
Chapter 4

Optimization Theory

We demand rigidly defined areas of doubt and
uncertainty!

The Hitchhiker’s Guide to the Galaxy
Douglas Adams

This chapter reviews the basic elements of optimization theory and practice,
without going into the fine details of numerical implementation. Many UQ
problems involve a notion of ‘best fit’, in the sense of minimizing some error
function, and so it is helpful to establish some terminology for optimiza-
tion problems. In particular, many of the optimization problems in this book
will fall into the simple settings of linear programming and least squares
(quadratic programming), with and without constraints.

4.1 Optimization Problems and Terminology

In an optimization problem, the objective is to find the extreme values (either
the minimal value, the maximal value, or both) f(x) of a given function f
among all x in a given subset of the domain of f , along with the point or
points x that realize those extreme values. The general form of a constrained
optimization problem is

extremize: f(x)

with respect to: x ∈ X
subject to: gi(x) ∈ Ei for i = 1, 2, . . . ,

where X is some set; f : X → R ∪ {±∞} is a function called the objective
function; and, for each i, gi : X → Yi is a function and Ei ⊆ Yi some subset.
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The conditions {gi(x) ∈ Ei | i = 1, 2, . . .} are called constraints, and a point
x ∈ X for which all the constraints are satisfied is called feasible; the set of
feasible points,

{x ∈ X | gi(x) ∈ Ei for i = 1, 2, . . . },
is called the feasible set. If there are no constraints, so that the problem is
a search over all of X , then the problem is said to be unconstrained. In the
case of a minimization problem, the objective function f is also called the
cost function or energy; for maximization problems, the objective function is
also called the utility function.

From a purely mathematical point of view, the distinction between con-
strained and unconstrained optimization is artificial: constrained minimiza-
tion over X is the same as unconstrained minimization over the feasible set.
However, from a practical standpoint, the difference is huge. Typically, X is
R

n for some n, or perhaps a simple subset specified using inequalities on one
coordinate at a time, such as [a1, b1] × · · · × [an, bn]; a bona fide non-trivial
constraint is one that involves a more complicated function of one coordinate,
or two or more coordinates, such as

g1(x) := cos(x)− sin(x) > 0

or

g2(x1, x2, x3) := x1x2 − x3 = 0.

Definition 4.1. Given f : X → R ∪ {±∞}, the arg min or set of global
minimizers of f is defined to be

argmin
x∈X

f(x) :=

{
x ∈ X

∣∣∣∣ f(x) = inf
x′∈X

f(x′)
}
,

and the arg max or set of global maximizers of f is defined to be

argmax
x∈X

f(x) :=

{
x ∈ X

∣∣∣∣ f(x) = sup
x′∈X

f(x′)
}
.

Definition 4.2. For a given constrained or unconstrained optimization prob-
lem, a constraint is said to be
(a) redundant if it does not change the feasible set, and non-redundant or

relevant otherwise;
(b) non-binding if it does not change the extreme value, and binding other-

wise;
(c) active if it is an inequality constraint that holds as an equality at the

extremizer, and inactive otherwise.

Example 4.3. Consider f : R2 → R, f(x, y) := y. Suppose that we wish to
minimize f over the unbounded w-shaped region

W := {(x, y) ∈ R
2 | y ≥ (x2 − 1)2}.
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Over W , f takes the minimum value 0 at (x, y) = (±1, 0). Note that the
inequality constraint y ≥ (x2 − 1)2 is an active constraint. The additional
constraint y ≥ 0 would be redundant with respect to this feasible set W ,
and hence also non-binding. The additional constraint x > 0 would be non-
redundant, but also non-binding, since it excludes the previous minimizer at
(x, y) = (−1, 0) but not the one at (x, y) = (1, 0). Similarly, the additional
equality constraint y = (x2 − 1)2 would be non-redundant and non-binding.

The importance of these concepts for UQ lies in the fact that many UQ
problems are, in part or in whole, optimization problems: a good example
is the calibration of parameters in a model in order to best explain some
observed data. Each piece of information about the problem (e.g. a hypoth-
esis about the form of the model, such as a physical law) can be seen as
a constraint on that optimization problem. It is easy to imagine that each
additional constraint may introduce additional difficulties in computing the
parameters of best fit. Therefore, it is natural to want to exclude from consid-
eration those constraints (pieces of information) that are merely complicating
the solution process, and not actually determining the optimal parameters,
and to have some terminology for describing the various ways in which this
can occur.

4.2 Unconstrained Global Optimization

In general, finding a global minimizer of an arbitrary function is very hard,
especially in high-dimensional settings and without nice features like convex-
ity. Except in very simple settings like linear least squares (Section 4.6), it is
necessary to construct an approximate solution, and to do so iteratively; that
is, one computes a sequence (xn)n∈N in X such that xn converges as n → ∞
to an extremizer of the objective function within the feasible set. A simple
example of a deterministic iterative method for finding the critical points,
and hence extrema, of a smooth function is Newton’s method:

Definition 4.4. Let X be a normed vector space. Given a differentiable
function g : X → X and an initial state x0, Newton’s method for finding a
zero of g is the sequence generated by the iteration

xn+1 := xn − (
Dg(xn)

)−1
g(xn), (4.1)

where Dg(xn) : X → X is the Fréchet derivative of g at xn. Newton’s method
is often applied to find critical points of f : X → R, i.e. points where Df
vanishes, in which case the iteration is.

xn+1 := xn − (
D2f(xn)

)−1
Df(xn). (4.2)

(In (4.2), the second derivative (Hessian) D2f(xn) is interpreted as a linear
map X → X rather than a bilinear map X × X → R.)
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Remark 4.5. (a) Newton’s method for the determination of critical points
of f amounts to local quadratic approximation: we model f about xn

using its Taylor expansion up to second order, and then take as xn+1

a critical point of this quadratic approximation. In particular, as shown
in Exercise 4.3, Newton’s method yields the exact minimizer of f in one
iteration when f is in fact a quadratic function.

(b) We will not dwell at this point on the important practical issue of num-
erical (and hence approximate) evaluation of derivatives for methods such
as Newton iteration. However, this issue will be revisited in Section 10.2
in the context of sensitivity analysis.

For objective functions f : X → R ∪ {±∞} that have little to no smooth-
ness, or that have many local extremizers, it is often necessary to resort
to random searches of the space X . For such algorithms, there can only be
a probabilistic guarantee of convergence. The rate of convergence and the
degree of approximate optimality naturally depend upon features like ran-
domness of the generation of new elements of X and whether the extremizers
of f are difficult to reach, e.g. because they are located in narrow ‘valleys’. We
now describe three very simple random iterative algorithms for minimization
of a prescribed objective function f, in order to illustrate some of the relevant
issues. For simplicity, suppose that f has a unique global minimizer x_min

and write f_min for f(x_min).

Algorithm 4.6 (Random sampling). For simplicity, the following algorithm
runs for n_max steps with no convergence checks. The algorithm returns
an approximate minimizer x_best along with the corresponding value of f.
Suppose that random() generates independent samples of X from a proba-
bility measure μ with support X .

f_best = +inf

n = 0

while n < n_max:

x_new = random()

f_new = f(x_new)

if f_new < f_best:

x_best = x_new

f_best = f_new

n = n + 1

return [x_best, f_best]

A weakness of Algorithm 4.6 is that it completely neglects local informa-
tion about f. Even if the current state x_best is very close to the global
minimizer x_min, the algorithm may continue to sample points x_new that
are very far away and have f(x_new)� f(x_best). It would be preferable to
explore a neighbourhood of x_best more thoroughly and hence find a better
approximation of [x_min, f_min]. The next algorithm attempts to rectify
this deficiency.
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Algorithm 4.7 (Random walk). As before, this algorithm runs for n_max

steps. The algorithm returns an approximate minimizer x_best along with
the corresponding value of f. Suppose that an initial state x0 is given, and
that jump() generates independent samples of X from a probability measure
μ with support equal to the unit ball of X .

x_best = x0

f_best = f(x_best)

n = 0

while n < n_max:

x_new = x_best + jump()

f_new = f(x_new)

if f_new < f_best:

x_best = x_new

f_best = f_new

n = n + 1

return [x_best, f_best]

Algorithm 4.7 also has a weakness: since the state is only ever updated to
states with a strictly lower value of f, and only looks for new states within
unit distance of the current one, the algorithm is prone to becoming stuck in
local minima if they are surrounded by wells that are sufficiently wide, even
if they are very shallow. The next algorithm, the simulated annealing method
of Kirkpatrick et al. (1983), attempts to rectify this problem by allowing the
optimizer to make some ‘uphill’ moves, which can be accepted or rejected
according to comparison of a uniformly distributed random variable with a
user-prescribed acceptance probability function. Therefore, in the simulated
annealing algorithm, a distinction is made between the current state x of
the algorithm and the best state so far, x_best; unlike in the previous two
algorithms, proposed states x_new may be accepted and become x even if
f(x_new)> f(x_best). The idea is to introduce a parameter T, to be thought
of as ‘temperature’: the optimizer starts off ‘hot’, and ‘uphill’ moves are likely
to be accepted; by the end of the calculation, the optimizer is relatively ‘cold’,
and ‘uphill’ moves are unlikely to accepted.

Algorithm 4.8 (Simulated annealing). Suppose that an initial state x0

is given. Suppose also that functions temperature(), neighbour() and
acceptance_prob() have been specified. Suppose that uniform() generates
independent samples from the uniform distribution on [0, 1]. Then the simu-
lated annealing algorithm is

x = x0

fx = f(x)

x_best = x

f_best = fx

n = 0

while n < n_max:
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T = temperature(n / n_max)

x_new = neighbour(x)

f_new = f(x_new)

if acceptance_prob(fx, f_new, T) > uniform():

x = x_new

fx = f_new

if f_new < f_best:

x_best = x_new

f_best = f_new

n = n + 1

return [x_best, f_best]

Like Algorithm 4.6, the simulated annealing method can guarantee to
find the global minimizer of f provided that the neighbour() function
allows full exploration of the state space and the maximum run time n_max

is large enough. However, the difficulty lies in coming up with functions
temperature() and acceptance_prob() such that the algorithm finds the
global minimizer in reasonable time: simulated annealing calculations can
be extremely computationally costly. A commonly used acceptance probabil-
ity function P is the one from the Metropolis–Hastings algorithm (see also
Section 9.5):

P (e, e′, T ) =

{
1, if e′ < e,

exp(−(e′ − e)/T ), if e′ ≥ e.

There are, however, many other choices; in particular, it is not neces-
sary to automatically accept downhill moves, and it is permissible to have
P (e, e′, T ) < 1 for e′ < e.

4.3 Constrained Optimization

It is well known that the unconstrained extremizers of smooth enough func-
tions must be critical points, i.e. points where the derivative vanishes. The fol-
lowing theorem, the Lagrange multiplier theorem, states that the constrained
minimizers of a smooth enough function, subject to smooth enough equality
constraints, are critical points of an appropriately generalized function:

Theorem 4.9 (Lagrange multipliers). Let X and Y be real Banach spaces.
Let U ⊆ X be open and let f ∈ C1(U ;R). Let g ∈ C1(U ;Y), and suppose that
x ∈ U is a constrained extremizer of f subject to the constraint that g(x) = 0.
Suppose also that the Fréchet derivative Dg(x) : X → Y is surjective. Then
there exists a Lagrange multiplier λ ∈ Y ′ such that (x, λ) is an unconstrained
critical point of the Lagrangian L defined by

U × Y ′ 	 (x, λ) 
→ L(x, λ) := f(x) + 〈λ | g(x)〉 ∈ R.

i.e. Df(x) = −λ ◦Dg(x) as linear maps from X to R.
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The corresponding result for inequality constraints is the Karush–Kuhn–
Tucker theorem, which we state here for a finite system of inequality
constraints:

Theorem 4.10 (Karush–Kuhn–Tucker). Let U be an open subset of a
Banach space X , and let f ∈ C1(U ;R) and h ∈ C1(U ;Rm). Suppose that
x ∈ U is a local minimizer of f subject to the inequality constraints hi(x) ≤ 0
for i = 1, . . . ,m, and suppose that Dh(x) : X → R

m is surjective. Then there
exists μ = (μ1, . . . , μm) ∈ (Rm)′ such that

−Df(x) = μ ◦Dh(x),

where μ satisfies the dual feasibility criteria μi ≥ 0 and the complementary
slackness criteria μihi(x) = 0 for i = 1, . . . ,m.

The Lagrange and Karush–Kuhn–Tucker theorems can be combined to inc-
orporate equality constraints gi and inequality constraints hj. Strictly speak-
ing, the validity of the Karush–Kuhn–Tucker theorem also depends upon
some regularity conditions on the constraints called constraint qualification
conditions, of which there are many variations that can easily be found in the
literature. A very simple one is that if gi and hj are affine functions, then no
further regularity is needed; another is that the gradients of the active ine-
quality constraints and the gradients of the equality constraints be linearly
independent at the optimal point x.

Numerical Implementation of Constraints. In the numerical treatment
of constrained optimization problems, there are many ways to implement
constraints, not all of which actually enforce the constraints in the sense of
ensuring that trial states x_new, accepted states x, or even the final solution
x_best are actually members of the feasible set. For definiteness, consider
the constrained minimization problem

minimize: f(x)

with respect to: x ∈ X
subject to: c(x) ≤ 0

for some functions f, c : X → R ∪ {±∞}. One way of seeing the constraint
‘c(x) ≤ 0’ is as a Boolean true/false condition: either the inequality is sat-
isfied, or it is not. Supposing that neighbour(x) generates new (possibly
infeasible) elements of X given a current state x, one approach to generating
feasible trial states x_new is the following:

x’ = neighbour(x)

while c(x’) > 0:

x’ = neighbour(x)

x_new = x’
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However, this accept/reject approach is extremely wasteful: if the feasible
set is very small, then x’ will ‘usually’ be rejected, thereby wasting a lot
of computational time, and this approach takes no account of how ‘nearly
feasible’ an infeasible x’ might be.

One alternative approach is to use penalty functions : instead of considering
the constrained problem of minimizing f(x) subject to c(x) ≤ 0, one can
consider the unconstrained problem of minimizing x 
→ f(x) + p(x), where
p : X → [0,∞) is some function that equals zero on the feasible set and takes
larger values the ‘more’ the constraint inequality c(x) ≤ 0 is violated, e.g.,
for μ > 0.

pμ(x) =

{
0, if c(x) ≤ 0,

exp(c(x)/μ)− 1, if c(x) > 0.

The hope is that (a) the minimization of f + pμ over all of X is easy, and (b)
as μ → 0, minimizers of f + pμ converge to minimizers of f on the original
feasible set. The penalty function approach is attractive, but the choice of
penalty function is rather ad hoc, and issues can easily arise of competition
between the penalties corresponding to multiple constraints.

An alternative to the use of penalty functions is to construct constraining
functions that enforce the constraints exactly. That is, we seek a function C()

that takes as input a possibly infeasible x’ and returns some x_new = C(x’)

that is guaranteed to satisfy the constraint c(x_new) <= 0. For example,
suppose that X = R

n and the feasible set is the Euclidean unit ball, so the
constraint is

c(x) := ‖x‖22 − 1 ≤ 0.

Then a suitable constraining function could be

C(x) :=

{
x, if ‖x‖2 ≤ 1,

x/‖x‖2, if ‖x‖2 > 1.

Constraining functions are very attractive because the constraints are treated
exactly. However, they must often be designed on a case-by-case basis for each
constraint function c, and care must be taken to ensure that multiple con-
straining functions interact well and do not unduly favour parts of the feasible
set over others; for example, the above constraining function C maps the en-
tire infeasible set to the unit sphere, which might be considered undesirable
in certain settings, and so a function such as

C̃(x) :=

{
x, if ‖x‖2 ≤ 1,

x/‖x‖22, if ‖x‖2 > 1.

might be more appropriate. Finally, note that the original accept/reject
method of finding feasible states is a constraining function in this sense,
albeit a very inefficient one.
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4.4 Convex Optimization

The topic of this section is convex optimization. As will be seen, convexity is
a powerful property that makes optimization problems tractable to a much
greater extent than any amount of smoothness (which still permits local
minima) or low-dimensionality can do.

In this section, X will be a normed vector space. (More generally, the
properties that are of importance to the discussion hold for any Hausdorff,
locally convex topological vector space.) Given two points x0 and x1 of X
and t ∈ [0, 1], xt will denote the convex combination

xt := (1− t)x0 + tx1.

More generally, given points x0, . . . , xn of a vector space, a sum of the form

α0x0 + · · ·+ αnxn

is called a linear combination if the αi are any field elements, an affine com-
bination if their sum is 1, and a convex combination if they are non-negative
and sum to 1.

Definition 4.11. (a) A subset K ⊆ X is a convex set if, for all x0, x1 ∈ K
and t ∈ [0, 1], xt ∈ K; it is said to be strictly convex if xt ∈ K̊ whenever
x0 and x1 are distinct points of K̄ and t ∈ (0, 1).

(b) An extreme point of a convex setK is a point ofK that cannot be written
as a non-trivial convex combination of distinct elements of K; the set of
all extreme points of K is denoted ext(K).

(c) The convex hull co(S) (resp. closed convex hull co(S)) of S ⊆ X is defined
to be the intersection of all convex (resp. closed and convex) subsets of
X that contain S.

Example 4.12. (a) The square [−1, 1]2 is a convex subset of R2, but is not
strictly convex, and its extreme points are the four vertices (±1,±1).

(b) The closed unit disc {(x, y) ∈ R
2 | x2 + y2 ≤ 1} is a strictly convex

subset of R
2, and its extreme points are the points of the unit circle

{(x, y) ∈ R
2 | x2 + y2 = 1}.

(c) If p0, . . . , pd ∈ X are distinct points such that p1 − p0, . . . , pd − p0
are linearly independent, then their (closed) convex hull is called a
d-dimensional simplex. The points p0, . . . , pd are the extreme points of
the simplex.

(d) See Figure 4.1 for further examples.

Example 4.13. M1(X ) is a convex subset of the space of all (signed) Borel
measures on X . The extremal probability measures are the zero-one mea-
sures, i.e. those for which, for every measurable set E ⊆ X , μ(E) ∈ {0, 1}.
Furthermore, as will be discussed in Chapter 14, if X is, say, a Polish space,
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A convex set (grey) and its set of
extreme points (black).

A non-convex set (black) and its
convex hull (grey).

a b

Fig. 4.1: Convex sets, extreme points and convex hulls of some subsets of the
plane R

2.

then the zero-one measures (and hence the extremal probability measures)
on X are the Dirac point masses. Indeed, in this situation,

M1(X ) = co
({δx | x ∈ X}) ⊆ M±(X ).

The principal reason to confine attention to normed spaces1 X is that it
is highly inconvenient to have to work with spaces for which the following
‘common sense’ results do not hold:

Theorem 4.14 (Krĕın–Milman). Let K ⊆ X be compact and convex. Then
K is the closed convex hull of its extreme points.

Theorem 4.15 (Choquet–Bishop–de Leeuw). Let K ⊆ X be compact and
convex, and let c ∈ K. Then there exists a probability measure p supported
on ext(K) such that, for all affine functions f on K,

f(c) =

∫
ext(K)

f(e) dp(e).

The point c in Theorem 4.15 is called a barycentre of the set K, and the
probability measure p is said to represent the point c. Informally speaking, the
Krĕın–Milman and Choquet–Bishop–de Leeuw theorems together ensure that
a compact, convex subset K of a topologically respectable space is entirely
characterized by its set of extreme points in the following sense: every point
of K can be obtained as an average of extremal points of K, and, indeed, the
value of any affine function at any point of K can be obtained as an average
of its values at the extremal points in the same way.

1 Or, more generally, Hausdorff, locally convex, topological vector spaces.
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Definition 4.16. Let K ⊆ X be convex. A function f : K → R ∪ {±∞} is
a convex function if, for all x0, x1 ∈ K and t ∈ [0, 1],

f(xt) ≤ (1− t)f(x0) + tf(x1), (4.3)

and is called a strictly convex function if, for all distinct x0, x1 ∈ K and
t ∈ (0, 1),

f(xt) < (1− t)f(x0) + tf(x1).

The inequality (4.3) defining convexity can be seen as a special case —
with X ∼ μ supported on two points x0 and x1 — of the following result:

Theorem 4.17 (Jensen). Let (Θ,F , μ) be a probability space, let K ⊆ X
and f : K → R ∪ {±∞} be convex, and let X ∈ L1(Θ, μ;X ) take values in
K. Then

f
(
Eμ[X ]

) ≤ Eμ

[
f(X)

]
, (4.4)

where Eμ[X ] ∈ X is defined by the relation 〈� |Eμ[X ]〉 = Eμ[〈� |X〉] for every
� ∈ X ′. Furthermore, if f is strictly convex, then equality holds in (4.4) if
and only if X is μ-almost surely constant.

It is straightforward to see that f : K → R∪{±∞} is convex (resp. strictly
convex) if and only if its epigraph

epi(f) := {(x, v) ∈ K × R | v ≥ f(x)}

is a convex (resp. strictly convex) subset of K × R. Furthermore, twice-
differentiable convex functions are easily characterized in terms of their sec-
ond derivative (Hessian):

Theorem 4.18. Let f : K → R be twice continuously differentiable on an
open, convex set K. Then f is convex if and only if D2f(x) is positive semi-
definite for all x ∈ K. If D2f(x) is positive definite for all x ∈ K, then f is
strictly convex, though the converse is false.

Convex functions have many convenient properties with respect to mini-
mization and maximization:

Theorem 4.19. Let f : K → R be a convex function on a convex set K ⊆ X .
Then
(a) any local minimizer of f in K is also a global minimizer;
(b) the set argminK f of global minimizers of f in K is convex;
(c) if f is strictly convex, then it has at most one global minimizer in K;
(d) f has the same maximum values on K and ext(K).

Proof. (a) Suppose that x0 is a local minimizer of f in K that is not a
global minimizer: that is, suppose that x0 is a minimizer of f in some
open neighbourhood N of x0, and also that there exists x1 ∈ K \ N
such that f(x1) < f(x0). Then, for sufficiently small t > 0, xt ∈ N , but
convexity implies that
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f(xt) ≤ (1− t)f(x0) + tf(x1) < (1 − t)f(x0) + tf(x0) = f(x0),

which contradicts the assumption that x0 is a minimizer of f in N .
(b) Suppose that x0, x1 ∈ K are global minimizers of f . Then, for all t ∈

[0, 1], xt ∈ K and

f(x0) ≤ f(xt) ≤ (1 − t)f(x0) + tf(x1) = f(x0).

Hence, xt ∈ argminK f , and so argminK f is convex.
(c) Suppose that x0, x1 ∈ K are distinct global minimizers of f , and let

t ∈ (0, 1). Then xt ∈ K and

f(x0) ≤ f(xt) < (1 − t)f(x0) + tf(x1) = f(x0),

which is a contradiction. Hence, f has at most one minimizer in K.
(d) Suppose that c ∈ K \ ext(K) has f(c) > supext(K) f . By Theorem 4.15,

there exists a probability measure p on ext(K) such that, for all affine
functions � on K,

�(c) =

∫
ext(K)

�(x) dp(x).

i.e. c = EX∼p[X ]. Then Jensen’s inequality implies that

EX∼p

[
f(X)

] ≥ f(c) > sup
ext(K)

f,

which is a contradiction. Hence, since supK f ≥ supext(K) f , f must have
the same maximum value on ext(K) as it does on K. ��

Remark 4.20. Note well that Theorem 4.19 does not assert the existence of�
minimizers, which requires non-emptiness and compactness of K, and lower
semicontinuity of f . For example:
• the exponential function on R is strictly convex, continuous and bounded
below by 0 yet has no minimizer;

• the interval [−1, 1] is compact, and the function f : [−1, 1] → R ∪ {±∞}
defined by

f(x) :=

{
x, if |x| < 1

2 ,

+∞, if |x| ≥ 1
2 ,

is convex, yet f has no minimizer — although infx∈[−1,1] f(x) = − 1
2 ,

there is no x for which f(x) attains this infimal value.

Definition 4.21. A convex optimization problem (or convex program) is a
minimization problem in which the objective function and all constraints are
equalities or inequalities with respect to convex functions.

Remark 4.22. (a) Beware of the common pitfall of saying that a convex�
program is simply the minimization of a convex function over a convex



4.4 Convex Optimization 67

set. Of course, by Theorem 4.19, such minimization problems are nicer
than general minimization problems, but bona fide convex programs are
an even nicer special case.

(b) In practice, many problems are not obviously convex programs, but can
be transformed into convex programs by, e.g., a cunning change of vari-
ables. Being able to spot the right equivalent problem is a major part of
the art of optimization.

It is difficult to overstate the importance of convexity in making optimiza-
tion problems tractable. Indeed, it has been remarked that lack of convexity
is a much greater obstacle to tractability than high dimension. There are
many powerful methods for the solution of convex programs, with corre-
sponding standard software libraries such as cvxopt. For example, interior
point methods explore the interior of the feasible set in search of the solution
to the convex program, while being kept away from the boundary of the fea-
sible set by a barrier function. The discussion that follows is only intended
as an outline; for details, see Boyd and Vandenberghe (2004, Chapter 11).

Consider the convex program

minimize: f(x)

with respect to: x ∈ R
n

subject to: ci(x) ≤ 0 for i = 1, . . . ,m,

where the functions f, c1, . . . , cm : Rn → R are all convex and differentiable.
Let F denote the feasible set for this program. Let 0 < μ � 1 be a small
scalar, called the barrier parameter, and define the barrier function associated
to the program by

B(x;μ) := f(x)− μ
m∑
i=1

log ci(x).

Note thatB( · ;μ) is strictly convex for μ > 0, thatB(x;μ) → +∞ as x → ∂F ,
and that B( · ; 0) = f ; therefore, the unique minimizer x∗

μ of B( · ;μ) lies in F̊
and (hopefully) converges to the minimizer of the original problem as μ → 0.
Indeed, using arguments based on convex duality, one can show that

f(x∗
μ)− inf

x∈F
f(x) ≤ mμ.

The strictly convex problem of minimizing B( · ;μ) can be solved approxi-
mately using Newton’s method. In fact, however, one settles for a partial
minimization of B( · ;μ) using only one or two steps of Newton’s method,
then decreases μ to μ′, performs another partial minimization of B( · ;μ′)
using Newton’s method, and so on in this alternating fashion.

http://cvxopt.org/
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4.5 Linear Programming

Theorem 4.19 has the following immediate corollary for the minimization and
maximization of affine functions on convex sets:

Corollary 4.23. Let � : K → R be a continuous affine function on a non-
empty, compact, convex set K ⊆ X . Then

ext{�(x) | x ∈ K} = ext{�(x) | x ∈ ext(K)}.

That is, � has the same minimum and maximum values over both K and the
set of extreme points of K.

Definition 4.24. A linear program is an optimization problem of the form

extremize: f(x)

with respect to: x ∈ R
p

subject to: gi(x) ≤ 0 for i = 1, . . . , q,

where the functions f, g1, . . . , gq : R
p → R are all affine functions. Linear

programs are often written in the canonical form

maximize: c · x
with respect to: x ∈ R

n

subject to: Ax ≤ b

x ≥ 0,

where c ∈ R
n, A ∈ R

m×n and b ∈ R
m are given, and the two inequalities are

interpreted componentwise. (Conversion to canonical form, and in particular
the introduction of the non-negativity constraint x ≥ 0, is accomplished
by augmenting the original x ∈ R

p with additional variables called slack
variables to form the extended variable x ∈ R

n.)

Note that the feasible set for a linear program is an intersection of finitely
many half-spaces of Rn, i.e. a polytope. This polytope may be empty, in which
case the constraints are mutually contradictory and the program is said to
be infeasible. Also, the polytope may be unbounded in the direction of c, in
which case the extreme value of the problem is infinite.

Since linear programs are special cases of convex programs, methods such
as interior point methods are applicable to linear programs as well. Such
methods approach the optimum point x∗, which is necessarily an extremal
element of the feasible polytope, from the interior of the feasible poly-
tope. Historically, however, such methods were preceded by methods such
as Dantzig’s simplex algorithm, which sets out to directly explore the set of
extreme points in a (hopefully) efficient way. Although the theoretical worst-
case complexity of simplex method as formulated by Dantzig is exponential
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in n and m, in practice the simplex method is remarkably efficient (typically
having polynomial running time) provided that certain precautions are taken
to avoid pathologies such as ‘stalling’.

4.6 Least Squares

An elementary example of convex programming is unconstrained quadratic
minimization, otherwise known as least squares. Least squares minimization
plays a central role in elementary statistical estimation, as will be demon-
strated by the Gauss–Markov theorem (Theorem 6.2). The next three results
show that least squares problems have unique solutions, which are given in
terms of an orthogonality criterion, which in turn reduces to a system of
linear equations, the normal equations.

Lemma 4.25. Let K be a non-empty, closed, convex subset of a Hilbert space
H. Then, for each y ∈ H, there is a unique element x̂ = ΠKy ∈ K such that

x̂ ∈ argmin
x∈K

‖y − x‖.

Proof. By Exercise 4.1, the function J : X → [0,∞) defined by J(x) :=
‖y − x‖2 is strictly convex, and hence it has at most one minimizer in K.
Therefore, it only remains to show that J has at least one minimizer in
K. Since J is bounded below (on X , not just on K), J has a sequence of
approximate minimizers: let

I := inf
x∈K

‖y − x‖2, I2 ≤ ‖y − xn‖2 ≤ I2 + 1
n .

By the parallelogram identity for the Hilbert norm ‖ · ‖,
‖(y− xm) + (y− xn)‖2 + ‖(y− xm)− (y− xn)‖2 = 2‖y− xm‖2 +2‖y− xn‖2,
and hence

‖2y − (xm + xn)‖2 + ‖xn − xm‖2 ≤ 4I2 + 2
n + 2

m .

Since K is convex, 1
2 (xm + xn) ∈ K, so the first term on the left-hand side

above is bounded below as follows:

‖2y − (xm + xn)‖2 = 4

∥∥∥∥y − xm + xn

2

∥∥∥∥
2

≥ 4I2.

Hence,

‖xn − xm‖2 ≤ 4I2 + 2
n + 2

m − 4I2 = 2
n + 2

m ,

and so the sequence (xn)n∈N is Cauchy; since H is complete and K is closed,
this sequence converges to some x̂ ∈ K. Since the norm ‖ · ‖ is continuous,
‖y − x̂‖ = I. ��
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Lemma 4.26 (Orthogonality of the residual). Let V be a closed subspace of
a Hilbert space H and let b ∈ H. Then x̂ ∈ V minimizes the distance to b if
and only if the residual x̂− b is orthogonal to V , i.e.

x̂ = argmin
x∈V

‖x− b‖ ⇐⇒ (x̂− b) ⊥ V.

Proof. Let J(x) := 1
2‖x − b‖2, which has the same minimizers as x 
→

‖x− b‖; by Lemma 4.25, such a minimizer exists and is unique. Suppose that
(x− b) ⊥ V and let y ∈ V . Then y − x ∈ V and so (y − x) ⊥ (x− b). Hence,
by Pythagoras’ theorem,

‖y − b‖2 = ‖y − x‖2 + ‖x− b‖2 ≥ ‖x− b‖2,

and so x minimizes J .
Conversely, suppose that x minimizes J . Then, for every y ∈ V ,

0 =
∂

∂λ
J(x+ λy)

∣∣∣∣
λ=0

=
1

2
(〈y, x− b〉+ 〈x− b, y〉) = Re〈x− b, y〉

and, in the complex case,

0 =
∂

∂λ
J(x + λiy)

∣∣∣∣
λ=0

=
1

2
(−i〈y, x− b〉+ i〈x− b, y〉) = − Im〈x − b, y〉.

Hence, 〈x− b, y〉 = 0, and since y was arbitrary, (x− b) ⊥ V . ��
Lemma 4.27 (Normal equations). Let A : H → K be a linear operator
between Hilbert spaces such that ranA ⊆ K is closed. Then, given b ∈ K,

x̂ ∈ argmin
x∈H

‖Ax− b‖K ⇐⇒ A∗Ax̂ = A∗b, (4.5)

the equations on the right-hand side being known as the normal equations.
If, in addition, A is injective, then A∗A is invertible and the least squares
problem / normal equations have a unique solution.

Proof. As a consequence of completeness, the only element of a Hilbert space
that is orthogonal to every other element of the space is the zero element.
Hence,

‖Ax− b‖K is minimal

⇐⇒ (Ax − b) ⊥ Av for all v ∈ H by Lemma 4.26

⇐⇒ 〈Ax − b, Av〉K = 0 for all v ∈ H
⇐⇒ 〈A∗Ax−A∗b, v〉H = 0 for all v ∈ H
⇐⇒ A∗Ax = A∗b by completeness of H,

and this shows the equivalence (4.5).
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By Proposition 3.16(d), kerA∗ = (ranA)⊥. Therefore, the restriction of A∗

to the range of A is injective. Hence, if A itself is injective, then it follows that
A∗A is injective. Again by Proposition 3.16(d), (ranA∗)⊥ = kerA = {0}, and
since H is complete, this implies that A∗ is surjective. Since A is surjective
onto its range, it follows that A∗A is surjective, and hence bijective and
invertible. ��

Weighting and Regularization. It is common in practice that one does
not want to minimize the K-norm directly, but perhaps some re-weighted
version of the K-norm. This re-weighting is accomplished by a self-adjoint
and positive definite2 operator Q : K → K: we define a new inner product
and norm on K by

〈k, k′〉Q := 〈k,Qk′〉K,
‖k‖Q := 〈k, k〉1/2Q .

It is a standard fact that the self-adjoint operator Q possesses an operator
square root, i.e. a self-adjoint Q1/2 : K → K such that Q1/2Q1/2 = Q; for
reasons of symmetry, it is common to express the inner product and norm
induced by Q using this square root:

〈k, k′〉Q =
〈
Q1/2k,Q1/2k′

〉
K,

‖k‖Q =
∥∥Q1/2k

∥∥
K.

We then consider the problem, given b ∈ K, of finding x ∈ H to minimize

1

2
‖Ax− b‖2Q ≡ 1

2

∥∥Q1/2(Ax− b)
∥∥2
K.

Another situation that arises frequently in practice is that the normal
equations do not have a unique solution (e.g. because A∗A is not invertible)
and so it is necessary to select one by some means, or that one has some
prior belief that ‘the right solution’ should be close to some initial guess x0.
A technique that accomplishes both of these aims is Tikhonov regularization
(known in the statistics literature as ridge regression). In this situation, we
minimize the following sum of two quadratic functionals:

1

2
‖Ax− b‖2K +

1

2
‖x− x0‖2R,

where R : H → H is self-adjoint and positive definite, and x0 ∈ H.

2 If Q is not positive definite, but merely positive semi-definite and self-adjoint, then
existence of solutions to the associated least squares problems still holds, but uniqueness
can fail.
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These two modifications to ordinary least squares, weighting and regular-
ization, can be combined. The normal equations for weighted and regularized
least squares are easily derived from Lemma 4.27:

Theorem 4.28 (Normal equations for weighted and Tikhonov-regularized
least squares). Let H and K be Hilbert spaces, let A : H → K have closed
range, let Q and R be self-adjoint and positive definite on K and H respec-
tively, and let b ∈ K, x0 ∈ H. Let

J(x) :=
1

2
‖Ax− b‖2Q +

1

2
‖x− x0‖2R.

Then

x̂ ∈ argmin
x∈H

J(x) ⇐⇒ (A∗QA+R)x̂ = A∗Qb+Rx0.

Proof. Exercise 4.4. ��
It is also interesting to consider regularizations that do not come from a

Hilbert norm, but instead from some other function. As will be elaborated
upon in Chapter 6, there is a strong connection between regularized opti-
mization problems and inverse problems, and the choice of regularization in
some sense describes the practitioner’s ‘prior beliefs’ about the structure of
the solution.

Nonlinear Least Squares and Gauss–Newton Iteration. It often occurs
in practice that one wishes to find a vector of parameters θ ∈ R

p such that a
function R

k 	 x 
→ f(x; θ) ∈ R
� best fits a collection of data points {(xi, yi) ∈

R
k × R

� | i = 1, . . . ,m}. For each candidate parameter vector θ, define the
residual vector

r(θ) :=

⎡
⎢⎢⎣
r1(θ)
...

rm(θ)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
y1 − f(x1; θ)

...

ym − f(xm; θ)

⎤
⎥⎥⎦ ∈ R

m.

The aim is to find θ to minimize the objective function J(θ) := ‖r(θ)‖22. Let

A :=

⎡
⎢⎢⎣

∂r1(θ)
∂θ1 · · · ∂r1(θ)

∂θp

...
. . .

...
∂rm(θ)
∂θ1 · · · ∂rm(θ)

∂θp

⎤
⎥⎥⎦

∣∣∣∣∣∣∣∣
θ=θn

∈ R
m×p

be the Jacobian matrix of the residual vector, and note that A = −DF (θn),
where

F (θ) :=

⎡
⎢⎢⎣
f(x1; θ)

...

f(xm; θ)

⎤
⎥⎥⎦ ∈ R

m.
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Consider the first-order Taylor approximation

r(θ) ≈ r(θn) +A(r(θ) − r(θn)).

Thus, to approximately minimize ‖r(θ)‖2, we find δ := r(θ) − r(θn) that
makes the right-hand side of the approximation equal to zero. This is an
ordinary linear least squares problem, the solution of which is given by the
normal equations as

δ = (A∗A)−1A∗r(θn).

Thus, we obtain the Gauss–Newton iteration for a sequence (θn)n∈N of app-
roximate minimizers of J :

θn+1 := θn − (A∗A)−1A∗r(θn)

= θn +
(
(DF (θn))

∗(DF (θn))
)−1

(DF (θn))
∗r(θn).

In general, the Gauss–Newton iteration is not guaranteed to converge to
the exact solution, particularly if δ is ‘too large’, in which case it may be
appropriate to use a judiciously chosen small positive multiple of δ. The
use of Tikhonov regularization in this context is known as the Levenberg–
Marquardt algorithm or trust region method, and the small multiplier applied
to δ is essentially the reciprocal of the Tikhonov regularization parameter.

4.7 Bibliography

The book of Boyd and Vandenberghe (2004) is an excellent reference on
the theory and practice of convex optimization, as is the associated software
library cvxopt. The classic reference for convex analysis in general is the
monograph of Rockafellar (1997); a more recent text is that of Krantz (2015).
A good short reference on Choquet theory is the book of Phelps (2001); in
particular, Theorems 4.14 and 4.15 are due to Krein and Milman (1940) and
Bishop and de Leeuw (1959) respectively. A standard reference on numerical
methods for optimization is the book of Nocedal and Wright (2006). The
Banach space version of the Lagrange multiplier theorem, Theorem 4.9, can
be found in Zeidler (1995, Section 4.14). Theorem 4.10 originates with Karush
(1939) and Kuhn and Tucker (1951); see, e.g., Gould and Tolle (1975) for
discussion of the infinite-dimensional version.

For constrained global optimization in the absence of ‘nice’ features, par-
ticularly for the UQ methods in Chapter 14, variations upon the genetic
evolution approach, e.g. the differential evolution algorithm (Price et al.,
2005; Storn and Price, 1997), have proved up to the task of producing robust
results, if not always quick ones. There is no ‘one size fits all’ approach to
constrained global optimization: it is basically impossible to be quick, robust,
and general all at the same time.

http://cvxopt.org/
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In practice, it is very useful to work using an optimization framework that
provides easy interfaces to many optimization methods, with easy interchange
among strategies for population generation, enforcement of constraints, ter-
mination criteria, and so on: see, for example, the DAKOTA (Adams et al.,
2014) and Mystic (McKerns et al., 2009, 2011) projects.

4.8 Exercises

Exercise 4.1. Let ‖ · ‖ be a norm on a vector space V , and fix x̄ ∈ V . Show
that the function J : V → [0,∞) defined by J(x) := ‖x − x̄‖ is convex, and
that J(x) := 1

2‖x− x̄‖2 is strictly convex if the norm is induced by an inner
product. Give an example of a norm for which J(x) := 1

2‖x − x̄‖2 is not
strictly convex.

Exercise 4.2. LetK be a non-empty, closed, convex subset of a Hilbert space
H. Lemma 4.25 shows that there is a well-defined function ΠK : H → K that
assigns to each y ∈ H the unique ΠKy ∈ K that is closest to y with respect
to the norm on H.
(a) Prove the variational inequality that x = ΠKy if and only if x ∈ K and

〈x, z − x〉 ≥ 〈y, z − x〉 for all z ∈ K.

(b) Prove that ΠK is non-expansive, i.e.

‖ΠKy1 −ΠKy2‖ ≤ ‖y1 − y2‖ for all y1, y2 ∈ H,

and hence a continuous function.

Exercise 4.3. Let A : H → K be a linear operator between Hilbert spaces
such that ranA is a closed subspace of K, let Q : K → K be self-adjoint and
positive-definite, and let b ∈ K. Let

J(x) :=
1

2
‖Ax− b‖2Q

Calculate the gradient and Hessian (second derivative) of J . Hence show
that, regardless of the initial condition x0 ∈ H, Newton’s method finds the
minimum of J in one step.

Exercise 4.4. Prove Theorem 4.28. Hint: Consider the operator from H into
K ⊕ L given by

x 
→
[
Q1/2Ax

R1/2x

]
.
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