
Chapter 6

Bayesian Inverse Problems

It ain’t what you don’t know that gets you
into trouble. It’s what you know for sure that
just ain’t so.

Mark Twain

This chapter provides a general introduction, at the high level, to the back-
ward propagation of uncertainty/information in the solution of inverse prob-
lems, and specifically a Bayesian probabilistic perspective on such inverse
problems. Under the umbrella of inverse problems, we consider parameter
estimation and regression. One specific aim is to make clear the connection
between regularization and the application of a Bayesian prior. The filtering
methods of Chapter 7 fall under the general umbrella of Bayesian approaches
to inverse problems, but have an additional emphasis on real-time computa-
tional expediency.

Many modern UQ applications involve inverse problems where the unknown
to be inferred is an element of some infinite-dimensional function space, e.g.
inference problems involving PDEs with uncertain coefficients. Naturally,
such problems can be discretized, and the inference problem solved on the
finite-dimensional space, but this is not always a well-behaved procedure:
similar issues arise in Bayesian inversion on function spaces as arise in the
numerical analysis of PDEs. For example, there are ‘stable’ and ‘unstable’
ways to discretize a PDE (e.g. the Courant–Friedrichs–Lewy condition), and
analogously there are ‘stable’ and ‘unstable’ ways to discretize a Bayesian inv-
erse problem. Sometimes, a discretized PDE problem has a solution, but the
original continuum problem does not (e.g. the backward heat equation, or the
control problem for the wave equation), and this phenomenon can be seen in
the ill-conditioning of the discretized problem as the discretization dimension
tends to infinity; similar problems can afflict a discretized Bayesian inverse
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92 6 Bayesian Inverse Problems

problem. Therefore, one aim of this chapter is to present an elementary well-
posedness theory for Bayesian inversion on the function space, so that this
well-posedness will automatically be inherited by any finite-dimensional dis-
cretization. For a thorough treatment of all these questions, see the sources
cited in the bibliography.

6.1 Inverse Problems and Regularization

Many mathematical models, and UQ problems, are forward problems, i.e. we
are given some input u for a mathematical model H , and are required to
determine the corresponding output y given by

y = H(u), (6.1)

where U , Y are, say, Banach spaces, u ∈ U , y ∈ Y, and H : U → Y is the
observation operator. However, many applications require the solution of the
inverse problem: we are given y and H and must determine u such that (6.1)
holds. Inverse problems are typically ill-posed: there may be no solution, the
solution may not be unique, or there may be a unique solution that depends
sensitively on y. Indeed, very often we do not actually observe H(u), but
some noisily corrupted version of it, such as

y = H(u) + η. (6.2)

The inverse problem framework encompasses that problem of model cal-
ibration (or parameter estimation), where a model Hθ relating inputs to
outputs depends upon some parameters θ ∈ Θ, e.g., when U = Y = Θ,
Hθ(u) = θu. The problem is, given some observations of inputs ui and corre-
sponding outputs yi, to find the parameter value θ such that

yi = Hθ(ui) for each i.

Again, this problem is typically ill-posed.
One approach to the problem of ill-posedness is to seek a least-squares

solution: find, for the norm ‖ · ‖Y on Y,

argmin
u∈U

∥
∥y −H(u)

∥
∥
2

Y .

However, this problem, too, can be difficult to solve as it may possess min-
imizing sequences that do not have a limit in U ,1 or may possess multiple
minima, or may depend sensitively on the observed data y. Especially in this

1 Take a moment to reconcile the statement “there may exist minimizing sequences that
do not have a limit in U” with U being a Banach space.
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last case, it may be advantageous to not try to fit the observed data too
closely, and instead regularize the problem by seeking

argmin
{∥
∥y −H(u)

∥
∥
2

Y +
∥
∥u− ū

∥
∥
2

V

∣
∣
∣u ∈ V ⊆ U

}

for some Banach space V embedded in U and a chosen ū ∈ V . The standard
example of this regularization setup is Tikhonov regularization, as in Theorem
4.28: when U and Y are Hilbert spaces, given a compact, positive, self-adjoint
operator R on U , we seek

argmin
{∥
∥y −H(u)

∥
∥
2

Y +
∥
∥R−1/2(u − ū)

∥
∥
2

U

∣
∣
∣ u ∈ U

}

.

The operator R describes the structure of the regularization, which in some
sense is the practitioner’s ‘prior belief about what the solution should look
like’. More generally, since it might be desired to weight the various compo-
nents of y differently from the given Hilbert norm on Y, we might seek

argmin
{∥
∥Q−1/2(y −H(u))

∥
∥
2

Y +
∥
∥R−1/2(u− ū)

∥
∥
2

U

∣
∣
∣u ∈ U

}

for a given positive self-adjoint operator Q on Y. However, this approach all
appears to be somewhat ad hoc, especially where the choice of regularization
is concerned.

Taking a probabilistic — specifically, Bayesian — viewpoint alleviates
these difficulties. If we think of u and y as random variables, then (6.2)
defines the conditioned random variable y|u, and we define the ‘solution’ of
the inverse problem to be the conditioned random variable u|y. This allows
us to model the noise, η, via its statistical properties, even if we do not know
the exact instance of η that corrupted the given data, and it also allows us
to specify a priori the form of solutions that we believe to be more likely,
thereby enabling us to attach weights to multiple solutions which explain the
data. This is the essence of the Bayesian approach to inverse problems.

Remark 6.1. In practice the true observation operator is often approxi-
mated by some numerical model H( · ;h), where h denotes a mesh parameter,
or parameter controlling missing physics. In this case (6.2) becomes

y = H(u;h) + ε+ η,

where ε := H(u) − H(u;h). In principle, the observational noise η and the
computational error ε could be combined into a single term, but keeping them
separate is usually more appropriate: unlike η, ε is typically not of mean zero,
and is dependent upon u.

To illustrate the central role that least squares minimization plays in ele-
mentary statistical estimation, and hence motivate the more general consid-
erations of the rest of the chapter, consider the following finite-dimensional
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linear problem. Suppose that we are interested in learning some vector of
parameters u ∈ R

n, which gives rise to a vector y ∈ R
m of observations via

y = Au+ η,

where A ∈ R
m×n is a known linear operator (matrix) and η is a (not nec-

essarily Gaussian) noise vector known to have mean zero and symmetric,
positive-definite covariance matrix Q := E[η ⊗ η] ≡ E[ηη∗] ∈ R

m×m, with η
independent of u. A common approach is to seek an estimate û of u that is
a linear function Ky of the data y is unbiased in the sense that E[û] = u,
and is the best estimate in that it minimizes an appropriate cost function.
The following theorem, the Gauss–Markov theorem, states that there is pre-
cisely one such estimator, and it is the solution to the weighted least squares
problem with weight Q−1, i.e.

û = argmin
u∈H

J(u), J(u) :=
1

2
‖Au− y‖2Q−1 .

In fact, this result holds true even in the setting of Hilbert spaces:

Theorem 6.2 (Gauss–Markov). Let H and K be separable Hilbert spaces, and
let A : H → K. Let u ∈ H and let y = Au + η, where η is a centred K-valued
random variable with self-adjoint and positive definite covariance operator Q.
Suppose that Q1/2A has closed range and that A∗Q−1A is invertible. Then,
among all unbiased linear estimators K : K → H, producing an estimate
û = Ky of u given y, the one that minimizes both the mean-squared error
E[‖û− u‖2] and the covariance operator2 E[(û − u)⊗ (û − u)] is

K = (A∗Q−1A)−1A∗Q−1, (6.3)

and the resulting estimate û has E[û] = u and covariance operator

E[(û− u)⊗ (û− u)] = (A∗Q−1A)−1.

Remark 6.3. Indeed, by Theorem 4.28, û = (A∗Q−1A)−1A∗Q−1y is also
the solution to the weighted least squares problem with weight Q−1, i.e.

û = argmin
u∈H

J(u), J(u) :=
1

2
‖Au− y‖2Q−1 .

Note that the first and second derivatives (gradient and Hessian) of J are

∇J(u) = A∗Q−1Au −A∗Q−1y, and ∇2J(u) = A∗Q−1A,

so the covariance of û is the inverse of the Hessian of J . These observations
will be useful in the construction of the Kálmán filter in Chapter 7.

2 Here, the minimization is meant in the sense of positive semi-definite operators: for two
operators A and B, we say that A ≤ B if B −A is a positive semi-definite operator.
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Proof of Theorem 6.2. It is easily verified that K as given by (6.3) is an
unbiased estimator:

û = (A∗Q−1A)−1A∗Q−1(Au+ η) = u+ (A∗Q−1A)−1A∗Q−1η

and so, taking expectations of both sides and using the assumption that η is
centred, E[û] = u. Moreover, the covariance of this estimator satisfies

E[(û − u)⊗ (û− u)] = KE[η ⊗ η]K = (A∗Q−1A)−1,

as claimed.
Now suppose that L = K +D is any linear unbiased estimator; note that

DA = 0. Then the covariance of the estimate Ly satisfies

E[(Ly − u)⊗ (Ly − u)] = E[(K +D)η ⊗ η(K∗ +D∗)]
= (K +D)Q(K∗ +D∗)
= KQK∗ +DQD∗ +KQD∗ + (KQD∗)∗.

Since DA = 0,

KQD∗ = (A∗Q−1A)−1A∗Q−1QD∗ = (A∗Q−1A)−1(DA)∗ = 0,

and so

E[(Ly − u)⊗ (Ly − u)] = KQK∗ +DQD∗ ≥ KQK∗.

Since DQD∗ is self-adjoint and positive semi-definite, this shows that

E[(Ly − u)⊗ (Ly − u)] ≥ KQK∗. 
�

Remark 6.4. In the finite-dimensional case, if A∗Q−1A is not invertible,
then it is common to use the estimator

K = (A∗Q−1A)†A∗Q−1,

where B† denotes the Moore–Penrose pseudo-inverse of B, defined equiva-
lently by

B† := lim
δ→0

(B∗B + δI)B∗,

B† := lim
δ→0

B∗(BB∗ + δI)B∗, or

B† := V Σ†U∗,

where B = UΣV ∗ is the singular value decomposition of B, and Σ† is
the transpose of the matrix obtained from Σ by replacing all the strictly
positive singular values by their reciprocals. In infinite-dimensional settings,
the use of regularization and pseudo-inverses is a more subtle topic, especially
when the noise η has degenerate covariance operator Q.



96 6 Bayesian Inverse Problems

Bayesian Interpretation of Regularization.The Gauss–Markov estimator
is not ideal: for example, because of its characterization as the minimizer of
a quadratic cost function, it is sensitive to large outliers in the data, i.e. com-
ponents of y that differ greatly from the corresponding component of Aû. In
such a situation, it may be desirable to not try to fit the observed data y too
closely, and instead regularize the problem by seeking û, the minimizer of

J(u) :=
1

2
‖Au− y‖2Q−1 +

1

2
‖u− ū‖2R−1 , (6.4)

for some chosen ū ∈ K
n and positive-definite Tikhonov matrix R ∈ K

n×n.
Depending upon the relative sizes of Q and R, û will be influenced more
by the data y and hence lie close to the Gauss–Markov estimator, or be
influenced more by the regularization term and hence lie close to ū. At first
sight this procedure may seem somewhat ad hoc, but it has a natural Bayesian
interpretation.

Let us make the additional assumption that, not only is η centred with
covariance operator Q, but it is in fact Gaussian. Then, to a Bayesian prac-
titioner, the observation equation

y = Au+ η

defines the conditional distribution y|u as (y−Au)|u = η ∼ N (0, Q). Finding
the minimizer of u → 1

2‖Au − y‖2Q−1 , i.e. û = Ky, amounts to finding the
maximum likelihood estimator of u given y. The Bayesian interpretation of
the regularization term is that N (ū, R) is a prior distribution for u. The
resulting posterior distribution for u|y has Lebesgue density ρ(u|y) with

ρ(u|y) ∝ exp

(

−1

2
‖Au− y‖2Q−1

)

exp

(

−1

2
‖u− ū‖2R−1

)

= exp

(

−1

2
‖Au− y‖2Q−1 − 1

2
‖u− ū‖2R−1

)

= exp

(

−1

2
‖u−Ky‖2A∗Q−1A − 1

2
‖u− ū‖2R−1

)

= exp

(

−1

2
‖u− P−1(A∗Q−1AKy +R−1ū)‖2P

)

where, by Exercise 6.1, P is the precision matrix

P = A∗Q−1A+R−1.

The solution of the regularized least squares problem of minimizing the func-
tional J in (6.4) — i.e. minimizing the exponent in the above posterior distri-
bution — is the maximum a posteriori estimator of u given y. However, the
full posterior contains more information than the MAP estimator alone. In
particular, the posterior covariance matrix P−1 = (A∗Q−1A+R−1)−1 reveals
those components of u about which we are relatively more or less certain.
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Non-Quadratic Regularization and Recovery of Sparse Signals. This
chapter mostly deals with the case in which both the noise model (i.e. the
likelihood) and the prior are Gaussian measures, which is the same as saying
that the maximum a posteriori estimator is obtained by minimizing the sum
of the squares of two Hilbert norms, just as in (6.4). However, there is no
fundamental reason not to consider other regularizations — or, in Bayesian
terms, other priors. Indeed, in many cases an appropriate choice of prior is a
probability distribution with both a heavy centre and a heavy tail, such as

dμ0

du
(u) ∝ exp

⎛

⎝−
(

n∑

i=1

|ui|p
)1/p

⎞

⎠

on R
n, for 0 < p < 1. Such regularizations correspond to a prior belief that

the u to be recovered from noisy observations y is sparse, in the sense that it
has a simple low-dimensional structure, e.g. that most of its components in
some coordinate system are zero.

For definiteness, consider a finite-dimensional example in which it is
desired to recover u ∈ K

n from noisy observations y ∈ K
m of Au, where

A ∈ K
m×n is known. Let

‖u‖0 := #
{

i ∈ {1, . . . , n}∣∣ui �= 0
}

.

(Note well that, despite the suggestive notation, ‖ · ‖0 is not a norm, since �
in general ‖λu‖0 �= |λ|‖u‖0.) If the corruption of Au into y occurs through
additive Gaussian noise distributed according to N (0, Q), then the ordinary
least squares estimate of u is found by minimizing 1

2‖Au− y‖2Q−1 . However,

a prior belief that u is sparse, i.e. that ‖u‖0 is small, is reflected in the
regularized least squares problem

find u ∈ K
n to minimize J0(u) :=

1

2
‖Au− y‖2Q−1 + λ‖u‖0, (6.5)

where λ > 0 is a regularization parameter. Unfortunately, problem (6.5) is
very difficult to solve numerically, since the objective function is not convex.
Instead, we consider

find u ∈ K
n to minimize J1(u) :=

1

2
‖Au− y‖2Q−1 + λ‖u‖1. (6.6)

Remarkably, the two optimization problems (6.5) and (6.6) are ‘often’ equiv-
alent in the sense of having the same minimizers; this near-equivalence can
be made precise by a detailed probabilistic analysis using the so-called res-
tricted isometry property, which will not be covered here, and is foundational
in the field of compressed sensing. Regularization using the 1-norm amounts
to putting a Laplace distribution Bayesian prior on u, and is known in the
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statistical regression literature as the LASSO (least absolute shrinkage and
selection operator); in the signal processing literature, it is known as basis
pursuit denoising.

For a heuristic understanding of why regularizing using the norm ‖ · ‖1 pro-
motes sparsity, let us consider an even more general problem: let R : Kn → R

be any convex function, and consider the problem

find u ∈ K
n to minimize JR(u) := ‖Au− Y ‖2Q−1 +R(u), (6.7)

which clearly includes (6.4) and (6.6) as special cases. Observe that, by writ-
ing r = R(x) for the value of the regularization term, we have

inf
u∈Kn

JR(u) = inf
r≥0

(

r + inf
u:R(u)=r

‖Au− b‖2Q−1

)

. (6.8)

The equality constraint in (6.8) can in fact be relaxed to an inequality:

inf
u∈Kn

JR(u) = inf
r≥0

(

r + inf
u:R(u)≤r

‖Au− b‖2Q−1

)

. (6.9)

Note that convexity of R implies that {u ∈ K
n | R(u) ≤ r} is a convex subset

of Kn. The reason for the equivalence of (6.8) and (6.9) is quite simple: if
(r, u) = (r∗, u∗) were minimal for the right-hand side and also R(u∗) < r∗,
then the right-hand side could be reduced by considering instead (r, u) =
(R(u∗), u∗), which preserves the value of the quadratic term but decreases
the regularization term. This contradicts the optimality of (r∗, u∗). Hence,
in (6.9), we may assume that the optimizer has R(u∗) = r∗, which is exactly
the earlier problem (6.8).

In the case that R(u) is a multiple of the 1- or 2-norm of u, the region
R(u) ≤ r is a norm ball centred on the origin, and the above arguments
show that the minimizer u∗ of J1 or J2 will be a boundary point of that
ball. However, as indicated in Figure 6.1, in the 1-norm case, this u∗ will
‘typically’ lie on one of the low-dimensional faces of the 1-norm ball, and so
‖u∗‖0 will be small and u∗ will be sparse. There are, of course, y for which
u∗ is non-sparse, but this is the exception for 1-norm regularization, whereas
it is the rule for ordinary 2-norm (Tikhonov) regularization.

6.2 Bayesian Inversion in Banach Spaces

This section concerns Bayesian inversion in Banach spaces, and, in particular,
establishing the appropriate rigorous statement of Bayes’ rule in settings
where — by Theorem 2.38 — there is no Lebesgue measure with respect
to which we can take densities. Therefore, in such settings, it is necessary
to use as the prior a measure such as a Gaussian or Besov measure, often
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u∗ Ky

Quadratic ( 2) regularization.

u∗

Ky

Sparse ( 1) regularization.

a b

Fig. 6.1: Comparison of 
2 versus 
1 regularization of a least squares
minimization problem. The shaded region indicates a norm ball centred
on the origin for the appropriate regularizing norm. The black ellipses,
centred on the unregularized least squares (Gauss–Markov) solution Ky =
(A∗Q−1A)−1A∗Q−1y, are contours of the original objective function, u →
‖Au− y‖2Q−1 . By (6.9), the regularized solution u∗ lies on the intersection of
an objective function contour and the boundary of the regularization norm
ball; for the 1-norm, u∗ is sparse for ‘most’ y.

accessed through a sampling scheme such as a Karhunen–Loève expansion, as
in Section 11.1. Note, however, then when the observation operatorH is non-
linear, although the prior may be a ‘simple’ Gaussian measure, the posterior
will in general be a non-Gaussian measure with features such as multiple
modes of different widths. Thus, the posterior is an object much richer in
information than a simple maximum likelihood or maximum a posteriori
estimator obtained from the optimization-theoretic point of view.

Example 6.5. There are many applications in which it is of interest to det-
ermine the permeability of subsurface rock, e.g. the prediction of transport of
radioactive waste from an underground waste repository, or the optimization
of oil recovery from underground fields. The flow velocity v of a fluid under
pressure p in a medium or permeability κ is given by Darcy’s law

v = −κ∇p.

The pressure field p within a bounded, open domain X ⊂ R
d is governed by

the elliptic PDE
−∇ · (κ∇p) = 0 in X ,

together with some boundary conditions, e.g. the Neumann (zero flux) bound-
ary condition ∇p · n̂∂X = 0 on ∂X ; one can also consider a non-zero source
term f on the right-hand side. For simplicity, take the permeability tensor
field κ to be a scalar field k times the identity tensor; for mathematical and
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physical reasons, it is important that k be positive, so write k = eu. The obj-
ective is to recover u from, say, observations of the pressure field at known
points x1, . . . , xm ∈ X :

yi = p(xi) + ηi.

Note that this fits the general ‘y = H(u) + η’ setup, with H being defined
implicitly by the solution operator to the elliptic boundary value problem.

In general, let u be a random variable with (prior) distribution μ0 — which
we do not at this stage assume to be Gaussian — on a separable Banach space
U . Suppose that we observe data y ∈ R

m according to (6.2), where η is an
R

m-valued random variable independent of u with probability density ρ with
respect to Lebesgue measure. Let Φ(u; y) be any function that differs from
− log ρ(y −H(u)) by an additive function of y alone, so that

ρ(y −H(u))

ρ(y)
∝ exp(−Φ(u; y))

with a constant of proportionality independent of u. An informal application
of Bayes’ rule suggests that the posterior probability distribution of u given
y, μy ≡ μ0( · |y), has Radon–Nikodým derivative with respect to the prior,
μ0, given by

dμy

dμ0
(u) ∝ exp(−Φ(u; y)).

The next theorem makes this argument rigorous:

Theorem 6.6 (Generalized Bayes’ rule). Suppose that H : U → R
m is con-

tinuous, and that η is absolutely continuous with support Rm. If u ∼ μ0, then
u|y ∼ μy, where μy � μ0 and

dμy

dμ0
(u) ∝ exp(−Φ(u; y)). (6.10)

The proof of Theorem 6.6 uses the following technical lemma:

Lemma 6.7 (Dudley, 2002, Section 10.2). Let μ, ν be probability measures
on U × Y, where (U ,A ) and (Y,B) are measurable spaces. Assume that
μ � ν and that dμ

dν = ϕ, and that the conditional distribution of u|y under
ν, denoted by νy(du), exists. Then the distribution of u|y under μ, denoted
μy(du), exists and μy � νy, with Radon–Nikodým derivative given by

dμy

dνy
(u) =

{
ϕ(u,y)
Z(y) , if Z(y) > 0,

1, otherwise,

where Z(y) :=
∫

U ϕ(u, y) dνy(u).
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Proof of Theorem 6.6. Let Q0(dy) := ρ(y) dy on R
m and Q(du|y) :=

ρ(y −H(u)) dy, so that, by construction

dQ

dQ0
(y|u) = C(y) exp(−Φ(u; y)).

Define measures ν0 and ν on R
m × U by

ν0(dy, du) := Q0(dy)⊗ μ0(du),

ν(dy, du) := Q0(dy|u)μ0(du).

Note that ν0 is a product measure under which u and y are independent,
whereas ν is not. Since H is continuous, so is Φ; since μ0(U) = 1, it follows
that Φ is μ0-measurable. Therefore, ν is well defined, ν � ν0, and

dν

dν0
(y, u) = C(y) exp(−Φ(u; y)).

Note that
∫

U
exp(−Φ(u; y)) dμ0(u) = C(y)

∫

U
ρ(y −H(u)) dμ0(u) > 0,

since ρ is strictly positive on R
m and H is continuous. Since ν0(du|y) =

μ0(du), the result follows from Lemma 6.7. 
�
Exercise 6.2 shows that, if the prior μ0 is a Gaussian measure and the

potential Φ is quadratic in u, then, for all y, the posterior μy is Gaussian.
In particular, if the observation operator is a continuous linear map and the
observations are corrupted by additive Gaussian noise, then the posterior is
Gaussian — see Exercise 2.8 for the relationships between the means and
covariances of the prior, noise and posterior. On the other hand, if either the
observation operator is non-linear or the observational noise is non-Gaussian,
then a Gaussian prior is generally transformed into a non-Gaussian posterior.

6.3 Well-Posedness and Approximation

This section concerns the well-posedness of the Bayesian inference problem for
Gaussian priors on Banach spaces. To save space later on, the following will be
taken as our standard assumptions on the negative log-likelihood/potential Φ.
In essence, we wish to restrict attention to potentials Φ that are Lipschitz in
both arguments, bounded on bounded sets, and that do not decay to −∞ at
infinity ‘too quickly’.



102 6 Bayesian Inverse Problems

Assumptions on Φ. Assume that Φ : U × Y → R satisfies:
(A1) For every ε > 0 and r > 0, there exists M = M(ε, r) ∈ R such that, for

all u ∈ U and all y ∈ Y with ‖y‖Y < r,

Φ(u; y) ≥ M − ε‖u‖2U .
(A2) For every r > 0, there exists K = K(r) > 0 such that, for all u ∈ U

and all y ∈ Y with ‖u‖U , ‖y‖Y < r,

Φ(u; y) ≤ K.

(A3) For every r > 0, there exists L = L(r) > 0 such that, for all u1, u2 ∈ U
and all y ∈ Y with ‖u1‖U , ‖u2‖U , ‖y‖Y < r,

∣
∣Φ(u1; y)− Φ(u2; y)

∣
∣ ≤ L

∥
∥u1 − u2

∥
∥
U .

(A4) For every ε > 0 and r > 0, there exists C = C(ε, r) > 0 such that, for
all u ∈ U and all y1, y2 ∈ Y with ‖y1‖Y , ‖y2‖Y < r,

∣
∣Φ(u; y1)− Φ(u; y2)

∣
∣ ≤ exp

(

ε‖u‖2U + C
)∥
∥y1 − y2

∥
∥
Y .

We first show that, for Gaussian priors, these assumptions yield a well-
defined posterior measure for each possible instance of the observed data:

Theorem 6.8. Let Φ satisfy standard assumptions (A1), (A2), and (A3)
and assume that μ0 is a Gaussian probability measure on U . Then, for each
y ∈ Y, μy given by

dμy

dμ0
(u) =

exp(−Φ(u; y))

Z(y)
,

Z(y) =

∫

U
exp(−Φ(u; y)) dμ0(u),

is a well-defined probability measure on U .
Proof. Assumption (A2) implies that Z(y) is bounded below:

Z(y) ≥
∫

{u|‖u‖U≤r}
exp(−K(r)) dμ0(u) = exp(−K(r))μ0

[‖u‖U ≤ r
]

> 0

for r > 0, since μ0 is a strictly positive measure on U . By (A3), Φ is
μ0-measurable, and so μy is a well-defined measure. By (A1), for ‖y‖Y ≤ r
and ε sufficiently small,

Z(y) =

∫

U
exp(−Φ(u; y)) dμ0(u)

≤
∫

U
exp(ε‖u‖2U −M(ε, r)) dμ0(u)

≤ C exp(−M(ε, r)) < ∞,
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since μ0 is Gaussian and we may choose ε small enough that the Fernique
theorem (Theorem 2.47) applies. Thus, μy can indeed be normalized to be a
probability measure on U . 
�

Recall from Chapter 5 that the Hellinger distance between two probability
measures μ and ν on U is defined in terms of any reference measure ρ with
respect to which both μ and ν are absolutely continuous by

dH(μ, ν) :=

√
√
√
√

∫

U

∣
∣
∣
∣
∣

√

dμ

dρ
(u)−

√

dν

dρ
(u)

∣
∣
∣
∣
∣

2

dρ(u).

A particularly useful property of the Hellinger metric is that closeness in the
Hellinger metric implies closeness of expected values of polynomially bounded
functions: if f : U → V , for some Banach space V , then Proposition 5.12 gives
that

∥
∥Eμ[f ]− Eν [f ]

∥
∥ ≤ 2

√

Eμ

[‖f‖2]+ Eν

[‖f‖2] dH(μ, ν).
Therefore, Hellinger-close prior and posterior measures give similar expected
values to quantities of interest; indeed, for fixed f , the perturbation in the
expected value is Lipschitz with respect to the Hellinger size of the pertur-
bation in the measure.

The following theorem shows that Bayesian inference with respect to a
Gaussian prior measure is well-posed with respect to perturbations of the
observed data y, in the sense that the Hellinger distance between the corre-
sponding posteriors is Lipschitz in the size of the perturbation in the data:

Theorem 6.9. Let Φ satisfy the standard assumptions (A1), (A2), and (A4),
suppose that μ0 is a Gaussian probability measure on U , and that μy � μ0

with density given by the generalized Bayes’ rule for each y ∈ Y. Then there
exists a constant C ≥ 0 such that, for all y, y′ ∈ Y,

dH(μ
y, μy′

) ≤ C‖y − y′‖Y .

Proof. As in the proof of Theorem 6.8, (A2) gives a lower bound on Z(y).
We also have the following Lipschitz continuity estimate for the difference
between the normalizing constants for y and y′:

|Z(y)− Z(y′)|
≤
∫

U

∣
∣e−Φ(u;y) − e−Φ(u;y′)∣∣ dμ0(u)

≤
∫

U
max

{

e−Φ(u;y), e−Φ(u;y′)}∣∣Φ(u; y)− Φ(u; y′)
∣
∣ dμ0(u)

by the mean value theorem (MVT). Hence,
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|Z(y)− Z(y′)|
≤
∫

U
eε‖u‖

2
U+M · eε‖u‖2

U+C‖y − y′‖Y dμ0(u) by (A1) and (A4)

≤ C‖y − y′‖Y by Fernique.

By the definition of the Hellinger distance, using the prior μ0 as the reference
measure,

dH(μ
y, μy′

)2 =

∫

U

∣
∣
∣
∣
∣

1
√

Z(y)
e−Φ(u;y)/2 − 1

√

Z(y′)
e−Φ(u;y′)/2

∣
∣
∣
∣
∣

2

dμ0(u)

=
1

Z(y)

∫

U

∣
∣
∣
∣
∣
e−Φ(u;y)/2 −

√

Z(y)

Z(y′)
e−Φ(u;y′)/2

∣
∣
∣
∣
∣

2

dμ0(u)

≤ I1 + I2,

where

I1 :=
1

Z(y)

∫

U

∣
∣
∣e−Φ(u;y)/2 − e−Φ(u;y′)/2

∣
∣
∣

2

dμ0(u),

I2 :=

∣
∣
∣
∣
∣

1
√

Z(y)
− 1

√

Z(y′)

∣
∣
∣
∣
∣

2 ∫

U
e−Φ(u;y′)/2 dμ0(u).

For I1, a similar application of the MVT, (A1) and (A4), and the Fernique
theorem to the one above yields that

I1 ≤ 1

Z(y)

∫

U
max

{
1
2e

−Φ(u;y)/2, 1
2e

−Φ(u;y′)/2}2 · ∣∣Φ(u; y)− Φ(u; y′)
∣
∣
2
dμ0(u)

≤ 1

4Z(y)

∫

U
eε‖u‖

2
U+M · e2ε‖u‖2

U+2C‖y − y′‖2Y dμ0(u)

≤ C‖y − y′‖2Y .

A similar application of (A1) and the Fernique theorem shows that the inte-
gral in I2 is finite. Also, the lower bound on Z( · ) implies that

∣
∣
∣
∣
∣

1
√

Z(y)
− 1

√

Z(y′)

∣
∣
∣
∣
∣

2

≤ Cmax

{
1

Z(y)3
,

1

Z(y′)3

}

|Z(y)− Z(y′)|2

≤ C‖y − y′‖2Y .

Thus, I2 ≤ C‖y − y′‖2Y , which completes the proof. 
�
Similarly, the next theorem shows that Bayesian inference with respect to

a Gaussian prior measure is well-posed with respect to approximation of mea-
sures and log-likelihoods. The approximation of Φ by some ΦN typically arises
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through the approximation of H by some discretized numerical model HN .
The importance of Theorem 6.10 is that it allows error estimates for the
forward models H and HN , which typically arise through non-probabilistic
numerical analysis, to be translated into error estimates for the Bayesian
inverse problem.

Theorem 6.10. Suppose that the probability measures μ and μN are the
posteriors arising from potentials Φ and ΦN and are all absolutely continuous
with respect to μ0, and that Φ, ΦN satisfy the standard assumptions (A1) and
(A2) with constants uniform in N . Assume also that, for all ε > 0, there exists
K = K(ε) > 0 such that

∣
∣Φ(u; y)− ΦN (u; y)

∣
∣ ≤ K exp(ε‖u‖2U)ψ(N), (6.11)

where limN→∞ ψ(N) = 0. Then there is a constant C, independent of N ,
such that

dH(μ, μ
N ) ≤ Cψ(N).

Proof. Exercise 6.4. 
�
Remark 6.11. Note well that, regardless of the value of the observed data �
y, the Bayesian posterior μy is absolutely continuous with respect to the
prior μ0 and, in particular, cannot associate positive posterior probabil-
ity with any event of prior probability zero. However, the Feldman–Hájek
theorem (Theorem 2.51) says that it is very difficult for probability measures
on infinite-dimensional spaces to be absolutely continuous with respect to
one another. Therefore, the choice of infinite-dimensional prior μ0 is a very
strong modelling assumption that, if it is ‘wrong’, cannot be ‘corrected’ even
by large amounts of data y. In this sense, it is not reasonable to expect that
Bayesian inference on function spaces should be well-posed with respect to
apparently small perturbations of the prior μ0, e.g. by a shift of mean that
lies outside the Cameron–Martin space, or a change of covariance arising from
a non-unit dilation of the space. Nevertheless, the infinite-dimensional per-
spective is not without genuine fruits: in particular, the well-posedness results
(Theorems 6.9 and 6.10) are very important for the design of finite-dimensional
(discretized) Bayesian problems that have good stability properties with
respect to discretization dimension N .

6.4 Accessing the Bayesian Posterior Measure

For given data y ∈ Y, the Bayesian posterior μ0( · |y) on U is determined as a
measure that has a density with respect to the prior μ0 given by Bayes’ rule,
e.g. in the form (6.10),
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dμ0( · |y)
dμ0

(u) ∝ exp(−Φ(u; y)).

The results outlined above have shown some of the analytical properties
of this construction. However, in practice, this well-posedness theory is not
the end of the story, principally because we need to be able to access this
posterior measure: in particular, it is necessary to be able to (numerically)
integrate with respect to the posterior, in order to form the posterior expected
value of quantities of interest. (Note, for example, that (6.10) gives a non-
normalized density for the posterior with respect to the prior, and this lack
of normalization is sometimes an additional practical obstacle.)

The general problem of how to access the Bayesian posterior measure is
a complicated and interesting one. Roughly speaking, there are three classes
of methods for exploration of the posterior, some of which will be discussed
in depth at appropriate points later in the book:
(a) Methods such as Markov chain Monte Carlo, to be discussed in Chapter

9, attempt to sample from the posterior directly, using the formula for
its density with respect to the prior.
In principle, one could also integrate with respect to the posterior by
drawing samples from some other measure (e.g. the prior, or some other
reference measure) and then re-weighting according to the appropriate
probability density. However, some realizations of the data may cause the
density dμ0( · |y)/dμ0 to be significantly different from 1 for most draws
from the prior, leading to severe ill-conditioning. For this reason, ‘direct’
draws from the posterior are highly preferable.
An alternative to re-weighting of prior samples is to transform prior sam-
ples into posterior samples while preserving their probability weights.
That is, one seeks a function T y : U → U from the parameter space U
to itself that pushes forward any prior to its corresponding posterior,
i.e. T y

∗ μ0 = μ0( · |y), and hence turns an ensemble
{

u(1), . . . , u(N)
}

of
independent samples distributed according to the prior into an ensemble
{

T y
(

u(1)
)

, . . . , T y
(

u(N)
)}

of independent samples distributed according
to the posterior. Map-based approaches to Bayesian inference include
the approach of El Moselhy and Marzouk (2012), grounded in optimal
transportation theory, and will not be discussed further here.

(b) A second class of methods attempts to approximate the posterior, often
through approximating the forward and observation models, and hence
the likelihood. Many of the modelling methods discussed in Chapters
10–13 are examples of such approaches. For example, the Gauss–Markov
theorem (Theorem 6.2) and Linear Kálmán Filter (see Section 7.2) pro-
vide optimal approximations of the posterior within the class of Gaussian
measures, with linear forward and observation operators.

(c) Finally, as a catch-all term, there are the ‘ad hoc’ methods. In this cat-
egory, we include the Ensemble Kálmán Filter of Evensen (2009), which
will be discussed in Section 7.4.
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6.5 Frequentist Consistency of Bayesian Methods

A surprisingly subtle question about Bayesian inference is whether it yields
the ‘correct’ result, regardless of the prior used, when exposed to enough
sample data. Clearly, when very few data points have been observed, the
prior controls the posterior much more strongly than the observed data do,
so it is necessary to answer such questions in an asymptotic limit. It is also
necessary to clarify what is meant by ‘correctness’. One such notion is that
of frequentist consistency:

“While for a Bayesian statistician the analysis ends in a certain sense with the
posterior, one can ask interesting questions about the properties of posterior-based
inference from a frequentist point of view.” (Nickl, 2013)

To describe frequentist consistency, consider the standard setup of a
Bayesian prior μ0 on some space U , together with a Bayesian likelihood model
for observed data with values in another space Y, i.e. a family of probability
measures μ( · |u) ∈ M1(Y) indexed by u ∈ U . Now introduce a new ingredi-
ent, which is a probability measure μ† ∈ M1(Y) that is treated as the ‘truth’
in the sense that the observed data are in fact a sequence of independent and
identically distributed draws from μ†.

Definition 6.12. The likelihood model {μ( · |u) | u ∈ U} is said to be well-
specified if there exists some u† ∈ U such that μ† = μ( · |u†), i.e. if there
is some member of the model family that exactly coincides with the data-
generating distribution. If the model is not well-specified, then it is said to
be misspecified.

In the well-specified case, the model and the parameter space U admit
some u† that explains the frequentist ‘truth’ μ†. The natural question to
ask is whether exposure to enough independent draws Y1, . . . , Yn from μ†

will permit the model to identify u† out of all the other possible u ∈ U . If
some sequence of estimators or other objects (such as Bayesian posteriors)
converges as n → ∞ to u† with respect to some notion of convergence,
then the estimator is said to be consistent. For example, Theorem 6.13 gives
conditions for the maximum likelihood estimator (MLE) to be consistent,
with the mode of convergence being convergence in probability; Theorem
6.17 (the Bernstein–von Mises theorem) gives conditions for the Bayesian
posterior to be consistent, with the mode of convergence being convergence
in probability, and with respect to the total variation distance on probability
measures.

In order to state some concrete results on consistency, suppose now that
U ⊆ R

p and Y ⊆ R
d, and that the likelihood model {μ( · |u) | u ∈ U} can be

written in the form of a parametric family of probability density functions
with respect to Lebesgue measure on R

d, which will be denoted by a function
f( · | · ) : Y × U → [0,∞), i.e.
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μ(E|u) =
∫

E

f(y|u) dy for each measurable E ⊆ Y and each u ∈ U .

Before giving results about the convergence of the Bayesian posterior, we
first state a result about the convergence of the maximum likelihood estimator
(MLE) ûn for u† given the data Y1, . . . , Yn ∼ μ†, which, as the name suggests,
is defined by

ûn ∈ argmax
u∈U

f(Y1|u) · · · f(Yn|u).

Note that, being a function of the random variables Y1, . . . , Yn, ûn is itself a
random variable.

Theorem 6.13 (Consistency of the MLE). Suppose that f(y|u) > 0 for all
(u, y) ∈ U ×Y, that U is compact, and that parameters u ∈ U are identifiable
in the sense that

f( · |u0) = f( · |u1) Lebesgue a.e. ⇐⇒ u0 = u1

and that
∫

Y
sup
u∈U

| log f(y|u)|f(y|u†) dy < ∞.

Then the maximum likelihood estimator ûn converges to u† in probability,
i.e. for all ε > 0,

PYi∼μ†
[∣
∣ûn − u†∣∣ > ε

] −−−−→
n→∞ 0. (6.12)

The proof of Theorem 6.13 is omitted, and can be found in Nickl (2013).
The next two results quantify the convergence of the MLE and Bayesian
posterior in terms of the following matrix:

Definition 6.14. The Fisher information matrix iF(u
†) ∈ R

p×p of f at
u† ∈ U is defined by

iF(u
†)ij := EY ∼f( · |u†)

[
∂ log f(Y |u)

∂ui

∂ log f(Y |u)
∂uj

∣
∣
∣
∣
u=u†

]

. (6.13)

Remark 6.15. Under the regularity conditions that will be used later,
iF(u

†) is a symmetric and positive-definite matrix, and so can be viewed
as a Riemannian metric tensor on U , varying from one point u† ∈ U to
another. In that context, it is known as the Fisher–Rao metric tensor, and
plays an important role the field of information geometry in general, and
geodesic Monte Carlo methods in particular.

The next two results, the lengthy proofs of which are also omitted, are
both asymptotic normality results. The first shows that the error in the
MLE is asymptotically a normal distribution with covariance operator given
by the Fisher information; informally, for large n, ûn is normally distributed
with mean u† and precision niF(u

†). The second result — the celebrated
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Bernstein–von Mises theorem or Bayesian CLT (central limit theorem) —
shows that the entire Bayesian posterior distribution is asymptotically a nor-
mal distribution centred on the MLE, which, under the conditions of Theorem
6.13, converges to the frequentist ‘truth’. These results hold under suitable
regularity conditions on the likelihood model, which are summarized here for
later reference:

Regularity Assumptions. The parametric family f : Y × U → [0,∞) will
be said to satisfy the regularity assumptions with respect to a data-generating
distribution μ† ∈ M1(Y) if
(a) for all u ∈ U and y ∈ Y, f(y|u) > 0;
(b) the model is well-specified, with μ† = μ( · |u†), where u† is an interior

point of U ;
(c) there exists an open set U with u† ∈ U ⊆ U such that, for each y ∈ Y,

f(y| · ) ∈ C2(U ;R);
(d) EY ∼μ† [∇2

u log f(Y |u)|u=u† ] ∈ R
p×p is non-singular and

EY∼μ†

[∥
∥∇u log f(Y |u)∣∣

u=u†
∥
∥
2
]

< ∞;

(e) there exists r > 0 such that B = Br(u
†) ⊆ U and

EY ∼μ†

[

sup
u∈B

∇2
u log f(Y |u)

]

< ∞,

∫

Y
sup
u∈B

∥
∥∇u log f(Y |u)∥∥dy < ∞,

∫

Y
sup
u∈B

∥
∥∇2

u log f(Y |u)∥∥dy < ∞.

Theorem 6.16 (Local asymptotic normality of the MLE). Suppose that
f satisfies the regularity assumptions. Then the Fisher information matrix
(6.13) satisfies

iF(u
†)ij = −EY∼f( · |u†)

[
∂2 log f(Y |u)

∂ui∂uj

∣
∣
∣
∣
u=u†

]

and the maximum likelihood estimator satisfies

√
n
(

ûn − u†) d−−−−→
n→∞ X ∼ N (0, iF(u

†)−1), (6.14)

where
d−→ denotes convergence in distribution (also known as weak conver-

gence, q.v. Theorem 5.14), i.e. Xn
d−→ X if E[ϕ(Xn)] → E[ϕ(X)] for all

bounded continuous functions ϕ : Rp → R.

Theorem 6.17 (Bernstein–vonMises). Suppose that f satisfies the regularity
assumptions. Suppose that the prior μ0 ∈ M1(U) is absolutely continuous
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with respect to Lebesgue measure and has u† ∈ supp(μ0). Suppose also that
the model admits a uniformly consistent estimator, i.e. a Tn : Yn → R

p such
that, for all ε > 0,

sup
u∈U

PYi∼f( · |u)
[
∥
∥Tn(Y1, . . . , Yn)− u

∥
∥ > ε

]

−−−−→
n→∞ 0. (6.15)

Let μn := μ0( · |Y1, . . . , Yn) denote the (random) posterior measure obtained
by conditioning μ0 on n independent μ†-distributed samples Yi. Then, for all
ε > 0,

PYi∼μ†

[∥
∥
∥
∥
μn −N

(

ûn,
iF(u

†)−1

n

)∥
∥
∥
∥
TV

> ε

]

−−−−→
n→∞ 0. (6.16)

The Bernstein–von Mises theorem is often interpreted as saying that so
long as the prior μ0 is strictly positive — i.e. puts positive probability mass
on every open set in U — the Bayesian posterior will asymptotically put all
its mass on the frequentist ‘truth’ u† (assuming, of course, that u† ∈ U).
Naturally, if u† /∈ supp(μ0), then there is no hope of learning u† in this
way, since the posterior is always absolutely continuous with respect to the
prior, and so cannot put mass where the prior does not. Therefore, it seems
sensible to use ‘open-minded’ priors that are everywhere strictly positive;
Lindley (1985) calls this requirement “Cromwell’s Rule” in reference to Oliver
Cromwell’s famous injunction to the Synod of the Church of Scotland in 1650:

“I beseech you, in the bowels of Christ, think it possible that you may be mistaken.”

Unfortunately, the Bernstein–von Mises theorem is no longer true when
the space U is infinite-dimensional, and Cromwell’s Rule is not a sufficient
condition for consistency. In infinite-dimensional spaces, there are counterex-
amples in which the posterior either fails to converge or converges to some-�
thing other than the ‘true’ parameter value — the latter being a particularly
worrisome situation, since then a Bayesian practitioner will become more and
more convinced of a wrong answer as more data come in. There are, however,
some infinite-dimensional situations in which consistency properties do hold.
In general, the presence or absence of consistency depends in subtle ways
upon choices such as the topology of convergence of measures, and the types
of sets for which one requires posterior consistency. See the bibliography at
the end of the chapter for further details.
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convex geometry of sparse linear inverse problems. An alternative paradigm
for promoting sparsity in optimization and statistical inference problems is
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Fisher–Rao metric tensor plays a key role, is the book of Amari and Na-
gaoka (2000). Theorems 6.13, 6.16, and 6.17 on MLE and Bayesian poste-
rior consistency are Theorems 2, 3, and 5 respectively in Nickl (2013), and
their proofs can be found there. The study of the frequentist consistency of
Bayesian procedures has a long history: the Bernstein–von Mises theorem,
though attributed to Bernštĕın (1964) and von Mises (1964) in the middle
of the twentieth century, was in fact anticipated by Laplace (1810), and the
first rigorous proof was provided by Le Cam (1953, 1986). Counterexamples
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the 1960s, beginning with the work of Freedman (1963, 1965) and continu-
ing with that of Diaconis and Freedman (1998), Leahu (2011), Owhadi et al.
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(2015) and others. There are also positive results for infinite-dimensional set-
tings, such as those of Castillo and Nickl (2013, 2014) and Szabó et al. (2014,
2015). It is now becoming clear that the crossover from consistency to incon-
sistency depends subtly upon the topology of convergence and the geometry
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6.7 Exercises

Exercise 6.1. Let μ1 = N (m1, C1) and μ2 = N (m2, C2) be non-degenerate
Gaussian measures on R

n with Lebesgue densities ρ1 and ρ2 respectively.
Show that the probability measure with Lebesgue density proportional to
ρ1ρ2 is a Gaussian measure μ3 = N (m3, C3), where

C−1
3 = C−1

1 + C−1
2 ,

m3 = C3(C
−1
1 m1 + C−1

2 m2).

Note well the property that the precision matrices sum, whereas the covari-
ance matrices undergo a kind of harmonic average. (This result is sometimes
known as completing the square.)

Exercise 6.2. Let μ0 be a Gaussian probability measure on R
n and sup-

pose that the potential Φ(u; y) is quadratic in u. Show that the posterior
dμy ∝ e−Φ(u;y) dμ0 is also a Gaussian measure on R

n. Using whatever char-
acterization of Gaussian measures you feel most comfortable with, extend this
result to a Gaussian probability measure μ0 on a separable Banach space U .
Exercise 6.3. Let Γ ∈ R

q×q be symmetric and positive definite. Suppose
that H : U → R

q satisfies
(a) For every ε > 0, there exists M ∈ R such that, for all u ∈ U ,

‖H(u)‖Γ−1 ≤ exp
(

ε‖u‖2U +M
)

.

(b) For every r > 0, there exists K > 0 such that, for all u1, u2 ∈ U with
‖u1‖U , ‖u2‖U < r,

‖H(u1)−H(u2)‖Γ−1 ≤ K
∥
∥u1 − u2

∥
∥
U .

Show that Φ : U × R
q → R defined by

Φ(u; y) :=
1

2

〈

y −H(u), Γ−1(y −H(u))
〉

satisfies the standard assumptions.

Exercise 6.4. Prove Theorem 6.10. Hint: follow the model of Theorem 6.9,
with (μ, μN ) in place of (μy, μy′

), and using (6.11) instead of (A4).
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