
Chapter 3

Banach and Hilbert Spaces

Dr. von Neumann, ich möchte gern wissen,
was ist dann eigentlich ein Hilbertscher
Raum?

David Hilbert

This chapter covers the necessary concepts from linear functional analysis
on Hilbert and Banach spaces: in particular, we review here basic construc-
tions such as orthogonality, direct sums and tensor products. Like Chapter 2,
this chapter is intended as a review of material that should be understood as
a prerequisite before proceeding; to an extent, Chapters 2 and 3 are interde-
pendent and so can (and should) be read in parallel with one another.

3.1 Basic Definitions and Properties

In what follows, K will denote either the real numbers R or the complex
numbers C, and | · | denotes the absolute value function on K. All the vector
spaces considered in this book will be vector spaces over one of these two
fields. In K, notions of ‘size’ and ‘closeness’ are provided by the absolute
value function | · |. In a normed vector space, similar notions of ‘size’ and
‘closeness’ are provided by a function called a norm, from which we can build
up notions of convergence, continuity, limits and so on.

Definition 3.1. A norm on a vector space V overK is a function ‖ · ‖ : V → R

that is
(a) positive semi-definite: for all x ∈ V , ‖x‖ ≥ 0;
(b) positive definite: for all x ∈ V , ‖x‖ = 0 if and only if x = 0;
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36 3 Banach and Hilbert Spaces

(c) positively homogeneous : for all x ∈ V and α ∈ K, ‖αx‖ = |α|‖x‖; and
(d) sublinear : for all x, y ∈ V , ‖x+ y‖ ≤ ‖x‖+ ‖y‖.
If the positive definiteness requirement is omitted, then ‖ · ‖ is said to be a
seminorm. A vector space equipped with a norm (resp. seminorm) is called
a normed space (resp. seminormed space).

In a normed vector space, we can sensibly talk about the ‘size’ or ‘length’
of a single vector, but there is no sensible notion of ‘angle’ between two
vectors, and in particular there is no notion of orthogonality. Such notions
are provided by an inner product:

Definition 3.2. An inner product on a vector space V over K is a function
〈 · , · 〉 : V × V → K that is
(a) positive semi-definite: for all x ∈ V , 〈x, x〉 ≥ 0;
(b) positive definite: for all x ∈ V , 〈x, x〉 = 0 if and only if x = 0;
(c) conjugate symmetric: for all x, y ∈ V , 〈x, y〉 = 〈y, x〉; and
(d) sesquilinear : for all x, y, z ∈ V and all α, β ∈ K, 〈x, αy+ βz〉 = α〈x, y〉+

β〈x, z〉.
A vector space equipped with an inner product is called an inner product
space. In the case K = R, conjugate symmetry becomes symmetry, and
sesquilinearity becomes bilinearity.

Many texts have sesquilinear forms be linear in the first argument, rather
than the second as is done here; this is an entirely cosmetic difference that
has no serious consequences, provided that one makes a consistent choice and
sticks with it.

It is easily verified that every inner product space is a normed space under
the induced norm

‖x‖ :=
√
〈x, x〉.

The inner product and norm satisfy the Cauchy–Schwarz inequality

|〈x, y〉| ≤ ‖x‖‖y‖ for all x, y ∈ V , (3.1)

where equality holds in (3.1) if and only if x and y are scalar multiples of one
another. Every norm on V that is induced by an inner product satisfies the
parallelogram identity

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2 for all x, y ∈ V . (3.2)

In the opposite direction, if ‖ · ‖ is a norm on V that satisfies the parallelogram
identity (3.2), then the unique inner product 〈 · , · 〉 that induces this norm is
found by the polarization identity

〈x, y〉 = ‖x+ y‖2 − ‖x− y‖2
4

(3.3)
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in the real case, and

〈x, y〉 = ‖x+ y‖2 − ‖x− y‖2
4

+ i
‖ix− y‖2 − ‖ix+ y‖2

4
(3.4)

in the complex case.
The simplest examples of normed and inner product spaces are the familiar

finite-dimensional Euclidean spaces:

Example 3.3. Here are some finite-dimensional examples of norms on K
n:

(a) The absolute value function | · | is a norm on K.
(b) The most familiar example of a norm is probably the Euclidean norm or

2-norm on K
n. The Euclidean norm of v = (v1, . . . , vn) ∈ K

n is given by

‖v‖2 :=
√√√
√

n∑

i=1

|vi|2 =

√√√
√

n∑

i=1

|v · ei|2. (3.5)

The Euclidean norm is the induced norm for the inner product

〈u, v〉 :=
n∑

i=1

uivi. (3.6)

In the case K = R this inner product is commonly called the dot product
and denoted u · v.

(c) The analogous inner product and norm on K
m×n of m × n matrices is

the Frobenius inner product

〈A,B〉 ≡ A : B :=
∑

i=1,...,m
j=1,...,n

aijbij .

(d) The 1-norm, also known as the Manhattan norm or taxicab norm, on K
n

is defined by

‖v‖1 :=
n∑

i=1

|vi|. (3.7)

(e) More generally, for 1 ≤ p < ∞, the p-norm on K
n is defined by

‖v‖p :=

(
n∑

i=1

|vi|p
)1/p

. (3.8)

(f) Note, however, that the formula in (3.8) does not define a norm on K
n

if p < 1.
(g) The analogous norm for p = ∞ is the ∞-norm or maximum norm on K

n:

‖v‖∞ := max
i=1,...,n

|vi|. (3.9)
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There are also many straightforward examples of infinite-dimensional
normed spaces. In UQ applications, these spaces often arise as the solution
spaces for ordinary or partial differential equations, spaces of random vari-
ables, or spaces for sequences of coefficients of expansions of random fields
and stochastic processes.

Example 3.4. (a) An obvious norm to define for a sequence v = (vn)n∈N

is the analogue of the maximum norm. That is, define the supremum
norm by

‖v‖∞ := sup
n∈N

|vn|. (3.10)

Clearly, if v is not a bounded sequence, then ‖v‖∞ = ∞. Since norms
are not allowed to take the value ∞, the supremum norm is only a norm
on the space of bounded sequences ; this space is often denoted �∞, or
sometimes �∞(K) if we wish to emphasize the field of scalars, or B(N;K)
if we want to emphasize that it is a space of bounded functions on some
set, in this case N.

(b) Similarly, for 1 ≤ p < ∞, the p-norm of a sequence is defined by

‖v‖p :=

(
∑

n∈N

|vn|p
)1/p

. (3.11)

The space of sequences for which this norm is finite is the space of p-
summable sequences, which is often denoted �p(K) or just �p. The state-
ment from elementary analysis courses that

∑∞
n=1

1
n (the harmonic series)

diverges but that
∑∞

n=1
1
n2 converges is the statement that

(
1, 12 ,

1
3 , . . .

) ∈ �2 but
(
1, 12 ,

1
3 , . . .

)
/∈ �1.

(c) If S is any set, and B(S;K) denotes the vector space of all bounded K-
valued functions on S, then a norm on B(S;K) is the supremum norm
(or uniform norm) defined by

‖f‖∞ := sup
x∈S

|f(x)|.

(d) Since every continuous function on a closed and bounded interval is
bounded, the supremum norm is also a norm on the space C0([0, 1];R) of
continuous real-valued functions on the unit interval.

There is a natural norm to use for linear functions between two normed
spaces:

Definition 3.5. Given normed spaces V and W , the operator norm of a
linear map A : V → W is

‖A‖ := sup
0�=v∈V

‖A(v)‖W
‖v‖V ≡ sup

v∈V
‖v‖V=1

‖A(v)‖W ≡ sup
v∈V

‖v‖V≤1

‖A(v)‖W .
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If ‖A‖ is finite, then A is called a bounded linear operator. The operator norm
of A will also be denoted ‖A‖op or ‖A‖V→W . There are many equivalent
expressions for this norm: see Exercise 3.1.

Definition 3.6. Two inner product spaces (V , 〈 · , · 〉V) and (W , 〈 · , · 〉W)
are said to be isometrically isomorphic if there is an invertible linear map
T : V → W such that

〈Tu, T v〉W = 〈u, v〉V for all u, v ∈ V .

The two inner product spaces are then ‘the same up to relabelling’. Similarly,
two normed spaces are isometrically isomorphic if there is an invertible linear
map that preserves the norm.

Finally, normed spaces are examples of topological spaces, in that the norm
structure induces a collection of open sets and (as will be revisited in the next
section) a notion of convergence:

Definition 3.7. Let V be a normed space:
(a) For x ∈ V and r > 0, the open ball of radius r centred on x is

Br(x) := {y ∈ V | ‖x− y‖ < r} (3.12)

and the closed ball of radius r centred on x is

Br(x) := {y ∈ V | ‖x− y‖ ≤ r}. (3.13)

(b) A subset U ⊆ V is called an open set if, for all x ∈ A, there exists
r = r(x) > 0 such that Br(x) ⊆ U .

(c) A subset F ⊆ V is called a closed set if V \ F is an open set.

3.2 Banach and Hilbert Spaces

For the purposes of analysis, rather than pure algebra, it is convenient if
normed spaces are complete in the same way that R is complete and Q is
not:

Definition 3.8. Let (V , ‖ · ‖) be a normed space.
(a) A sequence (xn)n∈N in V converges to x ∈ V if, for every ε > 0, there

exists N ∈ N such that, whenever n ≥ N , ‖xn − x‖ < ε.
(b) A sequence (xn)n∈N in V is called Cauchy if, for every ε > 0, there exists

N ∈ N such that, whenever m,n ≥ N , ‖xm − xn‖ < ε.
(c) A complete space is one in which each Cauchy sequence in V converges

to some element of V . Complete normed spaces are called Banach spaces,
and complete inner product spaces are called Hilbert spaces.
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It is easily verified that a subset F of a normed space is closed (in the
topological sense of being the complement of an open set) if and only if it is
closed under the operation of taking limits of sequences (i.e. every convergent
sequence in F has its limit also in F ), and that closed linear subspaces of
Banach (resp. Hilbert) spaces are again Banach (resp. Hilbert) spaces.

Example 3.9. (a) K
n and K

m×n are finite-dimensional Hilbert spaces with
respect to their usual inner products.

(b) The standard example of an infinite-dimensional Hilbert space is the
space �2(K) of square-summable K-valued sequences, which is a Hilbert
space with respect to the inner product

〈x, y〉�2 :=
∑

n∈N

xnyn.

This space is the prototypical example of a separable Hilbert space, i.e.
it has a countably infinite dense subset, and hence countably infinite
dimension.

(c) On the other hand, the subspace of �2 consisting of all sequences with
only finitely many non-zero terms is a non-closed subspace of �2, and not
a Hilbert space. Of course, if the non-zero terms are restricted to lie in a
predetermined finite range of indices, say {1, . . . , n}, then the subspace
is an isomorphic copy of the Hilbert space K

n.
(d) Given a measure space (X ,F , μ), the space L2(X , μ;K) of (equivalence

classes modulo equality μ-almost everywhere of) square-integrable func-
tions from X to K is a Hilbert space with respect to the inner product

〈f, g〉L2(μ) :=

∫

X
f(x)g(x) dμ(x). (3.14)

Note that it is necessary to take the quotient by the equivalence relation
of equality μ-almost everywhere since a function f that vanishes on a set
of full measure but is non-zero on a set of zero measure is not the zero
function but nonetheless has ‖f‖L2(μ) = 0. When (X ,F , μ) is a proba-
bility space, elements of L2(X , μ;K) are thought of as random variables
of finite variance, and the L2 inner product is the covariance:

〈X,Y 〉L2(μ) := Eμ

[
XY

]
= cov(X,Y ).

When L2(X , μ;K) is a separable space, it is isometrically isomorphic to
�2(K) (see Theorem 3.24).

(e) Indeed, Hilbert spaces over a fixed field K are classified by their dim-
ension: whenever H and K are Hilbert spaces of the same dimension over
K, there is an invertible K-linear map T : H → K such that 〈Tx, T y〉K =
〈x, y〉H for all x, y ∈ H.
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Example 3.10. (a) For a compact topological space X , the space C0(X ;K)
of continuous functions f : X → K is a Banach space with respect to the
supremum norm

‖f‖∞ := sup
x∈X

|f(x)|. (3.15)

For non-compact X , the supremum norm is only a bona fide norm if
we restrict attention to bounded continuous functions, since otherwise it
would take the inadmissible value +∞.

(b) More generally, if X is the compact closure of an open subset of a Banach
space V , and r ∈ N0, then the space Cr(X ;K) of all r-times continuously
differentiable functions from X to K is a Banach space with respect to
the norm

‖f‖Cr :=
r∑

k=0

∥
∥Dkf

∥
∥
∞.

Here, Df(x) : V → K denotes the first-order Fréchet derivative of f at x,
the unique bounded linear map such that

lim
y→x
in X

|f(y)− f(x)−Df(x)(y − x)|
‖y − x‖ = 0,

D2f(x) = D(Df)(x) : V×V → K denotes the second-order Fréchet deriva-
tive, etc.

(c) For 1 ≤ p ≤ ∞, the spaces Lp(X , μ;K) from Definition 2.21 are Banach
spaces, but only the L2 spaces are Hilbert spaces. As special cases (X =
N, and μ = counting measure), the sequence spaces �p are also Banach
spaces, and are Hilbert if and only if p = 2.

Another family of Banach spaces that arises very often in PDE appli-
cations is the family of Sobolev spaces. For the sake of brevity, we limit
the discussion to those Sobolev spaces that are also Hilbert spaces. To
save space, we use multi-index notation for derivatives: for a multi-index
α := (α1, . . . , αn) ∈ N

n
0 , with |α| := α1 + · · ·+ αn,

∂αu(x) :=
∂|α|u

∂α1x1 . . . ∂αnxn
(x).

Sobolev spaces consist of functions1 that have appropriately integrable weak
derivatives, as defined by integrating by parts against smooth test functions:

1 To be more precise, as with the Lebesgue Lp spaces, Sobolev spaces consist of equivalence
classes of such functions, with equivalence being equality almost everywhere.
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Definition 3.11. Let X ⊆ R
n, let α ∈ N

n
0 , and consider u : X → R. A weak

derivative of order α for u is a function v : X → R such that

∫

X
u(x)∂αφ(x) dx = (−1)|α|

∫

X
v(x)φ(x) dx (3.16)

for every smooth function φ : X → R that vanishes outside a compact subset
supp(φ) ⊆ X . Such a weak derivative is usually denoted ∂αu as if it were a
strong derivative, and indeed coincides with the classical (strong) derivative
if the latter exists. For s ∈ N0, the Sobolev space Hs(X ) is

Hs(X ) :=

{
u ∈ L2(X )

∣∣
∣
∣

for all α ∈ N
n
0 with |α| ≤ s,

u has a weak derivative ∂αu ∈ L2(X )

}
(3.17)

with the inner product

〈u, v〉Hs :=
∑

|α|≤s

〈∂αu, ∂αv〉L2 . (3.18)

The following result shows that smoothness in the Sobolev sense implies
either a greater degree of integrability or even Hölder continuity. In partic-
ular, possibly after modification on sets of Lebesgue measure zero, Sobolev
functions in Hs are continuous when s > n/2. Thus, such functions can be
considered to have well-defined pointwise values.

Theorem 3.12 (Sobolev embedding theorem). Let X ⊆ R
n be a Lips-

chitz domain (i.e. a connected set with non-empty interior, such that ∂X
can always be locally written as the graph of a Lipschitz function of n − 1
variables).
(a) If s < n/2, then Hs(X ) ⊆ Lq(X ), where 1

q = 1
2 − s

n , and there is a

constant C = C(s, n,X ) such that

‖u‖Lq(X ) ≤ C‖u‖Hs(X ) for all u ∈ Hs(X ).

(b) If s > n/2, then Hs(X ) ⊆ Cs−�n/2	−1,γ(X ), where

γ =

{
�n/2+ 1− n/2, if n is odd,

any element of (0, 1), if n is even,

and there is a constant C = C(s, n, γ,X ) such that

‖u‖Cs−�n/2�−1,γ(X ) ≤ C‖u‖Hs(X ) for all u ∈ Hs(X ),

where the Hölder norm is defined (up to equivalence) by

‖u‖Ck,γ(X ) := ‖u‖Ck + sup
x,y∈X
x �=y

∣
∣Dku(x)−Dku(y)

∣
∣

|x− y| .
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3.3 Dual Spaces and Adjoints

Dual Spaces. Many interesting properties of a vector space are encoded
in a second vector space whose elements are the linear functions from the
first space to its field. When the vector space is a normed space,2 so that
concepts like continuity are defined, it makes sense to study continuous linear
functions:

Definition 3.13. The continuous dual space of a normed space V over K is
the vector space V ′ of all bounded (equivalently, continuous) linear functionals
� : V → K. The dual pairing between an element � ∈ V ′ and an element v ∈ V
is denoted 〈� | v〉 or simply �(v). For a linear functional � on a seminormed
space V , being continuous is equivalent to being bounded in the sense that
its operator norm (or dual norm)

‖�‖′ := sup
0�=v∈V

|〈� | v〉|
‖v‖ ≡ sup

v∈V
‖v‖=1

|〈� | v〉| ≡ sup
v∈V

‖v‖≤1

|〈� | v〉|

is finite.

Proposition 3.14. For every normed space V, the dual space V ′ is a Banach
space with respect to ‖ · ‖′.

An important property of Hilbert spaces is that they are naturally self-
dual : every continuous linear functional on a Hilbert space can be naturally
identified with the action of taking the inner product with some element of
the space:

Theorem 3.15 (Riesz representation theorem). Let H be a Hilbert space.
For every continuous linear functional f ∈ H′, there exists f � ∈ H such that
〈f |x〉 = 〈f �, x〉 for all x ∈ H. Furthermore, the map f �→ f � is an isometric
isomorphism between H and its dual.

The simplicity of the Riesz representation theorem for duals of Hilbert
spaces stands in stark contrast to the duals of even elementary Banach spaces,
which are identified on a more case-by-case basis:
• For 1 < p < ∞, Lp(X , μ) is isometrically isomorphic to the dual of
Lq(X , μ), where 1

p + 1
q = 1. This result applies to the sequence space �p,

and indeed to the finite-dimensional Banach spaces Rn and C
n with the

norm ‖x‖p :=
(∑n

i=1 |xi|p
)1/p

.
• By the Riesz–Markov–Kakutani representation theorem, the dual of the
Banach space Cc(X ) of compactly supported continuous functions on a
locally compact Hausdorff space X is isomorphic to the space of regular
signed measures on X .

2 Or even just a topological vector space.
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The second example stands as another piece of motivation for measure theory
in general and signed measures in particular. Readers interested in the details
of these constructions should refer to a specialist text on functional analysis.

Adjoint Maps. Given a linear map A : V → W between normed spaces V
and W , the adjoint of A is the linear map A∗ : W ′ → V ′ defined by

〈A∗� | v〉 = 〈� |Av〉 for all v ∈ V and � ∈ W ′.

The following properties of adjoint maps are fundamental:

Proposition 3.16. Let U , V and W be normed spaces, let A,B : V → W
and C : U → V be bounded linear maps, and let α and β be scalars. Then
(a) A∗ : W ′ → V ′ is bounded, with operator norm ‖A∗‖ = ‖A‖;
(b) (αA + βB)∗ = αA∗ + βB∗;
(c) (AC)∗ = C∗A∗;
(d) the kernel and range of A and A∗ satisfy

kerA∗ = (ranA)⊥ := {� ∈ W ′ | 〈� |Av〉 = 0 for all v ∈ V}
(kerA∗)⊥ = ranA.

When considering a linear map A : H → K between Hilbert spaces H and
K, we can appeal to the Riesz representation theorem to identify H′ with H,
K′ with K, and hence define the adjoint in terms of inner products:

〈A∗k, h〉H = 〈k,Ah〉K for all h ∈ H and k ∈ K.

With this simplification, we can add to Proposition 3.16 the additional prop-
erties that A∗∗ = A and ‖A∗A‖ = ‖AA∗‖ = ‖A‖2. Also, in the Hilbert
space setting, a linear map A : H → H is said to be self-adjoint if A = A∗.
A self-adjoint map A is said to be positive semi-definite if

inf
x∈H
x �=0

〈x,Ax〉
‖x‖2 ≥ 0,

and positive definite if this inequality is strict.
Given a basis {ei}i∈I of H, the corresponding dual basis {ei}i∈I of H

is defined by the relation 〈ei, ej〉H = δij . The matrix of A with respect to
bases {ei}i∈I of H and {fj}j∈J of K and the matrix of A∗ with respect to
the corresponding dual bases are very simply related: the one is the conju-
gate transpose of the other, and so by abuse of terminology the conjugate
transpose of a matrix is often referred to as the adjoint.

Thus, self-adjoint bounded linear maps are the appropriate generalization
to Hilbert spaces of symmetric matrices over R or Hermitian matrices over
C. They are also particularly useful in probability because the covariance
operator of an H-valued random variable is a self-adjoint (and indeed positive
semi-definite) bounded linear operator on H.
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3.4 Orthogonality and Direct Sums

Orthogonal decompositions of Hilbert spaces will be fundamental tools in
many of the methods considered later on.

Definition 3.17. A subset E of an inner product space V is said to be
orthogonal if 〈x, y〉 = 0 for all distinct elements x, y ∈ E; it is said to be
orthonormal if

〈x, y〉 =
{
1, if x = y ∈ E,

0, if x, y ∈ E and x �= y.

Lemma 3.18 (Gram–Schmidt). Let (xn)n∈N be any sequence in an inner
product space V, with the first d ∈ N0 ∪ {∞} terms linearly independent.
Inductively define (un)n∈N and (en)n∈N by

un := xn −
n−1∑

k=1

〈xn, uk〉
‖uk‖2

uk,

en :=
un

‖un‖
Then (un)n∈N (resp. (en)n∈N) is a sequence of d orthogonal (resp. orthonor-
mal) elements of V, followed by zeros if d < ∞.

Definition 3.19. The orthogonal complement E⊥ of a subset E of an inner
product space V is

E⊥ := {y ∈ V | for all x ∈ E, 〈y, x〉 = 0}.

The orthogonal complement of E ⊆ V is always a closed linear subspace
of V , and hence if V = H is a Hilbert space, then E⊥ is also a Hilbert space
in its own right.

Theorem 3.20. Let K be a closed subspace of a Hilbert space H. Then, for
any x ∈ H, there is a unique ΠKx ∈ K that is closest to x in the sense that

‖ΠKx− x‖ = inf
y∈K

‖y − x‖.

Furthermore, x can be written uniquely as x = ΠKx + z, where z ∈ K⊥.
Hence, H decomposes as the orthogonal direct sum

H = K ⊥⊕ K⊥.

Theorem 3.20 can be seen as a special case of closest-point approxima-
tion among convex sets: see Lemma 4.25 and Exercise 4.2. The operator
ΠK : H → K is called the orthogonal projection onto K.
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Theorem 3.21. Let K be a closed subspace of a Hilbert space H. The cor-
responding orthogonal projection operator ΠK is
(a) a continuous linear operator of norm at most 1;
(b) with I −ΠK = ΠK⊥ ;
and satisfies, for every x ∈ H,
(c) ‖x‖2 = ‖ΠKx‖2 + ‖(I −ΠK)x‖2;
(d) ΠKx = x ⇐⇒ x ∈ K;
(e) ΠKx = 0 ⇐⇒ x ∈ K⊥.

Example 3.22 (Conditional expectation). An important probabilistic app-
lication of orthogonal projection is the operation of conditioning a random
variable. Let (Θ,F , μ) be a probability space and let X ∈ L2(Θ,F , μ;K)
be a square-integrable random variable. If G ⊆ F is a σ-algebra, then the
conditional expectation ofX with respect to G , usually denoted E[X |G ], is the
orthogonal projection of X onto the subspace L2(Θ,G , μ;K). In elementary
contexts, G is usually taken to be the σ-algebra generated by a single event
E of positive μ-probability, i.e.

G = {∅, [X ∈ E], [X /∈ E], Θ};

or even the trivial σ-algebra {∅, Θ}, for which the only measurable functions
are the constant functions, and hence the conditional expectation coincides
with the usual expectation. The orthogonal projection point of view makes
two important properties of conditional expectation intuitively obvious:
(a) Whenever G1 ⊆ G2 ⊆ F , L2(Θ,G1, μ;K) is a subspace of L2(Θ,G2, μ;K)

and composition of the orthogonal projections onto these subspace yields
the tower rule for conditional expectations:

E[X |G1] = E
[
E[X |G2]

∣
∣G1

]
,

and, in particular, taking G1 to be the trivial σ-algebra {∅, Θ},

E[X ] = E[E[X |G2]].

(b) Whenever X,Y ∈ L2(Θ,F , μ;K) and X is, in fact, G -measurable,

E[XY |G ] = XE[Y |G ].

Direct Sums. Suppose that V and W are vector spaces over a common field
K. The Cartesian product V×W can be given the structure of a vector space
over K by defining the operations componentwise:

(v, w) + (v′, w′) := (v + v′, w + w′),
α(v, w) := (αv, αw),
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for all v, v′ ∈ V , w,w′ ∈ W , and α ∈ K. The resulting vector space is called
the (algebraic) direct sum of V and W and is usually denoted by V ⊕ W ,
while elements of V ⊕W are usually denoted by v ⊕ w instead of (v, w).

If {ei|i ∈ I} is a basis of V and {ej |j ∈ J} is a basis of W , then {ek | k ∈
K := I � J} is basis of V ⊕ W . Hence, the dimension of V ⊕ W over K is
equal to the sum of the dimensions of V and W .

When H and K are Hilbert spaces, their (algebraic) direct sum H⊕K can
be given a Hilbert space structure by defining

〈h⊕ k, h′ ⊕ k′〉H⊕K := 〈h, h′〉H + 〈k, k′〉K
for all h, h′ ∈ H and k, k′ ∈ K. The original spaces H and K embed into
H ⊕ K as the subspaces H ⊕ {0} and {0} ⊕ K respectively, and these two
subspaces are mutually orthogonal. For this reason, the orthogonality of the
two summands in a Hilbert direct sum is sometimes emphasized by the not-

ation H ⊥⊕ K. The Hilbert space projection theorem (Theorem 3.20) was
the statement that whenever K is a closed subspace of a Hilbert space H,

H = K ⊥⊕ K⊥.
It is necessary to be a bit more careful in defining the direct sum of count-

ably many Hilbert spaces. Let Hn be a Hilbert space over K for each n ∈ N.
Then the Hilbert space direct sum H :=

⊕
n∈N

Hn is defined to be

H :=

{
x = (xn)n∈N

∣
∣
∣
∣

xn ∈ Hn for each n ∈ N, and
xn = 0 for all but finitely many n

}
,

where the completion3 is taken with respect to the inner product

〈x, y〉H :=
∑

n∈N

〈xn, yn〉Hn ,

which is always a finite sum when applied to elements of the generating
set. This construction ensures that every element x of H has finite norm
‖x‖2H =

∑
n∈N

‖xn‖2Hn
. As before, each of the summands Hn is a subspace

of H that is orthogonal to all the others.
Orthogonal direct sums and orthogonal bases are among the most impor-

tant constructions in Hilbert space theory, and will be very useful in what
follows. Prototypical examples include the standard ‘Euclidean’ basis of �2

and the Fourier basis {en | n ∈ Z} of L2(S1;C), where

en(x) :=
1

2π
exp(inx).

3 Completions of normed spaces are formed in the same way as the completion of Q to form
R: the completion is the space of equivalence classes of Cauchy sequences, with sequences
whose difference tends to zero in norm being regarded as equivalent.
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Indeed, Fourier’s claim4 that any periodic function f could be written as

f(x) =
∑

n∈Z

f̂nen(x),

f̂n :=

∫

S1

f(y)en(y) dy,

can be seen as one of the historical drivers behind the development of much
of analysis. For the purposes of this book’s treatment of UQ, key examples
of an orthogonal bases are given by orthogonal polynomials, which will be
considered at length in Chapter 8.

Some important results about orthogonal systems are summarized below;
classically, many of these results arose in the study of Fourier series, but hold
for any orthonormal basis of a general Hilbert space.

Lemma 3.23 (Bessel’s inequality). Let V be an inner product space and
(en)n∈N an orthonormal sequence in V. Then, for any x ∈ V, the series∑

n∈N
|〈en, x〉|2 converges and satisfies

∑

n∈N

|〈en, x〉|2 ≤ ‖x‖2. (3.19)

Theorem 3.24 (Parseval identity). Let (en)n∈N be an orthonormal sequence
in a Hilbert space H, and let (αn)n∈N be a sequence in K. Then the series∑

n∈N
αnen converges in H if and only if the series

∑
n∈N

|αn|2 converges in
R, in which case

∥
∥
∥
∥∥

∑

n∈N

αnen

∥
∥
∥
∥∥

2

=
∑

n∈N

|αn|2. (3.20)

Hence, for any x ∈ H, the series
∑

n∈N
〈en, x〉en converges.

Theorem 3.25. Let (en)n∈N be an orthonormal sequence in a Hilbert space
H. Then the following are equivalent:
(a) {en | n ∈ N}⊥ = {0};
(b) H = span{en | n ∈ N};
(c) H =

⊕
n∈N

Ken as a direct sum of Hilbert spaces;
(d) for all x ∈ H, ‖x‖2 =

∑
n∈N

|〈en, x〉|2;
(e) for all x ∈ H, x =

∑
n∈N

〈en, x〉en.
If one (and hence all) of these conditions holds true, then (en)n∈N is called a
complete orthonormal basis for H

4 Of course, Fourier did not use the modern notation of Hilbert spaces! Furthermore, if he
had, then it would have been ‘obvious’ that his claim could only hold true for L2 functions
and in the L2 sense, not pointwise for arbitrary functions.
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Corollary 3.26. Let (en)n∈N be a complete orthonormal basis for a Hilbert

space H. For every x ∈ H, the truncation error x−∑N
n=1〈en, x〉en is orthog-

onal to span{e1, . . . , eN}.
Proof. Let v :=

∑N
m=1 vmem ∈ span{e1, . . . , eN} be arbitrary. By complete-

ness,

x =
∑

n∈N

〈en, x〉en.

Hence,

〈

x−
N∑

n=1

〈en, x〉en, v
〉

=

〈
∑

n>N

〈en, x〉en,
N∑

m=1

vmem

〉

=
∑

n>N
m∈{0,...,N}

〈〈en, x〉en, vmem
〉

=
∑

n>N
m∈{0,...,N}

〈x, en〉vm〈en, em〉

= 0

since 〈en, em〉 = δnm, and m �= n in the double sum. ��
Remark 3.27. The results cited above (in particular, Theorems 3.20, 3.21,
and 3.25, and Corollary 3.26) imply that if we wish to find the closest point of
span{e1, . . . , eN} to some x =

∑
n∈N

〈en, x〉en, then this is a simple matter of

series truncation: the optimal approximation is x ≈ x(N) :=
∑N

n=1〈en, x〉en.
Furthermore, this operation is a continuous linear operation as a function of
x, and if it is desired to improve the quality of an approximation x ≈ x(N) in
span{e1, . . . , eN} to an approximation in, say, span{e1, . . . , eN+1}, then the
improvement is a simple matter of calculating 〈eN+1, x〉 and adjoining the
new term 〈eN+1, x〉eN+1 to form a new norm-optimal approximation

x ≈ x(N+1) :=

N+1∑

n=1

〈en, x〉en = x(N) + 〈eN+1, x〉eN+1.

However, in Banach spaces (even finite-dimensional ones), closest-point app-
roximation is not as simple as series truncation, and the improvement of
approximations is not as simple as adjoining new terms: see Exercise 3.4.
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3.5 Tensor Products

The heuristic definition of the tensor product V ⊗W of two vector spaces V
and W over a common field K is that it is the vector space over K with basis
given by the formal symbols {ei ⊗ fj | i ∈ I, j ∈ J}, where {ei|i ∈ I} is a
basis of V and {fj |j ∈ J} is a basis of W . Alternatively, we might say that
elements of V ⊗ W are elements of W with V-valued rather than K-valued
coefficients (or elements of V with W-valued coefficients). However, it is not
immediately clear that this definition is independent of the bases chosen for
V and W . A more thorough definition is as follows.

Definition 3.28. The free vector space FV×W on the Cartesian product
V ×W is defined by taking the vector space in which the elements of V ×W
are a basis:

FV×W :=

{
n∑

i=1

αie(vi,wi)

∣
∣∣
∣
∣
n ∈ N and, for i = 1, . . . , n,
αi ∈ K, (vi, wi) ∈ V ×W

}

.

The ‘freeness’ of FV×W is that the elements e(v,w) are, by definition, lin-
early independent for distinct pairs (v, w) ∈ V×W ; even e(v,0) and e(−v,0) are
linearly independent. Now define an equivalence relation ∼ on FV×W such
that

e(v+v′,w) ∼ e(v,w) + e(v′,w),

e(v,w+w′) ∼ e(v,w) + e(v,w′),

αe(v,w) ∼ e(αv,w) ∼ e(v,αw)

for arbitrary v, v′ ∈ V , w,w′ ∈ W , and α ∈ K. Let R be the subspace of
FV×W generated by these equivalence relations, i.e. the equivalence class of
e(0,0).

Definition 3.29. The (algebraic) tensor product V⊗W is the quotient space

V ⊗W :=
FV×W
R

.

One can easily check that V ⊗ W , as defined in this way, is indeed a
vector space over K. The subspace R of FV×W is mapped to the zero element
of V ⊗ W under the quotient map, and so the above equivalences become
equalities in the tensor product space:

(v + v′)⊗ w = v ⊗ w + v′ ⊗ w,

v ⊗ (w + w′) = v ⊗ w + v ⊗ w′,
α(v ⊗ w) = (αv) ⊗ w = v ⊗ (αw)

for all v, v′ ∈ V , w,w′ ∈ W , and α ∈ K.
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One can also check that the heuristic definition in terms of bases holds
true under the formal definition: if {ei|i ∈ I} is a basis of V and {fj|j ∈ J}
is a basis of W , then {ei ⊗ fj | i ∈ I, j ∈ J} is basis of V ⊗ W . Hence, the
dimension of the tensor product is the product of dimensions of the original
spaces.

Definition 3.30. The Hilbert space tensor product of two Hilbert spaces H
and K over the same field K is given by defining an inner product on the
algebraic tensor product H⊗K by

〈h⊗ k, h′ ⊗ k′〉H⊗K := 〈h, h′〉H〈k, k′〉K for all h, h′ ∈ H and k, k′ ∈ K,

extending this definition to all of the algebraic tensor product by sesquilinear-
ity, and defining the Hilbert space tensor product H⊗K to be the completion
of the algebraic tensor product with respect to this inner product and its as-
sociated norm.

Tensor products of Hilbert spaces arise very naturally when considering
spaces of functions of more than one variable, or spaces of functions that
take values in other function spaces. A prime example of the second type is
a space of stochastic processes.

Example 3.31. (a) Given two measure spaces (X ,F , μ) and (Y,G , ν), con-
sider L2(X ×Y, μ⊗ν;K), the space of functions on X ×Y that are square
integrable with respect to the product measure μ⊗ ν. If f ∈ L2(X , μ;K)
and g ∈ L2(Y, ν;K), then we can define a function h : X × Y → K by
h(x, y) := f(x)g(y). The definition of the product measure ensures that
h ∈ L2(X × Y, μ ⊗ ν;K), so this procedure defines a bilinear mapping
L2(X , μ;K) × L2(Y, ν;K) → L2(X × Y, μ ⊗ ν;K). It turns out that the
span of the range of this bilinear map is dense in L2(X × Y, μ⊗ ν;K) if
L2(X , μ;K) and L2(Y, ν;K) are separable. This shows that

L2(X , μ;K)⊗ L2(Y, ν;K) ∼= L2(X × Y, μ⊗ ν;K),

and it also explains why it is necessary to take the completion in the
construction of the Hilbert space tensor product.

(b) Similarly, L2(X , μ;H), the space of functions f : X → H that are square
integrable in the sense that

∫

X
‖f(x)‖2H dμ(x) < +∞,

is isomorphic to L2(X , μ;K) ⊗H if this space is separable. The isomor-
phism maps f⊗ϕ ∈ L2(X , μ;K)⊗H to the H-valued function x �→ f(x)ϕ
in L2(X , μ;H).

(c) Combining the previous two examples reveals that

L2(X , μ;K)⊗L2(Y, ν;K) ∼= L2(X ×Y, μ⊗ν;K) ∼= L2
(X , μ;L2(Y, ν;K)

)
.
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Similarly, one can consider a Bochner space Lp(X , μ;V) of functions
(random variables) taking values in a Banach space V that are pth-power-
integrable in the sense that

∫
X ‖f(x)‖pV dμ(x) is finite, and identify this space

with a suitable tensor product Lp(X , μ;R) ⊗ V . However, several subtleties
arise in doing this, as there is no single ‘natural’ Banach tensor product of
Banach spaces as there is for Hilbert spaces.

3.6 Bibliography

Reference texts on elementary functional analysis, including Banach and
Hilbert space theory, include the books of Reed and Simon (1972), Rudin
(1991), and Rynne and Youngson (2008). The article of Deutsch (1982) gives
a good overview of closest-point approximation properties for subspaces of
Banach spaces. Further discussion of the relationship between tensor products
and spaces of vector-valued integrable functions can be found in the books of
Ryan (2002) and Hackbusch (2012); the former is essentially a pure mathe-
matic text, whereas the latter also includes significant treatment of numerical
and computational matters. The Sobolev embedding theorem (Theorem 3.12)
and its proof can be found in Evans (2010, Section 5.6, Theorem 6).

Intrepid students may wish to consult Bourbaki (1987), but the standard
warnings about Bourbaki texts apply: the presentation is comprehensive but
often forbiddingly austere, and so it is perhaps better as a reference text than
a learning tool. On the other hand, the Hitchhiker’s Guide of Aliprantis and
Border (2006) is a surprisingly readable encyclopaedic text.

3.7 Exercises

Exercise 3.1 (Formulae for the operator norm). Let A : V → W be a linear
map between normed vector spaces (V , ‖ · ‖V) and (W , ‖ ·‖W). Show that the
operator norm ‖A‖V→W of A is equivalently defined by any of the following
expressions:

‖A‖V→W = sup
0�=v∈V

‖Av‖W
‖v‖V

= sup
‖v‖V=1

‖Av‖W
‖v‖V = sup

‖v‖V=1

‖Av‖W

= sup
0<‖v‖V≤1

‖Av‖W
‖v‖V = sup

‖v‖V≤1

‖Av‖W

= sup
0<‖v‖V<1

‖Av‖W
‖v‖V = sup

‖v‖V<1

‖Av‖W .
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Exercise 3.2 (Properties of the operator norm). Suppose that U , V , and W
are normed vector spaces, and let A : U → V and B : V → W be bounded
linear maps. Prove that the operator norm is
(a) compatible (or consistent) with ‖ · ‖U and ‖ ·‖V : for all x ∈ U ,

‖Au‖V ≤ ‖A‖U→V‖u‖U .

(b) sub-multiplicative: ‖B ◦A‖U→W ≤ ‖B‖V→W‖A‖U→V .

Exercise 3.3 (Definiteness of the Gram matrix). Let V be a vector space
over K, equipped with a semi-definite inner product 〈 · , · 〉 (i.e. one satisfying
all the requirements of Definition 3.2 except possibly positive definiteness).
Given vectors v1, . . . , vn ∈ V , the associated Gram matrix is

G(v1, . . . , vn) :=

⎡

⎢
⎢
⎣

〈v1, v1〉 · · · 〈v1, vn〉
...

. . .
...

〈vn, v1〉 · · · 〈vn, vn〉

⎤

⎥
⎥
⎦ .

(a) Show that, in the case that V = K
n with its usual inner product,

G(v1, . . . , vn) = V ∗V , where V is the matrix with the vectors vi as its
columns, and V ∗ denotes the conjugate transpose of V .

(b) Show that G(v1, . . . , vn) is a conjugate-symmetric (a.k.a. Hermitian) ma-
trix, and hence is symmetric in the case K = R.

(c) Show that detG(v1, . . . , vn) ≥ 0. Show also that detG(v1, . . . , vn) = 0 if
v1, . . . , vn are linearly dependent, and that this is an ‘if and only if’ if
〈 · , · 〉 is positive definite.

(d) Using the case n = 2, prove the Cauchy–Schwarz inequality (3.1).

Exercise 3.4 (Closest-point approximation in Banach spaces). LetRθ : R
2 →

R
2 denote the linear map that is rotation of the Euclidean plane about the

origin through a fixed angle −π
4 < θ < π

4 . Define a Banach norm ‖ · ‖θ on R
2

in terms of Rθ and the usual 1-norm by

‖(x, y)‖θ := ‖Rθ(x, y)‖1.

Find the closest point of the x-axis to the point (1, 1), i.e. find x′ ∈ R to
minimize ‖(x′, 0)− (1, 1)‖θ; in particular, show that the closest point is not
(1, 0). Hint: sketch some norm balls centred on (1, 1).

Exercise 3.5 (Series in normed spaces). Many UQ methods involve series
expansions in spaces of deterministic functions and/or random variables, so it
is useful to understand when such series converge. Let (vn)n∈N be a sequence
in a normed space V . As in R, we say that the series

∑
n∈N

vn converges to
v ∈ V if the sequence of partial sums converges to v, i.e. if, for all ε > 0, there
exists Nε ∈ N such that
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N ≥ Nε =⇒
∥
∥
∥
∥
∥
v −

N∑

n=1

vn

∥
∥
∥
∥
∥
< ε.

(a) Suppose that
∑

n∈N
vn converges absolutely to v ∈ V , i.e. the series con-

verges and also
∑

n∈N
‖vn‖ is finite. Prove the infinite triangle inequality

‖v‖ ≤
∑

n∈N

‖vn‖.

(b) Suppose that
∑

n∈N
vn converges absolutely to v ∈ V . Show that

∑
n∈N

vn
converges unconditionally to v ∈ V , i.e. ∑n∈N

vπ(n) converges to x ∈ V
for every bijection π : N → N. Thus, the order of summation ‘does not
matter’. (Note that the converse of this result is false: Dvoretzky and�
Rogers (1950) showed that every infinite-dimensional Banach space con-
tains series that converge unconditionally but not absolutely.)

(c) Suppose that V is a Banach space and that
∑

n∈N
‖vn‖ is finite. Show

that
∑

n∈N
vn converges to some v ∈ V .

Exercise 3.6 (Weierstrass M -test). Let S be any set, let V be a Banach
space, and, for each n ∈ N, let fn : S → V . Suppose that Mn is such that

‖fn(x)‖ ≤ Mn for all x ∈ S and n ∈ N,

and that
∑

n∈N
Mn is finite. Show that the series

∑
n∈N

fn converges uni-
formly on S, i.e. there exists f : S → V such that, for all ε > 0, there exists
Nε ∈ N so that

N ≥ Nε =⇒ sup
x∈S

∥
∥
∥∥
∥
f(x)−

N∑

n=1

fn(x)

∥
∥
∥∥
∥
< ε.
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