
Chapter 2

Measure and Probability Theory

To be conscious that you are ignorant is a
great step to knowledge.

Sybil
Benjamin Disraeli

Probability theory, grounded in Kolmogorov’s axioms and the general
foundations of measure theory, is an essential tool in the quantitative mathe-
matical treatment of uncertainty. Of course, probability is not the only frame-
work for the discussion of uncertainty: there is also the paradigm of interval
analysis, and intermediate paradigms such as Dempster–Shafer theory, as
discussed in Section 2.8 and Chapter 5.

This chapter serves as a review, without detailed proof, of concepts from
measure and probability theory that will be used in the rest of the text.
Like Chapter 3, this chapter is intended as a review of material that should
be understood as a prerequisite before proceeding; to an extent, Chapters 2
and 3 are interdependent and so can (and should) be read in parallel with
one another.

2.1 Measure and Probability Spaces

The basic objects of measure and probability theory are sample spaces, which
are abstract sets; we distinguish certain subsets of these sample spaces as
being ‘measurable’, and assign to each of them a numerical notion of ‘size’.
In probability theory, this size will always be a real number between 0 and 1,
but more general values are possible, and indeed useful.
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10 2 Measure and Probability Theory

Definition 2.1. A measurable space is a pair (X ,F ), where
(a) X is a set, called the sample space; and
(b) F is a σ-algebra on X , i.e. a collection of subsets of X containing ∅

and closed under countable applications of the operations of union, in-
tersection and complementation relative to X ; elements of F are called
measurable sets or events.

Example 2.2. (a) On any set X , there is a trivial σ-algebra in which the
only measurable sets are the empty set ∅ and the whole space X .

(b) On any set X , there is also the power set σ-algebra in which every subset
of X is measurable. It is a fact of life that this σ-algebra contains too
many measurable sets to be useful for most applications in analysis and
probability.

(c) When X is a topological — or, better yet, metric or normed — space,
it is common to take F to be the Borel σ-algebra B(X ), the smallest
σ-algebra on X so that every open set (and hence also every closed set)
is measurable.

Definition 2.3. (a) A signed measure (or charge) on a measurable space
(X ,F ) is a function μ : F → R∪{±∞} that takes at most one of the two
infinite values, has μ(∅) = 0, and, whenever E1, E2, . . . ∈ F are pairwise
disjoint with union E ∈ F , then μ(E) =

∑
n∈N

μ(En). In the case that
μ(E) is finite, we require that the series

∑
n∈N

μ(En) converges absolutely
to μ(E).

(b) A measure is a signed measure that does not take negative values.
(c) A probability measure is a measure such that μ(X ) = 1.

The triple (X ,F , μ) is called a signed measure space, measure space, or
probability space as appropriate. The sets of all signed measures, measures,
and probability measures on (X ,F ) are denoted M±(X ,F ), M+(X ,F ),
and M1(X ,F ) respectively.

Example 2.4. (a) The trivial measure can be defined on any set X and
σ-algebra: τ(E) := 0 for every E ∈ F .

(b) The unit Dirac measure at a ∈ X can also be defined on any set X and
σ-algebra:

δa(E) :=

{
1, if a ∈ E, E ∈ F ,

0, if a /∈ E, E ∈ F .

(c) Similarly, we can define counting measure:

κ(E) :=

{
n, if E ∈ F is a finite set with exactly n elements,

+∞, if E ∈ F is an infinite set.

(d) Lebesgue measure on R
n is the unique measure on R

n (equipped with
its Borel σ-algebra B(Rn), generated by the Euclidean open balls) that
assigns to every rectangle its n-dimensional volume in the ordinary sense.
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To be more precise, Lebesgue measure is actually defined on the com-
pletion B0(R

n) of B(Rn), which is a larger σ-algebra than B(Rn). The
rigorous construction of Lebesgue measure is a non-trivial undertaking.

(e) Signed measures/charges arise naturally in the modelling of distributions
with positive and negative values, e.g. μ(E) = the net electrical charge
within some measurable region E ⊆ R

3. They also arise naturally as
differences of non-negative measures: see Theorem 2.24 later on.

Remark 2.5. Probability theorists usually denote the sample space of a
probability space by Ω; PDE theorists often use the same letter to denote a
domain in R

n on which a partial differential equation is to be solved. In UQ,
where the worlds of probability and PDE theory often collide, the possibility
of confusion is clear. Therefore, this book will tend to use Θ for a probability
space and X for a more general measurable space, which may happen to be
the spatial domain for some PDE.

Definition 2.6. Let (X ,F , μ) be a measure space.
(a) If N ⊆ X is a subset of a measurable set E ∈ F such that μ(E) = 0,

then N is called a μ-null set.
(b) If the set of x ∈ X for which some property P (x) does not hold is μ-null,

then P is said to hold μ-almost everywhere (or, when μ is a probability
measure, μ-almost surely).

(c) If every μ-null set is in fact an F -measurable set, then the measure space
(X ,F , μ) is said to be complete.

Example 2.7. Let (X ,F , μ) be a measure space, and let f : X → R be some
function. If f(x) ≥ t for μ-almost every x ∈ X , then t is an essential lower
bound for f ; the greatest such t is called the essential infimum of f :

ess inf f := sup {t ∈ R | f ≥ t μ-almost everywhere} .

Similarly, if f(x) ≤ t for μ-almost every x ∈ X , then t is an essential upper
bound for f ; the least such t is called the essential supremum of f :

ess sup f := inf {t ∈ R | f ≤ t μ-almost everywhere} .

It is so common in measure and probability theory to need to refer to
the set of all points x ∈ X such that some property P (x) holds true that
an abbreviated notation has been adopted: simply [P ]. Thus, for example, if
f : X → R is some function, then

[f ≤ t] := {x ∈ X | f(x) ≤ t}.

As noted above, when the sample space is a topological space, it is usual
to use the Borel σ-algebra (i.e. the smallest σ-algebra that contains all the
open sets); measures on the Borel σ-algebra are called Borel measures. Unless
noted otherwise, this is the convention followed here.
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δ1

δ2

δ3

M1({1, 2, 3})

⊂ M±({1, 2, 3}) ∼= R3

Fig. 2.1: The probability simplexM1({1, 2, 3}), drawn as the triangle spanned
by the unit Dirac masses δi, i ∈ {1, 2, 3}, in the vector space of signed mea-
sures on {1, 2, 3}.

Definition 2.8. The support of a measure μ defined on a topological space
X is

supp(μ) :=
⋂

{F ⊆ X | F is closed and μ(X \ F ) = 0}.
That is, supp(μ) is the smallest closed subset of X that has full μ-measure.
Equivalently, supp(μ) is the complement of the union of all open sets of μ-
measure zero, or the set of all points x ∈ X for which every neighbourhood
of x has strictly positive μ-measure.

Especially in Chapter 14, we shall need to consider the set of all probability
measures defined on a measurable space.M1(X ) is often called the probability
simplex on X . The motivation for this terminology comes from the case in
which X = {1, . . . , n} is a finite set equipped with the power set σ-algebra,
which is the same as the Borel σ-algebra for the discrete topology on X .1 In
this case, functions f : X → R are in bijection with column vectors

⎡

⎢
⎢
⎣

f(1)
...

f(n)

⎤

⎥
⎥
⎦

and probability measures μ on the power set of X are in bijection with the
(n− 1)-dimensional set of row vectors

[
μ({1}) · · · μ({n})

]

1 It is an entertaining exercise to see what pathological properties can hold for a probability
measures on a σ-algebra other than the power set of a finite set X .
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such that μ({i}) ≥ 0 for all i ∈ {1, . . . , n} and∑n
i=1 μ({i}) = 1. As illustrated

in Figure 2.1, the set of such μ is the (n− 1)-dimensional simplex in R
n that

is the convex hull of the n points δ1, . . . , δn,

δi =
[
0 · · · 0 1 0 · · · 0

]
,

with 1 in the ith column. Looking ahead, the expected value of f under μ
(to be defined properly in Section 2.3) is exactly the matrix product:

Eμ[f ] =
n∑

i=1

μ({i})f(i) = 〈μ | f〉 =
[
μ({1}) · · · μ({n})

]

⎡

⎢
⎢
⎣

f(1)
...

f(n)

⎤

⎥
⎥
⎦ .

It is useful to keep in mind this geometric picture ofM1(X ) in addition to the
algebraic and analytical properties of any given μ ∈ M1(X ). As poetically
highlighted by Sir Michael Atiyah (2004, Paper 160, p. 7):

“Algebra is the offer made by the devil to the mathematician. The devil says: ‘I
will give you this powerful machine, it will answer any question you like. All you
need to do is give me your soul: give up geometry and you will have this marvellous
machine.’ ”

Or, as is traditionally but perhaps apocryphally said to have been inscribed
over the entrance to Plato’s Academy:

AΓEΩMETPHTOΣ MHΔEIΣ EIΣITΩ

In a sense that will be made precise in Chapter 14, for any ‘nice’ space
X , M1(X ) is the simplex spanned by the collection of unit Dirac measures
{δx | x ∈ X}. Given a bounded, measurable function f : X → R and c ∈ R,

{μ ∈ M(X ) | Eμ[f ] ≤ c}

is a half-space of M(X ), and so a set of the form

{μ ∈ M1(X ) | Eμ[f1] ≤ c1, . . . ,Eμ[fm] ≤ cm}

can be thought of as a polytope of probability measures.
One operation on probability measures that must frequently be performed

in UQ applications is conditioning, i.e. forming a new probability measure
μ( · |B) out of an old one μ by restricting attention to subsets of a measurable
set B. Conditioning is the operation of supposing that B has happened,
and examining the consequently updated probabilities for other measurable
events.

Definition 2.9. If (Θ,F , μ) is a probability space and B ∈ F has μ(B) > 0,
then the conditional probability measure μ( · |B) on (Θ,F ) is defined by
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μ(E|B) :=
μ(E ∩B)

μ(B)
for E ∈ F .

The following theorem on conditional probabilities is fundamental to sub-
jective (Bayesian) probability and statistics (q.v. Section 2.8:

Theorem 2.10 (Bayes’ rule). If (Θ,F , μ) is a probability space and A,
B ∈ F have μ(A), μ(B) > 0, then

μ(A|B) =
μ(B|A)μ(A)

μ(B)
.

Both the definition of conditional probability and Bayes’ rule can be ext-
ended to much more general contexts (including cases in which μ(B) = 0)
using advanced tools such as regular conditional probabilities and the disinte-
gration theorem. In Bayesian settings, μ(A) represents the ‘prior’ probability
of some event A, and μ(A|B) its ‘posterior’ probability, having observed some
additional data B.

2.2 Random Variables and Stochastic Processes

Definition 2.11. Let (X ,F ) and (Y,G ) be measurable spaces. A function
f : X → Y generates a σ-algebra on X by

σ(f) := σ
({[f ∈ E] | E ∈ G }),

and f is called a measurable function if σ(f) ⊆ F . That is, f is measur-
able if the pre-image f−1(E) of every G -measurable subset E of Y is an
F -measurable subset of X . A measurable function whose domain is a prob-
ability space is usually called a random variable.

Remark 2.12. Note that if F is the power set of Y, or if G is the trivial
σ-algebra {∅,Y}, then every function f : X → Y is measurable. At the oppo-
site extreme, if F is the trivial σ-algebra {∅,X}, then the only measurable
functions f : X → Y are the constant functions. Thus, in some sense, the
sizes of the σ-algebras used to define measurability provide a notion of how
well- or ill-behaved the measurable functions are.

Definition 2.13. A measurable function f : X → Y from a measure space
(X ,F , μ) to a measurable space (Y,G ) defines a measure f∗μ on (Y,G ),
called the push-forward of μ by f , by

(f∗μ)(E) := μ
(
[f ∈ E]

)
, for E ∈ G .

When μ is a probability measure, f∗μ is called the distribution or law of the
random variable f .
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Definition 2.14. Let S be any set and let (Θ,F , μ) be a probability space.
A function U : S × Θ → X such that each U(s, · ) is a random variable is
called an X -valued stochastic process on S.

Whereas measurability questions for a single random variable are discussed
in terms of a single σ-algebra, measurability questions for stochastic processes
are discussed in terms of families of σ-algebras; when the indexing set S is
linearly ordered, e.g. by the natural numbers, or by a continuous parameter
such as time, these families of σ-algebras are increasing in the following sense:

Definition 2.15. (a) A filtration of a σ-algebra F is a family F• = {Fi |
i ∈ I} of sub-σ-algebras of F , indexed by an ordered set I, such that

i ≤ j in I =⇒ Fi ⊆ Fj .

(b) The natural filtration associated with a stochastic process U : I×Θ → X
is the filtration FU• defined by

FU
i := σ

({U(j, · )−1(E) ⊆ Θ | E ⊆ X is measurable and j ≤ i}).

(c) A stochastic process U is adapted to a filtration F• if FU
i ⊆ Fi for

each i ∈ I.

Measurability and adaptedness are important properties of stochastic pro-
cesses, and loosely correspond to certain questions being ‘answerable’ or ‘dec-
idable’ with respect to the information contained in a given σ-algebra. For
instance, if the event [X ∈ E] is not F -measurable, then it does not even
make sense to ask about the probability Pμ[X ∈ E]. For another example,
suppose that some stream of observed data is modelled as a stochastic pro-
cess Y , and it is necessary to make some decision U(t) at each time t. It is
common sense to require that the decision stochastic process be FY

• -adapted,
since the decision U(t) must be made on the basis of the observations Y (s),
s ≤ t, not on observations from any future time.

2.3 Lebesgue Integration

Integration of a measurable function with respect to a (signed or non-
negative) measure is referred to as Lebesgue integration. Despite the many
technical details that must be checked in the construction of the Lebesgue int-
egral, it remains the integral of choice for most mathematical and probabilis-
tic applications because it extends the simple Riemann integral of functions
of a single real variable, can handle worse singularities than the Riemann
integral, has better convergence properties, and also naturally captures the
notion of an expected value in probability theory. The issue of numerical
evaluation of integrals — a vital one in UQ applications — will be addressed
separately in Chapter 9.
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The construction of the Lebesgue integral is accomplished in three steps:
first, the integral is defined for simple functions, which are analogous to step
functions from elementary calculus, except that their plateaus are not inter-
vals in R but measurable events in the sample space.

Definition 2.16. Let (X ,F , μ) be a measure space. The indicator function
IE of a set E ∈ F is the measurable function defined by

IE(x) :=

{
1, if x ∈ E

0, if x /∈ E.

A function f : X → K is called simple if

f =
n∑

i=1

αiIEi

for some scalars α1, . . . , αn ∈ K and some pairwise disjoint measurable sets
E1, . . . , En ∈ F with μ(Ei) finite for i = 1, . . . , n. The Lebesgue integral of a
simple function f :=

∑n
i=1 αiIEi is defined to be

∫

X
f dμ :=

n∑

i=1

αiμ(Ei).

In the second step, the integral of a non-negative measurable function is
defined through approximation from below by the integrals of simple func-
tions:

Definition 2.17. Let (X ,F , μ) be a measure space and let f : X → [0,+∞]
be a measurable function. The Lebesgue integral of f is defined to be

∫

X
f dμ := sup

{∫

X
φdμ

∣
∣
∣
∣

φ : X → R is a simple function, and
0 ≤ φ(x) ≤ f(x) for μ-almost all x ∈ X

}

.

Finally, the integral of a real- or complex-valued function is defined through
integration of positive and negative real and imaginary parts, with care being
taken to avoid the undefined expression ‘∞−∞’:

Definition 2.18. Let (X ,F , μ) be a measure space and let f : X → R be a
measurable function. The Lebesgue integral of f is defined to be

∫

X
f dμ :=

∫

X
f+ dμ−

∫

X
f− dμ

provided that at least one of the integrals on the right-hand side is finite. The
integral of a complex-valued measurable function f : X → C is defined to be

∫

X
f dμ :=

∫

X
(Re f) dμ+ i

∫

X
(Im f) dμ.
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The Lebesgue integral satisfies all the natural requirements for a useful
notion of integration: integration is a linear function of the integrand, inte-
grals are additive over disjoint domains of integration, and in the case X = R

every Riemann-integrable function is Lebesgue integrable. However, one of
the chief attractions of the Lebesgue integral over other notions of integration
is that, subject to a simple domination condition, pointwise convergence of
integrands is enough to ensure convergence of integral values:

Theorem 2.19 (Dominated convergence theorem). Let (X ,F , μ) be a mea-
sure space and let fn : X → K be a measurable function for each n ∈ N. If
f : X → K is such that limn→∞ fn(x) = f(x) for every x ∈ X and there
is a measurable function g : X → [0,∞] such that

∫
X |g| dμ is finite and

|fn(x)| ≤ g(x) for all x ∈ X and all large enough n ∈ N, then

∫

X
f dμ = lim

n→∞

∫

X
fn dμ.

Furthermore, if the measure space is complete, then the conditions on point-
wise convergence and pointwise domination of fn(x) can be relaxed to hold
μ-almost everywhere.

As alluded to earlier, the Lebesgue integral is the standard one in proba-
bility theory, and is used to define the mean or expected value of a random
variable:

Definition 2.20. When (Θ,F , μ) is a probability space and X : Θ → K is
a random variable, it is conventional to write Eμ[X ] for

∫
Θ
X(θ) dμ(θ) and

to call Eμ[X ] the expected value or expectation of X . Also,

Vμ[X ] := Eμ

[∣
∣X − Eμ[X ]

∣
∣2
] ≡ Eμ[|X |2]− |Eμ[X ]|2

is called the variance of X . If X is a K
d-valued random variable, then Eμ[X ],

if it exists, is an element of Kd, and

C := Eμ

[
(X − Eμ[X ])(X − Eμ[X ])∗

] ∈ K
d×d

i.e. Cij := Eμ

[
(Xi − Eμ[Xi])(Xj − Eμ[Xj ])

]
∈ K

is the covariance matrix of X .

Spaces of Lebesgue-integrable functions are ubiquitous in analysis and
probability theory:

Definition 2.21. Let (X ,F , μ) be a measure space. For 1 ≤ p ≤ ∞, the Lp

space (or Lebesgue space) is defined by

Lp(X , μ;K) := {f : X → K | f is measurable and ‖f‖Lp(μ) is finite}.
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For 1 ≤ p < ∞, the norm is defined by the integral expression

‖f‖Lp(μ) :=

(∫

X
|f(x)|p dμ(x)

)1/p

; (2.1)

for p = ∞, the norm is defined by the essential supremum (cf. Example 2.7)

‖f‖L∞(μ) := ess sup
x∈X

|f(x)| (2.2)

= inf {‖g‖∞ | f = g : X → K μ-almost everywhere}
= inf {t ≥ 0 | |f | ≤ t μ-almost everywhere} .

To be more precise, Lp(X , μ;K) is the set of equivalence classes of such func-
tions, where functions that differ only on a set of μ-measure zero are identified.

When (Θ,F , μ) is a probability space, we have the containments

1 ≤ p ≤ q ≤ ∞ =⇒ Lp(Θ, μ;R) ⊇ Lq(Θ, μ;R).

Thus, random variables in higher-order Lebesgue spaces are ‘better behaved’
than those in lower-order ones. As a simple example of this slogan, the fol-
lowing inequality shows that the Lp-norm of a random variable X provides
control on the probability X deviates strongly from its mean value:

Theorem 2.22 (Chebyshev’s inequality). Let X ∈ Lp(Θ, μ;K), 1 ≤ p < ∞,
be a random variable. Then, for all t ≥ 0,

Pμ

[|X − Eμ[X ]| ≥ t
] ≤ t−p

Eμ

[|X |p]. (2.3)

(The case p = 1 is also known as Markov’s inequality.) It is natural to ask
if (2.3) is the best inequality of this type given the stated assumptions on X ,
and this is a question that will be addressed in Chapter 14, and specifically
Example 14.18.

Integration of Vector-Valued Functions. Lebesgue integration of func-
tions that take values in R

n can be handled componentwise, as indeed was
done above for complex-valued integrands. However, many UQ problems con-
cern random fields, i.e. random variables with values in infinite-dimensional
spaces of functions. For definiteness, consider a function f defined on a mea-
sure space (X ,F , μ) taking values in a Banach space V . There are two ways
to proceed, and they are in general inequivalent:
(a) The strong integral or Bochner integral of f is defined by integrating

simple V-valued functions as in the construction of the Lebesgue integral,
and then defining ∫

X
f dμ := lim

n→∞

∫

X
φn dμ

whenever (φn)n∈N is a sequence of simple functions such that the (scalar-
valued) Lebesgue integral

∫
X ‖f − φn‖ dμ converges to 0 as n → ∞.



2.4 Decomposition and Total Variation of Signed Measures 19

It transpires that f is Bochner integrable if and only if ‖f‖ is Lebesgue
integrable. The Bochner integral satisfies a version of the Dominated Con-
vergence Theorem, but there are some subtleties concerning the Radon–
Nikodým theorem.

(b) The weak integral or Pettis integral of f is defined using duality:
∫
X f dμ

is defined to be an element v ∈ V such that

〈� | v〉 =
∫

X
〈� | f(x)〉dμ(x) for all � ∈ V ′.

Since this is a weaker integrability criterion, there are naturally more
Pettis-integrable functions than Bochner-integrable ones, but the Pettis
integral has deficiencies such as the space of Pettis-integrable functions
being incomplete, the existence of a Pettis-integrable function f : [0, 1] →
V such that F (t) :=

∫
[0,t] f(τ) dτ is not differentiable (Kadets, 1994), and

so on.

2.4 Decomposition and Total Variation of Signed
Measures

If a good mental model for a non-negative measure is a distribution of mass,
then a good mental model for a signed measure is a distribution of electrical
charge. A natural question to ask is whether every distribution of charge can
be decomposed into regions of purely positive and purely negative charge, and
hence whether it can be written as the difference of two non-negative distri-
butions, with one supported entirely on the positive set and the other on the
negative set. The answer is provided by the Hahn and Jordan decomposition
theorems.

Definition 2.23. Two non-negative measures μ and ν on a measurable space
(X ,F ) are said to be mutually singular, denoted μ ⊥ ν, if there exists E ∈ F
such that μ(E) = ν(X \ E) = 0.

Theorem 2.24 (Hahn–Jordan decomposition). Let μ be a signed measure
on a measurable space (X ,F ).
(a) Hahn decomposition: there exist sets P,N ∈ F such that P ∪ N = X ,

P ∩N = ∅, and

for all measurable E ⊆ P , μ(E) ≥ 0,

for all measurable E ⊆ N , μ(E) ≤ 0.

This decomposition is essentially unique in the sense that if P ′ and N ′

also satisfy these conditions, then every measurable subset of the sym-
metric differences P � P ′ and N �N ′ is of μ-measure zero.
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(b) Jordan decomposition: there are unique mutually singular non-negative
measures μ+ and μ− on (X ,F ), at least one of which is a finite measure,
such that μ = μ+ − μ−; indeed, for all E ∈ F ,

μ+(E) = μ(E ∩ P ),

μ−(E) = −μ(E ∩N).

From a probabilistic perspective, the main importance of signed measures
and their Hahn and Jordan decompositions is that they provide a useful
notion of distance between probability measures:

Definition 2.25. Let μ be a signed measure on a measurable space (X ,F ),
with Jordan decomposition μ = μ+ − μ−. The associated total variation
measure is the non-negative measure |μ| := μ+ + μ−. The total variation of
μ is ‖μ‖TV := |μ|(X ).

Remark 2.26. (a) As the notation ‖μ‖TV suggests, ‖ · ‖TV is a norm on the
space M±(X ,F ) of signed measures on (X ,F ).

(b) The total variation measure can be equivalently defined using measurable
partitions:

|μ|(E) = sup

{
n∑

i=1

|μ(Ei)|
∣
∣
∣
∣
∣

n ∈ N0, E1, . . . , En ∈ F ,
and E = E1 ∪ · · · ∪En

}

.

(c) The total variation distance between two probability measures μ and ν
(i.e. the total variation norm of their difference) can thus be character-
ized as

dTV(μ, ν) ≡ ‖μ− ν‖TV = 2 sup
{|μ(E)− ν(E)| ∣∣E ∈ F

}
, (2.4)

i.e. twice the greatest absolute difference in the two probability values
that μ and ν assign to any measurable event E.

2.5 The Radon–Nikodým Theorem and Densities

Let (X ,F , μ) be a measure space and let ρ : X → [0,+∞] be a measurable
function. The operation

ν : E �→
∫

E

ρ(x) dμ(x) (2.5)

defines a measure ν on (X ,F ). It is natural to ask whether every measure
ν on (X ,F ) can be expressed in this way. A moment’s thought reveals that
the answer, in general, is no: there is no such function ρ that will make (2.5)
hold when μ and ν are Lebesgue measure and a unit Dirac measure (or vice
versa) on R.
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Definition 2.27. Let μ and ν be measures on a measurable space (X ,F ).
If, for E ∈ F , ν(E) = 0 whenever μ(E) = 0, then ν is said to be absolutely
continuous with respect to μ, denoted ν � μ. If ν � μ � ν, then μ and ν
are said to be equivalent, and this is denoted μ ≈ ν.

Definition 2.28. A measure space (X ,F , μ) is said to be σ-finite if X
can be expressed as a countable union of F -measurable sets, each of finite
μ-measure.

Theorem 2.29 (Radon–Nikodým). Suppose that μ and ν are σ-finite mea-
sures on a measurable space (X ,F ) and that ν � μ. Then there exists a
measurable function ρ : X → [0,∞] such that, for all measurable functions
f : X → R and all E ∈ F ,

∫

E

f dν =

∫

E

fρ dμ

whenever either integral exists. Furthermore, any two functions ρ with this
property are equal μ-almost everywhere.

The function ρ in the Radon–Nikodým theorem is called the Radon–
Nikodým derivative of ν with respect to μ, and the suggestive notation ρ = dν

dμ

is often used. In probability theory, when ν is a probability measure, dν
dμ is

called the probability density function (PDF) of ν (or any ν-distributed ran-
dom variable) with respect to μ. Radon–Nikodým derivatives behave very
much like the derivatives of elementary calculus:

Theorem 2.30 (Chain rule). Suppose that μ, ν and π are σ-finite measures
on a measurable space (X ,F ) and that π � ν � μ. Then π � μ and

dπ

dμ
=

dπ

dν

dν

dμ
μ-almost everywhere.

Remark 2.31. The Radon–Nikodým theorem also holds for a signed mea-
sure ν and a non-negative measure μ, but in this case the absolute continuity
condition is that the total variation measure |ν| satisfies |ν| � μ, and of
course the density ρ is no longer required to be a non-negative function.

2.6 Product Measures and Independence

The previous section considered one way of making new measures from old
ones, namely by re-weighting them using a locally integrable density func-
tion. By way of contrast, this section considers another way of making new
measures from old, namely forming a product measure. Geometrically speak-
ing, the product of two measures is analogous to ‘area’ as the product of
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two ‘length’ measures. Products of measures also arise naturally in probabil-
ity theory, since they are the distributions of mutually independent random
variables.

Definition 2.32. Let (Θ,F , μ) be a probability space.
(a) Two measurable sets (events) E1, E2 ∈ F are said to be independent if

μ(E1 ∩ E2) = μ(E1)μ(E2).
(b) Two sub-σ-algebras G1 and G2 of F are said to be independent if E1 and

E2 are independent events whenever E1 ∈ G1 and E2 ∈ G2.
(c) Two measurable functions (random variables)X : Θ → X and Y : Θ → Y

are said to be independent if the σ-algebras generated by X and Y are
independent.

Definition 2.33. Let (X ,F , μ) and (Y,G , ν) be σ-finite measure spaces.
The product σ-algebra F ⊗ G is the σ-algebra on X × Y that is generated
by the measurable rectangles, i.e. the smallest σ-algebra for which all the
products

F ×G, F ∈ F , G ∈ G ,

are measurable sets. The product measure μ ⊗ ν : F ⊗ G → [0,+∞] is the
measure such that

(μ⊗ ν)(F ×G) = μ(F )ν(G), for all F ∈ F , G ∈ G .

In the other direction, given a measure on a product space, we can consider
the measures induced on the factor spaces:

Definition 2.34. Let (X × Y,F , μ) be a measure space and suppose that
the factor space X is equipped with a σ-algebra such that the projections
ΠX : (x, y) �→ x is a measurable function. Then the marginal measure μX is
the measure on X defined by

μX (E) :=
(
(ΠX )∗μ

)
(E) = μ(E × Y).

The marginal measure μY on Y is defined similarly.

Theorem 2.35. Let X = (X1, X2) be a random variable taking values in a
product space X = X1×X2. Let μ be the (joint) distribution of X, and μi the
(marginal) distribution of Xi for i = 1, 2. Then X1 and X2 are independent
random variables if and only if μ = μ1 ⊗ μ2.

The important property of integration with respect to a product measure,
and hence taking expected values of independent random variables, is that it
can be performed by iterated integration:

Theorem 2.36 (Fubini–Tonelli). Let (X ,F , μ) and (Y,G , ν) be σ-finite
measure spaces, and let f : X × Y → [0,+∞] be measurable. Then, of the
following three integrals, if one exists in [0,∞], then all three exist and are
equal:
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∫

X

∫

Y
f(x, y) dν(y) dμ(x),

∫

Y

∫

X
f(x, y) dμ(x) dν(y),

and

∫

X×Y
f(x, y) d(μ⊗ ν)(x, y).

Infinite product measures (or, put another way, infinite sequences of inde-
pendent random variables) have some interesting extreme properties. Infor-
mally, the following result says that any property of a sequence of independent
random variables that is independent of any finite subcollection (i.e. depends
only on the ‘infinite tail’ of the sequence) must be almost surely true or
almost surely false:

Theorem 2.37 (Kolmogorov zero-one law). Let (Xn)n∈N be a sequence of
independent random variables defined over a probability space (Θ,F , μ), and
let Fn := σ(Xn). For each n ∈ N, let Gn := σ

(⋃
k≥n Fk

)
, and let

T :=
⋂

n∈N

Gn =
⋂

n∈N

σ(Xn, Xn+1, . . . ) ⊆ F

be the so-called tail σ-algebra. Then, for every E ∈ T , μ(E) ∈ {0, 1}.
Thus, for example, it is impossible to have a sequence of real-valued ran-

dom variables (Xn)n∈N such that limn→∞ Xn exists with probability 1
2 ; either

the sequence converges with probability one, or else with probability one it
has no limit at all. There are many other zero-one laws in probability and
statistics: one that will come up later in the study of Monte Carlo averages
is Kesten’s theorem (Theorem 9.17).

2.7 Gaussian Measures

An important class of probability measures and random variables is the class
of Gaussians, also known as normal distributions. For many practical prob-
lems, especially those that are linear or nearly so, Gaussian measures can
serve as appropriate descriptions of uncertainty; even in the nonlinear sit-
uation, the Gaussian picture can be an appropriate approximation, though
not always. In either case, a significant attraction of Gaussian measures is
that many operations on them (e.g. conditioning) can be performed using
elementary linear algebra.

On a theoretical level, Gaussian measures are particularly important bec-
ause, unlike Lebesgue measure, they are well defined on infinite-dimensional
spaces, such as function spaces. In R

d, Lebesgue measure is characterized up
to normalization as the unique Borel measure that is simultaneously
• locally finite, i.e. every point of Rd has an open neighbourhood of finite
Lebesgue measure;
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• strictly positive, i.e. every open subset ofRd has strictly positive Lebesgue
measure; and

• translation invariant, i.e. λ(x+E) = λ(E) for all x ∈ R
d and measurable

E ⊆ R
d.

In addition, Lebesgue measure is σ-finite. However, the following theorem
shows that there can be nothing like an infinite-dimensional Lebesgue
measure:

Theorem 2.38. Let μ be a Borel measure on an infinite-dimensional Banach
space V, and, for v ∈ V, let Tv : V → V be the translation map Tv(x) := v+x.
(a) If μ is locally finite and invariant under all translations, then μ is the

trivial (zero) measure.
(b) If μ is σ-finite and quasi-invariant under all translations (i.e. (Tv)∗μ is

equivalent to μ), then μ is the trivial (zero) measure.

Gaussian measures on R
d are defined using a Radon–Nikodým derivative

with respect to Lebesgue measure. To save space, when P is a self-adjoint
and positive-definite matrix or operator on a Hilbert space (see Section 3.3),
write

〈x, y〉P := 〈x, Py〉 ≡ 〈P 1/2x, P 1/2y〉,
‖x‖P :=

√
〈x, x〉P ≡ ‖P 1/2x‖

for the new inner product and norm induced by P .

Definition 2.39. Let m ∈ R
d and let C ∈ R

d×d be symmetric and positive
definite. The Gaussian measure with mean m and covariance C is denoted
N (m,C) and defined by

N (m,C)(E) :=
1√

detC
√
2π

d

∫

E

exp

(

− (x−m) · C−1(x−m)

2

)

dx

:=
1√

detC
√
2π

d

∫

E

exp

(

−1

2
‖x−m‖2C−1

)

dx

for each measurable set E ⊆ R
d. The Gaussian measure γ := N (0, I) is called

the standard Gaussian measure. A Dirac measure δm can be considered as a
degenerate Gaussian measure on R, one with variance equal to zero.

A non-degenerate Gaussian measure is a strictly positive probability mea-
sure on R

d, i.e. it assigns strictly positive mass to every open subset of Rd;
however, unlike Lebesgue measure, it is not translation invariant:

Lemma 2.40 (Cameron–Martin formula). Let μ = N (m,C) be a Gaussian
measure on R

d. Then the push-forward (Tv)∗μ of μ by translation by any
v ∈ R

d, i.e. N (m+ v, C), is equivalent to N (m,C) and

d(Tv)∗μ
dμ

(x) = exp

(

〈v, x −m〉C−1 − 1

2
‖v‖2C−1

)

,
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i.e., for every integrable function f ,

∫

Rd

f(x+ v) dμ(x) =

∫

Rd

f(x) exp

(

〈v, x−m〉C−1 − 1

2
‖v‖2C−1

)

dμ(x).

It is easily verified that the push-forward of N (m,C) by any linear func-
tional � : Rd → R is a Gaussian measure on R, and this is taken as the defining
property of a general Gaussian measure for settings in which, by Theorem
2.38, there may not be a Lebesgue measure with respect to which densities
can be taken:

Definition 2.41. A Borel measure μ on a normed vector space V is said
to be a (non-degenerate) Gaussian measure if, for every continuous linear
functional � : V → R, the push-forward measure �∗μ is a (non-degenerate)
Gaussian measure on R. Equivalently, μ is Gaussian if, for every linear map
T : V → R

d, T∗μ = N (mT , CT ) for some mT ∈ R
d and some symmetric

positive-definite CT ∈ R
d×d.

Definition 2.42. Let μ be a probability measure on a Banach space V . An
element mμ ∈ V is called the mean of μ if

∫

V
〈� |x−mμ〉dμ(x) = 0 for all � ∈ V ′,

so that
∫
V xdμ(x) = mμ in the sense of a Pettis integral. If mμ = 0, then μ is

said to be centred. The covariance operator is the self-adjoint (i.e. conjugate-
symmetric) operator Cμ : V ′ × V ′ → K defined by

Cμ(k, �) =

∫

V
〈k |x−mμ〉〈� |x−mμ〉dμ(x) for all k, � ∈ V ′.

We often abuse notation and write Cμ : V ′ → V ′′ for the operator defined by

〈Cμk | �〉 := Cμ(k, �)

In the case that V = H is a Hilbert space, it is usual to employ the Riesz
representation theorem to identify H with H′ and H′′ and hence treat Cμ as
a linear operator from H into itself. The inverse of Cμ, if it exists, is called
the precision operator of μ.

The covariance operator of a Gaussian measure is closely connected to its
non-degeneracy:

Theorem 2.43 (Vakhania, 1975). Let μ be a Gaussian measure on a
separable, reflexive Banach space V with mean mμ ∈ V and covariance
operator Cμ : V ′ → V. Then the support of μ is the affine subspace of V that
is the translation by the mean of the closure of the range of the covariance
operator, i.e.

supp(μ) = mμ + CμV ′.
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Corollary 2.44. For a Gaussian measure μ on a separable, reflexive Banach
space V, the following are equivalent:
(a) μ is non-degenerate;
(b) Cμ : V ′ → V is one-to-one;
(c) CμV ′ = V.
Example 2.45. Consider a Gaussian random variable X = (X1, X2) ∼ μ
taking values in R

2. Suppose that the mean and covariance of X (or, equiv-
alently, μ) are, in the usual basis of R2,

m =

[
0

1

]

C =

[
1 0

0 0

]

.

Then X = (Z, 1), where Z ∼ N (0, 1) is a standard Gaussian random variable
on R; the values of X all lie on the affine line L := {(x1, x2) ∈ R

2 | x2 = 1}.
Indeed, Vakhania’s theorem says that

supp(μ) = m+ C(R2) =

[
0

1

]

+

{[
x1

0

] ∣
∣
∣
∣
∣
x1 ∈ R

}

= L.

Gaussian measures can also be identified by reference to their Fourier
transforms:

Theorem 2.46. A probability measure μ on V is a Gaussian measure if and
only if its Fourier transform μ̂ : V ′ → C satisfies

μ̂(�) :=

∫

V
ei〈� | x〉 dμ(x) = exp

(

i〈� |m〉 − Q(�)

2

)

for all � ∈ V ′.

for some m ∈ V and some positive-definite quadratic form Q on V ′. Indeed, m
is the mean of μ and Q(�) = Cμ(�, �). Furthermore, if two Gaussian measures
μ and ν have the same mean and covariance operator, then μ = ν.

Not only does a Gaussian measure have a well-defined mean and variance,
it in fact has moments of all orders:

Theorem 2.47 (Fernique, 1970). Let μ be a centred Gaussian measure on
a separable Banach space V. Then there exists α > 0 such that

∫

V
exp(α‖x‖2) dμ(x) < +∞.

A fortiori, μ has moments of all orders: for all k ≥ 0,
∫

V
‖x‖k dμ(x) < +∞.

The covariance operator of a Gaussian measure on a Hilbert space H is
a self-adjoint operator from H into itself. A classification of exactly which
self-adjoint operators on H can be Gaussian covariance operators is provided
by the next result, Sazonov’s theorem:
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Definition 2.48. Let K : H → H be a linear operator on a separable Hilbert
space H.
(a) K is said to be compact if it has a singular value decomposition, i.e. if

there exist finite or countably infinite orthonormal sequences (un) and
(vn) in H and a sequence of non-negative reals (σn) such that

K =
∑

n

σn〈vn, · 〉un,

with limn→∞ σn = 0 if the sequences are infinite.
(b) K is said to be trace class or nuclear if

∑
n σn is finite, and Hilbert–

Schmidt or nuclear of order 2 if
∑

n σ
2
n is finite.

(c) If K is trace class, then its trace is defined to be

tr(K) :=
∑

n

〈en,Ken〉

for any orthonormal basis (en) of H, and (by Lidskĭı’s theorem) this
equals the sum of the eigenvalues of K, counted with multiplicity.

Theorem 2.49 (Sazonov, 1958). Let μ be a centred Gaussian measure on a
separable Hilbert space H. Then Cμ : H → H is trace class and

tr(Cμ) =

∫

H
‖x‖2 dμ(x).

Conversely, if K : H → H is positive, self-adjoint and of trace class, then
there is a Gaussian measure μ on H such that Cμ = K.

Sazonov’s theorem is often stated in terms of the square root C
1/2
μ of Cμ:

C
1/2
μ is Hilbert–Schmidt, i.e. has square-summable singular values (σn)n∈N.
As noted above, even finite-dimensional Gaussian measures are not invari-

ant under translations, and the change-of-measure formula is given by Lemma
2.40. In the infinite-dimensional setting, it is not even true that translation
produces a new measure that has a density with respect to the old one. This
phenomenon leads to an important object associated with any Gaussian mea-
sure, its Cameron–Martin space:

Definition 2.50. Let μ = N (m,C) be a Gaussian measure on a Banach
space V . The Cameron–Martin space is the Hilbert space Hμ defined equiv-
alently by:
• Hμ is the completion of

{
h ∈ V ∣

∣ for some h∗ ∈ V ′, C(h∗, · ) = 〈 · |h〉}

with respect to the inner product 〈h, k〉μ := C(h∗, k∗).
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• Hμ is the completion of the range of the covariance operator C : V ′ → V
with respect to this inner product (cf. the closure with respect to the
norm in V in Theorem 2.43).

• If V is Hilbert, then Hμ is the completion of ranC1/2 with the inner
product 〈h, k〉C−1 := 〈C−1/2h,C−1/2k〉V .

• Hμ is the set of all v ∈ V such that (Tv)∗μ ≈ μ, with

d(Tv)∗μ
dμ

(x) = exp

(

〈v, x〉C−1 − ‖v‖2C−1

2

)

as in Lemma 2.40.
• Hμ is the intersection of all linear subspaces of V that have full μ-measure.�
By Theorem 2.38, if μ is any probability measure (Gaussian or otherwise)

on an infinite-dimensional space V , then we certainly cannot have Hμ = V .
In fact, one should think of Hμ as being a very small subspace of V : if Hμ

is infinite dimensional, then μ(Hμ) = 0. Also, infinite-dimensional spaces
have the extreme property that Gaussian measures on such spaces are either
equivalent or mutually singular — there is no middle ground in the way that
Lebesgue measure on [0, 1] has a density with respect to Lebesgue measure
on R but is not equivalent to it.

Theorem 2.51 (Feldman–Hájek). Let μ, ν be Gaussian probability measures
on a normed vector space V. Then either
• μ and ν are equivalent, i.e. μ(E) = 0 ⇐⇒ ν(E) = 0, and hence each
has a strictly positive density with respect to the other; or

• μ and ν are mutually singular, i.e. there exists E such that μ(E) = 0 and
ν(E) = 1, and so neither μ nor ν can have a density with respect to the
other.

Furthermore, equivalence holds if and only if

(a) ranC
1/2
μ = ranC

1/2
ν ;

(b) mμ −mν ∈ ranC
1/2
μ = ranC

1/2
ν ; and

(c) T := (C
−1/2
μ C

1/2
ν )(C

−1/2
μ C

1/2
ν )∗ − I is Hilbert–Schmidt in ranC

1/2
μ .

The Cameron–Martin and Feldman–Hájek theorems show that translation
by any vector not in the Cameron–Martin space Hμ ⊆ V produces a new
measure that is mutually singular with respect to the old one. It turns out
that dilation by a non-unitary constant also destroys equivalence:

Proposition 2.52. Let μ be a centred Gaussian measure on a separable real
Banach space V such that dimHμ = ∞. For c ∈ R, let Dc : V → V be the
dilation map Dc(x) := cx. Then (Dc)∗μ is equivalent to μ if and only if
c ∈ {±1}, and (Dc)∗μ and μ are mutually singular otherwise.

Remark 2.53. There is another attractive viewpoint on Gaussian measures
on Hilbert spaces, namely that draws from a Gaussian measure N (m,C) on
a Hilbert space are the same as draws from random series of the form
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m+
∑

k∈N

√
λkξkψk,

where {ψk}k∈N are orthonormal eigenvectors for the covariance operator C,
{λk}k∈N are the corresponding eigenvalues, and {ξk}k∈N are independent
draws from the standard normal distribution N (0, 1) on R. This point of view
will be revisited in more detail in Section 11.1 in the context of Karhunen–
Loève expansions of Gaussian and Besov measures.

The conditioning properties of Gaussian measures can easily be expressed
using an elementary construction from linear algebra, the Schur complement.
This result will be very useful in Chapters 6, 7, and 13.

Theorem 2.54 (Conditioning of Gaussian measures). Let H = H1⊕H2 be a
direct sum of separable Hilbert spaces. Let X = (X1, X2) ∼ μ be an H-valued
Gaussian random variable with mean m = (m1,m2) and positive-definite
covariance operator C. For i, j = 1, 2, let

Cij(ki, kj) := Eμ

[
〈ki, x−mi〉〈kj , x−mj〉

]
(2.6)

for all ki ∈ Hi, kj ∈ Hj, so that C is decomposed2 in block form as

C =

[
C11 C12

C21 C22

]

; (2.7)

in particular, the marginal distribution of Xi is N (mi, Cii), and C21 = C∗
12.

Then C22 is invertible and, for each x2 ∈ H2, the conditional distribution of
X1 given X2 = x2 is Gaussian:

(X1|X2 = x2) ∼ N (
m1 + C12C

−1
22 (x2 −m2), C11 − C12C

−1
22 C21

)
. (2.8)

2.8 Interpretations of Probability

It is worth noting that the above discussions are purely mathematical: a
probability measure is an abstract algebraic–analytic object with no neces-
sary connection to everyday notions of chance or probability. The question
of what interpretation of probability to adopt, i.e. what practical meaning
to ascribe to probability measures, is a question of philosophy and math-
ematical modelling. The two main points of view are the frequentist and
Bayesian perspectives. To a frequentist, the probability μ(E) of an event E
is the relative frequency of occurrence of the event E in the limit of infinitely
many independent but identical trials; to a Bayesian, μ(E) is a numerical

2 Here we are again abusing notation to conflate Cij : Hi ⊕Hj → K defined in (2.6) with
Cij : Hj → Hi given by 〈Cij (kj), ki〉Hi

= Cij(ki, kj).
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representation of one’s degree of belief in the truth of a proposition E. The
frequentist’s point of view is objective; the Bayesian’s is subjective; both use
the same mathematical machinery of probability measures to describe the
properties of the function μ.

Frequentists are careful to distinguish between parts of their analyses that
are fixed and deterministic versus those that have a probabilistic character.
However, for a Bayesian, any uncertainty can be described in terms of a
suitable probability measure. In particular, one’s beliefs about some unknown
θ (taking values in a space Θ) in advance of observing data are summarized
by a prior probability measure π on Θ. The other ingredient of a Bayesian
analysis is a likelihood function, which is up to normalization a conditional
probability: given any observed datum y, L(y|θ) is the likelihood of observing
y if the parameter value θ were the truth. A Bayesian’s belief about θ given
the prior π and the observed datum y is the posterior probability measure
π( · |y) on Θ, which is just the conditional probability

π(θ|y) = L(y|θ)π(θ)
Eπ[L(y|θ)] =

L(y|θ)π(θ)
∫
Θ L(y|θ) dπ(θ)

or, written in a way that generalizes better to infinite-dimensional Θ, we have
a density/Radon–Nikodým derivative

dπ( · |y)
dπ

(θ) ∝ L(y|θ).

Both the previous two equations are referred to as Bayes’ rule, and are at
this stage informal applications of the standard Bayes’ rule (Theorem 2.10)
for events A and B of non-zero probability.

Example 2.55. Parameter estimation provides a good example of the philo-
sophical difference between frequentist and subjectivist uses of probability.
Suppose that X1, . . . , Xn are n independent and identically distributed ob-
servations of some random variable X , which is distributed according to the
normal distribution N (θ, 1) of mean θ and variance 1. We set our frequen-
tist and Bayesian statisticians the challenge of estimating θ from the data
d := (X1, . . . , Xn).
(a) To the frequentist, θ is a well-defined real number that happens to be

unknown. This number can be estimated using the estimator

θ̂n :=
1

n

n∑

i=1

Xi,

which is a random variable. It makes sense to say that θ̂n is close to θ
with high probability, and hence to give a confidence interval for θ, but
θ itself does not have a distribution.
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(b) To the Bayesian, θ is a random variable, and its distribution in advance
of seeing the data is encoded in a prior π. Upon seeing the data and
conditioning upon it using Bayes’ rule, the distribution of the parameter
is the posterior distribution π(θ|d). The posterior encodes everything that
is known about θ in view of π, L(y|θ) ∝ e−|y−θ|2/2 and d, although this
information may be summarized by a single number such as the maximum
a posteriori estimator

θ̂MAP := argmax
θ∈R

π(θ|d)

or the maximum likelihood estimator

θ̂MLE := argmax
θ∈R

L(d|θ).

The Bayesian perspective can be seen as the natural extension of classical
Aristotelian bivalent (i.e. true-or-false) logic to propositions of uncertain
truth value. This point of view is underwritten by Cox’s theorem (Cox,
1946, 1961), which asserts that any ‘natural’ extension of Aristotelian logic to
R-valued truth values is probabilistic, and specifically Bayesian, although the
‘naturality’ of the hypotheses has been challenged by, e.g., Halpern (1999a,b).

It is also worth noting that there is a significant community that, in
addition to being frequentist or Bayesian, asserts that selecting a single
probability measure is too precise a description of uncertainty. These ‘imp-
recise probabilists’ count such distinguished figures as George Boole and
John Maynard Keynes among their ranks, and would prefer to say that
1
2 − 2−100 ≤ P[heads] ≤ 1

2 + 2−100 than commit themselves to the assertion
that P[heads] = 1

2 ; imprecise probabilists would argue that the former asser-
tion can be verified, to a prescribed level of confidence, in finite time, whereas
the latter cannot. Techniques like the use of lower and upper probabilities (or
interval probabilities) are popular in this community, including sophisticated
generalizations like Dempster–Shafer theory; one can also consider feasible
sets of probability measures, which is the approach taken in Chapter 14.
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of Boole (1854) and Keynes (1921). More recent foundations and expositions
for imprecise probability have been put forward by Walley (1991), Kuznetsov
(1991), Weichselberger (2000), and by Dempster (1967) and Shafer (1976).

A general introduction to the theory of Gaussian measures is the book of
Bogachev (1998); a complementary viewpoint, in terms of Gaussian stochastic
processes, is presented by Rasmussen and Williams (2006).

The non-existence of an infinite-dimensional Lebesgue measure, and rel-
ated results, can be found in the lectures of Yamasaki (1985, Part B, Chap-
ter 1, Section 5). The Feldman–Hájek dichotomy (Theorem 2.51) was proved
independently by Feldman (1958) and Hájek (1958), and can also be found
in the book of Da Prato and Zabczyk (1992, Theorem 2.23).

2.10 Exercises

Exercise 2.1. Let X be any C
n-valued random variable with mean m ∈ C

n

and covariance matrix

C := E

[
(X −m)(X −m)∗

] ∈ C
n×n.

(a) Show that C is conjugate-symmetric and positive semi-definite. For what
collection of vectors in C

n is C the Gram matrix?
(b) Show that if the support of X is all of Cn, then C is positive definite.

Hint: suppose that C has non-trivial kernel, construct an open half-space
H of Cn such that X /∈ H almost surely.
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Exercise 2.2. LetX be any random variable taking values in a Hilbert space
H, with mean m ∈ H and covariance operator C : H×H → C defined by

C(h, k) := E

[
〈h,X −m〉〈k,X −m〉

]

for h, k ∈ H. Show that C is conjugate-symmetric and positive semi-definite.
Show also that if there is no subspace S ⊆ H with dimS ≥ 1 such that
X ⊥ S with probability one), then C is positive definite.

Exercise 2.3. Prove the finite-dimensional Cameron–Martin formula of
Lemma 2.40. That is, let μ = N (m,C) be a Gaussian measure on R

d and
let v ∈ R

d, and show that the push-forward of μ by translation by v, namely
N (m+ v, C), is equivalent to μ and

d(Tv)∗μ
dμ

(x) = exp

(

〈v, x −m〉C−1 − 1

2
‖v‖2C−1

)

,

i.e., for every integrable function f ,

∫

Rd

f(x+ v) dμ(x) =

∫

Rd

f(x) exp

(

〈v, x−m〉C−1 − 1

2
‖v‖2C−1

)

dμ(x).

Exercise 2.4. Let T : H → K be a bounded linear map between Hilbert
spaces H and K, with adjoint T ∗ : K → H, and let μ = N (m,C) be a Gaus-
sian measure on H. Show that the push-forward measure T∗μ is a Gaussian
measure on K and that T∗μ = N (Tm, TCT ∗).

Exercise 2.5. For i = 1, 2, let Xi ∼ N (mi, Ci) independent Gaussian
random variables taking values in Hilbert spaces Hi, and let Ti : Hi → K be
a bounded linear map taking values in another Hilbert space K, with adjoint
T ∗
i : K → Hi. Show that T1X1 + T2X2 is a Gaussian random variable in K

with
T1X1 + T2X2 ∼ N (

T1m1 + T2m2, T1C1T
∗
1 + T2C2T

∗
2

)
.

Give an example to show that the independence assumption is necessary.

Exercise 2.6. Let H and K be Hilbert spaces. Suppose that A : H → H and
C : K → K are self-adjoint and positive definite, that B : H → K, and that
D : K → K is self-adjoint and positive semi-definite. Show that the operator
from H⊕K to itself given in block form by

[
A+B∗CB −B∗C

−CB C +D

]

is self-adjoint and positive-definite.

Exercise 2.7 (Inversion lemma). Let H and K be Hilbert spaces, and let
A : H → H, B : K → H, C : H → K, and D : K → K be linear maps. Define
M : H⊕K → H⊕K in block form by
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M =

[
A B

C D

]

.

Show that if A, D, A−BD−1C and D − CA−1B are all non-singular, then

M−1 =

[
A−1 +A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

]

and

M−1 =

[
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1

]

.

Hence derive the Woodbury formula

(A+BD−1C)−1 = A−1 −A−1B(D + CA−1B)−1CA−1. (2.9)

Exercise 2.8. Exercise 2.7 has a natural interpretation in terms of the con-
ditioning of Gaussian random variables. Let (X,Y ) ∼ N (m,C) be jointly
Gaussian, where, in block form,

m =

[
m1

m2

]

, C =

[
C11 C12

C∗
12 C22

]

,

and C is self-adjoint and positive definite.
(a) Show that C11 and C22 are self-adjoint and positive-definite.
(b) Show that the Schur complement S defined by S := C11 −C12C

−1
22 C∗

12 is
self-adjoint and positive definite, and

C−1 =

[
S−1 −S−1C12C

−1
22

−C−1
22 C∗

12S
−1 C−1

22 + C−1
22 C∗

12S
−1C12C

−1
22

]

.

(c) Hence prove Theorem 2.54, that the conditional distribution of X given
that Y = y is Gaussian:

(X |Y = y) ∼ N (
m1 + C12C

−1
22 (y −m2), S

)
.
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