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Preface

This volume contains the articles presented at CMSB 2015. The 13th International
Conference on Computational Methods in Systems Biology (CMSB) was held during
September 16–18, 2015, at La Cité - Nantes Event Center in Nantes, France.

The CMSB annual conference series, created in 2003, provides a unique forum of
discussion for computer scientists, biologists, mathematicians, engineers, and physi-
cists interested in a system-level understanding of biological processes.

Topics of interest include formalisms for modeling biological processes; models and
their biological applications; frameworks for model verification, validation, analysis,
and simulation of biological systems; high-performance computational systems biology
and parallel implementations; model inference from experimental data; model inte-
gration from biological databases; multi-scale modeling and analysis methods; and
computational approaches for synthetic biology. Case studies in systems and synthetic
biology were especially encouraged.

The 2015 conference was an opportunity to hear about research on the analysis of
biological systems, networks, and data ranging from intercellular to multi-scale. This
year, keyword lists often contain such words as: model checking, stochastic analysis,
hybrid systems, circadian clock, time series data, logic programming, constraints
solving. . . emphazing the wide spectrum of interests of the CMSB community.

The 2015 edition of CMSB received 48 regular submissions. Amongst them, 5 were
withdrawn by the authors for various reasons, so 43 complete submissions were
reviewed by the Program Committee, each submission being reviewed by 3 Program
Committee members. In the end, 20 articles were selected for presentation at the
conference and publication in the proceedings (acceptance rate: 46 %).

This volume contains in addition the abstracts of four invited speakers: Marta
Kwiatkowska, David Harel, Gilles Bernot, and David Fell. Moreover, there are 2 short
papers selected out of 4 submitted, and several posters were presented at the
conference.

As program co-chairs, we have many people to thank. We would first like to thank
the Program Committee members and the external reviewers for their peer reviews and
the valuable feedback they provided to the authors. Our special thanks goes to François
Fages and Pedro Mendes for their useful advice on matters related to the organization
of the conference. We acknowledge the support of the EasyChair conference system
during the reviewing process and the production of these proceedings (http://www.
easychair.org). We also thank Kaushik Chowdhury and the IEEE Computer Society
Technical Committee on Simulation for supporting the best student paper award. Our
gratitude goes to all members of the Organizing Committee for their help, support, and
spirited participation before, during, and after the conference. It is our pleasant duty to

http://www.easychair.org
http://www.easychair.org


acknowledge the financial support from our sponsors. Finally, we would like to thank
all the participants of the conference. It was the quality of their presentations and their
contributions to the discussions that made the meeting a scientific success.

July 2015 Olivier Roux
Jérémie Bourdon
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Estimation and Verification of Hybrid Heart
Models for Personalised Medical

and Wearable Devices

Benoît Barbot, Marta Kwiatkowska,
Alexandru Mereacre and Nicola Paoletti

Department of Computer Science, University of Oxford, Oxford, UK
{benoit.barbot,marta.kwiatkowska,alexandru.mereacre,

nicola.paoletti}@cs.ox.ac.uk

Abstract. We are witnessing a huge growth in popularity of wearable and
implantable devices equipped with sensors that are capable of monitoring a
range of physiological processes and communicating the data to smartphones or
to medical monitoring devices. Applications include not only medical diagnosis
and treatment, but also biometric identification and authentication systems. An
important requirement is personalisation of the devices, namely, their ability to
adapt to the physiology of the human wearer and to faithfully reproduce the
characteristics in real-time for the purposes of authentication or optimisation of
medical therapies. In view of the complexity of the embedded software that
controls such devices, model-based frameworks have been advocated for their
design, development, verification and testing. In this paper, we focus on
applications that exploit the unique characteristics of the heart rhythm. We
introduce a hybrid automata model of the electrical conduction system of a
human heart, adapted from Lian et al. [8], and present a framework for the
estimation of personalised parameters, including the generation of synthetic
ECGs from the model. We demonstrate the usefulness of the framework on two
applications, ensuring safety of a pacemaker against a personalised heart model
and ECG-based user authentication.

This research is supported by ERC AdG VERIWARE and PoC VERIPACE.



More Thoughts on the Whole
Organism Challenge

David Harel

The Weizmann Institute of Science, Rehovot, Israel

Abstract. In 2002 I proposed a long-term “grand challenge” for the compre-
hensive and realistic modeling of biological systems, where we try to understand
and analyze an entire system in detail, utilizing in the modeling effort all that is
known about it. The proposal was to produce an interactive, dynamic, com-
puterized model of an entire multi-cellular organism. Specifically, I suggested
the C. elegans nematode, which is extremely complex despite its small size, but
well-defined in terms of anatomy and genetics. In this talk I will review this
challenge, and discuss some insights about its feasibility, based on some recent
modeling efforts we have carried out, including the organogenesis of the pan-
creas, rat neural whisking, cancer tumor formation, and various projects
regarding the C. elegans nematode worm.



A Genetically Modified Hoare Logic
that Identifies the Parameters

of a Gene Network

G. Bernot1, J.-P. Comet1, O. Roux2

1 I3S laboratory, University Nice Sophia Antipolis, UMR CNRS 7271 CS 40121,
06903 Sophia Antipolis cedex, France
{bernot,comet}@unice.fr

2 IRCCyN, UMR CNRS 6597, BP 92101, 1 rue de la Noë,
44321 Nantes Cedex 3, France

olivier.roux@irccyn.ec-nantes.fr

Abstract. The main difficulty when modelling gene networks is the identifica-
tion of the parameters that govern the dynamics. Here we present a new
approach based on Hoare logic and weakest preconditions (a la Dijkstra) that
generates constraints on the parameter values: Once proper specifications are
extracted from biological traces, they play a role similar to programs in the
classical Hoare logic. We firstly remind the discrete modelling for genetic
networks defined by René Thomas. Then, we define the Hoare/Dijkstra method
extended to gene networks, that extracts the weakest precondition on parameter
values.



Perspectives on Genome Scale Modelling
of Metabolism

David A. Fell, Mark G. Poolman, and Hassan B. Hartman

Department of Biological and Medical Sciences, Oxford Brookes University,
Oxford OX3 0BP, UK

dfell@brookes.ac.uk

http://mudshark.brookes.ac.uk/

Abstract. Genome scale metabolic modelling is arguably the most successful
current methodology at predicting a complex phenotype from genome sequen-
ces. Essentially it uses linear programming to predict optimal distributions of
fluxes in a metabolic network reconstructed from a genome annotation, subject
to constraints established from the requirement for mass balance in cellular
metabolism in a dynamic steady state. The methodology, generally known as
flux balance analysis (FBA) has increasing application in biotechnology and
medicine. However, as the number of organisms and processes being modelled
expands, new issues emerge that require innovation in model construction and
analysis, and some methodologies that were developed for analysis of optimal
microbial growth are less suitable for use in other contexts. In addition, there
remain issues of data representation and interpretation in the bioinformatic and
metabolic databases used in model construction that provide traps for the
unwary and frustrate attempts at completely automated model building. Finally
there are some persistent biochemical errors that are maintained by inheritance
from older models.

Amongst the issues around modelling methodology is the choice of opti-
misation function. Whilst growth yield is often a justifiable choice for
rapidly-growing microorganisms in a laboratory setting, it is not relevant to
developed, differentiated tissue in multicellular organisms for example. Other
modelling issues include the amount and nature of cellular maintenance
metabolism, and the need to avoid the production of ATP form nothing (cellular
perpetual motion).

As metabolic databases expand to become more comprehensive, there are
more instances where the same overall reaction or metabolite is represented at
different levels of detail. This can lead to entitites being incorporated into
models more than once; in the case of reactions this can generate spurious cyclic
routes, and in the case of metabolites to disruption of network connectivity.
Indeed, both these issues affect other forms of metabolic network analysis as
well.

The most common recurrent biochemical error is treating enzyme prosthetic
groups as substrates and products of enzyme reactions, of which FAD and
FADH2 are the most frequent examples. This creates pool metabolites that could
generate spurious redox interactions across the network that will not exist
because these groups are contained and recycled entirely within a single enzyme
reaction.
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Estimation and Verification
of Hybrid Heart Models

for Personalised Medical and Wearable Devices

Benôıt Barbot, Marta Kwiatkowska(B), Alexandru Mereacre,
and Nicola Paoletti

Department of Computer Science, University of Oxford, Oxford, UK
{benoit.barbot,marta.kwiatkowska,

alexandru.mereacre,nicola.paoletti}@cs.ox.ac.uk

Abstract. We are witnessing a huge growth in popularity of wearable
and implantable devices equipped with sensors that are capable of moni-
toring a range of physiological processes and communicating the data to
smartphones or to medical monitoring devices. Applications include not
only medical diagnosis and treatment, but also biometric identification
and authentication systems. An important requirement is personalisa-
tion of the devices, namely, their ability to adapt to the physiology of the
human wearer and to faithfully reproduce the characteristics in real-time
for the purposes of authentication or optimisation of medical therapies.
In view of the complexity of the embedded software that controls such
devices, model-based frameworks have been advocated for their design,
development, verification and testing. In this paper, we focus on appli-
cations that exploit the unique characteristics of the heart rhythm. We
introduce a hybrid automata model of the electrical conduction system
of a human heart, adapted from Lian et al. [8], and present a framework
for the estimation of personalised parameters, including the generation
of synthetic ECGs from the model. We demonstrate the usefulness of the
framework on two applications, ensuring safety of a pacemaker against
a personalised heart model and ECG-based user authentication.

Recent technological advances have spurred a huge growth in apps and wearables
for use in health monitoring. They employ a multiplicity of noninvasive sensors,
e.g. accelerometers and miniature cameras, that can read physiological indica-
tors, wirelessly send data to smartphones and analyse it not only to record trends
(e.g. fitness bands), but also to support decision making for diagnosis and inter-
vention. The success in miniaturisation of electronics has led to novel variants of
traditional medical devices being introduced on the market, such as leadless car-
diac pacemakers that can be implanted inside the human heart (e.g. Nanostim)
and implantable glucose monitors that transmit data to a wristwatch to alert
the wearer about any undesirable trends (e.g. Minimed). Applications are not
limited to the medical field, and include also emerging technologies for biomet-
ric user identification and security, such as wristbands that periodically check

This research is supported by ERC AdG VERIWARE and PoC VERIPACE.

c© Springer International Publishing Switzerland 2015
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4 B. Barbot et al.

the electrocardiogram (ECG) of the user to produce a template authentication
signal (e.g. the Nymi band).

An important requirement for wearables is their personalisation, namely, the
ability for the device to adapt to the physiology of the human wearer based
on the person’s individual characteristics. Personalisation is typically achieved
via an appropriate parameterisation of a model of the physiological process,
through parameter estimation and parameter synthesis techniques. Automation
of personalised delivery of medical treatment is a major challenge; for example,
rate-adaptive pacemakers are able to vary the rate of pacing depending on the
activity and age of the patient [6], but insulin pumps still rely on human supervi-
sion. Another important role of personalised devices is in device safety assurance,
where they can be used to faithfully reproduce the unique characteristics of the
wearer in real-time for the purposes of testing.

Undoubtedly, personalised medical wearable and implantable devices are
an important step towards achieving personalised healthcare. However, major
advances are necessary to realise this vision, ranging from technological (minia-
turisation, low-power circuits), software technologies (design automation, code
generation, integration), to regulatory and legal frameworks (FDA approval,
certification). This paper is concerned with model-based design and verification
techniques for ensuring safety and effectiveness of personalised devices based on
the bioelectrical activity of the heart.

We focus on the hybrid automata framework for closed-loop quantitative
verification of cardiac pacemakers introduced in [4,7]. This was extended in [5]
with techniques to automatically synthesise optimal timing delays to minimise
energy consumption, and in [2] with a hardware-in-loop simulator to evaluate
embedded pacemaker software on low-power hardware. However, personalisation
was not supported.

In this paper, we extend the framework of [4,7] as follows. We introduce a
new hybrid heart model encoded in Simulink/Stateflow and develop techniques
to personalise the model through parameter estimation based on ECG data. We
implement methods to produce synthetic ECGs that are characteristic for the
given individual, and also to compare different ECG patterns. We consider two
applications: verification of safety properties for a pacemaker against a person-
alised heart model, and biometric identification based on matching the wearer’s
signature with ECG data acquired for recognition. Further details on the meth-
ods and results are provided in the technical report [1].

1 Heart Model and Personalisation

We define a new heart model that includes the key components of the electri-
cal conduction system of the human heart (Fig. 1) and is a hybrid automata
translation of the model in [8].

The model can reproduce antegrade conduction (green arrows in the figure),
arising when a stimulus is generated by the sinoatrial (SA) node and is prop-
agated towards the ventricle passing through atrium and the atrio-ventricular
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(AV) node. The impulse can also start from the ventricle (either intrinsically by
component VRG or artificially by the pacemaker) and propagate in the oppo-
site direction (retrograde conduction, red arrows). The transmission of cardiac
waves between the atrium and ventricle is mediated by the AV node compo-
nent (AVJ) and by intermediate conduction nodes (AVJOut, RAConductor and
RVConductor). The model can reproduce, among others, ectopic beats (through
components SANodeEctopic and VRGEctopic) and the collision of cardiac waves
leading to fusion beats. The artificial pacemaker [3] is connected to the atrium
and ventricle, and can both sense and stimulate them by delivering electrical
impulses. An important feature of the model is the ability to generate synthetic
ECG signals, which are used for parameter estimation and authentication. An
ECG signal can be broken into five different waves, namely P, Q, R, S and T.
Each wave is a simple bell-shaped curve which we reproduce in the synthetic
signal by associating events in the heart model with Gaussian functions.

Pacemaker

Atrium VentricleSANode

SANodeEctopic VRGEctopic

VRG
AVJ

RAConductor

AVJOut

RVConductor

Fig. 1. Heart model (Color figure online).

Estimation from ECG Data. To
achieve a personalised model, we
need to estimate parameter val-
ues so that the synthetic ECG is
close to the input signal. The first
steps are filtering and process-
ing of the signal and detec-
tion of the ECG waves (Fig. 2a).
Detected peak locations, widths
and amplitudes can be directly mapped to some parameters of the model, e.g.
the SA node frequency, overall AV conduction time and ventricular refractory
time. Instead, some other parameters that cannot be inferred in this way are
estimated using a Gaussian process optimisation (GPO) approach. Specifically,
we seek to minimise the statistical distance between the input signal and the
synthetic signal generated by the model with the parameters sampled in the
GPO loop. In order to compute the distance, the signals are mapped into a sin-
gle (statistical) ECG waveform centred around the R wave (the highest peak,
see Fig. 2b).
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Fig. 2. Processed signal and detected peaks (a). Statistical ECG waveform (b).
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Table 1. Results of pacemaker verification. Aget and V get indicate the presence of an
atrial and ventricular beat, respectively.

Property Healthy Arrhythmia With pacemaker

P=?G
<60000(V get ⇒ F<1100V get) 0.99997 ± 0.0012 0.360607 ± 0.000015 1 − 0.00003

P=?G
<60000(Aget ⇒ F [100,200]V get) 0.946454 ± 0.0005 0.0 + 0.000005 0.875494 ± 0.0008

2 Applications and Discussion

Pacemaker Verification. We study two properties related to two common heart
conditions: bradycardia, i.e. slow heart rate, and AV block, i.e. conduction defect
in the AV node. For the first property we query the probability that bradycardia
episodes never occur, i.e. that the time between two consecutive ventricular
events is always below some threshold. The second property requires correct
conduction of the AV node, i.e. that the time between two consecutive atrial
and ventricular events always lies in a given interval. Table 1 shows the results
of the probabilistic verification for these properties on a healthy heart, a heart
with arrhythmia (bradycardia for the first property and AV block for the second),
and the same defective heart but with the pacemaker attached.
Note that the pacemaker can correct the two defective dynamics, since it ensures
that the first property holds with probability 1 and the second with probability
above 0.87.

Authentication. We show how the synthetic ECG generated by the personalised
model can be used as a template for authentication purposes. This is based on
computing its distance with the recognition ECG acquired for the identifica-
tion. If the obtained score is small enough (e.g. not exceeding 50% of the score
obtained in the estimation phase), the authentication is successful. Figure 3a
shows an example of successful identification when the ECGs for model estima-
tion and authentication come from the same patient1, while Fig. 3b shows how
authentication failed with a signal from a different patient.
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Fig. 3. Matching synthetic and recognition ECGs for authentication.

1 MIT-BIH Normal Sinus Rhythm database, record 16265 m2 record 17453 m.



Estimation and Verification of Hybrid Heart Models 7

Discussion. In this work, we presented methods to derive personalised heart mod-
els from data and showed their usefulness in the safety verification of pacemaker
devices and in the ECG-based authentication. Besides enabling formal verifica-
tion and synthesis [2,4], code generation and modularity, our formal model-based
framework is sufficiently general to support, at the same time, other kinds of
physiological systems and medical devices. This would enable improvement of the
authentication performance by combining the ECG with other biometrics (e.g.
fingerprints or iris) [9], and ultimately verification of the collective behaviour
of multiple interconnected devices in a closed-loop with a highly-personalised
model of the human physiological system.
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Abstract. The main difficulty when modelling gene networks is the
identification of the parameters that govern the dynamics. Here we
present a new approach based on Hoare logic and weakest preconditions
(a la Dijkstra) that generates constraints on the parameter values: Once
proper specifications are extracted from biological traces, they play a role
similar to programs in the classical Hoare logic. We firstly remind the
discrete modelling for genetic networks defined by René Thomas. Then,
we define the Hoare/Dijkstra method extended to gene networks, that
extracts the weakest precondition on parameter values.

1 Thomas’ Gene Regulatory Networks with Multiplexes

Our formal framework [KCRB09] is based on the discrete approach of Thomas
[TK01]: A gene network is a labelled directed graph (left part of Fig. 1) in which
vertices are either variables (within circles) or multiplexes (within rectangles).
Variables abstract genes or their products, and multiplexes contain propositional
formulas that encode situations in which a group of variables (inputs of multi-
plexes) influence the evolution of some variables (outputs of multiplexes). In the
figure the multiplex μ2 expresses that the variable x can help the activation of
the variable y when it is at least equal to 1. In general multiplexes can represent
combined biological phenomena, one of the simplest being the formation of com-
plexes (in which case the formula would contain a conjunction). In the figure,
μ1 reflects an auto-activation of x at level 2 which is controled by μ3. Because
μ3 contains a negation, μ1 is inhibited by y.

As shown in the right part of Fig. 1, this gives rise to 6 qualitative regions in
the phase space, which we call (discrete) states. A state is an assignment of inte-
ger values to the variables. Such an assignment allows a natural evaluation of any
formula within a multiplex: By replacing variables by their values we get a propo-
sitional formula whose atoms are the results of the integer inequalities. Then, we
say that a multiplex m, predecessor of a variable v in the graph, is a resource of v iff
c© Springer International Publishing Switzerland 2015
O. Roux and J. Bourdon (Eds.): CMSB 2015, LNBI 9308, pp. 8–12, 2015.
DOI: 10.1007/978-3-319-23401-4 2
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yx

(x ≥ 2) ∧ µ3

μ1

μ2
x ≥ 1

μ3
¬(y ≥ 1)

y

x

1

1

0

0 2

Fig. 1. (Left) Discrete gene network with variables x and y, multiplexes μ1, μ2 and
μ3 with associated formulas ϕμ1 ≡ ((x � 2) ∧ μ3), ϕμ2 ≡ (x � 1) and ϕμ3 ≡ ¬(y � 1).
(Right) Its state graph obtained when choosing parameters Kx,∅ = 0, Kx,{μ1} = 2,
Ky,∅ = 0, and Ky,{μ2} = 1.

its substituted formula is true: at the state (x = 2, y = 1), μ2 is the only resource
of y whereas ϕμ1 is false and consequently, the set of resources of x is empty.

At a given state η, each variable v evolves in the direction of a specific level
that only depends on the set of resources of v. This level is the integer value of
a parameter Kv,ρ(η,v), where ρ(η, v) is the set of resources of v at η. Hence, at
state η, v can increase if η(v) < Kv,ρ(η,v), it can decrease if η(v) > Kv,ρ(η,v),
and it is stable if η(v) = Kv,ρ(η,v). In the Thomas’ method, the variables evolve
asynchronously by unit steps toward their respective K.... The dynamics of a
gene network is then described by an asynchronous state graph (right part of
Fig. 1).

2 Hoare Triples for Gene Networks

An assertion is a formula whose terms are sums or subtractions between integers,
variables or parameters K... of the gene network, predicates are equalities or
inequalities, and connectives are the usual ones of first order logic. A Hoare
triple is an expression of the form “{P} p {Q}” where P and Q are assertions
(pre- and post-conditions) and p is a trace specification.

Trace specifications are indeed the key concept to formalize the observations
of a biologist during experiments. They are inductively defined as follows:

• For each variable v of the gene network, the expressions “v+”, “v−” and “v :=
n” (where n ∈ IN) are trace specifications (increase, decrease or assignment
of variable value).

• If e is an assertion then “assert(e)” is a trace specification.
• If p1 and p2 are trace specifications then so is (p1; p2) (sequential composition).
• If p1 and p2 are trace specifications and if e is an assertion, then so is

(if e then p1 else p2).
• If p is a trace specification and if e and I are assertions, then (while e with
I do p) is also a trace specification. The assertion I is called the invariant of
the while loop.

• If p1 and p2 are trace specifications then so are ∀(p1, p2) and ∃(p1, p2) (quan-
tifiers).
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Conventionally, we call the empty trace ε = assert(true).
For lack of space we do not define here the formal semantics of trace spec-

ifications [BCK+15]. Intuitivelly, “v+” (resp. “v−”, “v := n”) means that the
expression level of variable v has been observed as increasing by one unit (resp.
decreasing by one unit, or set to a particular value n by the experimental pro-
tocole). “assert(e)” expresses a property observed on the current state with-
out change of state. The sequential composition concatenates two specifications
whereas “if” chooses between two specifications according to the assertion e.
The loop invariant I, as in classical Hoare logic, facilitates proofs through while
loops. Finally, the quantifiers ∀ and ∃ group together several specifications.

3 A Hoare Logic for Gene Networks

We define our Hoare logic by giving the rule for each instruction of a trace
specification. First, let us introduce a few conventional assertions.

If ω is a subset of the set of predecessors of a variable v in the network, the
assertion Φω

v characterizes the states such that ω is the set of resources of v:

Φω
v ≡ (

∧

m ∈ ω

ϕm) ∧ (
∧

m �∈ ω, m predecessor of v

¬ϕm)

Then, the formula Φ+
v and Φ−

v characterize the states such that v can
increase/decrease:
Φ+

v ≡
∧

ω⊂{predecessors of v}
(Φω

v ⇒ Kv,ω > v) Φ−
v ≡

∧

ω⊂{predecessors of v}
(Φω

v ⇒ Kv,ω < v)

Our genetically modified Hoare logic is defined by the following inference
rules, where v is a variable of the gene network.

Rules encoding Thomas’ discrete dynamics:

{ Φ+
v ∧ Q[v←v+1] } v+ {Q} Incrementation

{ Φ−
v ∧ Q[v←v−1] } v− {Q}Decrementation

Rules for quantifiers:

{P1} p1 {Q} {P2} p2 {Q}
{P1∧P2} ∀(p1,p2) {Q} Universal

{P1} p1 {Q} {P2} p2 {Q}
{P1∨P2} ∃(p1,p2) {Q} Existential

Other rules, directly inspired by Hoare Logic:

{ Φ ∧ Q } assert(Φ) { Q }Assert {Q[v←k]} v:=k {Q}Assignment

{P1} p1 {P2} {P2} p2 {Q}
{P1} p1;p2 {Q} Sequential

{P1} p1 {Q} {P2} p2 {Q}
{(e∧P1)∨(¬e∧P2)} if e then p1 else p2 {Q}Conditional

{e∧I} p {I} ¬e∧I⇒Q
{I} while e with I do p {Q} Iteration

P ⇒ Q
{P} ε {Q}Empty trace
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We have proved that this modified Hoare logic is correct, and complete assum-
ing a proper choice of the loop invariants [BCK+15]. More precisely, the classical
backward strategy of Dijkstra (where the Empty trace rule is never applied) com-
putes the weakest precondition P0 such that {P0} p {Q}. Similarly to classical
Hoare logic which reflects a partial correctness of imperative programs, the pre-
vious definition does not imply termination of while loops.

4 Example

In [Mt02] Uri Alon and co-workers have studied the most common in vivo pat-
terns involving three genes. Among them, the incoherent feedforward loop of
type 1 is composed by a transcription factor a that activates a second transcrip-
tion factor c, and a is an activator of b whereas c is an inhibitor of b (Fig. 2).

a

1

b

c
1

1

l

a � 1

a � 1
σ

¬(c � 1)
λ

Fig. 2. Boolean variables: {a, b, c}. Multiplexes: {l, λ, σ} with φl≡(a � 1), φλ≡(¬(c �
1)), φσ≡(a � 1). Unknown parameters: Ka,∅, Kc,∅ , Kc,{l}, Kb,∅ , Kb,{σ}, Kb,{λ} and
Kb,{σ,λ}.

Uri Alon and many biologists consider that if a, b and c are equal to 0, the func-
tion of this feedforward loop is to ensure a transitory activity of b that signals
when a has switched from 0 to 1: The idea is that a activates the productions
of b and c, and then c stops the production of b. This is specified by the Hoare
triple {P} p {Q0} where P ≡ (a = 1 ∧ b = 0 ∧ c = 0), p ≡ (b+; c+; b−) and
Q0 ≡ (b = 0). The backward strategy using our genetically modified Hoare logic
on this example gives the following successive conditions.

The weakest precondition through the last instruction “b−” is (Decrementa-
tion rule):
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Φ∅

b
⇒ Kb < b

Φσ
b ⇒ Kb,σ < b

Φλ
b ⇒ Kb,λ < b

Φ
σ,λ
b

⇒ Kb,σλ < b

b − 1 = 0

≡

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(¬¬(c � 1) ∧ ¬(a � 1)) ⇒ Kb < b

(¬¬(c � 1) ∧ (a � 1)) ⇒ Kb,σ < b

(¬(c � 1) ∧ ¬(a � 1)) ⇒ Kb,λ < b

(¬(c � 1) ∧ (a � 1)) ⇒ Kb,σλ < b

b − 1 = 0

⇔

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

b = 1

((c � 1) ∧ (a < 1)) ⇒ Kb = 0

((c � 1) ∧ (a � 1)) ⇒ Kb,σ = 0

((c < 1) ∧ (a < 1)) ⇒ Kb,λ = 0

((c < 1) ∧ (a � 1)) ⇒ Kb,σλ = 0

Then, the weakest precondition through “c+” is (Incrementation rule):
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

¬(a � 1) ⇒ Kc > c
a � 1 ⇒ Kc,l > c
b = 1
((c + 1 � 1) ∧ (a < 1)) ⇒ Kb = 0
((c + 1 � 1) ∧ (a � 1)) ⇒ Kb,σ = 0
((c + 1 < 1) ∧ (a < 1)) ⇒ Kb,λ = 0
((c + 1 < 1) ∧ (a � 1)) ⇒ Kb,σλ = 0

⇔

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

c = 0
a < 1 ⇒ Kc = 1
a � 1 ⇒ Kc,l = 1
b = 1
a < 1 ⇒ Kb = 0
a � 1 ⇒ Kb,σ = 0
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Lastly, through the first “b+” (Incrementation rule):
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(¬¬(c � 1) ∧ ¬(a � 1)) ⇒ Kb > b
(¬¬(c � 1) ∧ (a � 1)) ⇒ Kb,σ > b
(¬(c � 1) ∧ ¬(a � 1)) ⇒ Kb,λ > b
(¬(c � 1) ∧ (a � 1)) ⇒ Kb,σλ > b
c = 0
a < 1 ⇒ Kc = 1
a � 1 ⇒ Kc,l = 1
b + 1 = 1
a < 1 ⇒ Kb = 0
a � 1 ⇒ Kb,σ = 0

⇔ P0 ≡

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a < 1 ⇒ Kb,λ = 1
a � 1 ⇒ Kb,σλ = 1
c = 0
a < 1 ⇒ Kc = 1
a � 1 ⇒ Kc,l = 1
b = 0
a < 1 ⇒ Kb = 0
a � 1 ⇒ Kb,σ = 0

Then, using the Empty trace rule to finish the correctness proof of the Hoare
triple, we have to ensure P ⇒ P0 and, after simplification, we get the correctness
if and only if Kb,σλ = 1 and Kc,l = 1 and Kb,σ = 0. So, under these three
hypotheses and whatever the values of the other parameters, the system can
exhibit a transitory production of b in response to a switch of a from 0 to 1.
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Abstract. In this paper, we present a new tool SReach, which solves
probabilistic bounded reachability problems for two classes of mod-
els of stochastic hybrid systems. The first one is (nonlinear) hybrid
automata with parametric uncertainty. The second one is probabilistic
hybrid automata with additional randomness for both transition prob-
abilities and variable resets. Standard approaches to reachability prob-
lems for linear hybrid systems require numerical solutions for large opti-
mization problems, and become infeasible for systems involving both
nonlinear dynamics over the reals and stochasticity. SReach encodes
stochastic information by using a set of introduced random variables,
and combines δ-complete decision procedures and statistical tests to
solve δ-reachability problems in a sound manner. Compared to stan-
dard simulation-based methods, it supports non-deterministic branching,
increases the coverage of simulation, and avoids the zero-crossing prob-
lem. We demonstrate SReach’s applicability by discussing three represen-
tative biological models and additional benchmarks for nonlinear hybrid
systems with multiple probabilistic system parameters.

1 Introduction

Stochastic hybrid systems (SHSs) are dynamical systems exhibiting discrete, con-
tinuous, and stochastic dynamics. Due to the generality, they have been widely
used in various areas, including biological systems, financial decision problems,
and cyber-physical systems [2,6]. One elementary question for the quantitative
analysis of SHSs is the probabilistic reachability problem, considering that many
verification problems can be reduced to reachability problems. It is to compute
the probability of reaching a certain set of states. The set may represent certain
unsafe states which should be avoided or visited only with some small proba-
bility, or dually, good states which should be visited frequently. This problem

This research was sponsored by the Air Force Office of Scientific Research (FA9550-
12-1-0146) and the Office of Naval Research (N000141310090).

c© Springer International Publishing Switzerland 2015
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is no longer a decision problem, as it generalizes that by asking what is the
probability that the system reaches the target region. For SHSs with both sto-
chastic and non-deterministic behavior, the problem results in general in a range
of probabilities, thereby becoming an optimization problem.

To describe stochastic dynamics, uncertainties have been added to hybrid
systems in various ways. One way expresses random initial values and stochas-
tic dynamical coefficients using random variables, resulting in hybrid automata
(HAs) [13] with parametric uncertainty. Another approach integrates determin-
istic flows with probabilistic jumps. When state changes forced by continuous
dynamics involve discrete random events, we refer to such systems as proba-
bilistic hybrid automata (PHAs) [20]. When continuous probabilistic events are
also involved, we call them stochastic hybrid automata (SHAs) [9]. Other models
substitute deterministic flows with stochastic ones, such as stochastic differential
equations (SDEs) [1], where the random perturbation affects the dynamics con-
tinuously. When all such modifications have been applied, the resulting models
are called general stochastic hybrid systems (GSHSs) [15]. Among these different
models, of particular interest for this paper are HAs with parametric uncertainty
and PHAs with additional randomness for both transition probabilities and vari-
able resets. Note that, in the following, we use notations - HAp and PHAr - for
these two model classes respectively.

When modeling real-world systems, such as biological systems and cyber-
physical systems, using hybrid models, parametric uncertainty arises naturally.
Although its cause is multifaceted, two factors are critical. First, probabilistic
parameters are needed when the physics controlling the system is known, but
some parameters are either not known precisely, are expected to vary because
of individual differences, or may change by the end of the system’s operational
lifetime. Second, system uncertainty may occur when the model is constructed
directly from experimental data. Due to imprecise experimental measurements,
the values of system parameters may have ranges of variation with some associ-
ated likelihood of occurrence. Clearly, the HAps are suitable models considering
these major causes. Note that, in both cases, we assume that the probability dis-
tributions of probabilistic system parameters are known and remain unchanged
throughout the systems evolution.

As another interesting and more expressive class of models, PHAs extend HAs
with discrete probability distributions. More precisely, for discrete transitions in
a model, instead of making a purely (non)deterministic choice over the set of
currently enabled jumps, a PHA (non)deterministically chooses among the set of
recently enabled discrete probability distributions, each of which is defined over a
set of transitions. Although randomness only influences the discrete dynamics of
the model, PHAs are still very useful and have interesting practical applications
[21]. In this paper, we consider a variation of PHAs, where additional random-
ness for both transition probabilities and resets of system variables are allowed.
In other words, in terms of the additional randomness for jump probabilities,
we mean that the probabilities attached to probabilistic jumps from one mode,
instead of having a discrete distribution with predefined constant probabilities,
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can be expressed by equations involving random variables whose distributions
can be either discrete or continuous. This extension is motivated by the fact
that some transition probabilities can vary due to factors such as individual and
environmental differences in real-world systems. When it comes to the random-
ness of variable resets, we allow that a system variable can be reset to a value
obtained according to a known discrete or continuous distribution, instead of
being assigned a fixed value.

In this paper, we describe our tool SReach which supports probabilistic
bounded δ-reachability analysis for the above two model classes. It combines
the recently proposed δ-complete bounded reachability analysis technique [11]
with statistical testing techniques. SReach saves the virtues of the Satisfiabil-
ity Modulo Theories (SMT) based Bounded Model Checking (BMC) for HAs
[7,23], namely the fully symbolic treatment of hybrid state spaces, while advanc-
ing the reasoning power to probabilistic models. Furthermore, by utilizing the
δ-complete analysis method, the full non-determinism of models will be consid-
ered. The coverage of simulation will be increased, as the δ-complete analysis
method results in an over-approximation of the reachable set, whereas simulation
is only an under-approximation of it. The zero-crossing problem can be avoided
as, if a zero-crossing point exists, it will always return an interval containing
it. By using statistical tests, SReach can place controllable error bounds on the
estimated probabilities. We discuss three biological models - an atrial fibrilla-
tion model, a prostate cancer treatment model, and our synthesized Killerred
biological model - to show that SReach can answer questions including model
validation/falsification, parameter synthesis, and sensitivity analysis. To further
demonstrate its applicability, we also apply it to additional real-world hybrid
systems with parametric uncertainty.

Related Work. Hahn et al. promoted an abstraction-based method where the
given PHA is abstracted into an n-player stochastic game [12], albeit being
limited to linear dynamics. Fränzle et al. proposed a Stochastic SMT-based
procedure [10]. But their tool SiSAT supports only discrete random variables.
Ellen et al. [8] proposed a statistical model checking technique for verifying
hybrid systems with continuous non-determinism, thereby expanding the class
of systems analyzable, yet confined dynamics to (non-linear) pre-post conditions
rather than ODEs. SReach supports both discrete and continuous random vari-
ables, and ODEs. ProbReach [19] also uses the δ-complete procedures and offers
verified estimated probability interval containing the real probability, yet can
only deal with hybrid systems with initial random variables. While SReach is
able to handle probabilistic transitions as well.

The paper proceeds by introducing two model classes of SHSs under consid-
eration in Sect. 2. Section 3 formally states probabilistic bounded δ-reachability
problems and explains how SReach solves these problems by combining
δ-complete decision procedures with statistical tests. Case studies and additional
experiments are discussed in Sect. 4. Section 5 concludes the paper.
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2 Stochastic Hybrid Models

Before introducing the algorithm implemented by SReach and the problems that
it can handle, we first define two model classes that SReach considers formally.
For HAps, we follow the definition of HAs in [13], and extend it to consider
probabilistic parameters in the following way.

Definition 1 (HAp). A hybrid automaton with parametric uncertainty is a
tuple Hp = 〈(Q,E), V,RV, Init,Flow, Inv, Jump, Σ〉, where
– The vertices Q = {q1, · · · , qm} is a finite set of discrete modes, and edges in

E are control switches.
– V = {v1, · · · , vn} denotes a finite set of real-valued system variables. We write

V̇ to represent the first derivatives of variables during the continuous change,
and write V ′ to denote values of variables at the conclusion of the discrete
change.

– RV = {w1, · · · , wk} is a finite set of independent random variables, where the
distribution of wi is denoted by Pi.

– Init, Flow, and Inv are labeling functions over Q. For each mode q ∈ Q, the
initial condition Init(q) and invariant condition Inv(q) are predicates whose
free variables are from V ∪ RV, and the flow condition Flow(q) is a predicate
whose free variables are from V ∪ V̇ ∪ RV.

– Jump is a transition labeling function that assigns to each transition e ∈ E a
predicate whose free variables are from V ∪ V ′ ∪ RV.

– Σ is a finite set of events, and an edge labeling function event : E → Σ
assigns to each control switch an event.

Another class is PHArs, which extend HAs with discrete probability transi-
tions and additional randomness for transition probabilities and variable resets.

Definition 2 (PHAr). A probabilistic hybrid automaton with additional ran-
domness Hr consists of Q,E, V,RV, Init,Flow, Inv, Σ as in Definition 1, and
Cmds, which is a finite set of probabilistic guarded commands of the form:

g → p1 : u1 + · · · + pm : um,

where g is a predicate representing a transition guard with free variables from
V, pi is the transition probability for the ith probabilistic choice which can be
expressed by an equation involving random variable(s) in RV and the pi’s satisfy∑m

i=1 pi = 1, and ui is the corresponding transition updating function for the ith
probabilistic choice, whose free variables are from V ∪ V ′ ∪ RV.

To illustrate the additional randomness allowed for transition probabilities and
variable resets, an example probabilistic guarded command is x ≥ 5 → p1 : (x′ =
sin(x))+(1−p1) : (x′ = px), where x is a system variable, p1 has a Uniform distri-
bution U(0.2, 0.9), and px has a Bernoulli distribution B(0.85). This means that,
the probability to choose the first transition is not a fixed value, but a random one
having a Uniform distribution. Also, after taking the second transition, x can be
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assigned to either 1 with probability 0.85, or 0 with 0.15. In general, for an individ-
ual probabilistic guarded command, the transition probabilities can be expressed
by equations of one or more new random variables, as long as values of all transition
probabilities are within [0, 1], and their sum is 1. Currently, all four primary arith-
metic operations are supported. Note that, to preserve the Markov property, only
unused random variables can be used, so that no dependence between the current
probabilistic jump and previous transitions will be introduced.

3 SReach Algorithm

A recently proposed δ-complete decision procedure [11] relaxes the reachabil-
ity problem for HAs in a sound manner: it verifies a conservative approxima-
tion of the system behavior, so that bugs will always be detected. The over-
approximation can be tight (tunable by an arbitrarily small rational parame-
ter δ), and a false alarm with a small δ may indicate that the system is frag-
ile, thereby providing valuable information to the system designer (see [11] for
details). We now define the probabilistic bounded δ-reachability problem based
on the bounded δ-reachability problem defined in [11].

Definition 3. The probabilistic bounded k step δ-reachability for a HAp Hp is to
compute the probability that Hp reaches the target region T in k steps. Given the
set of independent random variables r, Pr(r) a probability measure over r, and
Ω the sample space of r, the reachability probability is

∫
Ω

IT (r)dPr(r), where
IT (r) is the indicator function which is 1 if Hp with r reaches T in k steps.

Definition 4. For a PHAr Hr, the probabilistic bounded k step δ-reachability
estimated by SReach is the maximal probability that Hr reaches the target region
T in k steps: maxσ∈EPrk

Hr,σ,T (i), where E is the set of possible executions of
H starting from the initial state i, and σ is an execution in the set E.

After encoding uncertainties using random variables, SReach samples them
according to the given distributions. For each sample, a corresponding interme-
diate HA is generated by replacing random variables with their assigned values.
Then, the δ-complete analyzer dReach is utilized to analyze each intermediate
HA Mi, together with the desired precision δ and unfolding depth k. The ana-
lyzer returns either unsat or δ-sat for Mi. This information is then used by
a chosen statistical testing procedure to decide whether to stop or to repeat
the procedure, and to return the estimated probability. The full procedure is
illustrated in Algorithm 1, where MP is a given stochastic model, and ST indi-
cates which statistical testing method will be used (See the tool website for
various statistical tests that supported by SReach and the way to control the
induced statistical error bounds). Succ and N are used to record the number
of δ-sat instances and total samples generated so far respectively, and are then
the inputs of ST . Note that, for a PHAr, sampling and fixing the choices of
all the probabilistic transitions in advance results in an over-approximation of
the original PHAr, where safety properties are preserved. To promise a tight
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Algorithm 1. SReach
1: function SReach(MP , ST , δ, k)
2: if MP is a HAp then
3: MP ← EncRM1(MP ) � encode uncertain system parameters
4: else � otherwise a PHAr

5: MP ← EncRM2(MP ) � encode probabilistic jumps and extra randomness
6: end if
7: Succ, N ← 0 � number of δ-sat samples and total samples
8: Assgn ← ∅ � record unique sampling assignments and dReach results
9: RV ← ExtractRV(MP ) � get the RVs from the probabilistic model

10: repeat in parallel
11: Si ← Sim(RV ) � sample the parameters
12: if Si ∈ Assgn.sample then
13: Res ← Assgn(Si).res � no need to call dReach
14: else
15: Mi ← Gen(MP, Si) � generate a dReach model
16: Res ← dReach(Mi, δ, k) � call dReach to solve k-step δ-reachability
17: end if
18: if Res = δ-sat then Succ ← Succ + 1
19: end if
20: N ← N + 1
21: until ST.done(Succ, N) � perform statistical test
22: return ST.output
23: end function

over-approximation and correctness of estimated probabilities, SReach supports
PHArs with no or subtle non-determinism. That is, in order to offer a reason-
able estimation, for PHArs, SReach is supposed to be used on models with no or
few non-deterministic transitions, or where dynamic interleaving between non-
deterministic and probabilistic choices are not important, such as our KillerRed
biological model. To improve the performance of SReach, each sampled assign-
ment and its corresponding dReach result are recorded for avoiding redundant
calls to dReach. This significantly reduces the total calls for PHArs, as the size
of the sample space involving random variables describing probabilistic jumps
is comparatively small. For the example PHA (as shown in Fig. 1), with this
heuristic, the total checking time has been decreased from 11291.31 s for 658
samples (17.16 s per sample) to 3295.82 s (5.01 s per sample). Furthermore, a
parallel version of SReach has been implemented using OpenMP, where multiple
samples and corresponding HAs are generated, and passed to dReach simultane-
ously. Using this parallel SReach on a 4-core machine, the running time for the
example PHA has been further decreased to 2119.55 s for 660 samples (3.33 s per
sample).

Currently, SReach supports a number of hypothesis testing and statistical esti-
mation techniques including: Lai’s test [17], Bayes factor test [16], Bayes factor
test with indifference region [25], Sequential probability ratio test (SPRT) [24],
Chernoff-Hoeffding bound [14], Bayesian Interval Estimation with Beta prior [26],
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Fig. 1. An example probabilistic hybrid automaton

and Direct Sampling. All methods produce answers that are correct up to a pre-
cision that can be set arbitrarily by the user. See the tool website for more details
about these statistical testing techniques. With these hypothesis testing methods,
SReach can answer qualitative questions, such as “Does the model satisfy a given
reachability property in k steps with probability greater than a certain thresh-
old?”With the above statistical estimation techniques,SReach can offer answers to
quantitative problems. For instance, “What is the probability that the model sat-
isfies a given reachability property in k steps?” SReach can also handle additional
types of interesting problems by encoding them as probabilistic bounded reacha-
bility problems. The model validation/falsification problem with prior knowledge
can be encoded as a probabilistic bounded reachability question. After express-
ing prior knowledge about the given model as reachability properties, is there any
number of steps k in which the model satisfies a given property with a desirable
probability? If none exists, the model is incorrect regarding the given prior knowl-
edge. The parameter synthesis problem can also be encoded as a probabilistic k-
step reachability problem. Does there exist a parameter combination for which the
model reaches the given goal region in k steps with a desirable probability? If so,
this parameter combination is potentially a good estimation for the system para-
meters. The goal here is to find a combination with which all the given goal regions
can be reached in a bounded number of steps. Moreover, sensitivity analysis can be
conducted by a set of probabilistic bounded reachability queries as well: Are the
results of reachability analysis the same for different possible values of a certain
system parameter? If so, the model is insensitive to this parameter with regard to
the given prior knowledge.

4 Experiments

Both sequential and parallel versions of SReach are available on https://github.
com/dreal/SReach (see the tool website for its usage). Experiments for the follow-
ing three biological models were conducted on a server with 2* AMD Opteron(tm)
Processor 6172 and 32 GB RAM (12 cores were used), running on Ubuntu 14.04.1
LTS. In our experiments we used 0.001 as the precision for the δ-decision problem,

https://github.com/dreal/SReach
https://github.com/dreal/SReach
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Table 1. Results for the 4-mode atrial fibrillation model (k = 3). For each sample gen-
erated, SReach analyzed systems with 62 variables and 24 ODEs in the unfolded SMT
formulae. #RVs = number of random variables in the model, #S S = number of δ-sat
samples, #T S = total number of samples, Est P = estimated probability of property,
A T(s) = average CPU time of each sample in seconds, and T T(s) = total CPU time
for all samples in seconds. Note that, we use the same notations in the remaining tables.

Model #RVs EPI TO1 EPI TO2 #S S #T S Est P A T(s) T T(s)

Cd to1 s 1 U(6.1e-3, 7e-3) 6 240 240 0.996 0.270 64.80

Cd to1 uns 1 U(5.5e-3, 5.9e-3) 6 0 240 0.004 0.042 10.08

Cd to2 s 1 400 U(0.131, 6) 240 240 0.996 0.231 55.36

Cd to2 uns 1 400 U(0.1, 0.129) 0 240 0.004 0.038 9.15

Cd to12 s 2 N(400, 1e-4) N(6, 1e-4) 240 240 0.996 0.091 21.87

Cd to12 uns 2 N(5.5e-3, 10e-6) N(0.11, 10e-5) 0 240 0.004 0.037 8.90

and Bayesian sequential estimation with 0.01 as the estimation error bound, cov-
erage probability 0.99, and a uniform prior (α = β = 1). All the details (including
discrete modes, continuous dynamics that described by ODEs, non-determinism,
and stochasticity) of models in the following case studies and additional bench-
marks can be found on the tool website.

Atrial Fibrillation. The minimum resistor model reproduces experimentally
measured characteristics of human ventricular cell dynamics [5]. It reduces the
complexity of existing models by representing channel gates of different ions with
one fast channel and two slow gates. However, due to this reduction, for most model
parameters, it becomes impossible to obtain their values through measurements.
After adding parametric uncertainty into the original hybrid model, we show that
SReach can be adapted to synthesize parameters for this stochastic model, i.e.,
identifying appropriate ranges and distributions for model parameters. We chose
two system parameters - EPI TO1 and EPI TO2, and varied their distributions to
see which ones allow the model to present the desired patterns. As in Table 1, when
EPI TO1 is either close to 400, or between 0.0061 and 0.007, and EPI TO2 is close
to 6, the model can satisfy the given bounded reachability property with a proba-
bility very close to 1.

Prostate Cancer Treatment.This model is a nonlinear hybrid automaton with
parametric uncertainty. We modified the model of the intermittent androgen sup-
pression (IAS) therapy in [22] by adding parametric uncertainty. The IAS ther-
apy switches between treatment-on, and treatment-off with respect to the serum
level thresholds of prostate-specific antigen (PSA), namely r0 and r1. As sug-
gested by the clinical trials [4], an effective IAS therapy highly depends on the
individual patient. Thus, we modified the model by taking parametric variation
caused by personalized differences into account. In detail, according to clinical
data from hundreds of patients [3], we replaced six system parameters with ran-
dom variables having appropriate (continuous) distributions, including αx (the
proliferation rate of androgen-dependent (AD) cells), αy (the proliferation rate
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Table 2. Results for the 2-mode prostate cancer treatment model (k = 2). For each sam-
ple generated, SReach analyzed systems with 41 variables and 10 ODEs in the unfolded
SMT formulae.

Model #RVs r0 r1 Est P #S S #T S A T(s) T T(s)

PCT1 6 5.0 10.0 0.496 8226 16584 0.596 9892

PCT2 6 7.0 11.0 0.994 335 336 54.307 18247

PCT3 6 10.0 15.0 0.996 240 240 506.5 121560

Fig. 2. A probabilistic hybrid automaton for synthesized phage-based therapy model

of androgen-independent (AI) cells), βx (the apoptosis rate of AD cells), βy (the
apoptosis rate of AI cells), m1 (the mutation rate from AD to AI cells), and z0
(the normal androgen level). To describe the variations due to individual differ-
ences, we assigned αx to be U(0.0193, 0.0214), αy to be U(0.0230, 0.0254), βx to be
U(0.0072, 0.0079), βy to be U(0.0160, 0.0176), m1 to be U(0.0000475, 0.0000525),
and z0 to be N(30.0, 0.001). We used SReach to estimate the probabilities of pre-
venting the relapse of prostate cancer with three distinct pairs of treatment thresh-
olds (i.e., combinations of r0 and r1). As shown in Table 2, the model with thresh-
olds r0 = 10 and r1 = 15 has a maximum posterior probability that approaches 1,
indicating that these thresholds may be considered for the general treatment.

Synthesized KillerRed Model. Due to the widespread misuse and overuse
of antibiotics, drug resistant bacteria now pose significant risks to health,
agriculture and the environment. An alternative to conventional antibiotics is
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Table 3. Results for the 11-mode killerred model.

k Est P #S S #T S A T(s) T T(s) k Est P #S S #T S A T(s) T T(s)

5 0.544 8951 16452 0.074 1219.38 8 0.004 0 240 0.004 0.88

6 0.247 3045 12336 0.969 11957.12 9 0.004 0 240 0.012 2.97

7 0.096 559 5808 5.470 31770.36 10 0.004 0 240 0.013 3.18

Table 4. Formal analysis results for our KillerRed hybrid model

tlightON (t.u.) 1 2 3 4 5 6 7 8 9 10

ttotal (t.u.) 16 17.2 18.5 20 21.3 22.7 23.5 24.1 25 30

tlightOFF1 (t.u.) 1 2 3 4 5 6 7 8 9 10

Killed bacteria cells Failed Failed Failed Succ Succ Succ Succ Succ Succ Succ

trmIPTG3 (t.u.) 1 2 3 4 5 6 7 8 9 10

Killed bacteria cells Succ Succ Succ Succ Succ Succ Succ Succ Succ Succ

SOXthres (M) 1e-4 2e-4 3e-4 4e-4 5e-4 6e-4 7e-4 8e-4 9e-4 1e-3

ttotal (t.u.) 5.1 5.2 5.4 17 19 48 61 71 36 42

phage-based therapy. One approach to antibiotic resistance is to engineer a tem-
perate phage λ with light-activated production of superoxide (SOX). The incor-
porated Killerred protein is phototoxic and provides another level of controlled
bacteria killing [18]. A PHAr with subtle non-determinism for this synthesized
Killerred model (as shown in Fig. 2) has been constructed. Considering individ-
ual differences of bacterial cells and distinct experimental environments, addi-
tional randomness on transition probabilities have been considered. SReach was
used to validate this model by estimating the probabilities of killing bacter-
ial cells with different ks (see Table 3). We noticed that the probabilities of
paths going through mode 6 to mode 11 are close to 0. This remains even after
increasing the probability of entering mode 6, indicating that it is impossible for
this model to enter mode 6. SReach was also used to find out (a) the relation
between the time to turn on the light after adding the molecular biology reagent
IPTG and the total time to kill bacterial cells with probability larger than 0.5
(see the first two rows of Table 4), (b) that the lower bound for the duration of
exposure to light is 3 for successful bacterial killing with probability larger than
0.5 (see row 3–4 of Table 4), (c) that the time to remove IPTG is insensitive con-
sidering whether bacterial cells will be killed with probability larger than 0.5 (see
row 5–6 of Table 4), and (d) that the upper bound of the necessary concentration
of SOX to kill bacterial cells, with probability larger than 0.5, is 0.6667 (see from
row 7–8 of Table 4). All these findings have been reported to biologists for further
checking.

Additional Benchmarks. To further demonstrate SReach’s applicability, we
also applied it to additional benchmarks including HAps, PHAs, and PHArs
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Table 5. #Ms = number of modes, K indicates the unfolding steps, #ODEs = number
of ODEs in the unfolded formulae, #Vs = number of total variables in the unfolded for-
mulae, #RVs = number of random variables in the model, δ = precision used in dReach.

Benchmark #Ms K #ODEs #Vs #RVs δ Est P #S S #T S A T(s) T T(s)

BBK1 1 1 2 14 3 0.001 0.754 5372 7126 0.086 612.836

BBK5 1 5 2 38 3 0.001 0.059 209 3628 0.253 917.884

BBwDv1 2 2 4 20 4 0.001 0.208 2206 10919 0.080 873.522

BBwDv2K2 2 2 4 20 3 0.001 0.845 7330 8669 0.209 1811.821

BBwDv2K8 2 8 4 56 3 0.001 0.207 2259 10901 0.858 9353.058

Tld 2 7 2 33 4 0.001 0.996 227 227 0.213 48.351

Ted 2 7 4 50 4 0.001 0.996 227 227 12.839 2914.448

DTldK3 2 3 4 26 2 0.001 0.996 227 227 0.382 86.714

DTldK5 2 5 4 38 2 0.001 0.161 1442 8961 0.280 2509.078

W4mv1 4 3 8 26 6 0.001 0.381 5953 15639 0.238 3722.082

W4mv2K3 4 3 8 26 6 0.001 0.996 227 227 0.673 152.771

W4mv2K7 4 7 8 50 6 0.001 0.004 0 227 0.120 27.240

DWK1 2 1 4 14 5 0.001 0.996 227 227 0.171 38.817

DWK3 2 3 4 26 5 0.001 0.996 227 227 0.215 48.806

DWK9 2 9 4 62 5 0.001 0.996 227 227 5.144 1167.688

Que 3 2 3 13 4 0.001 0.228 2662 11677 0.095 1109.315

3dOsc 3 2 18 48 2 0.001 0.996 227 227 8.273 1877.969

QuadC 1 0 14 44 6 0.001 0.996 227 227 825.641 187420.507

exPHA01 2 2 4 20 2 0.001 0.524 345 658 5.01 3295.82

exPHA02 2 3 2 17 1 0.001 0.900 5361 5953 0.0004 2.35

KRk5 6 5 84 194 2 0.001 0.544 8946 16457 0.122 2015.64

KRk6 8 6 112 224 6 0.001 0.246 2032 8263 1.385 11444.22

KRk7 10 7 150 271 6 0.001 0.096 558 5795 16.275 94311.18

KRk8 7 8 105 303 6 0.001 0.004 0 227 0.003 0.58

KRk9 9 9 135 335 6 0.001 0.004 0 227 0.015 3.43

KRk10 11 10 165 367 6 0.001 0.004 0 227 0.026 5.92

with subtle non-determinism. Table 5 shows the results of these experiments.
These experiments were conducted with the sequential version of SReach on a
machine with 2.9 GHz Intel Core i7 processor and 8 GB RAM, running OS X
10.9.2. In our experiments we used 0.001 as the precision for the δ-decision prob-
lem; and Bayesian sequential estimation with 0.01 half-interval width, cover-
age probability 0.99, and uniform prior (α = β = 1). In the following table,
BB refers to the bouncing ball models, Tld the thermostat model with linear
temperature decrease, Ted the thermostat model with exponential decrease, DT
the dual thermostat models, W the watertank models, DW the dual watertank
models, Que the model for queuing system which has both nonlinear functions
and nondeterministic jumps, 3dOsc the model for 3d oscillator, and QuadC the
model for quadcopter stabilization control. Following these hybrid systems with
parametric uncertainty, we also consider two example PHAs - exPHA01 and
exPHA02, and PHArs with trivial non-determinism - KR (our killerred models).
Moreover, the detailed description of some of additional benchmarks and above
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case studies can be found on the tool website. The full descriptions of all the mod-
els that mentioned in this paper can be found on the tool website.

5 Conclusions and FutureWork

We have presented a tool that combines δ-decision procedures and statistical tests.
It supports probabilistic bounded δ-reachability analysis for HAps and PHArs
with no or subtle non-determinism. This tool has been used to analyze three rep-
resentative examples - a prostate cancer treatment model, a cardiac model, and a
synthesized Killerred model - and other benchmarks, which are currently out of the
reach of other formal tools. In the near future, we plan to extend support for more
general stochastic hybrid models that include probabilistic jumps with continuous
distributions, and stochastic differential equations.
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Abstract. Planning experiments is a crucial step in successful investiga-
tions, which can greatly benefit from computational modeling approaches.
Here we consider the problem of designing informative experiments for
elucidating the dynamics of biological networks. Our approach extends
previously proposed methodologies to the important case where the struc-
ture of the network is also uncertain. We demonstrate our approach on
a benchmark scenario in plant biology, the circadian clock network of
Arabidopsis thaliana, and discuss the different value of three types of
commonly used experiments in terms of aiding the reconstruction of the
unknown network.

1 Introduction

The execution of experiments to test a hypothesis is the essence of the scientific
method. In the field of systems biology we are interested in testing and validating
our hypotheses and predictions biochemical processes in living organisms, and
our hypotheses are usually encoded in mathematical models which can adopt a
variety of formalism. Modern biochemical experiments can be very complex and
are often costly in both researcher time and other resources. For this reason,
it is important to minimize the number of experiments while maximizing their
information content.

Experimental design is the branch of statistics and operations research which
is concerned with maximizing the information content of novel experiments.
From a statistical point of view, the utility criterion for evaluating an experiment
is a function of the probabilistic model chosen to represent the data-generating
process. Depending on the objective of the experiment, the selection criterion
can be either maximize the information content of an experiment in order to
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Fig. 1. Basic illustration of our experimental design approach. After a set of observa-
tions the distribution over the learnt system (blurred arrows) is used to draw samples
of the experimental outcomes given an intervention (uncertainty over the outcomes
is also represented by blurred functions). The aim is to choose the experiment that
reduces the uncertainty over the learnt system (represented by the system with well
defined arrows in the figure).

estimate a set of parameters, (estimation criterion) or improve the prediction
qualities of a fitted model (prediction criterion).

In this paper we use a Bayesian approach to experimental design for dynam-
ical models of biological systems. We restrict our attention to gene regulatory
network (GRN) models, where the systems dynamics are generated by mutual
interactions between genes which can modulate each others rate of expression;
these models encompass a large fraction of the systems biology literature, and
hence experimental design methods for this class of systems are of considerable
interest. Dynamical systems such as ordinary differential equations (ODE) are
widespread techniques for modeling GRNs. Previous work has considered exper-
imental design and model selection techniques for non-linear ODE- based models
of biological processes.

Liepe et al. [5] employ an approach based on mutual information which could
be evaluated using Monte-Carlo simulations. This method is computationally
intensive and crucially requires prior knowledge over the model components and
their interactions: the structure and functional form of the equations defining
the models is assumed known, and all the uncertainty is in the parametrisation.
In reality, most models in systems biology are subject to considerable structural
uncertainty, and clarifying the structure of interactions is the primary goal of
systems biology experiments.

In this work we extend the Bayesian experimental design approach to mod-
els with structural uncertainty, formalized as hierarchical Bayesian models. We
derive a Bayesian experimental design score for quantifying the information gain
offered by different experiments. The abstract view of the method is shown on
Fig. 1. We start by using some preliminary data (in the form of observed oscilla-
tory expression levels) to learn a (posterior) probability distribution over a linear
approximation of the system. Experimental interventions can be simulated by
constraining some components of the model to fixed values (the specific details
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of how we model interventions are given later), obtaining predictions of the gene
expression levels of all the other components given the experimental intervention
(in the figure, the blurred lines represent uncertainty over the experimental out-
comes). These enable us to quantify the information content of an intervention.

We illustrate our approach on a benchmark systems biology problem, the
circadian clock of the Arabidopsis thaliana model plant [9]. We consider three
classes of possible experiments: alterations to the light-dark input provided
to the plant, direct measurements of regulatory links via chromatin immuno-
precipitation (ChIP), and gene knock-outs. These commonly performed experi-
ments are very different in terms of costs, and our preliminary results on their
relative informativeness could be useful for practitioners.

2 Methods

Classical approaches to statistical experimental design have been primarily devel-
oped for linear regression models. Let an experiment q be given an experimental
design Φq (usually a set of covariates and a model that accounts for the vari-
ables of the experiment) and parameters θ (which determine how each of these
covariates determines the measured output of the experiment), and denote the
experimental observations for experiment q as yq. The experimental outputs are
assumed to be a linear combination of the covariates such that

yq = Φqθ + ε (1)

where ε is zero-mean Gaussian noise with variance σ2. The probability of the
observed outcomes given a set of parameters θ is known as likelihood function
(it is a function of the parameters); we will denote it as

p (yq|Φq, θ) = N (
yq − Φqθ, σ2

)
(2)

The Fisher information matrix (FIM) quantifies how much a small change
in the parameters θ is expected to affect the likelihood of the observations;
mathematically, the FIM is defined as

Ii,j(θ) = Ep(yq|Φq,θ)

[
∂p (yq|Φq, θ)

∂θi

∂p (yq|Φq, θ)
∂θj

]
(3)

where Eq denotes expectation under the distribution q.
The FIM encodes interaction between the observed and the experimental

covariates. The most common experimental design objective seeks to select a
design Φq in order to attain the maximum FIM according to some ordering. For
estimation purposes, the optimality criteria depends on the choice of matrix
function from which to evaluate the information matrix. The most popular
is the D-optimal criterion or maximize det (I (θ)/n). This criterion minimizes
the volume of the confidence ellipsoid of the estimates [4]. A good review of
D-optimal design and related criteria can be consulted in [10].



Experimental Design for Inference over the A. thaliana 31

In order to accommodate further uncertainties about experimental covari-
ates and model mis-specification, a different kind of statistical tools is needed.
Bayesian methods employ a prior distribution over the parameters p (θ) to incor-
porate uncertainty in a principled way. This is incorporated with observations
to compute the posterior distribution by applying Bayes rule which is

p (θ|yq, Φq) =
p (yq|θ, Φq) p (θ)

p (yq)
. (4)

The denominator in Eq. 4 is computed by integrating the likelihood over the
prior distribution. Bayesian experimental design seeks to leverage prior informa-
tion about the parameter distribution by averaging over the posterior distribution
of the unobserved data samples [2]. For this, we employ the concept of Mutual
information. In this context we can view the mutual information between θ and
yq as the reduction in uncertainty about θ that results from observing yq [7]. Then,
the Bayesian counterpart to D-optimal design maximizes the Mutual information
between the parameters distribution and the experimental outcomes [2].

2.1 Bayesian Experimental Design

In his seminal work, Lindley [6] sets experimental design in a decision-theory
framework. First he states that the previous knowledge over a system is encoded
in the prior probability of its model parameters. The knowledge about parame-
ters θ obtained after an experiment, given the observations yq and experimental
conditions ξq will be contained in the posterior distribution p (θ|yq, ξq). Thus
the information gained after an experiment can be expressed in terms of the
expected KL-divergence between both distributions over the distribution of the
observations

I (θ;yq) =
ˆ

KL (p (θ|yq) ‖p (θ) ) p (yq) dyq.

Thus the utility of an experiment q with conditions ξq(which we will denote
by U (θ;yq; ξq)) is obtained by solving

U (θ;yq; ξq) =
ˆ ˆ

log
p (θ|yq, ξq)

p (θ)
p (θ,yq|ξq) dθdyq. (5)

This utility function gives rise to what is known as Bayesian D-optimal design [2].
In order to choose the best experimental design, the objective is to maximize
the value of the utility function U (θ, yq, ξq) over the set of parameters and
(unobserved) responses. Unlike classic optimal design, we aim at leveraging prior
information encoded in the prior distribution of the parameters.

Whereas these ideas were introduced in the linear regression case, extending
to different scenarios is conceptually trivial; however, the computational simpli-
fications afforded by linear models are then lost, giving rise to an analytically
intractable problem. Liepe et al. [5] employ the same utility criteria over a set of
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parameters for a nonlinear system of differential equations and then proceed to
compute the utility function by Monte Carlo simulation. This requires at each
step to simulate the experimental outcomes by solving the system, a procedure
which may incur in severe computational overhead depending of the model size
and parameters. Furthermore, the model structure is assumed fixed; introducing
uncertainty in the model structure would add a further dimension to the already
complex computational problem, ruling out all but the simplest problems.

In this work, we take the complementary approach of catering for structural
uncertainty in the models, while simplifying the dynamics by assuming linearity
and time invariance (LTI models). We approach the problem by adopting a prob-
abilistic linear model of the frequency spectrum of the gene expression levels. In
the case of oscillating networks, this linear model can offer a reasonable approxi-
mation to the system dynamics, and has been shown to be effective in capturing
structural uncertainty in a network inference scenario [11]. The advantage of the
LTI approximation is that sampling from the experimental outcomes “reduces”
to sampling from a Multivariate Normal conditioned on a subset of variables,
confining the need for Monte Carlo simulation to integrating out the structural
uncertainty.

2.2 Frequency-Domain Model of Gene Expression Levels

We briefly review now the LTI approach to modelling GRN dynamics taken
in [11]. We start by representing the LTI equations in frequency domain through
the Discrete Fourier Transform (DFT). Under certain conditions the DFT is a
discrete sample of the Fourier spectrum of the signal, see [8]. With this approx-
imation we derive a matrix equation for the linearized network dynamics, this
matrix equation is

Ẋq = XqAT + UqCT. (6)

Here, matrix Xq is the matrix whose columns represent the DFT coefficients
(spectrum) of the expression level samples of a set of N genes for an experiment
q. Analogously, Uq will represent the DFT of the system inputs. We denote by
Ẋq the time derivative of the spectra, which can be computed by the matrix
product DX, being D a derivative operator. The DSS model presented in [11]
proposes a Gaussian likelihood regression model for estimating coefficients A
and C by the distribution of the residues Qq = Ẋq −XqAT −UqCT such that

p (Qq|σD) = N
(
Ẋq − [

Xq Uq
] [

AT

CT

]
, σ2

D

)
.

In order to estimate the parameters {A,C}, a sparsity inducing prior is
set over these parameters. This prior is a spike and slab distribution of the form
presented in [3]: intuitively, this is a mixture distribution where parameters (LTI
coefficients) can either be sampled from a distribution concentrated at zero (the
spike) or a broad distribution (the slab). Thus, conditioning on data, spike and
slab models carry out automatic feature selection by assigning the value zero to
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irrelevant features (in our case interaction coefficients between non-interacting
genes).

This prior encodes the network topology through an adjacency matrix H
within a Hierarchical Bayesian model. We call this model the DFT-Spike and
slab (DSS) model of gene expression. The precise details of the model, as well as
Bayesian algorithms for network inference within this framework, are provided
in [11]. For the purposes of experimental design, it is sufficient to state that
this framework provides us with a methodology to recast GRN dynamics in
a (Bayesian) regression framework, where the (DFT projection) of the signal
derivative is regressed upon the (DFT projection) of the signal. The Hierarchical
Bayesian model then provides a structured prior distribution to capture the
uncertainty over the underlying networks.

2.3 Experimental Design for Estimating Parameters
of a DSS Model

Having specified the DSS family of models, we now discuss in detail the experi-
mental design techniques for three classes of experiments. The starting point is
a prior distribution over LTI coefficients, which in itself could be (and, generally,
is) the posterior distribution from some previous experiments. The crucial prob-
lems are two, how can an experimental perturbation be encoded mathematically
within the model? how can we compute the utility score for a perturbation?

The answer to these questions depends on the specific perturbation consid-
ered; here we focus on three commonly employed experiments. The first type are
changes in the external input to the system, the U matrix in Eq. (6). We denote
this class of experiments as photo-period experiments, since in the case study of
A. thaliana the input matrix represents the light inputs to the circadian clock.
The second type are mutagenic experiments, where a single gene is removed
from the system (knock-out). The third type are observation experiments, where
presence/absence of one or more edges is observed directly through experiments
such as Chromatin Immunoprecipitation (ChIP) or any affinity-binding detec-
tion methods.

Notice that observation experiments are somewhat different from the other
types, as they do not constitute a perturbation of the system; for this reason,
in the following we describe experimental design methodologies for observation
experiments separately.

Photo-Period Experiments andKnock-Out Experiments. In the DSS set-
ting, we frame experimental design for photo-period and knock-out settings as
choosing the best experiment q defined as interventions in matrix [XqUq] that
maximizes the information gain over the parameters B = [A,C] of the linear
dynamical model of Eq. 6. An intervention consists of setting a column ofUq orXq

to a known value ξq (zero in case of knock-out experiments or the frequency spec-
trum for a light signal in the case of photo-period experiments). We will denote the
intervened element as column(s) Xq

i and the rest of the columns as Xq
\i.
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The utility function of Eq. 5 can be computed by calculating the KL-
divergence between the current distribution of the LTI-coefficients (either prior
distribution or posterior distribution of a previous experiment) and the poste-
rior distribution over said parameters after performing the desired experiment.
This implies that we have to be able to compute the expected value of the next
experiment’s observations, in order to compute the mutual information and thus
the utility of the next experiment. Explicitly this utility function is

U (B;Xq; ξq) =
ˆ ˆ

p
(
Xq

\i,B|Xq
i = ξq

)
log

p
(
B|Xq

\i,X
q
i = ξq

)

p (B)
dXqdB

the prior (current knowledge) p (B) doesn’t depend on the next, simulated exper-
iment (we simulate using the current knowledge), as such, the selection criteria
can be stated in terms of the numerator as the integral

ˆ ˆ
p

(
Xq

\i,B|Xq
i = ξq

)
logp

(
B|Xq

\i,X
q
i = ξq

)
dXqdB (7)

The conditional distribution p
(
B|Xq

\i,X
q
i = ξq

)
as derived in [11] is a result

of a Linear regression model with Gaussian likelihood. As such the conditional
over the coefficients B can be obtained by factorizing, and is

log p (B|Xq, ξq) ∝ log
[
det

(
σ−2

D Σ−1
)−1/2

]
− 1

2σ2
D

(−2η̄TB̄ + B̄TΣ−1B̄
)

(8)

with the terms

η̄ = vec

(
∑

q

[
Xq Uq

]T
Ẋq

)
; Σ−1 = I ⊗

(
∑

q

[
Xq Uq

]T [
Xq Uq

]
)
.

We evaluate Eq. (7) through Monte Carlo simulation by drawing a sample
from the joint distribution

p
(
Xq

\i,B|Xq
i = ξq

)
= p

(
X\i

q|B,Xq
i = ξq

)
p (B) (9)

The Monte Carlo algorithm will consist of integrating UDSS (η̄,Σ,B)DSS over
both random variables

1
S1

S1∑

s1=1

(
1
S2

S2∑

s2=1

log p
(
B(s1)|Xq(s2)

\i ,Xq
i = ξq

))
(10)

we draw a sample B(s1) from p (B), then we evaluate Eq. 8 by drawing samples
Xq(s2)

\i from the conditional distribution term of Eq. 9. We derive the conditional
distribution p

(
X\i

q|B,Xq
i = ξq

)
from the Gaussian likelihood of the regression

model in [11] by using the Kronecker product and the vectorization operator. We
apply the technique of completing the square [1], so we can get the distribution
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over the frequency spectra, from which we can draw samples as it is a Gaussian
of the form

p
(
Xq|B, σ2

) ∼ N (
η, Λ−1

)
(11)

with Λ = 1
σ2

(
I ⊗ D − AT ⊗ I

)T (
I ⊗ D − AT ⊗ I

)
and

η = −Λ−1
(
I ⊗ D − AT ⊗ I

)T
ŪC.

Experiments for Observing Interactions. As a complement to the previous
scores, we wished to account for an additional source of information, direct
observations over DNA-protein interactions. A result of this kind of experiment
can be viewed as an observation over element hij of matrix H.

Here the observed gene expression spectra are considered a fixed set Xq.
Having these observations, we aim at choosing which link hij possess the highest
mutual information for learning parameters B. This can be represented in terms
of the conditional mutual information, which is a function of two conditional
entropies such that I (B;hij |Xq) = H (B|Xq) − H (B|Xq, hij).

The conditional entropy is not a function of the selected link, so its compu-
tation is not necessary for discriminating between links. Then we introduce the
utility function Uh equal to the negative conditional entropy of variable B given
the gene expressions Xq and the observed link hij

Uh (B,Xq, hij) =
∑

γ∈{0,1}
p (hij = γ)

ˆ
p (B|Xq, hij = γ) log p (B|Xq, hij = γ) dB

where p (B|Xq, hij = γ) is the posterior distribution over B given a fixed value
for link hij (either 0 or 1).

We evaluate the integral by drawing samples from the conditional posterior
p (B|Xq, hij = γ), for γ ∈ {0, 1}, and evaluating log p (B|Xq, hij = γ). We inte-
grate by Monte Carlo method, with samples s3 and s4 drawn from the posterior
distribution p (B|Xq, hij = γ). As such the utility criterion is

Uh (B;Xq; hij) =

∑S3
s3=1 log p(B(s3)|Xq , hij=0)

2S3
+

∑S4
s3=1 log p(B(s4)|Xq, hij=1)

2S4
(12)

2.4 A. thaliana Circadian Clock Model

In [9] we observe a state of the art model of the A. thaliana circadian clock net-
work. It consists of the transcription factors LHY/CCA1 LHY (LATE ELON-
GATED HYPOCOTYL) and CCA1 (CIRCADIAN CLOCK ASSOCIATED 1),
these execute an activating interaction with the transcriptional co-regulators
PRR9, PRR7 and PRR5/NI (PSEUDO-RESPONSE Regulators 9, 7, 5/night
inhibitor) which at the same time are interlocked in a negative feedback loop
with LHY/CCA1. This feedback loop is thought to be the responsible for peak
activity of day-time components.
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Fig. 2. Circadian clock model for A. thaliana, as shown in [9]. Transcriptional elements
LHY, PRR579, GI, TOC1, LUX, ELF4 and ELF3 are assumed observed. While the
expression levels of the Evening Complex (EC) is unobserved, along with other post-
transcriptional interactions involving ZTL and COP1.

On the other hand we have the evening loop, thought to be driven by EC
(Evening complex), composed by the binding of ELF3 (EARLY FLOWER-
ING 3), ELF4 (EARLY FLOWERING 4) and the GARP transcription LUX
(LUX ARRHYTHMO) which controls LHY expression by a double negative
connection [9]. A graphical representation of the model is shown in Fig. 2.

3 Results

We simulate the A. thaliana circadian clock model, we selected and sub sampled
the simulated data in order to get 12 samples over one light/dark cycle for a Wild
Type population. We ran DSS and collected 10000 samples of the joint posterior
over the model parameters. We executed DSS using standard parameters as in
[11] and evaluated the mutual information criterion 10, we draw 1000 samples,
thus setting parameter S1 = 1000. We draw 100 samples for each gene expression
level at each step, thus setting parameter S2 = 100.

First, we chose photo-periods of 6/18, 8/16, 8/6 and 20/24, we computed
the DFT of a {-1,1} light input (ξq) and added it to the spectra matrix. Thus
drawing samples from the conditional distribution p

(
Xq|B, σ2,U = ξq

)
.

Then we selected a set of knock out mutants commonly seen in experimen-
tal settings. In this way knock-out mutants ΔLHY, ΔLHY-GI, ΔLHY-TOC1
and ΔPRR7-PRR9 were simulated by conditioning the rest of the gene spec-
tra given that the intervened genes have a constant spectrum of zero, that is
p

(
Xq

\i|B, σ2,Xq
i = 0

)
.

In Fig. 3 we present the results of evaluating Eq. 10 for these two set of
experiments. The boxes go from the 25th to the 75th percentiles and the red bar
indicates the median score. It shows photo-period experiments having a median
score between 220 and 225, while the knock-out mutants show less median values
ranging from 210 to 217. It is of interest that the lowest information gain looks
to be accredited to the ΔLHY-TOC1 double mutant, being these two genes
the main drivers of circadian oscillations. This may be due to the nature of the
mutual information criterion, as it accounts for the reduction in uncertainty over
the estimation of parameters. It seems plausible that the disruption of these two
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Fig. 3. Box plot for the evaluation of the DSS criterion, higher score means higher
mutual information between experimental design and experimental outcomes. From
left to right, photo periods of 6/18, 8/16, 18/6 and 20/4. Then knockout Mutants
ΔLHY, ΔLHY-GI, ΔLHY-TOC1 and ΔPRR7-PRR9 (Color figure online).

components alters clock behavior enough that parameter inference is less reliable,
as the score suggests that the uncertainty over the model behaviour grows. This
may be in fact another source of information about the importance of these two
clock components.

Complementary, we computed the conditional mutual information for Chip
experiments according to Eq. 12. First we simulated Wild-type gene expression
levels for 12 samples over a 24 hour period, using the same procedure as in the
previous paragraph. Then, we selected a set of candidate links to observe, these
include those known to be part of the true network, and those involving the EC
components. Each one of these links was set to their possible values (one and zero),
and the posterior distribution calculated for each case, this implies running DSS
twice for each studied link with standard parameters as proposed in [11].

We show the resulting scores in Fig. 4. In this scatter plot, regulators are
shown in the x axis, and the scores are presented through colored dots. Each
dot is labeled according to the putative regulation tested (the regulators target
is marked by a ->). Here we observe that the regulating interactions involving
the elements of the EC complex (LUX, ELF4 and ELF3) as regulators show
the lest information. This is not surprising as model assumptions are that the
EC complex is the transcription factor involved in the evening regulation, and
its effects even though essential, are not directly observable through its compo-
nents. On the other hand we find that the most useful information seems to be
related to the elucidation of the role of the light input over LHY and specially
GI, with the highest score of 437, above of the mean value of 432.7. Another
interesting interactions include that for LHY its most useful observation would
be its regulation of TOC1, correspondingly, LHY would be the most informative
interaction to observe for TOC1. As stated earlier, the interaction between these
two components is the main driver of the morning oscillator.
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Fig. 4. Scatter plot of the conditional mutual information scores for observations over
some edges. Each score is labeled with the represented interaction. The regulating
interactions are symbolized by a “->” as “->targets”, with the regulator being the
label on the x axis tick. From left to right we have regulators LHY, PRR9, PRR7,
PRR5, TOC1, LUX, GI, ELF3, ELF4 and photo-regulation in case of light inputs
(Color figure online).

Taking in account these two complimentary criteria, some decisions about the
utility of the experiments can be made. In these case, it seems to points towards
light-related experiments, as the expected mutual information for all the photo-
period experiments seems to be on par. This at the same time could be validated
by the fact that light-input nodes of the network seem to be the most informative
in first instances. Finally the LHY-TOC1 double mutant score suggest that the
behaviour of the system under these circumstances is more uncertain, insight
that may result useful for the researcher and thus an interesting experiment to
execute.

4 Conclusions

We have presented a methodology for Bayesian experimental design in biological
dynamical systems with structural uncertainty. Experimental design is a branch
of classical computational statistics which is gaining increasing attention in sys-
tems biology, due to inherent complexity and uncertainty of biological systems.
Adapting classical methods to modern systems biology is problematic, as sources
of uncertainty are ubiquitous in systems biology data, leading to computationally
intractable problems and/ or predictions with large associated uncertainty. In gen-
eral, handling both parametric and structural uncertainty in nonlinear systems is
highly problematic. Earlier work such as [5] chose to focus on non-linear systems
without structural uncertainty. However, in many biological systems, such as oscil-
latory systems, it may be preferable to approximate the system dynamics to gain
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computational savings which will enable structural uncertainty to be considered
in experimental design. Our results on the A. thaliana clock model show that this
approach can be fruitful, highlighting potentially large differences in information
content for different classes of experiments, and for different individual experi-
ments in each class. These results are potentially precious for practitioners, whose
prime preoccupation is often the prioritisation of experiments in the face of tech-
nical and resource limitations.

There are several directions along which the approach could be further devel-
oped. A simple, but potentially useful, extension would be to modify the utility
function by explicitly accounting for the different costs of different experiments.
It would also be of interest to develop strategies for planning multiple experi-
ments, as the information gain is generally a non-linear function on the space
of possible experiments. While the same apprxoach can be easily deployed for
small sets of experiments, the general issue of multiple experimental design yields
a very challenging discrete optimisation problem. We envisage that ideas from
reinforcement learning could be effective in this scenario.
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Abstract. Stiffness in chemical reaction systems is a frequently encoun-
tered computational problem, arising when different reactions in the
system take place at different time-scales. Computational savings can
be obtained under time-scale separation. Assuming that the system can
be partitioned into slow- and fast- equilibrating subsystems, it is then
possible to efficiently simulate the slow subsystem only, provided that
the corresponding kinetic laws have been modified so that they reflect
their dependency on the fast system. We show that the rate expectation
with respect to the fast subsystem’s steady-state is a continuous function
of the state of the slow system. We exploit this result to construct an
analytic representation of the modified rate functions via statistical mod-
elling, which can be used to simulate the slow system in isolation. The
computational savings of our approach are demonstrated in a number of
non-trivial examples of stiff systems.

1 Introduction

The presence of multiple scales, either temporal, spatial, or organisational, is one
of the hallmarks of complexity of biological systems. Multi-scale systems present
daunting challenges to their mathematical and computational treatment, as the
cost of analysis and simulation is significantly increased. In order to tame such
complexity, a common practice is to rely on abstraction techniques, simplifying
some scales of the model, yet still capturing relevant features of the dynamics.
Examples are the abstraction of the complex intra-cellular state as a finite state
automaton, a typical approach to build cell population models, the abstraction
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of the local dynamics of epidemic spreading in country-level models [12], or
the averaging of fast dynamics in enzyme kinetics [6,13]. The downside of such
approaches is that the abstractions that are constructed are non-trivial and
model-specific, and often require considerable efforts from the modellers.

In this paper, we explore the idea that model abstraction can be simplified
by relying on statistical methodologies which can be learned automatically from
(few) exploratory runs of the models. We focus on the specific sub-problem of
multiple-time scales, related to stiffness, a well studied issue but still problem-
atic, especially for stochastic systems. We build upon the two common theoret-
ical frameworks of Quasi-Steady-State (QSSA) [11,13] and Quasi-Equilibrium
(QE) [2] for stochastic models of chemical reaction networks. These approaches
provide recipes to construct abstracted models, by decomposing a model in a
fast and a slow subsystems (more time scales can be considered, but this gen-
eralisation is not considered here for simplicity). The fast subsystem is assumed
to equilibrate at a time scale which is much faster than the characteristic time
scale of the slow subsystem, hence it is abstracted by averaging out fast variables
according to their equilibrium distribution, conditional on a fixed state of the
slow subsystem. This averaging is performed on the kinetic rate functions of the
slow subsystem. This theoretical recipe can produce accurate results, when the
QSSA or QE assumptions are satisfied, yet it is very hard to obtain analytical
expressions for the kinetic rates of the slow subsystem, which hinders its use in
practice.

In this paper, we propose a method to circumvent the problem by exploiting
ideas from machine learning, in particular Gaussian Processes [14], to learn the
abstracted slow kinetic rates, as a function of slow variables. This approach allows
us to construct statistical surrogates of the reduced rate functions in a fully auto-
matic and computationally cheap way, without analytical efforts from the modeller
side. It relies only on continuity properties of slow rates, which are also investigated
in the paper. Such statistical abstraction of the slow model can then be used to per-
form simulation efficiently. In the paper we present the novel simulation algorithm,
and assess its performancewith respect to other slow scale simulationmethods pro-
posed in literature. Furthermore, our approach has another advantage: using the
same learning strategy, and at a mild additional preprocessing cost, we can addi-
tionally learn slow rates as a function of some model parameters, enabling efficient
parameter exploration in the stiffness regime.

The paper is organised as follows: in Sect. 2, we introduce the relevant back-
ground material and related work, as well as the QSSA and QE model reduc-
tion strategies. The continuity results and the statistical abstraction proce-
dure, together with the resulting simulation algorithm, are presented in Sect. 4.
Section 5 contains the experimental validation of the proposed approach, while
final comments are discussed in Sect. 6. Throughout the paper we will use a
simple enzyme-substrate model as a running example.
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2 Background and Related Work

Chemical Reaction Networks. We will describe biochemical systems using
the widespread formalism of (bio)Chemical Reaction Networks (CRN). The main
entities involved are species and reactions.

– Each species represents a molecule described in the model; the vector X (t) =
(X1(t), . . . , Xn(t)) ∈ S ⊆ N

n counts the number of molecules of each species
in the system at time t.

– Reactions describe how the system state can change. Each reaction is of the
form

r1X1 + . . . rnXn
f(X )−−−→ s1X1 + . . . snXn,

where the left hand side represent molecules that are consumed by the reac-
tion, the right hand side describe which molecules are created, and f(X ) is
the kinetic rate function, giving the speed of the reaction as a function of the
system state. For each reaction Rj , we can define the vector r j (respectively
sj), encoding how many agents are consumed (respectively produced) in the
reaction, so that v j = sj − r j gives the net change of species.

We will consider the stochastic interpretation of biochemical reaction networks [9],
in which the dynamics of the system is described by a Continuous-Time Markov
Chain (CTMC), a Markovian (i.e. memoryless) stochastic process defined on a
finite or countable state space S and evolving in continuous time [8]. In general,
we can think of CTMCs as a collection of random variables X (t) on the state
space S, indexed by time t ∈ [0,∞).

Molecular systems described by CRN are located in a finite volume V , and
one can reason on concentrations, rather than molecule numbers, by dividing
variables by the volume V . We will indicate with capital letters X the molecular
numbers and with small letters x = X /V the concentrations. Rate functions can
be expressed either in terms of molecular numbers or concentrations, modulo a
rescaling of parameters [9]. We will denote with fj(X ) and fj(x ) the same rate
function, expressed in molecular numbers or concentrations, respectively.

For most CRNs, it is impossible or prohibitively expensive to numerically
solve the underlying CTMC directly, so it is a common practice to explore the
system’s behaviour via stochastic simulation. The standard simulation approach
is known as the Gillespie algorithm [9], and it is exact in the sense that it
simulates every single reaction event happening.

Running Example - Part I. We demonstrate the main concepts of the paper
on a simple enzyme-substrate model [13]. The system state is represented as a
vector X = (XE ,XS ,XES ,XP ) that denotes the populations for an enzyme E,
a substrate S, the complex ES formed by the combination of the enzyme with
the substrate, and a product P . The state can be changed by the reactions:

E + S
f1(X )−−−−→ ES, f1(X ) = c1XEXS

ES
f2(X )−−−−→ E + S, f2(X ) = c2XES

ES
f3(X )−−−−→ E + P, f3(X ) = c3XES

(1)
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Related Work. The approach to model reduction exploiting time scale separa-
tion presented here falls within the scope of Quasi-Steady-State Approximation
(QSSA) for stochastic models [3–6,10,13]. In these approaches, species are par-
titioned into fast and slow, and transitions are separated accordingly. Then, the
fast system, conditional on the slow one, is averaged away assuming it is at steady
state. The issue with all these approaches is that they require a-priori identifi-
cation of fast and slow species, which is usually a choice left to intuition of the
modeller. A similar approach, known as Quasi-Equilibrium [2], instead, starts
by partitioning the transitions into fast and slow, and then separating species,
possibly defining new species by taking a linear combination of the original ones.
In both cases, the so obtained system satisfies the decomposition discussed in
this section, hence our simulation algorithm can be applied.

A common characteristic of these earlier works on quasi-equilibrium reduc-
tion is that they rely on model-dependent expressions to calculate or approximate
the rate expectations of the slow reactions, de facto limiting the applicability of
the derived simulation algorithms [4–6]. In this work, we investigate the potential
of automatically learning these expectations using a regression technique. Under
the quasi-equilibrium assumption, our approach relies on no more assumptions
regarding the form or the structure of the fast subsystem.

A generic approach to approximate the rate expectation for the slow reactions
is prescribed in [15], where a Nested Stochastic Simulation Algorithm (Nested-
SSA) is proposed to approximate the steady-state of the fast subsystem. We
have implemented Nested-SSA following its description in the original paper, in
order to produce some comparative results. The step parameter for Nested-SSA
has been explored experimentally such that the efficiency of the two approxi-
mate simulation approaches has been roughly the same, in order to perform a
fair comparison in terms of approximation quality. Another approach related to
Nested-SSA has been recently proposed in [16].

3 Quasi-Equilibrium Reduction

Gillespie’s exact simulation approach can have high computational costs in pres-
ence of stiffness, where a small number of reactions dominate computations. We
will now introduce an approach to address such problems by partitioning the
system in two separate subsystems with different time-scales. We will first dis-
cuss how to construct the reduced model, and then comment on how such fast
and slow subsystems can be identified. We will make some strong assumptions
on the structure, commenting later on how to relax them.

Partition of Species and Reactions. We assume that speciesX = X1, . . . , Xn

of the system can be partitioned in two disjoint subsets: fast species, denoted by
Y = Y1, . . . , Ym, and slow species, indicated with Z = Z1, . . . , Zs, with m +
s = n. Hence, the state space S is decomposed into the fast Sf and the slow Ss

subspaces, so that S = Sf × Ss. We will use this notation consistently in rates,
writing fj(Y ,Z ) in place of fj(X ).
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Similarly, we assume that the set R of reactions is also partitioned into
fast and slow subsets, denoted respectively Rfast and Rslow. The idea is that
fast reactions act only on fast variables (i.e. for each Rj ∈ Rfast, v j is zero
in correspondence to slow variables), and quickly bring the fast subsystem to
equilibrium. Hence, the evolution of slow variables will essentially sense the fast
system only via its steady state distribution. Slow reactions, instead, can modify
both fast and slow subsystems.

Reduced Model. Given a partition of species and reactions into fast and slow
classes, we can construct the fast and the slow subsystems. The fast subsystem
is defined conditionally on a fixed value of the slow variables Z . It is a CRN with
species Y = Y1, . . . , Ym and reactions Rfast. In particular, the rate functions of
reactions in Rfast are computed by instantiating the slow variables with their
fixed value. Here we assume that such kinetic rate functions depend on slow
variables via their concentration, fj = fj(Y , z ), hence the fast subsystem will
be parameterised by the concentration z of slow species, which can take values
in R

s
≥0 or on a compact subset, if the state space Ss is finite. This dependency

will be made explicit in the notation Y |z .
At this stage, we need to make a crucial assumption for the method to work,

namely that the conditional fast process Y |z (t) is an irreducible and positive
recurrent CTMC on the fast subspace Sf , for any value of z . This will guarantee
existence and uniqueness of the steady state distribution Y |z (∞) of Y |z (t). In
the following, we will denote the conditional expectation of a function f(Y , z ),
with respect to the steady state distribution Y |z (∞) of the conditional fast
process by E|z [f(Y , z )], to stress the fact that this will be a function of the
concentration of slow species.

The slow subsystem, instead, is a CRN on the slow species Z , with dynamics
given by the slow reactions Rslow only. However, all reactions Rj in Rslow are
modified by

1. removing fast species from the left and right hand side of the rule of Rj ,1

2. replacing the rate function fj(Y , z ) by f̂j(z ) = E|z [fj(Y , z )], i.e. averaging
out fast variables with respect to the steady state distribution of fast species,
conditional on a given concentration of slow species.

Running Example: Part II. In the enzyme-substrate example, stiffness can
easily arise if we assume that c1, c2 � c3. In that case, the reactions in (1) can
be partitioned into fast and slow subsets Rfast = {R1, R2} and Rslow = {R3}
correspondingly. Consequently, we have fast species Y = (XE ,XS ,XES) and
slow species Z = (XP ). We therefore obtain the following fast subsystem:

E + S
f1(Y ,z )−−−−−→ ES, f1(Y , z ) = c1XE(N − XES − XP )

ES
f2(Y ,z )−−−−−→ E + S, f2(Y , z ) = c2XES

(2)

1 This is a technically sound operation, as the fast subsystem has a unique steady
state distribution, depending only on the state z of the slow subsystem, which is
reached immediately after the firing of a slow reaction.
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where N is a constant that denotes the total enzyme/substrate population in
the system; in this way, the dependency on the slow system is reflected in the
reaction rates. The slow subsystem is then described by the following reactions:

∅ f̂3(z )−−−→ P, f̂3(z ) = E|z [f3(Y , z )] (3)

4 Approximation of Rate Expectations

4.1 Continuity of Rates of the Slow System

We start by proving a crucial property for our method, namely that the rate
functions of the reduced slow subsystem are continuous as a function of the
concentration of slow species, taking values on the whole R

s
≥0 (or on a compact

connected subset). This property is a consequence of mild regularity properties
of the original kinetic rate functions, and is captured by the following theorem,
whose proof can be found in the appendix.

Theorem 1. Let f(Y, z) be a locally Lipschitz continuous function w.r.t. (nor-
malised) slow variables. Assume that the fast process, conditional on a fixed
concentration z of the slow variables, is irreducible and positive recurrent for
each z. Then E|z[f(Y, z)] is a continuous function of z. �	

Theorem 1 enables us to use powerful techniques based on statistical emula-
tion, which will be discussed in the following subsection, and which are the key
of our simulation algorithm.

4.2 Exploring Rate Expectation via Pre-simulation Runs

As discussed in Sect. 3, for many systems exhibiting time-scale separation, it
is possible to obtain a good approximation of the system by introducing an
auxiliary system where the time scales are separated. Hence, the slow variables
are treated as statistically independent random variables from the fast variables,
and the time-scale separation is equivalent to a mean-field approximation which
replaces the true transition rates of the slow variables (which in general depend
on the actual fast variables) with their averages with respect to the equilibrium
distribution of the fast variables. While this approximation in principle offers
huge computational savings, in practice for most systems the equilibrium distri-
bution of the fast variables cannot be computed analytically, and its expectation
can consequently be computed only from a set of simulations. Furthermore, in
most cases the statistics of the equilibrium distribution of the fast variables will
themselves depend on the slow variables. This feedback mechanism engenders
stiffness which effectively negates the computational benefits of time-scale sep-
aration: for every simulation step in the slow variables, a whole (large) set of
complete simulations for the fast variables must be executed to obtain reliable
estimates of the equilibrium statistics of the fast variables.
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A possible solution to this computational problem would be to explore the
functional dependency of the equilibrium statistics of the fast variables on the
state of the slow variables. This in principle would greatly facilitate computa-
tions, replacing the need for simulations of the fast variables with a lookup table
for the statistics. However, in general the number of states visited by slow vari-
ables may be very high, resulting in a need for very long precomputing steps.
To obviate this problem, we exploit the results of Sect. 4.1, which imply that
the equilibrium statistics of the fast variables are a continuous function of the
slow variables (rescaled to concentrations). This enables us to leverage powerful
machine learning techniques to construct a statistical approximation to the equi-
librium statistics from a potentially much smaller number of pre-simulation runs.
We use Gaussian Processes (GP) regression, a flexible non-parametric Bayesian
method for non-linear regression, although other methods are also possible in
principle. GPs provide us with a fast analytical approximation to the unknown
function from a set of precomputed values of the function; importantly, their
flexibility guarantees that they can approximate arbitrarily well any continuous
function [1]. We refer the reader to [14] for a comprehensive introduction to GP
regression, which we do not provide for space reasons.

4.3 Stochastic Simulation via Statistical Abstraction

We propose a stochastic simulation algorithm via statistical abstraction (SA-
SSA), which involves simulating the slow system only. The algorithm works in
two phases. In an initialisation phase, we construct an analytical approximation
of the rates of the slow subsystem. In the simulation phase, these approximate
rates are used in place of the true slow kinetic rate functions to simulate the
slow subsystem with standard Gillespie simulation [9]. As the simulation phase
is standard, we shall focus on the first phase.

The construction of these analytic approximations during the initialisation
process is broken down to two steps. The first step involves estimating the rate
expectations f̂j(z ),∀Rj ∈ Rslow for a grid of n population vectors, which corre-
spond to n different states of the slow process. For each population vector, the
fast subsystem is simulated until steady-state is reached, and the expectation of
fj(Y , z ) is calculated as follows:

f̂j(z ) = 1/tf

∫ t0+tf

t0

fj(Y , z )dt (4)

where t0 is the time required to reach equilibrium and tf is sufficiently large to
compute accurately the time average. This is estimated using a simple heuris-
tic: the rate expectation is measured for regular subsequent time intervals, and
steady-state is considered to have been reached if the change observed is less
than 1 %. Since we have assumed that the fast process is ergodic, there should
be exactly one steady-state distribution, therefore the expectation can be cal-
culated using a single trajectory for each of the n states. We stress that our
approach is independent of the choice of the method to estimate the steady
state, which can be safely replaced.
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At the end of this pre-simulation process, we have a collection of n population
vectors paired with n noisy observations of the rate expectation as a function
of the state of the slow system. GP regression is a natural and fully automated
choice to obtain estimations for the the expectations for any point in the state-
space, since it transfers information across neighbouring points.

To comment on the cost of the initialisation process, we have to consider
the cost of the pre-simulation runs and the regression step. One of the main
assumptions of QE reduction is that steady-state is reached quickly for the fast
subsystem, therefore pre-simulation avoids the excessive simulation of the fast
system that occurs when stiffness is present. The cost of regression is dominated
by the solution of a linear system, whose complexity is O(n2), where n is the
number of training points2. This cost can be further reduced by employing sparse
approximations to GPs, which is a subject well studied in the machine-learning
community [14]. An important note on the initialisation cost is that it has to be
paid only once, and then name trajectories can be efficiently sampled from the
slow subsystem. If the rate expectations are learned as a function of the system
parameters as well, then it is possible to approximate an entire family of stiff
systems. The relationship between the initialisation cost and the computational
savings achieved is demonstrated in the experiments of Sect. 5.

5 Experimental Evaluation

In order to demonstrate the computational savings and assess the approximation
quality of our approach,we consider two stiff examples of bio-chemical reactionnet-
works. We have generated samples from the distributions of the slow species, using
both the standard Gillespie algorithm [9] and SA-SSA. The approximation quality
is evaluated by in terms of the histogram distance between the samples from the
exact and the approximate simulation process. To put the histogram distance in a
context, this has to be compared with the corresponding self-distance. A distance
value smaller than the self-distance implies that the two distributions are practi-
cally indistinguishable for a givennumber of samples.The self-distance is estimated
using the following result of Cao &Petzold [7]: an upper bound for the average his-
togram self-distance is given by

√
(4K)/(πN), for N samples and K intervals in

the histogram. For the examples that follow, we consider K = 50.

5.1 Stiff Enzyme-Substrate Reaction

We perform numerical experiments on the enzyme-substrate example, given the
partitioning described by Eqs. (2) and (3). We consider kinetic constants c1 =
0.01, c2 = 1 and c3 = 10−4, and initial state X 0 = (220, 3000, 0, 0). The rate
expectation for R3 in (3) has been approximated via GP regression. For the
training set, we have sampled 1000 population values for the slow variable P
between 0 and 3000.
2 GP regression typically involves matrix inversion, but this can be avoided as we

make no use of predictive variances.
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Table 1. Enzyme-substrate model: histogram distances for 103 simulation runs (esti-
mated self-distance: 0.252).

P

Time Nested-SSA SA-SSA

5 × 104 0.290 0.246

10 × 104 0.250 0.204

18 × 104 1.016 0.160

20 × 104 0.940 0.142

The results of simulating the slow subsystem can be seen in Table 1, which
summarises the histogram distances from the true distribution for the popula-
tion of P , at four time-points. Most of the distances recorded are lower than the
estimated upper bound for the average self-distance (i.e. 0.252). We also report
the corresponding histogram distances for the Nested-SSA method of Weinan
et al. [15], which was parametrised so that it has been as efficient as out method
(see Table 2). For the given level of efficiency, our method resulted in lower val-
ues for the histogram distance in most cases. Most importantly, the simulation
strategy that we propose has been significantly more efficient that exact Gille-
spie simulation, as can be seen in Table 2. We also report the time required
for initialisation, which is broken down to pre-simulation runs, hyperparameter
optimisation, and the training of the GP regression model.

Parameter Exploration. We demonstrate an example of learning the expected
rates as a function of the slow state in combination with a parameter of the
system. This practice allows us to pay the initialisation cost once and then sim-
ulate a range of stiff systems using our accelerated simulation approach. For
the enzyme-substrate system we consider that c1 varies in the range [0.01, 1];
note that for the values of c1 considered, the system remains stiff, so the QE
reduction is meaningful. We have randomly sampled a grid of 1000 values for
XP ∈ [0, 3000] and c1 ∈ [0.01, 1], which was used as training set for a regres-
sion model. By fixing the parameter c1 to a particular value, we were able to
generate trajectories efficiently using SA-SSA. Table 3 summarises the relative
mean error observed when approximating the mean value of XP , for different

Table 2. Execution times in seconds for 103 simulation runs.

Method Enzyme-substrate Viral model

SA-SSA Pre-simulation 0.291 26.11

Hyperparam. opt. 1.484 1.68

Training 0.080 0.05

Total initialisation 1.855 27.84

Simulation 153 316

Exact SSA 6947 2410

Nested-SSA 209 327
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Table 3. Relative mean error values for approximating the mean value of XP , for 103

simulation runs.

P (RME)

Time c1 = 0.01 c1 = 0.1 c1 = 0.5 c1 = 1

5 × 104 1.83 × 10−3 9.08 × 10−4 2.35 × 10−3 2.17 × 10−3

10 × 104 1.20 × 10−3 1.49 × 10−3 1.94 × 10−3 2.87 × 10−3

18 × 104 8.04 × 10−4 3.73 × 10−5 4.49 × 10−4 3.05 × 10−4

20 × 104 9.13 × 10−4 4.56 × 10−5 6.06 × 10−5 3.26 × 10−5

values of c1. The total initialisation time for our approach has been 3.562 sec.
Parameter exploration via the standard Gillespie algorithm required 1911 sec,
while SA-SSA required only 32 sec.

5.2 Viral Infection Model

We now consider is the viral infection model appeared in [11]. We present the
following simplified version of the model which involves three species, the viral
template T , the viral genome G, and the viral structural protein S:

T
f1(X )−−−−→ G + T, f1(X ) = k1XT T

f4(X )−−−−→ ∅, f4(X ) = k4XT

G
f2(X )−−−−→ T, f2(X ) = k2XG S

f5(X )−−−−→ ∅, f5(X ) = k5XS

T
f3(X )−−−−→ S + T, f3(X ) = k3XT G + S

f6(X )−−−−→ V, f6(X ) = k6XGXS

(5)

The system state is represented as a vector X = (XT ,XG,XS). Regarding the
model parameters, we follow [11]; for the kinetic constants we have: k1 = 1,
k2 = 0.025, k3 = 1000, k4 = 0.25, k5 = 1.9985 and k6 = 7.5e − 6, and initial
state X 0 = (10, 0, 0). A random system trajectory can be seen in Fig. 1.

Based on the kinetic constants, we consider the set of fast reactions Rfast =
{R3, R5} and slow reactions Rslow = {R1, R2, R4, R6}. Therefore, the fast species
will be Y = (XS), and we have slow species Z = (XG,XT ), give rise to the
following fast and slow subsystems correspondingly:
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Fig. 1. Left: A random trajectory of the viral infection model, showing the slow species
populations. Right: Distribution of the genome population XG at t = 50.
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Table 4. Viral infection model: histogram distances for 103 simulation runs (estimated
self-distance: 0.252).

G T

Time Nested-SSA SA-SSA Nested-SSA SA-SSA

50 0.988 0.308 0.548 0.242

100 0.244 0.414 0.154 0.226

200 0.388 0.406 0.156 0.204

500 0.346 0.432 0.198 0.238

∅ f3(Y ,z)−−−−−→ S, f3(Y , z ) = k3XT

S
f5(Y ,z)−−−−−→ ∅, f5(Y , z ) = k5XS

T
f1(z)−−−→ G + T, f1(z ) = k1XT

G
f2(z)−−−→ T, f2(z ) = k2XG

T
f4(z)−−−→ ∅, f4(z ) = k4XT

G
f̂6(z)−−−→ V, f̂6(z ) = E|z [f6(Y , z )]

The rate of R6 originally depends on XG directly, and on XT indirectly, since
the population of T affects the steady-state of the fast process. We consider a
random grid of 256 uniformly distributed population values for the genome G
and the template T , given upper bounds of 500 and 100 molecules correspond-
ingly. Note that a näıve exploration of the rate expectation would require 50000
evaluations, while we use only 256 for the training set of the GP.

The performance in terms of accuracy for the viral model is summarised in
Table 4. We report the histogram distances for slow components, at four time-
points. An example of the histograms generated can be seen in Fig. 1 for the
genome G, at time t = 50. We see that in all cases the distance from the true
distribution is very close to the self-distance estimated for the given number
of samples, a fact that implies a very good approximation of the stochastic
properties for the slow system. The computational savings are also significant,
as can be seen in Table 2.

6 Conclusions

Time-scale separation is a well studied approach to efficiently simulate systems
that exhibit stiffness, where systems are partitioned into slow and fast subsys-
tems. Nevertheless, most of the approaches proposed in the literature rely on
the structure of the system to produce estimations for the rate expectations for
the slow process. We have proposed SA-SSA as a generic approach to simulate
the slow-scale subsystems, where these rate expectations are approximated via
a machine learning method.

Experiments on examples of stiff systems show that SA-SSA requires a small
initialisation cost and results in significant computational savings. For a given
level of efficiency, SA-SSA achieved similar or better accuracy than Nested-SSA,
whose premise is also a generic simulation framework for stiff systems. Besides
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any performance comparison, there is a qualitative difference between the two
methods. Unlike Nested-SSA, our approach is not transparent with respect to
the slow process, since it requires a rough estimate of the reachable state-space.
However, the efficiency of SA-SSA is not affected by the complexity of the fast
subsystem, in contrast with Nested-SSA, as any relevant cost in only paid dur-
ing the initialisation phase. Moreover, it has been possible to learn the rate
expectations as functions of the model parameters as well; we therefore obtain
approximations for a family of systems, provided that these comply with the
stiffness assumption.
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Abstract. Stochastic dynamics of individual cells are mostly mod-
eled with continuous time Markov chains (CTMCs). The parameters
of CTMCs can be inferred using likelihood-based and likelihood-free
methods. In this paper, we introduce a likelihood-free approximate
Bayesian computation (ABC) approach for single-cell time-lapse data.
This method uses multivariate statistics on the distribution of single-cell
trajectories. We evaluated our method for samples of a bivariate nor-
mal distribution as well as for artificial equilibrium and non-equilibrium
single-cell time-series of a one-stage model of gene expression. In addi-
tion, we assessed our method for parameter variability and for the case of
tree-structured time-series data. A comparison with an existing method
using univariate statistics revealed an improved parameter identifiability
using multivariate test statistics.

Keywords: Parameter estimation · Approximate Bayesian computa-
tion · Multivariate test statistics · Single-cell time-series

1 Introduction

Gene expression is known to be affected by different sources of stochasticity [5].
To study these sources, stochastic single-cell time-lapse data are collected [24].
To reveal the underlying mechanisms, models based on continuous time Markov
chains (CTMCs) [8] are derived for these data. CTMCs describe the changes in
number of molecules and account for intrinsic noise.

The dynamics of CTMCs depend on the process parameters, e.g. reaction
rates for the generation of one mRNA. To estimate these parameters, likelihood-
based methods can be used. These methods consider all possible paths of the
stochastic process by evaluating the transition density, e.g. using the finite state
projection [15]. As this is computationally demanding and merely tractable for
simple processes and moderate system sizes, likelihood-free approaches have
c© Springer International Publishing Switzerland 2015
O. Roux and J. Bourdon (Eds.): CMSB 2015, LNBI 9308, pp. 52–63, 2015.
DOI: 10.1007/978-3-319-23401-4 6
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Fig. 1. Multidimensional representation of single-cell trajectories. (a) Single-cell tra-
jectories of observable y. (b) Corresponding representation of the trajectory with time
points t1 and t2 as scatter plot.

been developed, which are also called approximate Bayesian computation (ABC)
methods [14]. ABC methods circumvent the evaluation of the likelihood. A para-
meter is accepted if the distance between simulated and measured data is suffi-
ciently small, and rejected otherwise. The performance and convergence of ABC
depends crucially on the employed distance measure.

Single-cell time-lapse data provide time-resolved information for individual
cells. Conventional approaches for stochastic models rely on fitting these trajec-
tories individually [4]. However, this becomes time consuming if the number of
cells increases. In this study, we will take a population perspective to estimate
parameters based on single-cell time-lapse data collected for instance using fluo-
rescence microscopy. Assuming that one observable y is measured for an individ-
ual cell at two time points, the measured trajectories can be viewed as samples
from a two-dimensional distribution and depicted as scatter plots (Fig. 1). For
multiple observables ny and/or more time points nt the single-cell trajectories
are samples from a “nynt”-dimensional path distribution. Accordingly, distance
measures for ABC are provided by multivariate test statistics.

This manuscript is structured as follows: In Sect. 2, we introduce the concept
of ABC and present an approach for univariate single-cell snapshot data. For
these data, cells are measured once and not tracked over time. In Sect. 3, we
introduce two multivariate test statistics and evaluate our novel ABC method
on a bivariate normal distribution. In Sect. 4, we apply our method to artificial
time-lapse data of a one-stage model of gene expression, accounting for extrinsic
cell-to-cell variability as well as for cell division. In Sect. 5, we summarise and
discuss our results.

2 Introduction to Approximate Bayesian Computation

ABC is a likelihood-free method for parameter estimation. The method has been
introduced by Pritchard et al. [17] in its most basic form, the ABC rejection
algorithm. In this manuscript, we use an improved version of the algorithm,
ABC with sequential Monte Carlo (ABC SMC), which samples a sequence of
distributions with decreasing acceptance threshold εt [23]:

S1: Initialize ε1 and set the population indicator t = 1.
S2.0: Set the particle indicator i = 1.
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S2.1: If t = 1, sample θ∗∗ from the prior distribution p(θ).
Else, sample θ∗ from the previous population

{
θ
(i)
t−1

}
with weights wt−1

and draw θ∗∗ ∼ Kt(θ|θ∗), with perturbation kernel Kt.
If p(θ∗∗) = 0, return to S2.1.
Simulate a candidate data set Dsim ∼ p(D|θ∗∗).
If d(Dobs,Dsim) ≥ εt, return to S2.1.

S2.2: Set θ
(i)
t = θ∗∗ and calculate the corresponding weight,

w
(i)
t =

{
1 , if t = 1

p(θ
(i)
t )

∑P
j=1 w

(j)
t−1Kt(θ

(i)
t |θ(j)

t−1)
, if t > 1 .

If i < P , set i = i + 1, go to S2.1.
S3: Normalize the weights.

If εt > εend, calculate εt+1 e.g. by a quantile selection scheme (see e.g. [2]),
set t = t + 1, go to S2.0.

The evaluation of the likelihood function is replaced by a comparison of observed
and simulated data using the distance measure d(Dobs,Dsim). For the case of
ε1 = εend the above described algorithm yields the ABC rejection algorithm.

The generally low probability of observing the data set p(Dobs) yields low
acceptance rates and therefore hinders the efficiency of ABC. Thus, lower dimen-
sional summaries S, such as moments, are often used instead of the full data set
in the rejection step [3]. If p(θ|Dobs) = p(θ|S(Dobs)), the summary statistic is
sufficient and the true posterior can be obtained for εend → 0 [16].

State-of-the-Art: ABC SMC for Single-Cell Snapshot Data

ABC methods have been successfully applied for the analysis of single-cell snap-
shot data collected e.g. using flow cytometry. The Inference for Networks of
Stochastic Interactions among Genes using High-Throughput data (INSIGHT)
algorithm has already been used for high-dimensional models [13]. Since cells are
discarded after being measured in flow cytometry, the measurements at the nt

different time points are independent. The distance between observed and sim-
ulated data sets can be calculated in the ABC rejection step using the maximal
Kolmogorov-Smirnov (KS) distance over all time points tk:

dKS(Dobs,Dsim) := max
k∈{1,...,nt}

‖F̂Xk
− ĜYk

‖∞ , (1)

with Dobs = {Xk}nt

k=1, Dsim = {Yk}nt

k=1 , and F̂Xk
, ĜYk

being the corresponding
empirical cumulative distributions. Here, a sample Xk contains the fluorescence
levels of the n single-cells for a time point that is indexed by k and each Yk

comprises m samples. INSIGHT achieves good results, benefiting from large
sample sizes provided by flow cytometry, from using the two-sample Kolmogorov-
Smirnov test to compare the data sets, and from exploiting relationships between
configurations of the ABC algorithm and the test statistic.

We will adapt the idea of using test statistics for the development of an ABC
method for single-cell time-series, which we later will compare with INSIGHT.
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3 ABC with Multivariate Test Statistics

In the following, we develop an ABC method for single-cell time-lapse data using
hypothesis testing [13,18]. A parameter is accepted as sample of the posterior
distribution, if the observed data set and the simulated data set are drawn from
the same distribution. This is indicated by a two-sample test.

3.1 Multivariate Test Statistics

For the case of data sets that comprise only one-dimensional samples, tests
relying on the KS distance can be used. Since we want to apply ABC with test
statistics to multivariate data, we need to find an appropriate multivariate test
statistic for the two-sample problem (see [9] for an overview of multivariate two-
sample tests).

Cross-match Test (CM). Rosenbaum presented the cross-match test for the
multivariate two-sample problem [19]. A complete graph is defined, in which
nodes correspond to samples and edge weights correspond to distances, e.g. the
euclidean distance, between the samples. To obtain the test statistic a minimum
weight non-bipartite matching is performed. The number of cross-matches, i.e.,
the matched pairs that comprise one observed and one simulated sample, is
described by the random variable A1. The null distribution of A1 is

Pr(A1 = a1) =
2a1(n+m

2 )!(
n+m

n

)
a0!a1!a2!

, (2)

with al being the number of matches with exactly l observed samples. For the
case of the total number of samples n + m being uneven see [19]. A higher
number of cross-matches indicates a higher similarity of the data sets and we
would accept the parameter that has been used to generate the simulated data
set. If the number of cross-matches is small, the samples are likely drawn from
different distributions and the corresponding parameters are rejected.

We implemented the cross-match test in MATLAB. For this, we integrated a
blossom V algorithm1 [12] to perform the minimum-weight non-bipartite match-
ing, which requires O((n + m)3) arithmetic operations. The main advantage of
the cross-match test is that it is distribution-free and exact, i.e., it does not
make assumptions about the underlying distribution and the null distribution is
known in closed form.

Maximum Mean Discrepancy Test (MMD). An alternative multivariate
test statistic for the two-sample problem is based on the maximum mean dis-
crepancy [9],

MMD[F , p, q] := sup
f∈F

(Ep[f(x)] − Eq[f(y)]) .

1 Available at http://pub.ist.ac.at/∼vnk/software.html.

http://pub.ist.ac.at/~vnk/software.html
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If the distributions p and q are equal, the MMD is zero. Moreover, F is a class of
functions f : X → R that is chosen to be the unit ball in a universal reproducing
kernel Hilbert space H, to achieve a trade-off between over- and underfitting. If F
comprises not enough functions, the MMD may not be able to detect differences
between the distributions p and q. Contrarily, if the class is too powerful, for
p = q the MMD may be significantly greater than zero for finite sample sizes.
Given samples X = (x1, . . . ,xn) and Y = (y1, . . . ,ym) of p and q, respectively,
an empirical estimate of the MMD is given by

MMD[F ,X,Y] := sup
f∈F

⎛

⎝ 1
n

n∑

i=1

f(xi) − 1
m

m∑

j=1

f(yj)

⎞

⎠ .

Using a kernel k(x,y) = Φ(x)T Φ(y) with nonlinear feature space mapping Φ(x),
the MMD can be rewritten in terms of the mean embedding μp := Ep[Φ(x)] as
MMD[F , p, q] = supf∈F 〈μp − μq, f〉 = ‖μp − μq‖H. With μX = 1

n

∑n
i=1 Φ(xi)

and k(x,y) = 〈Φ(x), Φ(y)〉 the empirical estimate of the MMD is

MMD[F ,X,Y] =
( 1

n2

n∑

i�=j

k(xi,xj) +
1

m2

m∑

i�=j

k(yi,yj) − 2
nm

n,m∑

i,j=1

k(xi,yj)
) 1

2
.

(3)

In this manuscript, we use a MATLAB implementation of the MMD with an
adaptive Gaussian kernel, which has been developed by Gretton et al. [9]. The
computational costs for the evaluation of (3) are O((n + m)2) and the test has
shown to perform good even for low sample sizes and high-dimensional data.
A connection to summary statistics is given by the fact, that a feature map of a
kernel is a sufficient statistic for the exponential family [22].

3.2 Comparison of Test Statistics in ABC SMC for Samples of a
Bivariate Normal Random Variable

In the following, we assess the properties of an ABC SMC algorithm using the
aforementioned multivariate test statistics. We compare our method with the
approach of INSIGHT [13], which neglects connections between different dimen-
sions of the samples. We generate n = 100 samples x of a bivariate normal
random variable with mean μ = (0, 0)T and a covariance matrix Σ =

(
θ1 θ2
θ2 θ1

)
,

with θ1 = 1 and θ2 = 0.5 (Fig. 2a). As the covariance matrix has to be positive
definite, we use the prior distribution

p(θ) =
{

1
100 , for 0 < θ1 < 10, 0 ≤ θ2 < θ1
0 , otherwise ,
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Fig. 2. ABC SMC using test statistics for samples of a bivariate normal distribution.
(a) Depiction of 100 samples x ∼ N2 (μ, Σ). (b) Distribution of the CM, MMD and
KS statistics for 10000 data sets generated with the true parameters. The gray regions
indicate the values for which the parameter is accepted as sample of the final approxi-
mation. (c) Posterior approximations for θ1 and θ2 using ABC SMC with CM, MMD
and KS. The yellow area shows where the prior p(θ) > 0.

for the parameters θ = (θ1, θ2)T , which are estimated in the following. Since the
efficiency of the algorithm depends on configurations such as the threshold sched-
ule, we only compare the approaches in terms of convergence, i.e., whether it is
possible to obtain a reasonable approximation, and not in terms of performance.

The final tolerances, i.e., the maximal allowed MMD εMMD,end = 0.055 and
KS distance εKS,end = 0.99, and the number of cross-matches that needs to be
exceeded cend = 56, are chosen as the 10th percentile of the distances obtained by
simulating data and calculating the statistics with the ground truth. Figure 2b
shows the distributions of the test statistics. The gray shaded area indicates for
which values of the statistic a parameter is accepted in the final population of
ABC SMC. For the cross-match test (CM), additionally the exact null distrib-
ution is visualized calculated with (2). Note that in contrast to the maximum
mean discrepancy (MMD) and the Kolmogorov-Smirnov distance (KS), a high
value indicates a good agreement. The results of ABC SMC are visualized in
Fig. 2c. ABC SMC with MMD and CM is able to estimate the parameters. The
confidence obtained using MMD is much higher than for CM. The KS approach
provides an estimation of θ1 only. The posterior approximation for θ2 is much
wider and only restricted by the relationship |θ2| ≤ θ1. The difference can be
explained by the lack of information included in the marginal distributions that
are examined with KS. Information about θ1 can only be gained by investigating
the correlations among the measurements. The quality of the approximation did
not improve significantly for lower tolerances. The CM test requires a higher
computation time than the MMD and yields less accurate posterior approxima-
tions for the example of a bivariate normal distribution. Although we expect
the sampler to converge to the true posterior when using CM and MMD for a
tolerance level of zero, we use the MMD for our subsequent studies.

4 Simulation Example: Gene Expression

In this section we apply the ABC SMC scheme with MMD test statistics
described before to a one-stage model of gene expression (Fig. 3a). For the
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generation of artificial data of the gene expression model we use a C imple-
mentation of the stochastic simulation algorithm (SSA). We implemented the
previously described ABC SMC algorithm in MATLAB and use the following set-
tings: We sample from the posterior distribution of the log10-transformed para-
meters, for which we use a uniform prior for each parameter, p(θi) = U [−6, 4].
To compare observed and simulated data sets we use the maximal KS distance
(1), which treats the single-cell time-lapse data as single-cell snapshot data,
and the MMD (3), which also considers the tracking information of the data.
For the threshold schedule an adaptive quantile approach is used with the 25th

percentile. Furthermore, we implemented the k-nearest neighbor perturbation
kernel proposed in [7], with k = P/5 and P = 500 particles per population.
We increase the number of particles and repeat the approximation if we do not
obtain a similar posterior approximation within three repetitions of the overall
ABC SMC sampling. The final threshold εend is chosen in a data-driven fashion.
Since we know the true parameters for the simulation study, we generate 1000
data sets using the true values and calculate the corresponding distances. We
used the 5th percentile of these distances as final threshold.

4.1 Equilibrium and Non-Equilibrium Time-Series

For an initial evaluation of the proposed ABC SMC using multivariate statis-
tics, we consider two scenarios: In Scenario 1, the initial mRNA number is zero
[mRNA](0) = 0. In Scenario 2, the initial mRNA number is sampled from the
equilibrium distribution [mRNA](0) ∼ Poi(λ/γ) [20]. For both scenarios we gen-
erate n = 10, 100 and 1000 single-cell time-series for the synthesis rate λ = 5h−1

and degradation rate γ = 0.3 h−1 using the SSA. We simulate the system for
20 h and record the mRNA at nt = 100 equidistant time points. The data sets
are visualized for the case of n = 10 cells in Fig. 3b–c. For the evaluation of our
method we assume λ and γ to be unknown and estimate them from the data.

For Scenario 1, in which the population exhibits transient dynamics, both
parameters are identifiable with MMD and KS test statistics (Fig. 4a–b). As
expected, increasing the number of cells yields a narrower posterior distribution
for both statistics. For Scenario 2, ABC SMC using the KS distance cannot
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Fig. 3. Illustration of artifical single-cell time-lapse data. (a) Depiction of one-stage
model of gene expression with mRNA synthesis rate λ and mRNA degradation rate
γ. (b) Scenario 1: Out of steady state time-series of n = 10 cells sampled every 1

5
h.

(c) Scenario 2: Steady state time-series of n = 10 cells.
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Fig. 4. Results for non-equilibrium time-series (Scenario 1). Posterior approximation
obtained by ABC SMC with (a) MMD and (b) KS. (c) Fitted mean and variance
of number of molecules for 1000 simulation generated with the MAP estimates. The
individual trajectories are illustrated in gray. (d) Fitted mean and variance of the
autocorrelation function. (e) Comparison with posteriors obtained using FSP. Different
lines indicate different repetitions of ABC SMC.

infer the individual parameters but only the ratio (Fig. 5b). This is explained by
the fact that the marginal distributions analysed using the KS distance do not
change over time. In contrast, the proposed multivariate method using MMD
exploits the temporal fluctuations and can infer both parameters (Fig. 5a).

For the case of 100 cells and 100 measurements, we generate 1000 time-series
based on the maximum-a-posteriori (MAP) estimates and compare the mean
and variance of the number of molecules for both scenarios (Figs. 4c and 5c) as
well as mean and variance of the corresponding sample autocorrelation (Figs. 4d
and 5d). The fits and the corresponding properties of the data are almost indis-
tinguishable.

We additionally compare the posterior approximations with those obtained
by the finite state projection (FSP) [15]. We sample from the posterior using
a FSP-based likelihood (for further details see [1]) and the MCMC toolbox
DRAM [10]. The results are shown in Figs. 4e and 5e, for Scenario 1 and 2,
respectively. For Scenario 1, the posterior approximations using MMD and KS
are similar (Fig. 4e). Both are wider than the approximation obtained with the
FSP. For Scenario 2, the posterior distribution obtained by ABC SMC using
KS is flat, since no information about the individual parameters can be gained
(Fig. 5e). The posterior distribution obtained by ABC SMC using MMD has a
higher discrepancy to the FSP than for Scenario 1. This indicates that the MMD
can extract more information from the transient dynamics in Scenario 1 than
from only the steady state fluctuations in Scenario 2.
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Fig. 5. Results for equilibrium time-series (Scenario 2). Posterior approximation
obtained by ABC SMC with (a) MMD and (b) KS. (c) Fitted mean and variance
of number of molecules for 1000 simulation generated with the MAP estimates. The
individual trajectories are illustrated in gray. (d) Fitted mean and variance of the auto-
correlation function. (e) Comparison with posteriors obtained using FSP. Different lines
indicate different repetitions of ABC SMC.

4.2 Parameter Variability

Cell-to-cell variability of gene expression can be partitioned into intrinsic and
extrinsic noise [5]. In Sect. 4.1, intrinsic noise has been considered, but the pro-
posed approach can in principle also be used to infer extrinsic sources of cell-to-
cell variability. In the following example, we model extrinsic noise by assuming
variability in the mRNA synthesis and degradation rates. The parameters λ
and γ are assumed to be log-normally distributed with means μλ, μγ and vari-
ances σ2

λ, σ2
γ . The data comprises 100 time-series measured at 100 time points.

The true parameters used for the data generation are θ = (μλ, σ2
λ, μγ , σ2

γ)T =
(5, 0.1, 0.3, 0.05)T . The time-series are depicted in Fig. 6a. The overall variability
is higher than in the scenarios without additional variability (Figs. 3a and 4c).

The results obtained for ABC SMC are depicted in Fig. 6b. Here, also the
intermediate distributions corresponding to different tolerance values are visu-
alized showing the convergence of the algorithm. It reveals that the posterior
distributions of the parameters μλ, μγ and σ2

γ are narrow, indicating identifia-
bility. The posterior distribution for σ2

λ is wider and merely an upper bound can
be determined. Accordingly, our analysis showed that in principle stochastic and
deterministic variability can be reconstructed from single-cell time-lapse data.



Approximate Bayesian Computation for Stochastic Single-Cell 61

Fig. 6. ABC SMC for cells affected by extrinsic noise. (a) Time-series of cells with
parameter variability. (b) Results obtained with MMD. On the diagonal, the marginal
posterior distributions for the parameters are shown. The off diagonals provide scatter
plots. The colours indicate the population corresponding to different tolerances ε and
illustrate the convergence with decreasing ε.

4.3 Tree Structure

Single-cell time-lapse data often contain information about the ancestors of a
cell [6]. We thus propose an approach to include tree-structured data in the ABC
SMC sampler. We assume that a simple tree comprises one mother and its two
daughter cells. One sample is given by xi = (xi,mother, xi,daughter1 , xi,daughter2),
as visualized in Fig. 7a. Since the samples need to have the same dimension when
using MMD, we consider a fixed time interval before and after cell division. This
is further motivated by the fact that the time-series exhibit transient dynamics
after division, and therefore have a higher information content. Time-series of
different lengths could also be interpolated and scaled to the same interval. To
assess the quality of our method, we generate n = 50 simple trees (Fig. 7b) that
each includes one division process. A cell, which is measured at 50 time points,
divides after 10 h. The molecules are equally split among the daughter cells. Both
daughters are simulated for 10 h and measured at 50 time points.

Figure 7c visualizes the posterior approximations for three repetitions of ABC
SMC with MMD. The true value lies within the 90%-credible interval. This
demonstrates the applicability of our method to not only time-series, but also
single-cell time-lapse data with additional tree structure. This approach allows to
account for connections between the time-series of the mother and the daughter
cells and e.g. parameters of the partitioning process could be estimated.

5 Discussion and Outlook

In this paper, we introduced and evaluated an ABC SMC method to infer
parameters of CTMCs. Importantly, our method uses multivariate test sta-
tistics on the distribution of single-cell trajectories. We studied and compared
MMD and CM multivariate statistics, and the univariate KS distance as used
in INSIGHT [13]. ABC SMC with MMD provided the best posterior approxi-
mations. We found that for equilibrium single-cell time-lapse data the tracking
information is important to identify the individual parameters.
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Fig. 7. ABC SMC using multivariate test statistics for tree-structured data. (a) Sample
time-series of a mother and its two daughter cells. (b) Simulated data of 50 simple trees.
(c) Posterior approximations with MMD. The joint posterior as well as the marginal
posteriors of the parameters λ and γ are shown for three repetitions of the sampling
with the same final tolerance.

A drawback of the method is the high computation time arising due to com-
putationally expensive stochastic simulations. Thus, efficient simulation methods
could be used instead of the SSA [8,11]. These should be combined with appro-
priate threshold schedules [21] and stopping criteria. So far, we merely used the
test static value, but not the acceptance region of the hypothesis test based on a
given confidence level. Since INSIGHT [13] benefits from exploiting relationships
between configurations of the algorithm and the boundary for the test statistic,
this could also be considered for multivariate statistics. This approach could pos-
sibly suffer from the low sample sizes of single-cell time-lapse data. In a follow
up investigation, it would be worth to study how computation time can be saved
by adapting the method to different numbers of observed and simulated samples
(m < n). Furthermore, as more and more lineage information becomes available,
its information content should be evaluated.

In summary, the proposed ABC SMC method using multivariate test statis-
tics seems promising for the analysis of single-cell time-lapse data. It provides
a flexible framework, which can easily be extended to similar data types. Using
model selection, even sources of cell-to-cell variability might be unraveled.
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Abstract. Stochastic evolution of Chemical Reactions Networks
(CRNs) over time is usually analysed through solving the Chemical Mas-
ter Equation (CME) or performing extensive simulations. Analysing sto-
chasticity is often needed, particularly when some molecules occur in low
numbers. Unfortunately, both approaches become infeasible if the sys-
tem is complex and/or it cannot be ensured that initial populations are
small. We develop a probabilistic logic for CRNs that enables stochastic
analysis of the evolution of populations of molecular species. We present
an approximate model checking algorithm based on the Linear Noise
Approximation (LNA) of the CME, whose computational complexity is
independent of the population size of each species and polynomial in the
number of different species. The algorithm requires the solution of first
order polynomial differential equations. We prove that our approach is
valid for any CRN close enough to the thermodynamical limit. However,
we show on three case studies that it can still provide good approxima-
tion even for low molecule counts. Our approach enables rigorous analysis
of CRNs that are not analyzable by solving the CME, but are far from
the deterministic limit. Moreover, it can be used for a fast approximate
stochastic characterization of a CRN.

1 Introduction

Chemical reaction networks (CRNs) and mass action kinetics are well studied
formalisms for modelling biochemical systems. In recent years, CRNs have also
been successfully used as a formal programming language for biochemical sys-
tems. There are two well established approaches for analyzing chemical networks:
deterministic and stochastic. The deterministic approach models the kinetics of a
CRN as a system of ordinary differential equations (ODEs) and represents aver-
age behaviour, valid in the thermodynamic limit [8]. The stochastic approach, on
the other hand, is based on the Chemical Master Equation (CME) and models
the CRN as a continuous-time Markov chain (CTMC) [7]. The stochastic behav-
ior can be analyzed by stochastic simulation [9] or by exhaustive probabilistic
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model checking of the CTMC, which can be performed, for example, by using
PRISM [12].

Exhaustive analysis of the CTMC is able to find the best- and worst-case
scenarios and is correct for any population size, but suffers from the state-space
explosion problem and can only be used for relatively small systems. In contrast,
deterministic methods are much more robust with respect to state-space explo-
sion, but unable to represent stochastic fluctuations, which play a fundamental
role when the system is not in thermodynamic equilibrium.

Contributions. In this paper we develop a novel approach for analysing the sto-
chastic evolution of a CRN based on the Linear Noise Approximation (LNA) of
the CME. We formulate SEL (Stochastic Evolution Logic), a probabilistic logic
for CRNs that enables reasoning about probability, expectation and variance of
linear combinations of populations of the species. Examples of properties that
can be specified in our logic are shown in Example 1. We propose an approxi-
mate model checking algorithm for the logic based on the LNA and implement
it in Matlab and Java. We demonstrate that the complexity of model check-
ing is polynomial in the initial number of species and independent of the initial
molecule counts, thus ameliorating state-space explosion. Further, we show that
model checking is exact when approaching the thermodynamic limit. Though the
algorithm may not be accurate for systems far from the deterministic limit, this
generally happens when the populations are small, in which case the analysis can
be performed by transient analysis of the induced CTMC [11]. Our approach is
essential for CRNs that cannot be analyzed by (partial) state space exploration,
because of large or infinite state spaces. Moreover, it is useful for a fast (approxi-
mate) stochastic characterization of CRNs, since solving the LNA is much faster
than solving the CME [6]. We prove asymptotic correctness of LNA-based model
checking and show on three examples that it is still possible to obtain very good
approximations even for small population systems, comparing with standard
uniformisation [11] and statistical model checking implemented in PRISM.

Related Work. Bortolussi et al. [1] uses the Central Limit Approximation
(CLA) (essentially the same as the LNA) for checking restricted timed automata
specifications and they assume fixed population size. Wolf et al. [16] develop a
sliding window method to approximately verify infinite-state CTMCs, which
applies to cases where most of the probability mass is concentrated in a confined
region of the state space. This method applies to the induced CTMC, but require
at least partial exploration of the state space, and is thus not immune to state-
space explosion.

Structure of the Paper. In Sect. 2 we summarise the deterministic and sto-
chastic modelling approaches for CRNs, and in Sect. 3 we describe the Linear
Noise Approximation method. Section 4 introduces the logic SEL and the corre-
sponding model checking algorithm based on the LNA. In Sect. 5 we demonstrate
our approach on three networks taken from the literature. Section 6 concludes
the paper.
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2 Chemical Reaction Networks

A chemical reaction network (CRN) C = (Λ,R) is a pair of finite sets, where
Λ is the set of chemical species and R the set of reactions. |Λ| denotes the
size of the set of species. A reaction τ ∈ R is a triple τ = (rτ , pτ , kτ ), where
rτ , pτ ∈ N

|Λ| and kτ ∈ R>0. rτ and pτ represent the stoichiometry of reactants
and products and kτ is the coefficient associated to the rate of the reaction;
its dimension is s−1. We often write reactions as λ1 + λ3 →k1 2λ2 instead of
τ1 = ([1, 0, 1]T , [0, 2, 0]T , k1), where ·T indicates the transpose of a vector. We
define the net change associated to a reaction τ by υτ = pτ − rτ . For example,
for τ1 as above, we have υτ1 = [−1, 2,−1]T .

We make the assumption that the system is well stirred, that is, the prob-
ability of the next reaction occurring between two molecules is independent of
the location of those molecules. We consider fixed volume V and temperature;
under these assumptions a configuration or state x ∈ N

|Λ| of the system is given
by the number of molecules of each species. We define [x] = x

N , the vector of
the species concentration in x for a given N , where N = V · NA is the volumet-
ric factor, V is the volume of the solution and NA is Avogadro’s number. The
physical dimension of N is Mol−1 · L, where Mol indicates mole and L is litre.
Given λi ∈ Λ then #λi x ∈ N represents the number of molecules of λi in x and
[λi] x ∈ R the concentration of λi in the same configuration. In some cases we
elide x, and we simply write #λi and [λi] instead of #λi x and [λi] x. They are
related by [λi] = #λi

N . The dimension of [λi] is Mol · L−1.
The propensity αn,τ of a reaction τ in terms of the number of molecules is a

function of the current configuration of the system x such that αn,τ (x)dt is the
probability that a reaction event occurs in the next infinitesimal interval dt. In
this paper we assume as valid the stochastic form of the law of mass action, so
the propensity rates are proportional to the number of molecules that partici-
pate in the reaction. Stochastic models consider the system in terms of numbers
of molecules, while deterministic ones, generally, in terms of concentrations, and
the relationship is as follows. For a reaction τ = (rτ , pτ , kτ ), given the configu-
ration x and rτ,i, the i-th component of rτ , then αc,τ (x) = kτ

∏|Λ|
i=1 ([λi] x)rτ,i

is the propensity function expressed in terms of concentrations as given by the
deterministic law of mass action. It is possible to show that, for any order of reac-
tion, αn,τ (x) ≈ Nαc,τ (x) if N is sufficiently large. Note that αc,τ is independent
of N . In this paper we are interested only in finite time horizon, because of the
problematic character of studying solutions of ODEs for infinite time horizon.

Example 1. Consider the CRN C = ({λ1, λ2, λ3}, R), where R = {(λ1 + λ2 →10

λ2 + λ2), (λ2 + λ3 →10 λ3 + λ3)}, with initial conditions #λ1 = 98,#λ2 =
1,#λ3 = 1, for a system with N = 1000. Figure 1 plots the expectation and
standard deviation of population sizes. We may wish to check if the maximum
expected value of #λ2 remains smaller than 75 molecules during the first 2 s.
However, the system is stochastic, so we also need to analyse whether the vari-
ance is limited enough when #λ2 reaches the maximum. Sometimes, analysis
of first and second moments does not suffice, so it could be of interest to check
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Fig. 1. Expected number and standard deviation of species of the CRN of Example 1
for the given initial conditions, calculated by simulating the CME.

the probability of some events, for instance, is the probability that, between
t1 = 0.5 s and t2 = 1.0 s, #λ2 − (#λ1 + #λ3) > 0 greater than 0.6?

Deterministic Semantics. Let C = (Λ,R) be a CRN. The deterministic model
approximates the concentration of the species of the system over time as a set
of autonomous polynomial first order differential equations:

dΦ(t)
dt

= F (Φ(t)) (1)

F (Φ(t)) =
∑

τ=(rτ ,pτ ,kτ )∈R υταc,τ (Φ(t)) and αc,τ (Φ(t)) = kτ

∏|Λ|
i=1 Φi(t)

rτ,i .
Function Φ : R≥0 → R

|Λ| describes the behaviour of the system as a set of
deterministic equations assuming a continuous state-space semantics, therefore
Φ(t) ∈ R

|Λ| is the vector of the species concentrations at time t. Assuming
t0 = 0, the initial condition is Φ(0) = [x0], expressed as a concentration. Note
that F (Φ(t)) is Lipschitz continuous, so Φ exists and is unique [7].

Stochastic Semantics. CRNs are well represented by CTMCs, whose transient
analysis can be performed via the Chemical Master Equation (CME) [14].

Definition 1. Given a CRN C = (Λ,R) and the volumetric factor N , we
define a time-homogeneous CTMC (XN (t), t ∈ R≥0) with state space S = N

|Λ|.
Given x0 ∈ S, the initial configuration of the system, then P (XN (0)=x0)= 1.
The transition rate from state xi to state xj is defined as r(xi, xj) =∑

{τ∈R|xj=xi+vτ } Nαc,τ (xi).

XN (t) describes the stochastic evolution of molecular populations of each species
at time t. For x ∈ S, we define P (t)(x) = P (XN (t) = x|X(0) = x0), where x0 is
the initial configuration. The CME describes the time evolution of XN as:

d
dt

(
P (t)(x)

)
=

∑

τ∈R

{Nαc,τ (x − υτ )P (t)(x − υτ ) − Nαc,τ (x)P (t)(x).} (2)
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The CME can be equivalently defined in terms of the infinitesimal generator
matrix, which admits computing an approximation of the CME using, for exam-
ple, the sliding window method [16].

We also define the CTMC (XN (t)
N , t ∈ R≥0) with state space S = Q

|Λ|. If

[x0] ∈ S is the initial configuration, then P (XN (0)
N = [x0]) = 1. The transition rate

from state [xi] to [xj ] is defined as r([xi], [xj ]) =
∑

{τ∈R|[xj ]=[xi]+
vτ
N } Nαc,τ (xi).

XN (t)
N is the random vector describing the system at time t in terms of concentra-

tions. In [7] it is proved that lim
N→∞

sup
t′≤t

‖XN (t′)
N −Φ(t′)]‖ = 0 almost surely for every

time t. This explains the relationship between the two different semantics, where
the deterministic solution can be viewed as a limit of the stochastic solution, valid
when close enough to the thermodynamic limit.

3 Linear Noise Approximation

The solution of the CME can be computationally expensive, or even infeasible,
because the set of reachable states can be huge or infinite. The Linear Noise
Approximation (LNA) has been introduced by Van Kampen as a second order
approximation of the system size expansion of the CME [14]. Since stochastic
fluctuations depend on N , and specifically, for average concentrations, are of the
order of N

1
2 [6], to derive the expansion Van Kampen assumes that:

XN (t) ≈ NΦ(t) + N
1
2 Z(t) (3)

where Z(t) = (Z1(t), Z2(t), . . . , Z|Λ|) is the random vector, independent of N ,
representing the stochastic fluctuations, Φ(t) is given by the solution of Eq. (1)
and XN (t) is the random vector of Definition 1. Using this substitution in the
system size expansion and then truncating at the second order, the probability
distribution of Z(t) is found to be given by the following linear Fokker-Plank
equation [6]:

∂P (Z, t)
∂t

= −
|Λ|∑

i=1

|Λ|∑

j=1

∂Fj(Φ(t))
∂Φi

∂(ZjP (Z, t))
∂Zi

+
1
2

|Λ|∑

i=1

|Λ|∑

j=1

Gi,j(Φ(t))
∂2P (Z, t)
∂Zi∂Zj

(4)
where G(Φ(t)) =

∑
τ∈R υτυτ

T αc,τ (Φ(t)) and Fj(Φ(t)) is the j−th component of
F (Φ(t)). The solution of Eq. (4) gives a Gaussian process. For every time t, Z(t)
has a multivariate normal distribution, whose expected value and covariance
matrix are the solution of the following equations [6]:

dE[Z(t)]
dt

= JF (Φ(t))E[Z(t)] (5)

dC[Z(t)]
dt

= JF (Φ(t))C[Z(t)] + C[Z(t)]JT
F (Φ(t)) + G(Φ(t)) (6)
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where JF (Φ(t)) is the Jacobian of F (Φ(t)). We consider as initial conditions
E[Z(0)] = 0 and C[Z(0)] = 0. This means that E[Z(t)] = 0 for every t.

It is possible to justify the hypothesis (3) noting that in the lowest order the
CME expansion reduces to Eq. (1), and with the following theorem by Kurtz:

Theorem 1. [7] Consider the subset E ⊂ R
|Λ| on which are defined the

propensity functions αc,τ . Let ZN (t) be the random vector given by ZN (t) =
N

1
2 (XN (t)

N − Φ(t)). Suppose that
∑

τ∈R

|vτ
2| sup

X∈K
αc,τ (X) < ∞ for each compact

K ⊂ E, and that, for N → ∞, ZN (0) = Z(0), then ZN (t) converges in distrib-
ution to Z(t).

The LNA thus permits approximation of the probability distribution of XN (t)
with the probability distribution of Y N (t) = NΦ(t)+N

1
2 Z(t). It is easy to show

that Y N (t) has a Gaussian distribution; indeed, Z(t) is Gaussian distributed,
and N and Φ(t) are deterministic.

To compute the LNA it is necessary to solve O(|Λ|2) first order differential
equations, but the complexity is independent of the initial number of molecules
of each species. Therefore, one can avoid the exploration of the state space that
methods based on uniformisation rely upon.

Theorem 1 alone only guarantees convergence in distribution. However,
in [15], LNA is derived as an approximation of the Chemical Langevin Equation
(CLE) [8], rather than system size expansion. This shows that LNA is valid for
every real chemical system close enough to the thermodynamical limit, at least
for a limited time. Thus, LNA is exact in the limit of high populations, but can
also be used for small populations if the behaviour is not too far from the deter-
ministic limit, taking into account the continuous nature of the approximation
and Gaussian assumptions on the noise.

3.1 Probabilistic Analysis of CRNs

We have shown that XN can be approximated by Y N (t) = NΦ(t) + N
1
2 Z(t),

where Y N (t) has a multivariate Gaussian distribution, so it is completely charac-
terized by its expected value and covariance matrix, whose values are respectively
E[Y N (t)] = NΦ(t) and C[Y N (t)] = N

1
2 C[Z(t)]N

1
2 = NC[Z(t)].

Since Y N has a multivariate normal distribution then every linear com-
bination of its components is normally distributed. Therefore, given B =
[b1, b2, · · · , b|Λ|] where b1, b2, . . . , b|Λ| ∈ Z, we can consider the random variable
BY N (t), which defines a linear combination of the species at time t. For every
t, BY N (t) is a normal random variable, whose expected value and variance are

E[BY N (t)] = BE[Y N (t)] (7)

C[BY N (t)] = BC[Y N (t)]BT (8)
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For a specific time tk, it is possible to calculate the probability that BY N (tk)
is within a set I of closed, disjoint real intervals [li, ui], where li, ui ∈ R ∪
{+∞,−∞}. This probability ΩY N ,B,I(tk) is given by

ΩY N ,B,I(tk) =
∑

[li,ui]∈I

ui∫

li

g(x|E[BY N (tk)], C[BY N (tk)])dx (9)

where g(x|EV, σ2) is the Gaussian distribution with expected value EV and
covariance σ2. We recall that it is possible to find numerical solution of Eq. (9)
in constant time using the Z table [13].

Example 2. Consider the CRN of Example 1, then we can obtain the probability
that #λ1 − 2#λ3 is at least 10 at time 20 by defining B′ = [1, 0,−2], I ′ =
{[10,+∞]} and calculating ΩY N ,B′,I′(20).

The following theorems are consequences of results in [15], which can be gener-
alized for reactions with a finite number of reagents and products. They show
asymptotic pointwise convergence of expected value, variance and probability.

Theorem 2. Let C = (Λ,R) be a CRN. Suppose the solution of Eq. (6) is
bounded, then, approaching the thermodynamic limit, for any finite instant of
time ti

lim
N→∞

‖ΩY N ,B,I(ti) − Ω̃XN ,B,I(ti)‖ = 0, (10)

where Ω̃XN ,B,I(ti) is the probability that B(XN ) is within I at time ti.

Theorem 3. Suppose the solution of Eq. (6) is bounded, then, approaching the
thermodynamic limit, for any finite instant of time tk

lim
N→∞

‖C[BY N (tk)] − C[BXN (tk)]‖ = 0 (11)

lim
N→∞

‖E[BY N (tk)] − E[BXN (tk)]‖ = 0. (12)

To solve the differential equations (5) and (6), it is necessary to use a numerical
method such as adaptive Runge-Kutta algorithm. This yields the solution for a
finite set of sampling times Σ = [t1, . . . , t|Σ|] ∈ R

|Σ|, where t1 ≤ . . . ≤ tk ≤ . . . ≤
t|Σ| and |Σ| is the sample size. Assuming Y N is separable, that is, it is possible to
completely define the behavior of Y N by only considering a countable number of
points, we can calculate ΩY N ,B,I for any point in Σ and if points are dense enough
then this set exhaustively describes the probability thatBXN is within I over time.
This restriction is not a limitation since for any stochastic process there exists a
separable modification of it [10].
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4 Stochastic Evolution Logic (SEL)

Let C = (Λ,R) be a CRN with initial state x0, in a system of size N . We now
define the logic SEL (Stochastic Evolution Logic) which enables evaluation of
the probability, variance and expectation of linear combinations of populations
of the species of C.

The syntax of SEL is given by

η := P∼p[B, I][t1,t2] | Q∼v[B][t1,t2] | η1 ∧ η2 | η1 ∨ η2

where Q = {supV, infV, supE, infE}, ∼= {<,>}, p ∈ [0, 1], v ∈ R, B ∈ Z
|Λ|,

I = {[li, ui] | li, ui ∈ R ∪ [+∞,−∞] ∧ [li, ui] ∩ [lj , ui] = ∅, i �= j} and [t1, t2] is
a closed interval, with the constraint that t1 ≤ t2 and t1, t2 ∈ R. If t1 = t2 the
interval reduces to a singleton.

Formulae η describe global properties of the stochastic evolution of the sys-
tem. (B, I) specifies a linear combination of the species of C and a set of intervals,
where B ∈ Z

|Λ| is the vector defining the linear combination and I represents
a set of disjoint closed real intervals. P∼p[B, I][t1,t2] is the probabilistic oper-
ator, which specifies the probability that the linear combination defined by B
falls within the range I over the time interval [t1, t2]. supE, infE, infV, supV
respectively yield the supremum and infimum of expected value and variance of
the random variables associated to B within the specified time interval.

Example 3. Consider the CRN of Example 1. Checking if the variance
of #λ1 remains smaller than K1 within [tj , tk] can be expressed as
supV<K1 [[1, 0, 0]][tj ,tk]. Another example is checking if, in the same interval,
(#λ1 −#λ2) is at least K2 or within [K3,K4], with K3 < K4 < K2, with proba-
bility greater than 0.95: P>0.95[[1,−1, 0], ([K3,K4], [K2,∞])][tj ,tk]. Equivalently,
instead of writing B, we write directly the linear combination it defines. For
example, in the latter case we have P>0.95[(#λ1−#λ2), ([K3,K4], [K2,∞])][tj ,tk].

Semantics. Given a CRN C = (Λ,R) with initial configuration x0 in a system of
fixed volumetric factor N , its stochastic behaviour is described by the CTMC XN

of Definition 1. We define a path of CTMC XN as a sequence ω = x0t1x1t1x2...
where xi is a state and ti ∈ R>0 is the time spent in the state xi. A path is
finite if there is a state xk that is absorbing. ω ⊗ t is the state of the path at
time t. Path(XN , x0) is the set of all (finite and infinite) paths of the CTMC
starting in x0. We work with the standard probability measure Prob over paths
Path(XN , x0) defined using cylinder sets [11].

We first define when a path ω satisfies (B, I) at time t

ω, t |= (B, I) ↔ ∃[li, ui] ∈ I . li ≤ B(ω ⊗ t) ≤ ui.

Note that B(ω ⊗ t) is well defined because ω ⊗ t ∈ N
|Λ| . For η formulas we have

X
N

, x0 |= P∼p[B, I][t1,t2] ↔ Prob(ω ∈Path(X
N

, x0) | ω, t |= (B, I), t∈ [t1, t2])∼p

XN , x0 |= supV∼v[B][t1,t2] ↔ sup(C[B(XN )], [t1, t2]) ∼ v
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XN , x0 |= infV∼v[B][t1,t2] ↔ inf(C[B(XN )], [t1, t2]) ∼ v

XN , x0 |= supE∼v[B][t1,t2] ↔ sup(E[B(XN )], [t1, t2]) ∼ v

XN , x0 |= infE∼v[B][t1,t2] ↔ inf(E[B(XN )], [t1, t2]) ∼ v

XN , x0 |= η1 ∧ η2 ↔ XN , x0 |= η1 ∧ XN , x0 |= η2

XN , x0 |= η1 ∨ η2 ↔ XN , x0 |= η1 ∨ XN , x0 |= η2

inf(·, [t1, t2]) and sup(·, [t1, t2]) respectively denote the infimum and supremum
within [t1, t2]. Prob(ω ∈ Path(XN , x0) |ω, t |= (B, I), t ∈ [t1, t2]) is the proba-
bility that the linear combination defined by B falls within I at a time instant
t between t1 and t2, and is well defined since the probability measure Prob on
Path(XN , x0) corresponds to transient probability calculated using the CME.

4.1 LNA-based Approximate Model Checking for CRNs

Stochastic model checking of CRNs is usually achieved by transient analysis
of the CTMC XN [11], which involves solving the CME and thus suffers from
the state-space explosion problem. We propose an approximate model checking
algorithm based on LNA. The inputs are a SEL formula η, the stochastic process
XN induced by the CRN and initial state x0. The output is true in case the
formula is verified, and otherwise false.

The algorithm proceeds by induction on the structure of formula η, succes-
sively computing whether each subformula is satisfied or not. We assume that
Eqs. (5) and (6) are solved numerically where Σ is the finite set of sample points
on which their solution is defined and that t0, initial time, and tmax, final time,
are always sampling points.

Probabilistic Operator. To evaluate P∼p[(B, I)][t1,t2] we construct the func-
tion Prob(B,I)(t) = ΩY N ,B,I(ti) for t ∈ [ti, ti+1), ti, ti+1 ∈ Σ (alternatively, can
be constructed as the interpolation of the values of ΩY N ,B,I over Σ points).

Lemma 1. Prob(B,I) is integrable on R≥0.

Theorem 2 guarantees the pointwise correctness of Prob(B,I) and its inte-
grability allows us to compute the following approximation, then compare
to threshold p to decide the truth value. If t2 �= t1 then Prob(ω ∈
Path(x0) |ω, t |= (B, I), t ∈ [t1, t2]) ≈ 1

t2−t1

∫ t2
t1

ProbB,I(t)dt else if t1 = t2
Prob(ω ∈ Path(x0) |ω, t1 |= (B, I)) ≈ ProbB,I(t1).

Expectation and Variance Operators. To evaluate sup(C[B(XN )], [t1, t2]),
inf(C[B(XN )], [t1, t2]), sup(E[B(XN )], [t1, t2]) and inf(E[B(XN )], [t1, t2]) we
use the LNA, namely, compute the expected value and variance of Eqs. (8)
and (7). Theorem 3 guarantees the quality of the approximation. We can now
compute the following approximations, then compare to the threshold v:

sup(C[B(XN )], [t1, t2])≈max{C[BY N (tk)] | (tk ∈Σ∧t1≤ tk ≤ t2)∨(tk ∈L[t1,t2])}
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inf(C[B(XN )], [t1, t2])≈min{C[BY N (tk)]|(tk ∈Σ ∧ t1≤ tk ≤ t2)∨ (tk ∈ L[t1,t2])}
and similarly for the expected value. L[t1,t2] = {ti|ti ∈ Σ ∧ �tj ∈ Σ such that
|t1 − tj | < |t1 − ti|} ensures that for any time interval there is at least one
sampling point, even if the interval is a singleton.

LNA-based model checking can also be used for systems far from the thermo-
dynamic limit, at a cost of some loss of precision. LNA assumes continuous state
space, and it is not possible to justify this assumption for very small popula-
tions. However, if the distributions of interest are not multi-modal and the noise
term is finite and approximated by a Gaussian distribution, then LNA gives very
good approximation even for quite small systems. It is clear that model checking
accuracy increases as N grows. We emphasise that the model checking algorithm
we have presented is also able to handle CRNs whose stochastic semantics is an
infinite CTMC, which occur frequently in biological models.

Complexity of LNA-based ApproximateModel Checking. The time com-
plexity for model checking formula η against a CRN C = (Λ,R) is linear in |η|. In
the worst case, analysis of a single operator requires the solution of O(|Λ|2) poly-
nomial differential equations for a bounded time. However, an efficient implemen-
tation can solve the O(|Λ|2) ODEs only once for the interval [0, tmax], and then
reuse this result for every operator, where tmax is the greatest (finite) time of inter-
est. Note that ODEs are solved in terms of concentrations (a value between 0 and 1
by convention), ensuring independence of the number of molecules of each species,
although stiffness can slow down the solution of the LNA.

5 Experimental Results

We implemented the methods in a framework based on Matlab and Java. The
experiments were run on an Intel Dual Core i7 machine with 8 GB of RAM.
To solve the differential equations, we use Matlab ode45, a variable step Runge-
Kutta algorithm. We employ LNA-based model checking for the analysis of three
biological reaction networks: a Phosphorelay Network [5], a Gene Expression
Model [16], and the GW network [3]. For every network, the CRN and parameters
have been taken from the referenced papers. We coded the same CRNs in PRISM
in order to compare accuracy and time of execution with standard uniformisation
of the CME [11] and statistical model checking (SMC) techniques (confidence
interval method) as implemented in PRISM. For the GW case study, we cannot
use global analysis nor SMC, because the state space is too large for direct
analysis, and SMC requires many time-consuming simulations to obtain good
accuracy. An extended set of experiments can be found in [4].

Phosphorelay Network. We consider a three-layer phosphorelay network
whose structure is derived from [5]. Each layer (L1, L2, L3) can be found in
phosphorylate form (L1p, L2p, L3p). We consider the initial condition #L1p =
#L2p = #L3p = 0, #L1 = #L2p = #L3p = Init, where Init ∈ N. Then we
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analyse the ligand B, whose initial condition is #B = 3∗Init. We are interested
in checking the following SEL property:

P>0.7[(#L1p − #L3p), [0,+∞]][0,100] ∧ P>0.98[(#L3p − #L1p), [0,+∞]][300,600]

which is verified if, in the first interval, the probability that #L1p is greater
than #L3p is > 0.7 and if, between 300 and 600, with probability > 0.98,
#L3p is greater than #L1p. We evaluate this formula in three different initial
conditions, firstly Init = 32 and N = 5000, then Init = 64 and N = 10000,
and finally Init = 100 and N = 15625, so the same concentration but different
numbers of molecules. In all cases, the LNA-based model checking evaluates the
formula as true. To understand the quality of the approximation, we check the
following quantitative formula P=?[(#L3p−#L1p, [0,+∞])][T,T ] for T ∈ [0, 600]
(in our implementation =? gives the quantity calculated by model checking the
operator). We compare the results with the evaluation of the corresponding CSL
formula using standard uniformisation (Unif) with error 10−7. The following
table shows the results. MaxErr is the maximum error computed by LNA-based
approach compared to standard uniformisation and AvgErr is the average error;
Time(·) stands for execution time.

Init Time (LNA) Time (Unif) MaxErr AvgErr
20 0.22 s 2 min 0.0675 0.0519
32 0.23 s 5 min 0.059 0.02
64 0.26 s > 2 h 0.0448 0.0027
100 0.3 s > 2 h 0.03 0.0011

Note that as Init increases the error of our method decreases, while the execution
time is practically independent of the molecular count. LNA-based algorithms
are faster in all cases. Thus our approach can be used even for quite small
population systems, giving a fast approximate stochastic characterization.

Gene Expression. We consider a simple CRN that models the transcription of a
gene into an mRNA molecule, and the translation of the latter into a protein. The
CRN, rates and initial conditions are the same as in [16]. The stochastic seman-
tics of the reaction network is an infinite CTMC, and we use this model to show
that our method can handle infinite state-space processes. We consider the quan-
titative property supE=?[#mRNA][T,T ], which gives the number of molecules of
mRNA in the system at time T . We compare our method with SMC estimation
of the same property by using 50000 simulations, for T = {300, 600, 900, 1200},
and in the following tables we compare the results in terms of execution time
(Time(·)) and expected value of #mRNA estimated (ExpV al(·)). LNA-based
model checking is several orders of magnitude faster without loss of accuracy.

T Time (LNA) Time (Simul) ExpVal (LNA) ExpVal (Simul)
300 0.52 s 75 s 100.17 100.14 ± 0.1
600 0.54 s 198 s 142.15 142.11 ± 0.1
900 0.54 s 337 s 159.73 159.74 ± 0.1
1200 0.56 s 483 s 167.1 167.1 ± 0.1
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DNA Strand Displacement of GW Network. GW is a network related
to the G2-M cell cycle switch; under particular initial conditions, it has been
shown that GW can emulate the Approximate Majority algorithm [3]. Here, we
consider the two-domain DNA strand-displacement implementation of GW [2].
The corresponding CRN is composed of 340 species and 240 reactions. For our
analysis the species of interest are R and P , whose initial conditions are #R = 90
and #P = 10; initial conditions of other species are taken from the referenced
papers. We check the property P>0.9[#R−#P, [50,+∞]][6000,35000] for a system
of size N = 45000, which is verified as true in 28 minutes.

6 Concluding Remarks

We presented a novel probabilistic logic for analysing stochastic behaviour of
CRNs and proposed an approximate model checking algorithm based on the LNA
of the CME. We have demonstrated on three non-trivial examples that LNA-
based model checking enables analysis of CRNs with hundreds of species, and
even infinite CTMCs, at a cost of some loss of accuracy. It would be interesting
to find bounds on the approximation error when the system is far from the
thermodynamic limit. However, the error is not only dependent on the value
of N , but also on the structure of the CRN, the rates, and the property. As
future work, we plan to improve the accuracy of the method near critical points
similarly to the approach of [6], and to extend the logic with more expressive
temporal operators. We also intend to release a software tool.
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Abstract. Continuous-time Markov chain (CTMC) models have
become a central tool for understanding the dynamics of complex reac-
tion networks and the importance of stochasticity in the underlying bio-
chemical processes. When such models are employed to answer questions
in applications, in order to ensure that the model provides a sufficiently
accurate representation of the real system, it is of vital importance that
the model parameters are inferred from real measured data. This, how-
ever, is often a formidable task and all of the existing methods fail in
one case or the other, usually because the underlying CTMC model is
high-dimensional and computationally difficult to analyze. The parame-
ter inference methods that tend to scale best in the dimension of the
CTMC are based on so-called moment closure approximations. How-
ever, there exists a large number of different moment closure approxima-
tions and it is typically hard to say a priori which of the approximations
is the most suitable for the inference procedure. Here, we propose a
moment-based parameter inference method that automatically chooses
the most appropriate moment closure method. Accordingly, contrary to
existing methods, the user is not required to be experienced in moment
closure techniques. In addition to that, our method adaptively changes
the approximation during the parameter inference to ensure that always
the best approximation is used, even in cases where different approxima-
tions are best in different regions of the parameter space.

Keywords: Stochastic reaction networks · Continuous-time markov
chains · Parameter inference · Moment closure

1 Introduction

With the advancement of measurement technologies for biochemical processes
in the last decades, quantitative mathematical modeling of biochemical reaction
networks has continuously increased in importance [1,14,19]. Chemical reac-
tions inside cells, where some of the reacting species may be present in very low
amounts of molecules, are inherently driven by random fluctuations [6,12,20].
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Accordingly, an accurate mathematical model should take this stochasticity into
account. The most widely used class of stochastic models in this context are
continuous-time Markov chains (CTMCs) [5]. The advantage of these models
is that they are easy to formulate and can be justified based on first princi-
ples [4]. The major drawback is that their analytical or computational analysis
can be extremely difficult, especially when more than just a few different chem-
ical species play a role for the reaction network. This is because the chemical
master equation (CME), which governs the time evolution of the probability dis-
tribution of the CTMC, cannot be solved for anything but the simplest systems
and even approximation techniques [13,23] tend to fail when the CTMC is high-
dimensional. In such cases, an alternative is to focus only on some low-order
moments of the probability distribution. Ordinary differential equations that
describe the time evolution of these moments can be derived from the CME [2],
but their solution typically requires some kind of approximation [18,21]. These
approximations, known as moment closure, are usually based on an assumption
of the underlying probability distribution and exist in many different varieties [8].
Often, for a given system and given model parameters, some of these approxima-
tions provide good results whereas others fail to be sufficiently accurate or fail
entirely. Unfortunately, there exists no approach for determining a priori which
moment closure technique will provide the best approximation. In general, the
only approach that is guaranteed to provide at least statistically exact results is
to simply simulate the CTMC using a stochastic simulation algorithm (SSA) [3]
and to compute Monte Carlo estimates of the system output of interest based
on the simulation results. To obtain precise estimates, however, a large number
of simulations may be required, leading to a high computational cost. For the
forward analysis of a system, i.e. when the model parameters are known, this is
not a serious problem. For the reverse engineering task of identifying the model
parameters from measured data, however, the CTMC needs to be analyzed for
many different parameter values in order to determine those in best agreement
with the measured data. Accordingly, for this task the computational cost of
approaches based on stochastic simulation [10] is often prohibitively large.

In this paper, we propose an approach for parameter inference based on
moment closure that is complemented by stochastic simulation. In particular, the
parameter inference is performed based on the computationally cheap moment
closure approximation, whereas the stochastic simulation is employed when-
ever new regions in the parameter space are explored, either to ensure that
the approximation is still sufficiently accurate, or to propose a new approxima-
tion that outperforms the previously used one. With this approach we are able
to combine the computational advantages of moment closure with the statistical
exactness of SSA and obtain a method that is both scalable and does not require
a priori knowledge of the performance of different moment closure techniques.
Importantly, the method is completely automated and chooses and adapts the
approximation from a precomputed library of moment closure methods. Thus,
the user only has to specify the model and supply the data and, contrary to pre-
vious approaches [9,16,24], no expertise in the analysis of CTMCs is required.
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The remaining paper is structured as follows. In Sect. 2, we introduce bio-
chemical reaction networks, the chemical master equation and moment closure
methods. In Sect. 3, we formulate a maximum-likelihood estimation problem for
the model parameters and describe previously published moment-based meth-
ods for solving these problems. In Sect. 4, we propose our automated adaptive
parameter inference method. In Sect. 5, we study the performance of our method
for some benchmark reaction networks. Finally, in Sect. 6, we discuss our results
and provide some concluding remarks.

2 Stochastic Modeling of Biochemical Reaction Networks

Consider a biochemical reaction network consisting of m different chemical
species X1, . . . , Xm that interact according to K different reactions:

ν
′
1kX1 + . . . + ν

′
mkXm

θk−−−−−→ ν
′′
1kX1 + . . . + ν

′′
mkXm, k = 1, . . . , K, (1)

where the coefficients ν
′
ik and ν

′′
ik determine how many molecules of the i-th

species are consumed and produced in the k-th reaction, respectively. Under
the assumption that the reaction network is well-stirred and in thermal equi-
librium, it can be described by a continuous-time Markov chain X(t, θ) =[
X1(t, θ) · · · Xm(t, θ)

]T that takes states x = [x1 · · · xm]T ∈ N
m
0 [4]. The tran-

sition probabilities of this CTMC are determined by the reaction parameters
θ = [θ1 · · · θK ]T ∈ (

R
+
0

)K
and the kinetic rate law of the reactions. Here, we

restrict our attention to mass action kinetics and elementary chemical reactions
(i.e. reactions of order at most 2). These assumptions simplify the computa-
tion of moments of the CTMC. It should be noted, however, that they are not
strictly necessary for the results of this paper and are mainly imposed because
it is very unlikely that, in a three-dimensional space, more than two molecules
meet at exactly the same time. Accordingly, any more complicated biochemi-
cal reaction can essentially be decomposed into a series of elementary reactions
whose reaction rates are governed by the law of mass action. These assumptions
lead to transition probabilities of the CTMC that are determined by propensity
functions of the form ak(x, θ) = θkhk(x), k = 1, . . . , K, where hk(x) are at most
quadratic polynomials in x. The time evolution of the probability distribution
of X(t, θ) can then be described by the chemical master equation:

ṗ(x, t) = −p(x, t)
K∑

k=1

ak(x, θ) +
K∑

k=1

p(x − νk, t)ak(x − νk, θ), (2)

where νk = [ν1k · · · νmk]T , νik = ν
′′
ik − ν

′
ik, i = 1, . . . , m, and p(x, t) :=

P (X(t, θ) = x) is the probability that x molecules of the m chemical species
are present at time t.

Since X(t, θ) has a countably infinite state space, computing the probabilities
p(x, t) requires solving an infinite system of coupled ordinary differential equa-
tions, which is generally not possible. Approximate solutions can be obtained in
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some cases, for instance by projection to a finite state space [13,23], but we will
not discuss these approaches here.

An alternative is to focus only on some low-order moments of the probability
distribution. Ordinary differential equations describing their time evolution can
be derived from the CME [2] and written as

η̇(t) = A(θ)η(t) + B(θ)η̄(t), (3)

where η(t) is a vector containing the (uncentered) moments up to some desired
order L and η̄(t) contains moments of order L + 1. Equation (3) shows that the
time evolution of η(t) depends on moments of higher order; hence η(t) cannot be
computed without knowledge of η̄(t). Accordingly, the open system of equations
Eq. (3) is typically replaced by an approximate closed system of equations

˙̃η(t) = A(θ)η̃(t) + B(θ)f(η̃(t)), (4)

where η̃(t) are approximations of η(t). The function f is usually chosen according
to an assumption on the underlying probability distribution. Typical examples
are to assume that the centered moments (or cumulants) of order L+1 are zero
[11,22], or to choose f according to a log-normal distribution [21]. In general, the
choice of f is made rather arbitrarily without actual knowledge of the underlying
distribution. Furthermore, whether a given closure will provide good approxima-
tions depends on the system that is being studied, the model parameters, and
the order L at which the moment equations are closed. This makes it practically
impossible for someone who is not an expert in the use of these methods to
choose an appropriate closure. Despite all this, moment closure methods have
been successfully applied for analyzing CTMCs, and specifically also for parame-
ter inference [16,24]. The choice of the closure method used in these references,
however, was based on trial and error and the success of the performed studies
accordingly required a portion of luck.

An alternative approach for analyzing biochemical reaction networks is by
using a stochastic simulation algorithm (SSA). It is straightforward to generate
statistically exact sample paths x1(t), . . . , xn(t) of X(t, θ) in this way. From these
sample paths, estimators of any system output, for instance some moments or
the entire probability distribution at a certain time point, can be constructed.
While such an approach is easy to implement and can always be used, it comes
with the major drawback that often a large number of sample paths n is required
to obtain precise estimates. This can make the use of stochastic simulation for
reverse engineering tasks computationally prohibitively expensive.

3 Moment-Based Parameter Inference

In this section, we formulate the parameter inference problem and review previ-
ous methods that have been developed to solve it. The goal in this paper is to
estimate the reaction rate constants θ from measured data that is of the form
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y =
{

xj
1(ts), . . . , x

j
n(ts), s = 1, . . . , S

}
and corresponds to measuring the num-

ber of molecules of the j-th chemical species in n cells at each measurement time
point ts, s = 1, . . . , S (extension to more than one measured chemical species is
straightforward but requires more complicated expressions for the likelihood in
Eq. 6 as shown in [17]). We assume that all the collected measurements are statis-
tically independent. This is for instance the case for flow cytometry data where
the cells are discarded after being measured so that two different measurements
can never come from the same cell. The task of identifying the model parameters
from this data can be posed as a maximum-likelihood estimation problem

θMLE(y) = arg max
θ

L(y, θ), (5)

where y is the measured data and L(y, θ) = p(y|θ) is the likelihood of the parame-
ters θ, i.e. the probability (density) of the data given that θ are the model para-
meters. Analytically computing the likelihood is usually impossible, and accord-
ingly, the optimization problem Eq. (5) is typically solved by iterative numerical
evaluation of L(y, θ) for many different values of θ. Unfortunately, evaluating the
likelihood for given parameters θ requires solving the CME with these parame-
ters, which, as discussed in the previous section, is often impossible or computa-
tionally expensive itself. For this reason, one option is to use sample moments of
the data as measurements instead of the entire data [24]. For instance, one can
compute sample means μ̂1(ts) and sample variances μ̂2(ts), s = 1, . . . , S from the
data y and treat the vector μ̂ := [μ̂(t1) · · · μ̂(tS)]T , where μ̂(ts) := [μ̂1(ts) μ̂2(ts)],
as new data. In earlier publications [17,24], we have shown that the probability
density function p(μ̂|θ) of μ̂ is given by

p(μ̂|θ) =
S∏

s=1

p(μ̂(ts)|θ), where p(μ̂(ts)|θ) = N (M(ts), Σ(ts)) and (6)

M(ts) =
[

μ1(ts)
μ2(ts)

]
and Σ(ts) =

1
n

[
μ2(ts) μ3(ts)
μ3(ts) μ4(ts) − n−3

n−1 (μ2(ts))
2

]
,

where N stands for the normal distribution, μ1(ts) = μ1(ts, θ) is the mean
and μi(ts) = μi(ts, θ), i = 2, 3, 4 are the centered moments of the measured
species Xj(ts, θ) at time ts for model parameters θ. Since these moments can
be computed from the solution of Eq. (4), we can use this result to approx-
imately compute the likelihood L(μ̂, θ) = p(μ̂|θ) without having to solve the
CME. Accordingly, we can solve the optimization problem in Eq. (5) using μ̂
instead of y to compute the maximum-likelihood estimator θMLE(μ̂). However,
the fact that moments up to order four are required to evaluate the covariance
matrices Σ(ts) means that moment closure of order at least L = 4 is necessary.
To avoid this, one can estimate the covariance matrices Σ(ts) from the data by
computing empirical estimates of the moments up to order four and plugging
them into the above equation. Throughout this paper, we will follow such a strat-
egy and denote by μdata the moments up to fourth order of the data, i.e. μdata :=
[μdata(t1) · · · μdata(tS)]T , where μdata(ts) := [μ̂1(ts) μ̂2(ts) μ̂3(ts) μ̂4(ts)] con-
tains the first four centered empirical moments of the data set at time ts. This



82 S. Bogomolov et al.

strategy is appropriate whenever sufficiently many cells are measured so that the
moments up to order four can be estimated with reasonable precision. For flow
cytometry data, the number of cells measured per time point typically ranges
in the order of thousands or even tens of thousands; hence sufficing precision is
always guaranteed.

4 Adaptive Approach for Parameter Inference

The drawback of the approach described in the previous section is that a moment
closure method has to be chosen in advance and this closure will be used through-
out the entire parameter search. This leads to the problems that, on the one hand,
it is a priori very difficult to choose the best closure and, on the other hand,
which closure is best may also be different for different parts of the parameter
space. The main idea of the method that we propose in the following is to use a
small number of simulated trajectories of the system that are generated using a
stochastic simulation algorithm (SSA) in order to test different approximations
during the parameter space exploration. Specifically, whenever the parameter
search leaves a certain area in parameter space, defined as an ε-neighborhood
around the point at which the last SSA run was carried out, new simulations are
performed and all closure methods from a predefined library are evaluated by
comparing the different approximations at the current point in parameter space
to the simulation results. Importantly, all the approximate moment systems,
corresponding to closures of different types and degrees, are precomputed only
once, and thus new derivations of the moment equations are not required during
the search. To generate these systems we make use of Hespanha’s StochDynTools
toolbox [7].

Pseudocode of our approach is given in Algorithm1. The inputs of the algo-
rithm are the CTMC model X(t, θ), parametrized by the reaction rate constants
θ, a set of ODE systems CL = {c1(θ), . . . , cq(θ)} corresponding to different
approximations of the moment dynamics obtained through various closures of
different types and degrees, the centered moments up to the fourth order μdata of
a measured data set Y , and a maximal number of iterations imax that determines
for how many steps in parameter space the search is performed. The algorithm
returns the maximum likelihood estimator θMLE. The core idea of our approach
works independently from the actual parameter search technique used in the
background. Thus, it can be applied in conjunction with any standard optimiza-
tion scheme used to minimize some distance between model output and data (for
instance simple gradient descent). Accordingly, we focus on the adaptive update
of the closure method while abstracting from the actual details of the parameter
search for a fixed approximation by the function NextParameter (line 18). It
takes the current values of the parameters θi and the chosen approximate ODE
system cbest(θi) and moves the search to the new parameters θi+1 according
to some criteria. In our implementation, we instantiate it with a Markov chain
Monte Carlo method and a Metropolis-Hastings sampler, based on the likelihood
in Eq. (6) [24]. Additionally, this function also takes care of updating the value
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of the maximum likelihood estimator θMLE based on the likelihood of the new
parameters θi+1. The remaining pseudocode describes how and when the used
closure method is adjusted. We first check whether the current parameter values
θi are still within the ε-neighborhood Nε (θref), where θref are the parameters
at which the previous simulation was performed (line 5). In our implementa-
tion, we choose a neighborhood in the form of a hyperrectangle of relative size
Nε(θref) = {θ | |θ − θref|k ≤ ε · |θref|k, k = 1, . . . , K}. If θi ∈ Nε (θref), we directly
proceed with the standard inference method in line 18, relying on the ODE sys-
tem cbest(θi) from the most recent evaluation. Otherwise, stochastic simulation
is employed with the current parameter values θi to compute estimates of the
moments μSSA(θi) using the function ComputeSSA (line 6), for which we utilize
a standard implementation of Gillespie’s SSA in our implementation. These esti-
mates are then compared to the approximations μODE(θi) obtained with all the
different closure methods using the function ComputeODE which numerically
computes the solution of the system of ODEs c(θi) ∈ CL (lines 8–15). The best
approximate system cbest(θi) is chosen as the one that minimizes some distance
Dist between estimation and approximation. In general, this distance could be
determined in many different ways. In our implementation, we choose Dist as
the likelihood of the estimated moments for the measured species Xj (Eq. 6), i.e.
we measure the performance of the approximations by evaluating how precise
the approximated moments of the system output (not of the entire state) are.
Finally, we update the reference point θref to θi (line 16) and the search continues
in the standard way until the next ε-neighborhood is left.

5 Case Studies

We applied our inference method to several benchmark stochastic reaction net-
works. In this section, we report some exemplary results. For all examples, to
generate the set of approximate ODE systems CL we used derivative matching
(dm), zero cumulants (zc), zero variance (zv) moment closure, each with degree
2, 3, and 4, and low dispersion (ld) moment closure with degree 3 and 4 (see [8]
for details).

Example 1. The first network is a model that has recently been used to describe
agricultural pests [15] but can also be regarded as a model of gene expression
in which the produced protein is positively regulated by the current amount
of protein and negatively regulated (through an increased degradation rate) by
past amounts of protein (i.e. species N could be regarded as an abstraction of
a slow process that is activated by C and leads to the production of proteases
that degrade C). It is given by the following reactions:

∅
θ1−−−−−→ N + C N

θ2−−−−−→ 2N + C

N + C
θ3−−−−−→ C C

θ4−−−−−→ ∅.
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Algorithm 1. Adaptive moment-based parameter inference algorithm
Input: CTMC X(t, θ), where θ ∈ (R+

0 )K , set of approximate moment systems
CL = {c1(θ), . . . , cq(θ)} obtained using different closure methods, data μdata, and
maximum number of iterations imax

Output: Maximum likelihood estimator θMLE

1: θ1 := random initial parameter values
2: θMLE := θ1
3: θref := +∞
4: for i := 1 to imax do
5: if θi /∈ Nε (θref) then
6: μSSA(θi) := ComputeSSA(X(t, θi))
7: dbest := +∞
8: for all c(θi) ∈ CL do
9: μODE(θi) := ComputeODE(c(θi))

10: d := Dist(μSSA(θi), μODE(θi))
11: if d < dbest then
12: dbest := d
13: cbest(θi) := c(θi)
14: end if
15: end for
16: θref := θi

17: end if
18: 〈θi+1, θMLE〉 := NextParameter(θi, cbest(θi), μdata, θMLE)
19: end for
20: return θMLE

We assume that N(0) = C(0) = 0 and that the true parameters are given by
θ1 = 0.03, θ2 = 0.012, θ3 = 0.25 · 10−4 and θ4 = 0.003, and that 5,000 cells are
measured at the time points t1 = 10, . . . , t90 = 900. As settings for our algorithm
we used ε = 0.2 and performed 200 simulations whenever the search leaves an
ε-neighborhood, i.e. in line 6 of Algorithm1.

An exemplary run of our parameter search for imax = 1,000 iterations, started
from random initial parameter values, is shown in Fig. 1. It can be seen that all
the inferred parameters, i.e. the maximum-likelihood estimates θMLE(μ̂), agree
with the true parameter values up to negligible errors with basically no uncer-
tainty. The former is a sign that a precise moment closure method exists for
this example, whereas the latter stems from the large number of measurements
that we assumed to be available. Figure 2 shows that also the model predictions,
computed with the inferred parameters θMLE(μ̂) and the best closure method,
agree well both with the data and with SSA estimates of mean and variance
obtained with the inferred parameters. We can conclude that the moment clo-
sure approximation is very precise and can match the data up to very small
errors.

To evaluate on the one hand how important it is to choose a good approx-
imation, and on the other hand whether it is necessary to adaptively change
the closure method during the search, we performed the parameter inference
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Fig. 1. Parameter search for Example 1. The panels show the values of the para-
meters in the search as a function of the iteration (blue). It can be seen that after
approximately 600 iterations the search is very close to the true values (red lines) for
all parameters and retains these values (Color figure online).
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with the same data and the same algorithm, but fixed an initial closure method
and did not allow the search to switch between different approximations (i.e.
by choosing ε = +∞). Table 1(a) compares the error in the inferred parame-
ters obtained from our approach to the error in the results when the closure is
fixed. It can be seen that for some of the fixed closure approaches the error in
the parameter estimates is very large (specifically for all of the zero variance
closures). Other methods provide more precise results, but overall all methods
with fixed approximation are outperformed by our adaptive approach. Only the
fourth order zero cumulants (zc4) closure was more precise than our approach
for two of the four parameters. However, for our case study this closure was also
computationally the most expensive one and the parameter search with fixed zc4
closure actually took twice as long as the adaptive search, despite the additional
stochastic simulations and evaluations of all closure methods needed here.

To further test our results, we investigated how often the approximation
was changed during the run of our algorithm and which closure methods were
used most often. Table 1(b), column Ex 1, shows how often the different closure
methods were chosen as best. It can be seen that some approximations were

Table 1. (a) Relative distance (in percent) between true and inferred parameters
obtained from our adaptive algorithm (adapt) and the different closure methods on
their own. The smallest distance is marked in bold. (b) Statistics of the used closure
methods for the three considered reaction networks. Columns correspond to the dif-
ferent networks (Ex stands for example), rows report in percent how often each of the
closure methods was chosen as best in our adaptive search. The bottom block of rows
show how often the used approximation was changed as our search progressed through
the parameter space (switch), how often stochastic simulation was performed, i.e. how
often ε-neighborhoods were left and all the closure methods were tested (sim tot), and
the total number of iterations in the search (imax).

(a) Example 1

closure θ1 θ2 θ3 θ4

adapt 0.44 0.31 0.65 0.29

dm2 4.45 2.74 2.68 4.32

zc2 11.02 6.11 3.23 2.93

zv2 281.09 74.85 45.72 76.29

dm3 2.54 1.23 1.85 3.55

zc3 9.72 4.80 0.86 2.87

zv3 285.55 79.96 49.01 83.41

ld3 9.08 4.30 6.75 9.63

dm4 3.43 1.33 4.17 9.54

zc4 0.35 0.19 3.77 9.29

zv4 292.60 78.89 46.60 71.90

ld4 14.44 3.80 12.31 28.06

(b) Search statistics

closure Ex 1 Ex 2 Ex 3

dm2 15 13 0

zc2 10 23 50

zv2 0 0 0

dm3 10 0 0

zc3 5 16 0

zv3 0 0 0

ld3 0 23 0

dm4 15 0 50

zc4 35 6 0

zv4 0 0 0

ld4 10 19 0

switch 19 30 11

sim tot 23 44 46

1,000 1,000 2,000
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never chosen (for instance all of the zero variance closures but also the third
order low dispersion closure) whereas derivative matching and zero cumulants
closures are chosen most often. Overall, high order closures are preferred over
low order closures. This was to be expected, since these usually provide more
precise results at the cost of an increased computational effort. Also we highlight
that the option to switch the approximation was often used (in 19 out of 23
evaluations), and, compared to a pure simulation-based approach, we needed to
employ stochastic simulation only 23 times (instead of 1,000 times).

Further examples. In addition to Example 1 we applied our algorithm to two
further reaction networks and performed the same comparisons. Specifically,
we considered the model of transient gene expression reported in reference [24]
(termed here Example 2) and the first case study in reference [18] (termed here
Example 3). The results were overall similar to those obtained for Example 1 and
we only report in Table 1(b), columns Ex 2 and Ex 3, how often the different
closure methods were used by our adaptive search. It can be seen that in Exam-
ple 3 the second order zero cumulants and the fourth order derivative matching
closure were chosen exclusively, whereas in Example 2, different zero cumulants
and low dispersion closures were used most often and there was no noticeable
preference for higher order closures.

6 Discussion

Using mathematical models to help in the understanding of complex biological
systems is the core idea of systems biology. Up to some years ago, the main
bottleneck in the identification of models was the availability of sufficiently pre-
cise and abundant data. Recently, measurement technologies have been improv-
ing at an amazing pace and nowadays enable us to simultaneously observe the
dynamics of many different chemical species at single cell resolution. As these
developments continue, we will gain access to data that is sufficiently infor-
mative to allow us to infer mathematical models of complex reaction networks
from the measurements. However, for stochastic kinetic models that capture the
inherent randomness of chemical reactions, this leads to a new bottleneck: the
chemical master equation becomes intractable for high-dimensional models and
especially the reverse engineering task of identifying model parameters from the
measured data quickly becomes computationally infeasible. Parameter inference
methods based on moment closure offer a solution to this problem but come
with their own drawbacks. The goal of this paper was to address these draw-
backs and to provide an automated moment-based inference method that can be
used without in-depth knowledge of moment closure. To this end, we interfaced
previously proposed approaches with a stochastic simulation algorithm by con-
tinuously checking the quality of the approximations and adaptively adjusting
the used closure method to the best one available. Accordingly, our approach is
generally applicable whenever a sufficiently accurate approximation in the gener-
ated library of moment closure methods exists. Importantly, since the approach
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can adapt the used closure during the exploration of the parameter space, it is
not required that a unique closure method provides good approximations for the
entire parameter space. Naturally, these benefits come with an increased compu-
tational cost compared to most standard moment-based inference approaches.
This increase can primarily be attributed to the additional stochastic simulation
and the evaluation of all the closure methods that is performed whenever the
parameter search leaves an ε-neighborhood around the point in parameter space
where the last simulation was performed. Accordingly, the parameter ε provides a
trade-off between computational cost and guarantees that a good approximation
is used. For ε → ∞ our approach becomes a standard moment-based inference
method, whereas ε → 0 essentially leads to a method akin to those based entirely
on stochastic simulation. We believe that this flexibility will prove to be valuable
and allow us to investigate a large variety of different reaction networks with one
unified inference method.

As future work, we plan to include and test more moment closure methods
(e.g. the linear noise approximation), to apply our algorithm to larger and more
challenging reaction networks, and to make a complete toolbox for moment-
based parameter inference publicly available. In addition to this, in order to
speed up our algorithm, we plan to introduce a trade-off between precision and
computational cost of the different approximations such that the more expensive
high order closure methods are only chosen when the low order closures do not
provide acceptable precision.
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Abstract. Executable symbolic models have been successfully used to
analyze networks of biological reactions. However, the process of build-
ing an executable model from published experimental findings is still
carried out manually. The process is very time consuming and requires
expert knowledge. As a first step in addressing this problem, this paper
introduces an automated method for deriving executable models from
formalized experimental findings called datums. We identify the relevant
data in a collection of datums. We then translate the information con-
tained in datums to logical assertions. Together with a logical theory
formalizing the interpretation of datums, these assertions are used to
infer a knowledge base of reaction rules. These rules can then be assem-
bled into executable models semi-automatically using the Pathway Logic
system. We applied our technique to the experimental evidence relevant
to Hras activation in response to Egf available in our datum knowledge
base. When compared to the Pathway Logic model (curated manually
from the same datums by an expert), our model makes most of the same
predictions regarding reachability and knockouts. Missing information is
due to missing assertions that require reasoning about the effects of muta-
tions and background knowledge to generate. This is being addressed in
ongoing work.

1 Introduction

Executable models of signal transduction provide insights into how cells work,
and a means to understand and predict the effects of perturbations and muta-
tions, key for cellular understanding of disease and therapeutics. For example,
using an executable model one can apply algorithms to determine how one can
prevent a given state from being reached or to compute alternative execution
paths that reach a given state. Developing such models is extremely difficult.
It requires collecting, organizing and interpreting experimental evidence, and
assembling rules representing hypothesized biochemical reactions that make up
a signaling network. This is very labor intensive and inferring a rule from exper-
iments requires substantial biological knowledge. Several curated models of sig-
naling and metabolic pathways are available [3,11,17–19]. However, there is a
great need for tools to help automate the curation of executable models.
c© Springer International Publishing Switzerland 2015
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The problem of automatically constructing executable models from experi-
mental evidence has several aspects including: (1) formal representation of exper-
imental findings, (2) formal representation of rules as elements of executable
models, (3) extracting findings from papers, (4) algorithms for inferring rules
from findings and (5) algorithms for assembly of executable models. This paper
addresses aspects (1), (2) and (4). The contribution is three fold:

1. We describe a formal representation of experimental evidence called datums.
Each datum captures relevant information about one or more experiments
recording conditions under which a specific state or change in state (modifi-
cation, activity, location) of a protein or other biochemical happens.

2. We define a language of logical assertions that corresponds to the elements
of a datum, and a translation from datum syntax to logical assertions.

3. We define axioms that capture the semantics of datums interpreted as partial
information about rules to be used as components of an executable model.
The logic is that of Answer Set Programs [9] and we use an existing engine
(DLV [12]) to derive minimal models called answer sets. Each answer set
corresponds to one reaction rule. These models are then parsed into rules of
an executable model.

Aspect (3) is being addressed as part of an ongoing DARPA project [7] to
advance machine reading and reasoning techniques. We use Pathway Logic (PL)
[13] as the formal system for representing and querying executable models of cel-
lular processes. Automated analysis techniques such as forward collection and
model-checking are used to assemble executable models and execution path-
ways by specifying a problem of interest (experimental conditions, targets, ...).
The PL algorithms rely crucially on the fact that the rules are curated to work
together. For example, rules that connect must use the same level of detail con-
cerning location and modifications of participants. In contrast, automatically
inferred rules capture all the relevant available experimental information, result-
ing in a knowledge base that is more precise and extensible. However, the model
assembly process will require automation of the process of transforming rules
to work together, without losing information unnecessarily. This is the topic of
ongoing work.

We applied our algorithms to a collection of datums supporting a model of
activation of Hras in response to Egf. The model is part of the PL collection
of models manually curated by an expert. Although this first version of the
rule generation logic does not account from some of the information in datums,
the resulting model makes the same predictions as the curated model concern-
ing response to Egf stimulation and effects of knockouts, with a small number
expected exceptions.

Plan. Section 2 gives a brief overview of Pathway Logic executable models and
an informal introduction to datums. Section 3 gives an informal introduction
to the rule inference process using an Hras activation rule as an example.
Section 4 presents the answer set programming axioms/rules of the datum logic.
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Section 4.2 describes the mapping of datums to assertions in the logic. Section 5
presents the Hras case study. Section 6 concludes with related and future work.

2 About Pathway Logic and Datums

2.1 Pathway Logic

Pathway Logic (PL) [13] is a system for modeling and reasoning about cel-
lular processes such as signal transduction, metabolism, and cell-cell commu-
nication in the immune system. The PL execution model is based on rewrit-
ing logic [14,15]. In PL, a cell state is represented as a ‘soup’ of occurrences,
where each occurrence has three components: a protein or other biomolecule
(gene, metabolite, . . . ), a modifier, and a location. The modifier indicates
the state of the protein, including binding of small molecules or phosphates,
or ability to act on other proteins (enzyme activity). For example, the term
< [Hras - GTP], CLi > is the occurrence of the protein Hras modified by bind-
ing to the small molecule GTP (Guanosine-5’-triphosphate), attached to the inside
of the cell membrane (CLi). The names used to form occurrences are semantically
grounded using meta-data to provide links to standard databases.

Signal transduction steps are formalized as local rewrite rules operating on
the relevant part of the cell state. Each rule describes a change in state of a
small number of biomolecules (often just one) and the biological context that
enables the change. A PL Rule Knowledge Base (RKB) consists of symbolic
rules containing variables that range over a finite set of proteins, modifications
or locations. STM (Signal Transduction Model) is a curated PL RKB that con-
stitutes an executable model of signal transduction in the following sense: given
an initial state called a (Petri) dish, which is a set of occurrences representing an
experimental setup, the rules can be applied repeatedly, using the Maude rewrite
engine [6], to transform the state. This represents a possible sequence of signaling
events in a cell. A set of rule instances that can be applied/fired in some order
from an initial state is called an execution pathway. Specific model networks can
be obtained from an RKB by starting with a dish and using forward collection1

to collect all rule instances that might fire in an execution pathway of this dish.
Such models can naturally be viewed as Petri Nets [21].

2.2 Datums: Formal Representation of Experimental Results

The PL STM model is an RKB whose rules are inferred from cell culture and
test tube experiments. In cell-based experiments, cells are grown under known
conditions. The cells may be modified by overexpressing some (possibly mutated)
proteins, or knocking out some proteins (preventing expression). The resulting
population of cells is treated with a stimulus or stress. Some property of the
cells is measured before treatment and at one or more times after treatment to
determine change in state, if any. The procedure that measures the property
1 Forward collection in this case is application of rules without removing the premises.
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change is called an assay. Experiments can also be done in a test tube, and some
experiments observe untreated cells.

Every rule in the STM RKB is associated with an evidence file, which contains
the collected experimental findings giving evidence supporting the rule. These
findings are presented in a formal language called datums. A datum describes a
collection of experimental findings, all based on the same assay, including a main
observation, and effects of perturbation of the experimental system. Technically,
the collection consists of separate experiments, but they are intended to be
interpreted together, so they are collected in a single datum with extras. There
are two main types of datum, state datums and change datums, corresponding
to two basic types of biological experiments. State datums concern properties of
cells in a defined state. Change datums summarize the change in the state of
something resulting from the addition of a stimulus to cells. Rules are derived
from change datums.

Fig. 1. The elements of a datum.

Datum Structure. The syntax of a datum is designed to be readable by an exper-
imental biologist, but constrained by structure rules and controlled vocabular-
ies so it can be automatically parsed into a formal data structure. The full
collection of datums collected for the STM RKB can be accessed via a web
query page at light.csl.sri.com/datum. A more detailed description and query
examples can be found at pl.csl.sri.com/datumkb.html. The curators notebook
(pl.csl.sri.com/CurationNotebook/index.html) contains an intuitive description
of datum syntax, catalogs of assays (with their detection methods and other
attributes) and cell lines, and a glossary of terms.

The datum in Fig. 1 is a change datum that records an experiment in which
the binding of GTP to the protein Hras is increased after addition of Egf (Epider-
mal Growth Factor) to a cell for 5 min. The first line contains the subject (Hras),
the assay (GTP-association), the treatment (Egf) and the change (increased).
The parenthetical text (times) at the end says the measurement was taken 5 min
after the treatment. GTP-association is an assay that measures the amount of
Hras bound to GTP. The first element of the second line describes the cellular
environment. In this case VERO cells (a defined cell line) transfected with Gab1
(xGab1), grown in BMLS (Basal Medium Low Serum). The purpose of transfec-
tion is that it results in overexpression. The second element is called an “extra”.

http://light.csl.sri.com/datum
http://pl.csl.sri.com/datumkb.html
http://pl.csl.sri.com/CurationNotebook/index.html
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It records the result of an experiment that is a perturbation of the original exper-
iment. In this case, the cells were transfected with Gab1 with a point mutation
(xGab1(Y627F)), in which the tyrosine (Y) at position 627 is replaced by Pheny-
lalanine (F) instead of wild type Gab1 ([substitution]). The third element gives
the PubMed identifier of the paper in which the experiment was reported, and
the figure where the experimental results were found (15574420-Fig-5a). Source
information is not directly used to infer rules, but is crucial for review and
updates.

3 Inferring Rules from Datums: An Example

The key ingredients of a datum for rule inference are the subject, assay, treat-
ment, observed change, and cellular environment. Such experimental information
is used to constrain the elements of a rule. Specifically, for each assay that mea-
sures a change in protein state or location, we associate a rule template that
captures the change. The template uses variables for the assay parameters and
for additional requirements. The additional requirements can be determined by
extras, or by additional experiments. The rule template for a GTP-association
assay is

TC C < [G - gmods] , Lg > < [P - GDP pmods] , Lp > =>

TC C < [G - gmods] , Lg > < [P - GTP pmods] , Lp >
(1)

TC represents the treatment complex that forms to initiate the signal propaga-
tion, typically a ligand bound to its activated receptor. C stands for unknown
requirements. P is the subject of the assay, Lp is a variable representing the cel-
lular location of P, while G stands for some GEF (Guanosine Exchange Factor)
that catalyzes the reaction. pmods and gmods represent the modification state
of P and G, respectively. Finally Lp and Lg are the locations of P and G, respec-
tively. Lp, Lg, pmod and gmod must be constrained by additional experiments, or
background knowledge.

We can use the datum in Fig. 1 to partially instantiate the GTP-association
rule template as follows.

EgfTC C < [G - gmods] , Lg > < [Hras - GDP pmods] , CLi > =>

EgfTC C < [G - gmods] , Lg > < [HrasP - GDP pmodsd ], CLi >
(2)

where EgfTC is the complex that forms when Egf binds to the Egf receptor, which
subsequently becomes active and autophosphorylates: < [EgfR - Yphos] : Egf,
EgfRC >. We used background knowledge that Hras is anchored to the inside of
the plasma membrane to instantiate Lp as CLi.

The next two datums provide evidence that Sos1 is a GEF for Hras.

Datum 1: rHras GDP-dissociation[3H-GDP] is increased by xSos1[tAb]IP

cells: none, source: 15039778-Fig-2c

Datum 2: xHras[tAb]IP GTP-association[TLC] is increased itpo xSos1

cells: HEK293 in BMS, source: 10896938-Fig-1c
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The first datum says that when you put recombinant Hras (rHras) in a test tube
(cells: none) with Sos1 that has been immunoprecipitated (xSos1[tAB]IP)
from HEK293 cells, [Hras - GTP] increases. This is direct evidence that Sos1
can act as a GEF in a test tube. We say Sos1 is a ttGef (a test tube GEF)
for Hras.

Additional evidence that this happens in live cells is needed. The second
datum provides such evidence. itpo is a treatment type in which a plasmid for
the treatment (Sos1) is introduced into a cell culture and incubated for sufficient
time for the treatment protein to become overexpressed. This datum tells us that
it is possible that Sos1 can act as a GEF in a cellular environment. We say that
Sos1 is an itpoGef for Hras. There are datums that report that knocking out Sos1
does not prevent the GDP-GTP exchange. This tells us that there are additional
GEFs to be discovered.

Finally, the following datum is evidence for the gabs:GabS requirement.

Hras[Ab] GTP-association[BDPD] is increased irt Egf (times)

cells: mEFs in BMLS, source: 12629518(D) partially reqs: Gab1 [KO]

It says that the reaction partially requires Gab1, determined by removing
Gab1 from the cellular environment ([KO]). This suggests that Gab1 has a role,
but that there may be other proteins that can play the same role as Gab1 in the
activation of Hras in response to Egf. To gain confidence in this hypothesis and
determine candidate similar proteins, more evidence or background knowledge is
needed. This will be the topic of future work and extensions of the datum logic.

4 A Logical Specification for Datums

The interpretation of datums is formalized using Answer Set Programming
(ASP). We start by briefly explaining ASP before proceeding with the logical
specifications of datums.
Answer Set Programs. An ASP program is a collection of clauses of three forms:

(1) D. (2) D :- b1,...,bn. (3) :- b1,...,bn.

where D is either a ground fact, a, or a disjunction of the form a1 v a2, of two
ground facts a1 and a2. The symbols b1, . . ., bn are ground facts or negated
ground facts written not a, where not is negation. The symbol :- should be
interpreted as reversed implication and the symbol v as disjunction. Clauses of
type (3) are called constraints, specifying that b1, . . ., bn should not all be true.

The meaning of an ASP program is a set of ground facts called an Answer
Set. An answer set of a program P contains a minimal number of facts that
makes each clause of the program P true. For a formal definition see [9,12].

There are a number of engines that can compute the answer sets of an ASP
program. In the present work we have used the DLV engine [12]. Following the
usual convention, variables appearing in programs are considered to be shorthand
for the set of all possible ground instantiations using the constant and function
symbols appearing in the program itself.
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4.1 Assertions and Inference Rules for Datums

Some of the main predicates used in the logical theory are given below:

– subject(S,Dt) denotes that S is the subject of the datum Dt.
– assay(Type,Aux,Dt) denotes that Type is the assay type specified by Dt,

for example, a phosphorylation or GTP-association. Aux is used for assay
parameters such as modification sites (phos!Y627) or hooks in a binding assay
(none is used if there are no relevant parameters).

– treatment(T,Dt) denotes that T is the treatment specified by Dt.
– increased(Dt), irt(Dt) denote that Dt specifies an increase in the changed

state of the subject in response to the treatment.

For example, the assertions for the datum of Fig. 1 (Sect. 2) are given below:

datum("hras39"). subject("Hras","hras39").

assay("GTP-Association",none,"hras39"). irt("hras39").

treatment("Egf","hras39"). increased("hras39").

We also have a collection of assertions that are common knowledge, or are
implicit in datums collected from experiments by convention. The common
knowledge assertions constitute a library used in the inference of the executable
rules. An example is the fact that EgfR and its modifications are located at
EgfRC. This is specified by assertions of the form: location(EgfR, EgfRC, ck),
where ck stands for common knowledge.
Handling Multiple Datums. As described in Sect. 3, some datums contain the
evidence for the changes of the subject of a reaction rule. We call these main
datums. Other datums, called auxiliary datums, contain evidence about non-
subject elements of the reaction, for example, required biomolecules or GEFs.
We distinguish these datums using the assertions of the form useM(Dt) and
useA(Dt), where the former specifies that Dt is the main datum and the latter
that Dt is an auxiliary datum. We specify that an answer set should have exactly
one main datum. We do not show the rules here.
Inferred Assertions. We implemented an ASP program that takes the assertions
of a datum and generates answer sets, each of which corresponds to a PL rule.
In particular, the ASP will derive the following facts:

– occBf(X1,L1) denote that before the reaction, X1 is located at L1.
– occAf(X2,L2) denotes that after the reaction, X2 is at location L2.
– occ(X,L) denotes that the reaction requires X at location L in order to occur.

Such an assertion can be used for a treatment complex or a require composite.
– moveRule and reactRule denote that the rule to be extracted is either a

rule specifying that the subject moves from one location to another without
changing its modifications or it is a rule specifying that the subject changes
its modifications without changing its location. This separation between move
and react rules provides a finer grained specification of a model that simplifies
the (meta) reasoning.



Inferring Executable Models from Formalized Experimental Evidence 97

These assertions are used to construct rules in our executable model of the form
depicted in Eq. 1. Before we explain how these facts are derived, we illustrate
how answer sets correspond to rules by example. Consider two answer sets M1
and M2, where M1 contains the set of facts to the left and M2 contains the set
of facts to the right:

⎧
⎪⎪⎨

⎪⎪⎩

moveRule,
occBf(Hras - mods(Hras) ,L(Hras)),
occAf(Hras - mods(Hras) ,EgfRC),

occ(Egf:EgfR-Yphos ,EgfRC)

⎫
⎪⎪⎬

⎪⎪⎭

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

reactRule,
occBf(Hras - mods(Hras) - GDP ,L(Hras)),
occAf(Hras - mods(Hras) - GTP ,L(Hras)),

occ(Egf:EgfR-Yphos ,EgfRC),
occ(Sos1 - mods(Sos1) ,L(Sos1)),
occ(Gab1 - mods(Gab1) ,L(Gab1))

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

Here mods(X) and L(X) are variables that can be instantiated in our executable
model by any modifiers and locations, respectively. The answer set M1 specifies
the rule below where Hras - mods(Hras) moves from a generic location L(Hras)
to the location EgfRC in the presence of Egf:EgfR-Yphos at location EgfRC:

< Hras - mods(Hras) , L(Hras) > < Egf:EgfR-Yphos , EgfRC > =>

< Hras - mods(Hras) , EgfRC > < Egf:EgfR-Yphos , EgfRC >
(3)

The answer set M2 specifies the following rule where the subject Hras - mods
(Hras) - GDP at a generic location L(Hras) is modified to Hras - mods(Hras) -
GTP in the presence of Egf:EgfR-Yphos at location EgfRC, Sos1 - mods(Sos1) and
Gab1 - mods(Gab1) at the generic locations L(Sos1) and L(Gab1), respectively:

< Hras - mods(Hras) - GDP, L(Hras) > < Egf:EgfR-Yphos, EgfRC >

< Sos1 - mods(Sos1), L(Sos1) > < Gab1 - mods(Gab1), L(Gab1) >

=>

< Hras - mods(Hras) - GTP, L(Hras) > < Egf:EgfR-Yphos, EgfRC >

< Sos1 - mods(Sos1), L(Sos1) > < Gab1 - mods(Gab1), L(Gab1) >

Specification of Assertion Reasoning. As illustrated above, answer sets specify
reaction or move rules. This is specified by the following clauses and constraints:

reactRule v moveRule.

:- occBf(X1,L1), occAf(X2,L2), moveRule, X1 <> X2.

:- occBf(X1, L), occAf(X2, L), moveRule.

:- occBf(X1, L1), occAf(X2, L2), reactRule, L1 <> L2.

:- occBf(X, L1), occAf(X, L2), reactRule.

The first clause specifies that answer sets must correspond to either move or
react rules. The constraints say that in the specification of move rules, the subject
should not be modified and it should move. Similarly for react rules, the location
of the subject should not change and the subject should be modified. There are
other constraints that are omitted, specifying that move rules only make sense
when we know where the subject moves to.

We derive occ, occBf and occAf assertions by deriving the corresponding
argument, namely the corresponding possibly modified protein and its location.
This is done by using the following auxiliary predicates which will be used to
infer the elements in a rule of the form in Eq. 1:
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– in(X) says that there is a possibly modified protein in the rule context, e.g.,
a treatment complex. inBf(X) and inAf(X) specify the state of the subject
protein before and after the rule, respectively.

– loc(X,L) says that a non-subject element X is at location L. locBf(X,L) and
locAf(X,L) say that the location of the subject X is L before and after the
reaction.

Using these assertions, we derive occ, occBf and occAf assertions using the
clauses below:

occBf(X,L(X)) :- inBf(X), reactRule.

occAf(X,L(X)) :- inAf(X), reactRule.

occ(X, L(X)) :- in(X), not hasLocation(X).

occBf(X - mods(X),L) :- subject(X,Dt),useM(Dt),locBf(X,L),moveRule.

occBf(X - mods(X),L(X)) :- subject(X,Dt),useM(Dt),not hasLocBf(X),moveRule.

occAf(modBy(X - mods(X),L) :- subject(X,Dt),useM(Dt),locAf(X,L),moveRule.

Here hasLocation(X) is an auxiliary assertion (rule omitted), denoting that
it is possible to infer a concrete location for X.

Datum assertions are used to derive the more basic assertions in, inBf, inAf,
loc, locBf and locAf. For example, a GTP-association datum can be used in
the following clauses to derive inBf and inAf facts:

inBf(X - mods(X) - GDP) :- irt(Dt), increased(Dt),

assay(GTP-association, none, Dt), subject(X, Dt), useM(Dt).

inAf(X, mods(X) - GTP) :- irt(Dt), increased(Dt),

assay(GTP-association, none, Dt), subject(X, Dt), useM(Dt).

in(X) :- tc(X, Dt), useM(Dt).

These clauses specify that if the main datum is a GTP-association, then the
subject before the reaction should be modified with GDP and after with GTP.
Moreover, the treatment complex should be in the dish, specified by the last
clause. Similar clauses exists for the other types of datums, such as phosphory-
lation datums. In a similar way, the location assertions loc, locBf and locAf
are derived from datum assertions. Some of them might be derived from common
knowledge. We do not show these clauses here.

As described in Sect. 3, other datums provide information about the non-
subject elements in a reaction. For example, datums may provide informa-
tion about GEFs. These are specified by the assertions ttGEF(Q,S,Dt) and
itpoGEF(Q,S,Dt). Both denote that the datum Dt specifies that Q could be a
GEF for the subject S. The former, however, denotes that the experiment was
carried out in the test tube, while the latter denotes that the experiment was
carried out using cells transfected with Q. We infer these assertions from datum
assertions as illustrated below.

itpoGEF(Q,X,Dt) :- assay(GTP-association,none,Dt), itpo(Dt),

increased(Dt), subject(X, Dt), treatment(Q,Dt), useA(Dt).

ttGEF(Q,X,Dt) :- assay(GTP-association, none, Dt), by(Dt),

increased(Dt), subject(X, Dt), treatment(Q,Dt), useA(Dt).
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4.2 Mapping Datums to Assertions

Each datum is mapped to a set of logical assertions that captures the subject,
assay, treatment, treatment type, and change elements of a datum. The mapping
algorithm takes as input the JSON representation of datums produced by the
datum parser and produces input for the DLV engine as described above.

We ignore datums where the interpretation is complex and often requires
specific biological knowledge. We currently ignore any datum with no subject, a
mutated subject, a mutated treatment or more than one treatment.

In version 1 of the mapping algorithm, only extras of type “reqs” are cap-
tured as their interpretation is relatively straightforward. Extending the mapping
algorithm to use “inhibited by” extras is a topic of future work.

Many datums report the same basic experiment, i.e. the same subject, assay
and treatment. If these datums also have the same change (result) then the
mapping will merge them, otherwise the datums are reported to the user as a
conflict for manual inspection. Conflicts may be particularly troubling because
datums span many different cell lines and cell types.

It is then a simple case of mapping each element of the datum (or merged
datums) to their logical assertions. For example, the datum from Fig. 1 and the
datum from Sect. 3 giving the requirement for Gab1 can be merged, omitting
elements not used for generating assertions. The result is

xHras[tAb] GTP-association[BDPD] is increased irt Egf

inhibited by: xGab1(Y627F) [substitution] partially reqs: Gab1 [KO]

which maps to the following set of assertions:

datum("d1-d2"). subject("Hras", "d1-d2").

irt("d1-d2"). assay("GTP-association", none, "d1-d2").

increased("d1-d2"). treatment("Egf", "d1-d2").

reqs("Gab1", "d1-d2").

In the case of merged datums, the identifiers of the contributing datums are
merged, thus "d1-d2" above. This allows us to track evidence and eventually
reason about the quality/quantity of evidence used in generating a rule. The
actual merged datum in our case study (Sect. 5) combines 51 datums from the
datum knowledge base.

Because we merge all datums for the same change, each set of assertions
corresponds to one rule in the model, and contains all information for the set of
controls for the rule. Note that auxiliary datums will still be used to find assay
specific enzymes such as GEFs or Kinases.

5 Signaling Model of Hras Activation by Egf

To test our rule inference tool, we used a model of Hras activation (GTP bind-
ing) in response to Egf derived from the PL STM RKB as a ‘gold standard’. The
Hras model was derived by generating the subnet relevant to the goal < [Hras -
GTP], CLi >. An execution pathway in this model is shown in Fig. 2(a).
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Fig. 2. Hras Models

The datums used as input for the inferred model came from the evidence files
for these rules together with files containing evidence for Hras GEFs. The JSON
datum representation was generated using the datum parser, assertions were
generated from the JSON using the assertion mapping tool, and rules were then
generated using the logic engine, and automatically converted to Maude syntax.

As discussed in Sect. 1, the final step is assembly of these rules into a model—
a connected set of rules that can be executed to reach expected goals, including
the activation of Hras. The basic assembly process is carried out using the PL
model generation process. We adapted the initial state for the STM Hras subnet
to specify the desired model. The abstraction of details to form a connected rule
network was carried out by hand, guided by principles developed by the curator
of the STM model. Abstracting includes dropping site details from modifications
and formalizing knowledge/conjectures such as ‘modification implies activation’
in specific cases.

The resulting model is more detailed than the STM Hras model. This is
expected, due to the separation of modification and translocation rules (the
STM model typically collapses these into one step), and the use of location and
modification variables that have multiple possible instantiations.

The inferred model answers most of the queries supported by PL in the same
way that the STM Hras model does. Examples include reachability of given
states, existence of multiple execution paths to the Hras goal, and (RasGrp3,
Sos1) as a double knockout pair.

An execution pathway corresponding to the STM model pathway is shown in
Fig. 2b. The STM rule 197 for phosphorylation of Sos1 (arrows labeled 1) becomes
3 rules in the inferred model (a move, a modification, and activation). The inferred
model has Abl1 (red border) as a requirement for Sos1 phosphorylation. There
is a single datum specifying this requirement; the STM curator did not consider
one datum showing this requirement as sufficient evidence. Future work includes
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associating rules with some measure of quantity/quality of evidence, in order to
able to assemble models using different criteria for inclusion of rules.

The STM rule 529 for Hras activation (GTP association, arrows labeled
2) includes a requirement for [Shp2 - Yphos] and a requirement for Pi3k
(red borders), while the inferred rule does not. These requirements come
from extras such as inhibited by: xPik3r?(mnr)"DN"... and inhibited by:
xShp2(mnr)"CIA" that require substantial background knowledge to interpret.
For example, CIA stands for ‘Constitutively InActive’. The inference is that if
the endogenous protein is overwhelmed by a mutated form that is lacking some
function, then that protein (with that function) is required. Future versions of
the assertion generation tool will capture more of these inferences.

6 Related Work and Conclusion

Related work. An excellent survey of executable models of biological processes is
given in [8]. There are a number of network reconstruction algorithms based on
statistical reasoning techniques such as Bayesian inference [10] or belief propaga-
tion [16]. They provide a means of elucidating the networks underlying transcrip-
tomics and proteomics data generated from perturbation experiments. These
methods postulate causal relations, but do not capture mechanistic details such
as necessary conditions.

Methods more closely related to our approach include the following. Net-
synthesis [1,2] is a software for synthesis, inference and simplification of signal
transduction networks. The main idea is representing observed indirect causal
relationships as network paths, introducing pseudo-vertices for unknown inter-
mediaries of these paths and using techniques from combinatorial optimization to
find the most parsimonious graph consistent with all experimental observations.
A method based on Petri nets is described in [4]. The reactions of individual
proteins are represented as Petri net modules, stored in a database. These mod-
ules are similar in spirit to datums. Each place in a module corresponds to a
specific functional state of a specific protein domain (e.g. a phosphorylated or
unphosphorylated side chain, a catalytically active or inactive domain etc.). For
each module, literature references are annotated as part of the modules data-
base entry. Selected modules can be combined to assemble executable Petri net
models. The method has been applied to assemble a model of JAK/STAT sig-
naling. In [20], two methods to build signaling models from qualitative data
(protein interactions from databases) are proposed, based on analyzing network
connectivity and on non-linear optimization. Methods to convert BioPAX mod-
els into fully executable models have been proposed, including [5,22]. The work
presented here differs from these works in starting from experimental evidence
to build knowledge bases and executable models, rather that relying on existing
pathway databases.

Conclusion. We have presented an inference system for deriving signal trans-
duction rules from formally represented experimental findings and applied the
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system to derive rules for a model of Hras activation2. Future work includes:
extending the mapping of datums to assertions to capture the meaning of exper-
imental perturbations using mutations and fragmentation, extracting formal
background knowledge from databases, extending the logic to cover more assays
and capture more complex reasoning, such as hypothesizing rule requirements
and alternatives by similarity, adding logic to generate common rules (rules
about protein interactions independent of stimulus), and automating assembly
of models from generated rules.
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Abstract. We discuss the symbolic dynamics of biochemical networks
with separate timescales. We show that symbolic dynamics of monomole-
cular reaction networks with separated rate constants can be described
by deterministic, acyclic automata with a number of states that is infe-
rior to the number of biochemical species. For nonlinear pathways, we
propose a general approach to approximate their dynamics by finite state
machines working on the metastable states of the network (long life states
where the system has slow dynamics). For networks with polynomial rate
functions we propose to compute metastable states as solutions of the
tropical equilibration problem. Tropical equilibrations are defined by the
equality of at least two dominant monomials of opposite signs in the
differential equations of each dynamic variable. In algebraic geometry,
tropical equilibrations are tantamount to tropical prevarieties, that are
finite intersections of tropical hypersurfaces.

1 Introduction

Networks of biochemical reactions are used in computational biology as mod-
els of signaling, metabolism, and gene regulation. For various applications it is
important to understand how the dynamics of these models depend on inter-
nal parameters and environment variables. Traditionally, the dynamics of bio-
chemical networks is studied in the framework of chemical kinetics that can
be either deterministic (ordinary differential equations) or stochastic (continu-
ous time Markov processes). Within this framework, problems such as causality,
reachability, temporal logics, are hard to solve and even to formalize. Concur-
rency models such as Petri nets and process algebra conveniently formalize these
questions that remain nevertheless difficult. The main source of difficulty is the
extensiveness of the set of trajectories that have to be analysed. Discretisation
of the phase space does not solve the problem, because in multi-valued networks
with m levels (Boolean networks correspond to m = 2) the number of the states
is mn and grows exponentially with the number of variables n. An interesting
c© Springer International Publishing Switzerland 2015
O. Roux and J. Bourdon (Eds.): CMSB 2015, LNBI 9308, pp. 104–120, 2015.
DOI: 10.1007/978-3-319-23401-4 10
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alternative to these approaches is symbolic dynamics which means replacing the
trajectories of the smooth system with a sequence of symbols. In certain cases,
this could lead to relatively simple descriptions. According to the famous con-
jecture of Jacob Palis [11], smooth dynamical systems on compact spaces should
have a finite number of attractors whose basins cover the entire ambient space.
Compactness of ambient space is satisfied by networks of biochemical reactions
because of conservation, or dissipativity. For high dimensional systems with mul-
tiple separated timescales it reasonable to consider the following property: tra-
jectories within basins of attraction consists in a succession of fast transitions
between relatively slow regions. The slow regions, generally called metastable
states, can be of several types such as attractive invariant manifolds, Milnor
attractors or saddles. Because of compactness of the ambient space and smooth-
ness of the vector fields defining the dynamics, there should be a finite number
of such metastable states. This phenomenon, called itinerancy received particu-
lar attention in neuroscience [18]. We believe that similar phenomena occur in
molecular regulatory networks. A simple example is the set of bifurcations of
metastable states guiding the orderly progression of the cell cycle. In this paper
we use tropical geometry methods to detect the presence of metastable states
and describe the symbolic dynamics as a finite state automaton. The structure
of the paper is the following. In the second section we compute the symbolic
dynamics of monomolecular networks with totally separated constants. To this
aim we rely on previous results [4,12,13]. In the third section we introduce
tropical equilibrations of nonlinear networks. Tropical equilibrations are good
candidates for metastable states. More precisely, we use minimal branches of
tropical equilibrations as proxys for metastable states. In the forth section we
propose an algorithm to learn finite state automata defined on these states.

2 Monomolecular Networks with Totally Separated
Constants

Monomolecular reaction networks are the simplest reactions networks. The struc-
ture of these networks is completely defined by a digraph G = (V,A), in which
vertices i ∈ V, 1 ≤ i ≤ n correspond to chemical species Ai, edges (i, j) ∈ A cor-
respond to reactions Ai → Aj with kinetic constants kji > 0. For each vertex,
Ai, a positive real variable ci (concentration) is defined. The chemical kinetic
dynamics is described by a system of linear differential equations

dci

dt
=

∑

j

kijcj − (
∑

j

kji)ci, (1)

where kji > 0 are kinetic coefficients. In matrix form one has : ċ = Kc. The
solutions of (1) can be expressed in terms of left and right eigenvectors of the
kinetic matrix K:

c(t) = r0(l0, c(0)) +
n−1∑

k=1

rk(lk, c(0)) exp(λkt), (2)

where rk, lk are right and left eigenvectors of K, Krk = λkrk, lkK = λklk.
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The system (1) has a conservation law d
dt (c1+c2+. . .+cn) = 0, and therefore

there is a zero eigenvalue λ0 = 0, l0 = (1, 1, . . . , 1), (l0, c(0)) = c1(0) + c2(0) +
. . . + cn(0). We say that the network constants are totally separated if for all
(i, j) �= (i′, j′) one of the relations kji � kj′i′ , or kji � kj′i′ is satisfied.

It was shown in [4,12,13] that the eigenvalues and the eigenvectors of an
arbitrary monomolecular reaction networks with totally separated constants can
be approximated with good accuracy by the eigenvalues of and the eigenvectors
of a reduced monomolecular networks whose reaction digraph is acyclic (has no
cycles), and deterministic (has no nodes from which leave more than one edge).
Let us denote by Gr = (Vr,Ar) the reduced digraph, and by κi the kinetic
constant of the unique reaction that leaves a node i ∈ Vr. The algorithm to
obtain G from Gr can be found in [4,12,13] and will not be repeated here.
Because Gr is deterministic it defines a flow (discrete dynamical system) on
the graph: Φ(i) = j, where j is the unique node following i on the digraph.
Reciprocally, we define Pred(i) = φ−1(i) as the set of predecessors of the node i
in the digraph Gr, namely Pred(i) = {j ∈ Vr|(j, i) ∈ Ar}.

We say that a node is a sink if it has no successors on the graph. For the
sake of simplicity, we suppose that there is only one sink. For each one of the
remaining n − 1 nodes there is one reaction leaving from it. For a network with
totally separated constants we have

κi � κj , or κi � κj for all i, j ∈ [1, n − 1], i �= j (3)

For totally separated constants the following lemma is useful

Lemma 1. If (3) is satisfied then, at lowest order, we have

κi

−κk + κj
=

⎧
⎪⎪⎨

⎪⎪⎩

1, if i = j and κk < κi

−1, if i = k and κj < κi

0, if κi < min(κk, κj)
±∞, else

(4)

The dynamics of the reduced model is given by

dci

dt
=

∑

j∈Pred(i)

κjcj − κici, (5)

where Pred(i) is the set of predecessors of the node i in the digraph Gr, namely
Pred(i) = {j ∈ Vr|(j, i) ∈ Ar}.

As shown in [4] the eigenvectors of the approximated kinetic matrix satisfy
∑

j∈Pred(i)

κjrj = (λ + κi)ri (6)

κilΦ(i) = (λ + κi)li, (7)

where λ is the eigenvalue, ri, li, 1 ≤ i ≤ n are the components of the right and
left eigenvectors, respectively.
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Equations (6) and (7) imply that the right and left eigenvectors can be com-
puted by recurrence on the graph, in the direct direction and in the reverse
direction, respectively. In order to have non-zero eigenvectors, λ = −κi for some
i not a sink, therefore the (non-zero) eigenvalues are λk = −κk, 1 ≤ k ≤ n − 1.
Taking into account the separation conditions (3) we get the following

Proposition 1. Let us consider that κk = 0 when k is a sink in the graph Gr.
Then, the eigenvalues of the kinetic matrix with totally separated constants are
λk = −κk, with λk = 0 when k is a sink. The corresponding left eigenvectors are

lkj =
{

1, if Φm(j) = k for some m > 0 and κΦl(j) > κk for all l = 0, . . . , m − 1
0, otherwise ,

(8)
and the right eigenvectors are

rk
j =

⎧
⎪⎪⎨

⎪⎪⎩

1, if j = k
−1, if j = Φm(k) for some m > 0 and κΦm(k) < κk < κΦl(k),

for all l = 1, . . . , m − 1
0, otherwise.

The full proof of the Proposition 1 can be found in the appendices.
Let us now discuss the symbolic dynamics of the system. For each eigen-

value λk = −κk, κk > 0 we associate a transition time tk = κ−1
k . Without

loss of generality we can consider that t1 � t2 � . . . � tn−1. Any trajectory
of the system is given by (2). At the time tk one exponential term exp(λkt)
will vanish and the result will be a transition c → c − rk(lk, c(0)), provided
that (lk, c(0)) �= 0. In other works, a trajectory can be described as a discrete
sequence of states c(0), c(0) − r1(l1, c(0)), . . .. Let us consider the following nor-
malization c1(0) + c2(0) + . . . + cn(0) = 1. Then ci is the probability of presence
in the node i of a particle moving through the reaction network. For monomolec-
ular networks, particles are independent, therefore this simple picture is enough
for understanding the dynamics. Let the index i0 define the initial state of the
system ci0(0) = 1, cj(0) = 0 for j �= i0. i0 represents the initial position of the
particle. According to the Proposition 1 (lk, c(0)) = lki0 = 1 if the step κk is
downstream of i0 in the graph Gr and if all steps from i0 to k are faster than κk.
In this case the jump at tk is −rk. A jump −rk has two components different
from zero, −rk

k = −1 and −rk
j = 1, where j is the first node downstream of k

from which starts a step slower than κk. Thus, the jump −rk corresponds to dis-
placing the particle from k to j. The set of right eigenvectors defines a symbolic
flow on the reaction digraph. A particle starting in i0 first jumps in i1 where i1 is
the first node such that κi1 < κi0 , then continues to i2 where i2 is the first node
such that κi2 < κi1 , and so one and so forth until it gets to the sink. Some nodes
have negligible sojourn time, namely nodes such that κi > κj for all j ∈ Pred(i).
This proves the main result of the section.

By transition graph of a finite state machine we mean the digraph Grs =
(Vs,As), where Vs is the set of states of the machine and (i, j) ∈ As if there are
transitions from the state i to the state j. We have the following theorem:



108 O. Radulescu et al.

A1

A2

A3

A4

A5

A6

1 6

4

9 5

2

3

7

1
0 8

a)

A1

A2

A3

A4

A5

A6

1

4

5

2

7

l3 = (1, 0, 1, 0, 0, 0, 0)
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Fig. 1. Symbolic dynamics of a monomolecular network with total separation. The
integers γi labelling the reactions represent the orders of the kinetic constants, smaller
orders meaning faster reactions. The model was reduced using the recipe described
in [4,13] (see appendices). (a) full model; (b–c) reduced model with active transitions
and corresponding eigenvectors. During a transition the network behaves like a single
step: the concentrations of some species (white) are practically constant, some species
(yellow) are rapid, low concentration, intermediates, one species (red) is gradually
consumed and another (pink) is gradually produced. The net result is the displacement
of a particle one or several steps downstream; (d) The transition graph of the finite state
machine representing the symbolic dynamics of the network; (e) Trajectory starting
from A3 (at t = 0 the total mass is in A3), undergoing two transitions at t1 and t2.
The simulation has been performed for kinetic constants κi = εγi , with ε = 1/50. On
top, concentration of species (concentrations of A1, A4, A6 are negligible everywhere).
At bottom, orders of concentrations (computed as logε(xi)) with continuous lines if
species is tropically equilibrated, dotted lines if not (Color figure online).
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Theorem 1. The symbolic dynamics of a monomolecular network with totally
separated constants can be described by a deterministic acyclic finite state
machine. The transition graph Grs = (Vs,As) of this machine can be obtained
from the graph Gr = (Vr,Ar) in the following way: Vs = Vr \ {i ∈ Vr|κi >
κj for all j ∈ Pred(i)}, As = {(i, j)|i, j ∈ Vs and there are i0 = i, i1, . . . , im =
j, such that il ∈ Vr \ Vs, for l = 1, . . . , m − 1, and (il, il+1) ∈ Ar for l =
0, . . . , m − 1}.
Remark 1. An example is detailed in Fig. 1.

3 Tropical Equilibrations of Nonlinear Networks with
Polynomial Rate Functions

In this section we consider nonlinear biochemical networks described by mass
action kinetics

dxi

dt
=

∑

j

kjSijx
αj , 1 ≤ i ≤ n, (9)

where kj > 0 are kinetic constants, Sij are the entries of the stoichiometric
matrix (uniformly bounded integers, |Sij | < s, s is small), αj = (αj

1, . . . , α
j
n) are

multi-indices, and xαj = x
αj

1
1 . . . x

αj
n

n , where αj
i are positive integers.

For chemical reaction networks with multiple timescales it is reasonable to
consider that kinetic parameters have different orders of magnitudes. This can
be conveniently formalized by considering that parameters of the kinetic models
(9) can be written as

kj = k̄jε
γj. (10)

The exponents γj are considered to be integer or rational. For instance, the
approximation γj = round(log(kj)/ log(ε)) produces integer exponents, whereas
γj = round(d log(kj)/ log(ε))/d produces rational exponents, where round stands
for the closest integer (with half-integers rounded to even numbers) and d is a
strictly positive integer. Kinetic parameters are fixed. In contrast, species orders
vary in the concentration space and have to be calculated as solutions to the trop-
ical equilibration problem. To this aim, the network dynamics is first described
by a rescaled ODE system

dx̄i

dt
=

∑

j

εμj(a)−ai k̄jSij x̄
αj, (11)

where
μj(a) = γj + 〈a, αj〉, (12)

and 〈, 〉 stands for the dot product.
The r.h.s. of each equation in (11) is a sum of multivariate monomials in

the concentrations. The orders μj indicate how large are these monomials, in
absolute value. A monomial of order μj dominates another monomial of order
μj′ if μj < μj′ .
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The tropical equilibration problem consists in the equality of the orders of
at least two monomials one positive and another negative in the differential
equations of each species. More precisely, we want to find a vector a such that

min
j,Sij>0

(γj + 〈a, αj〉) = min
j,Sij<0

(γj + 〈a, αj〉) (13)

Computing tropical equilibrations from the orders of magnitude of the model
parameters is a NP-hard problem, cf. [17]. However, methods based on the New-
ton polytope [15] or constraint logic programming [16] exploit the sparseness and
redundance of the system to effectively obtain sets of solutions. The Eq. (13) is
related to the notion of tropical hypersurface. A tropical hypersurface is the set of
vectors a ∈ R

n such that the minimum minj,Sij �=0(γj + 〈a, αj〉) is attained for at
least two different indices j (with no sign conditions). Tropical prevarieties are
finite intersections of tropical hypersurfaces. Therefore, our tropical equilibra-
tions are subsets of tropical preverieties. The sign condition in (13) was imposed
because species concentrations are real positive numbers. Compensation of a
sum of positive monomials is not possible for real values of the variables.

Species Timescales. The timescale of a variable xi is given by 1
xi

dxi

dt = 1
x̄i

dx̄i

dt
whose order is

νi = min{μj |Sij �= 0} − ai. (14)

The order νi indicates how fast is the variable xi (if νi′ < νi then xi′ is faster
than xi).

Partial Tropical Equilibrations. It is useful to extend the tropical equilibration
problem to partial equilibrations, that means solving (13) only for a subset
of species. This is justified by the fact that slow species do not need to be
equilibrated. In order to have a self-consistent calculation we compute the species
timescales by (14). A partial equilibration is consistent if νi < ν for all non-
equilibrated species i. ν > 0 is an arbitrarily chosen threshold indicating the
timescale of interest.

Tropical Equilibrations, Slow Invariant Manifolds and Metastable States. In dis-
sipative systems, fast variables relax rapidly to some low dimensional attrac-
tive manifold called invariant manifold [3] that carries the slow mode dynamics.
A projection of dynamical equations onto this manifold provides the reduced
dynamics [8]. This simple picture can be complexified to cope with hierarchies of
invariant manifolds and with phenomena such as transverse instability, excitabil-
ity and itineracy. Firstly, the relaxation towards an attractor can have several
stages, each with its own invariant manifold. During relaxation towards the
attractor, invariant manifolds are usually embedded one into another (there is
a decrease of dimensionality) [2]. Secondly, invariant manifolds can lose local
stability, which allow the trajectories to perform large phase space excursions
before returning in a different place on the same invariant manifold or on a dif-
ferent one [7]. We showed elsewhere that tropical equilibrations can be used to
approximate invariant manifolds for systems of polynomial differential equations
[9,10,14]. Indeed, tropical equilibration are defined by the equality of dominant
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forces acting on the system. The remaining weak non-compensated forces ensure
the slow dynamics on the invariant manifold. Tropical equilibrations are thus
different from steady states, in that there is a slow dynamics. In this paper we
will use them as proxies for metastable states.

Branches of Tropical Equilibrations and Connectivity Graph. For each equation
i, let us define

Mi(a) = argmin
j

(μj(a), Sij > 0) = argmin
j

(μj(a), Sij < 0), (15)

in other words Mi denotes the set of monomials having the same minimal order
μi. We call tropically truncated system the system obtained by pruning the sys-
tem (11), i.e. by keeping only the dominating monomials.

dx̄i

dt
= εμi−ai(

∑

j∈Mi(a)

k̄jνjix̄
αj ), (16)

The tropical truncated system is uniquely determined by the index sets Mi(a),
therefore by the tropical equilibration a. Reciprocally, two tropical equilibra-
tions can have the same index sets Mi(a) and truncated systems. We say that
two tropical equilibrations a1, a2 are equivalent iff Mi(a1) = Mi(a2), for all i.
Equivalence classes of tropical equilibrations are called branches. A branch B
with an index set Mi is minimal if M ′

i ⊂ Mi for all i where M ′
i is the index

set B′ implies B′ = B or B′ = ∅. Closures of equilibration branches are defined
by a finite set of linear inequalities, which means that they are polyhedral com-
plexes. Minimal branches correspond to maximal dimension faces of the poly-
hedral complex. The incidence relations between the maximal dimension faces
(n − 1 dimensional faces, where n is the number of variables) of the polyhedral
complex define the connectivity graph. More precisely, minimal branches are the
vertices of this graph. Two minimal branches are connected if the corresponding
faces of the polyhedral complex share a n−2 dimensional face. In terms of index
sets, two minimal branches with index sets M and M ′ are connected if there is
an index set M ′′ such that M ′

i ⊂ M ′′
i and Mi ⊂ M ′′

i for all i.

Tropical Equilibrations and Monomolecular Networks. Equation (13) have a sim-
pler form in the case of monomolecular networks

min
j∈Pred(i)

(γij + aj) = min
j∈Succ(i)

(γji + ai) (17)

where Pred(i) = {j|(j, i) ∈ A}, Succ(i) = {j|(i, j) ∈ A} are the sets of predeces-
sors and successors of the node i in the digraph G.

Let us recall that by min-plus algebra we understand the semi-ring (R ∪
{∞},⊕,⊗) where the two operations are defined as x ⊕ y = min{x, y} and
x ⊗ y = x + y. In other words the addition and the min operation play the
role of min-plus multiplication and addition, respectively. Therefore Eq. (17) are
linear in the unknowns ai. Computing tropical equilibrations of monomolecular
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networks boils down to solving linear equations in min-plus algebra. For linear
tropical systems there are fast algorithms [5,6].

We have tested the tropical equilibration conditions (17) for the trajectories
of the monomolecular network presented in Fig. 1 by checking if the absolute
value of the difference between the r.h.s and l.h.s of (17) is smaller than a
threshold. The result is illustrated in Fig. 1(e). For this model, the tropical equi-
libration solutions are changing along the trajectory. This can been seen by
following the orders of the concentrations along the trajectories. These orders
change by integers at transition points. Furthermore, at transition points some
of the variables that where not previously equilibrated, become equilibrated. The
analysis of the tropical equilibrations finds the transitions previously detected
in Sect. 2 from the approximated eigenvalues and eigenvectors (t1 and t2 for
this example) but adds some more. For instance, species A1 equilibrates at the
timescale 1/κ1 = 10. This was not taken into account in the description of the
automaton in Fig. 1(d) because the species A1 is fast and can not accumulate.

4 Learning a Finite State Machine from a Nonlinear
Biochemical Network

We are using the algorithm based on constraint solving introduced in [16] to
obtain all rational tropical equilibration solutions a = (a1, a2, . . . , an) within
a box |ai| < b, b > 0 and with denominators smaller than a fixed value d,
ai = pi/q, pi, q are positive integers, q < d. The output of the algorithm is
a matrix containing all the tropical equilibrations within the defined bounds.
A post-processing treatment is applied to this output consisting in computing
truncated systems, index sets, and minimal branches. Tropical equilibrations
minimal branches are stored as matrices A1, A2, . . . , Ab, whose lines are tropical
solutions within the same branch. Here b is the number of minimal branches.

Our method computes numerical approximations of the tropical prevariety.
Given a value of ε, this approximation is better when the denominator bound d is
high. At fixed d, the dependence of the precision on ε follows more intricate rules
dictated by Diophantine approximations. For this reason, we systematically test
that the number b and the truncated systems corresponding to minimal branches
are robust when changing the value of ε.

Trajectories x(t) = (x1(t), . . . , xn(t)) of the smooth dynamical system are
generated with different initial conditions, chosen uniformly and satisfying the
conservation laws, if any. For each time t, we compute the Euclidian distance
di(t) = miny∈Ai

‖y − logε(x(t))‖ , where ‖∗‖ denotes the Euclidean norm and
logε(x) = (log x1/ log(ε), . . . , log xn/ log(ε)). This distance classifies all points of
the trajectory as belonging to a tropical minimal branch. The result is a symbolic
trajectory s1, s2, . . . where the symbols si belong to the set of minimal branches.
In order to include the possibility of transition regions we include an unique
symbol t to represent the situations when the minimal distance is larger than a
fixed threshold. We also store the residence times τ1, τ2, . . . that represent the
time spent in each of the state.
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The stochastic automaton is learned as a homogenous, finite states, contin-
uous time Markov process, defined by the lifetime (mean sojourn time) of each
state Ti, 1 ≤ i ≤ b and by the transition probabilities pi,j from a state i to
another state j. We use the following estimators for the lifetimes and for the
transition probabilities:

Ti = (
∑

n

τn1sn=i)/(
∑

n

1sn=i) (18)

pi,j = (
∑

n

1sn=i,sn+1=j)/(
∑

n

1sn=i), i �= j (19)

As a case study we consider a nonlinear model of dynamic regulation of
Transforming Growth Factor beta TGF-β signaling pathway proposed in [1].
This model has a dynamics defined by n = 18 polynomial differential equations
and 25 biochemical reactions. The paper [1] proposes three versions of the mech-
anism of interaction of TIF1γ (Transcriptional Intermediary Factor 1 γ) with the
Smad-dependent TGF-β signaling. We consider here the version in which TIF1
interacts with the phosphorylated Smad2–Smad4 complexes leading to dissoci-
ation of the complex and degradation of Smad4. The results are similar for the
other versions of this model. The example was chosen because it is a medium
size model based on polynomial differential equations. The computation of the
tropical equilibrations for this model shows that there are 9 minimal branches
of full equilibrations (in these tropical solutions all variables are equilibrated).
The connectivity graph of these branches and the learned automaton are shown
in Fig. 2. The study of this example shows that branches of tropical equilibra-
tion can change on trajectories of the dynamical system. Furthermore, all the
observed transitions between branches are contained in the connectivity graph
resulting from the polyhedral complex of the tropical equilibration branches.

The transition probabilities of the automaton are coarse grained properties
of the statistical ensemble of trajectories for different initial conditions. Given a
state and a minimal branch close to it, it will depend on the actual trajectory
to which other branch the system will be close to next. However, when initial
data and the full trajectory are not known, the automaton will provide estimates
of where we go next and with which probability. For the example studied, the
branch B1 is a globally attractive sink: starting from anywhere, the automaton
will reach B1 with probability one. This branch contains the unique stable steady
state of the initial model. Figure 2 bottom right shows the structure of most
probable branches, the ones in which the systems spends most of his time. The
branches B1, B3 and B2 correspond to different compositions of the membrane
and of the endosome, rich in the receptor RI, rich in the receptor RII and rich
in both types of receptors, respectively. Even if this composition is changed on
wide domains of orders (planes in the space of orders), the concentrations of
effectors are robust (are more constained than the concentrations of receptors).
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Fig. 2. TGFβ model. Upper left: Connectivity graph of tropical minimal branches;
upper right: finite state automaton; bottom left: trajectories with jumps and distances
to minimal branches; the closest branch changes with time along the trajectory; bottom
right: first three tropical equilibrations minimal branches in various projections in con-
centration orders space. The variables RI, RII, LR are membrane receptors (signaling
input layers) concentration orders, whereas pS2n, S4n, pS24n are nuclear transcription
factors and complexes (effectors) concentration orders. The structure tropical branches
shows that composition of input layers is more flexible (varies on planes) than the con-
centrations of effectors (vary on lines).

5 Conclusion

We have presented a method to coarse grain the dynamics of a smooth biochemi-
cal reaction network to a discrete symbolic dynamics of a finite state automaton.
The coarse graining was obtained by two methods, approximated eigenvectors
for mono-molecular networks and minimal branches of tropical equilibrations for
more general mass action nonlinear networks. The two methods are compatible
one to another, because when applied to monomolecular networks the method
based on tropical geometry detects all the transitions indicated by approximated
eigenvectors. For both methods the automaton has a small number of states, less
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than the number of species in the first method and the number of minimal trop-
ical branches in the second method. The coarse grained automaton can be used
for studying statistical properties of biochemical networks such as occurrence and
stability of temporal patterns, recurrence, periodicity and attainability problems.
The coarse graining can be performed in a hierarchical way. For the nonlinear
example studied in the paper we computed only the full tropical equilibrations
that stand for the lowest order in the hierarchy (coarsest model). As discussed
in Sect. 3 we can also consider partial equilibrations when slow variables are not
equilibrated and thus refine the automaton. Our approach extends the notion
of steady states of a network and propose a simple recipe to characterize and
detect metastable states. Most likely metastable states have biological impor-
tance because the network spends most of its time in these states. The itinerancy
of the network, described as the possibility of transitions from one metastable
state to another is paramount to the way neural networks compute, retrieve and
use information [18] and can have similar role in biochemical networks.

Acknowledgements. O.R and A.N are supported by INCa/Plan Cancer grant
N◦ASC14021FSA.

Appendix 1

Proof of Proposition 1. Let us consider that rk
k = 1. Taking rj

k = 0 for all
predecessors j of k and for all other nodes that lead to k by the flow Φ satisfy
Eq. (6) (main body text) with λ = −κk. The same is valid for all the nodes
that do not lead to k and are not accessible from k. Remain the nodes that
are accessible from k. Let j be such a node. Then j = Φm(k) for some m > 0.
Equation (6) (main body text) implies that

κΦl−1(k)r
k
Φl−1(k) = (−κk + κΦl(k))r

k
Φl(k), for 1 ≤ l ≤ m.

Thus rk
Φm(k) = κk

−κk+κΦ(k)
× κΦ(k)

−κk+κΦ2(k)
× . . . × κΦm−1(k)

−κk+κΦm(k)
. Suppose that κk <

κφl(k) for l = 1, . . . , m − 1 and κφm(k) < κk. Using Lemma 1 (main body text)
it follows rk

Φm(k) = −1. If any of the previous inequality does not hold then at
least one factor in the expression of rk

Φm(k) vanishes and the remaining factors

are finite, thus rk
Φm(k) = 0. Consider now that lkk = 1. Taking ljk = 0 for all the

nodes j that can be obtained from k and for all other nodes that do not lead to
k by the flow Φ satisfy Eq. (7) (main body text) with λ = −κk. The remaining
nodes are all leading to k. Let j be such a node. Then k = Φm(j) for some
m > 0. Equation (7) (main body text) implies that

κΦl−1(j)l
k
Φl(j) = (−κk + κΦl−1(j))l

k
Φl−1(j), for 1 ≤ l ≤ m.

Hence lkj = κj

−κk+κj
× κΦ(j)

−κk+κΦ(j)
× . . . × κΦm−1(j)

−κk+κΦm−1(j)
. Suppose that κΦl(j) > κk,

for all l = 0, . . . , m−1. Using Lemma 1 (main body text) it follows lkj = 1. If one
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of these inequalities is not satisfied for a l = 0, . . . , m−1 then the corresponding
factor in the expression of lkj vanishes and lkj = 0.

The above formulas cover the zero eigenvalue case if we consider that κk = 0
for k being the sink. It follows that r0k = 1 and r0j = 0 elsewhere. Furthermore,
l0j = 1 for all j.

Appendix 2

Algorithm for reduction of monomolecular networks with total separation. This
algorithm consists of three steps.

I. Constructing of an Auxiliary Reaction Network: Pruning.

For each Ai branching node (substrate of several reactions) let us define κi

as the maximal kinetic constant for reactions Ai → Aj : κi = maxj{kji}. For
correspondent j we use the notation j = φ(i): φ(i) = arg maxj{kji}.

An auxiliary reaction network V is the set of reactions obtained by keeping
only Ai → Aφ(i) with kinetic constants κi and discarding the other, slower
reactions. Auxiliary networks have no branching, but they can have cycles and
confluences. The correspondent kinetic equation is

ċi = −κici +
∑

φ(j)=i

κjcj , (20)

If the auxiliary network contains no cycles, the algorithm stops here.

II. Gluing Cycles and Restoring Cycle Exit Reactions.
In general, the auxiliary network V has several cycles C1, C2, ... with periods
τ1, τ2, ... > 1.

These cycles will be “glued” into points and all nodes in the cycle Ci, will be
replaced by a single vertex Ai. Also, some of the reactions that were pruned in the
first part of the algorithm are restored with renormalized rate constants. Indeed,
reaction exiting a cycle are needed to render the correct dynamics: without
them, the total mass of the cycle is conserved, with them the mass can also
slowly leave the cycle. Reactions A → B exiting from cycles (A ∈ Ci, B /∈ Ci)
are changed into Ai → B with the rate constant renormalization: let the cycle
Ci be the following sequence of reactions A1 → A2 → ...Aτi

→ A1, and the
reaction rate constant for Ai → Ai+1 is ki (kτi

for Aτi
→ A1). For the limiting

(slowest) reaction of the cycle Ci we use notation klim i. If A = Aj and k is the
rate reaction for A → B, then the new reaction Ai → B has the rate constant
kklim i/kj . This rate is obtained using quasi-stationary distribution for the cycle.
If kinetic constants are expressed as powers of a small positive parameter ε, i.e.,
if k = εγ , then the order of the constant has to be changed according to the rule
γ → γ + γlim − γj , where γ, γlim i, γj are the orders of the constants k, klim i

and kj , respectively.
The new auxiliary network V1 is computed for the network of glued cycles.

Then we decompose it into cycles, glue them, iterate until a acyclic network is
obtained Vn (Fig. 3).
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III. Restoring Cycles.
The dynamics of species inside glued cycles is lost after the second part. A full
multi-scale approximation (including relaxation inside cycles) can be obtained
by restoration of cycles. This is done starting from the acyclic auxiliary network
Vn back to V1 through the hierarchy of cycles. Each cycle is restored according
to the following procedure:

For each glued cycle node Am
i , node of Vm,

– Recall its nodes Am−1
i1 → Am−1

i2 → ...Am−1
iτi

→ Am−1
i1 ; they form a cycle of

length τi.
– Let us assume that the limiting step in Am

i is Am−1
iτi

→ Am−1
i1

– Remove Am
i from Vm

– Add τi vertices Am−1
i1 , Am−1

i2 , ...Am−1
iτi

to Vm

– Add to Vm reactions Am−1
i1 → Am−1

i2 → ...Am−1
iτi

(that are the cycle reactions
without the limiting step) with correspondent constants from Vm−1
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Fig. 3. The successive steps of the reduction algorithm, illustrated for the prism model
used in the paper. (a) is the initial model; (b) is the auxiliary network resulting from
step I, pruning; (c) is the result of gluing 3 species cycles and renormalizing the exit
reactions (the constants of orders 3, 7, 10, 8 are renormalized to 3+6−1 = 8, 7+6−6 = 7,
10+6−4 = 12, and 8+9−2 = 15, respectively); (d) is the auxiliary network after one
more iteration; (e) results from gluing and then restoring the 3 species cycles without
the limiting step (constant of order 15); (f) results from restoring the single species
cycles without their limiting steps.
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– If there exists an outgoing reaction Am
i → B in Vm then we substitute it

by the reaction Am−1
iτi

→ B with the same constant, i.e. outgoing reactions
Am

i → ... are reattached to the beginning of the limiting steps
– If there exists an incoming reaction in the form B → Am

i , find its prototype
in Vm−1 and restore it in Vm

– If in the initial Vm there existed a “between-cycles” reaction Am
i → Am

j

then we find the prototype in Vm−1, A → B, and substitute the reaction by
Am−1

iτi
→ B with the same constant, as for Am

i → Am
j (again, the beginning

of the arrow is reattached to the head of the limiting step in Am
i )

Appendix 3

Description of the TGFb model used in this paper. The model is described by
the following system of differential equations

dx1

dt
= k2x2 − k1x1 − k16x1x11

dx2

dt
= k1x1 − k2x2 + k17k34x6

dx3

dt
= k3x4 − k3x3 + k7x7 + k33k37x18 − k6x3x5

dx4

dt
= k3x3 − k3x4 + k9x8 − k8x4x6

dx5

dt
= k5x6 − k4x5 + k7x7 + 2k11x9 − 2k10x

2
5 − k6x3x5 + k16x1x11

dx6

dt
= k4x5 − k5x6 + k9x8 + 2k13x10 − 2k12x

2
6 − k17k34x6 + k31k36x8 − k8x4x6

dx7

dt
= k6x3x5 − x7(k7 + k14)

dx8

dt
= k14x7 − k9x8 − k31k36x8 + k8x4x6

dx9

dt
= k10x

2
5 − x9(k11 + k15)

dx10

dt
= k15x9 − k13x10 + k12x

2
6

dx11

dt
= k23x14 − k30x11

dx12

dt
= k18 − x12(k20 + k26) + k30x11 + k27x15 − k22k35x12x13

dx13

dt
= k19 − x13(k21 + k28) + k30x11 + k29x16 − k22k35x12x13

dx14

dt
= k22k35x12x13 − x14(k23 + k24 + k25)
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dx15

dt
= k26x12 − k27x15

dx16

dt
= k28x13 − k29x16

dx17

dt
= k31k36x8 − k32x17

dx18

dt
= k32x17 − k33k37x18

These variables are as follows:

– Receptors on membrane: x12 = RI, x13 = RII, x14 = LR.
– Receptors in the endosome: x11 = LRe, x15 = RIe, x16 = RIIe.
– Transcription factors and complexes in cytosol: x1 = S2c, x3 = S4c, x5 =

pS2c, x7 = pS24c, x9 = pS22c, x18 = S4ubc.
– Transcription factors and complexes in the nucleus: x2 = S2n, x4 = S4n, x6 =

pS2n, x8 = pS24n, x10 = pS22n, x17 = S4ubn.
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Abstract. In recent years, pattern recognition methods have been
applied to determine the activity of biological molecules, including the
prediction of antimicrobial activity of synthetic and natural peptides
where Quantitative Structure-Activity Relationship methodologies are
widely used. Traditionally, works focused on designing descriptors for
sequences to yield better correlations with the biological activity and
improve predictors performance. Albeit there have been remarkable
results, the small size of available datasets leave large room for improve-
ment. In this work, rather than hand-crafting new descriptors, our app-
roach consists in automatically learning them from existing ones. We use
stacked autoencoders (a class of unsupervised neural networks), and the
descriptors learnt are fed to a support vector regression task to predict
biological activity. This method improves results in existing literature by
roughly 12 % simultaneously in different metrics, providing interesting
insights into the nature of descriptors learnt and suggesting its applica-
bility in other areas in protein properties prediction.

Keywords: Autoencoder · Stacked autoencoder · Antimicrobial
peptides · Support vector regression

1 Introduction

Recently, the development of new antibiotics has become a necessity due to the
emergence and spread of resistant strains [1]. Few drugs can face this problem
and, together with the reduction of pharmaceutical industries researching new
antibacterial agents, this has become a threat to public health [2]. Antimicro-
bial peptides are a promising alternative to traditional antibiotics due the broad
spectrum of biological activity and low probability to produce resistance in bac-
teria, although the design and synthesis of new peptides have been limited, inter
c© Springer International Publishing Switzerland 2015
O. Roux and J. Bourdon (Eds.): CMSB 2015, LNBI 9308, pp. 121–132, 2015.
DOI: 10.1007/978-3-319-23401-4 11
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alia the huge number of possible sequences that we can obtain if we take the
twenty natural amino acids [3].

For this reason, methodologies such as QSAR (Quantitative Structure-
Activity Relationship) are being widely used to predict the activity of pep-
tides (Minimal Inhibitory Concentration, MIC), using regression methods to
try to find peptides with high MIC [4–6]. QSAR is based on the idea that a
sequence or peptide structure can be described through physico-chemical prop-
erties (descriptors), and these are correlated with biological activity present in
the peptide through a mathematical function [7].

Albeit results are promising there is still plenty of room for improvement
mostly due to the small size of existing datasets. In this work, we take the app-
roach of using machine learning methods to learn new descriptors from the exist-
ing ones rather than further devising new ones [8–10]. We use stacked autoen-
coders (a class of unsupervised neural networks) to learn new descriptors which
are then fed to a support vector regression task to predict biological activity from
them. Our results were satisfactory reducing the RMSEext from 0.96 to 0.84 and
improving R2

ext from 0.72 to 0.85 compared to literature and suggest that this
method can be considered in different application areas in protein prediction.

This paper is structured as follows. Section 2 describes the datasets we used
and provides a general overview on how stacked autoencoders work. Section 3
explains the experiment setups we devised. Section 4 describes the results we
obtained and provides some insights on their interpretation. Finally, Sect. 5
draws the conclusions.

2 Materials and Methods

2.1 Dataset and Descriptors

We use the dataset CAMELs, which is made of 101 sequences of peptides of
the same length (15 aminoacids). Each peptide has been tested against several
strains of microorganisms and its activity was reported measured as the mean
antibiotic potency against these [6].

From the aminoacid sequences of peptides it is possible to compute descrip-
tors representing quantitatively several physico-chemical properties. There is a
wide range of descriptors and in this work we started off from the properties
described by Zhou et al. [4], where different descriptor groups were extracted
from the primary structure of peptides, using a web tool called PROFEAT [11].
It computes ten groups of properties as shown in Table 1, where AllDesc is full set
of available descriptors. Due to technical problems on PROFEAT’s web site we
used instead propy (available as a Python library [12]) to compute the ten groups
of descriptors just mentioned. Additionally, we verified that propy source code
implements the same equations for each descriptor according to PROFEAT’s
user manual.
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Table 1. Ten groups of descriptors compute for the dataset. The initial and final
columns represent the number of descriptors before and after of preprocessing, respec-
tively

Descriptors Initial Final

Dipeptide Composition (Ddcd) 400 106

Normalized MoreauBroto autocorrelation (Dnmba) 240 112

Moran autocorrelation (Dmad) 240 112

Geary autocorrelation (Dgad) 240 112

Composition, transition and distribution (Dctd) 147 147

Sequence order coupling number (Dsoc) 20 20

Quasi sequence order (Dqso) 50 46

Pseudoaminoacid composition type I (Dpaac) 30 23

Pseudoaminoacid composition type II (Dapaac) 30 23

All Descriptors (AllDesc) 1517 730

2.2 Autoencoders (AEs)

Autoencoders (AEs) [13,17] are a special class of neural networks that are used in
an unsupervised manner. Typically, supervised machine learning methods (such
as neural networks) are provided with input data and the expected predictions
to generate a predictive model from input data (such as for predicting antimi-
crobial activity from peptide descriptors). Unlike that, unsupervised methods,
such as AEs, only use input data to learn a new representation without using
the expected predictions.

An AE is a symmetric neural network with one hidden layer (Fig. 1(a)),
i.e. the number of neurons in the input and output layers is the same. For each
input vector, the expected output is set to be the same input vector and training
happens similarly to a neural network, approximating the output of the network
to the input data, minimizing the error between both. This way, if training
succeeds to reconstruct the input data at the output layer, the hidden layer will
contain a new representation of the input data which will be more compact if
the hidden layer has less neurons than the input layer, or more sparse if it has
more neurons.

The activation of neurons in the hidden layer is the result of lineal combina-
tion of the input vector x:

a(2) = f (W (1) ∗ x + b1) (1)

where W (1) is weight vector, b1 is the bias o intercept term and f is the sigmoid
function, where f = 1

1+ea . Likewise, at the output layer, the activation is given by

h W,b(x) = f (W (2) ∗ a + b2). (2)

where W (2) is weight vector in the output layer, b2 is the bias o intercept term
and f is the sigmoid function. The error the network incurs when reconstructing
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the input at the output is given by the cost function J(W, b) which is typically
minimized through a gradient descent method:

J(W, b) =
1
2

‖hW,b(x) − y‖2 (3)

An interesting feature of AEs is that the number of neurons in the hidden
layer can be smaller or greater than the input layer. If it is less, it will force the
network compress the information, similarly to Principal Component Analysis
[14]. If it is greater, the network will learn a more distributed representation in
the sense that more neurons will be used to represent the same information at
the input layer. In this case, we are interested in forcing the network to activate
at small number of neurons from the hidden layer at each input producing a
sparse representation of the data and, thus, forcing each neuron to specialize to
detect a different input pattern.

In order to achieve this a sparsity restriction is included in the cost function
J(W, b) that controls how many neurons are activated:

Jsparse(W, b) = J(W, b) + β

c2∑

i=1

KL(ρ ‖ ρ̂j) (4)

where β is the weight that penalize the sparsity, c2 is the number of neurons
in the hidden layer, ρ is sparsity parameter (in this work, ρ = 0.05), ρ̂j =
1
m

∑m
i=1

[
a
(2)
j (x(i))

]
is the average of activation of neurons in the hidden layer.

KL is Kullback-Leibler divergence:

KL(ρ ‖ ρj) = ρ log
ρ

ρ̂j
+ (1 − ρ)log

1 − ρ

1 − ρ̂j
(5)

The parameters W (1), b1,W
(2), b2 are optimized so that J(W, b) is minimized

through back-propagation and L-BFGS [15].

2.3 Stacked Autoencoder (SAE)

A stacked autoencoder is a neural network with two or more layers of autoen-
coders that are used in an unsupervised manner. The main idea with SAE is
to capture high order features from the data. Training is conducted using the
approach called greedy-wise, i.e. each hidden layer is trained separately and the
output of each one is used as input for the next layer [17]. For instance, to train a
stacked autoencoder with two hidden layers, we first create and train an autoen-
coder with one hidden layer and keep only the primary feature activations h(1)

(see Fig. 1a) after training. Next, we feed the data to this first autoencoder and,
for each input instance, we obtain the values at the output layer h(1) as a new
representation of the data. Instead of directly using this new data, we feed it to
a second autoencoder and perform the training process again (Fig. 1b).

At the end, the output of this second layer at h(2) is the final representation
of our data.
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Fig. 1. Stacked autoencoder with 2 hidden layer. (a) contains 6 input neurons and four
neurons in the hidden layer. Note this is a compressing autoencoder. It contains (6+1)*
4+(4+1)*6 = 58 connections. Figure taken from [17]

2.4 Processing Workflow

In all our processing workflow is then composed of three stages:

1. Preprocessing: all descriptors are preprocessed by (1) standardizing their
values so that for each descriptor its mean was zero and its standard deviation
was one; and (2) removing the ones with the same value in all peptides (its
standard deviation was zero).

2. Unsupervised Feature Learning: Different configurations of AEs and
SAEs are trained and run on the preprocessed data producing a new rep-
resentation.

3. Supervised Prediction: Different configurations of a Support Vector
Regression task are run on the new representation obtained in the previ-
ous phase to effectively predict antimicrobial activity for the initial peptides.
See (Fig. 1c)

3 Experimental Setup

3.1 Experimental Configurations

Starting off from the 10 groups of descriptors for each peptide obtained with
propy, we devised four general experimental setups, and run each descriptor
group through each setup after preprocessing as described above. The four setups
where the following:

Original: We performed a Support Vector Regression directly on each group of
descriptors without further processing or feature learning. The purpose of this
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setup is to give us a baseline against which to measure the behavior of further
setups.

AE: We trained different configurations of AEs to learn a new set of features
which were then fed to a Support Vector Regression task. In each AE configura-
tion we vary the number of neurons in the hidden layer from 20 to 1000 neurons.
This allows for configurations producing both compact and sparse representa-
tions with respect to the number of descriptors in each group. When the number
of neurons in the hidden layer was between 20 and 500 and it was varied with
a step of 20, and when it was between 500 and 1000 it was varied with a step
of 50. This resulted in 35 AE configurations which were used for each groups
of descriptors. Each one of these configurations contains several thousand con-
nections that need to be trained. For instance an AE with 500 neurons in the
hidden layer for descriptor group Ddcd with 106 descriptors contains around
106 K connections (see Fig. 1a). This way the size of our AEs ranged between
800 connections (for the AE with the 20 descriptors of the Dsoc group and 20
neurons in the hidden layer) and 1.46 million connections (for AllDesc and 1000
neurons in the hidden layer).

SAE2: For each AE configuration we created a two layer stacked autoencoder
by adding an additional hidden layer with half the neurons, producing there-
fore another 35 configurations. As explained, each configuration was trained
layer-wise. Sizes of SAE2 configurations ranged between 800 connections and
1.6 million.

SAE4: Likewise SAE2 but the number of neurons in the second hidden layer
was obtained by dividing the number of neurons in the first hidden layer by 4
yielding, again, another 35 configurations. Sizes of SAE4 configurations ranged
between 600 connections and 1.1 million.

As we have 10 descriptor groups, in total we run 1060 experimental config-
urations (350 for AE, SAE2 and SAE4 and 10 for Original). Deeper stacked
autoencoder configurations (with more layers) were not yet considered due to
their computational cost as the purpose of this paper is to validate the general
utility of the method.

3.2 Validation and Supervised Training

For supervised training, we split the data in a subset for training and another
one for validation according to Zhou et al. [4] as strictly as possible (using the
same validation split). Then, we optimized the free parameters of the Support
Vector Regression task. For this, we created a grid varying (C, γ, ε) and for each
combination of parameters we used the train data split to train a SVR with
5 fold cross-validation and with the average score of R2

ext we choose the para-
meters yielding the maximum score. Our parameter grid resulted from varying
the ranges of the free parameters as follows C (10 to 72.5 with a step of 2.5),
γ (10−1.5 to 100.5 varying the potency with a step of 0.25), ε (0.1 to 0.9 with a
step of 0.1). The grid therefore contained 1872 parameter combinations which
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were run with each configuration described in Sect. 3.1. Therefore, we trained
1’984’320 Support Vector Regression cross validation processes and selected one
for each one of the 1060 Original, AE, SAE2 and SAE4 configurations.

Finally, with the best combination of parameters (C, γ, ε) for each con-
figuration we trained a SVR with the full training split (no cross-validation)
and tested it with the validation data split for obtaining the final performance.
The performance metrics used for the validation set were Root Mean Square
Error (RMSEext), Correlation coefficient of multiple determination (R2

ext),
Pearson correlation coefficient (R) and R2

pred (R2 predictive) [16]. The subscript
ext represents that these metrics were used with validation set (or external
validation set).

4 Results and Discussion

Our approach differs from most of the studies used in the prediction of antimi-
crobial peptides [4,5,8–10,18,19] in that descriptors are learnt automatically
in an unsupervised machine learning task. Table 2 summarizes the results we
obtained and those of the referenced literature. Our results are shown in the
four bottom lines of the table together with the descriptor group and AE or
SAE configuration with which they were obtained.

Details can be found in Figs. 2, 3 and 4 where we plotted the performance
of each descriptor group with R2

ext, RMSEext and Rext respectively, together
with the performance reported in the literature as shown in Table 2 as dashed
lines. Experiments with setup SAE2 were not plotted as they were not signif-
icantly better than SAE4. In all, the complete set of experiments took some
40 compute hours. The compute time for each set of descriptors and AE or
SAE configuration varies greatly depending on the number of connections of the
specific configuration.

Table 2. Comparative results for different algorithms used for prediction of antimi-
crobial peptides

Method Rext RMSEext R2
ext R2

pred Ref

GA-SVM 0.78 1.39 - - [4]

PSO-GA-SVM 0.9 0.96 - - [4]

STR-MLR - - 0.326 - [18]

G/PLS 0.8 - 0.67 0.64 [5]

ANN - - 0.72 - [19]

Setup Original (Dqso+SVR) 0.87 1.10 0.73 0.74 This work

Setup AE (Dctd(900)+SVR) 0.9 1.10 0.739 0.74 This work

Setup SAE2 (Dqso(140,70)+SVR) 0.96 0.864 0.841 0.842 This work

Setup SAE4 (Dqso(800,200)+SVR) 0.97 0.845 0.848 0.849 This work
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Fig. 2. Best performance for R2
ext for each group of descriptors in tree experimental

setup. R2
ext higher is better

Fig. 3. Best performance for RMSEext for each group of descriptors in tree experi-
mental setup. RMSEext closer to zero is better

For AE configurations the best group of original descriptors were consis-
tently Dctd (with 147 original descriptors) obtained with 900 hidden neurons,
performing better than literature only in the R2

ext metric. This is an AE with
over 265 K connections. However SAEs perform consistently better than results
in the literature with different sets of descriptor groups, mostly Dqso and Dctd.

For further detail, Fig. 5 shows the results for all autoencoder and stacked
autoencoder configurations for each dataset for metric R2

ext for each variation of
number of neurons in the first hidden layer. Recall that for SAE2 the second
hidden layer contains half the neurons of the first layer and for SAE4 it contains
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Fig. 4. Best performance for Rext for each group of descriptors in tree experimental
setup. Rext higher is better

Fig. 5. Graphical representation of results for autoencoder and stacked autoencoder
for each variation of number of neurons in the hidden layer. The best results for AE
was Dctd with neuron 900, SAE2 was Dqso with neurons 140 and 70 and SAE4 was
Dqso with neurons 800 and 200

one fourth. Higher R2
ext is represented lighter with white being the best score

and black the worse.
It can be observed how descriptor groups Dqso and Dpaac behave consistently

well with both SAE2 and SAE4 and Dmmba behave consistently worse than
others. The behavior with AE seems somewhat different with descriptor group
Dctd working better overall.

Moreover, it can as well be noted that configurations with more neurons in
the hidden layers seem to work better (for each row, scores on the right tend to



130 F. Camacho et al.

Table 3. Correlation among descriptors within each descriptor group for SAE config-
urations compared with the original representation. If pixel is darker, the correlation
is closer to −1, while if it is lighter, the correlation is closer to 1

- AllDesc Dapaac Dctd Ddcd Dgad Dmad Dnmba Dpaac Dqso Dsoc

Original

SAE

Neurons 100,25 460,230 120,30 220,110 100,50 180,90 40,10 320,160 800,200 60,15

be lighter). This seems to favor AEs and SAEs that learn sparse representations
as opposed to the ones learning more compact (compressing) ones.

Finally, in order to shed some light on the interpretation on the learnt fea-
tures, we compare the intercorrelations among the original features of each
descriptor group and those obtained with the best SAE configuration starting
from that original dataset. This can be seen in Table 3 where we picture the cor-
relation matrix among n variables as an n × n grayscale image with each pixel
representing the correlation between the corresponding variables. Thus, complete
independence among variables is represented by a white diagonal surrounded by
a black background.

It can be observed that, in general, the new features obtained through SAEs
generally enhance the independence of the original descriptors as the back-
grounds in row 2 in Table 3 are generally darker.

5 Conclusions

In this work, we approach the task of predicting the activity of antimicrobial
peptides by using autoencoders and stacked autoencoders to learn new descrip-
tors rather than hand-crafting them, in an unsupervised manner, without using
the known activity as measured in the laboratory. When feeding the new features
to a supervised machine learning method, we show how learnt representations
consistently provide satisfactory results as compared with recent works.

Besides we also show how, among the learnt representations, sparse ones seem
to be preferable to more compact ones as they probably give a better chance for
data separability for the supervised prediction task later on. Moreover, we also
show how the learnt representations also enhance the independence of the initial
descriptors reducing the correlation among them.

We believe this approach to be worthwhile exploring in other areas in predic-
tion of properties protein sharing data characteristics and problem complexity.
Moreover we have identified descriptor groups which consistently behave better.
This could help design better candidate peptides in the future.

However, we also observed the importance of the selection of the original set
of descriptors from which the learning process starts. This suggests probably
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hybrid approaches where specialists hand-craft a base collection of descriptors
and the unsupervised learning process complements them with automatically
learnt ones. Future work is expected to continue in this direction.
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Abstract. We study the structural simplification of chemical reaction
networks preserving the deterministic kinetics. We aim at finding simpli-
fication rules that can eliminate intermediate molecules while preserving
the dynamics of all others. The rules should be valid even though the net-
work is plugged into a bigger context. An example is Michaelis-Menten’s
simplification rule for enzymatic reactions. In this paper, we present a
large class of structural simplification rules for reaction networks that
can eliminate intermediate molecules at equilibrium, without assuming
that all molecules are at equilibrium, i.e. in a steady state. We prove the
correctness of our simplification rules for all contexts that preserve the
equilibrium of the eliminated molecules. Finally, we illustrate at a con-
crete example network from systems biology that our simplification rules
may allow to drastically reduce the size of reaction networks in practice.

1 Introduction

In systems biology [18], reaction networks are used to represent biological sys-
tems. They enable formal analyses [9], simulations with several semantics [7],
parameter estimations and identifications [1], etc. With bigger and bigger net-
works, in order to keep the analyses as simple as possible, or to have quick simu-
lations (in particular in the context of real-time control [29]), we need to be able
to simplify reaction networks. Indeed, the reactions of many metabolic reaction
networks are often motivated by simplifications of concrete chemical reactions,
see e.g. [21], but these simplifications are always done in informal manner with-
out any semantical guarantees. An exception is Michaelis-Menten’s simplification
rule of enzymatic reactions, which is properly justified under quasi-steady-state
assumption [27].

One usual approach is to simplify the ordinary differential equation (ODE)
systems, that describe the deterministic semantics of reaction networks, but not
the reaction networks themselves. In [17], authors presented a method based
on the structure of enzyme-catalysed reactions to compute a simplified ODE
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system at steady-state. In [6], authors used dependency analysis of rule-based
models to obtain a simplified ODE system. Many other simplification methods
use the distinction between slow and fast reactions, as for instance methods
based on invariant manifolds [11], quasi-steady state [3,27], quasi-equilibrium
approximation [12] or tropicalization [28]. Other methods reduce the number of
parameters, for instance by using Lie symmetries [19]. However, most of those
methods require the parameter values, or at least their magnitudes, and those
data are often unknown. Moreover, it is useful to preserve the reaction network
and not just its ODE system, and transforming an ODE system back to a reac-
tion network is a difficult issue, since not always possible, or not possible in a
unique manner [8].

Another approach is to consider reaction networks as programs [5,16,25], and
to apply simplification rules directly to such programs, similarly to what is done
in compiler construction [24,26]. This means to directly simplify the reaction net-
work and not the corresponding ODE system, or even while ignoring the kinetics
all over. Such structural simplification methods are usually based on a small-step
semantics, saying how chemical solutions may evolve non-deterministically. They
are often contextual, i.e. the simplification rules remain correct when the network
is plugged into a bigger context. In our own previous work [20], we proposed to
simplify reaction networks while preserving the reachability of final components,
called attractors. However, those methods do not fit well with the deterministic
semantics, even though the simplification rules obtained seem sensible for biolog-
ical systems. Previous structural simplification methods were presented in [10],
where subgraph epimorphisms are used to reduce reaction networks. Similar works
had been done in Petri Nets [2,23], preserving its usual properties (liveness, dead-
lock, termination, etc.). In [4], Cardelli presented morphisms that preserve the
deterministic semantics, but does not give simplification rules for them.

In this article, we aim at finding a new approach for simplifying reaction net-
works that preserves the deterministic semantics, i.e. the evolution of concentra-
tions of molecular species over time. The approach should be structural in that
it applies to reaction networks directly without computing the ODE system. It
should be contextual, so that we can easily simplify modules or subnetworks in a
larger context while preserving the overall dynamics. Therefore, we propose a col-
lection of simplification rules that eliminate intermediate molecules while preserv-
ing the dynamics of all others. Some simplification rules are based on partial equi-
librium conditions on the intermediate molecules (but a general steady-state is not
assumed). Such conditions were already assumed to justify Michaelis-Menten’s
exact simplification for enzymatic reactions [22] which is widely accepted. There
the intermediate complex needs to be at equilibrium; when it is only close to
the equilibrium, then a small error is made which can be estimated. A network
obtained by applying a simplification rule has the same deterministic semantics
than the original one, in all contexts that preserve the equilibrium conditions
on intermediate molecules. For applying a simplification rule, the corresponding
ODE system is not needed, and the kinetic parameters may be unknown. We illus-
trate the usefulness of the simplification by applying it to biological examples,
where it allows to drastically reduce the size of reaction networks.
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Outline. We first illustrate the basic ideas and motivations at an example in
Sect. 2. We recall the formal definitions of reaction networks with their deter-
ministic semantics in Sect. 3. In Sect. 4, we contribute a contextual equivalence
relation for reaction networks, and in Sect. 5 a set of simplification axioms, that
we prove correct with respect to this equivalence relation. In Sect. 6, we illus-
trate at a biological example, how much reaction networks can be simplified in
practice. We finally conclude and discuss future work in Sect. 7.

2 Preliminary Example

We first present a preliminary example, to illustrate our simplification.
Consider the reaction network Gene in Fig. 1 on the left. It has four species: a

gene G , an inhibitor Inh, some mRNA, and a protein P . The reaction r1 describes
a transcription, the production of mRNA in presence of a gene G . This gene is
required to apply the reaction, but its amount is not modified by it. This reaction
has also a modulator, Inh, indicated by a dashed arrow. A modulator influences
the speed rate of a reaction, but is not required to apply it. Here, Inh slows down
the reaction r1. The reaction r2 is the translation of mRNA into the protein P ,
while the reaction r3 (resp. r4) describes the degradation of mRNA (resp. P ).
Aside from the first one, every reaction has a simple mass-action kinetic.

In order to simplify the network, we first need to specify how the environment
interacts with the network: this is indicated by pending dotted arrows in Fig. 1.
We consider here that G and mRNA are internal molecules, that is, they can not
be modified by the context. Then, the context can be any set of reactions that

Fig. 1. Reaction graphs of the Gene network on the left, and its two simplifications.
Molecules are represented by circles, and reactions by squares. In the kinetic expres-
sions near the reactions, the ki are parameters while xA is a variable representing the
concentration of a molecule A. x0

G denotes the initial concentration of G. A dash arrow
means that the molecule acts as a modulator in the reaction, while a dot arrow means
that the molecule can be modified by the context.
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does not contain G and mRNA. It can for instance transform P into another
protein, or produces something else in presence of Inh, etc.

In this network, we are especially interested in the protein P , and on the
contrary we want to eliminate the intermediate mRNA. To do that, we will
assume that mRNA is at equilibrium, i.e. its concentration, xmRNA, is constant
over time.

Let us simplify our network. First, notice that the gene G is not modified by
any reaction. It is used in reaction r1, but only as an activator, i.e. on both sides
of the reaction. Moreover, G is an internal molecule, that can not be modified
by the context. Therefore its concentration, xG , is constant over time: xG = x0

G .
Then we make this modification in the kinetic expression of reaction r1, and
remove completely G from the network. The new network is pictured in Fig. 1
(middle).

Now, consider the intermediate mRNA. It is an internal molecule, and its
(complete) ordinary differential equation is:

dxmRNA

dt
=

k1x
0
G

k0 + xInh
− k−1xmRNA

Since we assumed that mRNA is at equilibrium, i.e.
dxmRNA

dt
= 0, we deduce:

xmRNA =
k1x

0
G

k−1(k0 + xInh)

Therefore we remove mRNA from the network, and replace the variable xmRNA

in the kinetics of reaction r2, by the expression computed above. We obtain the
simplified network in Fig. 1 (right) where r1, r2 and r3 are merged into the new
reaction r123.

As we will see in this paper, the simplification rules used above preserve the
deterministic semantics of reaction networks, in every context. So the simplified
network is contextual equilibrium-equivalent to the first one. Note that we can
not simplify the network anymore, since both Inh and P can be modified by the
context.

3 Reaction Networks

We introduce reaction networks and define their deterministic semantics in terms
of ordinary differential equations.

Let Spec be a set of molecular species ranging over by A,B,C. We define a
(chemical) solution s ∈ Sol : Spec → N0 as a function from molecular species to
natural numbers. Given natural numbers n1, . . . , nk, we denote by n1A1 + . . . +
nkAk the solution that contains ni molecules of species Ai for all 1 ≤ i ≤ k and
0 molecule of all other species.

A kinetic reaction r = (s1→s2; e) is a pair composed of a reaction s1→s2 and
a kinetic expression e. The reaction transforms the solution s1, called reactants,
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into the solution s2, called products. The molecules present in the same amount
in both reactants and products are called activators. They are not modified
by the reaction, but are required to apply it. Kinetic expressions are symbolic
functions defined from concentration variables, VarsSpec = {xA | A ∈ Spec},
symbols of initial concentrations, Consti = {x0

A | A ∈ Spec}, and symbols of
kinetic parameters, Constk = {k0, k1, . . .}:

e, f, . . . ::=x | x0 | k | e + f | e − f | e × f | e/f | −e | (e)

where x ∈ VarsSpec, x0 ∈ Consti and k ∈ Constk. As usual, we also simply
denote ef for e × f .

The (chemical) concentration of a chemical species is a function from time to
positive numbers R+ → R+. Kinetic expressions are interpreted as actual kinetic
functions by means of an assignment α that maps concentration variables to
concentrations (αc), initial concentrations to non negative real values (α0) and
kinetic parameters to non negative real values (αk):

αc : VarsSpec → (R+ → R+) α0 : Consti → R+ αk : Constk → R+

We only consider assignments α consistent on initial concentrations, that is for
any species A, αc(xA)(0) = α0(x0

A). Given an assignment α, the interpretation
[e]α of a kinetic expression e is thus defined as follows:

[x]α(t) = αc(x)(t) [x0]α(t) = α0(x0) [k]α(t) = αk(k) [(e)]α(t) = [e]α(t)

[−e]α = −[e]α [e op f ]α(t) = [e]α(t) op [f ]α(t) where op ∈ {+,−,×, /}
Given a set of kinetic reactions, we only consider assignments α such that

for any kinetic expression e occurring in this network, its interpretation [e]α :
R+ → R+ is a continuously differentiable function from time to non negative real
numbers, standing for the actual reaction rate. Kinetic reactions (s1→s2; e) also
have to respect the following coherence property : the actual rate given by any
assignment α is equal to zero if and only if one of the reactants is not present: ∀α.
[e]α(t) = 0 iff ∃A ∈ s1.[xA]α(t) = 0. Note that a kinetic expression can contain
concentration variables of molecules that are not present in the reactants of
the reaction; such molecules, called modulators, are not required to apply the
reaction, but modify its rate.

Definition 1. A reaction network is a pair 〈I,R〉, composed of a set of internal
molecules I, which specifies that some molecules can not interact with the context,
and a set of kinetic reactions R.

From any network N = 〈I,R〉 and from its kinetic expressions, we can infer
a system of ordinary differential equations defined by

ODE(N) =

⎡

⎣dxA

dt
=

∑

(s1→s2;e)∈R

(s2(A) − s1(A))e

⎤

⎦

A∈Spec
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Given any assignment α0 of the initial concentrations and any assignment αk

of the kinetic parameters, by the Cauchy-Lipschitz theorem, the system ODE(N)
has a unique differentiable solution αc, defined on a maximal interval including 0.
Moreover, we only consider solutions αc defined on (at least) [0,+∞[. Otherwise,
we say that N has no valid solution for these assignments.

An equilibrium condition e is defined similarly to kinetic expressions and
interpreted as function from time to positive numbers. It is satisfied by an

assignment α iff αc satisfies
de

dt
= 0 given the initial concentration and para-

meter assignments α0 and αk. An equilibrium condition can for instance impose
the equilibrium of a particular molecule (for instance e = xA), a solution
(e =

∑
A∈s s(A)xA), or a reaction (e = f for the reaction (r ; f)). We denote by

E a set of equilibrium conditions. Given a network N and equilibrium conditions
E, the deterministic dynamics of N that satisfies E is defined as

sol(N,E) = {α | αc satisfies E and is a valid solution of ODE(N)
for initial concentrations α0 and parameter assignments αk}

Since we are particularly interested in the molecules that are not at equi-
librium, we say that two assignments α and α′ are equal modulo equilibrium
conditions, denoted αEα′, if they are equal on those molecules.

4 Contextual Equilibrium-Equivalence

We present here a notion of weak equilibrium-equivalence between reaction net-
works, then the definition of contexts, and finally the contextual equilibrium-
equivalence.

Definition 2 (Weak Equilibrium-Equivalence). Two networks N and M
are weakly equilibrium-equivalent for E, denoted N ∼E M , if they have the
same solutions modulo equilibrium conditions sol(N,E) =E sol(M,E).

A context C is itself a reaction network. Given a set of internal molecules I,
we say that a context C is compatible with I if ∀A ∈ I, A has no occurrence in C.
We denote by Context(I) the set of compatible contexts with I. Given a network
N = 〈I,R〉 and a compatible context C = 〈I ′, R′〉 ∈ Context(I), we denote by
C[N ] = 〈I ∪ I ′, R ∪ R′〉 the network placed into the context.

Definition 3 (Contextual Equilibrium-Equivalence). Let E be an equi-
librium, the reaction networks N = 〈I,R〉 and M = 〈I ′, R′〉 are contextually
equilibrium-equivalent for E, denoted N ≡E M , if they are weakly equilibrium-
equivalent in any compatible context, i.e. ∀C ∈ Context(I ∪ I ′). C[N ] ∼E C[M ].

5 Simplification Axioms

In this section, we present some simplification axioms, that transform a net-
work into a contextually equilibrium-equivalent network. The soundness proofs



Structural Simplification of Chemical Reaction Networks 139

of those axioms are given in the annex1. These simplification axioms reduce the
size of a reaction network, either by completely removing a molecule from the set
of reactions, by decreasing the number of reactions, or by simplifying a reaction.

We first present 2 simple simplification axioms, followed by 4 instances of a
more general axiom, based on the presence of an intermediate molecule. Finally,
we present this general axiom. Notice that the axioms are quite similar to the
ones we presented for the attractor equivalence with a qualitative and observa-
tional semantics in [20].

The first 2 simplification axioms are given in Fig. 2. The first one, (useless),
deletes a reaction s→s that does not impact the network dynamics. The axiom
(activator) removes an internal molecule A only used as an activator in the
reactions (i.e. is always present in the same amount in both sides of the reaction).
It is for instance the case for the gene G in the Gene network in Sect. 2.

The next four axioms in Fig. 3 are instances of the more general axiom
(intermediate). These axioms aim at eliminating an internal and intermediate
molecule which is at equilibrium.

In the first one, (inter), the intermediate molecule A is only used in two
reactions, one time as the unique product, and the other as the unique reactant.

Fig. 2. Simple simplification axioms.

Fig. 3. Instances of intermediate molecule axiom.

1 www.cristal.univ-lille.fr/∼guillaume.madelaine/doc/2015 structural simplification.pdf.

http://www.cristal.univ-lille.fr/$sim $guillaume.madelaine/doc/2015_structural_simplification.pdf
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Fig. 4. General intermediate molecule axiom.

Since A is at equilibrium, the kinetic expressions of these reactions have to be
equal, i.e. e = k2xA. The axiom removes A and merges both reactions into one,
keeping only the kinetic expression e. The parameter k2 is eliminated.

The second axiom, (Michaelis-Menten), simplifies a three-steps enzyme-
catalyzed transformation. A substrate S binds to an enzyme E to form the
complex C. Then the complex either transforms back to S + E, or produces the
product P while releasing E. Assuming that the enzyme E and the complex
C are at equilibrium, the axiom merges the reactions into a unique one, that
directly transforms S into P . The equilibrium of C imposes that the simplified
reaction has a Michaelis-Menten kinetics of the form V

xS

xS + K
[22].

The last two, (cascade1) and (cascade2), concern a cascade of reactions,
where the intermediate molecule A, at equilibrium, is produced in presence of
some activators s, and then is either degraded or used to produce some s′. The
axioms eliminate A, so the simplified networks directly produced s′ in presence
of s. The simplified kinetic expressions are obtained by computing the value of
xA at equilibrium, and by replacing it in the third kinetic reaction.

We finally present in Fig. 4 the general axiom (intermediate). In this
axiom, we consider an intermediate internal molecule A, at equilibrium. It sim-
plifies a model with one reaction that can produce A, with a (non-empty) set
of reactions that has only A as reactant and whose kinetic expressions are lin-
ear in xA, and possibly a set of reactions with A as activator. Then the axiom
eliminates A, and merges two-by-two the reactions. The linearity of the kinetic
expression of some reactions is necessary to easily compute the expression of xA

at equilibrium, that is in this case xA =
∑

j ej/
∑

l e′
l.

6 Simplification of the Tet-On Reaction Network

We present here the simplification of the Tet-On system [13–15] using our
axioms. The initial Tet-Ondetailed reaction network, depicted in Fig. 5 (left), has
10 reactions and 11 parameters. We simplify it into the contextually equilibrium-
equivalent Tet-Onsimple network, depicted on Fig. 5 (right), with only two reac-
tions and 3 parameters.

The Tet-On system [13–15] describes how the production of activated green
fluorescent proteins (GFPa) in a cell can be stimulated by the presence of doxy-
cycline (Dox ) outside the cell. The detailed network is Tet-Ondetailed = 〈I,R〉
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Fig. 5. Reaction graphs of the detailed (left) and simplified (right) Tet-On networks.
Molecules are represented by circles, and reactions by squares. In the kinetic expres-
sions near the reactions, the ki are parameters while xA is a variable representing the
concentration of a molecule A. A dash arrow means that the molecule acts as a mod-
ulator in the reaction, while a dot arrow means that the molecule can be modified by
the context. In the right network, the parameters are V = x0

PTRE3G
V1k4k6/k3(k5 + k6)

and K = k1k−2K1/x
0
rtTAkink2.

Fig. 6. Reactions of the detailed Tet-Ondetailed network.

where every molecule is internal except for Dox (i.e. I = Spec\Dox ), and R is
the set of reactions from Fig. 6, inspired by the Tet-On model from [15].

In the network, the doxycycline Dox moves into the cell and becomes Dox i

by reaction (1). We assume here that the amount of Dox is controlled by the
environment (for instance by a microfluidics device [30]), and therefore the net-
work can not modify its concentration. Then Dox i is either degraded by reaction
(2), or binds to the artificial transcription factor rtTA by reaction (3). The com-
plex rtTADox either dissociates (4), or activates the transcription of the gene
PTRE3G , producing mRNA (5). mRNA either degrades (6) or is translated into
GFP (7). Finally, GFP needs to be activated into GFPa (9) in order to become
fluorescent and thus observable by a microscope. Both GFP and GFPa can also
be degraded (8, 10).

We are particularly interested by GFPa, since it is the only experimentally
observable molecule. Therefore we assume that all other molecules are at equi-
librium, i.e. E = {xX | X ∈ Spec\GFPa}. The simplification follows the axioms
from Figs. 2, 3 and 4, so that will prove that the two networks are contextually
equilibrium-equivalent for E. Note that in the following simplification, for the
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sake of readability, some kinetic expressions were sometimes slightly rewritten
into equivalent expressions.

Let us first remark that the gene PTRE3G is only used as an activator, in
the reaction 5. So we apply the axiom (activator), removing PTRE3G from
this reaction, while replacing xPTRE3G

by x0
PTRE3G

in its kinetic function. Then
rtTADox is an internal molecule at equilibrium, present in three reactions: one
that produces it (3), one that consumes it (4), and one that uses it as an acti-
vator (5). Then we use the axiom (intermediate) on it, followed directly by
(useless), and merge the three reactions into:

rtTA + Dox i→rtTA + Dox i + mRNA ; x0
PTRE3G

V1
xrtTAxDoxi

xrtTAxDoxi + k−2K1/k2
(11)

rtTA is only used as activator, so we apply (activator) and simplify (11) into:

Dox i→Dox i + mRNA ; x0
PTRE3G

V1
xDox i

xDox i
+ k−2K1/x0

rtTAk2
(12)

Apply axiom (cascade)1 on GFP , replacing the reactions (7), (8) and (9) by:

mRNA→mRNA + GFPa ; (k4k6/(k5 + k6))xmRNA (13)

Also, apply (cascade)2 on Dox i, and replace reactions (1), (2), and (12) by:

Dox→Dox + mRNA ; x0
PTRE3G

V1
xDox

xDox + k1k−2K1/(x0
rtTAkink2)

(14)

Finally we use the axiom (intermediate) followed by (useless) on mRNA,
and merge the reactions (6), (13) and (14) into:

Dox→Dox + GFPa ;
x0
PTRE3G

V1k4k6

k3(k5 + k6)
xDox

xDox + k1k−2K1(x0
rtTAkink2)

(15)

Defining two new parameters V = x0
PTRE3G

V1k4k6/(k3(k5 + k6)) and K =
k1k−2K1/(x0

rtTAkink2), we eventually obtain the following reaction network:

Dox→Dox + GFPa ; V
xDox

xDox + K
GFPa→∅ ; kxGFPa

Notice that, aside from the kinetics, the simplified network is equal to the one
we obtained with our qualitative simplification in [20].

7 Conclusion

We presented a new structural simplification of reaction networks, that preserved
the deterministic semantics. The simplification is contextual, and is based on
equilibrium conditions on intermediate molecules. We shown the usefulness of
the simplification by applying it on two biological networks.
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We are currently implementing the simplification algorithm, with a more
complete set of axioms and compatible with the SBML format. This axioms
include variants of the axioms presented here, for instance with different equilib-
rium conditions, but also other types of axioms, using for instance symmetries
in the network. We plan to apply the simplification more systematically to bio-
logical systems. It would also be interesting to compare in depth the power of
our structural simplification rules to that of the King-Altman method on ODE
system [17]. On the theoretical side, as future work, we want to investigate an
approximated equivalence, with approximated equilibrium conditions, and to
compute the maximal error of a simplification. A similar simplification method
with a stochastic semantics will also be considered.

Acknowledgment. The authors would like to thank Michel Petitot for its useful
discussions as well as members of the PalBioSys research network.
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Abstract. Although substantial progress has been made in the automa-
tion of many areas of systems biology, from data processing and model
building to experimentation, comparatively little work has been done
on integrated systems that combine all of these aspects. This paper
presents an active learning system, “Huginn”, that integrates experi-
ment design and model revision in order to automate scientific reasoning
about Metabolic Network Models. We have validated our approach in a
simulated environment using substantial test cases derived from a state-
of-the-art model of yeast metabolism. We demonstrate that Huginn can
not only improve metabolic models, but that it is able to both solve
a wider range of biochemical problems than previous methods, and to
utilise a wider range of experiment types. Also, we show how design of
extended crucial experiments can be automated using Abductive Logic
Programming for the first time.

1 Introduction

Biological systems are extremely complicated. Even the model cellular systems of
Escherichia coli and Saccharomyces cerevisiae consist of thousands of genes, pro-
teins, small molecules, etc., all interacting in complicated spatiotemporal ways.
In addition, as biological systems have evolved through Darwinian evolution,
Ockham’s razor is not as effective as it is in the physical sciences.

Currently, although many computational tools are used to build systems biol-
ogy models, the evaluation and analysis of these models is still mostly done by
humans, who identify conflicting results, suspicious or low-confidence elements
of models, ask specific questions to test the models, and run manual experi-
ments. However, humans can only investigate small parts or aspects of models,
because of their typical size and complexity. This bottleneck could be overcome
by automating model development, i.e. the process of asking specific questions,
running tailored experiments to answer them, and revising models if needed.

Huginn is an open-source software, available at:
github.com/robaki/huginnCMSB2015.
All figures included in this paper are in public domain; files can be downloaded from:
github.com/robaki/huginnCMSB2015.
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1.1 Adam, a Robot Scientist

King et al. [10] created an automated system that investigated the problem of
orphan enzymes in metabolic models of yeast. The system, “Adam”, was able to
propose initial hypothetical models, and then design two-factor growth experi-
ments to test them. The experiments were run using automated laboratory equip-
ment. The data were then analysed to determine which models to refute. Adam,
although successful, has multiple limitations. Its methods of proposing hypothe-
ses were specific to the problem of orphan enzymes. Its experiment design and
hypothesis testing algorithms were limited to only one type of experiment, and
could not be easily extended. It also lacked general revision capabilities. These
limitations make Adam unsuitable candidate for a general-purpose metabolic
model development system.

1.2 Huginn

We have developed Huginn1, to overcome some of the limitations of Adam. In
doing this we have drawn from Machamer’s, Darden’s and Craver’s (MDC) the-
ory of discovering mechanisms. We have adopted MDC concept of mechanism to
represent Metabolic Network Models (MNM) in a way suitable for automated
system. We have also used their characterisation of the final stage of the model
development process as a guide to the design of Huginn. We used Logic Pro-
gramming, and Abductive Logic Programming (ALP) (Gringo [9], Clasp [8] and
XHAIL [15]) to automate model construction and revision, as well as testing
consistency of models with experiments. We have also used them to automate
experiment design in a novel way.

1.3 Metabolic Networks as Biological Mechanisms

A significant amount of research in biology is concerned with development of
models of mechanisms (e.g. of DNA replication). By representing what is hap-
pening in biological systems these models provide a way to predict and explain
their behaviour in a way understandable to humans. Recently the notion of mech-
anisms in biology has attracted the attention of philosophers of science, who have
tried to specify what these mechanisms are, and how they are discovered [2,5,6].

In this study we have adopted the notion of mechanism proposed by
MDC [14]. They characterise mechanisms as collections of entities and activities
organised in such ways that they can produce regular changes from setup to
termination conditions. For example, a model of cellular respiration would show
how cells produce ATP from glucose through a series of chemical reactions and
transport processes.

The core qualitative information about metabolism are the chemical reac-
tions and other processes that can occur in an organism, as well as chemical
substances involved in them. MNM represents these processes in a form of hyper-
graphs. MNMs typically abstract away not only the concentration and dynamics
1 From the Norse mythology – one of two ravens scouting the world for Odin.
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of the system, but also some of the conditions, e.g. certain enzymes are expressed
only under specific conditions. MNMs can be understood as MDC-type descrip-
tions of mechanism. MNM show how certain chemicals are produced from other
chemicals by representing continuous chemical paths from the former to the lat-
ter. Initial and termination conditions are the presence of specific species (e.g.
metabolites) and genes in specific compartments (e.g. cytosol). Activities like
chemical reactions, transport, gene expression and complex formation connect
these conditions through intermediate steps.

2 Methods

2.1 Discovery of Mechanisms

The MDC concept of biological mechanism was developed to better understand
the discovery of mechanisms. Discovery should not be understood here as an
event, but as an extended iterative process of exploration, specification, building,
testing and revision. According to MDC [4,6], the process starts with exploring
and characterising the phenomenon of interest, i.e. one that is to be explained
by description of mechanism. Then, incomplete and often abstract sketches of
mechanisms are formulated, taking into account clues such as the nature of the
phenomenon, its context (e.g. evolutionary), its spatial and time characteristics.
These sketches show how the phenomenon could possibly be produced. Through
specification and initial evaluation sketches are turned into schemata: these still
may be to some extend incomplete or abstract, but contain enough information
to allow production of fully specified models. Then, through further instantiation
(if required) and searching for direct experimental evidence, final descriptions of
mechanisms are produced. The transition between each of these stages involves
construction, evaluation and anomaly resolution (revision), which is guided by
specific strategies.

In this paper we focus on the latter stages of the discovery process, where phe-
nomenon is fully characterised and models of mechanisms are composed entirely
of non-abstract elements, i.e. they are constructed from specific reactions, pro-
teins, metabolites and not from place-holder elements. We implement a number
of strategies proposed by MDC in the design of Huginn, specifically:

– continuity and productivity are taken into account in construction, consistency
testing, and revision

– generation and elimination of rival hypotheses (using crucial experiments)
– searching for direct evidence for hypotheses by in vivo and in vitro experi-

ments:
• entity and activity detection
• characterising entities in vitro (enzymes’ properties and complex forma-

tion)
• disrupting mechanisms, and studying changes (gene deletions and changes

in medium composition).
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The model development process used in Huginn (see Fig. 1) is initialised in a
number of steps. First, initial models and experiment results are recorded. Then
models are checked for consistency with the results, as well as other criteria,
like ability to produce termination conditions (i.e. synthesize final compounds)
and presence of disconnected activities (e.g. reactions which substrates are not
present in the model). Models that failed are revised. If the pool of initial models
is smaller than user-specified threshold, then additional models are produced to
fill that gap and the system is ready to enter its proper development cycle.

The first step in the development cycle is to design an experiment to test cur-
rent working models. Then, the experiment is executed (simulated) and results
used to test working models. Refuted models are then revised. If there is no
way to make a model logically consistent with the results, then one or more of
them will be ignored. This ability to ignore results is important for dealing with
limitations of the Knowledge Representation method, as well as factors such as
experimental noise, and the open world problem. The quality scores of models
are then recalculated based on the number of covered and ignored results.

Huginn stops development process if at least one of three conditions is true.
The first condition is lack of progress. If there were new models produced recently
or if the best (highest quality score) model has recently changed, then develop-
ment continues. The second condition is running out of experiments to execute,
which happens when working models become empirically equivalent. In this case
Huginn tries to redesign models at random, but if it fails 10 times, it stops. The
last condition is running out of time or exceeding maximum number of cycles:
both values are specified by the user.

Fig. 1. Model development process
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2.2 Abductive Logic Programming

The development process relies on four core operations: consistency checking,
revision, production of additional models and experiment design. We use ALP
for these operations. Abductive inference is typically understood as inference to
the best explanation. In ALP abduction is defined as constructing a hypothesis
H, that together with background knowledge B, entails a set of examples E:

B ∪ H |= E

Unlike deduction, abduction is a defeasible form of inference, i.e. given
true background knowledge and examples (observations), it may produce false
hypotheses. However, it has the advantage of being able to produce novel knowl-
edge. ALP tools have been used previously for completion [3,11] and revision
of metabolic networks [16]. Thanks to optimisation capabilities of existing tools
one can generate theories that not only satisfy hard logical constraints, but are
also optimal with respect to user-specified criteria.

2.3 Representing Models Using Logic

MNM can be formalised and translated into datalog-style logic programs. Enti-
ties are defined by their type, identifier and version. Huginn currently supports
four types of entities: metabolite, protein, complex or gene. Versions enable one
to represent uncertainty regarding an entity’s properties. Two currently sup-
ported properties are catalyses and transports.

Huginn supports five types of activities: chemical reaction, complex forma-
tion, expression, transport or growth. Substrate and product predicates are used
for all types of activities, and these specify not only what entities are required
and produced, but also in what compartments. Apart from substrates, chemical
reactions and transport may need catalysts or transporters respectively.

Models are defined by specifying which setup conditions and activities they
contain.

All these facts describe the elements involved in the MNM. In order to deter-
mine which metabolites are synthesizable, simulation rules are added to this
description. A group of rules marks as active activities which all substrates are
either initially present or synthesizable (in appropriate compartment) and which
catalyst/transporter requirements are met. An additional rule marks all prod-
ucts of active reactions as synthesizable.

2.4 Experiment Types and Predictions

Model descriptions need to be supplemented with prediction and consistency
rules to support the use of empirical information. Predictions describe what
outcome models predict w.r.t. description of experiment. Outcome is binary:
true or false. In addition, model can be indifferent w.r.t. experiment (it does
not predict any outcome). Model is inconsistent with a result of experiment
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if outcome of the experiment is different from the predicted one. Prediction
rules determine predicted outcomes of experiments. There are seven types of
experiments currently used in Huginn and each of them has its separate set of
prediction rules:

Entity Detection: detection of metabolites, proteins or complexes.
Entity Localisation: as above, but in a specified compartment.
Activity Detection: used for detecting growth.
Activity Reconstruction: checks if activities can be reconstructed without
enzymes or transporters.
Reconstruction Enzymatic Reaction: checks whether given entity can catal-
yse specific reaction.
Reconstruction Transporter Required: as above, but for transporters.
Two Factor Growth Experiment: used previously to test candidate parent
genes of orphan enzymes [10]. It tests whether decreased growth rate after
gene deletion can be offset by addition of a particular metabolite.

Some types of experiments can include interventions: addition or substraction
of a specific entity from specific compartment. In our study we have restricted
interventions to manipulation of the growth medium (addition/substraction of
nutrients) and gene deletions. The way the interventions are handled differs
depending on the nature of the task (revision, experiment design, etc.).

2.5 Automating Crucial Tasks

As mentioned above, the four essential tasks in the model development cycle
are: consistency check, revision, construction of additional models and experi-
ment design. All of these tasks were automated using Logic Programming (LP)
techniques.

Consistency Check: This step consist of checking whether models are consis-
tent with all known results as well as additional structural criteria. Specifically,
models must synthesize all compounds specified in the termination conditions,
they must not contain any activities that are missing substrates, and they can-
not contain two versions of the same entity (that situation would be equivalent
to having inconsistent beliefs about the entity’s properties).

Revision: The models are revised by supplementing requirements from consis-
tency check with mode declarations that specify what activities can be added
and removed. XHAIL then tries to minimise a number of changes to the model.
In cases where more than one optimal solution is found, one of them is chosen
at random to keep the population of working models at a constant size.

For example, metabolite met 8 was detected in cells with deleted gene g26.
This outcome is in conflict with predictions of model (a) (Fig. 2). In that model
met 8 can be synthesized from input metabolites met 7 and met 11 (marked
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Fig. 2. Revision example: (a) deletion of g26 disrupts reactions r2 (lack of enzyme)
and r15 (lack of substrate: met 0) and thus prevents the model from producing met 8,
contrary to experimental results. Consistency with the results can be restored by adding
two additional reactions (b) which can produce met 8 independently from g26 (Color
figure online).

Fig. 3. Experiment design example: models (a) and (b) rely on gene g26 to produce
met 0 andmet 14, while models (c) and (d) rely on genes g12 and g23 respectively. Thus
experiment consisting in deleting g26 and detecting either met 0 or met 14 will split
these models into two groups: one predicting that the metabolite will be synthesised
despite deletion, the other that it will not be.
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green) in reaction r2, which requires enzyme coded by g26. Alternatively, it
can be synthesised in r15, but that requires some source of substrate met 0.
Since the only source of met 0 is r2, deletion of g26 disrupts both reactions
and met 8 is not produced. Consistency with the experimental result can be
restored by adding reaction(s) that can synthesise met 8 independently from
g26, e.g. reactions r9 and r7 (Fig. 2(b)).

Construction of Additional Models: Additional models are constructed
using almost the same approach as in revision, but with the addition of a
requirement that the resulting models must be different (contain different set
of activities) from any of the working models.

Experiment Design: The idea behind our approach to experiment design is
to design experiment that will split the working models into two groups of equal
size: one predicting that outcome of experiment is true, the other that it is false.
This can be understood as an extension of the concept of crucial experiment.
The same principle was used before as a strategy for choosing experiments from
pre-generated sets [11].

For example, lets consider four models from Fig. 3. The input metabolites are
met 7, met 11 and met 20 (marked green, only shown where relevant), and the
output metabolite is met 14. All models synthesize met 14 in r15, but differ in
ways they produce required substrate for this reaction: met 0. Models (a) and
(b) rely on r2 and gene g26, while models (c) and (d) use r37 (needs gene g12)
and r36 (needs g23) respectively. Therefore, if g26 is deleted models (a) and
(b) will predict that met 14 is not produced, while (c) and (d) will predict that
it is produced. One of plausible experiments for this group of models is then a
detection entity experiment, detecting met 14 and involving one gene deletion
(of g26).

Since some models may be considered to be better and therefore more prob-
ably correct in a subjective sense, we split not raw numbers of models, but
rather their total quality score. Since designing experiment that will split scores
into equal groups is not always possible, this task was implemented as optimisa-
tion problem. The system tries to minimise total penalty, which is calculated as
follows:

P = |0.5 ∗
∑

m

q(m) −
∑

m∈T

q(m)| + |0.5 ∗
∑

m

q(m) −
∑

m∈F

q(m)| +
∑

m∈I

q(m)

where m is model, q(m) is model’s quality, T , F and I are sets of models
that predict that the outcome is true, false or indifferent respectively. Due to the
complicated nature of this task it was implemented using Gringo/Clasp directly,
not through XHAIL.
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Fig. 4. Size of model revisions: each model revision may consist of multiple changes
(additions or substractions of activities). The histograms compare distributions of addi-
tions (a) and substractions (b) with all changes. Note the log scale on y axis.

3 Results and Conclusions

The goal of our study was to evaluate whether the proposed system can be
used in model development. To answer this question we supplied Huginn with
initial models containing errors and run the development process to see whether
the models would be improved. At this initial stage of evaluation the use of
real biochemical experiments is not necessary, and would not be cost effective.
Instead we ran simulations using reference models, which are fragments of the
yeast consensus metabolic model 7.11 [1], between 14 and 54 activities in size.
The knowledge bases containing the activities and entities for model development
were created by mixing elements from a given reference model with additional,
erroneous elements the role of which is to make the development process harder.
The initial models were created by randomly selecting a set of activities from
these knowledge bases.

The improvement of models consisted of removing and adding activities
so that working models resemble the reference model. To quantify the differ-
ence between a model and the reference model we use the symmetric difference
between the sets of activities involved in the models.

The results of our simulations show that Huginn can successfully improve
initial models, with an average reduction in initial error of 76 %. For the smaller
test-cases the working models tended to quickly become empirically equivalent
and attempts to recover from it through generation of randomised models would
fail. For the larger test-cases, Huginn tended to continue development until time-
out. The final unsuccessful attempt to construct new models was not associated
with any quality change2 (p = 0.13). However, since in many cases constructing
random models allowed Huginn to recover and continue development process,
including this ability was beneficial (see Footnote 2) (p = 0.0003).

2 Tested using pair-wise comparison of improvement and then a binomial test.
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One of the significant differences between Adam and Huginn is Huginn’s
ability to use more types of experiments. To test whether this difference is bene-
ficial we ran additional simulations while limiting available experiment types to
only two-factor growth experiments. The results show that using more experi-
ments is associated with larger improvements3 (p = 0.047). The main experiment
types used by Huginn were two-factor growth (48 % of experiments) and entity
detection (51 %). A portion of the latter involved multiple interventions: gene
deletions and medium manipulations (19 %). In the most extreme case an experi-
ment would use 4 gene deletions on top of manipulating the medium composition.
While execution of such experiment in practice would be challenging at best, it
shows that ALP techniques used in Huginn can successfully cope with complex
experiment design problems. The rest of the experiments used in development
were entity localisation experiments.

Another significant difference between Adam and Huginn is in their revision
abilities. Adam can only add individual missing expression activities. While,
thanks to XHAIL, Huginn can handle a wider range of activities, also remove
them, and introduce multiple changes in one revision. Therefore, it should be
able to make more substantial changes to MNM structures. Our simulations
show that it is indeed the case: 50 % of the revisions involved more than one
change (addition/substraction), while the largest involved as many as 28 changes
(Fig. 4). Many of these revisions combined the addition and substraction of activ-
ities (29 %). The majority of revisions (60 %) involved changing elements other
than expression activities. These results show that Huginn takes advantage of
its enhanced revision abilities to introduce larger changes to the models, and is
therefore capable of solving wider range of biochemical problems than Adam –
not only the problem of orphan enzymes, but also other structural problems in
the metabolic networks.

We conclude that Huginn qualitatively improves on Adam by using more
types of experiment, and a more versatile revision method, and that these
improvements translate into an increased ability to correct models. We also con-
clude that the presented experiment design solution can not only design useful
experiments, but also handle complicated tasks that require multiple interven-
tions. More extensive in silico tests are still needed to test Huginn’s performance
in different configurations and under different circumstances. For example, we
have not yet tested Huginn’s ability to handle inconsistencies in results (e.g.
introduced by experimental errors).

4 Related Work

Thagard demonstrated the use of various types of abduction in hypothesis for-
mation using an AI system called PI. [18] Here, we used “simple abduction” to
revise refuted models.

Substantial advancements have been done in the field of computational
discovery. Langley et al. [12] describes BACON, DALTON, GLAUBER, and
3 Tested using paired, one-tailed t-test.
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STAHL – seminal systems designed to model historical discoveries of quantita-
tive and qualitative laws.

Džeroski and Todorovski [7] described QMN and LAGRANGE – systems
for discovering quantitative and qualitative laws governing dynamical systems.
Schmidt and Lipson [17] developed a system for discovering non-trivial conser-
vation laws from experimental data. Todorovski et al. [19] developed HIPM, a
system for developing complex hierarchical models of dynamical systems using
induction, while taking advantage of expert knowledge. Compared to these stud-
ies we have focussed on qualitative aspects of scientific discovery, which can pro-
vide necessary insight into functioning of biological systems in terms of mech-
anistic explanations. However, methods for developing quantitative models are
likely to be useful in further steps of building biological models.

Valdés-Pérez created MECHEM, a system for proposing possible interme-
diate steps of chemical transformations. The system uses information about
chemicals’ composition and structure to constrain the search-space as well as
divide-and-conquer and Ockham’s razor heuristics to make the search more effi-
cient. An interesting feature of the system is its ability to propose new reactants.
[20] Compared to MECHEM, Huginn focuses on developing larger models of
metabolism from pre-defined reactions and on using biological experiments to
gradually constraint the search-space.

Langley [13] summarises the lessons learned from their experience with devel-
oping computational tools for scientific discovery. They advise one to use the
scientists’ representations and their knowledge; tools should not just summarise,
but provide explanations. Our approach follows these lessons. Representation of
metabolism used by Huginn is taken from biochemistry, ensuring that it is easily
understandable by biologists. Huginn records all produced models and results so
checking why particular models were produced is possible.

Acknowledgment. This work is supported by an EPSRC-EU Doctoral Training
Award and the Faculty Engineering and Physical Sciences of the University of
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Abstract. We propose a formal modeling language for reaction net-
works with partial kinetic information. The language has a graphical
syntax reminiscent to Petri nets. The kinetics of reactions need to be
described only partially, so that the language can be used to model the
regulation of metabolic networks. We present a qualitative reasoning
method based on abstract interpretation of the steady state semantics of
reaction networks modeled in our language. In particular, we can predict
changes of influxes that lead to expected changes of outfluxes.

1 Introduction

Models of reaction networks in systems biology often require full kinetic infor-
mation, while only partial information on activators and inhibitors is available
in practice. In order to become applicable nevertheless, the existing model-
based reasoning methods often ignore any kinetic information. Most typically,
this holds for flux balance analysis [10,12] when applied to metabolic networks
[11,15]. The missing information is then compensated heuristically by the adop-
tion of ad hoc optimization criteria. Alternatively, pathway analysis approaches
[12] rely on the structure of reactions networks, but the combinatorial nature
of the problem makes difficult their application to densely interconnected net-
works. To both methods boolean constraints can be added in order to account
for inhibitors that block reactions completely [6]. But blocking inhibitors is
not appropriate in deterministic semantics, where the average over blocked and
unblocked situations is to be considered. The problem therefore is how to model
reaction networks with partial kinetic information and how to reason with such
models.

In this paper, we propose a modeling language for reaction networks with
partial kinetic information. Our language is parameterized by a similarity rela-
tion on kinetic functions, so that the rate laws of chemical reactions need only to
be specified up to similarity. For instance, we could define two kinetic functions
to be similar if they have the same monotonicity behavior. For instance, 2A is
similar to 5A/(7 + A) since whenever A increases then both terms increase, and
whenever A decreases than both terms decrease.
c© Springer International Publishing Switzerland 2015
O. Roux and J. Bourdon (Eds.): CMSB 2015, LNBI 9308, pp. 157–169, 2015.
DOI: 10.1007/978-3-319-23401-4 14
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The models of reaction networks in our language have a graphical syntax
that is reminiscent of Petri nets, and also an equivalent Xml syntax. To any
model a standard steady state semantics can be assigned, which provides the
usual flux balance equations and additional equations with variables for kinetic
functions, that are subject to similarity constraints. The steady state semantics
ensures that inhibitors slow down reactions, while activators speed them up. In
particular, our language can be used to model metabolic networks with complex
regulation such as for B. subtilis in the Subtiwiki [8]. As an example, we present
in Fig. 3 the graphical model of the regulation network of the PIlv-Leu promoter
of B. subtilis, which regulates the metabolism of the branched-chain amino acids
Valine, Leucine, and Isoleucine. Previous models of these metabolic networks as
in the Subtiwiki were not given any formal semantics, so that they could not be
used for directly for qualitative prediction algorithms.

We then show how to lift the abstract interpretation method from [5] for qual-
itative reasoning [3] to models of reaction networks in our language. The main
technical contribution is to overcome the previous limitation to mass action laws
with unknown parameters. By applying abstract interpretation to the steady
state semantics, we can abstract away the variables for kinetic functions, and
discretize the available partial kinetic information. This yields so called differ-
ence constraints [5], which are finite domain constraints that can be solved by
finite-domain constraint programming.

As an application of our qualitative reasoning method, we show how to pre-
dict changes of influxes when given the expected changes of the outfluxes. This
can be done based on the difference constraints obtained from abstract inter-
pretation, either by constraint simplification, by rules that we present in this
paper, or else by constraint solving based on the solver from [5]. In particular,
constraint simplification can be used for the PIlv-Leu network to predict that
any increase of leucine outflux is due to a decrease of either the CodY influx
or TnrA influx. For this simple example, a similar reasoning can be done by
humans based on the graphical model. This illustrates that our algorithm for-
malizes a natural kind of qualitative reasoning. In a follow up work [2], the same
method is extended to the prediction of gene knockouts leading to the overpro-
duction of some target metabolites [13]. The arguments used there are by far
too complicated to be performed manually without any computational support
for qualitative reasoning.

2 Reaction Networks

We define reaction networks with complete kinetic information, and show how
to compute their steady state semantics. This is basically standard, except for
the treatment of inflows and outflows of reaction networks, by which we can
model the interaction of the reaction network with its context. In this way, any
reaction network can be considered as “module” of a larger biological system, or
as part of a chemical experiment that interacts with the network.

Let R+ be the set of non-negative real numbers, S a finite set of species,
and ≺ an arbitrary total order on S. A kinetic function of arity k ≥ 0 is a
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function of type κ : R
k
+ → R+. Kinetic functions will be used to define the

rate laws of chemical reactions. A chemical reaction r is a tuple of the form:
s1, . . . , sk

κ−→ sk+1, . . . , sl where 0 ≤ k ≤ l, s1, . . . , sl ∈ S, and κ : Rk
+ → R+ is a

kinetic function. Any reaction has a tuple of reactants s1, . . . , sk and a tuple of
products sk+1, . . . , sl. In order to account for the stoichiometry of a reaction, we
write rctr(s) for number of occurrences of s in the tuple of reactants of r, and
prdr(s) for number of occurrences of s in the tuple of products of r. A modifier of
a reaction is a species s with rctr(s) = 1 = prdr(s). Whether a modifier behaves
as an activator or as an inhibitor depends on the choice of the rate law κ.

Definition 1. A reaction network over a species set S is a triple N =
(S,R, I,O) where R is a finite set of chemical reactions over S, a set of inflow
species I ⊆ S, and an outflow function O : S → R+.

A reaction network defines the evolution of a chemical solution in a context.
Each inflow species s ∈ I specifies an inflow that adds s to the chemical solution,
and is controlled by the context. An outflow species is an element s ∈ S with
O(s) �= 0; for any outflow species there is outflow into the context that consumes
s from the chemical solution. The outflow kinetics for s follows the mass-action
law with constant O(s). Note that any species may have an inflow and an outflow
at the same time.

Under the assumption of deterministic network behavior, for any initial chem-
ical solution a unique limit will be reached that is called a steady state. Since
we do not fix any initial chemical solution, many steady states may exist for the
same reaction network. The rates of all inflows and outflows are also assumed
to be constant in any steady state, as well as the rates of all reactions and the
concentrations of all species of the network.

Fig. 1. Steady state equations of a reaction network N = (S, R, I, O).

The steady state semantics of a reaction network is given by a system of
arithmetic equations. These use the following variables taking values in R+. For
any species s ∈ S, there is a variable zs that denotes the concentration of s in a
steady state, a variable xs that denotes the rate of the inflow, which also called
the influx, and a variable ys that stands for the rate of the outflow, which also
called the outflux. For any reaction r ∈ R, variable vr stands for the rate of
reaction r in a steady state.
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The steady state equations are inferred from the network by the inference
rules in Fig. 1 which are mainly standard. Each inference rule can be seen as an
implication, whose condition is written above the line and whose conclusions is
written below the line. Rules (inflow) states that the influx for any non-inflow
species s �∈ I is zero. Rule (outflow) requires for any species s ∈ S that its
outflux is equal to O(s) · zs according to the mass-action law. The production
rate ps of a species s is defined by rule (prod) and its consumption rate cs by
rules (cons). Rule (rate) provides the rate of reaction r by applying its kinetic
function to the concentrations of all its reactants. The (steady state) states
that consumption and production rates are balanced for all species.

Definition 2. Any reaction network N with n inflow and m outflow species
defines a exchange relation RN ⊆ R

n
+ × R

m
+ , determined by the solutions of the

steady state equations for N , when projected to the n-tuple of variables xs for
the inflow species s of N and the m-tuple of variables ys′ for the outflow species
s′ of N . The order of both tuples is given by the order ≺ on S.

3 Modeling Language

We now present a modeling language for reaction networks with partial kinetic
information. As first parameter of our language, we assume a similarity relation
∼ on kinetic functions. Rather than specifying rate laws of chemical reactions by
kinetic functions, we will describe them only up to similarity: a rate law belongs
to ∼κ if it is similar to the kinetic function κ.

∼κ′

Fig. 2. An enriched reaction with a partially known rate law ∼κ′. It has substrate S,
inhibitor I, accelerator A′, activator A, and one product P beside of the modifiers I,
A, and A′.

Enriched chemical reactions will be used to describe the chemical reactions
of a reaction network. An example is given in Fig. 2. The graph there represents
an enriched chemical reaction r with substrate S, activator A, an accelerator A′,
and inhibitor I and a product P . Please note that the same species may play
different roles even in the same reaction, and several times. Both, activators and
accelerators speed up a reaction. Activators are like enzymes. The difference is
that all activators of a reaction must be present for its application, while the
accelerators need not to be there.

For graphical representation, we use conventions similarly to Petri nets.
Species are represented by rounded nodes containing the name s of the
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species, and enriched reactions are graphically represented by boxed nodes
containing the name r of the reaction. More generally, enriched chemical reac-
tions have different kinds of reactants, that are fixed by a finite set of roles Rol,
which is the second parameter of our language. In our example, there will be
substrates – that are consumed – and three kinds of modifiers: inhibitors, acti-
vators, and accelerators, so we set Rol = {inh, subs, act, acc}. For our graphical
syntax, we assign to each role an edge type, for edges pointing from the reactant
to the reaction. We will use for subs, for inh, for act , and

for acc. The products of a reaction – beside of the above modifiers – will
be linked by arrows pointing from the reaction to the product.

Reactant roles serve to order the arguments of the rate law of a enriched
chemical reaction. Such a rate law is given by an enriched kinetic function:

κ′ : (Rol × R+)k → R+

We assume that any enriched kinetic function is well-behaved, in that any permu-
tation of arguments with the same role does not change its value. When fixing
the order of the arguments, any enriched kinetic function κ′ can be replaced
by a standard kinetic function κ, for instance such that κ(zS , zI , zA′ , zA) =
κ′(subs:zS , inh:zI , act:zA′ , acc:zA). An enriched chemical reaction can then be
replaced by a chemical reaction, in which the kinetic function is replaced by a
variable. With the same ordering as for obtaining κ from κ′, we obtain for the
example from Fig. 2:

S, I,A′, A ∼κ−−→ P, I,A′, A

Here, ∼κ stands for a fresh variable for a standard kinetic function that is sim-
ilar to κ. A model in our language is a tuple (S,R, I,O) where R is a set of
enriched reactions and I,O ⊆ S. Note that we do not require to specify rate
constants for outflows. Graphically, inflow species in I and outflow species in O
are indicated respectively by ingoing and outgoing arrows . An example
model in graphical syntax is given in Fig. 3.

For any model in our language, we can generate a reaction network with vari-
ables for kinetic functions that are subject to similarity constraints. Therefore,
we can define the steady state equations of any model in the language as before,
except that kinetic functions will be represented by variables, as well as rate
constants of outflows. An example is worked out in the next section.

Besides the graphical syntax, our language supports an Xml syntax, which
serves for writing the models, so that the graphs can be generated. We imple-
mented tools for doing this in Xslt. These tools can also compute the steady
state equations, and perform abstract interpretation.

4 Example: Regulation of Metabolism of B. subtilis

As an example, we model the leucine biosynthesis pathway of B. subtilis in our
language. This is one of the complex regulation mechanisms of the metabolism of
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Leu

CcpA

CodY

TnrA

BSCodY

PIlv−Leu

BSTnrA

r4
∼exp

r4′
∼ma

r5
∼exp

r5′
∼ma

r6
∼exp

r6′
∼ma

r7
∼exp

r7′
∼ma

r8
∼ma

r9
∼ma

r10
∼ma

Fig. 3. Reaction network of the regulation of promoter PIlv-Leu in B. subtilis (Color
figure online).

B. subtilis, for which informal models are given in the Subtiwiki [8]. The precise
similarity relation of the model will be defined in Sect. 5.

The resulting model in graphical syntax is given in Fig. 3. For clearer visual-
ization, nodes have different colors depending on the type of the species: in this

paper we will use proteins , metabolites and promoters or binding sites

. The variable zB stands for the activity of the promoter or binding site B,
while zP and zM stand for the concentrations of P and M .

We consider an acceleration function with Acc(d) = 1 + d and an inhibition
function with Inh(d) = 1/Acc(d). We define the enriched kinetic functions exp
such that for all tuples t = (r1 : d1, . . . , rk : dk) ∈ (Rol × R+)k:

exp(t) =
∏

ri∈{subs,act} di · ∏
rj=acc Acc(dj) · Inh(

∑
rl=inh dl)

Note that the order of arguments with the same role is not important, so that
function exp is well-behaved. When a reaction has the exp kinetics, then its
inhibitors slow down the reaction but do not block it. Accelerators and activators
both speed up the reaction. Furthermore, if one of the activators is missing
then the reaction is blocked. One might want to generalize exp with parameters
defining the strenght of respective accelerations and inhibitions. We do not do
so, since these parameters are typically unknown, and since all such generalized
expression kinetics will turn out to be similar. Generally, we are only interested
in ∼exp, so similar definitions would to the job as well. The enriched mass-action
kinetics is the special case ma(t) = exp(t) for all t ∈ ({subs} × R+)∗.

Leucine biosynthesis is realized by enzymes which are coded by the genes of
the ilv-leu operon. This operon is under the regulation of the promoter PIlv–
Leu. For simplicity, we group the whole reaction network leading to the leucine
biosynthesis into reaction r8. The activation of PIlv–Leu is done by reaction
r5, under regulation by TnrA, CcpA, and CodY. Proteins TnrA and CodY are
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influx species added by the context and degraded by reactions r10 and r9 respec-
tively. Protein CcpA is expressed by reaction r6 and degraded by reaction r6′ .
Transcription at the ilv-leu promoter is well known to be inhibited by CodY
through a binding of this latter on the promoter [7,9,14,16,17]. To model this
action of CodY on the promoter PIlv–Leu, we introduce the reaction r4 which
activates the binding side BSCodY of CodY at the promoter, which in turn slows
down reaction r5 and thus reduces the promoter’s activity. The binding of CodY
to the promoter’s binding site BSCodY can be prohibited when CcpA is bound
to the promoter. Therefore the presence of CcpA slows down reaction r4 [1,16]
but it does not block it on average in a steady state. The promoter PIlv–Leu
is also down-regulated by Leu in terms of a T-box [1,4], which is captured by
the negative control of the reaction r5 by Leu. Protein TnrA forms a further
inhibitor whose impact on the PIlv–Leu promoter is represented by the bind-
ing side BSTnrA through the reaction r7. Protein CcpA is also independently
up-regulating the ilv-leu operon transcription, and thus activating reaction r5.

(Leu) vr8 = yLeu

(CcpA) vr6 = vr6′
(CodY) xCodY = vr9
(TnrA) xTnrA = vr10
(BSCodY) vr4 = vr4′
(PIlv−Leu) vr5 = vr5′ + vr8
(BSTnrA) vr7 = vr7′

yLeu = ma(8)( :zLeu)

vr4 = exp(1)( :zCcpA, :zCodY)

vr4′ = ma(1)( :zBSCodY )

vr5 = exp(2)( :zBSCodY , :zCcpA,
:zLeu, :zBSTnrA)

vr5′ = ma(2)( :zPIlv−Leu)

vr6 = exp(3)()

vr6′ = ma(3)( :zCcpA)

vr7 = exp(4)( :zTnrA)

vr7′ = ma(4)( :zBSTnrA)

vr8 = ma(5)( :zPIlv−Leu)

vr9 = ma(6)( :zCodY)

vr10 = ma(7)( :zTnrA)

Fig. 4. Steady state equations for the PIlv–Leu network.

From the model, the steady state equations in Fig. 4 were inferred. These
contain variables exp(i) for enriched kinetic functions similar to exp, and variables
ma(i) for enriched kinetic functions similar to the mass-action law ma for any
i. The equations can be simplified by replacing local variables by equal terms,
yielding the equations in Fig. 5.

vr5 = vr5′ + yLeu

yLeu = ma(8)( :zLeu)

vr4 = exp(1)( :zCcpA, :zCodY)

vr4 = ma(1)(zBSCodY )

vr5 = exp(2)( :zBSCodY , :zCcpA,
:zLeu, :zBSTnrA)

vr5′ = ma(2)( :zPIlv−Leu)

vr6 = exp(3)()

vr6 = ma(3)( :zCcpA)

vr7 = exp(4)( :zTnrA)

vr7 = ma(4)( :zBSTnrA)

yLeu = ma(5)( :zPIlv−Leu)

xCodY = ma(6)( :zCodY)

xTnrA = ma(7)( :zTnrA)

Fig. 5. Simplified steady state equations for the PIlv–Leu network.

In order to illustrate the qualitative reasoning methods that we will develop,
we consider the overproduction problem of Leu for the PIlv–Leu network. The
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question is which changes of the influxes may lead to an increase of the Leu
outflux? Informally, the problem can be solved as follows. Leu is produced only
from PIlv–Leu, which is solely produced by reaction r5, so the speed of r5 must
be increased. This can be done by either decreasing one of its three inhibitors
Leu, BSCodY, or BSTnrA, or by increasing its accelerator CcpA. But CcpA is not
connected to any inflow, so it cannot be increased by changing the influxes. And
inhibitor Leu cannot be decreased, when we want to increase its outflux. Hence,
either BSCodY or BSTnrA must be decreased. This is possible only by decreasing
the influxes of CodY or TnrA.

5 Similarity by Difference Abstraction

We now recall the similarity relation ∼ on kinetic functions from [5], which is
obtained by abstracting from changes between real numbers.

We are interested in changes of the network raised for example by mod-
ification of inflows or outflows. A change of a concentration or a flow rate
from one steady state to another is given by a pair of positive real num-
bers. We now want to abstract the space of all changes in R+ × R+ into a
finite set of difference relations. For this, we partition the set R+ × R+ into a
finite collection of subsets Δ ⊆ 2R+×R+ , so that we can abstract any change
in R+ × R+ into a difference relation of Δ. In the examples that follow, we
will use the partition Δ = {<,>,

.=} where the symbols represent “increase”
< = {(x, y) ∈ R

2
+ | x < y}, “decrease” > = {(x, y) ∈ R

2
+ | x > y} and “no

change” .== {(x, x) | x ∈ R+}.
In general, we assume a relation R ⊆ R

p
+, that may be either a kinetic

function κ of arity p − 1 or the relation RN of a reaction network with p in- and
outflows. We define the set of Δ-differences of the p-ary relation R as follows:

RΔ = {(δ1, . . . , δp) ∈ Δp | ∀i. (di, d
′
i) ∈ δi, (d1, ..., dp) ∈ R, (d′

1, ..., d
′
p) ∈ R}

δ1 δ2 δ3
< < <
< > <,

.=, >
<

.= <
> < <,

.=, >
> > >
>

.= >

So for instance, consider the exchange relation RN for some reaction network N .
Its difference abstraction RN

Δ then expresses how the tuples in RN may change
when moving from one steady state of N to another.

Definition 3. Two kinetic functions κ1, κ2 : (R+)p−1 → R+ are similar, writ-
ten κ1 ∼ κ2, iff κΔ

1 = κΔ
2 .

Example 1. Let mak(subs:d1, subs:d2) = k · d1 · d2 be
the mass action law with constant k. As usual, we iden-
tify binary functions with ternary relations. The differ-
ences abstraction mak

Δ is then equal for all choices of
parameter k; it contains all triples of difference relations
(δ1, δ2, δ3) ∈ Δ3 given in the table on the right.
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Example 2. We consider an enhanced Michaelis-Menten law with an additional
activator: mmk1,k2(subs:d1, act:d2) = d2

k1 · d1
k2+d1

. Again, it can be shown that the

abstraction (mmk1,k2)
Δ is independent of the choice of k1, k2 ∈ R+. Indeed, it is

equal to mak
Δ for all parameters k, i.e.: mass-action and the enhanced Michaelis-

Menten kinetics are similar with respect to Δ-abstraction, where Δ = {<,>,
.=}.

Of course, there exist more precise difference sets Δ for which the two families
of kinetics can be distinguished.

It should be noticed that RΔ is always a finite relation, since Δ is chosen to
be finite. The relation R in contrast, may contain infinitely many tuples. As a
consequence, infinitely much information may be abstracted away, in particular
the details about the parameters of kinetic functions. This is why the relations
mak

Δ and (mmk1,k2)
Δ in the above examples could be computed independently

of the parameters. The information that is preserved, however, is still able to
distinguish inhibitors and activators.

6 Abstract Interpretation to Difference Constraints

We next show how to interpret steady state equations abstractly as difference
constraints, which will then be used for qualitative reasoning about reaction
networks in our language in the next section.

The idea is to lift the difference abstraction .Δ from relations over R+ to
relations over Δ to the level of constraints defining such relations. For instance,
the arithmetic equation xA = mak(zA, zB) can be abstracted to a difference
constraint that defines the relation mak

Δ. We write this difference constraint as
xA ∈ mak(zA, zB), since now the variables are interpreted by values of Δ and
mak is interpreted as the set valued function mak

Δ. It should be noticed that
the relation mak

Δ is finite and independent of the unknown parameter k, i.e.,
the unknown parameter has been abstracted away successfully.

Arithmetic constraints were used to define the steady state semantics of reac-
tion networks. These are built from a totally ordered set of variables including
those from the steady state equations. More formally, an arithmetic constraint
is a conjunctive logic formula with existential quantifiers with the following
abstract syntax:

φ :: = x=κ(i)(x1, . . . , xk) | x = x1 + x2 | x1 = x2 | φ ∧ φ′ | ∃x.φ

where i ∈ N, κ : Rk
+ → R+, and all x’es are variables. The expression κ(i) is a

variable for a kinetic function that is similar to κ, i.e., an implicitly existentially
quantified variable that is subject to the similarity constraint κ(i) ∼ κ.

A solution of an arithmetic constraint φ with n variables can be identified
with a tuple in R

n
+ since we assumed a total order on the variables. The solution

set sol(φ) of a formula φ satisfies sol(φ) ⊆ R
n
+. For a reaction network N , the

steady state equations are an arithmetic constraint φN such that sol(φN ) = RN .
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A difference constraint is a conjunctive logic formula with existential quan-
tifiers with the following abstract syntax, where x’es are variables and δ ∈ Δ:

difference relation t :: = x | δ
set of difference relations s :: = {t1, . . . , tn} | s + s′ | s · s′

| Inh(s) | Acc(s) | κ(s1, . . . , sk)
difference constraints ψ :: = t ∈ s | t=t′ | ψ ∧ ψ′ | ∃x.ψ

In contrast to before, all arithmetic operations now return sets of values in differ-
ence constraints. Difference constraints are interpreted over Δ, so that variables
x are assigned to elements of Δ (rather than elements of R+). Arithmetic func-
tions such as + are interpreted as set-valued functions on Δ such as +Δ, and
similarly a kinetic function κ is interpreted as the set valued function κΔ.

Since variables are totally ordered, a solution of a difference constraint can
be identified with a tuple in Δn, so that the solution set sol(ψ) of any difference
constraint ψ satisfied sol(ψ) ⊆ Δn.

We can now abstract from arithmetic constraints by interpreting them as
difference constraints:

�x=κ(i)(x1, . . . , xk)� = x ∈ κ(x1, . . . , xk)
�x = x1 + x2� = x ∈ x1 + x2 �x1=x2� = (x1=x2)
�φ ∧ φ′� = �φ� ∧ �φ′� �∃x.φ� = ∃x.�φ�

An important point here is that the variables κ(i) for the partially known kinetic
functions are replaced by well-known kinetic functions κ. For instance, we can
abstract x = ma(i)(subs:x1) to x = x1, x = ma(i)(subs:x1, subs:x2) to x ∈ x1 ·x2,
x = exp(i)() to x = .=, and x = exp(i)(subs:x1, inh:x2, inh:x3) to x ∈ x1 · Inh(x2 +
x3). This way, the simplified steady state equations for the PIlv–Leu network
are abstracted to the difference constraints in Fig. 6.

Theorem 1 (Soundness of Abstract Interpretation). sol(φ)Δ ⊆ sol(�φ�).

This theorem shows for any reaction network N that the solution set of the
abstract interpretation �φN � is a correct over-approximation of the abstraction
of the exchange relation RN

Δ:

Corollary 1. (RN )Δ ⊆ sol(�φN �).

Proof. This follows immediately from Theorem 1, since RN = sol(φN ) by con-
struction of φN .

vr5 ∈ vr5′ + yLeu

yLeu = zLeu

vr4 ∈ zCodY · (zCcpA)
vr4 = zBSCodY

vr5 ∈ zCcpA · (zBSCodY + zLeu + zBSTnrA)

vr5′ = zPIlv−Leu

vr6 =
.
=

vr6 = zCcpA

vr7 = zTnrA

vr7 = zBSTnrA

yLeu = zPIlv−Leu

xCodY = zCodY

xTnrA = zTnrA

Fig. 6. Difference constraints for the PIlv-Leu network.
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7 Qualitative Reasoning with Difference Constraints

Since difference constraints have finite domains, we can compute all solutions
of difference constraints by using finite domain constraint programming. Or else
we can use constraint simplification for qualitative reasoning.

For instance, we can reconsider the question, which changes of the influxes
of the PIlv–Leu network may increase the outflux of Leu. To find the answers,
we can ask for the top-n solutions of the difference constraint yLeu = < in
conjunction with difference constraint inferred for the PIlv–Leu network in Fig. 6.
These solutions can be computed by the solver for difference constraints from
[5], but extended with functions Inh and Acc in difference constraints.

xCodY xTnrA yLeu
1. >

.= <
2.

.= > <
3. > > <
4. > < <
5. < > <

There are only 5 solutions for this difference con-
straint after projection to in- and outflux variables.
These solutions are given to the right. The top-2 solu-
tions with the fewest changes (1. and 2.) show that one
can either decrease the influx of CodY or TnrA. The
next three solutions show that one more change does
not change the matter.

Since the PIlv–Leu network is quite simple, one can obtain the same predictions
based on constraint simplification. The simplification of the difference constraints
in Fig. 6 based on the rewrite rules in Fig. 7 yields:

yLeu ∈ Inh(xCodY + xTnrA) .

When assuming yLeu = < in addition we can simplify the constraint further
to: < ∈ Inh(xCodY + xTnrA) which is equivalent to xCodY = > ∨ xTnrA = >.
This can be satisfied by decreasing the influx of either CodY or TnrA. Thus,
we obtain the same result as before.

In Fig. 7 we present simplification rules for difference constraints over the
specific domain Δ = {<,>,

.=}. Rule (bv) replaces equal by equal while elimi-
nating existentially bound variables (all variables zA and vri

are implicitly exis-
tentially quantified). The simplification rules (noi) remove the nochange value
.=. The third rule (si) simplifies membership in singletons to equality. Rule (ip)
expresses the idempotence of addition.

1 (
.
=) ⇒ .

= 3 t · .
= ⇒ t x + x ⇒ x

2 (
.
=) ⇒ .

= 4
.
= · t ⇒ t t ∈ t′ ⇒ t = t′

∃x. (x = t ∧ ψ) ⇒ ψ[t/x] t ∈ (t + s) ⇒ t ∈ (s)

Fig. 7. Simplification rules.

8 Conclusion

We have presented a formal modeling language for chemical reaction networks
with partial kinetic information, and shown how to abstract away from the
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unknowns thanks abstract interpretation. We have illustrated that this allows
us to reason qualitatively about such networks at the example of influx-change
prediction. The same reasoning techniques are lifted to predict gene knockout
strategies in follow-up work [2]. An important question for future work is how
to develop finer abstractions for quantitative predictions.
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Abstract. Boolean networks (and more general logic models) are use-
ful frameworks to study signal transduction across multiple pathways.
Logical models can be learned from a prior knowledge network struc-
ture and multiplex phosphoproteomics data. However, most efficient and
scalable training methods focus on the comparison of two time-points
and assume that the system has reached an early steady state. In this
paper, we generalize such a learning procedure to take into account the
time series traces of phosphoproteomics data in order to discriminate
Boolean networks according to their transient dynamics. To that goal,
we exhibit a necessary condition that must be satisfied by a Boolean
network dynamics to be consistent with a discretized time series trace.
Based on this condition, we use a declarative programming approach
(Answer Set Programming) to compute an over-approximation of the
set of Boolean networks which fit best with experimental data. Com-
bined with model-checking approaches, we end up with a global learning
algorithm and compare it to learning approaches based on static data.

1 Introduction

Generic prior knowledge about canonical cell signaling networks can be retrieved
from database sources. They provide a first insight on how cells respond to
their environment by triggering processes such as growth, survival, apoptosis
(cell death), and migration. However, little is known about the exact chaining
and composition of signaling events within these networks in specific cells and
specific conditions, as provided by the simulations of predictive mathematical
models (e.g. a set of differential equations or a set of logic rules). When building
predictive models, the parameters of a model (built accordingly to generic prior
knowledge) can be fitted to the data to obtain the most plausible model for
a specific cell type, if enough experimental data is available. This is normally
achieved by defining an objective fitness function to be optimized. In this context,
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post-translational modifications, notably protein phosphorylation, play a key
role in signaling. They are very useful for the training of model parameters
through the use of multiplex phosphorylation assays, a recent form of high-
throughput data providing information about protein-activity modifications in
a specific cell type upon various perturbations (clamping) [1].

Boolean logical networks [12] provide a simple yet powerful qualitative frame-
work which has become very popular during the last decade to model signaling
or regulatory networks [16]. In contrast to quantitative methods which permit
fine-grained kinetic analysis, qualitative approaches allow for addressing large-
scale biological networks. In this context, the manual identification of logic rules
underlying the system has been addressed under different hypotheses and meth-
ods [4]. Although, scalable methods restrain themselves to learning models from
two time points (start; end), assuming the system has reached an early steady-
state when the measurements are performed. As shown in [14], this assumption
prevents capturing important characteristics of signaling networks such as loops.

The goal of this paper is to introduce a new method to infer Boolean net-
works (BNs) from time series datasets which scales to the size of currently stud-
ied BNs. Given multiplex time series data from the measurement of a partial set
of biological entities under different experimental conditions, we want to iden-
tify all the BNs that have a structure compatible with a given prior knowledge
interaction graph and that can reproduce all the (experimentally) observed time
series. Time series data are assumed incomplete, i.e., only a subset of network
components are observed, with measurements made at discrete time points and
with normalized continuous values. It is possible that no BN, constrained by the
prior interaction graph, reproduces all the input time series. In such a case we
introduce a fitness function to measure the distance between a trace of a BN
simulation and a measured time series. Therefore, we aim to infer the BNs whose
dynamics contains traces with the best fitness to all measurements.

Our approach relies on the combination of several techniques. First, we intro-
duce a necessary condition for a discretized time series data to be the trace of a
BN. This provides an over-approximation of the successive reachability proper-
ties, leading to reject BNs that cannot reproduce the time series without a costly
exhaustive analysis of the dynamics. Then, we use efficient declarative program-
ming approaches (Answer Set Programming; ASP) to enumerate BNs which
approximate the best experimental data while satisfying the necessary condition
on the dynamics. At the end, we obtain a set of BNs associated with traces which
both satisfy the necessary condition and optimally fit with experimental data.
Because of the reachability over-approximation, part of the returned BNs cannot
reproduce the associated Boolean traces. Such false positives can be detected a
posteriori using a model-checking approach on the returned results.

We evaluated our inference method on synthetic data generated from BNs
between 13 and 17 nodes. On those BNs, six nodes have been selected as observ-
able, and several experimental conditions have been simulated. Our prototype
implementation has been able to identify efficiently all BNs satisfying the neces-
sary condition with a very low rate of false positives. Finally, we estimated the
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added-value of models identified with our method on the full time series with
models learned from two time points, considered as a steady state.

2 Boolean Network Identification

2.1 Admissible Boolean Networks and Multiplex Time Series Data

Boolean Networks (BNs). A BN with n components {1, . . . , n} consists of a tuple
of n functions F = (f1, . . . , fn) where each function fi : B

n → B, B
Δ= {0, 1},

i ∈ {1, . . . , n}, associates to each global state x ∈ B
n of the network with the next

value of the i-th component. The value of the i-th component in x is noted xi.
The transitions between global states of the network are specified with a reflexive
transition relation → ⊆ B

n × B
n. The transitive closure of → is denoted by →∗.

Given x, x′ ∈ B
n, x →∗ x′ if and only if, either x = x′, or x → · · · → x′.

Concrete Semantics for the Transition Relation. Several definitions of the tran-
sition relation → can be used depending on the update schedule of the compo-
nents [2], ranging from so-called parallel (or synchronous) updates where each
transition updates the value of all the components, to the asynchronous update
where each transition updates the value of only one component chosen non-
deterministically. As the over-approximation results presented in this article are
independent from the update schedule, we use the general definition, where any
number of components can be updated during a transition: for any x, x′ ∈ B

n,

x → x′ Δ⇔ ∀i ∈ {1, . . . , n}, x′
i �= xi ⇒ x′

i = fi(x). (1)

Prior Knowledge Network and Admissible BNs. An interaction graph between
n components is a digraph between nodes {1, . . . , n} where each edge is signed,
i.e., either positive or negative. The interaction graph of a BN F , noted IG(F ),
has a positive (resp. negative) edge from node j to node i if and only if there
exists x, x′ ∈ B

n which are identical except on the j-th coordinate where xj = 0
and x′

j = 1 and such that fi(x) < fi(x′) (resp. fi(x) > fi(x′)).
In the rest of the paper, the Prior Knowledge Network (PKN) is an interac-

tion graph which delimits the set of admissible BNs: a BN F is admissible with
respect to a PKN G if and only if IG(F ) is a sub-graph of G and IG(F ) has at
one most (signed) edge between two nodes.

Multiplex Time Series Data. We consider classical biology experimental set-
tings where the activity of a subset of biological species is observed over time,
at discrete time points, in different experimental conditions, ranging over var-
ious input signals and clamping operations. Clampings consist of a subset A
of components with a forced activation, and a subset I of components with a
forced inhibition. Given a BN F = (f1, . . . , fn), the corresponding clamped BN
F[A,I] = (f ′

1, . . . , f
′
n) is defined for all i ∈ {1, . . . , n} as:

f ′
i

Δ=

⎧
⎪⎨

⎪⎩

x 	→ 1 if i ∈ A

x 	→ 0 if i ∈ I

fi otherwise.
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Without loss of generality, we assume that the time series data relate to the
observation of m ≤ n nodes that match the nodes {1, . . . , m} of the BN (so the
nodes {m + 1, . . . , n} are not observed). The observations consist of normalized
continuous values: a time series of k data points is denoted by T = (t1, . . . , tk),
with ∀j ∈ {1, . . . , k}, tj ∈ [0; 1]m.

Hereafter, we consider a simple binarization of observations using a 0.5
threshold: given a continuous observation tji ∈ [0; 1] of a component, its Boolean

value is noted η(tji ) where η(tji )
Δ= 1 when tji ≥ 0.5, and η(tji )

Δ= 0 oth-
erwise. The distance between a binary sequence X = (x1, . . . , xk), where
∀i ∈ {1, . . . , k}, xi ∈ B

m, and a time series T is evaluated with the standard
Mean Squared Error :

mse(X,T ) Δ=
√∑k

j=1

∑m
i=1 (xj

i − tji )
2
.

2.2 Over-Approximation of Boolean Network Verification

Given a BN F and a pair of states x, y ∈ B
n, checking the reachability of y

from x (x →∗ y) is a standard model-checking task, known to have a limited
scalability due to its theoretical complexity (NP-complete [11]). In this section,
we introduce a so-called meta-state semantics (⇒) for BNs. From such seman-
tics, we express a necessary condition for reachability in the concrete semantics
(→), referred to as support consistency (�∗). Meta-state semantics offers prop-
erties (notably monotonicity) that make support consistency efficient to verify,
in particular with ASP. However, support consistency is not a sufficient condi-
tion for reachability, so this approach may lead to false positives but guarantees
the absence of false negatives. Therefore, we will apply exact model-checking
approaches on the inferred BNs in order to rule out false positives. Thanks to
the over-approximation criteria, one can expect that the set of BNs satisfying
the necessary condition is small compared to the full domain of BNs delimited
by the PKN, leading to a global gain in terms of performance.

Meta-state Semantics. A meta-state u of dimension n is a vector of n non-empty
subsets of B, noted M

Δ= {{0}, {1}, {0, 1}}; the set of meta-states is M
n. In the

following, meta-states characterize a set of Boolean states: a state x ∈ B
n belongs

to a meta-state u ∈ M
n, noted x ∈ u, iff each Boolean component xi belongs to

the set ui, i.e., ∀i ∈ {1, . . . , n}, xi ∈ ui. Given a state x ∈ B
n, x is the meta-state

such that ∀i ∈ {1, . . . , n}, xi = {xi}. In the scope of a BN F = (f1, . . . , fn),
we define a reflexive transition relation between meta-states ⇒ ⊆ M

n × M
n as

follows: from a meta-state u, there is one transition for each i ∈ {1, . . . , n} which
adds to ui all the possible values of the function fi applied to every x ∈ u:

u ⇒ v
Δ⇔ ∃i ∈ {1, . . . , n}, v = 〈u1, . . . , ui ∪ {fi(x) | x ∈ u}, . . . un〉. (2)

Several properties arise from this definition, in particular u ⇒ v implies that
∀i ∈ {1, . . . , n}, ui ⊆ vi; therefore x ∈ u ⇒ x ∈ v (monotonicity). Moreover,
ui �= vi if and only if vi = {0, 1} and ∃x ∈ u such that fi(x) /∈ ui.
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Lemma 1 establishes the consistency of the meta-semantics (⇒) with the concrete
semantics (→): given x, y ∈ B

n, x → y requires that there exists a meta-state u
such that y ∈ u and x ⇒∗ u, where ⇒∗ is the transitive closure of ⇒.

Lemma 1. ∀x, y ∈ B
n, x → y =⇒ ∃u ∈ M

n, y ∈ u : x ⇒∗ u.

Proof. Assuming x → y, let us define the set I
Δ= {i ∈ {1, . . . , n} | yi �= xi}.

From Eq. (1), ∀i ∈ I, yi = fi(x). Let us assume that for some strict subset J � I,
∃v ∈ M

n, x ⇒∗ v with ∀i ∈ J , yi ∈ vi. It is notably the case with J = ∅. By
induction, we show that, for any k ∈ I \ J , ∃u ∈ M

n such that x ⇒∗ v ⇒ u
with ∀i ∈ J ∪ {k}, yi ∈ ui. Remarking that x ∈ v and defining u ∈ M

n such as
ui = vk ∪ {fk(z) | z ∈ v} if i = k and ui = vi if i �= k, we obtain that v ⇒ u,
with yk = fk(x) ∈ uk. ��

Such a necessary condition for reachability can be furthermore refined by
ensuring that for each component i ∈ {1, . . . , n} that is equal in x and y, if all
meta-states u containing y with x ⇒∗ u are such that ui = {0, 1}, then u contains
a state z with fi(z) = yi = xi. Intuitively, this refinement ensures that if the
i-th component has to temporarily change its value for reaching y, a state from
which it can recover its initial (and final) value has to be reached in between.
Such a condition is referred to as support consistency (Definition 1). Theorem 1
states that support consistency is a necessary condition for reachability.

Definition 1 (Support Consistency (�∗)). A state x ∈ B
n is support-

consistent with y ∈ B
n, denoted by x �∗ y, if and only if there exists u ∈ M

n

with x ⇒∗ u such that y ∈ u and for all i ∈ {1, . . . , n} where yi = xi,
ui = {0, 1} =⇒ ∃z ∈ u : fi(z) = yi.

Theorem 1. ∀x, y ∈ B
n, x →∗ y =⇒ x �∗ y.

Proof. Let us consider any tuple of states (x1, . . . , xk) with x1 = x, xk = y, and
∀j ∈ {1, . . . , k − 1}, xj → xj+1. From Lemma 1, ∃u ∈ M

n such that x ⇒∗ u and
∀j ∈ {1, . . . , k}, xk ∈ u. If for all such u, for any i ∈ {1, . . . , n}, ui = {0, 1}
implies that there exists l ∈ {1, . . . , k} with xl

i �= xi. If yi = xi, there necessarily
exists m ∈ {l, . . . , k − 1} such that fi(xm) = yi. Therefore xm ∈ u. ��

2.3 Optimization with Respect to Time Series Data

Our objective is to infer BNs that are admissible with a given PKN and that
verify the sequential reachability of binary states in B

m that are as close as
possible to a given time series data and its associated experimental settings.

Distance Between a Time Series Data and a BN. Given a time series T
with associated clamping A, I, the distance between a BN F and (T,A, I),
noted mse(F[A,I], T ), is the minimal MSE between T and a sequence of binary
states X = (x1, . . . , xk), with ∀j ∈ {1, . . . , k}, xj ∈ B

n, that are successively
reachable in F[A,I]: x1 →∗ x2 . . . →∗ xk. We notice that the lowest possible
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mse(X,T ) among all Boolean traces is the MSE between T and its binarization
η(T ) = ((η(t1i ))i=1...m, · · · , (η(tki ))i=1...m). Let us call MSET

Δ= mse(η(T ), T ) this
minimum MSE which is intrinsic to the time series T and to the threshold for
binarization (0.5); mse(F[A,I], T ) ≥ MSET . Whenever mse(F[A,I], T ) = MSET ,
we say the BN F reproduces the time series data T .

Relaxing the Semantics Sonstraint. In order to prevent an exhaustive exploration
of the BN dynamics for characterizing the sequences of reachable (→∗) Boolean
states, we consider any sequence X = (x1, . . . , xk), with ∀j ∈ {1, . . . , k}, xj ∈ B

n,
that are support-consistent (�∗), i.e., x1 �∗ x2 · · · �∗ xk in the scope of the
BN F[A,I]. The MSE of such a support-consistent Boolean state sequence X
w.r.t. the time series T is noted m̂se(X,T ); and the minimal distance among
all support-consistent sequences in F[A,I] with T is referred to as m̂se(F[A,I], T ).
Because any reachable sequence is support-consistent (Theorem 1), we obtain
that mse(F[A,I], T ) ≥ m̂se(F[A,I], T ) ≥ MSET ; and in particular mse(F[A,I], T ) �=
m̂se(F[A,I], T ) only if none of the support-consistent sequences X with minimal
m̂se(X,T ) are actually sequences of reachable Boolean states. In such cases, F
is a false positive. Determining if F is a true positive can be done a posteriori
with a model-checking approach: if m̂se(F[A,I], T ) = MSET , we check that η(T )
is a valid sequence of reachable states in F[A,I]; otherwise, we check the validity
with respect to reachability of at least one sequence X with minimal m̂se(X,T ).

Optimization Problem. We consider a PKN G and a set of r multiplex time
series D = (T 1, A1, I1), . . . , (T r, Ar, Ir). The distance between a BN F and
the dataset is the sum of distances m̂se(F,D) Δ=

∑r
l=1 m̂se(F[Al,Il], T

l). The
optimization procedure identifies the BNs compatible with the PKN G that have
the minimal distance m̂se(F,D). In the scope of this paper, we enforce that each
non-observed node starts with the same initial value in all the time series: for
each l ∈ {1, . . . , r}, if X l is a sequence of support-consistent Boolean states in B

n

such that m̂se(F[Al,Il], T
l) = mse(X l, T l), for all i ∈ {m+1, . . . , n}, X l

1,i = X1
1,i.

Whereas this constraint reduces the space of sequences to explore, it also ensures
consistency between the different experimental settings.

Depending on the number of nodes in the PKN, and on the discriminative
power of the time series dataset, a rather large number of BNs may be expected
to be inferred. As an alternative, we can output only the BNs having the smallest
Disjunctive Normal Form (DNF) representation with respect to clause inclusion,
i.e., no literal nor clause can be removed. This means that no unnecessary edges
occur in the BNs, thus providing only the simplest BNs. In the following, we
refer to such a set of solutions as subset-minimal.

2.4 Implementation

Answer Set Programming (ASP; [3,7]) is a declarative approach to solving
knowledge-intense combinatorial (optimization) problems comprising up to tens
of millions of variables. ASP’s distinguishing combination of a high-level model-
ing language with high-performant solving tools allows for concentrating on an
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actual problem, rather than a smart way of implementing it. The basic idea of
ASP is to express a problem in a logical format so that the (logical) models of
its representation provide the solutions to the original problem. Problems are
expressed as logic programs and the resulting models are referred to as answer
sets. Although determining whether a program has an answer set is the fun-
damental decision problem in ASP, modern ASP solvers like clasp [9] support
various combinations of reasoning modes, among them, regular and projective
enumeration, intersection and union, multi-criteria optimization and subsets [8]
and/or sum-based minimal (maximal, resp.) model enumeration.

Here we describe the general design of the encoding, while the complete
version is available online (see Footnote 1). For the encoding we follow the gen-
eral design approach in ASP in a way that we first guess all admissible BNs
given a PKN. Guessing in this context does not mean choosing a BN by some
heuristic, but exhaustively trying all possible combinations of edges and logi-
cal connectives. We also guess time series, a value {0, 1} for every species in
every experiment and every time point. In the case of non-observed nodes we
add a constraint that fixes their initial value, at time point 0, across all the
experiments. We then restrict this search space by posting constraints that the
guessed time series shall be support-consistent with the guessed BN. In this way
all enumerated BNs are consistent with the guessed time series. As an optimiza-
tion function we minimize the distance between the guessed time series and the
measured one. In the optimal case, this means that the guessed time series is
equal to the measured one, and the BN is support-consistent with the measured
data.

3 Evaluation

3.1 Case Study

As a proof of concept we used the PKN published in [14] (see the compressed
PKN in Fig. 1A). From this PKN, the authors of [14] randomly generated an
admissible golden-standard BN to simulate synthetic time series data (Fig. 1C).
Afterwards, they removed the link from tnfa to ap1 from the PKN to represent
incomplete regulatory knowledge. After confronting the incomplete PKN with
the time series data, our method learned a family of BNs consisting of 3 subset-
minimal BNs. All BNs were checked to be true positives, therefore they have
an optimal MSE score of 0.07 with respect to the data. The family of optimal
BNs was learned after 0.04 s of computation on a standard desktop computer.
In Fig. 1B we plot the subset-minimal family of BNs learned for this case study.
It recovers the complete logical behaviors of the golden-standard, except for the
one regulation from tnfa to ap1 which was removed from the PKN. Only the
logical function of the regulation over p38 is not consensually learned across all
BNs in the family; the rest of logical functions learned are shared by all models.
The quality of our results concerning the learned BNs is comparable to the one
obtained in [14] for the same case study. The computation time of our method
improves the one of published methods in a range of 2 to 4 orders of magnitude.
Moreover, our method is exhaustive: all logical networks are learned. The full
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Fig. 1. (A) Compressed PKN from [14]. Green and red edges indicate activations and
inhibitions respectively. Colors of the nodes represent the chosen experimental design:
green refers to inputs/stimuli, red, to inhibited nodes, and blue, to measured species.
(B) Boolean networks (BNs) learned from time series data which are subset-minimal.
All BNs predictions have minimal ΔMSE with respect to the synthetic time series data.
A black circle represents a logical AND gate. A number written over an edge represents
the frequency of this logical gate or edge with respect to the family of BNs when the
edge is not shared by all BNs. (C) Synthetic time series data used in [14] simulated
using a BN admissible for the PKN in A. In total 10 experimental conditions were
simulated. Red boxes indicate the minimal set of 3 error time-points detected (Color
figure online).

set of solutions (not only the subset-minimal BNs) was also computed showing
one more BN with an OR gate above p38 from tnfa and map3k1.

The method also automatically identified the list of minimal errors in the
time series data, selecting time-points that cannot be explained by the learned
BNs. For the case of all optimal BNs, we found the following 3 errors (see Fig. 1C)
in all of them. For experiment 10, time-point 10, species p38, the error can be
explained by the noise artificially introduced in the dataset. The predecessors
of p38 are tnfa and egfr, both active in experimental condition 10 (see Fig. 1C).
The signal of p38 can therefore only increase (or stay the same). However, the
measure of p38 slightly decreases (due to noise) at time-point 10; this generates
an error since the BNs cannot satisfy the data at this particular time-point. For
experiment 6, time-point 2 and 4, species ap1, the errors can be explained by the
fact that one edge (the link from tnfa to ap1) was deleted from the PKN, but was
kept to generate the synthetic time series data. All BNs agree on a regulation
of p38 and ap1 from map3k1. In experiment 6 tnfa is stimulated and pi3k is
inhibited (see Fig. 1C). At time-point 2 the value of map3k1 has to be activated
(transition 0 → 1) to justify the activation of ap1. However, since map3k1 is
the only regulator of p38, which is all the experiment at value 0, this cannot be
explained by the BN and generates an error.

3.2 Benchmarks

In this section we evaluate our method for BN identification on synthetic mul-
tiplex time series data. Given a PKN, a dataset and a set of inferred BNs, we



178 M. Ostrowski et al.

focus on two evaluation criteria: the MSE distance of the BNs to the dataset,
and the rate of false positives due to our reachability over-approximation.

Synthetic Multiplex Time Series Datasets. 10 PKNs were derived by randomly
removing or adding edges from the compressed PKN published in [14]. For each
PKN we randomly selected 3 golden-standard admissible BNs. Each golden-
standard BN was used to generate synthetic time series data by simulating the
BN with logic-based ODEs. In total we generated 30 datasets1.

MSE Computation. Following Sect. 2.3, our method optimizes the MSE of the
BNs F to the dataset D up to the reachability over-approximation criteria: if the
BN is a true positive, the estimated MSE m̂se(F,D) is the exact MSE mse(F,D),
otherwise the estimated MSE is an under-approximation - the exact MSE may
be larger. Due to the optimization, all the BNs have the same estimated MSE.
The value of the estimated MSE can be computed using the equation given in
Sect. 2.1 by sampling one BN from the result set with one Boolean trace X for
each time series T of dataset D such that m̂se(X,T ) is minimal.

True-positive Rate Computation. Any BN inferred by our method satisfies the
necessary condition depicted in Sect. 2.2 for producing Boolean traces as close
as possible to a given time series dataset. Verifying that the BN can actually
reproduce those Boolean traces requires an exhaustive analysis of the dynamics
to ensure the successive reachability of the Boolean states. In the scope of this
paper, we performed such a verification using a model-checking approach. The
presented experiments have been conducted using the tool NuSMV [5] which
allows an efficient encoding of the dynamics accounting for the range of clamping
settings of the different time series in the dataset2. The true-positive rate evalua-
tion proceeds by iteratively checking each inferred BN. In the case when the esti-
mated MSE is MSET (Sect. 2.3), the model-checking is performed with respect
to the binarized time series. Otherwise, we iterate over the closest Boolean traces
computed in Sect. 2.3 until a sample is validated by model-checking; if no such
a sample exists, the BN is a false positive.

Results. For each dataset, the model identification has been performed with
respect to the PKNs from which the BNs used for data generation have been
extracted; and with respect to the PKNs where some edges have been deleted so
the BNs used to generate the data are not in the considered domain. With the
exact PKNs, the estimated MSE is always the minimum MSET ; moreover, the
rate of true positive is 100 % in 28 benchmark datasets, and above 90 % in the 2
others3. With the PKNs with deleted edges, most of the cases show a very high
true positive rate (often 100 %) and an estimated MSE close to (often equal to)
MSET . Note that for some dataset, no true positive has been found. For the cases

1 Details in http://loicpauleve.name/cmsb15-suppl-A.pdf.
2 Scripts and data available at http://loicpauleve.name/cmsb15-suppl.tbz2.
3 Detailed results are given in http://loicpauleve.name/cmsb15-suppl-B.pdf.

http://loicpauleve.name/cmsb15-suppl-A.pdf
http://loicpauleve.name/cmsb15-suppl.tbz2
http://loicpauleve.name/cmsb15-suppl-B.pdf
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when the estimated MSE is different from MSET , the true positive rate can only
be evaluated by sampling Boolean traces close to the time series data. Because
of the very high combinatorics of such sampling space, the computation has been
aborted after one hour, hence we cannot guarantee that no true positive exists.
When no true positives have been identified, the MSE may be under-estimated.

The inference of the subset-minimal solutions for the 30 benchmarks with
exact PKNs took less than 2 s on average. The performance is similar for the
benchmarks with incomplete PKNs that contained a true positive BN in the
result. The number of results varies between 12 and 2640 with the exact PKN and
from 2 to 1188 with modified PKNs. Depending on the size and the complexity of
its dynamics, the model-checking of one BN took between 1 s and 5 min. The full
set of solutions (not only the subset-minimal BNs) have also been performed with
the exact PKN, showing very similar results and running time, with subsequently
more results (up to 54,000 BNs, data not shown).

Same experiments have been conducted on the time series generated with
noise but show no difference in the results (data not shown). This may indicate
that the noise influence may be tempered by the binarization.

3.3 Comparison with Inferences Using Pseudo Steady-States

In this section we compare our results with the previously developed approach
Caspo [10]. Caspo, as well as other state-of-the-art approaches such as CellNopt
[15], considers two time-points (an initial point and a pseudo-steady state) and
a PKN. It computes a set of BNs with minimal size that can explain the best the
transition between the two time-points. Due to its static nature and the minimal
size condition, it is not possible to infer feedback loops or dynamic behaviour,
because models with loops would not improve the fitting with the data assuming
a steady state. With this comparison, we aim at emphasizing the importance of
taking into account model dynamics to obtain accurate model predictions.

Applied on the 30 synthetic datasets of Sect. 3.2 with the PKNs used for the
data generation, we compared the best MSE obtained applying our optimization
procedure on the BNs returned by Caspo on one time point (assumed steady
by Caspo) and on all BNs delimited by the PKNs. Therefore, we compare the
best estimated MSE with respect to the multiplex time series for both the Caspo
approach and the method introduced by this paper. As explained in Sect. 2.3,
and as in Sect. 3.2, the computed MSE may be under-estimated so we used
model-checking a posteriori to verify the presence of true positive BNs.

Figure 2 plots the estimated MSEs, where the 6th time point of the time
series has been selected for the learning with Caspo; other time points give
very similar results (data not shown). On the contrary to our approach where
it was always possible to find a BN which was fully consistent with the data,
having the minimum MSE = MSET , Caspo failed to identify a consistent model
with the data in 25 over the 30 experiments. Among those 25 experiments, the
estimated MSE on Caspo results may be under-estimated in 5 experiments where
the returned BNs are actually false positives (streaked bars). This evidences the
role of feedback loops which cannot be captured with a two-timepoints learning
procedure and the information gain brought by time series data.
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Fig. 2. Comparing MSE with Caspo for 10 different PKNs with 3 datasets each. “=”
indicates equal MSE.

4 Conclusion

We have introduced a procedure based on combinatorial optimization with
declarative programming approaches and model checking to identify BNs from
multiplex time series data given a prior network structure. To cope with the
complexity of an exhaustive analysis of BNs dynamics, we defined an abstract
semantics of BNs from which we derived a necessary condition for the satisfac-
tion of successive reachability properties, induced by the time series data. Our
procedure identifies all the BNs that satisfy this necessary condition with the
shortest distance (in terms of MSE) to the observed experimental data. Because
the satisfaction criteria for the dynamics is over-approximated, our method may
lead to BNs that are false positive, and have an under-estimated MSE. Applied
to synthetic multiplex time series datasets on networks composed of 13 to 17
nodes, the identification of BNs takes only a few seconds and exhibits a very low
rate of false positives, showing a remarkable efficiency.

In the present form, we assume that the experimental data is normalized
between 0 and 1 and use a discretization threshold at 0.5. Whereas such a set-
ting is relevant for phosphoproteomics data, future work may generalize our
optimization framework to account for adaptive and multiple discretization lev-
els. Moreover, application to larger networks should be considered, although few
of such data are currently available, and generating synthetic data with sufficient
discriminant power may be challenging.

Because our identification method can be exhaustive, the framework we pro-
pose is suited for the complete Thomas parameters identification for BNs from
incomplete time series data [6,13]. Thanks to our abstract semantics, our method
is able to filter out very efficiently a large number of candidate BNs without a
costly exact model-checking, which is postponed to the validation of the results.
In that way, future work may further explore the combination of dynamics over-
approximations with model-checking approaches to provide scalable and exact
inference of BNs from time series data.
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cation and model ranking of thomas networks. In: Gilbert, D., Heiner, M. (eds.)
CMSB 2012. LNCS, vol. 7605, pp. 207–226. Springer, Heidelberg (2012)

14. MacNamara, A., Terfve, C., Henriques, D., Bernabe, B.P., Saez-Rodriguez, J.:
State-time spectrum of signal transduction logic models. Phys. Biol. 9(4), 045003
(2012)

15. Saez-Rodriguez, J., Alexopoulos, L.G., Epperlein, J., Samaga, R., Lauffenburger,
D.A., Klamt, S., Sorger, P.K.: Discrete logic modelling as a means to link protein
signalling networks with functional analysis of mammalian signal transduction.
Molecular Systems Biology 5, 331 (2009)

16. Wang, R., Saadatpour, A., Albert, R.: Boolean modeling in systems biology: an
overview of methodology and applications. Phys. Biol. 9(5), 055001 (2012)



BioPSy: An SMT-based Tool for Guaranteed
Parameter Set Synthesis of Biological Models

Curtis Madsen(B), Fedor Shmarov, and Paolo Zuliani

School of Computing Science, Newcastle University,
Newcastle upon Tyne, UK

{curtis.madsen,f.shmarov,paolo.zuliani}@ncl.ac.uk

Abstract. The parameter set synthesis problem consists of identifying
sets of parameter values for which a given system model satisfies a desired
behaviour. This paper presents BioPSy, a tool that performs guaranteed
parameter set synthesis for ordinary differential equation (ODE) biolog-
ical models expressed in the Systems Biology Markup Language (SBML)
given a desired behaviour expressed by time-series data. Three key fea-
tures of BioPSy are: (1) BioPSy computes parameter intervals, not just
single values; (2) for the identified intervals the model is formally guar-
anteed to satisfy the desired behaviour; and (3) BioPSy can handle vir-
tually any Lipschitz-continuous ODEs, including nonlinear ones. BioPSy
is able to achieve guaranteed synthesis by utilising Satisfiability Modulo
Theory (SMT) solvers to determine acceptable parameter intervals. We
have successfully applied our tool to several biological models including
a prostate cancer therapy model, a human starvation model, and a cell
cycle model.

1 Introduction

Computational modelling is central to many scientific and engineering disci-
plines. For instance, the field of systems biology [17] uses modelling to gain a
greater understanding of how biology works. Similarly, in synthetic biology [1],
models are created in an attempt to engineer new, useful biological systems.
This field typically develops models and analyses them in silico (on a computer)
before synthesising the object of the model in vitro (in a test tube in the lab)
or in vivo (within an organism). Biological systems in both systems biology and
synthetic biology are often constructed with deterministic dynamics and can be
readily translated into ordinary differential equation (ODE) models using mass
action kinetics. There are many well known methods and tools for simulating
ODEs that can be used to obtain results on the behaviour of the biological sys-
tems (e.g., MATLAB). However, obtaining reliable results requires that all parts
of a model are accurately defined. In particular, a key component to modelling
biological systems is selecting the correct model parameters. Since quantitative
parameters are often difficult or impossible to measure experimentally, a prob-
lem that often arises is how to select parameter values to achieve desired model
behaviours. Indeed, small parameter variations can lead to vastly different results
when simulating biological models.
c© Springer International Publishing Switzerland 2015
O. Roux and J. Bourdon (Eds.): CMSB 2015, LNBI 9308, pp. 182–194, 2015.
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In order to determine acceptable values for the parameters of a system, mod-
ellers have employed methods that perform parameter synthesis. The parameter
set synthesis problem consists of determining ranges (intervals) of parameters
for which a model’s temporal behaviour remains in satisfactory states, usually
described by time-series data. Formally, parameter synthesis is categorised as a
reachability problem [2] where the solution to a set of ODEs is known for a finite
number of time points, but some of the parameter values that lead to that solu-
tion are missing. For instance, the parameter, k, can be synthesised in the ODE
model given by x′(t) = kt. Given the time-series data in which x = {0, 1, 4, 9}
for t = {0, 1, 2, 3}, it is easy to see that k should be 2. However, if the system is
noisy and the values of x can vary by, say, 0.1, solving the parameter synthesis
problem for k will produce an interval such as [1.978, 2.022].

This paper presents BioPSy, a tool that performs parameter set synthesis on
biological models comprised not only of mass action kinetics, but also of general
Lipschitz-continuous ODEs. Models are specified using the well-known Systems
Biology Markup Language (SBML) [14]. BioPSy accomplishes parameter syn-
thesis by extracting a collection of ODEs from an SBML model and formulat-
ing these ODEs along with time-series data into a Satisfiability Modulo Theory
(SMT) problem. It then leverages the SMT solver dReal [12] to incrementally
narrow down the parameter search space. Given a parameter domain, precision,
and time-series data expressing desired behaviour, BioPSy returns

– a set of feasible (acceptable) parameter ranges - these are formally and numer-
ically guaranteed to satisfy the synthesis problem;

– a set of infeasible (unsuitable) parameter ranges - these are formally and
numerically guaranteed not to satisfy the synthesis problem; and

– a set of parameter ranges where, because of the given precision, BioPSy is
unable to determine if they satisfy the synthesis problem.

Note that, depending on the problem at hand, any of the three sets above may
be empty, although not all at the same time. We remark again that BioPSy can
handle nonlinear ODEs, and its answers have mathematical proof strength.

Related Work. A simple way to perform parameter synthesis is first to dis-
cretise the parameter space (if necessary) and then use exhaustive simulation or
Monte Carlo methods to determine which simulations satisfy a desired behav-
iour. Indeed, many tools utilise simulation-based approaches to find acceptable
parameter values. For example, COPASI [13], a well known biochemical network
simulator, uses methods such as genetic algorithms, particle swarm simulations,
differential evolution, and simulated annealing among others to perform para-
meter estimation on SBML models. Tools like COPASI as well as others such as
SBML-PET [28] can also give confidence intervals for the parameters that they esti-
mate. Furthermore, there is a collection of applications that leverage the MATLAB
framework to provide similar parameter estimation methods. These tools include
AMIGO [3], a tool that uses a collection of initial value problem and non-linear
optimization methods; PottersWheel [21], a tool that uses deterministic and
stochastic optimisation techniques in concert to explore a logarithmic parame-
ter space; and SBT [23], a tool that allows users to define their own cost-functions
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and use custom optimisation methods. These tools trade-off between how fine-
grained the parameter search is and how much computation time is required to
find acceptable parameter values.

Other approaches utilise numerical and formal methods to prove that a
model meets certain criteria [4,5,27]. For example, Bernstein polynomials and
linear programming [10], and probabilistic model checking [26] approaches can be
applied to the parameter set synthesis problem. Model checking methods work by
partitioning the parameter space into classes of equivalent behaviours for the var-
ious parameter values, which are then systematically validated. Simulation and
model checking can be combined in a hybrid approach to efficiently search the
parameter space. For example, the statistical model checking technique proposed
in [16] enables parameter synthesis for stochastic biological models formulated
as continuous-time Markov chains using temporal logic specifications (bounded
LTL formulae) to express desired behaviours. Simulations can also be used to
perform sensitivity analysis limiting how much of the state space the model
checker will have to analyse [8]. Additionally, some methods formulate para-
meter synthesis as an SMT problem, but they usually handle restricted classes
of models, e.g., transition systems with linear dynamics [7] or with monotone
dynamics [22], while we support very general dynamics such as nonlinear ODEs.
Although some approaches can handle complex systems with a large number of
parameters [9], their implementations are usually problem-specific.

Finally, a notion related to parameter synthesis is that of parameter iden-
tifiability, i.e., whether parameters can be uniquely identified from data. This
notion is usually explored in the context of specific classes of dynamics and error
behaviours — see, e.g., [19] and references therein.

2 Methods

We sketch the parameter synthesis technique and give implementation details of
BioPSy. Full details of the theory will appear in a forthcoming paper.

Algorithm. BioPSy takes as input an SBML model file, a time-series data file,
a list of model parameters to synthesise with their initial ranges, a noise value
(η), a precision value (δ) for the SMT solver, and a precision value (ε) for the
parameter synthesis algorithm. Time-series data is typically too constrictive as
it contains an exact value for each variable at each time point. Also, measured
data is often subject to noise. BioPSy utilises η to relax the time-series data and
create an interval of acceptable states for each time point, and returns:

– a set of feasible (acceptable) parameter ranges: for all the points in this set, the
model is formally and numerically guaranteed to satisfy the noisy time-series
data;

– a set of infeasible (unsuitable) parameter ranges: for no point in this set,
the model satisfies the noisy time-series data. Again, this is formally and
numerically guaranteed; and

– a set of parameter ranges where, because of the given precision, BioPSy is
unable to determine if they satisfy the noisy time-series data.
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BioPSy works by extracting ODEs from the given SBML model along with the
list of model parameters. The user can select which parameters (p) to synthe-
sise and provide initial parameter ranges to search through. BioPSy converts
the ODEs, parameters, and the noisy time-series data into a collection of SMT
problems. Each problem represents an initial value problem (IVP) constrained
by the initial time point and one of the subsequent time points. Informally, the
individual SMT problems contain assertions declaring that the values of each
variable (i.e., ODE solution) should be in the interval found in the noisy time-
series data after integrating the ODEs for the amount of time between the initial
time point and the time point being processed for the file. (Note that for every
time point we solve an IVP, and therefore, the first value of the time-series data
should not be noisy.) Assertions constraining the parameters being synthesised
to be within the synthesised ranges from the previous time point are also added.
These constraints help reduce the search space.

The initial boxes for the parameter set are passed one-by-one to the parame-
ter synthesis algorithm, which generates appropriate SMT problems and calls the
SMT solver dReal [12] to evaluate them. Basically, the synthesis algorithm iter-
atively splits each box until the minimum size, ε, is reached or the current box is
either unsat or sat. (A box needing to be split is denoted undet.) An unsat out-
come means that for no value in the box, the model reaches an acceptable state.
A sat outcome means that all the values in the box lead the system to an accept-
able state. An undet outcome means that the algorithm could not decide between
unsat and sat. This indecision might be because the box contains both sat and
unsat regions, or because of the precision, δ, used when solving the SMT prob-
lems. This process continues incrementally until all the points in the time series
are processed. A high-level workflow for the BioPSy tool is presented in Fig. 1.

As mentioned, BioPSy returns three sets of synthesised parameter ranges,
corresponding to sat, unsat, and undet. The sat and unsat parameter ranges
are formally and numerically guaranteed to be correct. Essentially, these guar-
antees are made possible by dReal, which is based on validated ODE integration
and rigorous constraint processing via interval arithmetics.

We note that the precision value, δ, for dReal can be arbitrarily small. How-
ever, it cannot be zero since solving first-order real formulae with general non-
linear functions is an undecidable problem. (For more information on the theory
behind dReal, please refer to [11].) Additionally, the precision value, ε, can be
arbitrarily small. This value determines the level of granularity that the parame-
ter synthesis algorithm uses to search the parameter space. Smaller values mean
that BioPSy will try to break parameter ranges into smaller segments when
searching for acceptable values. The noise parameter, η, controls the size of the
intervals produced from the time-series data. Choosing a small η makes it more
difficult to identify acceptable ranges, but it produces parameter enclosures that
result in the system having better compliance with the original time-series data.

Finally, we remark that the main advantage of solving the parameter syn-
thesis problem in a point-by-point manner (as we do) is that it reduces the
computational complexity, since fewer variables are passed to the SMT solver.
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Implementation and Usage. The BioPSy graphical user interface (GUI) is
implemented in Java. The parameter synthesis algorithm is implemented in
C++, and it utilises the CAPD library1 for interval arithmetics and dReal[12]
as a standalone application. The algorithm is additionally parallelised using
OpenMP. The GUI is launched using the BioPSy JAR file (Java JRE 1.6 or
higher required). The user can browse for a model file and a time-series data file.
Once selected, these files are shown in the SBML and Time-Series tabs, respec-
tively. The files are also parsed, and the data is displayed in the Parameters and
Variables tabs. Under the Parameters tab, the user can select which parameters
are to be synthesised, and their precision (ε). For synthesised parameters, the
user is also able to define a lower bound and upper bound that is used to con-
strain the parameter search space. Similarly, the Variables tab allows the user
to specify bounds on the acceptable values and noise (η) for each variable in
the model. Once the bounds are set, clicking the Run button will perform the
synthesis. The Advanced Options button enables the user to specify the path

p, B0, η, δ, ε

ConverterSBML File Time-Series Data

SMT Generator

SMT solverBi
unsat Bi

undet

Bi
sat

i < n i := i + 1

Bsat, Bunsat, Bundet

undetunsat

sat

yes

no

Fig. 1. Workflow diagram for BioPSy. Legend: p = {p1, . . . pm}: model parameters to
synthesise, B0 = initial set of parameter ranges, η = acceptable noise, δ = SMT solver
precision, ε = precision of parameter synthesis, n = number of points in the time-series,
Bi

unsat, Bi
undet, and Bi

sat = parameter sets for the i-th time point containing boxes for
which synthesis is not feasible, undetermined, and feasible, respectively.

1 http://capd.ii.uj.edu.pl.

http://capd.ii.uj.edu.pl
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to the dReal binary as well as the desired level of precision, δ, used by dReal
(δ = 0.001 is the default value). Once the synthesis has started, the Output
tab displays the output file as it is being produced allowing a user to watch as
the infeasible ranges, feasible ranges, and undetermined ranges are generated
for each time point in the data. The Plot tab displays an updating in real-time
graphical representation of the contents of the Output tab (for two parameters
only). BioPSy’s source code, binary, and the models used in the experiments are
available at https://github.com/dreal/biology.

3 Results

BioPSy has successfully been applied to several biological models including a
model of prostate cancer treatment [15,20], a model on human starvation [24],
and a cell cycle model [25]. In each experiment, two parameters are selected for
synthesis while the rest are fixed to the values found in the SBML file. Addi-
tionally, the experiments are performed on a 32-core (2.9 GHz) Ubuntu Linux
machine. The models analysed and their parameters are available at https://
github.com/dreal/biology/tree/master/models/CMSB2015.

3.1 Personalized Prostate Cancer Treatment

This model tracks the level of prostate specific antigen (PSA) (v) with com-
prises of two types of cancer cells: hormone sensitive cells (HSCs) (x) and cas-
tration resistant cells (CRCs) (y). In this treatment model, a patient is deprived
of androgen (z) causing HRC survival rates to decline. However, lower andro-
gen levels cause HRCs to convert to CRCs and increase the proliferation rate
of CRCs. Administrators of this treatment must, therefore, alternate patients
between phases of being ‘on’ and ‘off’ the treatment in order to prevent both the
HSC and the CRC levels from getting out of hand. The ODEs [15,20] describing
the dynamics of a patient on the treatment are shown in Eq. (1).
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In this case study, we investigate two applications of BioPSy:

https://github.com/dreal/biology
https://github.com/dreal/biology/tree/master/models/CMSB2015
https://github.com/dreal/biology/tree/master/models/CMSB2015
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1. Parameter Synthesis: given an initial parameter domain and time-series
data, we synthesise the parameter sets for which the model is guaranteed to
satisfy the time-series; and

2. Parameter Checking: we check whether parameter estimates obtained by
other methods actually satisfy the time-series.

The first application is, in general, very computationally intensive — its worst-
case time complexity grows exponentially with the number of parameters to
synthesise. The second application is lighter and gives the user the ability to
check if a given parameter value satisfies a desired behaviour of the system.

Parameter Synthesis. We perform parameter synthesis using real clini-
cal data [6]2 of a patient who was on treatment for 5 nonconsecutive times
throughout 6 years (for about 9 months in each period). The patient was mon-
itored every month and some of the observations (such as PSA and andro-
gen levels) were documented. Overall, every period of time-series data con-
tains around 4–5 time points. For each time-series, we synthesise the parame-
ter set that satisfies the patient’s clinical data with noise η = 1.4 (ε = 10−3

and δ = 10−3). The synthesised parameters, αy and βx, are explored on the
set [0.0, 0.05] × [0.0, 0.05]. The resulting parameter set satisfying all time-series
is constructed as the intersection of parameter sets synthesised for each time-
series. The feasible set including the ranges [0.0225, 0.025] × [0.0325, 0.0332031]
and [0.0210938, 0.0225]× [0.0325, 0.0327344]. Each time-series evaluation on the
specified range took about 12 h of CPU time. The parameter sets synthesised for
each time-series are presented in Fig. 2 and the resulting set intersection is shown
in Fig. 3. We remark that the values for η and ε used in our experiments have
been chosen purely for didactic reasons. The user can choose more appropriate
values depending on the model being studied.

Parameter Checking. For this application, parameter values are obtained
using the different parameter estimation methods available in COPASI, and the
results are verified using BioPSy. These parameter estimation methods utilise
simulation-based techniques to explore the parameter space and find a vector
of parameters that cause the model to best approximate some time-series data.
One downside to these methods is that they are not always capable of finding
a satisfying vector of parameters due to the trial-and-error approaches they
employ. For the prostate cancer treatment model, every parameter estimation
method in COPASI is run using default parameters, and each result takes around
5 s to obtain. Some of the methods fail to produce results, but for those methods
that are able to find parameters, the estimated values are checked and verified
in BioPSy using the same time-series data and η = 1.4. Each verification took
about 10–20 s of CPU time, depending on the time-series length. The verification
results are presented in Table 1. Here, it can be seen that some of the methods
produce results that only satisfy a few of the time-series data, and only one
2 Data available at: http://www.nicholasbruchovsky.com/clinicalResearch.html.

http://www.nicholasbruchovsky.com/clinicalResearch.html
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Fig. 2. Prostate cancer model: parameter synthesis results for βx and αy for five time-
series (ordered clockwise) obtained for each ‘on’ treatment stage. Legend: white - infea-
sible boxes; black - feasible boxes; and gray - undetermined boxes.

Fig. 3. Prostate cancer model: parameter synthesis results for βx and αy over five
time-series obtained for each ‘on’ treatment stage. Legend: white - infeasible boxes;
black - feasible boxes; and gray - undetermined boxes.
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Table 1. Parameter Checking of COPASI results over five time-series on cancer model.
Legend: n = parameters found invalid by BioPSy; y = parameters found valid by BioPSy

Method αx αy βx βy BioPSy

S1 S2 S3 S4 S5

Evolut. Prog. -0.215799 −2.67586 × 10−6 0.0271774 0.000135248 n y y n y

Hooke & Jeeves -0.308608 -0.278566 0.029312 -0.24288 y y y y y

Levenberg-

Marquardt

-0.17045 -31.9428 0.00661261 -10.5429 n n n n n

Praxis -0.233483 -0.00697965 0.0240299 0.186801 y y y n y

Scatter Search -0.17045 -31.9428 0.00661261 -10.5429 n n n n n

Simulated

Annealing

-0.248778 6.3856 × 10149 0.0226673 −2.27061 × 10148 n n n n n

Truncated

Newton

-0.236403 -0.00791949 0.0243545 0.0116282 y y y n y

method (Hooke &Jeeves) satisfies all of the data with its parameter values. In
contrast, three of the methods return parameters that do not formally satisfy
any of the time-series with a noise value equal to 1.4.

3.2 Human Starvation

The human starvation model [24] tracks the amount of fat (F ), protein in muscle
mass (M), and ketone bodies (K) in the human body after glucose reserves
have been depleted from three to four days of fasting. These three variables are
modelled using material and energy balances to ensure that the behaviour of
the model tracks what is observed in actual experiments involving fasting. The
ODEs for this model are presented in Eq. (2).
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Two parameters are synthesised, κ and b, on the ranges [9, 11] and [0.05, 0.08],
respectively, using simulated time-series data that includes 25 time points,
η = 0.1, δ = 0.001, and ε = 0.1. BioPSy took 5 min and 7 feasible
ranges were obtained: [9.88077, 9.8832] × [0.0764844, 0.0771875], [9.92213, 10] ×
[0.0785938, 0.08], [10, 10.0791] × [0.0726172, 0.0744629], [9.9416, 10] ×
[0.0712109, 0.0761328], [9.8832, 10] × [0.0761328, 0.0785938], [10, 10.1187] ×
[0.0744629, 0.08], and [9.88198, 9.8832]× [0.0750781, 0.0757813]. A graphical rep-
resentation of the final result is shown in Fig. 4.
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Fig. 4. Human starvation model: parameter synthesis results for κ and b. Legend: white
- infeasible boxes; black - feasible boxes; and gray - undetermined boxes.

3.3 Cell Cycle

In the cell cycle model [25], two proteins, CDC2 (u) and Cyclin (v), combine
to form a heterodimer that controls major events in a cell causing it to reach a
steady state, act as a spontaneous oscillator, or act as an excitable switch. The
ODEs for this model are presented in Eq. (3).

du

dt
= k4 (v − u)

(
k′
4

k4
+ u2

)
− k6u (3)

dv

dt
= κ − k6u

The cell cycle model used has reference BIOMD0000000006 in the BioModels
Database [18]. In this example, two parameters are synthesised, k′

4 and k4, on
the ranges [0.01, 0.02] and [175, 185], respectively, using η = 0.001, δ = 0.001,
ε = 0.1, from 10 simulated data points. BioPSy took 10 min to find one feasible
range, [0.0166691, 0.0192934] × [175, 185]. This result is shown in Fig. 5.

4 Conclusions and Future Work

Here, we present BioPSy, an open-source tool for guaranteed parameter set syn-
thesis on biological models from time-series data. BioPSy accepts SBML mod-
els, so it can be applied to a large number of existing biological models. Indeed,
BioPSy is not only limited to biological models with mass action kinetics but can
handle models involving general ODEs. An important feature about our tool is
that models using parameters synthesised with BioPSy are formally guaranteed
to behave as desired. Also, BioPSy can formally validate parameter estimates
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Fig. 5. Cell cycle model: parameter synthesis results for k4 and k′
4. Legend: white -

infeasible boxes; black - feasible boxes; and gray - undetermined boxes.

generated by other methods. We apply BioPSy to non-trivial biological mod-
els, including a highly nonlinear model of prostate cancer treatment. For this
model in particular, BioPSy is able to synthesise parameters from real clinical
data. Despite the complexity of parameter synthesis and of the models involved,
BioPSy performs reasonably well, and it is usable in practice. We believe BioPSy
can be useful for design space exploration in both synthetic and systems biology.
In the future, we plan to extend BioPSy to handle biological models that contain
both continuous and discrete dynamics — so called hybrid models.
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Abstract. As technological advances allow a better identification of cel-
lular networks, more and more molecular data are produced allowing the
construction of detailed molecular interaction maps. One strategy to get
insights into the dynamical properties of such systems is to derive com-
pact dynamical models from these maps, in order to ease the analysis
of their dynamics. Starting from a case study, we present a methodol-
ogy for the derivation of qualitative dynamical models from biochemical
networks. Properties are formalised using abstract interpretation. We
first abstract states and traces by quotienting the number of instances
of chemical species by intervals. Since this abstraction is too coarse to
reproduce the properties of interest, we refine it by introducing additional
constraints. The resulting abstraction is able to identify the dynamical
properties of interest in our case study.

1 Introduction

As technological advances allow a better identification of cellular networks, more
and more molecular data are produced allowing the construction of detailed
molecular interaction maps. These maps form large and complex intertwined
biochemical networks, which dynamical functioning is very hard to decipher.
One approach to unravel the dynamical properties of such systems relies on the
derivation of qualitative dynamical models from these maps, in order to ease the
analysis of their dynamics [9,12].

Automatic methods for such derivations still lack of convenient trade-off
between efficiency and accuracy. Some abstractions consist only in partitioning
the state space (as in the Boolean semantics of BIOCHAM [6]). These abstrac-
tions are usually too conservative and fail in detecting properties of interest.
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(ÉNS) under an incitative action and by the Defense Advanced Research Projects
Agency (DARPA) and the U.S. Army Research Office under grant number W911NF-
14-1-0367. The views, opinions, and/or findings contained in this article are those
of the authors and should not be interpreted as representing the official views or
policies, either expressed or implied, of the “École normale supérieure”, the Defense
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They have to be refined by integrating an approximated quantitative descrip-
tion of the dynamics of the model in each partition class, as done in tropical
approximations [13] and piecewise affine systems [10]. Yet, the latter methods
provide no explicit bounds for numerical errors (at best an asymptotic estimation
of them).

Our motivation is twofold: not only we want to design an automatic tool
to derive accurate logical models from reaction networks, but also we want to
better understand the process of logical modelling and its underlying implicit
assumptions. To achieve these goals, we use abstract interpretation [5]. Abstract
interpretation is a mathematical framework to formally relate the behaviour of
programs or models, seen at different levels of abstraction. It can be used not
only to establish formal comparisons between abstraction techniques, but also
to derive new abstractions of the behaviour of programs or models.

Our approach is the following. In Sect. 3, we formalise the behaviour of reac-
tion networks by keeping the exact number of instances of chemical species. In
Sect. 4, we propose an abstraction in which the number of instances is sampled
within a finite set of intervals. In Sect. 5, we refine this abstraction by taking
into account three kinds of properties: we deal with mass preservation invari-
ants in Sect. 5.1; we detect when the number of instances of a given chemical
species cannot cross its sampling intervals in Sect. 5.2; we enrich the description
of the behaviour of the models with information about the reaction rates and
take into account the separation between time-scales in Sect. 5.3. More details
are provided in an extended version of this article [1].

2 Case Study

Let us start with a case study.
We consider a model with three kinds of proteins A, B, C. We assume that

the protein B is a scaffold between the proteins A and C, that is to say that
each instance of B can bind to an instance of A and/or to an instance of C.
We wonder what is the influence of the initial concentration of the protein B
on the concentration of the trimer ABC. Intuitively, the more Bs we put in the
model, the more ABCs will be formed. Yet this is not the case, since at high
concentration, the protein B prevents the proteins A and C to meet since almost
each instance of A (resp. C) belongs to a dimer AB (resp. BC), and thus there is
no available As (resp. Cs) to form the trimers ABC. Thus, at high concentration,
by sequestration effect, the scaffold prevents the formation of trimers ABC.

Figure 1 lists the reactions of the model (Fig. 1(a)), the system of equations
(under the assumptions of the law of mass action) (Fig. 1(b)), and the concentra-
tion of the trimer ABC at steady state with respect to the initial concentration
of the protein B (Fig. 1(c)). We notice that at low concentration of the protein
B, the concentration of the trimer ABC at steady state grows linearly, whereas
it drops following an homographic function at high concentration of the protein
B. Interestingly, this sequestration effect has also been observed in vivo [4].
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A + B
k1−→ AB

B + C
k2−→ BC

AB + C
k3−→ ABC

A + BC
k4−→ ABC

(a) Reactions.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d[A]

dt
= −[A](k1[B] + k4[BC])

d[B]

dt
= −[B](k1[A] + k2[C])

d[C]

dt
= −[C](k2[B] + k3[AB])

d[AB]

dt
= k1[A][B] − k3[AB][C]

d[BC]

dt
= k2[B][C] − k4[A][BC]

d[ABC]

dt
= k4[A][BC] + k3[AB][C]

(b) Equations.

(c) Concentration of ABC at
steady state with respect to the
initial concentration of B.

Fig. 1. A model with a sequestration effect. We plot the concentration of the trimer
ABC at steady state with respect to the initial concentration of the protein B, with
all reaction rates equal to 1 and with an initial concentration of 1 for the proteins A
and C and of 0 for the complexes AB, BC, and ABC.

This example is well suited for testing the accuracy of our approach, since
two different dynamical behaviours may emerge according to the relative posi-
tion of the quotient between the initial concentration of the protein B and the
initial concentrations of the proteins A and C with respect to a semi-quantitative
threshold. There is no need to know precisely the rates of the reactions. These
quantitative details shift the threshold but have no impact on its existence
(unless one of the reaction rate is set to 0). Although we have shown this phe-
nomenon on the deterministic (differential) semantics, considering only forward
reactions, it also occurs with a stochastic semantics and/or reversible reactions.
A fine description of this model should account for complex properties such as
concurrency and sequestration phenomena (when an instance of the protein A is
bound to an instance of the protein B, it is no longer available to bind with an
instance of the dimer BC), as well as for the race between competing reactions
(if there is many instances of B and few instances of BC, an instance of A is
more likely to bind to a protein B, than to a complex BC).

3 Trace Semantics

We want to design a framework to automatically abstract logical models from
reaction networks. Following a formal approach, we will relate the behaviour of
the abstract model with the behaviour of the reaction network. Thus, the first
task is to provide a formal definition for the behaviour of reaction networks. In
this section, we describe this behaviour qualitatively in terms of a set of traces.
Partial information about reaction kinetics will be taken into account in Sect. 5.3.

Firstly, we give the definition of a reaction network.

Definition 1 (Reaction Network). A network R of n reactions is a pair
(ν, (Mr, Vr)1≤r≤n), where: (i) ν is a set of chemical species; (ii) for each integer
r between 1 and n, (a) Mr ∶ ν �→ N is a multi-set of chemical species, and (b)
Vr ∶ ν �→ Z is a reaction vector, such that Mr(x) + Vr(x) ≥ 0 for any x ∈ ν.
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In Definition 1, a pair (Mr, Vr) is called a reaction. In a reaction (Mr, Vr), the
multi-set Mr encodes the set of the reactants (with their multiplicities) whereas
the vector Vr denotes how many chemical species of each kind is produced and
consumed at each application of the reaction.

We can now formally define the set of transitions of a reaction network.

Definition 2 (Transition System). A reaction network R
Δ
=(ν, (Mr, Vr)1≤r≤n)

induces a transition system (QR, TR) where: (i) QR is the set Nν of the functions
between ν and N; (ii) TR is the subset of Nν × [[1, n]] ×Nν that contains all the
triple (q, r, q′) such that, for all chemical species x ∈ ν, (a) Mr(x) ≤ q(x) and
(b) q′(x) = q(x) + Vr(x).

In Definition 2, the notation [[1, n]] denotes the set of the integers between 1
and n. The set QR denotes all the potential states of the system. At this level
of abstraction, the state of the system describes the number of instances of each
kind of chemical species. The elements of TR are called the transitions of the sys-
tem. Transitions define the result of the applications of reactions. More precisely,
a triple (q, r, q′) ∈ TR denotes the fact that the system can jump from the state
q to the state q′ by applying the rule indexed by the integer r. Condition (2a)
ensures that enough reactants are available, whereas condition (2b) encodes the
consumption/production of the chemical species. We notice that the resulting
transition system is equivalent to a Petri net [3], in which each kind of chemical
species is denoted by a placeholder and each instance by a token.

Before defining the traces of a reaction network, we introduce some notations.
For any two sets A and Σ, and any subset T of the set A × Σ × A, we call a
pretrace of elements of A and transitions in T , any element of the set A×T ⋆. In
a pretrace τ

Δ
= (a′0, (ai, λi, a

′

i)1≤i≤k), the element a′0 (resp. a′k) is called the initial
(resp. final) state of the pretrace τ and is denoted as first(τ) (resp. final(τ)).
The second element of a pretrace is a (potentially empty) sequence of triples in
T . We call a trace any pretrace (a′0, (ai, λi, a

′

i)1≤i≤k) such that ai = a′i−1 for any
integer i between 1 and k. Lastly, given a triple (ak+1, λk+1, a

′

k+1) in T , we define
by τ ⌢ (ak+1, λk+1, a

′

k+1) the pretrace (a′0, (ai, λi, a
′

i)1≤i≤k+1).
We can now properly define the trace semantics of a reaction network.

Definition 3 (Trace Semantics). The set of traces that is induced by a reac-
tion network R and a set of initial states QR,0 ⊆ QR is defined as the set of the
traces τ of elements of QR and transitions in TR such that first(τ) ∈ QR,0.

We denote by TR,QR,0 the set of traces that is induced by the reaction network
R and the set of the initial states QR,0.

Following the abstract interpretation framework [5], we can also express the
trace semantics as the least fixpoint of a monotonic function over the powerset
℘(QR×T

⋆

R). Let FQR,0 be the function that maps each set X of pretraces into the
set of pretraces QR,0∪{τ ⌢ (q, r, q

′) ∣ τ ∈X ∧ (q, r, q′) ∈ TR ∧ q = final(τ)}. FQR,0

is a monotonic function (i.e. X ⊆ Y ⇒ FQR,0(X) ⊆ FQR,0(Y )) over a powerset,
thus it has a least fixpoint [16]. This least fixpoint, lfp FQR,0 , is indeed the set of
all the traces of the reaction network R (i.e. lfp FQR,0 = TR,QR,0). Moreover, the
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function FQR,0 is ∪-continuous (i.e. FQR,0(∪{Xj ∣ j ∈ J}) = ⋃{FQR,0(Xj) ∣ j ∈ J}
for any family (Xj)j∈J of sets of pretraces). It follows from [11] that the least
fixpoint of FQR,0 can also be expressed as the limit of the finite iterates of the
function FQR,0 (i.e. TR,QR,0 = ⋃{F

i
QR,0
(∅) ∣ i ∈ N}), which provides an iterative

algorithm to enumerate the traces of the network R.

4 Derivation of a Coarse-Grained Qualitative Semantics

The semantics described in Sect. 3 is too fine grained. In particular, each instance
of a protein is taken into account. Usually, in a qualitative model, the number
of instances of proteins is sampled within a finite number of intervals. In this
section, we will use the abstract interpretation framework to derive such an
abstraction. Abstract interpretation [5] is a unifying framework for the approx-
imation of mathematical structures. It offers formal tools to relate the observa-
tions of the behaviour of a system at different levels of details. It can also be
used to systematically derive static analysers (that provide effective definitions
of semantics at coarser levels of abstraction).

We use a simple version of the abstract interpretation framework that consists
in removing some information from values, states and traces. Our abstraction is
twofold. Firstly, we sample the number of instances of chemical species within a
finite number of intervals. Secondly, we remove in traces the transitions for which
the number of instances of each chemical species remain in the same interval.
To sample the number of instances and later the rate of reactions (see Sect. 5.3),
we partition the set R

+ over the p + 1 intervals [[0, δ[[, [[δi, δi+1[[ for each integer
i between 1 and p − 1, and [[δp,∞[[, where p and δ are integer parameters such
that δ≥2. We introduce a function βv to sample positive real numbers over this
partition as follows:

Definition 4 (Abstract Values). We define the function βv between the set
R
+ and the set [[0, p]] that maps each positive real number v ∈ R+ into the least

integer in the set {p} ∪ {k ∈ [[0, p]] ∣ v < δk+1}.

Then we lift the function βv over transition systems.

Definition 5 (Abstract Transition System). A reaction network R induces
an abstract transition system (Q ♯

R, T ♯

R) where: (i) Q
♯

R is the set [[0, p]]ν of the
functions between the set of the chemical species ν and the integer interval [[0, p]];
(ii) T ♯

R is the subset of [[0, p]]ν × [[1, n]] × [[0, p]]ν that is defined by (q ♯, r, q ♯′) ∈ T ♯

R

if and only if there exist (q, r, q′) ∈ TR such that q ♯ = βv ○ q and q ♯′ = βv ○ q′.

Thus, the abstract transition system is obtained by applying component-wise
the function βv in the states of the transition system and in the states that occur
in transitions. We denote by βs the function mapping each state q ∈ QR into the
abstract state βv○q ∈ Q ♯

R. Then we lift the abstraction βs to pretraces and traces.
We call an abstract pretrace (resp. trace) any pretrace (resp. trace) of elements of
Q ♯

R and transitions in T ♯

R. We denote by βt
1 the function between the set QR×T ⋆R

and the set Q ♯

R × T ♯ ⋆

R that maps each (concrete) pretrace (q′0, (qi, ri, q
′

i)1≤i≤k) to



200 W. Abou-Jaoudé et al.

the (abstract) pretrace (βs(q′0), (β
s(qi), ri, β

s(q′i))1≤i≤k). We notice that there
exists some abstract transitions (q ♯, r, q ♯′) ∈ T ♯

R such that q ♯ = q ♯′. Indeed, even
if a concrete transition changes the number of instances of a chemical species, this
does not always make it exit its sampling interval. We call such transitions silent
and we denote by T ♯

R/ε the set of the non silent abstract transitions. In order
to remove silent transitions, we define the function βt

2 between the set Q ♯

R ×T ♯ ⋆

R

and the set Q ♯

R × T ♯ ⋆

R/ε
, which maps each abstract pretrace (q ♯0

′, (q ♯i , ri, q ♯i
′)) to

the abstract pretrace (q ♯0
′, (q ♯

σ(i)
, rσ(i), q

♯

σ(i)
′ )), where σ(i) ranges over the set

{i ∈ [[1, k]] ∣ q ♯i ≠ q ♯i
′} in increasing order.

We denote by βt the composition of the function βt
2 and βt

1 and use this
function to abstract the computation of the trace semantics. Given a set of initial
states QR,0 ⊆ QR, we introduce the function F ♯

QR,0
over the set ℘(Q ♯

R × T ♯ ⋆

R/ε
)

that is defined as αt ○FQR,0 ○ γ
t, where: (i) the function αt maps each subset X

of QR × T ⋆R into the subset {βt(x) ∈ Q ♯

R × T ♯ ⋆

R/ε
∣ x ∈ X} of Q ♯

R × T ♯ ⋆

R/ε
(ii) and

conversely, the function γt maps each subset Y of Q ♯

R × T ♯ ⋆

R/ε
into the subset

{x ∈ QR × T ⋆R ∣ β
t(x) ∈ Y } of QR × T ⋆R. Given two subsets X ⊆ QR × T ⋆R and

Y ⊆ Q ♯

R×T ♯ ⋆

R/ε
, the property αt(X) ⊆ Y is equivalent to the property X ⊆ γt(Y ).

Such a pair of functions is called a Galois connection [5]. Intuitively, the parts of
the set Q ♯

R×T ♯ ⋆

R/ε
denote properties about the elements in QR×T ⋆R. The function

αt abstracts each set of elements in QR×T ⋆R into the most precise property they
satisfy (the fact that (αt, γt) is a Galois connection entails that the most precise
property always exists). Conversely, the function γt concretizes a property in
℘(Q ♯

R ×T ♯ ⋆

R/ε
) into the set of the elements which satisfy this property. We define

the Galois connections (αv, γv) (resp. (αs, γs)) between sets of concrete values
(resp. states) and sets of abstract values (resp. states) the same way.

The function F ♯
QR,0

is monotonic. Thus, by [16], it has a least fixpoint.

Definition 6 (Abstract Trace Semantics). The set of abstract traces T ♯

QR,0

that is induced by a reaction network R and a set of initial states QR,0 ⊆ QR is
defined as the least fixpoint lfp F ♯

QR,0
of the function F ♯

QR,0
.

The Galois connection (αt, βt) can be used to transfer the computation of
the concrete fixpoint TR,QR,0 = lfp FQR,0 in the abstract.

Theorem 1 (Fixpoint Transfer). For any reaction network R and any set
of initial states QR,0 ⊆ QR, the set lfp FQR,0 is a subset of the set γt(lfp F ♯

QR,0
).

We have used the Galois connection (αt, γt) so as to abstract the trace semantics.
Theorem 1 ensures that our abstraction is conservative, i.e. all the traces of the
concrete semantics are taken into account. Moreover, the set of abstract traces
can be computed by iterating the function αt ○ FQR,0 ○ γt. This consists in, at
each step, (a) computing the concretization of the set of traces, (b) making the
computation in the concrete, and (c) abstract the result.

The following property provides a direct way to make this computation with-
out going back and forth in the concrete and provides more intuition about what
information is lost with our abstraction. We introduce few notations: we denote
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by V∞ (resp. M∞) the greatest element of the set {∣Vi(x)∣ ∣ i ∈ [[1, n]], x ∈ ν}
(resp. of the set {Mi(x) ∣ i ∈ [[1, n]], x ∈ ν}); for any integer z ∈ Z, we define the
sign sign(z) of z as: (a) sign(0) Δ

= 0, and (b) sign(z) Δ
= z/∣z∣ if z ≠ 0; and for any

function f between two sets A and B and any elements y ∈ A and v ∈ B, we
define f[y ↦ v] as the function between A and B mapping the element y to the
element v, and any element x ∈ A ∖ {y} to the element f(x).

Property 1. The following assertions hold:

1. For any part Y ⊆ Q ♯

R × T ♯ ⋆

R/ε
, the set F ♯

QR,0
(Y ) is equal to the set αs(QR,0) ∪

{τ ♯ ⌢ (q ♯, r, q ♯′) ∣ τ ♯ ∈ Y ∧ (q ♯, r, q ♯′) ∈ T ♯

R/ε ∧ final(τ) = q ♯}.
2. For any abstract transition (q ♯, r, q ♯′) ∈ T ♯

R, if δ > V∞, then the value q ♯′(x) is
either equal to q ♯(x) or to q ♯(x) + sign(Vr(x)).

3. For any rule r and any abstract state q ♯ ∈ Q ♯

R, if δ > M∞, then, for any
chemical species y ∈ ν such that Vr(y) ≠ 0 and 0 ≤ q ♯(y) + sign(Vr(y)) ≤ p, we
have (q ♯, r, q ♯[y ↦ q ♯(y) + sign(Vr(y))]) ∈ T ♯

R.

Property 1.(1) provides an inductive definition to compute the set of the
abstract traces directly, without having to concretize the states. Property 1.(2)
establishes the fact that it is not possible to cross a whole interval in a single
transition. As formalised in Theorem1, the abstract trace semantics is a safe
over-approximation of the concrete trace semantics. Yet, this semantics intro-
duces spurious behaviours. In particular, Property 1.(3) establishes that it is
always possible to change the interval of a chemical species x ∈ ν in the direc-
tion given by the sign of Vr(x), when applying the rule that is indexed with the
integer r, unless the chemical species x ∈ ν is already in the first or in the last
interval of the partition. This is a very coarse abstraction, which will be refined
in the next section.

5 Refinements

As we have noticed in Sect. 4, the abstraction T ♯

QR,0
is very coarse. In particular,

it does not exploit the following three kinds of situations. Firstly, the number
of instances of chemical species may be entangled by some mass preservation
invariants. Secondly, when the number of instances of a chemical species enters a
new interval, it is sometimes possible to prove that there are not enough resources
in the system to make this number reach the next interval. Thirdly, our concrete
semantics is purely qualitative. We propose to add kinetic rates and abstract
them accurately in order to account for the potential races between reactions.

In this section, we propose three refinements of the abstract semantics to
formalise three corresponding classes of reasoning. These refinements are orthog-
onal: they can be combined by the means of a reduced product [5].

5.1 Mass Invariants

In the concrete semantics, the number of instances of the chemical species may
be related by some mass conservation equations. For instance, in our case study,
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the overall numbers of As, of Bs, and of Cs are constant. Thus the expressions
q(A)+q(AB)+q(ABC), q(B)+q(AB)+q(BC)+q(ABC), and q(C)+q(BC)+
q(ABC) keep the same values along a trace.

We are interested in constraints of the form∑αxq(x) = b for (αx)x∈ν ∈ N
ν and

b ∈ N (i.e. semi-positive constraints). There are several ways to obtain the semi-
positive constraints that are satisfied in a network. An algorithm that computes
a basis of the set of the semi-positive relationships in a reaction network is
proposed in [15]. Less costly but incomplete approaches can also be used: if we
know the protein composition of chemical species, we can detect by scanning the
set of the proteins and the set of the reactions which proteins are preserved by
each reaction, and infer the corresponding mass preservation invariants.

Mass preservation invariants are particular cases of trace invariants and can
thus be used to refine our abstraction. Let inv ⊆ QR × T ⋆R be a trace invariant
(formally, this means that FQR,0(inv) ⊆ inv). By [16], the concrete semantics is
the most precise of the trace invariants (i.e. TR,QR,0 = ⋂{X ∣ FQR,0(X) ⊆X}). In
particular, TR,QR,0 ⊆ inv. It follows that lfp FQR,0 = lfp F

INV

QR,0,inv, where F
INV

QR,0,inv

is defined as the function over the powerset ℘(QR × T ⋆R) mapping each subset
X ⊆ QR × T ⋆R to the set FQR,0(X) ∩ inv. The least fixpoints of both functions
FQR,0 and F

INV

QR,0,inv are equal, but the abstraction of the iterates of the latter
may be more precise. Let FINV ♯

QR,0,inv be the function αt○FINV

QR,0,inv○γ
t. The function

αt is ∩-complete, so the function F
INV ♯

QR,0,inv is equal to [Y ↦ F ♯
QR,0
(Y )∩αt(inv)].

The iterates of the function F
INV ♯

QR,0,inv provide another effective way, more precise
but still sound, to abstract the trace semantics:

Theorem 2 (Abstract Trace Semantics with Invariants). Let Q′R,0 be a
subset of QR,0 and inv be a part of TR,QR,0 such that FQ′

R,0
(inv) ⊆ inv.

Then, we have: TR,Q′
R,0
⊆ γt(lfp [Y ↦ F ♯

Q
′
R,0
(Y ) ∩ αt(inv)]).

In Theorem 2, we have partitioned the traces [2,14] to separate the compu-
tation of their abstraction according to their initial states. This leads to a more
accurate abstraction whenever some pairs of initial states do not share the same
invariants.

When the trace invariant is a set of semi-positive constraints, the following
property gives an explicit definition for the term αt(inv).

Property 2 (mass invariant separation). Let (ax)x∈ν ∈ N
ν ∖ {0}ν be a family of

positive integer coefficients (with at least one not equal to 0), b ∈ N be a positive
integer coefficient, and q ♯ be an abstract state in Q ♯

R. We denote by S the sum
of the coefficients ax for any chemical species x ∈ ν and we introduce, for any
abstract state q ♯, q ♯max as the maximum element of the set {k ∈ [[0, p]] ∣ ∃x ∈
ν, ax > 0 ∧ k = q ♯(x)}. We further assume that S < δ. Then, if either Sδβv

(b) ≤
b or βv(b) = 0, the set αs({q ∈ QR ∣ b = ∑x∈ν αxq(x)}) is equal to the set
{q ♯ ∈ Q ♯

R ∣ q
♯

max = βv(b)}. Otherwise, it is equal to the set {q ♯ ∈ Q ♯

R ∣ q
♯

max ∈
{βv(b) − 1, βv(b)}}.

Property 2 has a flavour of tropical algebræ [13]. In particular, whenever the
affine constants of mass preservation invariants are far enough from the lower
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bound of their sampling interval, the abstraction of the number of instances of
a protein is equal to the abstraction of the number of instances of the most
abundant chemical species containing this protein.

5.2 Watching Interval Boundaries

So far, we have approximated the number of instances of each chemical species by
means of intervals. This is a quite coarse abstraction. Indeed, when the number
of instances of a chemical species enters a new interval, there is no way to predict
whether or not there may be enough resources in the system so that it may reach
and enter the next interval. For instance, in our case study, when the system is in
a state q ∈ QR such that βs(q)(A), βs(q)(C) and βs(q)(ABC) are all equal to
0, it may be possible to reach a state q′ such that βs(q′)(ABC) = 1, because (1)
the number of instances of ABC may be close to δ, and (2) there may be enough
instances of A to cross this threshold. But, after this, there will be not enough
instances of A to reach a state q′′ such that βs(q′′)(ABC) > 1. We formalise this
kind of reasoning and refine our abstraction accordingly.

We focus on proving that the number of instances of some chemical species
cannot cross their current interval upwards (the dual case can be dealt with the
same way). We assume that δ > 2V∞. Given a state q ∈ QR and a chemical species
x ∈ ν, we write q ⊧ x↑̸ if either the value q(x) is in the interval [[δβv(q(x)), δβv(q(x))+
V∞]] or if there is no concrete trace τ in TR,{q} such that βv(final(τ)(x)) >
βv(q(x)). We denote by C↑̸ the set {x↑̸ ∣ x ∈ ν}.

We update the definitions of abstract states and abstract traces to take
into account the constraints in C↑̸. Formally, an abstract state is now an ele-
ment of Q ♯

R × ℘(C↑̸). The first component encodes the intervals for the num-
ber of instances of chemical species, whereas the second component is a set
of constraints that specifies which chemical species may eventually cross their
current intervals upwards. We also define a refined abstraction function βs

↑̸
by

βs
↑̸
(q)

Δ
= (βs(q),{c ∈ C↑̸ ∣ q ⊧ c}). We denote by βt

↑̸
the function mapping each

concrete trace τ ∈ TR,QR,0 to the trace obtained by firstly replacing in the trace τ
every state q with its abstraction βs

↑̸
(q) and by secondly removing silent moves.

The Galois connection that is induced by βs
↑̸

(resp. βt
↑̸
) is denoted as (αs

↑̸
, γs
↑̸
)

(resp. (αt
↑̸
, γt
↑̸
)).

Iterating the most precise counterpart αt
↑̸
○ FQR,0 ○ γt

↑̸
to the function FQR,0

would be very costly. Thus we iterate an over-approximation of it instead. We
define esc as the set of the triples (q ♯, x↑̸, r) ∈ Q ♯

R × C↑̸ × [[1, n]] such that there is
a concrete trace τ ∈ TR,QR

which satisfies: (i) βs(first(τ)) = q ♯, (ii) first(τ) ⊧ x↑̸,
(iii) βs(first(τ))(x) < βs(final(τ))(x), (iv) Vr(x) > 0, (v) there exists a transition
in τ with the label r. Intuitively, the set esc contains all the triples (q ♯, x↑̸, r) such
that, whenever the system is in a state q ∈ γs({q ♯}) satisfying q ⊧ x↑̸, the number
of instances of the chemical species x may eventually cross the upper bound of
its current interval, in a trace that contains at least one application of the rule
indexed by the integer r. So as to offer a choice of trade-off between accuracy
and efficiency, we introduce a superset esc ♯ of esc, considered as a parameter of
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our abstraction. Intuitively, whenever a triple (q ♯, x↑̸, r) ∈ esc ♯, it means that our
approximation has failed in proving that the number of instances of the species
x will never cross its current interval upwards.

We can now refine the set of the transitions of the abstract semantics.

Definition 7 (Abstract Transitions). We denote by T cross ♯

esc ♯ the set of the
triples ((q ♯,C), r, (q ♯′,C′)) in (Q ♯

R × ℘(C↑̸)) × [[1, n]] × (Q ♯

R × ℘(C↑̸)) such that:

1. either (a) (q ♯, r, q ♯′) ∈ T ♯

R, (b) ∀x↑̸ ∈ C, q ♯′(x) ≤ q ♯(x), and (c) C′ = (C ∪
{x↑̸ ∣ x ∈ ν ∧ q ♯′(x) > q ♯(x)}) ∖ {x↑̸ ∣ x ∈ ν ∧ q ♯′(x) < q ♯(x)},

2. or (a) q ♯′ = q ♯ and there exists a constraint c ∈ C↑̸ such that: (b) C′ = C ∖{c},
and (c) (q ♯, c, r) ∈ esc ♯.

We distinguish between two kinds of transitions in Definition 7. The first ones
consist in regular computation steps: they apply reactions that are allowed and
do not violate the constraints about the capability of the chemical species to cross
their intervals. After such reactions, the set of the chemical species that have just
entered a new interval from below (resp. above) is recorded in (resp. removed
from) the set of the constraints. The second kind of transitions consists in remov-
ing a constraint where we are unable to prove that the corresponding chemical
species will never cross its current interval upwards.

Let T cross ♯

esc ♯ be the set of pretraces of elements of Q ♯

R × ℘(C↑̸) and transitions
in T cross ♯

esc ♯ . Given a set of initial states QR,0 ⊆ QR, we consider the function
F

cross ♯

QR,0,esc ♯ over the set ℘(T cross ♯

esc ♯ ) mapping each subset Y of T cross ♯

esc ♯ to the subset
αs
↑̸
(QR,0) ∪ {τ ♯ ⌢ (q ♯, r, q ♯

′) ∣ τ ♯ ∈ Y ∧ (q ♯, r, q ♯′) ∈ T cross ♯

esc ♯ ∧ final(τ ♯) = q ♯}. The
function F

cross ♯

QR,0,esc ♯ is monotonic and satisfies [αt
↑̸
○FQR,0 ○γ

t
↑̸
](Y ) ⊆ Fcross ♯

QR,0,esc ♯(Y )

for any subset Y of T cross ♯

esc ♯ . By [5], it follows that our approach is sound:

Theorem 3 (Soundness). The function F
cross ♯

QR,0,esc ♯ has a least fixpoint. More-
over, we have: lfp FQR,0 ⊆ γt

↑̸
(lfp F

cross ♯

QR,0,esc ♯).

The following property proposes a trade-off for the definition of the primitive
esc ♯, based on a linear integer decision procedure.

Property 3. Let (q ♯, x↑̸, r) ∈ esc ♯. We have q ♯(x) ≠ p and there exists a function
w ∈ N

[[1,n]] such that: (i) w(r) > 0, (ii) δq ♯(x) + V∞ + Vw(x) ≥ δq ♯(x)+1, and
(iii) ∀x′ ∈ ν, q ♯(x′) ≠ p ⇒ δq ♯(x′)+1 + Vw(x) > 0, where for any chemical species
x′ ∈ ν, Vw(x) denotes the value of the expression ∑1≤r′≤n w(r′)Vr′(x

′).

5.3 Scales Separation

In our case study, when there are a lot of Bs and only a few BCs in the system,
so as to capture the sequestration effect properly, we have to neglect the binding
reaction between the chemical species A and BC. Thus we have to exploit the
separation between different time scales. According to the modelling paradigm,
several methods are used for the formalisation of the separation between time
scales. In the logical approach, we usually assume that a reaction preempts any
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other much slower reactions. In the tropical approach, special care is taken not
to neglect the reactions which are involved in large time relaxations of fast cycles
[13]. Another approach consists in encoding scales separation by the means of
fairness hypotheses that bound the frequencies of slow reaction steps.

In this section, we propose (1) a generic method to formalise assumptions about
time scale separation and (2) a systematic way to lift these assumptions to the
abstract semantics. We start from a given scheduler S. Formally, S is a function
between the set QR ×T ⋆R and the set ℘([[1, n]]). Intuitively, the scheduler restricts
the set of the reactions which can be computed immediately after a (pre)trace. We
refine the concrete semantics accordingly: we define T time

R,QR,0,S as the least fixpoint
of the monotonic function F

time

QR,0,S , which maps any set X ⊆ QR × T ⋆R of pretraces
to the set QR,0 ∪ {τ ⌢ (q, r, q

′) ∣ τ ⌢ (q, r, q′) ∈ FQR,0(X) ∧ r ∈ S(τ)}.
Now we lift the action of the scheduler S to the abstract semantics. For this

end, we introduce, as a parameter of our analysis, a function S ♯ between the
set Q ♯

R × T ♯ ⋆

R/ε
and ℘([[1, n]]) such that for any concrete trace τ ∈ T time

R,QR,0,S and
any transition (q, r, q′) ∈ TR that satisfy (i) final(τ) = q, (ii) βs(q) ≠ βs(q′),
and (iii) r ∈ S(τ), we have r ∈ S ♯(βt(τ)). Intuitively, a reaction r is in the set
S ♯(τ ♯) whenever our approximation fails in proving that no trace τ ∈ γt(τ ♯) can
be continued by applying the reaction r while changing the sampling interval of
at least one chemical species. We introduce the function F

time ♯

QR,0,S ♯ over ℘(Q ♯

R ×

T ♯ ⋆

R/ε
) that maps each subset Y of Q ♯

R × T ♯ ⋆

R/ε
to the subset αs(QR,0) ∪ {τ ♯ ⌢

(q ♯, r, q ♯′) ∣ τ ♯ ⌢ (q ♯, r, q ♯′) ∈ F ♯
QR,0
(Y ) ∧ r ∈ S ♯(τ ♯)}. The function F

time ♯

QR,0,S ♯

is monotonic and satisfies [αt ○ Ftime

QR,0,S ○ γt](Y ) ⊆ F
time ♯

QR,0,S ♯(Y ), for any subset
Y ⊆ Q ♯

R × T ♯ ⋆

R/ε
. By [5], it follows that our approach is sound:

Theorem 4. (Soundness). The function F
time ♯

QR,0,S ♯ has a least fixpoint. More-
over, we have: lfp F

time

QR,0,S ⊆ γt(lfp F
time ♯

QR,0,S ♯).

Let us instantiate our framework. For the sake of simplicity, we opt for the
assumptions used in logical modelling, all the more so since there are no large
time relaxation of fast cycles in our example. To each integer r ∈ [[1, n]], we
associate a kinetic function kr between the set QR and the set ℘(R+) ∖ {∅}.
The set kr(q) denotes the potential propensity of the reaction indexed by r
in the state q according to the (maybe partial) information that we may have
about the rate of this reaction. The separation between time scales is encoded
by a subset Sep of (R+)2 satisfying: (i) for any (x, y) ∈ Sep, x < y; (ii) for any
x, y, x′, y′ ∈ R+, if (x, y) ∈ Sep, x′ ≤ x, and y ≤ y′, then (x′, y′) ∈ Sep. Intuitively,
a pair (x, y) belongs to the set Sep when the value y is much greater than
the value x. We define the concrete scheduler S as the function mapping each
pretrace τ ∈ QR × T ⋆R to the set of the reactions r such that for all reactions r′,
we have kr(final(τ)) × kr′(final(τ)) /⊆ Sep, meaning that the reaction r may be
fast enough to exclude preemption by any other reaction.

In Property 4, we abstract away the dependency with respect to the concrete
state final(τ) so as to get an effective instantiation for the parameter S ♯.
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Property 4. Let (q ♯, r) be a pair in Q ♯

R × [[1, n]]. For any integer r′ ∈ [[1, n]],
we denote by k ♯r′(q

♯) the set of real values αv(⋃{kr′(q) ∣ q ∈ γs({q ♯})}). If
(max(k ♯r(q ♯)),min(⋃{k ♯r′(q

♯) ∣ r′ ∈ [[1, n]]})) ∈ Sep, then for any integer r′ ∈ [[1, n]]
and any state q ∈ γs({q ♯}), we have (max(kr(q)),min(kr′(q))) ∈ Sep.

6 Conclusion

We have designed a formal framework to derive qualitative dynamical models
from reaction networks. The results of the analysis of our case study is detailed
in an extended version [1]. Interestingly, we can capture the sequestration effect:
we can prove that when the number of instances of the protein B is very high
(level 4) and those of the proteins A and C are low (level 2) in the initial state,
then the number of instances of the complex ABC remains very low (levels 0,
1).

Our methodology offers a new trade-off between complexity and accuracy. It
captures interesting properties that are beyond the scope of purely qualitative
abstractions [6] and avoids the integration of numerical equations [10,13]. Our
framework is purely formal and provides a better understanding of the qual-
itative modelling process, by clarifying the underlying assumptions. Interest-
ingly, we notice that our approach often requires more intervals than in tropical
approaches [13]. This is not so surprising, since in tropical approaches two con-
secutive intervals are assumed to be infinitely far from each other, whereas in
our approach they contain arbitrarily close elements. One current limitation of
our method is that we use one variable per chemical species, leading to a combi-
natorial explosion of the dynamics as the model size increases. To cope with this
limitation, we plan to extend our framework to the reduced reaction networks
obtained by the fragmentation [7,8] of the models written in the kappa language.
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Abstract. Experimental observations have put in evidence autonomous
self-sustained circadian oscillators in most mammalian cells, and proved
the existence of molecular links between the circadian clock and the cell
cycle. Several models have been elaborated to assess conditions of con-
trol of the cell cycle by the circadian clock, in particular through the
regulation by clock genes of Wee1, an inhibitor of the mitosis promot-
ing factor, responsible for a circadian gating of mitosis and cell divi-
sion period doubling phenomena. However, recent studies in individual
NIH3T3 fibroblasts have shown an unexpected acceleration of the cir-
cadian clock together with the cell cycle when the milieu is enriched in
FBS, the absence of such acceleration in confluent cells, and the absence
of any period doubling phenomena. In this paper, we try to explain these
observations by a possible entrainment of the circadian clock by the cell
cycle through the inhibition of transcription during mitosis. We develop
a differential model of that reverse coupling of the cell cycle and the
circadian clock and investigate the conditions in which both cycles are
mutually entrained. We use the mammalian circadian clock model of
Relogio et al. and a simple model of the cell cycle by Qu et al. which
focuses on the mitosis phase. We show that our coupled model is able to
reproduce the main observations reported by Feillet et al. in individual
fibroblast experiments and use it for making some predictions.

1 Introduction

Most organisms, from bacteria to plants and animals, have a circadian clock
present in each cell, generally in the form of a self-sustained genetic oscillator
entrained by the day/night cycle through various mechanisms. This circadian
clock has many effects on the cell including its metabolism [13]. Experimental
results have also shown a regulation of the cell division cycle by the circadian
clock [2,16,23], with possible applications to cancer chronotherapies [1,7]. Molec-
ular links between these two cycles have been exhibited to explain this regulation.
In particular the regulation of Wee1, an inhibitor of the mitosis promoting fac-
tor, by the clock genes, induces a circadian gating of mitosis to particular clock

c© Springer International Publishing Switzerland 2015
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phases and can result in a synchronization of cell division with a 24 h period or
48 h period with period doubling phenomena [8]. Other similar molecular links
going in the same direction, through p21 [14] and cMyc [17], have been shown
in the literature. A few models have also been developed to further investigate
those hypotheses, by coupling a model of the cell cycle with a model of the cir-
cadian clock through those direct molecular links, and analyze the conditions of
entrainment in period [6,12].

Several studies using large-scale time-lapse microscopy to monitor circadian
gene expression and cell division events in real time and in individual cells during
several days have unveiled unexpected behaviours, hinting that the relationship
might be more complex. Nagoshi et al. [8] have first shown that circadian gene
expression in fibroblasts continues during mitosis, but with a consistent pattern
in circadian period variation relatively to the circadian phase at division, leading
them to hypothesize that mitosis elicits phase shifts in circadian cycles. However,
a more recent study of Bieler et al. [3] relating the same experiments on dividing
fibroblasts found the two oscillators synchronized in 1:1 mode-locking leading
the authors to hypothesize a predominant reverse coupling in NIH3T3 cells.
This is in agreement with another study of Feillet et al. [11] which found several
different synchronization states in NIH3T3 fibroblasts in different conditions
of culture. It was observed there that enriching the milieu with Foetal Bovine
Serum (FBS) not only accelerates the cell division cycle but also the circadian
clock. For cells cultured in 10 % FBS, both distributions of the cell cycle length
and the circadian clock period are centered around 22 h. For cells cultured in
15 % FBS, both the cell cycle and the circadian clock accelerate, with period
distributions centered around 19 h. However, when cells reach confluence and
stop dividing, the circadian clock slows down and the period distribution is then
centered around 24 h. None of the currently available models coupling the cell
cycle and the circadian clock can explain these observations since they are based
on an unidirectional influence of the circadian clock on the cell cycle [6,12].

In this paper, we hypothesize that the inhibition of transcription during mito-
sis in eukaryotes [24] constitutes a reverse interaction from the cell cyle to the
circadian clock, which can enable an entrainment of the circadian clock by the
cell cycle and can explain the acceleration of the circadian clock in non-confluent
cells when the concentration of FBS increases. We develop a differential model
of this reverse coupling from the cell cycle to the circadian clock and investigate
the conditions in which both cycles are mutually entrained. We use the mam-
malian circadian clock model of Relogio et al. [19] and a simple model of the
cell cycle by Qu et al. [18] which focuses on the mitosis phase. We show that
our coupled model is able to reproduce the observations on periods reported by
Feillet et al. [11] in individual fibroblast without treatment by Dexamethasone.
Furthermore we argue that the complex behaviors observed with high variability
after treatment by Dexamethasone, modeled by the induction of a high level of
Per and the inhibition of the other clock core genes, can be explained by the
perturbation of the clock after this treatment. In our model, the stabilization
time after that pulse appears to be greater than the time horizon used in those
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experiments. Our results are thus compatible with the observations on the peri-
ods and phase locking modes of [11], however, the observations on the precise
phase shift between the mitosis time and the circadian clock REV-ERB-α pro-
tein peaks reported in [11] are not reproduced by our model, nor are they by the
other coupled models of [6,12]. This intriguing remaining difficulty is discussed
at the end of the paper.

The methodology used to perform these investigations is based on a formal
specification of the observed behavior with temporal logic patterns [10,22] which
are used in the BIOCHAM modeling environment [5] for parameter search [21]
and robustness and sensitivity analysis [20]1.

2 Experimental Observations and Their Specification in
Temporal Logic

2.1 Experimental Data

In this section we explain the experiments and analysis performed in [11] and
the conclusions drawn by the authors. The reported experiments have been done
using cell tracking and time-lapse image analysis of various fluorescent markers
of the cell cycle and the circadian clock observed during 72 h in proliferating
NIH3T3 mouse fibroblasts.

These cells were modified to include three fluorescent markers of the circadian
clock and the cell cycle: the REV-ERB-α::Venus clock gene reporter for measur-
ing the expression of the circadian protein REV-ERB-α, and the Fluorescence
Ubiquitination Cell Cycle Indicators (FUCCI), Cdt1 and Geminin, two cell cycle
proteins which accumulate during the G1 and S/G2/M phases respectively, for
measuring the cell cycle phases.

The cells were left to proliferate in regular medium supplemented with dif-
ferent concentrations of FBS (10 %, 15 % and 20 %). Long-term recording was
performed in constant conditions with one image taken every 15 min during 72 h.
Cell division times were also measured during the tracking of cell lineages. Cell
cycle length was measured as the time interval between two consecutive cell
divisions and a piece-wise linear model fitted to both markers of the cell cycle
extracted the time of the G1-S transitions.

The expression traces of REV-ERB-α were detrended and smoothed, and
spectrum resampling was used to estimate the clock period. Cells with less than
two REV-ERB-α peaks within their lifetime, a period length outside the interval
between 5 h and 50 h or a relative absolute error (RAE) bigger than 0.25 (showing
a confidence interval wider than twice the estimated period) were classified as
non-rhythmic and discarded, assuming that they do not have a functioning clock.

Furthermore, a series of experiments were done with a pulse of Dexametha-
sone (Dex) before recording. This glucocorticoid agonist is known to exert a
resetting/synchronizing effect on the circadian molecular clocks in cultured cells

1 The models and the specification used in this paper are available on http://lifeware.
inria.fr/wiki/software/cmsb15.

http://lifeware.inria.fr/wiki/software/cmsb15
http://lifeware.inria.fr/wiki/software/cmsb15
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through the induction of Per1. In that case the cells were incubated for 2 h in
the same medium supplemented with Dex, just before returning to a Dex-free
medium for the recording.

The quantitative data on the periods of the cell cycle and the circadian clock
are summarised in the Table 1 [11]. Cells non-treated with dexamethasone show
a similar period for the cell cycle and the circadian clock both in 10 % and 15 %
FBS conditions. Interestingly, increasing FBS significantly decreases both mean
periods of the clock and the cell cycle, from 21.9 h to 19.4 h and from 21.3 h
to 18.6 h respectively, showing that both oscillators remain unexpectedly in 1:1
mode locking. While the speedup of the cell cycle can be directly attributed to
the growth factors in increasing concentration of FBS, it can not account for the
speedup of the clock the same way, since confluent cells keep a 24-h period for
the circadian clock independently of the FBS concentration.

Table 1. Estimated periods of the circadian molecular clock and the cell division
cycle measured in [11] in fibroblast cells for various concentrations of FBS, with and
without dexamethasone. The experiment done with 20 % FBS have been clustered by
the authors of [11] in two groups with different periods.

Medium No dexamethasone Dexamethasone

Clock period Division period Clock period Division period

FBS 10 21.9 h ± 1.1 h 21.3 h ± 1.3 h 24.2 h ± 0.5 h 20.1 h ± 0.94 h

FBS 15 19.4 h ± 0.5 h 18.6 h ± 0.6 h NA NA

FBS 20 NA NA 21.25 h 19.5 h

FBS 20 NA NA 29 h 16 h

The results are more complex in the case of the cells treated with dexametha-
sone. Cells in 10 % FBS show an increased clock period and a low cell cycle period,
with an overall ratio of 5:4. In 20 % FBS the cell lineages are dominated by two
groups. The first group shows close periods, i.e. a 1:1 mode-locking similarly to the
experiments without dexamethasone. The second group shows a high clock period
and a fast cell cycle, with an overall ratio close to 3:2 between the clock and cell
cycle, explaining the three-peaks distribution of the circadian phase, as already
observed by Nagoshi et al. [8] ten years before. It has to be noted that the 20 %
FBS dexamethasone-synchronized experiment was repeated with similar results
available in the Supplementary Information of [11], although the distribution of
the period ratios for the second group is wider in the interval [1.2 − 2].

In [11], the authors suggest that these observations might be interpreted by the
existence of distinct oscillatory stable states coexisting in the cell populations, in
particular with 5:4 and 1:1 phase-locking modes for the condition 10 % FBS, and
3:2 and 1:1 phase-locking modes for the condition 20 % FBS, and that the dex-
amethasone could knock the state out of the 1:1 mode toward other attractors. A
mechanistic explanation remains to be found to support this interpretation. In this
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paper, we investigate a simpler hypothesis of entrainment of the circadian clock
by cell divisions through the inhibition of transcription during mitosis and show
with a model that this hypothesis can explain the observations on the periods.

2.2 Temporal Logic Specification

For the analysis of the dynamical behavior of the system, we rely on the formal-
isation of the oscillatory properties in quantitative temporal logic with simple
formula patterns [10,22], which allow us to combine qualitative properties of
oscillations and quantitative properties on the shapes of the traces such as dis-
tances between peaks or peak amplitudes. This is useful to capture the periods
on both experimental and simulated traces, even when the traces are noisy. We
use flexible constraints on the amplitudes and regularity of the peaks to filter
out traces, keeping only sustained oscillations even with small irregularities, as
it is the case for example on the Fig. 7.

For instance, the following formula is used to compute the period of REV-
ERB-α in a trace:

distanceSuccPeaks([RevErb::nucl],[period],[80]) &

Exists([maxdiff1,maxdiff2,maxpeak],

maxDiffDistancePeaks([RevErb::nucl],[maxdiff1],[80])

& maxDiffAmplPeaks([RevErb::nucl],[maxdiff2],[80])

& maxAmplPeaks([RevErb::nucl],[maxpeak],[80])

& 4*maxdiff1<period+errordiff1

& 10*maxdiff2<maxpeak+errordiff2

& maxpeak>0.1+errorampl)

The period constraint on the oscillations of REV-ERB-α is expressed by
the formula pattern distanceSuccPeaks, whose validity domain provides all the
values of the distances between peaks of concentrations of REV-ERB-α [10],
after a transient time of 80 h to avoid irregularities caused by the initial state.

Moreover, the formula patterns maxDiffDistancePeaks, maxDiffAmplPeaks,
and maxAmplPeaks capture several variables characterizing irregularity features
of the trace: errordiff1 for the irregularities in distances between peaks, errordiff2
for the irregularities in the amplitudes of the peaks, and errorampl for a small
concentration amplitude. Setting then thresholds on these variables ensures that
unwanted traces are filtered out.

These logical formulae can then be used in a modeling environment such as
BIOCHAM [5] in a variety of ways for data analysis [9], model parameter search
in high dimension and robustness and sensitivity measures [4,20,21].

3 Mathematical Models and Their Coupling

3.1 Model of the Cell Cycle

The cell cycle of somatic cells is composed of four phases: DNA replication (S
phase) and chromosome segregation or mitosis (M phase), separated by two gap
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phases (G1 and G2). At the center of the cell cycle regulation, there is a group
of proteins, the cyclin-dependent kinases, which are complexes composed of a
kinase and a cyclin partner determining the specificity of the complex. Each
phase of the cell cycle is controled by a specific cylin-dependent kinase.

For our purpose, it is sufficient to use a model focusing on the G2-M transi-
tion which leads to mitosis. We use a model proposed by Qu et al. [18] in which
the cell cycle is divided in two different phases, the G1-S-G2 and M phases. The
M phase is triggered by the complex CDC2/CYCLIN B. This complex appears in
two forms, an active form called MPF (M-phase Promoting Factor) and a phos-
phorylated, inactive form called preMPF. MPF is phosphorylated and inactivated
by the kinase WEE1, and dephosphorylated and activated by the phosphatase
CDC25. Both the kinase and phosphatase activities are themselves regulated by
MPF, respectively inactivated and activated by the complex (Fig. 1).

Fig. 1. Schema of the cell cycle model of Qu et al. [18].

The mechanism by which changing the concentration of FBS modulates the
cell cycle length is unclear, and probably involves an increase in growth factors. In
this model, we assessed the effect of each reaction rate constant on the period of
the concentrations and found that two parameters were particularly significant
to change the period: kdie, the degradation rate of the intermediary enzyme
involved in the negative feedback loop between MPF and the proteasome APC,
and kampf, the activation of MPF by CDC25P. Both are able to change widely
the range of the cell cycle period without changing significantly the strength of
the coupling, and should thus provide the same effect, so we choose one of them,
kampf, to modulate the cell cycle period. We shall use the following values for
kampf : 3.75 for a cell division period of 21.3 h (corresponding to 10 % FBS), 12.1
for a period of 18.6 h (15 % FBS).

More detailed models distinguishing the four phases of the cell cycle of course
exist, such as [12] for instance, making possible to represent various regulations
from the circadian clock genes, for instance through WEE1 during M-phase and
through p21 and Cmyc during the S-phase. However, since the consequences of
those regulations have not been observed in the experimental data described in
the previous section, we concentrate here on the reverse effect of the cell cycle
on the circadian clock by transcription inhibition during mitosis, for which the
simpler two phase model of Qu et al. [18] is sufficient.
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Fig. 2. Left: Simulation of the cell division cycle model of Qu et al. Right: Period of
the cell division cycle (measured as the distance between successive peaks of MPF) as
a function of the parameter kampf for MPF activation by CDC25P in the model of
Qu et al.

3.2 Models of the Circadian Clock

In many organisms, spontaneous gene expression oscillations with a period close
to 24 h have been observed. A biochemical clock present in each cell is responsi-
ble for maintaining these oscillations at this period. The central circadian clock
in the suprachiasmatic nucleus (SCN) is sensitive to light and entrained by the
day-night alternation, allowing molecular clocks in peripheral tissues to be syn-
chronised by central signals. Indeed, Schibler and Nagoshi [8] have shown that
in absence of synchronisation by the central clock, autonomous circadian oscil-
lators are maintained in peripheral tissues with the same period, although they
are progressively desynchronized.

In mammalian cells, two major proteins are transcribed in a circadian man-
ner, CLOCK and BMAL1 which bind to form a heterodimer responsible for the
transcription of several genes involved in intertwined feedback loops such as Per
(Period), Cry (Cryptochrome), Rev-Erb-α or Ror. The newly-formed proteins
then affect their own synthesis as PER and CRY associates to inhibit the activity
of the complex CLOCK/BMAL1. REV-ERB-α has a similar effect and these two
negative feedback loops give rise to sustained oscillations. Moreover, two positive
feedback loops provided by the activation of Bmal1 by ROR and the activation
of Cry by REV-ERB-α are believed to bring more robustness to the oscillator.

In this paper we use the circadian clock model of Relogio et al. [19] which
has been fitted on suprachiasmatic cells with precise data on the amplitude and
phases of the different components. This model is composed of 20 species, 71
parameters, and all the feedback loops described above.

3.3 Coupling from the Cell Cycle to the Circadian Clock by the
Inhibition of Transcription During Mitosis

It is known that in eukaryotes, gene transcription is significantly inhibited during
mitosis [24]. In particular, the transcription inhibition of clock genes during
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Fig. 3. Simulation of the Circadian Clock model of Relogio et al.

mitosis and its impact on the circadian oscillator by shifting the phase of the
circadian cycle has been shown in [15].

In this paper, we model the inhibition of clock genes transcription during
mitosis with a negative Hill kinetics for mRNA synthesis taking the ratio between
the concentrations of MPF and preMPF as inhibiting factor. The kinetics of
mRNA synthesis reactions are thus modified as follows

S ∗ Jn

Jn + ([MPF ]/[preMPF ])n

where S is the original synthesis rate parameter in the model of Relogio et al. [19]
and n is taken equal to 4 to mimic the abrupt inhibition of transcription when
mitosis occurs. Transcription is thus inhibited when the ratio [MPF ]/[preMPF ]
is high.

This modelling enforces the fact that for quiescent cells, whatever the FBS
concentration, the transcription rate will be close to S and therefore the clock
close to a period of 24 h.

4 Computational Results

As shown in the right panel of Fig. 2, it is possible to simulate the experimental
milieu enrichment with 10 or 15 % FBS by varying the parameter kampf of the
cell cycle model to obtain the same values for the period of the cell division
cycle. The coupling of this model to the circadian clock uses two parameters:
the coupling strength J, and the order n of the Hill function. In the results
reported in this section, we chose J = 2 and n = 4, two of the smallest values
found through our parameter search procedure.

Figure 4 shows the variation of the period of REV-ERB-α when the two para-
meters kampf and J vary. The value of the period is captured with a temporal
logic specification as seen in the Subsect. 2.2. Two domains can be distinguished
in this parameter space: in the domain on the top left (above the black line) the
clock keeps its period constant and close to 24 h, thus it is not entrained. On the
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Fig. 4. Periods of REV-ERB-α as a function of kampf for varying the cell
cycle period, J, the strength of transcription inhibition during mitosis. Land-
scape computed as the satisfaction degree of the formula distanceSuccPeaks

([RevErb::nucl],[period],[transT]) which defines the period of REV-ERB-α
after a transient time transT= 80, and with an objective of 24 h for the period. Full
satisfaction in yellow indicates a period of 24 h for REV-ERB-α, while the other colours
indicate the absolute difference to 24 h (Colour figure online).

Table 2. Measured in the coupled model with different values of kampf for modeling
the different culture conditions.

kampf FBS % Circadian clock period (h) Cell division period (h)

3.75 10 21.43 21.30

12.1 15 18.60 18.60

1.6 5? 26.16 26.32

contrary, in the domain on the bottom right (below the black line) the clock is
entrained to the same period as the cell cycle. One can see that using a different
value for J would have led to different values for kampf in Table 2.

4.1 Comparison to Experimental Data Without Dexamethasone

Table 2 shows the periods of the circadian clock and the cell division cycle in our
model with different values of kampf corresponding to the different culture con-
ditions. In all cases, the cell division manages to entrain the circadian clock (that
has a free period around 24 h) to its period, simply through this mechanism of
transcription inhibition, as depicted in Figs. 5 and 6 left panel. These simulation
results reproduce quite well the data of Table 1 when there is no treatment by
Dex. Note that our model can also have a cell division time higher than 24 h, for
instance with kampf =1.6 which might correspond to a concentration of FBS
around 5 %. In that case we predict that the cell cycle will still entrain the circa-
dian clock, lowering its period, even if our simulations show a longer transitory
period, as depicted in Fig. 6 (right panel).
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Fig. 5. Entrainment to a period around 21.3 h with kampf = 3.75 corresponding to
a milieu enriched with 10 % FBS. The same simulation including more clock genes is
shown on the right to compare with Fig. 3.

Fig. 6. Left: Entrainment to a period around 18.6 h with kampf = 12.1 corresponding
to a milieu enriched with 15 % FBS. Right: Entrainment to a period around 26.3 h
with kampf = 1.6 corresponding to a poor milieu (FBS 5 %?), as predicted by our
model. Note that the Circadian clock takes more time to adjust to this lengthening of
its period.

4.2 Comparison to Data with Dexamethasone

In order to take into account the experiments with Dexamethasone, the model
can be extended with an event, lasting for two hours, and inducing Per mRNA
while inhibiting the other clock genes.

Figure 7 shows that in our models, regardless of the milieu (i.e. of the value
of kampf ), the Dex pulse results in a perturbation of the clock and then returns
to the observed entrainment.

These simulations point us to the possibility that the noisy data reported in
Table 1 after the Dex pulse might simply be due to the various states in which
the pulse happened and to the time necessary for the cells to recover their clock
entrainment, rather than to two different oscillatory attractors of the system.

A pulse at time 190 h disrupted only slightly our clock, leading to mostly
remaining in mode-locking 1:1, whereas postponing that same pulse by 10 h
(corresponding to giving the pulse to a cell in a different state) leads to a bigger
disturbance, some peak-to-peak distances close to 24 h, others to 17 h, and even
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Fig. 7. Effect of a Dexamethasone pulse on the entrainment. The pulse alters the clock
before returning to the previously observed entrainment regime. In the left panel the
pulse is from time 190 to 192 while on the right it is from 200 to 202. The left panel’s
peak-to-peak distance remains in the [20.25, 22.3] interval, while the right one is in the
[17.9, 24.1] interval. This might correspond to the two groups observed in [11]. The
time to recover normal entrainment varies but is often larger than 72 h.

if this is transitory, this might correspond to the type of data observed in the
Group 2 of Table 1.

4.3 Remaining Paradox on Phase Data

So far we have considered the periods of the circadian clock and the cell division
cycle, but not their phase. The experimental data on the phase between the
cell division time and the peak of REV-ERB-α protein in NIH3T3 fibroblast
are quite consistent in Bieler et al. [3] and Feillet et al. [11] to indicate that
the REV-ERB-α occurs 3–5 h after cell division. However this is not the case
in our coupled model where the peak of REV-ERB-α appears 17–20 h after cell
division, as shown in Table 3.

Table 3. Phases as time delays, observed experimentally (without Dexamethasone)
and by simulation, between the cell division time (peak of MPF in the simulations)
and the appearance of a peak of concentration of REV-ERB-α.

Medium Experimental data Model simulation

FBS 5 NA 18.6 h

FBS 10 3.82 h 20.7 h

FBS 15 3.98 17.8 h

Interestingly, a similar discrepancy appears in the model of Gerard and
Goldbeter [12] which models the reverse effects of the circadian clock genes on
the cell cycle, through Wee1, p21 and Cmyc, and shows mitosis gating. In their
simulations, the peak of REV-ERB-α appears around 16 h after cell division.
We do not have explanations for these discrepancies between the computational
models and the recent data which now permit to fit the models in phase in
addition to periods.
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In the circadian clock model of Relogio et al. [19], the phases of the different
markers of the circadian clock have been precisely fitted to observations made in
mice suprachiasmatic nucleus cells, however without data about cell divisions.
On the other hand, in the data of Feillet et al. [11], REV-ERB-α is the only
marker on the circadian clock and no comparison is thus possible with the other
data.

5 Conclusion

Through a simple model for the transcription inhibition during mitosis, we have
presented in this article the first mechanistic dynamical model demonstrating
the entrainment of the circadian clock by the cell division cycle. This model
has been built on the ideas of [3] that the primary coupling between those two
oscillators is from the cell division cycle to the circadian clock.

We have demonstrated that such a model is enough to reproduce the recently
published biological data of [11] with different medium enrichment leading to dif-
ferent periods for mode-locked oscillators in dividing cells, whereas the quiescent
cells still have a 24 h clock. Our model also postulates a different interpretation
of some of the results of that article when cells are treated by a 2 h pulse of Dex-
amethasone: instead of different autonomous cycling regimes, the model predicts
temporary perturbations leading to shorter or longer peak-to-peak distances, but
returning to the previous entrainment regime after some time, longer than the
horizon used in the experiments.

It is noteworthy that in our transcription-inhibition coupled models, the oscil-
lations of the clock’s core gene products are much sharper and their peaks closer
in time (see for instance Figs. 3 and 5 right panel). Indeed, the peaks get “con-
centrated” outside of the time of transcription inhibition. A prediction of the
model is therefore that in quickly dividing cells, the phase shifts between the
different components of the clock are shorter than in quiescent cells where such
a phenomenon should not occur.

Finally, though our rather simple model properly fits the data about the
periods of the different cycles, the time difference observed between the peaks of
MPF and of REV-ERBα is quite different in our model and in the experimental
data. A similar discrepancy seems to also appear in the coupled model of [12].
More work is needed now to try to fit these models to the available phase data
and probably create new data with several markers of the circadian clock in
addition to cell division time.
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Abstract. We describe the modelling of a post-translational oscillator
using a process algebra and the specification of complex properties of
its dynamics using a spatio-temporal logic. We show that specifications
in the Logic of Behaviour in Context can be seen as hypotheses about
oscillations and other biochemical behaviours, to be tested automatically
by model-checking software. By using these techniques we show that the
theoretical model behaves in a manner in keeping with known properties
of biological circadian oscillators.

1 Introduction

In this paper we describe the encoding of a post-translational oscillator (PTO)
model in the Continuous Pi-calculus process algebra (cπ) [11,12] and the results
of computational experiments made on the model including the use of a novel
spatio-temporal logic, the Logic of Behaviour in Context (LBC) [4], to specify
and check complex properties of the model. The spatio-temporal logic LBC can
be seen as a formal logical language for expressing properties of biochemical sys-
tems. There is a long-standing problem of how to express properties of oscillation
in temporal logic and one contribution of this paper is to neatly define a temporal
logic specification for both general and more specific oscillatory behaviour.

PTOs generate sustained oscillations in the absence of transcription and
translation. Such oscillators are of particular interest in the circadian clock
field, where PTOs have recently been postulated to generate endogenous 24-
hour rhythms in diverse organisms [15]. Here, we investigate a minimal model
of a PTO due to Jolley et al. [10]. This model has a simple structure—it con-
sists only of a kinase, a phosphatase, and a substrate—but can exhibit robust
oscillatory behaviour similar to that observed in circadian clocks.

The purpose of our study is to further examine the behavioural properties
of the PTO when it is coupled with other PTOs, other reaction pathways, and
inhibitors. We examine these properties using both simple computational exper-
iments and more complicated, higher-order experiments defined by LBC proper-
ties and performed by model checking. The ultimate goal being to evaluate LBC
c© Springer International Publishing Switzerland 2015
O. Roux and J. Bourdon (Eds.): CMSB 2015, LNBI 9308, pp. 222–238, 2015.
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as a useful logical tool to perform these sorts of analyses and also to draw some
conclusions about the behaviour of the theoretical PTO in relation to real cir-
cadian oscillators. In particular circadian clock mechanisms must interact with
other systems in an organism; this includes the control of metabolic processes
and coupling with the classical transcription-translation feedback loop (TTFL)
circadian clocks [1]. This potential to robustly interact with other systems is, to
date, unexplored for this model.

A key benefit of using process algebra here is the ability to readily build
complex models of interaction through combining simpler components. This
composition can be challenging, particularly where components are shared or
linked; and this is important as such sharing can be source of significant new
behaviours [16]. In this study we compose oscillators through shared enzymes.

The advantage of using a formal logical language to specify and check prop-
erties of the model, and its composition with other models, is that it gives us a
concise and precise means of expressing the hypothesis we wish to test. Model-
checking software then gives us the means to test this. This is especially true
where we have a mixture of temporal and spatial behaviour we wish to test; e.g.
if we wish to know if the introduction of an inhibitor (spatial change) has a given
effect regardless of the time at which it is applied (temporal change).

Using these techniques we show that the Jolley PTO model does indeed
exhibit some of the properties that would be expected of a biological PTO. The
oscillator is robust when coupled with other oscillators, using different coupling
mechanisms, and crucially when coupling at any point in the oscillation cycle.
We also show that the oscillator is robust when perturbed by other simple mech-
anisms. Finally we demonstrate that LBC has the potential to specify, at least
the qualitative aspects of, even more complex properties of oscillators, such as
phase response—that is, how the oscillation is affected by a small perturbation
at different points in its cycle.

2 The Jolley PTO Model

Jolley, Ode, and Ueda present their model as a set of coupled ODEs. In their
paper [10], sets of parameters are identified which give distinct patterns of oscil-
lation in the system. The model aims to provide a framework for analysing and
synthesising PTOs and they provide evidence that it is a viable candidate for a
minimal circadian clock. However, to date, little further analysis of the properties
of the complex behaviour of this oscillator has been done.

The model arose from the observation that PTOs and other oscillatory sys-
tems which exist in nature are commonly mediated by multi-site phosphoryla-
tion, these include evidence from observations and existing models of the KaiC
circadian oscillator [9,14,17], the MAP Kinase signalling pathway [6,13], and
others [10]. This motivated the search for the simplest possible phosphorylation-
mediated oscillator, to serve as a design principle.

The structure of Jolley’s PTO (jPTO), described diagrammatically in
Fig. 1(a), is one molecule with two phosphorylation sites. Therefore the molecule
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has four states (S00, S01, S10, S11) depending on which of its sites are phos-
phorylated. Two opposing enzymes, a kinase (E) and a phosphatase (F), act to
phosphorylate or dephosphorylate a site, respectively.

Fig. 1. Structure and dynamics of the Jolley PTO.

The parameters for this model were found by using computational parame-
ter fitting techniques. They then used a clustering algorithm to determine two
distinct clusters of parameter sets which produced two different patterns of oscil-
lation. In this study we use one of these; Fig. 1(b) shows the behaviour of the
model given these parameters.

3 Process Algebra Model Construction

Model construction in cπ is species-centric. That is the biochemical species, or
reagents, are the focus of the modelling process. We first define each species and
its binding sites and actions. We then define how different species can interact
with each other. Then we define the initial conditions of our mixture, which
species are present and in what concentrations. The model can then be executed
to determine the behaviour, using numerical simulation. The remainder of this
section gives an overview of the construction and execution of the model in cπ.
We omit the finer details of cπ syntax and semantics as these are described by
Kwiatkowski and Stark [12] and in Kwiatkowski’s thesis [11].

3.1 Species

The species in our model are the kinase E, the phosphatase F , and the substrate
molecule which has four phosphorylation states S00, S01, S10, and S11. The
simplest of these are the two enzymes; they are defined as follows:
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E � e(x).x.E

F � f(x).x.F

The kinase E has a site e and the phosphatase F has a site f . Each can interact
on its site with another molecule, perform some other function which depends
on the molecule it is bound to, then return to its original state—from which it
can perform the same action again. This directly corresponds to the definition
of an enzyme.

In our cπ model we represent each of the four states of the substrate as
a distinct species. This is simply to break down the syntactic description into
smaller parts. In this model a change of state is essentially a change of species,
but to the observer these species can be considered as one. The substrate can
be defined as follows:

S00 � (νM00) s00a〈be〉.(u.S00 + ra.S01)
+ s00b〈be〉.(u.S00 + rb.S10)

S01 � (νM01) s01e〈be〉.(u.S01 + r.S11)
+ s01f〈bf 〉.(u.S01 + r.S00)

S10 � (νM10) s10e〈be〉.(u.S10 + r.S11)
+ s10f〈bf 〉.(u.S10 + r.S00)

S11 � (νM11) s11a〈bf 〉.(u.S11 + ra.S01)
+ s11b〈bf 〉.(u.S11 + rb.S10)

Here each of the states is defined, each containing a definition of the behaviour
at each of the two phosphorylation sites. Each of these definitions is similar
in structure, reflecting that they in fact represent distinct states of the same
molecule. For example, let us examine the definition of S01.

One of the two states where one site is phosphorylated, but not the other,
is S01. The term begins with a ν-term. The ν-term defines a local affinity net-
work M01; this governs the local interactions of unbinding or reacting in the
same way as the global affinity network which will be defined below and defines
the internal interaction potential of the complexes formed between substrate and
enzyme to unbind (u) or react (r).

The structure of S01 is then defined as having two sites s01e and s01f ,
each with some behaviour which follows from another molecule binding on that
site. Once we have defined which molecules can interact on which sites (below),
s01e will accept the kinase E and s01f will accept the phosphatase F . The
behaviour which follows binding is defined by the next part of the term; in this
case the bound enzyme can either unbind and the substrate returns to state S01
or the reaction can occur, changing the substrate either to state S00 or to S11,
depending on whether F or E is bound.

The definition of each of the other states of the substrate follow the same
pattern. Full details of definitions, the affinity networks, and their rates can be
found in Appendix A.
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3.2 Interactions

Now we have the definitions of the molecules and their interaction sites, we
need to define which molecules can bind to which sites and at what rate these
reactions occur. This is done by means of an affinity network M :

M = {s00a ↔ e, s00b ↔ e, s01e ↔ e, s10e ↔ e,

s01f ↔ f, s10f ↔ f, s11a ↔ f, s11b ↔ f}

Here we state that each of the substrate sites interacts with either site e of
the kinase or site f of the phosphatase. Each of these interactions has a given
reaction rate (see Appendix A).

3.3 Mixture

Having now defined the structure and rate parameters of the model, all that
remains to be able to execute the model is a definition of the initial conditions
we wish to simulate. Here we define a process Π which lists the species present
and their initial concentrations.

Π � cS · S00 ‖ cE · E ‖ cF · F

Here we have some concentration cS of substrate in its unphosphorylated
state S00 and likewise some concentrations cE and cF of E and F (see Appen-
dix A).

3.4 Validation

From this description the cπ tool generates a vector-space model of species con-
centrations over time. This is then compiled into a set of model ODEs and an
initial value problem, suitable for numerical simulation. In this case the model
description generates precisely the set of ODEs which were defined by Jolley
et al. and therefore precisely the same behaviour; as shown in Fig. 1(b).

4 Basic Time Series Analysis

In this section we describe a number of computational experiments which were
performed, aided by the compositional nature of the cπ description of the model.

4.1 Coupled jPTOs

The first experiment determines the behaviour of two identical jPTOs when
coupled. The coupling is achieved by the two jPTOs sharing a pool of enzymes
E and F .
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We achieve the coupling in our cπ model in the following way. First we make
a copy of the substrate species, call it T as shown in Appendix B. The process
term can then be updated to include our new copy:

Π � cS · S00 ‖ cT · T00 ‖ cE · E ‖ cF · F

and the global affinity network M can then allow E and F to interact with the
sites of T .

The behaviour of the coupled jPTOs can be seen in Fig. 2(a). The result of
coupling two identical jPTOs is that the two act in synchrony, but the period
is doubled. It is clear that the doubling of the period is due to each jPTO
only having half the concentration of enzymes available, the other half of the
concentration being sequestered by the other jPTO—each is competing equally
for the same pool.

4.2 Weaker Coupling

It is possible to consider other schemes for coupling. For example, if the coupling
was made weaker by only sharing one of the enzymes, does synchronisation still
occur?

Here we take two jPTOs in a similar manner to above, however we only
share the kinase E. This is achieved in the model simply by having a separate
phosphatase for each jPTO, FS and FT :

Π � cS · S00 ‖ cT · T00 ‖ cE · E ‖ cFS
· FS ‖ cFT

· FT

Here we set cFS
= cFT

= cE and we then set the global affinity network accord-
ingly. See Appendix C.

We can see, in Fig. 2(b), that indeed the jPTOs still synchronise when coupled
less strongly. We can also see that each jPTO, given its own pool of phosphatase,
spends more time in the less phosphorylated states as it can dephosphorylate at
a greater rate than it can phosphorylate. If the concentration of each enzyme
was adjusted accordingly, so cFS

+ cFT
= cE , then the system behaves as the

coupled jPTOs sharing both kinase and phosphatase (as Fig. 2(a)).

4.3 Coupling Out of Phase

This experiment determines the behaviour of coupling a jPTO with an identical
jPTO, but out of phase—that is, when the models are coupled with oscillators
beginning at different points in their cycle. To achieve this we take two jPTO
models of identical structure, but the second is shifted by a quarter of its cycle,
we call this jPTO-90.

When the two models are composed we can see that, after a transient period,
the cycles of the two jPTOs begin to synchronise as shown in Fig. 3(a). For com-
parison we also coupled jPTOs in various phase states. Synchronisation appears
to occur in a number of selected phases. This suggests that the synchronisation
of two jPTOs is quite robust. Figure 3(b) shows synchronisation when jPTOs
are coupled in anti-phase: jPTO-180.
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Fig. 2. jPTO composition dynamics.

Fig. 3. Coupling of two identical clocks, sharing an enzyme pool, starting out of phase.

4.4 Perturbation

Another useful property of a circadian oscillator is that it is robust to some
perturbations—although others may disrupt it. In this experiment we determine
the behaviour of the jPTO when perturbed by a pulse of some inhibitor.

To construct a model for this we first construct an inhibitor molecule which
rapidly appears in the system and decays rapidly. The mechanism for inhibitor
appearing in the system is to have another molecule which is initially present
and autonomously becomes the inhibitor. The inhibitor then decays. We will use
the inhibitor to bind and sequester components of the jPTO. See Appendix E.

Figure 4(a) shows the effect of inhibiting the kinase; there is a transient
period—about as long as the pulse—and then the jPTO settles back into its
normal oscillation. This shows that the jPTO is somewhat robust to temporary
sequestration of its enzymes.
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Figure 4b shows the result of the inhibitor sequestering the doubly phospho-
rylated substrate molecule S11. Here the fact that S11 itself is only present in
pulses and the fact that the inhibitor does not decay when it is bound to S11
means that the inhibitor remains in the system for longer. We can see echo
pulses as the inhibitor binds and unbinds the fluctuating concentration of S11.
However, overall, the inhibitor eventually decays and the system stabilises. This
shows that the substrate is also robust to this kind of perturbation.

Fig. 4. Perturbation of a jPTO with a pulse of inhibitor.

5 Model-Checking Experiments

The experiments in the previous section show a number of properties which
are mostly amenable to analysis by conventional techniques. The compositional
nature of cπ models aids greatly in the model construction for models where
we are looking at compositions of two models or composition with an inhibitor;
something which is much more difficult to do by working directly with ODEs.
However the analysis of these models is little more than the inspection of time
series for a relatively small set of models and initial conditions.

We will see that we can use the model checking of LBC specifications to
automate the process of inspecting time series for a given behaviour. Moreover,
and most importantly, we can define higher-order experiments which require
many models and many initial conditions. We gain a means to precisely express
a set of computational experiments, which in a conventional setting would require
case-specific programming, and to have them automatically checked.

5.1 Behaviour Under Composition

The spatial aspects of LBC [4] directly take advantage of model compositionality.
Specifications about the behaviour of a model when it is composed with another
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model can be made using the context modality. We can make use of this in
analysing the behaviour of coupled oscillators.

A basic assertion in LBC has the form P |= φ, meaning that system P
satisfies property φ. A property of the form Q � ψ is a guarantee: if Q is
introduced to the system, then the resulting mixture satisfies ψ. For example:
PTO1 |= PTO2 �φ states that when we couple PTO1 and PTO2 we have some
behaviour φ. Likewise we could state PTO |= Inhib � φ meaning that our PTO
has some behaviour φ when we introduce an inhibitor (Inhib).

However, the most interesting properties are those which make a statement
about introducing something over time. For example: PTO1 |= Gt(PTO2 � φ)
which uses the temporal operator G (for globally true) to declare PTO1 has the
property that for any time up to t, if we add PTO2 then the system from that
point will satisfy φ.

5.2 Complex Dynamics

LBC also has the power to express complex dynamics, such as periodicity and
oscillation. Numerous bodies of work have attempted to express oscillation prop-
erties in standard temporal logic [2,3,5], but all fall short of a general formula
for oscillation. It is possible to express oscillation, however, with some prior
knowledge of the type of oscillation. Following the idea in Calzone et al. [5] and
extending it to a time-bounded logic, we can express oscillation in the temporal
fragment of LBC as follows:

PTO |= G[0,t](F[0,p](([S]′ > 0) ∧ F[0,p]([S]′ < 0)))

where [S]′ is the first derivative of [S] with respect to time. The formula states
that at any time up to t the concentration of S will, within a further time p,
be rising and then within another additional time p be falling. This describes a
repeated rising and falling with period at most p. Whilst this is not a general
formula, it does cover a large class of sustained oscillation. However, its weakness
is that it does not distinguish from noise—although noise is not a problem when
studying ODE models.

It has been shown that more expressive logics can express more general for-
mulae for oscillation; for example Dluhoš et al. [7] show that one can use a
“freeze operator” to do this. In fact, it is possible to give a general formula for
sustained—and not necessarily regular—limit cycle periodicity using LBC. The
formula:

PTO |= F[pmin,pmax](P̂TO � (F[0,s]G[0,t](|[S] − [Ŝ]| < ε))) (1)

where P̂TO is a copy of PTO , S is the species being observed, Ŝ is the copy of S

in P̂TO , and s is a maximum transient period before reaching the limit cycle. The
formula states that if we introduce P̂TO after some period in [pmin, pmax] then,
within s, [S] and [Ŝ] will synchronise to within ε for at least time t. This essentially
takes a copy of the model, shifts it forward in time by pmin ≤ t ≤ pmax, and
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determines if it matches up with the original model. If it does, allowing for some
initial transient period, then the model is periodic in species S.

In the context of our case study, we can now check if coupled PTOs still
oscillate:

PTO1 |= G[0,c](PTO2 � Osc)

where c is the end of the first cycle of PTO1 and Osc is one of our oscillation
formulae from above. If coupling the PTOs at any time within the first cycle
of PTO1 gives a system which still oscillates—with some period bounds, as
above—then the formula will be true.

5.3 Perturbation Response

LBC can be used to express properties of a system under perturbation. For
example, one might wish to determine if some perturbation causes a greater
peak concentration in a species S. The formula:

PTO |= F[0,t](P � F[0,r]([S] > pk))

states that some peak value pk is exceeded under some perturbation P , within
time t, where r is the maximum expected time of the peak after the perturbation.
As the perturbation P could be any model, it could simply be a quantity of some
species, a constant amount of inhibitor, a pulse of inhibitor, etc.

Of particular interest in the study of oscillators are the phase response [8]
characteristics of system. That is, given a short perturbation, at any point in
the cycle, what is the effect on the phase of the oscillation? Biologists often
plot a phase response curve, using a large number of experiments, to visualise
the phase response. LBC cannot give such a precise and quantitative account
of phase response as this, however it is certainly possible to formulate some
more qualitative—or even semi-quantitative—properties of phase response. For
example:

PTO |= P̂TO � F[c1,c2](P � (G[t1,t2]([Ŝ]′ > 0 =⇒ F[s1,s2][S]′ > 0)))

states that some perturbation P applied within [c1, c2] will cause a forward phase
shift in [s1, s2]. t1 is a known max transient period after introducing P , t2 is a
sensible maximum time to simulate for, and the formula assumes that we know
the perturbed system still oscillates.

5.4 Results

The following results of verifying the above LBC properties against the cπ models
of Jolley’s PTO were obtained by using the reference implementation of the LBC
signal-based model checker1. First we show a number of formulae which give the
same results as the experiments performed above, albeit without the need to

1 Part of the CPiWorkBench: http://banks.ac/software/.

http://banks.ac/software/
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manually inspect a simulation trace. These results serve to verify the use of the
model checker. Finally we show the results of checking formulae which describe
higher-order computational experiments, i.e. those which check properties which
would require the inspection of a great number of simulation runs.

Oscillation. Our first test was to check for oscillation using Formula 1. We let:

Osc = F[pmin,pmax](ĵPTO � (F[0,s]G[0,t](|[S00 ] − [Ŝ00 ]| < ε)))

where: we know that the period is around 24000 so we set pmin = 23000 and
pmin = 25000; we know the system will reach limit cycle within s = 10000; we
must choose an oscillating species and so choose S = S00 ; a reasonable time to
simulate for is t = 80000—a few cycles; and we choose ε = 1 as our concentration
accuracy. The copy model ĵPTO can be constructed in the same manner as the
copy model in Sect. 4.1 or by using the appropriate function in the reference
implementation.

Upon checking jPTO1 |= Osc we find that it returns True. This confirms
what we have been able to determine manually from inspecting the simulation
traces in Fig. 1(b). Moreover, it shows that the LBC formula is a succinct and
precise means of expressing the oscillation property and the model checker pro-
vides an automatic means for testing such a hypothesis.

Coupled Oscillators. The next step is to test coupled oscillators for oscillation,
as in Sect. 4.1. First we take identical PTOs: jPTO1 and jPTO2 . Upon checking
jPTO1 |= jPTO2 � Osc using the same formula parameters as above, we find
that the result is False. This is because, as seen in Fig. 2(a), the period of the
coupled oscillators is doubled. Therefore, upon relaxing the desired period range
to pmin = 23000 and pmax = 49000 we find the formula is satisfied and the
checker returns True.

Out-of-Phase Coupling. In Sect. 4.3 we showed that for a limited number
of out-of-phase couplings of jPTO1 and jPTO2 the two systems did indeed
synchronise and oscillate together after an initial transient period. This however
does not confirm whether this is the case for all phase shifts.

Using the test jPTO1 |= G[0,c](jPTO2 � Osc) we can use the model checker
to give a greater guarantee that coupling the oscillators in any phase shift, up to
c times the length of one cycle. Here we know that the length of one cycle is no
more than, say, c = 26000.

Upon checking, again with the above formula parameters and the relaxed
period range, we find that the result is False. This is because we have not
accounted for the lengthened transient period when coupling out of phase. If
we increase the parameter s to 120000 we find the formula is now satisfied, the
result is True. This higher-order property gives a much stronger guarantee that
all out-of-phase couplings oscillate than a limited number of manually inspected
simulation traces would give.
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Phase Response. Another higher-order property is the phase response charac-
teristic. Using the inhibitor pulse model in Sect. 4.4—except using a pulse which
lasts for fewer than 2000 time units to match the kind of pulse which would be
used to plot a phase response curve—and the formula in Sect. 5.3 we can place
some bounds on the phase response characteristics of the model:

jPTO |= ĵPTO � F[c1,c2](Pulse � (G[t1,t2]([Ŝ00 ]′ > 0 =⇒ F[s1,s2][S00 ]′ > 0)))

where: [c1, c2] = [10000, 34000] which is roughly one cycle, this limits the com-
putation; the maximum expected transient period is t1 = 10000; the maximum
time to compare oscillations is t2 = 80000; and [s1, s2] = [0, 1000] ensures that
the whole formula states that: “there is always a forward phase response of no
more than 1000 time units”.

The model checker confirms that this statement is true for this model. So
our small pulse may delay the cycle, but only by a relatively small time; it does
not speed up the cycle.

6 Conclusions

We have shown that, using a combination of cπ and LBC, we can express a variety
of complex properties of biochemical models. We have shown that precise and
succinct statements of complex properties can be built up in a modular fashion.
One can even think of higher-order LBC properties as precise statements of an
experimental hypothesis, to be tested by the model checker.

We have also shown that the Jolley PTO model does indeed interact robustly
with other oscillators and inhibitors. This includes showing that the oscillator
can be coupled at any point in its cycle and that it shows a robust inhibitor
response at any point in its cycle. These latter properties are shown using LBC
statements describing higher-order experiments; these are automatically tested
by the model checker without any human intervention nor the necessity to write
explicit programs for the necessary inspection of large numbers of simulation
runs. Extensions to this work could readily include investigating the results of
coupling with oscillators of a different type and of coupling with downstream
networks.

A Basic Jolley Model

The basic Jolley PTO model is constructed in cπ as follows:

E � e(x).x.E

F � f(x).x.F
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S00 � (νM00) s00a〈be〉.(u.S00 + ra.S01)
+ s00b〈be〉.(u.S00 + rb.S10)

S01 � (νM01) s01e〈be〉.(u.S01 + r.S11)
+ s01f〈bf 〉.(u.S01 + r.S00)

S10 � (νM10) s10e〈be〉.(u.S10 + r.S11)
+ s10f〈bf 〉.(u.S10 + r.S00)

S11 � (νM11) s11a〈bf 〉.(u.S11 + ra.S01)
+ s11b〈bf 〉.(u.S11 + rb.S10)

Π � cS · S00 ‖ cE · E ‖ cF · F

where

cS = 105, cE = 1, cF = 1.

M00 = {be ↔ u : 10.02,

be ↔ ra : 163.31,

be ↔ rb : 0}

M01 = {be ↔ u : 10.02,

be ↔ r : 40.83,

bf ↔ u : 10.02,

bf ↔ r : 8.17}

M10 = {be ↔ u : 10.02,

be ↔ r : 8.17,

bf ↔ u : 10.02,

bf ↔ r : 40.83}

M11 = {bf ↔ u : 10.02,

bf ↔ ra : 0,

bf ↔ rb : 163.31}

M = {s00a ↔ e : 818.18,

s00b ↔ e : 0,

s01e ↔ e : 13.64,

s10e ↔ e : 4903.17,

s01f ↔ f : 4903.17,

s10f ↔ f : 13.64,

s11a ↔ f : 0,

s11b ↔ f : 818.18}

B Coupled jPTOs Model

The coupled model is constructed from the same substrate and enzyme species
as the basic model in Appendix A. The second jPTO is a copy of the original
substrate, renamed so it forms a distinct species:

T00 � (νM00) t00a〈be〉.(u.T00 + ra.T01)
+ t00b〈be〉.(u.T00 + rb.T10)

T01 � (νM01) t01e〈be〉.(u.T01 + r.T11)
+ t01f〈bf〉.(u.T01 + r.T00)

T10 � (νM10) t10e〈be〉.(u.T10 + r.T11)
+ t10f〈bf〉.(u.T10 + r.T00)

T11 � (νM11) t11a〈bf〉.(u.T11 + ra.T01)
+ t11b〈bf〉.(u.T11 + rb.T10)
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The process term is the same as above, but with the addition of the new (copy)
substrate:

Π � cS · S00 ‖ cT · T00 ‖ cE · E ‖ cF · F

where

cS = 105, cT = 105, cE = 1, cF = 1,

and the global affinity net is then extended to allow the new substrate to interact
with the enzymes:

M = {s00a ↔ e : 818.18,

s00b ↔ e : 0,

s01e ↔ e : 13.64,

s10e ↔ e : 4093.17,

s01f ↔ f : 4093.17,

s10f ↔ f : 13.64,

s11a ↔ f : 0,

s11b ↔ f : 818.18,

t00a ↔ e : 181.18,

t00b ↔ e : 0,

t01e ↔ e : 13.64,

t10e ↔ e : 4093.17,

t01f ↔ f : 4093.17,

t10f ↔ f : 13.64,

t11a ↔ f : 0,

t11b ↔ f : 818.18}.

C Weaker Coupled jPTOs

For the weaker coupled model we have a separate phosphatase for each substrate.
The model in AppendixB. is extended by replacing species F with the following:

FS � fs(x).x.FS

FT � ft(x).x.FS

and the process term is extended:

Π � cS · S00 ‖ cT · T00 ‖ cE · E ‖ cFS
· FS ‖ cFT

· FT

where

cS = 105, cT = 105, cE = 1, cFS
= 1, cFT

= 1,
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and the affinity net is altered so each substrate only has affinity for one of the
phosphatases:

M = {s00a ↔ e : 818.18,

s00b ↔ e : 0,

s01e ↔ e : 13.64,

s10e ↔ e : 4093.17,

s01f ↔ fs : 4093.17,

s10f ↔ fs : 13.64,

s11a ↔ fs : 0,

s11b ↔ fs : 818.18,

t00a ↔ e : 181.18,

t00b ↔ e : 0,

t01e ↔ e : 13.64,

t10e ↔ e : 4093.17,

t01f ↔ ft : 4093.17,

t10f ↔ ft : 13.64,

t11a ↔ ft : 0,

t11b ↔ ft : 818.18}.

D Driving Other Reactions

To construct the model which drives another phosphorylation reaction, we first
construct P which is the molecule to be phosphorylated:

P � (νMP ) p〈x 〉.(u.P + r.P ′)

P ′ � τd.P

where d = 10−4 and MP = {x ↔ u : 1, x ↔ r : 1}.
The model is then the same as the basic model in Appendix A, but with a

new site, which interacts with the P molecule, added to the S11 state of the
substrate:

S11 � (νM11) s11a〈bf 〉.(u.S11 + ra.S01)
+ s11b〈bf 〉.(u.S11 + rb.S10)
+ s11p(x).x.S11

the new molecule added to the process:

Π � cS · S00 ‖ cE · E ‖ cF · F ‖ cP · P

where

cS = 105, cE = 1, cF = 1, cP = 105
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and the affinity net is extended with

M = {s00a ↔ e : 818.18,

s00b ↔ e : 0,

s01e ↔ e : 13.64,

s10e ↔ e : 4903.17,

s01f ↔ f : 4903.17,

s10f ↔ f : 13.64,

s11a ↔ f : 0,

s11b ↔ f : 818.18,

s11p ↔ p : 3 × 10−4}.

E Perturbation

To construct the model with a pulse of inhibitor, we take the model in Appen-
dix D and replace the driven species P with an inhibitor In which decays and a
species ProdIn which autonomously produces the inhibitor:

In � (νMIn) p〈x 〉u.In + τd.0

ProdIn � τd.P

where MIn = {x ↔ u : 0.1} and d = 5 × 10−3 and the inhibitor producer added
to the process:

Π � cS · S00 ‖ cE · E ‖ cF · F ‖ cP · ProdIn

where

cS = 105, cE = 1, cF = 1, cP = 105

In this model the inhibitor binds to the substrate in its S11 state. The models
where the inhibitor binds to one or the other of the enzymes is constructed
in a similar way, with a corresponding new site on the enzyme instead of the
substrate. When binding to the enzyme, however the rate should be adjusted
from 3 × 10−4 to 5.

References

1. Abraham, U., Granada, A.E., Westermark, P.O., Heine, M., Kramer, A., Herzel,
H.: Coupling governs entrainment range of circadian clocks. Mol. Syst. Biol. 6, 1
(2010)

2. Ballarini, P., Guerriero, M.L.: Query-based verification of qualitative trends and
oscillations in biochemical systems. Theor. Comput. Sci. 411(20), 2019–2036
(2010)



238 C.J. Banks et al.

3. Ballarini, P., Mardare, R., Mura, I.: Analysing biochemical oscillation through
probabilistic model checking. Electron. Notes Theor. Comput. Sci. 229(1), 3–19
(2009)

4. Banks, C.J., Stark, I.: A Logic of Behaviour in Context. Inf. Comput. 236, 3–18
(2014)

5. Calzone, L., Chabrier-Rivier, N., Fages, F., Soliman, S.: Machine learning biochem-
ical networks from temporal logic properties. In: Priami, C., Plotkin, G. (eds.)
Transactions on Computational Systems Biology VI. LNCS (LNBI), vol. 4220, pp.
68–94. Springer, Heidelberg (2006)

6. Chickarmane, V., Kholodenko, B.N., Sauro, H.M.: Oscillatory dynamics arising
from competitive inhibition and multisite phosphorylation. J. Theor. Biol. 244(1),
68–76 (2007)
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Abstract. Automated verification of living organism models allows
us to gain previously unknown knowledge about underlying biological
processes. In this paper, we show the benefits to use parametric time
Petri nets in order to analyze precisely the dynamic behavior of biologi-
cal oscillatory systems. In particular, we focus on the resilience proper-
ties of such systems. This notion is crucial to understand the behavior
of biological systems (e.g. the mammalian circadian rhythm) that are
reactive and adaptive enough to endorse major changes in their environ-
ment (e.g. jet-lags, day-night alternating work-time). We formalize these
properties through parametric TCTL and demonstrate how changes of
the environmental conditions can be tackled to guarantee the resilience
of living organisms. In particular, we are able to discuss the influence
of various perturbations, e.g. artificial jet-lag or components knock-out,
with regard to quantitative delays. This analysis is crucial when it comes
to model elicitation for dynamic biological systems. We demonstrate the
applicability of this technique using a simplified model of circadian clock.

Keywords: Parametric time Petri net · Resilience · Biological oscilla-
tors · Model checking

1 Introduction

Understanding the mechanisms involved in oscillatory biological regulation is a
fundamental issue to analyze living systems. Time delays play a major role in
the sustainability and control of oscillations, as shown for example in phenomena
related to the mammalian circadian clock [22]. Taking account of these delays in
the modeling process is therefore fundamental to have a precise understanding
of the chrono-biological phenomena. A major issue consists in identifying the
value of (or the interval associated to) each delay. Some of them cannot be
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obtained through biological experiments. And most methodologies are not well-
suited to capture parametric systems, e.g. simulation is adapted to assess the
quality of one (or some) run(s) of the system, but raises hard problems when it
comes to an exhaustive analysis. That is why automatic reasoning provided by
model-checking techniques is useful to get formal proofs about the evolution of
the timed system. The idea to consider time as a discrete variable helped the
representation of the sequence of events that punctuate the featuring phases of
biological systems. Given that the time delays are generally difficult to determine
experimentally, computational approaches to model and infer the precise delays
value in silico are fundamental.

To refine the quality of the given biological model, the bridge has to be
made between the observed system properties and the dynamic behaviors of
the model. This means that we need to perform a model elicitation procedure
(using for example a model-checking approach) with regard to a relevant class
of properties, which are to be expressed through modal logics, especially with
regard to the extensions of LTL [29] and CTL [10] logics.

TCTL is one of these logics, aiming at the verification of properties with
quantitative timing information [2]. As TCTL model-checking is undecidable
for the general classes of timed extensions of Petri nets or automata, the main
challenge is to identify the relevant subclasses of models (or properties) where
decidability can be settled and the associated complexity can be handled in
an efficient way. Recently, the authors of [19] identified a subclass of parametric
timed automata that can benefit from efficient analysis of TCTL model-checking.

In our context, we were looking for a model expressive enough to capture the
timed behavior of biological systems, easy-to-understand for biological collabo-
rators, and with existing tools to perform parametric model-checking. Extending
time Petri nets [27] with strong semantics, the framework of (bounded) para-
metric time Petri nets [35] with parametric intervals associated to transitions,
meets these requirements thus motivating our choice.

1.1 Petri Nets to Model Dynamical Biological Systems

Concurrence between different components, either at a micro or macro scale, is
central to biological systems. Petri nets are capable to concisely represent this
this concept of concurrence and to simulate the behavior of concurrent systems
biology models [9]. This framework is associated with a number of extensions,
including stochastic Petri nets that allow to represent stochastic behavior or time
Petri nets to include quantitative timing information.

Stochastic extensions of Petri nets are effective, especially for modeling bio-
chemical systems. The main work on stochastic networks involve Markov mod-
els [17] for which the model checking techniques are well-established. But the
formalization of oscillatory properties is a challenging task. To address it, the
authors of [4,32] add the observer automata to the system such that it allows to
precisely describe the noisy oscillatory trends.

During the last decade, some work (especially [20] and [8]) demonstrated
how Petri nets could be used for both qualitative and quantitative analysis of
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biological systems. The unifying framework to conduct model checking tasks
using Petri nets is given in [14]. In [8], the authors defined a systematic re-
writing of Boolean models of logical regulatory networks into a standard PN
formalism. In [9], they extended this previous work to multi-level logical models,
but without incorporating delays. On the other hand, hybrid modeling have
been studied in the context of the much expressive hybrid automata [1]. Taking
inspiration of these works, we propose here to translate the multi-valued logical
models into Petri nets, associating time intervals to transitions to capture the
quantitative delays between discrete events.

1.2 Resilience Properties

Taking its inspiration from studies in ecological systems [18], resilience recently
raised a growing interest among the research community [16,25,33]. This notion
is critical to design a system reactive enough to face major changes in its envi-
ronment: at an organizational level, this can be the security logistics in case
of an earthquake; in biology, the functionality of circadian rhythm confronted
to a wide range of perturbations. Resilience encompasses a family of four core
properties, which are resistance, recoverability, functionality and stability [31].
The main difference to the design of critical systems lies in the fact that resilient
systems may experience changes to its very nature, adapt and maintain some
properties [23]. In this paper, we are investigating resilience properties in oscilla-
tory models, more specifically in a biological context. While most existing works
around resilience are limited to chronological models, we focus on an analysis
based on quantitative timing information.

1.3 Modeling of the Mammalian Circadian Clock

Circadian rhythms control numerous biological mechanisms in various species.
These endogenous oscillators are entrained [15] by environmental factors (Zeitge-
ber) such as light and temperature conditions. One of the main oscillatory mech-
anisms in mammals [13] is associated with so-called suprachiasmatic nucleus
(SCN) that serves as the master clock for cellular clocks in peripheral tissues.
This effect of signal propagation triggered by the oscillatory trend in the master
clock is known as coupling of oscillators.

One of the first models of mammalian circadian clock formulated using dif-
ferential equations is given in [22]. We consider its simplified version presented
in [11], where Comet et al. applied a series of transformations to obtain the mini-
mal discrete-state model with delays which allows to show important behavioral
patterns. We converted this model into parametric time Petri net where the
state of each gene is encoded by a place, whose (safe) marking corresponds to
the Boolean status of the gene.

Previous research in the literature includes the earlier hybrid Petri net rep-
resentation of circadian clock by [26], which has been analyzed using simulation.
In our paper we aim to provide a more systematic method to study the dynamic
properties of the gene regulatory network behind circadian rhythm. For the sake
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of simplicity, we chose to stick to the model from [11], but connections with the
model of [26] has to be investigated in future works.

1.4 Our Contribution

In this paper, we propose a methodology based on parametric time Petri nets to
assess the resilience of the gene regulatory network controlling the mammalian
circadian clock system. Analyzing the literature, we formalize the corresponding
properties in the TCTL logic and apply them on a simplified version of the
circadian rhythm [11]. In particular, thanks to these resilience properties, we
are able to perform model elicitation and gain the information about the delays
involved in the regulations of this system. The same kind of approach could
be applied to larger models of the circadian clock oscillator, by changing the
input model (assuming we get it from further collaboration with biologists) and
translating it into the framework of parametric time Petri nets.

1.5 Outline of the Paper

The rest of the paper is organized as follows: in Sect. 2 we introduce the notions
of parametric time Petri net and TPN-TCTL logic. In Sect. 2.1 we describe the
model of mammalian circadian clock and its representation as time Petri net. In
Sect. 3 we state the properties that address the basic properties of biological sys-
tems. The extended discussion of the properties that use observers together with
the resilience of oscillatory systems in given in the Appendix. Our contribution
is summarized in the final section of the paper.

2 Logical Characterization of Circadian Clock Model

Timed models are capable of describing the complex behavioral patterns of bio-
logical systems. One of the ways to gain new insights about the underlying
processes is to analyze the traces of execution of the given model. Here we apply
the model-checking approach that verifies the model versus the given logical
characterization of certain behavioral pattern. This approach is also capable to
provide bounds on the time parameters of the model. It gives the additional
information on how the model can be modified in order to satisfy the desired
specification. In this paper we describe how oscillatory behavior is formalized in
our framework using parametric temporal logics PTPN-TCTL.

In addition to the logical framework given in Appendix A, it is possible to
define and use observers to model-check additional properties in TPNs and P-
TPNs. It consists in adding to the Petri net - in a non-intrusive manner - places
and transitions to model the property to check. The property is encoded as a
marking on the extended Petri net and we check its reachability [34].

The main drawbacks of observers are two folds: first, there is no automatic
procedure to build them; second, the observer can dramatically increase the
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G PC L

Fig. 1. Gene regulatory network of circadian clock

size of the state space to be explored by the model-checking procedure. To con-
duct the model checking of P-TPN models we use the tool Roméo [24]1 that is
capable of compute the state space of the model (using state class graph) and
analyze reachability and TCTL properties. The performance of the tool highly
depends on the number of simultaneously enabled transitions and on the number
of parameters that should remain rather small.

2.1 Circadian Clock Model

We consider the simplified model of the mammalian circadian clock proposed
in [11]. This model reveals to be expressive enough to mimic the important
behaviors of the circadian clock mechanism having the smallest amount of com-
ponents, namely the abstract set of controlling genes (G), the protein complex
PER–CRY in the nucleus (PC) and the external light condition (L), where each
component is Boolean (shown in Fig. 1). It describes the main feedback loop
(G ↔ PC) that generates the oscillations. This non-deterministic model has the
asynchronous semantics so that exactly one variable may be changed by any
transition.

We consider this model as a multi-valued network [30] (GN ,F) where the set
of nodes GN = {G, PC, L} and each node has two qualitative states (0 and 1). The
state transitions are given by the function F shown in Table 1. Each row describes
the transition(s) (L, G, PC) → (L′, G′, PC′), where (L, G, PC) is the state of variables
before the transition and (L′, G′, PC′) is the state of variables after the transition.
The symbol ∗ refers to any value (0 and 1) of the corresponding variable before
and after transition. The authors [11] extended the gene regulatory network with
delays τa, . . . , τon defined with respect to the knowledge about the temporal
behavior of circadian cycle. The values of delays are provided in Table 1 (except
for the unknown delay τg).

Table 1. Transitions in circadian clock model

1 http://romeo.rts-software.org/.

http://romeo.rts-software.org/
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2.2 Translation of Gene Regulatory Network to Time Petri Net

In this subsection, we give the principle of our translation of gene regulatory
networks into Petri nets, which is similar to [8], where the number of the places
corresponds to the qualitative expression levels of a biological component (such
transformation results in safe Petri net). We consider gene regulatory network
(GN ,F) as an input. It consists of a set of nodes GN = {g1, . . . , gn0} rep-
resenting chemical species of a biological network (regulatory entities), where
each entity g ∈ GN has a finite number of qualitative states, i.e. ĝ ∈ Sg, Sg =
{0, 1, . . . , kg}, and a set of entities Ω(g) ⊆ GN that affect g. The state s of the
network is given by the discrete states of each entity in GN , i.e. s = (ĝ1, . . . , ĝn0).
The next state s′ is defined by the function F : SG

N × H × (N ∪ ⊥) 	→ SG
N , where

the state s ∈ SG
N , SG

N = Sg1 × . . . × Sgn0
, the set H ⊆ GN shows which entries

affect the change and the delays of transitions τ ∈ (N ∪ ⊥), where ⊥ corre-
sponds to the unknown delay. Each mapping in F changes one entity of a gene
regulatory network such that the new state is given by ĝ′ ∈ {ĝ − 1, ĝ + 1} if
ĝ ∈ {1, . . . , kg − 1}, and ĝ′ = 1 for ĝ = 0, ĝ′ = kg − 1 for ĝ = k. The change of
the state uses the asynchronous update semantics [12].

Given a gene regulatory network (GN ,F), we construct a time Petri net with
read arcs as follows:

– the set of places P is given by P = P1 ∪ . . . ∪ Pn0 , where the set Pi =
{pi,0, pi,1, . . . , pi,kgi

} corresponds to the qualitative levels of i-th entity. This
correspondence is defined by the mapping Pli : Sgi

	→ Pi.
– each mapping in f ∈ F corresponds to the transition tf ∈ T, where f changes

the state of entity gi from k to l. The transition tf is defined by •tf = pi,k,
t•f = pi,l and �tf = {Plh(ĝh), . . . , P lj(ĝj)}, where {gh, . . . , gj} ∈ H/gi.

– each mapping in f ∈ F is associated with the delay δ ∈ (N ∪ ⊥). If the delay
δ is known δ = q, q ∈ N then the firing interval tf is defined as Js(tf ) = [q, q].
Otherwise the corresponding firing interval is parametric with parameter τf ,
Js(tf ) = [τf , τf ].

– initial state s0 = {ĝ1, . . . , ĝn0} of the gene regulatory network defines the
initial marking M0 such that M0(Pli(ĝi)) = 1 for i ∈ {1, . . . , n0} and 0
otherwise.

It is important to notice that this transformation produces a safe Petri net.
There is always one token for each group of places Pi,

∑kgi
j=0 M(pi,j) = 1.

The time Petri net model of circadian clock that we use further is shown in
Fig. 2, where read arcs are shown with white rectangles and each transition
is annotated with the corresponding firing interval. We restrict ourselves to a
Boolean representation, as the model in question in intrinsically Boolean. We
add an additional restriction γ = {τg ≥ 1} to emphasize that the delay of the
corresponding biological process is not instantaneous. Here, places L0 and L1
correspond to the the absence and presence of the light. The state of the set of
genes (inactive or active) is encoded by places G0 and G1 and the presence of the
protein complex PER–CRY is given by places PC0 and PC1. Starting from the
initial state (L, G, PC) = (1, 0, 1), the regular oscillation behavior is controlled by
the sequence of transitions e, b, off, c, d.
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L1 L0

PC1 PC0

G1 G0

off
[12, 12]

on
[12, 12]b

[5, 5]

e
[1, 1]

g
[τg, τg]

a
[7, 7]

c
[7, 7] d

[5, 5]

Fig. 2. Time Petri net model of circadian clock

3 Resilience of Biological Oscillatory Systems

The behavior of the mammalian circadian clock appears to be robust [11] with
respect to the change of external stress conditions, namely the length of day and
night. The authors consider the two possible scenarios (when the duration of
night is 18 and 6 hours) and show that in both cases the oscillatory dynamics
of the system does not suffer. Here, we expose the model to the various kinds
of external stress and formalize the way of how to use model-checking proce-
dure to reason about resilience properties. We address the properties that are
related to resistance and functionality [31] and deal with the response of the
system to external fluctuations together with learning the limits of such fluctua-
tions strength. We also provide the methodology that allows to generalize given
properties so that they can be constructed for other models and verified using
PTPN-TCTL.

3.1 Property Specification

For each property we give the natural language formulation first and then the
formalization in PTPN-TCTL. The example of application to the circadian clock
model is given prior to more general specification that can be applied to other P-
TPN models. The authors of [5] introduced the set of properties to characterize
oscillatory behavior in biochemical systems that are modeled using the stochastic
approach. They serve as an initial inspiration for the properties we introduce
here.

Permanent oscillation. Let us first consider the permanent oscillation property
on the example of circadian clock for both protein PC and gene G.
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Property A. State of the protein PC always oscillates.

φA =
(
M(pPC0) = 1 �[0,τ0,1] M(pPC1) = 1

)

∧ (
M(pPC1) = 1 �[0,τ1,0] M(pPC0) = 1

)

The two parametric intervals [0, τ0,1] and [0, τ1,0] determine how long it takes to
change the state of PC in each case. According to the semantics of � operator,
the values of τ0,1 and τ1,0 refer to the longest time period over all possible model
executions. For the model NCC this property is satisfied with τ0,1 ≥ 18 and
τ1,0 ≥ 6, which guarantees that the state of PC changes from 1 to 0 after 18 time
units (however it may change in less amount of time).

Property B. State of the gene G always oscillates.

φB =
(
M(pG0) = 1 �[0,τ0,1] M(pG1) = 1

) ∧ (
M(pG1) = 1 �[0,τ1,0] M(pG0) = 1

)

For the model NCC this property is satisfied with τ0,1 ≥ 6 and τ1,0 ≥ 18.
For a given entity g ∈ GN we can check the permanent oscillation between

the two qualitative levels k and l by
(
M(pg,k) = 1 �[0,τk,l] M(pg,l) = 1

) ∧ (
M(pg,l) = 1 �[0,τl,k] M(pg,k) = 1

)
,

where (τk,l + τl,k) corresponds to the longest period of the oscillation (there may
exist execution traces with shorter periods), and the value |k − l| refers to the
amplitude of oscillation (i.e. to the difference between the qualitative levels).

Entrainment behavior of circadian clock. One of the immutable properties of
circadian clocks mechanism is the ability to be entrained by the external stress.

Property C. State of the gene G always changes from 0 to 1 when the protein
PC is not expressed.

φC =
(
M(pG0) = 1 ∧ M(pPC0) = 1 �[0,τ0,1] M(pG1) = 1

)

Obviously, this property is satisfied by the model NCC with τ0,1 ≥ 5 which
corresponds to the transitions tb and tf .

Property D. State of the protein PC always changes from 0 to 1 when there is
no light and it always changes from 1 to 0 when there is light.

φD =
(
M(pL0) = 1 ∧ M(pPC0) = 1 �[0,τ0,1] M(pPC1) = 1

)

∧ (
M(pL1) = 1 ∧ M(pPC1) = 1 �[0,τ1,0] M(pPC0) = 1

)

This property is satisfied by the model NCC with τ0,1 ≥ 7 and τ1,0 ≥ 1 that
corresponds to the transitions tc and te.
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For given subsets of entities Gc, Ge ⊆ GN , where Gc corresponds to the
controller entities and Ge corresponds to the controllable ones, we construct the
entrainment property as (

φ �[0,τ ] ψ
)
,

where φ =
∧

g∈Gc
(M(pg) = 1) describes the control condition and ψ =∧

g∈Ge
(M(pg) = 1) refers to the expected response caused by the entrainment.

3.2 Properties with Observers

All properties introduced so far did not require to add additional elements to
the Petri nets. However, there are limits for the expressivity of PTPN-TCTL,
especially because nested properties are excluded from this logics. The addi-
tion of observers to the model itself can thus help to mitigate these restrictions
(properties shall be expressed without using the nested temporal operators). For
example, we can check the consistency of transitions in the model (PropertyE).

Property E. All transitions are eventually fired at least once.

φE =

(
∧

t∈T

EF[0,∞]M(pO,t) > 0

)

The set of observers O is added to the model, where each observer Ot is
associated with a transition t ∈ T such that Ot = {pO,t, tO,t}, M(pOt

) = 0,
•tO,t = PO,t, t•O,t = ∅ and Js(tO,t) = [0, 0]. We also add the place pO,t to the set
t•. This property is not satisfied by the model NCC since transitions ta and tg
are never fired.

Property F. Each 24 time units the system visits the state where ML1 = 1,
MG0 = 1 and MPC1 = 1 (the initial state of NCC).

φF = (M(pO) = 1) �[0,0] (M(pL1) = 1 ∧ M(pG0) = 1 ∧ M(pPC1) = 1)

The observer O (shown in Fig. 3) is keeping track of 24 time units intervals
therefore we can judge about properties in global time.

O
[24, 24]

t0
[0, 0]

Fig. 3. Periodic observer with 24 time units period.

For a given expected response ψ =
∧

g∈Ge
(M(pg) = 1) and an observation

interval time τ , we construct the periodic observation property as

M(pO) = 1 �[0,0] ψ
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where the observer consists of the observer place pO, M(pO) = 0, the timer
transition tτ , •tτ = ∅, t•τ = pO, Js(tτ ) = [τ, τ ] and the cleanup transition t0,
•tτ = pO, t•τ = ∅, Js(t0) = [0, 0]. This property can be extended such that the
system is observed not only at the exact moment (each τ time units) but for δ
time units by Js(t0) = [0, δ], δ < τ .

Another extension includes the initial delay α by adding the observer ′O =
{p′O,0, tα, p′O,1}, where •tα = p′O,0, t•α = p′O,1, Js(tα) = [α, α] and modifying
an observer O such that �tτ = p′O,1. The example is shown in Fig. 4.

′O0
′O1 O

[τ, τ ]
t0
[0, 0]

α

[δ, δ]

Fig. 4. Initial delay and interval time observers.

Properties A-F describe a certain set of behaviors that is normally exposed by
the circadian clock model NCC . However, we can study the applicability of the
model using the parameters in the transition firing interval function. The main
external stress in the framework of mammalian circadian clock is light (sunlight
or artificial light). The distortion of the normal day-night cycle affects the nominal
behavior which causes negative effects like jet-lag. We address the corresponding
properties and the model elicitation issues in the Supplementary Information [3].

4 Contribution and Future Work

In this paper we consider the model of mammalian circadian clock given in [11].
It serves as an initial inspiration for the translation of gene regulatory networks
to parametric Petri net models.

We have proposed a methodology to assess the resilience properties of the
gene regulatory networks. The corresponding properties are formalized in the
TCTL logic and applied to the oscillatory system of mammalian circadian clock.
They allow to conduct the model elicitation and gain new insights about the
standard behavior of circadian clock as well as the limitations of its applicability
under the perturbed environmental conditions. The latter also addresses the
effect of artificial jet-lag and gene knock-out.

The properties introduced in the paper are formalized using observers that
are easy to be extended and applied to other gene regulatory networks repre-
sented as parametric time Petri nets.

Future developments of this work include the consideration of more flexible
formalism that allows for any delay in the given interval, as well as the compari-
son to the stochastic modeling formalism. We aim at verifying similar properties
in the scope of stochastic Petri nets with exponentially distributed delays and
extended generalized stochastic Petri nets that allow any valid probability dis-
tribution for the delay. Finally, the resilience properties shall be checked against
the larger and more realistic model of circadian clock with the support of wet-lab
experimental data.
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Abstract. We propose a new distributed-memory parallel algorithm for
parameter synthesis from CTL hypotheses. The algorithm colours the
state space transitions by different parameterisations and extends CTL
model checking to identify the maximal set of parameters that guarantee
the satisfaction of the given CTL property. We experimentally confirm
good scalability of our approach and demonstrate its applicability in the
case study of a genetic switch controlling decisions in the cell cycle.

1 Introduction

Constructing computational models that describe dynamics of biochemical
processes is a key step towards understanding of existing and even yet undiscov-
ered behavioural and physiological phenotypes occurring in biology. Model-based
prediction and analysis make cornerstones of systems biology. While the struc-
ture of dynamical models of some biochemical processes is already available at
the qualitative level represented by known entities and interactions, most of the
quantitative aspects of the systems dynamics, such as reaction rates or initial
concentration values, cannot be easily determined. Such quantitative attributes
are usually reflected in the model as parameters. In order to obtain reliable mod-
els, parameters need to be specified exactly. For a typical model, a fraction of the
parameter values can be determined from the literature or experimental data,
leaving many parameter values uncertain or completely unknown. The reason is,
that many parameters are hard to measure in vitro/in vivo.

The algorithmic discovery of unknown parameter values (also referred to as
parameter estimation, parameter identification, the inverse problem, or model cal-
ibration) remains thus one of the main challenges in computational systems biol-
ogy. Besides the traditional approaches to tackle the inverse problem (e.g., [15–
17,24]), there have recently appeared alternative techniques grounded in formal
verification [2,4,21]. These methods typically focus on identifying reliable sub-
sets of parameter space instead of finding singular parameter values.
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Hypotheses mined from biological literature as well as time-series experi-
ments from wet-labs can be considered as dynamical constraints restricting the
admissible set of model parameter values. Apart from a concrete kind of dynam-
ical models, these constraints can be sufficiently captured in terms of temporal
logic formulae (for review of approaches see, e.g., [7]). A common computational
method that decides the question whether for a given parametrisation the model
meets the temporal constraints is model checking. The inverse problem is then
generalised to parameter synthesis [2,12] – to find the maximal subset of para-
meter values such that they meet the stated dynamical constraints.

The general advantage of temporal specification for parameter synthesis is
its ability to focus on certain qualitative aspects of observed behaviour [23] (e.g.,
temporal ordering of events qualitatively characterising important moments in
the systems dynamics). In particular, temporal properties can be viewed as global
properties independent of particular setting of initial conditions (initial values
of the state variables). The global view provides biologists a tool which, for a
given model and a given property, computes the maximal set of parameter values
and initial conditions for which the model entirely fulfils the property. Such an
approach is complementary to traditional approaches based on monitoring a
numerical simulation [11,25] or local sensitivity analysis [13].

To capture biologically-relevant temporal hypotheses both branching-time
operators and linear-time operators are needed [6]. In this paper we focus on
branching logic CTL. The reason is that many relevant questions in systems biol-
ogy need branching operators to express them properly. For instance, switching
mechanisms and multi-stability are present in genetic regulatory networks and
drive many key biological phenotypes such as, e.g., irreversible decisions in cell
division, cell differentiation or programmed cell death. However, it is difficult
(or often impossible) to express relevant properties in linear temporal logics.
Other reason for usage of CTL is related to the particular procedure for model
checking. This procedure allows to effectively identify all system states where
the given property is satisfied. Thus CTL procedure leads inherently to global
analysis of systems dynamics as opposed to LTL procedure, which requires a
single initial state (or iterates over a given set of initial states).

Contribution of the Paper. Several methods for parameter synthesis based
on model checking have been proposed recently, targeting different kinds of mod-
els and different temporal logics (e.g., [2,5,11,12,19]). In [2] we proposed a para-
meter synthesis method for LTL hypotheses established on our automata-based
coloured LTL model checking algorithm.

In this paper we extend that work in several directions. First, we consider
CTL hypotheses. Second, we propose a distributed-memory parallel coloured
CTL model checking algorithm, keeping thus both the advantage of having an
explicit representation and the effectiveness of parallel solution in distributed-
memory. Third, we propose a novel heuristics for partitioning the state space that
effectively uses specifics of rectangularly abstracted ODE models (the abstrac-
tion is described in [10]). We have experimentally confirmed good scalability of
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our approach and demonstrated its applicability in a case study of a genetic
switch employing rectangular abstraction [4,10] of an already existing ODE
model [26].

2 Parallel Parameter Synthesis Algorithm

In this paper we propose a formal framework for parameter synthesis of bio-
chemical models from branching time temporal logic formulae. Here, the term
parameter refers to initial conditions of the model and to dynamical parameters.
The method presumes a finite state space. For discrete models such as boolean
networks, this can be ensured directly by the definition. For continuous models,
like ODE models, a finite discrete abstraction of the state space is necessary.
The existing abstractions typically lead to over- or under-approximation (or a
mixture of both) of the dynamics of the original system [10]. This has generally
some consequences regarding the interpretation of computed results. We will
discuss this issue later. The method also presumes a finite parameter space. In
the case of continuous parameter spaces an appropriate finite abstraction, like
an interval abstraction in the case of ODE models, must be used.

It is important to note that there are two levels of complexity that sig-
nificantly affect the tractability of parameter synthesis for biological models.
First, the procedure requires consideration of all possible settings of parame-
ters – points in the parameter space. The size of the parameter space grows
exponentially with the number of unknown parameters. However, in reality the
number of parameters to be considered should be small. A model with too many
parameters is hard to falsify - it can fit almost any data. Second, the state space
of the model, which has to be explored by the parameter synthesis algorithm,
grows exponentially with the number of state variables (state space explosion).

Given the complexity of the problem and the need for comprehensive large-
scale models, there is a natural call for development of techniques prepared to
perform efficiently on high-performance computing platforms [1,7]. The com-
plexity caused by the state space size can be reduced by either symbolic or
enumerative parallel techniques. The achieved efficiency is again highly depen-
dent on the modelling approach, character of models, and the properties con-
sidered. In the case of biological models, symbolic techniques were successfully
employed for abstract logical (qualitative) models [5,14] whereas enumerative
parallel techniques have proved to be fruitful for quantitative models [1,3].

Coloured CTL Model Checking

We start by introducing the notion of a parametrised Kripke structure that
encapsulates a family of Kripke structures built over the same model but with
different valuations of individual parameters.

Let AP be a set of atomic propositions. A parametrised Kripke structure (over
AP) is a tuple K = (P, S, I,→, L), where P denotes the finite set of parameter
values (parameterisations), i.e., all the possible valuations of the parameters,
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S is the finite set of states, I ⊆ S is the set of initial states, L : S → 2AP

is a labelling of states by atomic propositions, →⊆ S × P × S is a transition
relation labelled by parameter valuations (not required to be total). We write
s

p→ s′ instead of (s, p, s′) ∈→. Fixing a parametrisation p ∈ P reduces the
parametrised Kripke structure K to the standard (non-parametrised) Kripke
structure K(p) = (S, I,

p→, L).
To express properties (hypotheses) about the dynamics of systems, we con-

sider formulae of CTL defined by the following abstract syntax:

ϕ::=Q | ¬ϕ | ϕ1 ∧ ϕ2 | AXϕ | EXϕ | A(ϕ1 Uϕ2) | E(ϕ1 Uϕ2)

where Q ranges over atomic propositions taken from a set AP . Let ϕ be a CTL
formula. We denote by cl(ϕ) the set of all subformulae of ϕ and by tcl(ϕ) the
set of all (temporal) subformulae of ϕ of the form EXϕ, E(ϕ1 Uϕ2), AXϕ
or A(ϕ1 Uϕ2). We use the standard abbreviations like EFϕ which stands for
E(trueUϕ) or AGϕ which stands for ¬EF¬ϕ. Examples of some typical CTL
formulae are [14]:

– EF ϕ expresses a reachability of a state where the condition ϕ holds,
– AG ϕ expresses a stabilisation with ϕ being continually true,
– EFAGϕ1 ∧EFAGϕ2 expresses a bistable switch (two different stable situa-

tions ϕ1, ϕ2 can be reached).

Most frequent types of temporal properties investigated for biochemical models
have been collected in [23]. There are two important fragments of CTL relevant
for biological models. A formula is said to be positive if it does not contain any
negations. We say that a formula is existential (or in ECTL) if it is positive and
only contains existential temporal operators. We say that a formula is universal
(or in ACTL) if it is positive and only contains universal temporal operators.

It is important to note, that model abstraction based on over-approximation
preserves truth of universally-quantified CTL properties (ACTL), i.e. if an ACTL
property holds in the abstract model, it is guaranteed to hold in the concrete one.
Dually, under-approximation preserves falsity of ACTL. The situation is reversed
for existentially-quantified CTL properties (ECTL): over-approximation pre-
serves falsity while under-approximation preserves truth.

The parameter synthesis problem is defined in the following way. Suppose
we are given a parametrised Kripke structure K and a CTL formula Ψ . For each
state s ∈ S let Ps = {p ∈ P | s |=K(p) Ψ}, where s |=K(p) Ψ denotes that
Ψ is satisfied in the state s of K(p). The parameter synthesis problem requires
to compute the function FK

Ψ : S → 2P such that FK
Ψ (s) = Ps. Often we are

especially interested in computing the set ∩s∈IFK
Ψ (s).

The algorithm for computing FK
Ψ is a modification of the (explicit) labelling

CTL model checking algorithm [9]. It labels states with “coloured” subformulae
of Ψ that are satisfied in the state of the Kripke structure K(p) for the “colour”
p ∈ P. Typically the structures K(p) have similar transition relations, thus
leading to a significant acceleration of the parameter synthesis. The reason is
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Algorithm 1. Compute parameters
Require: parametrised KS K and CTL formula Ψ
Ensure: FK

Ψ

for all i ≤ |Ψ | do � compute the sets ColSat(Φ) = {(p, s) ∈ P × S | s |=K(p) Φ}
for all Φ ∈ cl(Ψ) with |Φ| = i do

compute ColSat(Φ) from ColSat(Φ′) � for maximal genuine Φ′ ∈ cl(Φ)
return {(p, s) ∈ P × S | (p, s) ∈ ColSat(Ψ)}

that a small change in a value of a single parameter causes only a local change
in the transition relation.

The algorithm operates recursively on the structure of Ψ starting from atomic
propositions. Its basic idea is described by the Algorithm 1. The recursive com-
putation of the satisfaction sets ColSat(Ψ) = {(p, s) ∈ P × S | s |=K(p) Ψ}
follows the parse tree of the formula Ψ .

Kripke Fragments

Our aim is to perform the parameter synthesis algorithm as a distributed-
memory algorithm on a cluster of n nodes (workstations) in order to enlarge
the available memory to accommodate larger models. To this end we use a par-
tition function f : S → {1, . . . , n} to partition the state space among n nodes.
After partitioning, each node owns a part of the original state space. Concrete
techniques for the state space partitioning are discussed in the next subsection.

We adapt the assumption based distributed CTL model checking para-
digm [8] as the basis of our work. We represent the state space owned by
one node using a parametrised Kripke structure with border states (also called
a fragment). Intuitively, border states, that are added to the states assigned
by f , are states that in fact belong to other station and represent the miss-
ing parts of the state space (placed in the memory of other nodes and not
directly accessible). For structure K, the set of its border states is defined as
border(K) = {s ∈ S | ¬∃(p, s′).s

p→ s′}. A fragment Ki of K is a substructure
of K satisfying the property that every state in Ki has either no successor in Ki

or it has exactly the same successors as in K. Partitioning the given structure
K results in a finite set K1, . . . ,Kn of fragments each handled by one node. A
border state is thus stored several times: as original one on the node that owns
it and as duplicates on nodes they own its predecessors.

To define the semantics of CTL formulae over fragments we need to adapt the
standard semantic definition. We define the notion of the truth under assump-
tions associated with border states. An assumption function for a parametrised
Kripke structure K and a CTL formula ψ is defined as a partial function of type
A : P × S × cl(ψ) → Bool. The values A(p, s, ϕ) are called assumptions. We
use the notation A(p, s, ϕ) =⊥ to say that the value of A(p, s, ϕ) is undefined.
By A⊥ we denote the assumption function which is undefined for all inputs.
Intuitively, A(p, s, ϕ) = tt if we can assume that ϕ holds in the state s under
parametrisation p, A(p, s, ϕ) = ff if we can assume that ϕ does not hold in the
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state s under parametrisation p, and A(p, s, ϕ) =⊥ if we cannot assume any-
thing. Let us denote by ASψ

K the set of all assumption functions for a formula ψ
and a parametrised Kripke structure K

We consider a new semantic function Cψ
K : ASψ

K → ASψ
K that takes an

input assumption function Ain and returns a new assumption function A. If
s ∈ border(K) and ϕ ∈ |tcl|(ψ) then A(p, s, ϕ) = Ain(p, s, ϕ). If s /∈ border(K)
and ϕ ∈ |tcl|(ψ) then A(p, s, ϕ) is defined recursively. We provide here only the
definition for the most complicated case of A(ϕ1 Uϕ2). A(p, s,A(ϕ1 Uϕ2)) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tt if for all p-paths π = s0s1s2 . . . with s = s0 there exists an index
x < |π| such that: either A(p, sx, ϕ2) = tt or [sx ∈ border(K) and
A(p, sx,A(ϕ1 Uϕ2)) = tt)], and ∀y : 0 ≤ y < x : A(p, sy, ϕ1) = tt

ff if there exist a p-path π = s0s1s2 . . . with s = s0 and an index
x < |π| such that: [A(p, sx, ϕ1) = ff and ∀y ≤ x : A(p, sy, ϕ2) = ff]
or ∀x < |π| : [A(p, sx, ϕ2) = ff and (|π| = ∞ or (s|π|−1 ∈ border(K)
and A(p, s|π|−1,A(ϕ1 Uϕ2)) = ff))]

⊥ otherwise

Here a p-path π from a state s0 is a sequence π = s0s1 . . . such that
∀i ≥ 0 : si ∈ S and si

p→ si+1. The truth of a formula is relative to given assump-
tions Ain and it is defined as Cψ

K(Ain)(p, s, ψ). The value of an assumption func-
tion Ain(p, s, ϕ) for a state s ∈ border(K) does not influence the value Cψ

K(Ain).
Hence, for any total parametrised Kripke structure K (i.e. border(K) = ∅),
CTL formula ψ and an arbitrary assumption function A ∈ ASψ

K, we have that
s |=K(p) ψ ⇔ Cψ

K(A)(p, s, ψ) = tt. In particular, ColSat(ψ) = {(p, s) ∈ P × S |
Cψ

K(A)(p, s, ψ)= tt} and thus we can solve the parameter synthesis problem by
computing the assumption function CK(A⊥).

Distributed Algorithm

We are now ready to describe the algorithm for distributed parameter synthe-
sis. In order to compute CK(A⊥) in a distributed environment, we iteratively
compute assumption functions that are defined on fragments of the system K.

The algorithm starts by partitioning the given state space of K among the
nodes using a partition function f . Each node performs Algorithm 1 modified
in such way, that it is also able to cope with “undefined values”. Moreover, it
computes both the positive and negative results. This means that if a state s has
a successor for which ϕ is true for parametrisation p, it can be concluded both
that s satisfies EXϕ and that s does not satisfy AX¬ϕ under p, even when the
validity of ϕ in other successors of s is undefined (unknown) yet.

The main idea of the entire distributed computation, summarised in Algo-
rithm 2, is the following. Each fragment Ki is managed by a separate process
(node) Pi. These processes are running in parallel (simultaneously on each node).
Each process Pi initialises the assumption function Ai to the undefined assump-
tion function A⊥. After initialisation, it computes the semantic function CKi

(Ai)
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Algorithm 2. Main Idea of the Distributed Algorithm
Require: parametrised KS K, CTL formula Ψ , function f
Ensure: FK

Ψ

Partition K into K1, . . . , Kn

for all Ki where i ∈ {1, . . . , n} do in parallel
Take the initial assumption function
repeat

Compute the semantic function using the node algorithm;
Exchange relevant information with other nodes;
Modify assumption function;

until all processes reach fixpoint

using the node algorithm. If new assumptions have been computed for some bor-
der states, this result is sent directly to appropriate processes. Similarly, if such
information is received from another process, the assumption function is modified
to reflect these new results. This procedure is repeated until all running processes
are “deadlocked”, i.e. until no new information (value of an assumption function)
can be computed using the node algorithm or by exchanging assumptions among
processes. We say that the fixpoint has been reached (“global” stabilisation has
occurred). In our experimental implementation, the deadlock is detected by addi-
tional communication among processes (the code has been skipped for clarity).

After stabilisation (reaching the fixpoint) there may still remain a state s
and a formula ϕ, for which Ai(s, ϕ) =⊥. This can happen in the case of the
U operator. However, if the results for all subformulas of ϕ have already been
computed in all states on all nodes and the fixpoint has been reached then we
can conclude that ϕ does not hold in s.

State Space Partitioning

The key ingredient of distributed model checking algorithms is a suitable state
space partitioning that minimises the communication overhead and equally
distributes the workload. In particular, the partitioning should provide (1)

Fig. 1. State space partitioning.

a regular load-balancing ensuring that each
node is responsible for a proportional part of
the state space and (2) a good locality min-
imising the number of cross transitions where
the source and target states are assigned to
two different nodes.

The computation of the optimal partition-
ing for the given state space typically brings a
significant overhead and thus various heuris-
tics are considered. For computer and engi-
neering systems, a hash-based partitioning is
usually used, since it does not require any prior
knowledge about the structure of the state
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space. It constructs a hash function mapping each state to a node. This approach
usually provides very good load-balancing following from an uniformity of the
hash function. However, these heuristics are not able to control the locality and
thus they introduce a considerable communication overhead.

In our approach we utilise the regular structure of the state space for bio-
chemical models [20]. We use structural properties of the rectangular abstraction
of the given parametric piece-wise multi-affine ODE model [4,10]. The approxi-
mation is formed by an n-dimensional hyper-rectangular state space defined by
m state variables and by a set of thresholds for each variable. The partitioning
decomposes the state space into n hyper-rectangular subspaces (n is the num-
ber of nodes) such that each subspace has similar volume. Figure 1 depicts such
partitioning for m = 2 and n = 3 where the volume for each subspace is 3. Our
heuristic usually provides a good load balancing, since the volume reflects the
number of states. The construction of the discretised state space further ensures
there are only transitions between the adjacent states with respect to the hyper-
rectangular structure. Therefore, our partitioning naturally provides almost the
minimal number of cross transitions, since only cross transitions between the bor-
der states are introduced as illustrated in Fig. 1. Comparing to the hash-based
partitioning we significantly decrease the communication overhead. Note that,
the final load balancing can be negatively affected by the backward connectivity
of the state space. However, our experiments demonstrate the connectivity is
significantly increased due to the fact that we have to consider all parameterisa-
tions of the model. Additional heuristics are used to improve the load balancing
by reflecting the atomic propositions in the CTL formula.

3 Experimental Evaluation

We first consider a suitable model that enables us to thoroughly evaluate the
scalability of the proposed distributed algorithm. Afterwards, we apply our app-
roach to a relevant and interesting model describing the regulation in a cell cycle
transition.

Scalability

The scalability of the algorithm is evaluated on a catalytic reaction model. The
model allows to scale the number of intermediate products/variables (N), dis-
cretisation thresholds (T ) and unknown parameters. For each variable we assume
a same number of thresholds and thus the total number of states is (T −1)N . We
employ the state space partitioning that reflects the model structure and thus it
provides a good load-balancing and locality.

We use homogeneous cluster with 12 nodes each equipped with 16 GB of
RAM and a quad-core Intel Xeon 2 GHz processor. In order to provide a fair
evaluation we utilise only a single core on each node (although our implemen-
tation can effectively utilise multi-core nodes). The reported runtime has been
obtained as the arithmetic mean from several experiments.
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Fig. 2. The scalability with respect to the number of unknown parameters.

Figure 2 illustrates the results for N = 6 and T = 13 (i.e. almost 3 millions
states) and different number of unknown parameters. The figure demonstrates
a significant acceleration of the parameter synthesis when more nodes are used.
Note that the missing columns indicate that the corresponding experiment run
out of memory. The number of unknown parameters changes the structure of
the state space and its partitioning. Therefore, in some cases, a higher number
of parameters can decrease the runtime.

Case Study: Regulation of G1/S Cell Cycle Transition

To demonstrate applicability of our framework, we investigate a well-known ODE
model [26] representing a two-gene regulatory network that describes the interac-
tion of the tumour suppressor protein pRB and the central transcription factor
E2F1 (see Fig. 3 (left)). This network represents the crucial mechanism gov-
erning the transition from G1 to S phase in the mammalian cell cycle. In the
G1-phase the cell makes an important decision. In high concentration levels,
E2F1 activates the G1/S transition mechanism. In low concentration of E2F1,
committing to S-phase is refused and that way the cell avoids DNA replication.

E2F1pRB

d[pRB]
dt = k1

[E2F1]
Km1+[E2F1]

J11
J11+[pRB] − φpRB [pRB]

d[E2F1]
dt = kp + k2

a2+[E2F1]2

K2
m2+[E2F1]2

J12
J12+[pRB] − φE2F1[E2F1]

a = 0.04, k1 = 1, k2 = 1.6, kp = 0.05, φE2F1 = 0.1
J11 = 0.5, J12 = 5, Km1 = 0.5, Km2 = 4

Fig. 3. G1/S transition regulatory network and its ODE model taken from [26].

The mechanism is an example of a bistable switch, an irreversible decision
to finally reach some of the two different stable states. In particular, we are
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interested in the existence of two different stable equilibria on E2F1. Activity
of pRB is rapidly modulated by phosphorylation/dephosphorylation turn-over
controlled by growth factor signals transferred to cyclin-dependent kinases each
acting on a specific subset of pRB phosphorylation sites [22]. This control is
captured in the model by means of the degradation rate parameter φpRB .

In [26] the authors have provided bifurcartion analysis investigating E2F1
equilibria depending on φpRB. As shown in Fig. 4(left), by non-trivial elaboration
with numerical analysis methods expecting the previous knowledge of the equi-
libria they constructed equilibrium point curve for E2F1 in proportion to φpRB

and discovered two saddle-node bifurcation points. For φpRB smaller then 0.007
the system converges to a single low-concentration stable equilibrium whereas for
values higher than 0.027 it converges to a single high-concentration equilibrium.
In between the two bifurcation points the system is bistable provided that there
always exists an unstable equilibrium for which there is an ε-ball that makes a
basin of attraction for both stable equilibria.

To employ our framework for this non-linear model, we have first created
the piece-wise multi-affine approximation (PMA) of the ODE model [18]. We
approximate each non-linear function in the right-hand side of ODEs with an
optimal sequence of piece-wise affine ramp functions (in our case we have set the
precision to 70 affine segments per each non-linear function). For the resulting
PMA we have employed rectangular abstraction [4] to obtain a finite (rectangu-
lar) automaton over-approximating the PMA (the intuition is shown in Fig. 1).
Finally, we have run the parallel coloured CTL model checking algorithm for
the formula ϕ ≡ EFAG high ∧ EFAG low and the initial parameter space
φpRB ∈ [0.001, 0.025]. The atomic propositions low and high characterise the
location of expected regions of E2F1 stability. Based on the results reported
in [26] we define the stable regions as high ≡ (E2F1 > 4 ∧ E2F1 < 7.5) and
low ≡ (E2F1 > 0.5 ∧ E2F1 < 2.5) that determine the expected regions of the
two stable attractors including (a subset of) their surrounding attracted points.

Fig. 4. (left) Equilibrium point curve taken from [26] (we believe there is a typo in
the scale of φpRB in the original figure, the range of φpRB should read 0.005-0.035).
(right) Model checking results. Red and blue correspond to the high and low stable
regions, respectively. Yellow are the states where the bistable switch formula ϕ holds
(Color figure online).
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Results of the analysis are depicted in Fig. 4(right) in comparison with the
equilibrium curve, Fig. 4(left), provided in [26]. The blue region is the place where
AG low is satisfied, in particular, it says the E2F1 low concentration is guaran-
teed to stabilise for the corresponding values of φpRB in the PMA. The guarantee
comes from the fact that the abstraction employed is over-approximation [10].
In particular, for each trajectory in the PMA there must exist a correspond-
ing path in the rectangular automaton. For example, the model checking result
says that for a fixed parameter value 0.005 there is no path in the rectangular
automaton that would exit the concentration bounds 0.5 ≤ E2F1 ≤ 2.5 and
hence there is no such trajectory in the PMA. However, although there is no
red region identified at φpRB = 0.005 we are not sure this holds also in the
PMA since it might be the property introduced by the abstraction. For a given
ACTL formula, the abstraction thus causes the parameter space synthesised by
model checking to be under-approximated [4]. For example, with φpRB getting
closer to the bistable region the guarantee of low stabilisation becomes limited
to a smaller subset of the low region until it disappears at φpRB > 0.0145. The
analogous explanation fits the red region obtained for AG high, note that in
that case the effect of parameter value under-approximation is negligible when
compared with equilibrium point curve. For φpRB ∈ [0.012, 0.0145], the system
is bistable (there exist two stable regions, i.e., AG low∧AG high is guaranteed).

The yellow region covers points where ϕ holds. Since an EF -formula might be
satisfied within a spurious behaviour introduced by the abstraction, this result
does not provide any guarantees but rather estimates parameter values and
initial conditions under which both stable regions might be reached. The diagram
projects pRB values by means of fill opacity. Grey region reflects the fact there
are values of pRB from which the red or the blue region is not reachable. This
information is again guaranteed.

4 Conclusions

We have developed a fully automatic method for synthesising parameters that
guarantee the satisfaction of a given CTL hypothesis. The method uses a novel
distributed-memory parallel algorithm that extends the CTL model-checking
algorithm by colouring the transitions in the underlying state space. We have
demonstrated a very good scalability of the algorithm as well as the usefulness
of the method on a biological problem of bistable switch. This is an example
of a wide range of possible applications. The case study can be compared to
numerical bifurcation analysis methods that require good initial estimate of the
equilibria and do not scale up with the number of unknown parameters. Our
method does not require so detailed initial knowledge about the system and
scales well with the number of unknown parameters.
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3. Barnat, J., Brim, L., Safránek, D.: High-performance analysis of biological systems
dynamics with the divine model checker. Brief. Bioinform. 11(3), 301–312 (2010)

4. Batt, G., Belta, C., Weiss, R.: Model checking liveness properties of genetic regula-
tory networks. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424,
pp. 323–338. Springer, Heidelberg (2007)
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Abstract. Building models with a high degree of specificity, e.g. for
particular cell lines, is becoming an important tool in the advancement
towards personalised medicine. Constraint-based modelling approaches
allow for utilizing general system knowledge to generate a set of possi-
ble models that can be further filtered with more specific data. Here,
we exploit such an approach in a Boolean modelling framework to inves-
tigate EGFR signalling for different cancer cell lines, motivated by a
study from Klinger et al. [8]. To optimize performance of the underlying
model checking procedure, we present a number of constraint encodings
tailored to describing common data types and experimental set-ups. This
results in a significant increase in the performance of the approach.

Keywords: Boolean Networks · Model checking · EGFR · Cancer

1 Introduction

Mathematical modelling in systems medicine and biology has long since proved
its worth in gaining a deeper understanding of the functionalities of complex bio-
logical systems. However, modellers are often confronted with data uncertainty,
e.g., originating in a big span in the quality of the available data but also simply
in lack of information on specific components or interactions. Often, to combat
lack of specific knowledge, cellular pathway or network models utilize a collec-
tion of information integrating data derived from different experimental settings,
tissues or even organisms. This can be problematic, in particular when analysis
is focused on questions pertaining to networks in very specific settings. A prime
example for such a situation is the evaluation of drug target effectiveness that
necessarily aims at particular cancer types or cell lines [9].

In this paper, we tackle this problem in the context of the epidermal growth
factor receptor (EGFR) signalling pathway motivated by a study by Klinger et al.
[8]. This receptor drives cell proliferation and cell growth, but is also involved in
the regulation of cell death and is found to carry prominent mutations in cancer
cells (BRAF, PIK3CA). However, the exact topology of this regulatory system
is not completely clear, not least since mutations can cause major changes in the
inner regulations. Klinger et al. presented a combined experimental and theoret-
ical approach to identify the cell line specific topology of the network starting
c© Springer International Publishing Switzerland 2015
O. Roux and J. Bourdon (Eds.): CMSB 2015, LNBI 9308, pp. 264–276, 2015.
DOI: 10.1007/978-3-319-23401-4 22
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from a literature model aggregating information from various sources. To this
end, human colorectal cancer cell lines were treated with stimuli and inhibitors
to produce a rich data set that was evaluated using a semi-quantitative mod-
elling approach. However, this approach necessitates a steady state assumption
for the data points, which can be seen as problematic due to the interplay of
various feedback effects [9]. In addition, while quite comprehensive, the method
still relies on parameter estimation steps and statistical cut-offs.

In a fully qualitative modelling formalism, as e.g. the Boolean Networks [6],
recently developed methods allow to consider all models consistent with given
constraints pertaining the underlying network topology. Additional data can
be used to further narrow down this pool of models. Once all available infor-
mation has been integrated, features shared between all remaining models as
well as distinguishing characteristics of interest for experimental design can be
extracted [3,4]. Here, we use such an approach to analyse the EGFR signalling
network for different cell lines, which was focus of qualititative studies before,
however, only steady-state and not transient behavior was examined [4,10].
Utilizing the rich data set of [8], we aim at a comparison of the results delivered
by the two methods, both in the case of adding steady state assumption for the
data points and without it. Going beyond the study by Klinger et al., we use
comparative analysis of the model pools of different cell lines to evaluate the dif-
ferences in not only network topology but also regulatory mechanisms generated
by different genotypes.

As the system is expected to exhibit non-linear behaviour, we rely on the
strongly expressive model checking method [1] that, together with the problem
of parameter uncertainty, places high demands on the computational power. To
streamline application and improve performance we developed several conve-
nient constraint encodings tailored to data types and experimental set-ups often
encountered when modelling biological regulatory systems. Here we present all
the methods we employed to improve performance of our custom model-checker1.
Without these improvements, the procedure would be barely possible, as we illus-
trate by a comparison of performance with a state of the art model checker.

2 Background

The topology of a biological system is encoded as a directed graph G = (V,E)
where V is a set of named components and E ⊆ V × V is a set of regulations.
Each component can occur in one of two qualitatively distinct states (0 and 1)
representing e.g. being or not being phosphorylated, resulting in a Boolean Net-
work (BN). The set of all possible configurations of a system, called state space,
is denoted and defined SG = B

|V | with B = {0, 1}. The behaviour of a BN in its
state space is then described via a parametrization function K : SG → SG with
coordinate functions Kv : SG → B, v ∈ V , as described below. The pair (G,K)
then constitutes a unique model.

1 The tool used here, called TREMPPI, is available in a development version at
github.com/xstreck1/TREMPPI and is expected to be fully released in 2015.
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We consider an asynchronous update rule for a BN, meaning that at any
state of the network we can change at most one component value per time step,
even if multiple value changes are indicated by the behavioural rules. Formally
we use a transition relation →G⊆ SG ×SG s.t. for a parametrization K we have
that s →G s′ if and only if one of the following holds:

∀v ∈ V : s′
v = sv ∧ Kv(s) = sv,

∃u ∈ V,∀v ∈ V \ {u} : s′
v = sv ∧ su �= s′

u = Ku(s).

The pair (SG,→G) is called a transition system (TS) of a model.
To illustrate the technical notions of this and the following section, we use

an example of a trivial BN with a single self-regulating node, i.e. V = {v}, E =
{(v, v)}. A parametrization for our trivial example and its respective TS has e.g.
the following form (brackets not used for 1-dimensional vectors):

SG = {0, 1},Kv(0) = 1,Kv(1) = 0,→G= {(0, 1), (1, 0)} (1)

At this point, there is not yet a strict relation between the given network struc-
ture and the parametrization function. To make this link, a BN is equipped with
an edge labelling, which are the predicates + : E → B and − : E → B s.t.:

+(u, v) ⇐⇒ ∃s ∈ S, su = 0 : Kv(s) < Kv(s + eu),
−(u, v) ⇐⇒ ∃s ∈ S, su = 0 : Kv(s) > Kv(s + eu),

where eu ∈ B|V | is the u-th unit vector. The predicate + on (u, v) can be inter-
preted as u being an activator of v and − as u being an inhibitor. Additionally
we say that an edge (u, v) is functional iff +(u, v) or −(u, v). Using these predi-
cates we can encode respective biological knowledge as a predicate formula l over
the domain E called labelling. The model (G,K) is then valid for the labelling
l iff (G,K) |= l where |= is the standard logical validity [5]. The set of all
parametrization of a BN G where l is valid is then denoted KG,l. For our exam-
ple (1) we have that +(v, v) = false, −(v, v) = true and therefore labelling
l = ¬ + (v, v) ∧ −(v, v) is valid in (G,K).

Clearly, two models (G,K) and (G,K ′) for K �= K ′ will in general exhibit
behavioural differences. During modelling one is only interested in those models
whose behaviour fits the experimental observations. We use the term property
for such behavioural observation of the system, e.g. time series data, and use the
Büchi Automata [1] (BA) based model checking to decide whether a property

holds in a model. A BA is a four-tuple A = (SA,
L(G)−−−→, IA, FA), where:

– SA is a set of states,

–
L(G)−−−→ is a transition relation with propositions s.t.:
L(G) = P({v ∗ n | G = (V,E, ρ), v ∈ V, ∗ ∈ {≤,≥, <,>,=}, n ∈ [0, ρ(v)]}),

– IA ⊆ SA, FA ⊆ SA are a set of initial and final states, respectively.

The intuition here is that the automaton controls validity of certain statements.
Once a statement becomes valid, the automaton changes its state as a form of
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memory. Examples are given in Sect. 3. A property is resolved on a synchronous
product of an automaton and a transition system P = A × (SG,→G) = (S,→
, I, F ), which is obtained as follows:

– S = SA × SG, I = IA × SG, F = FA × SG,

– (sA, sG) → (rA, rG) ⇐⇒ (sG → rG) ∧ (sA φ−→ rA) ∧ (sG |= φ).

In the general case the property encoded by A is satisfied iff there is a path
(i, . . . , f, . . . , f) in P s.t. i ∈ I, f ∈ F . The requirement for a cycle on f stems
from expectation that some properties repeat infinitely, e.g. stable behaviour in
an attractor. For a class of so-called reachability properties, e.g. a time series, a
path (i, . . . , f) is sufficient. Then A is called a terminal Büchi Automaton (TBA).

Having a property φ, we are interested in the set KG,φ of parametrizations
that satisfy the property φ. For our running example it holds |KG| = 4 and
|KG,l| = 1 where l is as described above. Additionally, multiple experiments are
usually considered. Have φ, ψ properties, then KG,φ ∩ KG,ψ = KG,φ∧ψ can be
used to obtain models that satisfy both φ and ψ. We use this simple observation
later to obtain sets of models that fit the data of all considered experiments.

3 Methods

In this section we show the reduction methods we used in the encoding of the
data, which, albeit quite technical, represents intuitive biological notions.

As the knowledge about a system is usually obtained by measuring concen-
tration or activity of a component, we use measurements as a basic unit of our
property system. A measurement M in a TS (SG,→G) is a predicate over SG,
i.e. M : SG → {true, false}. Interpreted as a set, we also intuitively have that
M ⊆ SG, meaning that a measurement is the set of states that match the data.

A sequence of measurements M = (M1, . . . , Mk) can be encoded via a TBA
that loops in its current state until its respective measurement is matched, then
it proceeds to a next state. To implement this for the last measurement, an
arbitrary state is added after the last measurement. Formally we use a TBA

A = (SA,
L(G)−−−→, IA, FA) where SA = {sA

1 , . . . , sA
k+1}, IA = {sA

1 }, FA = {sA
k+1},

∀i ∈ [1, k] : sA
i

Mi−−→ sA
i+1 ∧ sA

i
¬Mi−−−→ sA

i . Consider our trivial example and the
measurements M1(s) ⇐⇒ sG

v = 0,M2(s) ⇐⇒ sG
v = 1,M = (M1,M2). Then

the TBA A that controls whether the TS (1) is capable of reproducing M is:

({sA
1 , sA

2 , sA
3 }, {sA

1

(1)−−→ sA
1 , sA

1

(0)−−→ sA
2 , sA

2

(0)−−→ sA
2 , sA

2

(1)−−→ sA
3 }, {sA

1 }, {sA
3 }). (2)

Clearly the size of an automaton is linear w.r.t. to the number of measurements.
This is advantageous as for an arbitrary property the resulting automaton can
be exponential in the worst case [1]. We can however further reduce the size by
encoding the initial and accepting states directly in the transitions system. This
primarily gives us the advantage that we can start the search from the states
that are relevant for the property directly and not from all the states of the TS
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as in standard model checking. When building a product of some TS T with the
above TBA A we put S = (SA\{sA

1 , sA
k+1})×SG; I = {sA

2 }×M1;F = {sA
k }×Mk.

E.g. the reduced product of (1) with (2) in our example would be:

(sA
2 , 0) → (sA

2 , 1), (sA
2 , 1) → (sA

2 , 0), I = {(sA
2 , 0)}, F = {(sA

2 , 1)}, S = I ∪ F (3)

Such encoding is sufficient if we want to pass through a set of measurements.
Sometimes it is however expected that the last measurement represents a stable
state of the system, as e.g. in many perturbation experiments. This can be simply
achieved by further reducing the set of final states s.t. F = {sA

k } × {sG|sG ∈
Mk∧sG → sG}. Note that in (3) this means F = ∅, as the system never stabilizes.

Until now we were focusing on passing through measurement points, without
any specifications on the behaviour between them. There are multiple related bio-
logically relevant constraints that can be implemented by simplifying the prod-
uct structure. In particular, we may want to require a component not to change
in between two measurements, or to change only once prohibiting unobserved
oscillations. We define an additional constraint related to a measurement called
component delta, δ : V → {up, down, stay, none}. This constraint is resolved on
the transition system as follows:

(sG, rG) |= δ ⇐⇒ ∀v ∈ V : (δ(v) = stay ∧ (sG)v = (rG)v) ∨
(δ(v) = up ∧ (sG)v ≤ (rG)v) ∨
(δ(v) = down ∧ (sG)v ≥ (rG)v) ∨
(δ(v) = none)

and the product is extended s.t.:

(sA, sG) → (rA, rG) ⇐⇒ (sG → rG)∧ (sA φ,δ−−→ rA)∧ (sG |= φ)∧ ((sG, rG) |= δ).

We then apply this constraint to the encoding of measurements. In particular,
consider a measurement vector M and a δ that must be satisfied when transition-
ing from Mi to Mi+1 for some i ∈ [1, |M |). Then the automaton A encoding M

is extended so that sA
i

Mi,δ−−−→ sA
i+1 and sA

i+1

¬Mi+1,δ−−−−−→ sA
i+1. This slightly involved

encoding follows from the fact that sA
i is left only after Mi was satisfied, there-

fore we already require δ when leaving it and the requirement is kept until Mi+1

is satisfied.
Note that the monotonicity is only one-sided, i.e. we can either require for a

component that it is monotonously increasing (up) or monotonously decreasing
(down). The general monotonicity, is more complicated and we do not discuss
it in the article, for reference see [7].

Lastly we focus on a configuration of an experiment. Experimentally, mea-
surements are conducted under specific conditions, e.g. presence of certain nutri-
ents in the medium or addition of known inhibitors. Such conditions are usually
expected to stay constant for the duration of the experiment. If they are explic-
itly modelled, e.g. with a component representing an inhibitor, we can enforce
them by removing the states that do not match the corresponding component
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value from the TS, together with the respective transitions. For a property φ we
denote Expφ : V → {{0}, {1}, {0, 1}} the function that provides the range of
values a component may attain in the current experiment. We then restrict the
state space s.t. SG =

∏
v∈V Expφ(v).

4 EGFR Signalling Pathway Study

Exploiting the efficient property encodings just presented, we now conduct a
thorough analysis of the EGFR signalling pathway with particular emphasis
on the comparison of network structure and regulatory mechanisms in different
cell lines. As discussed in the introduction, we utilize a comprehensive data set
provided by Klinger et al. in [8]. There, human colorectal cancer cell lines were
treated with stimuli and inhibitors in order to elucidate the underlying network
structure of the pathway using a semi-quantitative modelling approach. Here, we
generate and analyse comprehensive model pools for the different cell lines2 and
compare our results with those by Klinger et al. In addition, we discuss further
results from our analysis unrelated to the original study.

4.1 Model Building

Based on the model of [8] we constructed a BN, depicted in Fig. 1. We kept
the original components and regulations, with a few exceptions. As the IGF1
stimulus is the only regulator of IGFIR we know that IGFIR copies its value
and therefore we modelled the stimulation directly on IGFIR, removing IGF1
completely. Additionally, p70S6K is depicted as activator of IRS1, however based
on [11] we modelled it as an inhibition. The same for AKT which is known
to repress IRS1 indirectly through mTorC1 [11]. Note that these changes are
to regulations of IRS1 only, which is an output component and therefore can
not affect the upstream feedback loops. Any resulting inconsistencies with [8]
should therefore be localised to IRS1. Since the data originates from cancer
cells, we accounted for possible disruptions in the network due to mutations by
not requiring regulations to be functional, i.e. activations are labelled as ¬− and
inhibitions as ¬+. However, stimuli and inhibitions as well as components with
a single regulator (MEK, AKT) were set as always functional. In the data there
are two stimuli, TGFa and IGF1, and two effective inhibitors, MEK inhibitor
AZD6244 and the PI3K inhibitor LY294002. There are two more inhibitors in
the original data set on GSK3 and IKK, which were found to be non-effective and
therefore neglected here. In our model, we set the stimuli as Expφ(TGFa) = {1}
if TGFa is stimulated in φ and Expφ(TGFa) = {0} otherwise, and the same
for IGFIR. The inhibitors do not remove the targets from the system, only
prohibit their effect on the down-stream components. We therefore added them
as extra components LY and AZD, and modelled them analogously to stimuli.

2 For spatial reasons, only samples from the results are provided in the article. All the
data are listed in the supplementary archive or at dibimath.github.io/CMSB 2015.
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Fig. 1. EGFR Boolean Network. The full green edges are labelled + ∧ ¬−, the dashed
¬−, the full red −∧¬+, the dashed ¬+. Stimuli are in green, inhibitors in yellow. The
measured nodes are semi-oval (Color figure online).

Additionally we set the regulatory functions KERK(s) ⇐⇒ sMEK = 1∧sAZD =
0 and KAKT (s) ⇐⇒ sPI3K = 1 ∧ sLY = 0 to enforce the correct inhibition
semantics. After having resolved all the edge constraints, we obtained a model
pool Kl with 259200 models. Note that the inhibitors and stimuli are fixed
components, they do not contribute to the size of the state space, which then
only has 29 = 512 states instead of 213.

In their experiments, Klinger et al. used a high-throughput immunoblotting
method, called Luminex assay, which measures intensities of labelled antibodies
that bind the phosphorylated components, showing their activity (for a detailed
description see [8]). Here, we used a reduced data set containing experiments
on 5 human colorectal cancer cell lines. Each of the cell lines was treated with
each pairwise combination of one stimuli (TGFa, IRS1, no stimulus) and one
inhibitor (AZD, LY , no inhibitor), which were then compared to the measure-
ments before treatment. Since the configuration without stimulus and inhibitor
is not expected to change, we did not include it.

Prior to their usage, the data needed to be discretized to fit the Boolean for-
malism. Additionally, for some experiments, multiple measurements were avail-
able. In such a case we took the mean of those. For the discretization one usually
uses a software which creates a threshold value that separates the range of mea-
sured values for each component. In our data set some of the values however
almost do not change between measurements being e.g. at a plateau and there-
fore should not be assigned with different states. To aviod this separation, we
focused on a fold change, which shows the measured activity of the treated
sample relative to the measurement before the treatment. Here, we rely on an
assumption that a fold change of two or more is significant, which is to the
best of our knowledge a common practice and in our case seems to produce a
good separation. Since the focus of this study is on evaluating the effect of reg-
ulatory influences, we assigned Boolean values to the component measurements
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consistent with the nature of the fold changes found in the data. If we observed
an increase by a factor of at least two, we assigned the value 0 to the measure-
ment before and 1 after the treatment. Analogously, we encoded a decrease by
a factor of at least two. If the change factor is less than two, we did not spec-
ify the value, but required the component to be stable, as explained in Sect. 3.
In this approach, interpretation of the qualitative dynamics heavily focuses on
the component changes indicating actively regulated behaviour, as is our inten-
tion. Note that it therefore differs from the often employed interpretation of the
Boolean component values as an abstraction for ranges of quantitative values. In
our approach the same quantitative value might be assigned different Boolean
counterparts depending on the observed component behaviour in the respective
experiments. In our opinion, this does not pose a problem, since we are focusing
on the qualitative dynamics and thus the values 0 and 1 can be viewed as labels
of qualitative change, rather than ranges of quantitative values. Presumably, if a
component can undergo both a significant increase and a decrease in its concen-
tration, such mechanics should be allowed by the network without contradicting
the effects of the regulations.

As we considered 8 treatments for 5 cell lines, we obtained altogether 40 mea-
surement pairs. In [8] the authors argue that at the time of the measurements the
system is expected to reach a stable plateau. However, Figure S1 therein shows
that the kinetics of some components have an unstable behaviour after the time
point of measurement. To investigate the impact of the steady state assumption,
we created a stable and transient (i.e. not required to be stable) version of each
time series, as explained in Sect. 3. Additionally, we were interested in effects of
monotonicity constraints on the results. We therefore also considered for each
property a version where all the components that are measured and not stable
are required to be monotonous in their behaviour. By combining the treatments,
cell lines and constraints we obtained 160 properties. The properties are listed
in the supplementary files. Note that as each of these properties is a two-step
experiment, we can reduce the encoding TBA just to 1 state, as explained in
Sect. 3, keeping the size of the product at the 512 states.

4.2 Results

Initially we found that each of the cell lines shows inconsistencies in at least one
measurement pair. In each of these, the experimental set-up, listed in Table 1,
requires that a component whose activator was inhibited undergoes itself an acti-
vation, which is logically inconsistent. For example cell line SW403 shows with
IGF1 stimilus an over 4-fold increase in concentration of AKT under inhibition
of PI3K, its only activator. This is still comparably lower than the about 12-fold
increase without the inhibition, showing that the inhibitor is working, but the
dose is not sufficient to lower the activity of AKT to the threshold of being
inactive after discretizing. Since dose-dependent processes are not considered
in this formalism, we removed the respective experiments from the testing set.
After the removal we have sets of 7 measurement pairs for each cell line except
LIM1215 where there are only 6. We therefore further used only 34 measurement



272 A. Streck et al.

Table 1. Experimental set
up causing logical inconsis-
tencies after discretization.

Cell line TGFa IGFIR AZD LY

LIM1215 1 0 1 0

LIM1215 0 1 0 1

HCT116 0 1 0 1

SW403 0 1 0 1

SW480 0 1 0 1

HT29 1 0 1 0

Table 2. Sizes of a parametrization sets match-
ing the data from all the consistent experiments for
each cell. Monotone property sets are not listed as
monotonicity did not cause any reduction.

Cell line transient partially stable stable

LIM1215 180000 6100 40

HCT116 129600 5580 2

SW403 180000 111000 840

SW480 136800 74670 36

HT29 163800 101010 216

pairs, yielding 136 properties when combined with different path constraints. In
Table 2 column transient, which represents the weakest assumption concerning
the stability of the system, shows how many members of Kl fit all the measure-
ments for each respective time series. Note that each set remains more than one
half in size compared to the set of models consistent with the constraints derived
from the network structure, suggesting that the topology itself already strongly
determines the dynamics.

In [8] the modular response analysis (MRA) method was used to identify
non-functional connections in the network for the different cell lines. Here, we
aimed to compare the topologies of their resulting networks with the topologies
that occur in our model pools. To improve comparability, we used a stability
requirement for the measurements in each cell line to account for the steady-state
assumption necessary for the MRA approach. The sizes of the parametrization
sets are listed in Table 2-stable. Note that there is a much stronger reduction than
in the transient case, suggesting that the stability requirement is indeed very
strong for this network, presumably due to the negative feedback mediated by
ERK. However, each of the resulting parametrization sets is non-empty, therefore
we can compare which edges are required/allowed to be functional. The results
for two examples, SW480 and HT29, are shown in Table 3, where in A the
functions in the pool fit well to the results of Klinger et al. However, all other
cell lines such as SW480 in B our results match [8] only in part. This is likely to
be in part due to negative feedback from ERK which is a source of instability in
the Boolean framework, but in the real system may lead to damped oscillation
and consequently to a quasi-stability. Additionally, the effect of ERK on IRS1
creates an incoherent feed-forward motif, which was not captured in [8] as there
the semantics of the regulations of IRS1 are consistent.

As our method allows for testing transient states, and the time series mea-
surement in Figure S1 of [8] illustrates that AKT and ERK may not be in steady
state at the time point of measurement, we also created a partially stable selec-
tion. Here, those components which are not stimulated are assumed to be in
steady-state. Stimulated samples are allowed to be in a transient state, since
their last treatment was shortly before sampling. In our opinion, this scenario
accounts for the most biologically realistic assumptions and we used it as the
basis for the subsequent analysis (see Table 2-partially stable).
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Table 3. Presence of regulators in the individual cell lines. The Must column contains
the set of edges that are functional in all parametrizations fitting the data. The Klinger
et al. column contains the ones reported in [8]. The May column contains the edges
that are functional in at least one parametrization fitting the data. If May includes
edges of [8], Match is set to yes.

A: HT29

Target Must Klinger et al. May Match

EGFR TGFa TGFa, ERK TGFa, ERK yes

RAF ∅ EGFR, IGFIR EGFR, IGFIR yes

PI3K ∅ EGFR, IGFIR EGFR, IGFIR yes

GSK3 ∅ AKT ERK, AKT yes

p70S6K ∅ ERK, AKT ERK, AKT yes

IRS1 ERK ERK ERK, AKT, p70S6K yes

B: SW480

Target Must Klinger et al. May Match

EGFR TGFa TGFa, ERK TGFa no

RAF ∅ EGFR, IGFIR, ERK EGFR, IGFIR no

PI3K EGFR, IGFIR EGFR, IGFIR EGFR, IGFIR total

GSK3 ∅ AKT ERK, AKT yes

p70S6K ERK, AKT ERK, AKT ERK, AKT total

IRS1 ERK p70S6K ERK, AKT, p70S6K no

Table 4. Comparison of occurrence of different regulatory functions between the par-
tially stable pools. For each pair the difference of the first member when compared with
the second member is described. The notation y = 1 is a shorthand for Kv(s) = 1 for
any s ∈ S where v ∈ V is the Target. For most of the cases, the same set of functions
was present, but the frequency of their occurrence in the set differed.

Target A: LIM1215-HCT116 B: HCT116-SW480 C: SW403-HT29

EGFR differences in frequency almost the same no difference

RAF LIM allows for 15 (out of 20)
functions, HCT only for
y = 1

HCT allows only for
y = 1, SW for 15
functions

no difference

PI3K strong increase in y = 1 differences in frequency no difference

GSK3 strong increase in y = 1 no difference almost the same

p70S6K y = 1 appears almost the same almost the same

IRS1 no difference almost the same almost the same

Focusing on a comparison of the cell lines carrying different genotypes we
expected to find topological and functional differences between the pools caus-
ing the observed variations in the measurements. The pools of all 5 cell lines
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were compared, resulting in 10 different tables. Due to limitation of space, only
three comparisons are presented. Table 4 A shows the comparison of the pools
corresponding to LIM1215 and HCT116, where major differences can be seen.
The most striking variation is the function for RAF, which is always active in all
the models for HCT116, meaning that the component is completely independent
from the receptors and their stimulation. This observation can be explained by
considering the genotype of HCT116 listed in Table 1 in [8] where mutations in
KRAS, RTK and PI3K are noted. KRAS is a kinase of RAF and PI3K, and is
regulated by RTK. This mutation may lead to constant activation of RAF in this
cell line. Similarly, PI3K is constantly 1 in more than 70 % of models of LIM1215,
which again can be attributed to a mutation in KRAS present in this cell line.
Note that the KRAS mutation differs between these cell lines and therefore could
cause different effects. HCT116 though does not show a specific tendency in the
regulation of PI3K, although it carries a mutation in this component.

Not all the comparisons are showing such clear differences between the pools.
Table 4B and C compare the pools of HCT116 with SW480 as well as SW403
with HT29 without resulting in any clear variations. For cell lines HCT116 and
SW480 this could be explained by looking again at the genotypes, which show
many commonly shared mutations (see Table 1 in [8]). SW403 and HT29 in C
have the most similar pool of all 10 comparisons, without sharing any mutation
concerning components in our model. However, they do share an identical muta-
tion in p53, which is a prominent oncogene and might govern the behaviour in
these cell lines [2].

Aside from the biologically motivated analysis, we also used the case study
to evaluate performance of our new constraint encodings. We have executed the
validation in batches for each set of 40 properties with different path constraints.
The execution time for the transient properties was 7600 s, for the stable 8184 s,
for the monotone 8778 s, and for the stable monotone 10156 s. The program did
not use more than 7 MB of memory at any time. The program was executed as
a single-threaded instance on a Debian 3.2.65 workstation with a processor i5-
2400S, 2.5 GHz, and 4 GB RAM. We have also tested execution with a script [7]
that called the NuSMV model checker using a respective LTL formula for one
of the 160 properties and the computation took roughly 5 days, illustrating that
customization was necessary for the problem to be solvable in a reasonable time.

5 Conclusion

Generating and analysing model pools using constraints encoding the available
knowledge for a given system allows to evaluate data uncertainty and guides the
step from generic to more specific models. Here, we utilized this approach to
investigate cell line specific properties of the EGFR signalling pathway. Moti-
vated by a study of Klinger et al. [8], we first aimed at a comparison of our fully
qualitative approach with the semi-quantitative method employed in the original
study. While obtaining good agreement of the results in some cases, others did
not match very well. We expect that this emerges mainly from the semantics of
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the edge labels required by us. Since in the results in [8], some edges exert both
positive and negative response, we feel that the points of difference are good
candidates for further investigation.

Going beyond the results of the original study we dropped the stability
requirement for several components based on the available experimental data.
By comparing the resulting model pools we tried to find differences between cell
lines and to examine whether variations in the measurements can be connected
with the topology or even the genotype. Interesting insights can be derived for
the cell lines LIM1215 and HCT116, where the valid regulatory functions of
PI3K in LIM1215 and of RAF in HCT116 could indicate an activating mutation
in that component or upstream, in these cases probably KRAS. Such results
give suggestions about dominant players, like KRAS here, of great interest for
the development of therapeutic strategies. Other comparisons, e.g. of cell lines
SW403 and HT29, show only slight differences, although they do not share a
mutation in components of the pathway. However, a shared mutation can be
detected in the oncogene p53. This kinase is not directly linked to the EGFR
pathway, but nevertheless might govern the behaviour of these cells. Thus, a
model expansion by adding p53 and new p53 measurement data could help to
clarify this result.

To conduct such an analysis in a reasonable time frame, efficient encodings
are crucial. To this end, we have implemented a number of reductions on the
level of the model checking procedure that proved very effective. These could
be further extended to account for properties like oscillation or to broader for-
malisms, like multi-valued instead of Boolean Networks. Also, while they were
sufficiently effective for our study, additional reductions and subsequently per-
formance improvement may be possible.
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Abstract. Constraint Based Methods had been successfully used to
simulate genome-scale metabolic behaviors over a range of experimental
conditions. In most applications, environmental constraints are parame-
terized, and the use of metabolic reactions and corresponding genes is
the direct consequence of the tuning of these parameters.

However, in evolutionary studies, the problem is different: one knows
the relative importance of reactions and one seeks environmental condi-
tions that could explain such a biological fitness.

This study details this modeling paradigm change and discuss a
putative formalization of such a biological problem in the form of a
Mixed Integer Bi-level Linear Problem (MIBLP). Unfortunately, solving
a MIBLP is difficult, paving the way for the need of further constraint
based method developments for understanding evolutionary processes.

Constraint Based Methods (CBMs) are considered as efficient approaches to
predict phenotypic responses and explore the structure of genome-scale networks
of a variety of organisms [1,2]. For instance, they tackle effects of genetic muta-
tions (resp. gene deletions [3,4] and gene insertion [5]) on metabolic behaviors,
whereas complementary analysis focused on gene transfers [6], gene dispensabil-
ity [7] or nutrient adaptation [8]. Similarly, high-throughput sequencing allows
today to compare lineages and biological studies to infer evolutionary patterns
[9], paving the way to bridge evolutionary studies and CBMs.

From an evolutionary viewpoint, environment exerts or relaxes pressure in
biological systems. Thus, in front of detrimental or beneficial environments,
organisms adapt themselves by gaining or loosing functions [10,11]. Those knowl-
edge being available nowadays, it is of great interest to decipher the environmen-
tal conditions that maximize lineage evolution, pointing conditions that could
lead to metabolic reaction losses [12].

When CBM is applied in evolutionary contexts, environment usually is first
parameterized and its effect is then studied and interpreted via a range of sim-
ulations [6,13]. Herein, instead of standard approaches, we propose to focus on
selecting environmental conditions that make most reactions unable to carry

c© Springer International Publishing Switzerland 2015
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a b c
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C D E
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max
n

i=1

f +i + f −
i (P1)

subject to
Sv = 0 (1)
lb ≤ v ≤ ub (2)
vL = E, L ∈ L (3)
f +i + f −

i ≤ 1 (4)
vi ≥ εf +i − M f −

i (5)
vi ≤ −εf −

i + M f +i (6)
f +i , f −

i ∈ {0, 1} (7)

min z

subject to
lbL ≤ E ≤ ubL

z = max f +i + f −
i

subject to

Sv=0 (1)

lb≤v≤ub (2)

vL=E, L∈L (3)

... ...

f +i , f−i ∈{0,1} (7)

Fig. 1. Evolutionary problem formulation. Considering a putative metabolic network
(a), we assume the production of metabolite B as a fitness proxy. If A is the only
substrate in a particular environment, we expect that genes coding for v7, v8 and v9
disappear upon evolution. b) The inner Problem (P1) identify blocked reactions, i.e.,
those that can not carry a non-zero flux under steady-state conditions. A variation
of (P1) is used in [14,15]. c) A mixed integer bi-level linear problem seeking for an
environmental setting (i.e., defined values for environmental variables in L, see text)
E that maximizes the number of blocked reactions.

fluxes (see Fig. 1a). Indeed, recent evolutionary studies hypothesize that such
blocked reactions are likely to be lost as functions due to evolution [12].

Formalization of the previous statements leads to an optimization problem
as shown in Fig. 1b. Constraints in (1) and (2) are mass balance and boundary
conditions. Equations in (3) represent environmental variables as a subset of
reaction fluxes indexed by L.

To identify blocked reactions, we introduce for each reaction i two binary
variables f+

i and f−
i (resp. forward and reverse flux) in (7). Constraints in (4),

(5) and (6) guarantee that a reaction i is blocked if and only if f+
i = f−

i = 0.
By M (resp. ε), we denote a large (resp. small) number. Given an environmental
setting E, maximizing

∑
f +i + f −

i identifying all blocked reactions.
As a next step in our study, we propose to use the Mixed Integer Bi-level

Linear Problem (MIBLP) shown in Fig. 1c in order to select an environmental
setting E that maximizes the number of blocked reactions. The main difference
with other bi-level approaches is the focus on controlling metabolic networks
using only environmental variables and not genetic manipulations [16].

Unfortunately, despite several tentatives [17,18], no general solution is avail-
able for this type of problem [19], emphasizing the need for an ad-hoc algorithm
implementation to solve this new evolutionary problem. Furthermore, for the
sake of generalization, any method that handle this type of bi-level program,
will lead to theoretical and practical advances in system biology.

From an evolutionary viewpoint, we expect that solving this problem will
pinpoint the environmental conditions that are responsible for the specification
of lineages or microbial strains. This question is particularly vivid considering
drastic environmental condition changes that are expected in a near future.



OPINION PAPER Evolutionary Constraint-Based Formulation 281

References

1. Bordbar, A., Monk, J.M., King, Z.A., Palsson, B.O.: Constraint-based models pre-
dict metabolic and associated cellular functions. Nat. Rev. Genet. 15, 107–120
(2014)

2. Lewis, N.E., Nagarajan, H., Palsson, B.O.: Constraining the metabolic genotype-
phenotype relationship using a phylogeny of in silico methods. Nat. Rev. Microbiol.
10, 291–305 (2012)

3. Burgard, A.P., Pharkya, P., Maranas, C.D.: Optknock: a bilevel programming
framework for identifying gene knockout strategies for microbial strain optimiza-
tion. Biotechnol. Bioeng. 84, 647–657 (2003)

4. Tepper, N., Shlomi, T.: Predicting metabolic engineering knockout strategies for
chemical production: accounting for competing pathways. Bioinformatics 26, 536–
543 (2010)

5. Larhlimi, A., Basler, G., Grimbs, S., Selbig, J., Nikoloski, Z.: Stoichiometric capaci-
tance reveals the theoretical capabilities of metabolic networks. Bioinformatics 28,
i502–i508 (2012)

6. Pál, C., Papp, B., Lercher, M.J.: Adaptive evolution of bacterial metabolic net-
works by horizontal gene transfer. Nat. Genet. 37, 1372–1375 (2005)

7. Papp, B., Pál, C., Hurst, L.D.: Metabolic network analysis of the causes and evo-
lution of enzyme dispensability in yeast. Nature 429, 661–664 (2004)

8. Ibarra, R.U., Edwards, J.S., Palsson, B.O.: Escherichia coli K-12 undergoes adap-
tive evolution to achieve in silico predicted optimal growth. Nature 420, 186–189
(2002)

9. Koonin, E.V.: The Logic of Chance: The Nature and Origin of Biological Evolution.
FT Press, New Jersey (2011)

10. Van Valen, L.: A new evolutionary law. Evol. Theory 1, 1–30 (1973)
11. Van Valen, L.: Molecular evolution as predicted by natural selection. J. Mol. Evol.

3, 89–101 (1974)
12. Morris, J.J., Lenski, R.E., Zinser, E.R.: The black queen hypothesis: evolution of

dependencies through adaptive gene loss. MBio 3(2), e00036-12 (2012)
13. Yang, H., Roth, C.M., Ierapetritou, M.G.: A rational design approach for amino

acid supplementation in hepatocyte culture. Biotechnol. Bioeng. 103, 1176–1191
(2009)

14. de Figueiredo, L.F., Podhorski, A., Rubio, A., Kaleta, C., Beasley, J.E., Schuster,
S., Planes, F.J.: Computing the shortest elementary flux modes in genome-scale
metabolic networks. Bioinformatics 25, 3158–3165 (2009)

15. Goldstein, Y.A.B., Bockmayr, A.: A lattice-theoretic framework for metabolic
pathway analysis. In: Gupta, A., Henzinger, T.A. (eds.) CMSB 2013. LNCS, vol.
8130, pp. 178–191. Springer, Heidelberg (2013)

16. Chowdhury, A., Zomorrodi, A.R., Maranas, C.D.: Bilevel optimization techniques
in computational strain design. Comput. Chem. Eng. 72, 363–372 (2015)

17. Saharidis, G.K., Ierapetritou, M.G.: Resolution method for mixed integer bi-level
linear problems based on decomposition technique. J. Glob. Optim. 44, 29–51
(2008)

18. Xu, P., Wang, L.: An exact algorithm for the bilevel mixed integer linear pro-
gramming problem under three simplifying assumptions. Comput. Oper. Res. 41,
309–318 (2014)

19. Saharidis, G.K.D., Conejo, A.J., Kozanidis, G.: Exact solution methodologies for
linear and (mixed) integer bilevel programming. In: Talbi, E.-G. (ed.) Metaheuris-
tics for Bi-level Optimization. SCi, vol. 482, pp. 221–245. Springer, Heidelberg
(2013)



SBMLDock: Docker Driven Systems Biology
Tool Development and Usage

Etienne Z. Gnimpieba1(&), Mathialakan Thavappiragasam1,
Abalo Chango2, Bill Conn1, and Carol M. Lushbough1

1 Computer Science Department, University of South Dakota,
Vermillion, SD, USA

{Etienne.Gnimpieba,Mathialakan.Thavappi,Bill.Conn,

Carol.Lushbough}@usd.edu
2 UPSP EGEAL, Institut Polytechnique LaSalle Beauvais, Beauvais, France

abalo.chango@lasalle-beauvais.fr

Abstract. A glut of Systems Biology tools and their lack of accessibility has
significantly delayed bioscience advances that depend on the analysis of large
scale systems with big datasets and High Performance Computing (HPC)
resources. This work presents SBMLDock, the first Systems Biology Docker
image that aims to advance scalability, usability and reproducibility in Systems
Biology by making tools much more immediately available to the biological
domain scientist, student, and educator, without requiring special training for use,
and without losing the reproducibility aspect of their research. SBMLDock con-
sists of one Docker image containing basic tools developed for Systems Biology
Model manipulation (parallel model similarity analyzer, model checker, model
splitter, model annotation, model extractor). The user can then pull up the Docker
image, customize it and/or run each tool as service. Stored on the Docker hub, the
image version is managed to assure research reproducibility. SBMLDock is
available as a Docker file under CC licence at github https://github.com/
USDBioinformatics/SBMLDock and the Docker image can be found in Docker
hub at https://registry.hub.docker.com/u/usdbioinformatics/sbmldock/ with sup-
plementary documents.

Keywords: SBMLDocker � Docker image � Systems biology � Reproducible
research

1 Introduction

Emerging developments in Big Data, Systems Biology, and Integrative Biology
introduce an increasing number of challenges in life science research. The primary
objective of Software as a Service (SaaS) and platform as a service (PaaS) initiatives
such as Workflow Management Systems (WMS) or Docker is to simplify researchers’
ability to access, apply, and share analytic tools, workflows and data [1]. Executing an
analytic tool can be very difficult if the researchers are not well prepared. Additionally,
it is not always optimal to use systems biology tools due to deployment times that
degrade the tool usability [1].
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The development of a container system (Docker) allows bioscience tool developers
to hide complexity from researchers by providing a distributed container to embed any
development module (service, tool, workflow, data storage) (https://www.docker.com/
whatisdocker/). This method has been adopted in bioinformatics areas including the
Galaxy infrastructure [2].

System Biology Markup Language(SMBL) is a machine-readable XML format for
representing computational models of biological processes [3]. Software tools that
support SBML as a format for reading and writing biological systems models facilitate
their cooperative sharing, evaluation, and development. The XML-based SBML is the
de facto standard file format for the storage and exchange of quantitative computational
models in systems biology, supported by more than 220 software packages to date
(March 2014) [3]. This includes several biological systems modeling tools (e.g. Systems
Biology toolbox for Matlab, COPASI, EPISIM, Virtual Cell) and several databases for
the representation and knowledge sharing (e.g. BioModels, BRENDA, KEGG).

2 SBMLDock

SBMLDock is the first systems biology Docker container for researchers, educators,
and developers. We developed the first set of tools for SBML file manipulation
including SBMLSplit, SBMLModeler, SBMLAnnotate. In order to complete our
toolkit, we integrated recently published tools in the same series, such as ParaABioS
[4], SBMLMerge, SBMLChecker [5], SBMLCompare [6]. Each tool has been inte-
grated into a Docker image with a test dataset. The researcher can use this test data set
to test each tool.

ParaABioS is an implementation of a parallel algorithm for bioscience elements
similarity estimation [4]. This parallelization is critical when you involve the synonyms
of bioscience terms because the curse of dimensionality becomes worse and requires
HPC resources. ParaABioS uses heuristic techniques to measure similarity parameter
values (distance and ratio) of the elements. The algorithm was implemented using
SIMD data parallelization techniques in java.

ParaABioS requires four parameters to run, and provides the similarity results in a text
file. Running in Docker, the syntax is ParaABioS <inputfile1> <input-
file2> <distance> <ratio> Where <inputfile1>, <inputfile2> are two
bioscience element lists (metabolite, compound, protein, gene, etc.), <dis-
tance> and <ratio> are threshold values for edit distance and the ratio respectively.

E.g. docker run -v /home/wjconn/SBMLDock/mount:/tmp -w /tmp
usdbioinformatics/sbmldock ParaABioS file1.txt file2.txt 6 0.7

SBMLChecker is a Systems Biology Markup Language model checker. SBML-
Checker improves the online SBML validator by integrating meaning using semantic
(ontology and database) checking [5, 7]. It uses the annotated URL ids of each element
to measure the semantic strength of the reliability score. In order to execute SBML-
Checker in Docker use the following command SBMLChecker <sbmlinputfile>.
This will return a checking report printed in the system out or in a report output files
store on your mounted directory.
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E.g. docker run -v /home/wjconn/SBMLDock/mount:/tmp -w /tmp
usdbioinformatics/sbmldock SBMLChecker one.xml

SBMLCompare is an implementation of ParABioS algorithm specific for SBML
model comparison. In addition to naming similarity techniques used in ParABioS,
SBMLCompare use biological annotated meanings to ensure the semantic similarity
between models. SBMLCompare on the Docker can be use as follow SBMLCom-
pare <inputfile1> <inputfile2> . This will provide a comparison report in 3
formats (text, excel or xml) in files named sbml_compare_report.

E.g. docker run -v /home/wjconn/SBMLDock/mount:/tmp -w /tmp
usdbioinformatics/sbmldock SBMLCompare one.xml two.xml

SBMLMerge is an automatic merging tool for SBML models. Other existing
merging tools for SBML models require human interaction. Using a heuristic algorithm,
SBMLmerge provides a consistent merged model. This tool helps biologists combine
sub-model from different sub-biosystems into a targeted biosystem. To execute
SBMLMerge on Docker use the following syntax SBMLMerge <edit distance
int[0-10]> <similarity ratio float[0-1]> <inputfile1> <input-
file2> <optional input files up to 6>. This will provide a merged SBML
model mergedmodel.xml file in your mounted directory.

E.g. docker run -v /home/wjconn/SBMLDock/mount:/tmp -w /tmp
usdbioinformatics/sbmldockSBMLMerge60.7/opt/SBMLMerge/one.
xml /opt/SBMLMerge/two.xml

SBMLSplit is an SBML model extractor. A researcher can extract a sub-model
based on reaction or compound (metabolite, species) list. SBMLSplit can be run on the
Docker as SBMLSplit <flag> <inputfile> where your <flag> is C or R to split
on Compound or Reaction respectively, and the <inputfile> is the SBML file you
want to split. This provide 2 split SBML files (e.g. S0.xml and S1.xml), that are stored
in your mounted folder.

E.g. docker run -v /home/wjconn/SBMLDock/mount:/tmp -w /tmp
usdbioinformatics/sbmldock SBMLSplit C one.xml

SBMLModeler is an implementation of a data mining workflow for SBML model
design from multiple data repositories (e.g. KEGG, SABIO-RK, BRENDA, …), using
a top down approach with the pathway name as the entry. The current version of
SBMLModeler focuses on a short pathway list for accuracy purposes. The list named
Pathwayslist.txt can be found in the directory /opt/SBMLModeler/ in the
SBMLDock image. Once you have your pathway picked out you can run
SBMLModeler using the following command SBMLModeler <Path to store
file> <Pathway name>.

E.g. docker run -v/home/wjconn/SBMLDock/mount:/tmp -w/tmp
usdbioinformatics/sbmldock SBMLModeler. “folate biosynthesis”

SBMLAnnotate is an automatic annotation tool for SBML models. SBMLAnnotate
evaluates the existing annotation degree of your SBML model (i.e. number of element
annotated with ontologies or common databases such as SBO, KEGG) and proposes a
reliable annotation to improve the model. To execute SBMLAnnotate use: SBMLAn-
notate <inputfile> <outputfile>. This will save an out.xml file in your
mounted directory as output.
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E.g. docker run -v/home/wjconn/SBMLDock/mount:/tmp -w/tmp
usdbioinformatics/sbmldock SBMLAnnotate one.xml out.xml

3 Conclusion

Systems integration in life science research has become a complex challenge as data
sets have grown. The ability to minimize the tools usage can be a tremendous asset for
bioscience scientist. SBMLDock provides systems biology tools that allow developers
and users to work together in minimizing the complexity of tool deployment and
version management. This also greatly contributes toward the development of repro-
ducible research.
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