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Abstract. Constraint Based Methods had been successfully used to
simulate genome-scale metabolic behaviors over a range of experimental
conditions. In most applications, environmental constraints are parame-
terized, and the use of metabolic reactions and corresponding genes is
the direct consequence of the tuning of these parameters.

However, in evolutionary studies, the problem is different: one knows
the relative importance of reactions and one seeks environmental condi-
tions that could explain such a biological fitness.

This study details this modeling paradigm change and discuss a
putative formalization of such a biological problem in the form of a
Mixed Integer Bi-level Linear Problem (MIBLP). Unfortunately, solving
a MIBLP is difficult, paving the way for the need of further constraint
based method developments for understanding evolutionary processes.

Constraint Based Methods (CBMs) are considered as efficient approaches to
predict phenotypic responses and explore the structure of genome-scale networks
of a variety of organisms [1,2]. For instance, they tackle effects of genetic muta-
tions (resp. gene deletions [3,4] and gene insertion [5]) on metabolic behaviors,
whereas complementary analysis focused on gene transfers [6], gene dispensabil-
ity [7] or nutrient adaptation [8]. Similarly, high-throughput sequencing allows
today to compare lineages and biological studies to infer evolutionary patterns
[9], paving the way to bridge evolutionary studies and CBMs.

From an evolutionary viewpoint, environment exerts or relaxes pressure in
biological systems. Thus, in front of detrimental or beneficial environments,
organisms adapt themselves by gaining or loosing functions [10,11]. Those knowl-
edge being available nowadays, it is of great interest to decipher the environmen-
tal conditions that maximize lineage evolution, pointing conditions that could
lead to metabolic reaction losses [12].

When CBM is applied in evolutionary contexts, environment usually is first
parameterized and its effect is then studied and interpreted via a range of sim-
ulations [6,13]. Herein, instead of standard approaches, we propose to focus on
selecting environmental conditions that make most reactions unable to carry
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Fig. 1. Evolutionary problem formulation. Considering a putative metabolic network
(a), we assume the production of metabolite B as a fitness proxy. If A is the only
substrate in a particular environment, we expect that genes coding for v7, v8 and v9
disappear upon evolution. b) The inner Problem (P1) identify blocked reactions, i.e.,
those that can not carry a non-zero flux under steady-state conditions. A variation
of (P1) is used in [14,15]. c) A mixed integer bi-level linear problem seeking for an
environmental setting (i.e., defined values for environmental variables in L, see text)
E that maximizes the number of blocked reactions.

fluxes (see Fig. 1a). Indeed, recent evolutionary studies hypothesize that such
blocked reactions are likely to be lost as functions due to evolution [12].

Formalization of the previous statements leads to an optimization problem
as shown in Fig. 1b. Constraints in (1) and (2) are mass balance and boundary
conditions. Equations in (3) represent environmental variables as a subset of
reaction fluxes indexed by L.

To identify blocked reactions, we introduce for each reaction i two binary
variables f+

i and f−
i (resp. forward and reverse flux) in (7). Constraints in (4),

(5) and (6) guarantee that a reaction i is blocked if and only if f+
i = f−

i = 0.
By M (resp. ε), we denote a large (resp. small) number. Given an environmental
setting E, maximizing

∑
f +i + f −

i identifying all blocked reactions.
As a next step in our study, we propose to use the Mixed Integer Bi-level

Linear Problem (MIBLP) shown in Fig. 1c in order to select an environmental
setting E that maximizes the number of blocked reactions. The main difference
with other bi-level approaches is the focus on controlling metabolic networks
using only environmental variables and not genetic manipulations [16].

Unfortunately, despite several tentatives [17,18], no general solution is avail-
able for this type of problem [19], emphasizing the need for an ad-hoc algorithm
implementation to solve this new evolutionary problem. Furthermore, for the
sake of generalization, any method that handle this type of bi-level program,
will lead to theoretical and practical advances in system biology.

From an evolutionary viewpoint, we expect that solving this problem will
pinpoint the environmental conditions that are responsible for the specification
of lineages or microbial strains. This question is particularly vivid considering
drastic environmental condition changes that are expected in a near future.
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