Loc is a set of control locations, Loc0 ⊆ Loc is a
set of initial locations, tr ⊆ Loc × Cond(V ) × Assgn(V ) × Loc is the transition
relation, init ∈ Cond(V ) is the initial condition characterising the variables in
the initial state, K is a set of configurations, and fe : trans → FeatExp(F) anno-
tates transitions with feature expressions. The semantics of an FPG is an FTS
obtained from “unfolding” the graph (see [2, Sect. 2] for details). The unfolded
FTS is (Loc × Eval(V ), {ε}, trans, I, Cond(V ), L,F,K, δ), where the states are
pairs of the form (l, v) for l ∈ Loc, v ∈ Eval(V ); action names are ignored (ε is an
empty (dummy) action name); I = {(l, v) | l ∈ Loc0, v |= init}; L((l, v)) = {g ∈
Cond(V ) | v |= g}; and transitions are defined as: if (l, g, a, l′) ∈ tr and v |= g,
then ((l, v), ε, (l′, apply(a, v))) ∈ trans. Here, we write v |= g if the evaluation v
makes g true, and apply(a, v) is the evaluation obtained after applying the assign-
ment a to v. Given t ∈ trans, let t′ ∈ tr be the corresponding transition of the
FPG. Then δ(t) = true if fe(t′) is undefined; and δ(t) = fe(t′) otherwise. Hence,
the semantics of an fPromela program follows the semantics of Promela, just
adding feature expression from the FPG to the transitions. For example, in Fig. 4
are shown the FPG and FTS for the family in Fig. 3.

5 Variability Abstraction via Syntactic Transformation

We present the syntactic transformations of fPromela programs and TVL
models introduced by projection and variability abstractions. Let P represent
an fPromela program, for which the sets of features F and valid configurations
K are given as a TVL model T . We denote with [[P ]]T the FTS obtained for this
program, as shown in Sect. 4.

Let K
′ ⊆ K be described by a feature expression ψ′, i.e. [[ψ′]] = K

′. The pro-
jection π[[ψ′]]([[P ]]T ) is obtained by adding the constraint ψ′ in the corresponding
TVL model T , which we denote as T + ψ′. Thus, π[[ψ′]]([[P ]]T ) = [[P ]]T+ψ′ .

Let (α, γ) be a Galois connection obtained from our calculus in Sect. 3. The
abstract α(P ) and α(T ) are obtained by defining a translation recursively over
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the structure of α. The function α copies all non-compound basic statements
of fPromela, and recursively calls itself for all sub-statements of compound
statements other than “gd”. For example, α(skip) = skip and α(stm1;stm2) =
α(stm1);α(stm2). We discuss the rewrites for “gd” below.

For αjoin, we obtain a Promela (single variant) program αjoin(P ) where all
“gd”-s are appropriately resolved and all features are removed. Thus, αjoin(T )
is empty. The transformation is

αjoin(gd ::ψ1 ⇒ stm1 . . . ::ψn ⇒ stmn ::else ⇒ stm′ dg) =
if ::αjoin(ψ1) ⇒ αjoin(stm1) . . . ::αjoin(ψn) ⇒ αjoin(stmn)

::αjoin(¬(ψ1 ∨ . . . ψn)) ⇒ αjoin(stm′) fi

For αfignore
A , the transformation is

αfignore
A (gd ::ψ1 ⇒ stm1 . . . ::ψn ⇒ stmn ::else ⇒ stm′ dg) =

gd::αfignore
A (ψ1)⇒αfignore

A (stm1). . .::α
fignore
A (¬(ψ1∨. . . ψn))⇒αfignore

A (stm′)dg

and the feature A is removed from T obtaining a new αfignore
A (T ), when F\{A} �=

∅. Otherwise, if F\{A} = ∅, then αfignore
A (P ) is a Promela program and αfignore

A

(T ) is empty.
For α2 ◦ α1, we have α2 ◦ α1(gd ::ψ1 ⇒ stm1 . . . dg) = α2(α1(gd ::ψ1 ⇒

stm1 . . . dg)). Similarly, we transform the TVL model T .

Theorem 4. Let P and T be an fPromela program and the corresponding
TVL model, and (α, γ) be a Galois connection. We have: α([[P ]]T ) = [[α(P )]]α(T ).

6 Evaluation

We now evaluate our variability abstractions. First, we show how variability
abstractions can render analysis of previously infeasible model families, feasi-
ble. Second, we turn to the main point of this paper: That instead of verifying
properties using a family-based model checker (e.g., SNIP), we can use variability
abstraction to obtain an abstracted family-of-models (with a low number of vari-
ants) that can then be model checked using a single-system model checker (e.g.,
SPIN). By soundness of abstraction, if we are able to verify properties on the
abstracted model family, we may safely conclude that they also hold on the orig-
inal (unabstracted) model family. We investigate improvements in performance
(Time) and memory consumption (Space) on the MinePump family-model [7]
that comes with the installation of SNIP. Finally, we do a case study on the
MinePump. We show how various variability abstractions may be tailored for
analysis of properties of the MinePump.

All of our abstractions are applied using our fPromela Reconfigurator

(model-family-to-model-family) transformation tool3 as described in Sect. 5. All
3 The fPromela Reconfigurator tool (including all benchmarks) is available from:

[http://ahmadsalim.github.io/p3-tool].

http://ahmadsalim.github.io/p3-tool
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Fig. 5. Verifying deadlock absence in MinePump for increasing levels of variability
(without vs. with maximal abstraction, α = αjoin, confounding all configurations).

experiments were executed on a 64-bit Mac OS × 10.10 machine, Intel�CoreTM

i7 CPU running at 2.3 GHz with 8 GB memory. The performance numbers
reported (Time) constitute the median runtime of five independent executions.

A Characterization of MinePump. The fPromela MinePump model fam-
ily contains about 200 LOC and 7 (non-mandatory) independent optional fea-
tures: Start, Stop, MethaneAlarm, MethaneQuery, Low, Normal, and High, thus
yielding 27 = 128 variants. Its FTS has 21,177 states and all variants combined
have 889,252 states. It consists of 5 communicating processes: a controller, a
pump, a watersensor, a methanesensor, and a user.

From Infeasible to Feasible Analysis via Abstraction. Combinatorically,
the number of variant models grows exponentially with the number of features,
|F|, which means that there is an inherent exponential blow-up in the analysis
time for the brute-force strategy, O(2|F|). Consequently, for families with high
variability, analysis quickly becomes infeasible. They take too long time to ana-
lyze.

Let us for a moment focus on (single-system) model checkers which may be
applied at the family level by “brute force” model checking all variants of a given
model family, one by one. As an experiment, we gradually added variability to
the family-model in Fig. 3. Already for |F| = 11 (for which |K| = 211 = 2, 048
variants), analysis time to check the assertion becomes almost a minute. For
|F| = 25, analysis time ascends to almost a year. On the other hand, if we
apply the variability abstraction, αjoin (confounding all configurations), prior to
analysis, we are able to verify the same assertion by only one call to SPIN on
the abstracted model in 0.03 s for |F| = 11 and in 0.04 s for |F| = 25, effectively
eliminating the exponential blow up.

Family-Based Model Checking without a Family-Based Model Checker.
Recently, researchers have introduced family-based model-checking [6] that work
at the family level and thus do not explicitly check all variants, one by one.
(Analogous endeavors have been undertaken in, for instance, type checking [18],
and dataflow analysis [3].) Much effort has been dedicated to speeding up analy-
ses via improving representation; in particular, by exploiting information that
may be “shared” among multiple configurations via BDDs. In this paper, we
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propose to speed up analyses via increasing abstraction on the configuration
space. In fact, increasing abstraction and improving representation are orthogo-
nal; i.e., they may cooperatively speed up analyses even further!

Figure 5 compares the effect (in terms of both Time and Space) of analyzing
the original (unabstracted) MinePump vs. analyzing it after it has been variabil-
ity abstracted using αjoin. Unabstracted means running SNIP on MinePump;
whereas abstracted means running SPIN on αjoin(MinePump). We verify the
deadlock freedom property. Improvement is the relative comparison of unab-
stracted vs. abstracted. Time is the time to model-check (in seconds) and Space

is the number of explored states plus the number of re-explored states (which
is equivalent to the number of transitions fired). In the case of SNIP, the veri-
fication time includes the times to parse the fPromela program, to build the
initial FTS, and to run the verification procedure. In the case of SPIN, we mea-
sure the times to generate a process analyser (pan) and to execute it. We do not
count the time for compiling pan, as it is due to a design decision in SPIN rather
than its verification algorithm. The same measurement technique was used in
the experiments in [6,7].

The rows of Fig. 5 represent different versions of MinePump, with increas-
ing levels of variability. The “real” version has |K| = 128 variants. For the
|K| = 16 version, we applied a projection to keep the four features Start, Stop,
MethaneAlarm, and High (eliminating features MethaneQuery, Low, and Normal).
For the |K| = 512 version, we turned implementation alternatives (already
present in the original MinePump, as comments) into variability choices in the
form of two new independent features. Parts of the controller process exists
with and without race conditions (the former in comments); we turned that into
an optional feature, RaceCond. Similarly, the watersensor process exists in two
versions: standard and alternative (the latter in comments); we turned that into
an optional feature, Standard. For |K| = 2, 048 and |K| = 4, 096, we inflated
variability by adding independent optional features and gd statements to the
methanesensor process, preseving the overall behavior of the process (differing
only with respect to the value of an otherwise uninteresting local variable, i).

Unsurprisingly, analysis Time and Space increase exponentially with the
number of features, O(|F|). However, the Time and Space it takes to ver-
ify the deadlock absence in the abstracted model do not increase significantly
with the number of variants, when using the maximal abstraction, αjoin. For
|K| = 2, 048 variants, SNIP terminates after almost a minute (checking 4.6
million transitions) whereas calling SPIN on the abstracted system obtains the
verification results after a mere 0.07 s (visiting only 113, 775 transitions). For
|K| = 4, 096 variants, SNIP crashes after 88 s (exploring 6.3 million transitions).
SPIN, on the other hand, is capable of analysis the abstracted system in 0.09 s
(exploring 170,670 transitions).

Devising Abstractions for Properties (A Case Study of MinePump).
We start by considering four universal properties, ϕ1 to ϕ4 (taken from [7], see
Fig. 6), that are intended to be satisfied by all variants. By applying the αjoin

abstraction on the system, we can verify those properties efficiently by only one
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Fig. 6. Properties for the MinePump (taken from [7]).

Fig. 7. Verification of above MinePump properties using tailored abstractions.

call to SPIN on the abstracted family-model, αjoin(MinePump) which has only
one configuration, |αjoin(KMinePump)| = 1. The first four rows of Fig. 7 orga-
nizes the results of maximally abstracting the MinePump prior to verification
of properties, ϕ1 to ϕ4. Consistent with our expectations and previous results
(cf. Fig. 5), maximal abstraction translates to massive improvements in both
Time and Space on a family-model with many variants (here, |K| = 128). In
fact, model checking is between 71 and 120 times faster.

We now consider non-universal properties which are preserved by some vari-
ants and violated by others: ϕ5 and ϕ6 (see Fig. 6). Property ϕ5 (concerning
the pump being switched on), is violated by all variants, 32 in total, for which
Start ∧ High is satisfied (since these two features are required for the pump to
be switched on in the first place). Given sufficient knowledge of the system and
the property, we can easily tailor an abstraction for analyzing the system more
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effectively: First, we calculate three projections of the MinePump family-model:
πStart∧High (corresponding to the above 32 configurations), π¬Start (64 configu-
rations), and π¬High (64 configurations). Second, we apply αjoin on all three pro-
jections. Third and finally, we invoke SPIN three times to verify ϕ5 on each of
them. For the first abstracted projection, αjoin(πStart∧High(MinePump)), SPIN
correctly identifies an “abstract” counter-example violating the property, that is
shared by all violating variants. For the remaining abstracted projections, SPIN
reports that ϕ5 is satisfied.

Overall, we can see that our approach is significantly faster. The second-last
row of Fig. 7 shows that analysis time drops from 3.20 s when verified with SNIP,
to 0.11 s when running SPIN “brute-force” on our three abstracted projections.
The last row shows the results of a similar development for the property, ϕ6. It
takes 4.54 s using SNIP, but may be verified by four “brute-force” invocations
of SPIN in only 0.16 s. Verification of both properties constitute an almost 30
times speed up (using considerably less memory). Of course, much of the perfor-
mance improvement is due to the highly-optimized industry-strength SPIN tool
(compared to the SNIP research prototype). Previous work attributes a factor
of two advantage for (brute force) SPIN over SNIP [7]. However, for models with
more variability (larger values of |F|), a constant factor will be dwarfed by the
inherent exponential blow up.

We can also use αfignore abstraction to speed up the family-based model
checker. For the property ϕ5, we call SNIP on αfignore

F\{Start,High}(MinePump), and
we obtain the same counter-examples as in the unabstracted case for the variants
in Start ∧ High. However, the verification time is reduced from 3.20 to 0.97 s,
and the number of examined transitions is reduced from 207, 377 to 54,376.

In conclusion, by exploiting high-level knowledge of a family-model and prop-
erty, we may carefully devise variability abstractions that are able to verify non-
trivial properties in only a few calls to SPIN.

7 Related Work

Abstractions for Family-Based Model Checking. Simulation-based abstrac-
tion of family-based model checking was introduced in [9]. The concrete FTS is
related with its abstract version by defining a simulation relation on the level
of states (as opposed to Galois connections here). Several abstract (and thus
smaller) models are induced by studying quotients of concrete FTSs under such
a simulation relation. Any behaviour of the concrete FTS model can be repro-
duced in its abstraction, and therefore the abstraction preserves satisfiability of
LTL formulae. Only states and transitions that can be simulated are reduced
by this approach. However, this approach [9] results in small model reductions
and only marginal efficiency gains of verifications times (the evaluation reports
reductions of 8–9 %). Since abstractions are applied directly on FTSs, the com-
putation time for calculating abstracted FTSs takes about 10 % of the overall
verification time.

Variability-aware abstraction procedures based on counterexample guided
abstraction refinement (CEGAR) have been proposed in [10]. Abstractions are
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introduced by using existential F-abstraction functions, and simulation relation
is used to relate different abstraction levels. Three types of abstractions are
considered: state abstractions that only merge states, feature abstractions that
only modify the variability information, and mixed abstractions that combine the
previous two types. Feature abstractions [10] are similar to ours since they also
aim to reduce variability specific information in SPLs. However, there are many
differences between them. Different levels of precision of feature abstractions
in [10] are defined by simply enriching (resp., reducing) the sets of variants
for which transitions are enabled. In contrast, our variability abstractions are
capable to change not only the feature expression labels of transitions but also
the sets of available features and valid configurations. Moreover, the user can
use those abstractions to express various verification scenarios for their families.
While the abstractions in [10] are applied on feature program graphs, we apply
our abstractions as preprocessor transformations directly on high-level programs
thus avoiding to generate any intermediate concrete model in the memory.

Family-Based Static Analysis. Various lifted techniques have been proposed,
which lift existing analysis and verification techniques to work on the level of
families, rather than on the level of single programs/systems. This includes lifted
type checking [18], lifted data-flow analysis [3], lifted model checking [6,7], etc.

A formal methodology for systematic derivation of lifted data-flow analyses
for program families with #ifdef-s is proposed in [19]. The method uses the
calculational approach to abstract interpretation of Cousot [11] in order to derive
a directly operational lifted analysis. In [14], an expressive calculus of variability
abstractions is also devised for deriving abstracted lifted data-flow analyses. Such
variability abstractions enable deliberate trading of precision for speed in lifted
analysis. Hence, they tame the exponential blow-up caused by the large number
of features and variants in an program family. Here, we pursue this line of work
by adapting variability abstractions to lifted model checking as opposed to data-
flow analysis in [14]. Moreover, the abstractions in [14] are directed at reducing
the configuration space |K| since the elements of the property domain are |K|-
sized tuples, whereas the abstractions defined here aim at reducing the space
of feature expressions since the variability-sensitive information in FTSs, fLTL
formulae, and fPromela programs is encoded by using feature expressions.

8 Conclusion

We have proposed variability abstractions to derive abstract model checking for
families of related systems. The abstractions are applied before model generation
directly on fPromela programs. The evaluation confirms that interesting prop-
erties can be efficiently verified in this way by only a few calls to SPIN. Given a
system with variability and a property, an interesting direction for future work
would be to devise algorithms for automatic generation of suitable abstractions.
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Abstract. We present IC-Cut, short for “Interface-Complexity-based
Cut”, a new compositional search strategy for systematically testing
large programs. IC-Cut dynamically detects function interfaces that are
simple enough to be cost-effective for summarization. IC-Cut then hier-
archically decomposes the program into units defined by such functions
and their sub-functions in the call graph. These units are tested indepen-
dently, their test results are recorded as low-complexity function sum-
maries, and the summaries are reused when testing higher-level functions
in the call graph, thus limiting overall path explosion. When the decom-
posed units are tested exhaustively, they constitute verified components
of the program. IC-Cut is run dynamically and on-the-fly during the
search, typically refining cuts as the search advances.

We have implemented this algorithm as a new search strategy in
the whitebox fuzzer SAGE, and present detailed experimental results
obtained when fuzzing the ANI Windows image parser. Our results show
that IC-Cut alleviates path explosion while preserving or even increasing
code coverage and bug finding, compared to the current generational-
search strategy used in SAGE.

1 Introduction

Systematic dynamic test generation [7,14] consists of symbolically executing a
program dynamically, while collecting constraints on inputs from branch state-
ments along the execution. These constraints are systematically negated and
solved with a constraint solver to infer variants of the previous inputs, which
will exercise alternative execution paths of the program. The process is system-
atically repeated with the goal of exploring the entire set (in practice, a subset) of
all feasible execution paths of the program. This approach to automatic test case
generation has been implemented in many popular tools over the last decade,
such as EXE [8], jCUTE [21], Pex [23], KLEE [6], BitBlaze [22], and Apollo [2], to
name a few. Although effective in detecting bugs, these testing tools have never

M. Christakis—The work of this author was mostly done while visiting Microsoft
Research.

c© Springer International Publishing Switzerland 2015
B. Fischer and J. Geldenhuys (Eds.): SPIN 2015, LNCS 9232, pp. 300–318, 2015.
DOI: 10.1007/978-3-319-23404-5 19



IC-Cut: A Compositional Search Strategy for Dynamic Test Generation 301

been pushed toward program verification of a large and complex application,
i.e., toward proving that the application is free of certain classes of errors.

We have recently used the whitebox fuzzer SAGE [16] to show how systematic
dynamic test generation can be extended toward program verification of the ANI
Windows image parser [10]. In this previous work, we limit path explosion in the
parser with user-guided program decomposition and summarization [1,12]. In
particular, we manually identify functions for summarization whose input/out-
put interfaces with respect to higher-level functions in the call graph are not too
complex, so that the logic encoding of their summaries remains simple. Indeed,
we find that it is common for functions to return a single “success” or “failure”
value. If “failure” is returned, the higher-level function typically terminates. If
“success” is returned, parsing proceeds with new chunks of the input, that is,
completely independently of the specific path taken in the function being summa-
rized. We, therefore, decompose the program at very few interfaces, of functions
that parse independent chunks of the input and return a single “success” or
“failure” value.

Based on these previous insights, we now define a new compositional search
strategy for automatically and dynamically discovering simple function inter-
faces, where large programs can be effectively decomposed. IC-Cut, short for
“Interface-Complexity-based Cut”, tests the decomposed program units inde-
pendently, records their test results as low-complexity function summaries (that
is, summaries with simple logic encoding), and reuses these summaries when
testing higher-level functions in the call graph, thus limiting overall path explo-
sion. IC-Cut runs on-the-fly during the search to incrementally refine interface
cuts as the search advances. In short, IC-Cut is inspired by compositional rea-
soning, but is only a search strategy, based on heuristics, for decomposing the
program into independent units that process different chunks of the input. We,
therefore, do not perform compositional verification in this work, except when
certain particular restrictions are met (see Sects. 3.4 and 4).

The main contributions of this paper are:

– We present an attractive and principled alternative to ad-hoc state-of-the-art
search heuristics for alleviating path explosion.

– As our experiments show, IC-Cut preserves or even increases code coverage and
bug finding in significantly less time, compared to the current generational-
search strategy of SAGE.

– IC-Cut can identify which decomposed program units are exhaustively tested
and, thus, dynamically verified.

This paper is organized as follows. In Sect. 2, we recall basic principles of
systematic dynamic test generation and whitebox fuzzing, and give an overview
of the SAGE tool used in this work. Section 3 explains the IC-Cut search strategy
in detail. In Sect. 4, we present our experimental results obtained when fuzzing
the ANI Windows image parser. We review related work in Sect. 5 and conclude
in Sect. 6.
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2 Background

We consider a sequential deterministic program P , which is composed of a set
of functions and takes as input an input vector, that is, multiple input values.
The determinism of the program guarantees that running P with the same input
vector leads to the same program execution.

We can systematically explore the state space of program P using systematic
dynamic test generation [7,14]. Systematic dynamic test generation consists of
repeatedly running a program both concretely and symbolically. The goal is
to collect symbolic constraints on inputs, from predicates in branch statements
along the execution, and then to infer variants of the previous inputs, using a
constraint solver, in order to steer the next execution of the program toward an
alternative program path.

Symbolic execution means executing a program with symbolic rather than
concrete values. A symbolic variable is, therefore, associated with each value in
the input vector, and every constraint is on such symbolic variables. Assignment
statements are represented as functions of their (symbolic) arguments, while
conditional statements are expressed as constraints on symbolic values. Side-
by-side concrete and symbolic executions are performed using a concrete store
M and a symbolic store S , which are mappings from memory addresses (where
program variables are stored) to concrete and symbolic values, respectively. For
a program path w , a path constraint φw is a logic formula that characterizes the
input values for which the program executes along w . Each symbolic variable
appearing in φw is, thus, a program input. Each constraint is expressed in some
theory1 T decided by a constraint solver, i.e., an automated theorem prover that
can return a satisfying assignment for all variables appearing in constraints it
proves satisfiable.

Whitebox fuzzing is an application of systematic dynamic test generation
for detecting security vulnerabilities. In particular, whitebox file fuzzing explores
programs that take as input a file, all bytes of which constitute the input vector of
the program. SAGE [16] is a whitebox file fuzzing tool for security testing, which
implements systematic dynamic test generation and performs dynamic symbolic
execution at the x86 binary level. It is optimized to scale to very large execution
traces (billions of x86 instructions) and programs (like Excel). Notably, SAGE
is credited to have found roughly one third of all the security bugs discovered
by file fuzzing during the development of Microsoft’s Windows 7 [5].

Obviously, testing and symbolically executing all feasible program paths is
not possible for large programs. Indeed, the number of feasible paths can be
exponential in the program size, or even infinite in the presence of loops with
an unbounded number of iterations. In practice, this path explosion is alleviated
using heuristics to maximize code coverage as quickly as possible and find bugs
faster in an incomplete search. For instance, SAGE uses a generational-search
strategy [16], where all constraints in a path constraint are negated one by one
(by the Z3 theorem prover [11]) in order to maximize the number of new tests

1 A theory is a set of logic formulas.
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generated per symbolic execution. This search strategy is combined with simple
heuristics that guide the search toward least covered parts of the search space
and prune the search space using flip count limits and constraint subsumption
(see Sects. 3.3 and 4). Other related industrial-strength tools like Pex [23] use
similar techniques. In this paper, we explore a different approach to alleviate
path explosion.

3 The IC-Cut Search Strategy

In this section, we present the IC-Cut search algorithm, precisely define the low-
complexity function summaries of IC-Cut, and discuss its correctness guarantees
and limitations.

3.1 Algorithm

Algorithm 1 presents the IC-Cut search strategy. IC-Cut consists of three phases,
which are overlapping: learning, decomposition, and matching.

Learning. The learning phase of IC-Cut runs the program under test on a set
of seed inputs. The goal is to learn as much of the call graph of the program. As
a result, the larger this set, the more detailed is the global view that IC-Cut has
of the program, and the fewer new functions are discovered in the next phase.

On line 2 of Algorithm 1, function CreateCallgraph returns the call graph
of the program that is learned, dynamically and incrementally, by running the
program on the seed inputs. Each node in the call graph represents a function
of the program, and contains the function name and one seed input that steers
execution of the program through this function. Each edge (f , g) in the call graph
denotes that function f calls function g . Note that we assume no recursion.

Handling recursion is conceptually possible [12]. In practice, it is not required
for the application domain of binary image parsers. Recursion in such parsers is
very rare due to obvious performance, scalability, and reliability reasons, which
is why we do not address it in this work.

Decomposition. During the decomposition phase, IC-Cut fuzzes (that is,
explores using dynamic symbolic execution) one function at a time, starting
at the bottom of the learned call graph, and potentially records the function
test results as a low-complexity summary (that is, a summary with a simple
logic encoding, as defined in Sect. 3.2). This is done in function Explore of
Algorithm 1, which is called on line 4 and takes as arguments the call graph cg ,
the program under test p, and an empty map from call-graph nodes to function
summaries summaries.
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Algorithm 1. The IC-Cut search algorithm.
1 function IC-Cut(p, seeds)
2 cg ← CreateCallgraph(p, seeds)
3 summaries ← {}
4 Explore(cg , p, summaries)

5

6 function Explore(cg , p, summaries)
7 workQueue ← GetLeaves(cg)
8 while IsNotEmpty(workQueue) do
9 f ← Peek(workQueue)

10 cg ′, summaries ← Process(f , p, summaries)
11 if cg ′ == cg then
12 workQueue ← Dequeue(workQueue)
13 predecessors ← GetPredecessors(f , cg)
14 workQueue ← Enqueue(predecessors, workQueue)
15 else
16 newFunctions ← GetNewFunctions(cg , cg ′)
17 workQueue ← AddFirst(newFunctions, workQueue)
18 cg ← cg ′

19

20 function Process(f , p, summaries)
21 seed ← GetSeed(f )
22 interface, cg ′ ← Fuzz(f , p, seed , summaries)
23 if IsSummarizable(interface) then
24 summary ← GenerateSummary(interface)
25 summaries ← PutSummary(f , summary , summaries)

26 return cg ′, summaries

In particular, IC-Cut selects a function from the bottom of the call graph
that has not been previously fuzzed. This is shown on line 7 of Algorithm1, in
function Explore, where we create a workQueue of the call graph leaf-nodes,
and on line 9, where a function f is selected from the front of the workQueue.
The selected function is then tested independently (in function Process) to
determine whether its interface is simple enough to be cost-effective for sum-
marization. To test the selected function, IC-Cut chooses an appropriate seed
input, which in the previous phase has been found to steer execution of the pro-
gram through this function (line 21 of Algorithm1). Subsequently, on line 22,
IC-Cut fuzzes the program starting with this seed input, using dynamic symbolic
execution.

However, while fuzzing the program, not all symbolic constraints that IC-Cut
collects may be negated; we call the constraints that may be negated open, and
all others closed. Specifically, the constraints that are collected until execution
encounters the first call to the selected function are closed. Once the function is
called, the constraints that are collected until the function returns are open. As
soon as the function returns, symbolic execution terminates. This means that
IC-Cut fuzzes only the selected function and for a single calling context of the
program. Note that the function is fuzzed using a generational search.
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While fuzzing the selected function, IC-Cut dynamically determines the com-
plexity of its interface, as defined in Sect. 3.2. If the function interface is simple
enough to be cost-effective for summarization (line 23 of Algorithm 1), the test
results of the function are recorded as a summary. On line 24, we generate
the function summary, and on line 25, we add it to the summaries map. Note
that function Process describes our algorithm in a simplified way. If a func-
tion interface is found to be suitable for summarization, IC-Cut actually records
the summary while fuzzing the function. If this is not the case, IC-Cut aborts
fuzzing of this function. How summaries are generated is precisely documented
in Sect. 3.2.

It is possible that new functions are discovered during fuzzing of the selected
function, i.e., functions that do not appear in the call graph of the learning
phase. When this happens, IC-Cut updates the call graph. Of course, these new
functions are placed lower in the call graph than the currently-fuzzed function,
which is their (direct or indirect) caller. IC-Cut then selects a function to fuzz
from the bottom of the updated call graph.

This is shown on lines 11–18 of Algorithm 1. If no new functions are discovered
during fuzzing of the selected function (line 11), we remove this function from
the workQueue, and add its predecessors in the call graph at the end of the
workQueue (lines 12–14). When IC-Cut explores these predecessors, their callees
will have already been fuzzed. If, however, new functions are discovered (lines 15–
16), we add these functions at the front of the workQueue (line 17), and update
the call graph (line 18). Note that when new functions are discovered, IC-Cut
aborts exploration of the currently-fuzzed function; this is why this function is
not removed from the workQueue on line 17.

The above process highlights the importance of the set of seed inputs in the
learning phase: the better this set is in call-graph coverage, the less time is spent
on switches between the decomposition and learning phases of IC-Cut.

Matching. In general, summaries can be reused by callers to skip symbolic
execution of a summarized callee and, hence, alleviate path explosion caused by
inlining the callee, i.e., by re-exploring all callee paths.

The matching phase decides whether a recorded summary may be reused when
testing higher-level functions in the call graph. This is why function Fuzz of Algo-
rithm1 (line 22) takes the summaries map as argument. On the whole, Fuzz
explores (using dynamic symbolic execution) one function at a time, records its
interface, and reuses previously-computed summaries.

In our context, while fuzzing a higher-level function in the decomposition
phase, the exploration might come across a call to a function for which a sum-
mary has already been computed. Note, however, that this summary has been
computed for a particular calling context. Therefore, the matching phase deter-
mines whether the encountered calling context of the function matches (precisely
defined in Sect. 3.2) the old calling context for which the summary has been com-
puted. If this is the case, it is guaranteed that all execution paths of the function
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for the encountered calling context are described by the recorded summary. Con-
sequently, the summary may be reused, since no execution paths of the function
will be missed. If, on the other hard, the calling contexts do not match, the
called function is fuzzed as part of the higher-level function (that is, it is inlined
to the higher-level function) as if no summary had been recorded, to avoid miss-
ing execution paths or generating false alarms. In other words, IC-Cut allows
that a function is summarized only for a single calling context, and summary
reuse must be calling-context specific.

3.2 Function Summaries

Before describing which constraints on interface complexity a function must
satisfy to be summarized, we first precisely define function inputs and outputs.

Function Inputs and Outputs

– An input if of function f is any value that is read and tested by f . In other
words, the value of if is not only read in f , but also affects which execution
path of the function is taken at runtime.

– An input if of f is symbolic if it is a function of any whole-program inputs;
otherwise, if is concrete.

– A candidate output cof of function f is any value that is written by f .
– An output of of function f is any candidate output of f that is tested later in

the program.

Consider program P below, which expects two non-negative inputs a and b:

int is_less(int x, int y) {

if (x < y)

return 1;

return 0;

}

void P(int a, int b) {

if (is_less(a, 0) || is_less(b, 0))

error ();

...

}

For both calling contexts of function is less in program P, is less has one
symbolic input (that is, a or b), one concrete input (that is, 0), and one output
(which is 0 or 1 and tested by the if-statement in P).

Generating Summaries. In compositional symbolic execution [1,12], a sum-
mary φf for a function f is defined as a logic formula over constraints expressed
in a theory T . Summary φf may be computed by symbolically executing all
paths of function f , generating an input precondition and output postcondition
for each path, and gathering all of these path summaries in a disjunction.



IC-Cut: A Compositional Search Strategy for Dynamic Test Generation 307

Precisely, φf is defined as a disjunction of formulas φwf of the form

φwf = prewf ∧ postwf

where wf denotes an intra-procedural path in f , prewf is a conjunction of con-
straints on the inputs of f , and postwf a conjunction of constraints on the outputs
of f . For instance, a summary φf for function is less is

φf = (x < y ∧ ret = 1) ∨ (x ≥ y ∧ ret = 0)

where ret denotes the value returned by the function. This summary may be
reused across different calling contexts of is less. In practice, however, these
disjunctions of conjunctions of constraints can become very large and complex,
thus making summaries expensive to compute. For this reason, IC-Cut generates
only low-complexity function summaries for specific calling contexts.

For a given calling context, a function f is summarized by IC-Cut only if the
following two conditions are satisfied:

– All symbolic inputs of f are unconstrained, that is, they are completely inde-
pendent of the execution path taken in the program until function f is called.
In particular, the symbolic inputs of f do not appear in any of the closed
constraints collected before the call to f . Therefore, the input precondition of
f must be true.

– Function f has at most one output of .

If the above conditions are not satisfied, function f is inlined to its calling con-
texts (that is, not summarized). As an example, consider again program P. For
the first calling context of function is less in P (that is, is less(a, 0)), the
symbolic input of is less is unconstrained, and the function has exactly one
output. As a result, is less is summarized by IC-Cut for this first calling con-
text, as described in Sect. 3.1.

As a consequence of these conditions, the summaries considered in this work
have a single precondition on all symbolic inputs, which is true, and a single
precondition on all concrete inputs, which is of the form

∧

0≤j<N

ij = cj

where ij is a concrete input, cj a constant representing its concrete value, and
N the number of concrete inputs. Moreover, the summaries in this work have
no output postconditions, as explained later in this section. As a result, when
IC-Cut generates a summary for a function f , it actually records a precondition
of the above form on all concrete inputs of f ; this precondition also represents
the current calling context of f . In this paper, we abuse terminology and call
such preconditions “summaries”, although we do not record any disjunctions
or postconditions. For example, in the program P above, IC-Cut generates the
following summary for the first calling context of function is less

y = 0
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which denotes that all inputs of is less except for y are symbolic and uncon-
strained, and that y is a concrete input whose value is 0 in the particular calling
context. This summary indicates that function is less has been fuzzed for a
calling context in which x may take any value, while y must have the value 0.

Reusing Summaries. While fuzzing a higher-level function in the decompo-
sition phase of IC-Cut, the exploration might come across a call to a function
for which a summary has already been generated. Then, the matching phase
determines if this summary may be reused by checking whether the new calling
context of the function matches, i.e., is equally or more specific than, the old
calling context for which the summary has been recorded (see Sect. 3.1).

– The new calling context is as specific as the old calling context only if (1) the
function inputs that are symbolic and unconstrained in the old calling context
are also symbolic and unconstrained in the new calling context, and (2) all
other function inputs are concrete and have the same values across both calling
contexts, except in the case of non-null pointers whose concrete values may
differ since dynamic memory allocation is nondeterministic (see Sect. 3.4 for
more details).

– The new calling context is more specific than the old calling context only
if (1) the function inputs that are concrete in the old calling context are
also concrete in the new calling context and have the same values (except in
the case of non-null pointers), and (2) one or more function inputs that are
symbolic and unconstrained in the old calling context are either symbolic and
constrained in the new calling context or they are concrete.

Recall that, in our previous example about program P, IC-Cut records a sum-
mary for the first calling context of function is less in P. This summary is then
reused in the second calling context of is less in P (that is, is less(b, 0)),
which is as specific as the first.

After having described when a recorded summary may be reused, we now
explain how this is done. When the matching phase of IC-Cut determines that
a function summary matches a calling context of the function, the following two
steps are performed:

1. The function is executed only concretely, and not symbolically, until it returns.
2. The function candidate outputs are associated with fresh symbolic variables.

Step (1) is performed because all execution paths of the function have already
been explored when testing this function independently for an equally or more
general calling context. Step (2) is used to determine whether the function has
at most one output, as follows.

When testing a function f for a given calling context, we can determine all
values that are written by f , which we call candidate outputs. Yet, we do not
know whether these candidate outputs are tested later in the program, which
would make them outputs of f . Therefore, when reusing a summary of f , we
associate fresh symbolic variables with all of its candidate outputs. We expect
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that at most one of these candidate outputs is ever tested later in the program.
If this condition is not satisfied, the summary of f is invalidated. In this case,
the higher-level function that reused the summary of f is tested again, but this
time, f is inlined to its calling contexts instead of summarized.

When reusing the summary of function is less in program P, we asso-
ciate a symbolic variable with the function’s only candidate output, its return
value. This symbolic variable is tested by function P, in the condition of the if-
statement, thus characterizing the return value of is less as a function output.

3.3 Input-Dependent Loops

We use constraint subsumption [16] to automatically detect and control input-
dependent loops. Subsumption keeps track of the constraints generated from a
given branch instruction. When a new constraint c is generated, SAGE uses a
fast syntactic check to determine whether c implies or is implied by a previous
constraint, generated from the same instruction during the execution, most likely
due to successive iterations of an input-dependent loop. If this is the case, the
weaker (implied) constraint is removed from the path constraint.

In combination with subsumption, which eliminates the weaker constraints
generated from the same branch, we can also use constraint skipping, which
never negates the remaining stronger constraints injected at this branch. When
constraint subsumption and skipping are both turned on, an input-dependent
loop is concretized, that is, it is explored only for a fixed number of iterations.

3.4 Correctness

We now discuss the correctness guarantees of the IC-Cut search strategy. The
following theorems hold assuming symbolic execution has perfect precision, i.e.,
that constraint generation and solving are sound and complete for all program
instructions.

We define an abort-statement in a program as any statement that triggers a
program error.

Theorem 1 (Soundness). Consider a program P. If IC-Cut reaches an abort,
then there is some input to P that leads to an abort.

Proof Sketch. The proof is immediate by the soundness of dynamic symbolic
execution [12,14]. In particular, it is required that the summaries of IC-Cut are
not over-approximated, but since these summaries are computed using dynamic
symbolic execution, this is guaranteed. �

Theorem 2 (Completeness). Consider a program P. If IC-Cut terminates with-
out reaching an abort, no constraints are subsumed or skipped, and the functions
whose summaries are reused have no outputs and no concrete non-null pointers
as inputs, then there is no input to P that leads to an abort.
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Proof Sketch. The proof rests on the assumption that any potential source of
incompleteness in the IC-Cut summarization strategy is conservatively detected.
There are exactly two sources of incompleteness: (1) constraint subsumption and
skipping for automatically detecting and controlling input-dependent loops, and
(2) reusing summaries of functions that have a single output and concrete non-
null pointers as inputs.

Constraint subsumption and skipping remove or ignore non-redundant con-
straints from the path constraint to detect and control successive iterations of
input-dependent loops. By removing or ignoring such constraints, these tech-
niques omit certain execution paths of the program, and are therefore incom-
plete.

When reusing the summary of a function with a single output, certain execu-
tion paths of the program might become infeasible due to the value of its output.
As a result, IC-Cut might fail to explore some execution paths. On the other
hand, summaries of functions with no outputs are completely independent of
the execution paths taken in the program. Therefore, when such summaries are
reused, no paths are ever missed. Note that by restricting the function outputs
to at most one, we set an upper bound to the number of execution paths that
can be missed, that is, in comparison to reusing summaries of functions with
more than one output.

When reusing the summary of a function that has concrete non-null point-
ers as inputs, execution paths that are guarded by tests on the values of these
pointers might be missed, for instance, when two such pointers are compared
for aliasing. This is because we ignore whether the values of such inputs actu-
ally match the calling context where the summary is reused, to deal with the
nondeterminism of dynamic memory allocation.

The program units for which the exploration of IC-Cut is complete and does
not lead to an abort are dynamically verified. �

3.5 Limitation: Search Redundancies

It is worth emphasizing that IC-Cut may perform redundant sub-searches in two
cases: (1) partial call graph, and (2) late summary mismatch, as detailed below.
However, as our evaluation shows (Sect. 4), these limitations seem outweighed
by the benefits of IC-Cut in practice.

Partial Call Graph. This refers to discovering functions during the decompo-
sition phase of IC-Cut that do not appear in the call graph built in the learning
phase. Whenever new functions are discovered, fuzzing is aborted in order to
update the call graph, and all test results of the function being fuzzed are lost.

Late Summary Mismatch. Consider a scenario in which function foo calls
function bar. At time t , bar is summarized because it is call-stack deeper than
foo and the interface constraint on bar’s inputs is satisfied. At time t + i , foo
is explored while reusing the summary for bar, and bar’s candidate outputs are
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associated with symbolic variables. At time t + i + j , while still exploring foo,
the interface constraint on bar’s outputs is violated, and thus, the summary of
bar is invalidated. Consequently, fuzzing of foo is aborted and restarted, this
time by inlining bar to its calling context in foo.

4 Experimental Evaluation

In this section, we present detailed experimental results obtained when fuzzing
the ANI Windows image parser, which is available on every version of Windows.

This parser processes structured graphics files to display “ANImated” cursors
and icons, like the spinning ring or hourglass on Windows. The ANI parser is
written mostly in C, while the remaining code is written in x86 assembly. It is a
large benchmark consisting of thousands of lines of code spread across hundreds
of functions. The implementation involves at least 350 functions defined in five
Windows DLLs. The parsing of input bytes from an ANI file takes place in
at least 110 functions defined in two DLLs, namely, in user32.dll, which is
responsible for 80 % of the parsing code, and in gdi32.dll, which is responsible
for the remaining 20 % [10].

Our results show that IC-Cut alleviates path explosion in this parser while
preserving or even increasing code coverage and bug finding, compared to the
current generational-search strategy used in SAGE. Note that by “generational-
search strategy used in SAGE”, we mean a monolithic search in the state space
of the entire program.

For our experiments, we used five different configurations of IC-Cut, which
we compared to the generational-search strategy that is implemented in SAGE.
All configurations are shown in Table 1. For each configuration, the first column
of the table shows its identifier and whether it uses IC-Cut. Note that configu-
rations A–E use IC-Cut, while F uses the generational-search strategy of SAGE.
The second column shows the maximum runtime for each configuration: config-
urations A–E allow for a maximum of three hours to explore each function of

Table 1. All configurations used in our experiments; we used five different configu-
rations of IC-Cut (A–E), which we compared to the generational-search strategy of
SAGE (F).

Configuration Maximum
runtime

Summarization
at maximum
runtime

Constraint
subsumption

Constraint
skipping

Flip
count
limit

ID IC-Cut

A � 3h/function � �
B � 3h/function � � �
C � 3h/function � � �
D � 3h/function �
E � 3h/function � �
F 48h � �
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Fig. 1. The instructions of the ANI parser that are covered by each configuration. The
projected instruction coverage is critical for bug finding.

the parser (since the exploration is per function), while F allows for a total of
48 h to explore the entire parser (since the exploration is whole program). The
four rightmost columns of the table indicate whether the following options are
turned on:

– Summarization at maximum runtime: Records a summary for the currently-
fuzzed function when the maximum runtime is exceeded if no conditions on
the function’s interface complexity have been violated;

– Constraint subsumption: Eliminates weaker constraints implied by stronger
constraints generated from the same branch instruction, most likely due to
successive iterations of an input-dependent loop (see Sect. 3.3);

– Constraint skipping : Does not negate stronger constraints that imply weaker
constraints generated from the same branch instruction (see Sect. 3.3);

– Flip count limit : Establishes the maximum number of times that a constraint
generated from a particular program instruction may be negated [16].

Note that F is the configuration of SAGE that is currently used in production.
Figure 1 shows the instructions of the ANI parser that are covered by each

configuration. We partition the covered instructions in those that are found
in user32.dll and gdi32.dll (projected coverage), and those that are found
in the other three DLLs (remaining coverage). Note that the instructions in
user32.dll and gdi32.dll are responsible for parsing untrusted bytes and are,
therefore, critical for bug finding. As shown in Fig. 1, configuration E, for which
options “summarization at maximum runtime” and “constraint subsumption”
are turned on, achieves the highest projected coverage. Configuration D, for
which only “constraint subsumption” is turned on, achieves a slightly lower cov-
erage. This suggests that summarizing when the maximum runtime is exceeded
helps in guiding the search toward new program instructions; in particular, it
avoids repeatedly exploring the code of the summarized functions. In contrast,
configurations A–C, for which “constraint skipping” is turned on, achieve the
lowest projected coverage. This indicates that testing input-dependent loops for
more than just a single number of iterations is critical in increasing coverage.



IC-Cut: A Compositional Search Strategy for Dynamic Test Generation 313

Fig. 2. The time it takes for each configuration to stop exploring the ANI parser.

Figure 2 shows the time (in minutes) it takes for each configuration to stop
exploring the ANI parser. Note that configuration B stops in the smallest amount
of time (approximately 15 h); this is because too many constraints are pruned
due to options “constraint subsumption”, “constraint skipping”, and “flip count
limit”, which are turned on. D achieves almost the same projected coverage as
F (Fig. 1) in much less time, indicating that ad-hoc heuristics such as flip count
limits are no longer necessary with IC-Cut. Configuration E, which achieves the
highest projected coverage, stops exploring the parser in the second smallest
amount of time, that is, in approximately 21.5 h—roughly 55 % faster than the
generational-search strategy used in production (configuration F).

In this amount of time, configuration E also detects the largest number of
unique first-chance exceptions in the ANI parser. This is shown in Fig. 3, which
presents how many unique exceptions are detected by each configuration. A
first-chance exception is an exception (similar to an assertion violation) thrown
at runtime (by the operating system) during program execution, but caught
by the program using a C/C++ try/catch-mechanism (see [10]). Note that the
nine exceptions found by configuration E are a superset of all other exceptions
detected by the remaining configurations.

In summary, configuration E detects more unique exceptions than all other
configurations combined. Compared to configuration F (generational search), E
finds more exceptions (Fig. 3) and achieves the same projected instruction cov-
erage (Fig. 1) in less than half the time (Fig. 2). E is the most effective configu-
ration against path explosion.

Fig. 3. The number of unique exceptions that are detected by each configuration.
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Table 2. Performance of the winner-configuration E when the maximum runtime per
function of the parser is one minute, 90 min, and three hours, respectively. Performance
is measured in terms of covered instructions, total exploration time of the parser, and
detected first-chance exceptions.

Maximum runtime Coverage Total time (in minutes) First-chance exceptions

projected remaining unique duplicate

1min 5,421 36,250 23 0 0

90min 7,896 37,183 683 8 7

3 h 7,894 37,146 1292 9 10

Table 2 shows how the winner-configuration E performs when the maximum
runtime per function of the parser is one minute, 90 min, and three hours, respec-
tively. Performance is measured in terms of covered instructions, total explo-
ration time of the parser, and detected first-chance exceptions. As shown in the
table, IC-Cut performs better than configuration F even for a maximum runtime
of 90 min per function: there is a noticeable improvement in projected code cov-
erage and bug finding, which is achieved in approximately eleven hours (roughly
76 % faster than configuration F). This is a strong indication of how much the
summarization strategy of IC-Cut can alleviate path explosion.

Fig. 4. How many functions are explored by the winner-configuration E when the
maximum runtime per function of the parser is one minute, 90 min, and three hours,
respectively. Only functions for which SAGE generated symbolic constraints are shown.
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Figure 4 shows the number of functions that are explored by the winner-
configuration E when the maximum runtime per function of the parser is one
minute, 90 min, and three hours, respectively. This figure shows only functions
for which SAGE generated symbolic constraints. The functions are grouped as
follows: exhaustively tested and summarized, summarized despite constraint sub-
sumption or an exceeded runtime, not summarized because of multiple outputs or
constrained symbolic inputs. The functions in the first group constitute verified
program components (according to Theorem2), highlighting a key originality of
IC-Cut, namely, that it can dynamically verify sub-parts of a program during
fuzzing. As expected, the larger the maximum runtime, the more functions are
discovered, the fewer functions are summarized at maximum runtime, and the
more functions are verified. Interestingly, the functions that are not summariz-
able because of multiple outputs or constrained symbolic inputs are identified
immediately, even for a maximum runtime of one minute per function.

We also used IC-Cut to fuzz other image parsers, namely, GIF and JPEG.
Unfortunately, our prototype implementation could not handle the size of these
larger parsers. However, preliminary experiments showed that our restrictions for
summarization on function interfaces apply to both GIF and JPEG. For instance,
when running on GIF with a time-out of three hours per function, 16 out of 140
functions (with symbolic constraints) were summarized. When running on JPEG
with the same time-out, 27 out of 204 functions were summarized.

5 Related Work

Automatic program decomposition for effective systematic dynamic test gener-
ation [9] is not a new idea. Moreover, compositional symbolic execution [1,12]
has already been shown to alleviate path explosion. However, when, where, and
how compositionality is most effective in practice is still an open problem.

Algorithms for automatic program summarization have been proposed before
[1,12,18]. SMART [12] tests all program functions in isolation, encodes their
test results as summaries expressed using input preconditions and output post-
conditions, and then reuses these summaries when testing higher-level func-
tions. Demand-driven compositional symbolic execution [1] generates partial
summaries that describe only a subset of all paths in a function and can be
expanded lazily. SMASH [18] computes both may and must information com-
positionally using both may and must summaries. IC-Cut is inspired by this
compositional reasoning and summarization although it does not generate full-
fledged function summaries. Instead, IC-Cut records a single precondition on
all concrete function inputs without disjunctions or postconditions. In contrast
to SMART, IC-Cut generates summaries only for functions with low interface
complexity. Similarly to demand-driven compositional symbolic execution, our
summaries are partial in that they describe a single calling context. Furthermore,
when testing a function in isolation, the closed symbolic constraints that IC-Cut
collects before the first call to the function are similar to the lazily-expanded
dangling nodes in the demand-driven approach.
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Other closely related techniques [3,4,19,20] can be considered as approxima-
tions of sub-program summarization. Dynamic state merging and veritesting [3,
19] merge sub-program searches, and RWset [4] prunes searches by
dynamically computing variable liveness. Information partitions [20] are used to
identify “non-interfering” input chunks such that symbolically solving for each
chunk while keeping all other chunks fixed to concrete values finds the same
bugs as symbolically solving for the entire input. Similarly to these techniques,
our work also approximates sub-program summarization. Moreover, IC-Cut is
closely related to reducing test inputs using information partitions. Both tech-
niques exploit independence between different parts of the program input. How-
ever, IC-Cut does not require that the input is initially partitioned, and avoids
the overhead of dynamically computing data and control dependencies between
input chunks.

Overall, our algorithm does not require any static analysis and uses very
simple summaries, which are nevertheless sufficient to significantly alleviate path
explosion. As a result, it is easy to implement on top of existing dynamic test gen-
eration tools. Our purely dynamic technique can also handle complicated ANI
code patterns, such as stack-modifying, compiler-injected code for structured
exception handling, and stack-guard protection, which most static analyses can-
not handle. Furthermore, a static over-approximation of the call graph might
result in testing more functions than necessary and for more calling contexts.
With an over-approximation of function interfaces, we would summarize fewer
functions, given the restrictions we impose on function inputs and outputs, thus
fighting path explosion less effectively.

In addition to our low-complexity function summaries, SAGE implements
other specialized forms of summaries, which deal with floating-point computa-
tions [13], handle input-dependent loops [17], and can be statically validated
against code changes [15].

6 Concluding Remarks

We have presented a new search strategy inspired by compositional reasoning at
simple function interfaces. However, we do not perform compositional verification
in this work, except when certain restrictions are met (Theorem 2 and Sect. 4).

IC-Cut uses heuristics about interface complexity to discover, dynamically
and incrementally, independent program units that process different chunks of
the input vector. Our search strategy is sound for bug finding, while limiting
path explosion in a more principled and effective manner than in the current
implementation of SAGE, with its simple, yet clever, search heuristics. Indeed,
compared to the generational-search strategy of SAGE, our experiments show
that IC-Cut preserves code coverage and increases bug finding in significantly
less exploration time.

IC-Cut generates low-complexity summaries for a single calling context of
functions with unconstrained symbolic inputs and at most one output. Our pre-
vious work on proving memory safety of the ANI Windows image parser [10]
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shows that such simple interfaces exist in real, complex parsers, which is why
we chose the above definition. However, our definition could be relaxed to allow
for more than one calling context or function output, although our experiments
show that this definition is already sufficient for large improvements. We leave
this for future work. We also leave for future work determining how suitable such
a definition is for application domains other than that of binary image parsers.
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