
Chapter 13

Non-Intrusive Methods

[W]hen people thought the Earth was flat,
they were wrong. When people thought the
Earth was spherical, they were wrong. But if
you think that thinking the Earth is spherical
is just as wrong as thinking the Earth is flat,
then your view is wronger than both of them
put together.

The Relativity of Wrong
Isaac Asimov

Chapter 12 considers a spectral approach to UQ, namely Galerkin expansion,
that is mathematically very attractive in that it is a natural extension of the
Galerkin methods that are commonly used for deterministic PDEs and (up
to a constant) minimizes the stochastic residual, but has the severe disad-
vantage that the stochastic modes of the solution are coupled together by a
large system such as (12.15). Hence, the Galerkin formalism is not suitable for
situations in which deterministic solutions are slow and expensive to obtain,
and the deterministic solution method cannot be modified. Many so-called
legacy codes are not amenable to such intrusive methods of UQ.

In contrast, this chapter considers non-intrusive spectral methods for UQ.
These are characterized by the feature that the solution U(θ) of the deter-
ministic problem is a ‘black box’ that does not need to be modified for use
in the spectral method, beyond being able to be evaluated at any desired
point θ of the probability space (Θ,F , μ). Indeed, sometimes, it is necessary
to go one step further than this and consider the case of legacy data, i.e. an
archive or data set of past input-output pairs {(θn, U(θn)) | n = 1, . . . , N},
sampled according to a possibly unknown or sub-optimal strategy, that is
provided ‘as is’ and that cannot be modified or extended at all: the reasons
for such restrictions may range from financial or practical difficulties to legal
and ethical concerns.
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278 13 Non-Intrusive Methods

There is a substantial overlap between non-intrusive methods for UQ and
deterministic methods for interpolation and approximation as discussed in
Chapter 8. However, this chapter additionally considers the method of Gaus-
sian process regression (also known as kriging), which produces a probabilis-
tic prediction of U(θ) away from the data set, including a variance-based
measure of uncertainty in that prediction.

13.1 Non-Intrusive Spectral Methods

One class of non-intrusive UQ methods is the family of non-intrusive spectral
methods, namely the determination of approximate spectral coefficients, e.g.
polynomial chaos coefficients, of an uncertain quantity U . The distinguishing
feature here, in contrast to the approximate spectral coefficients calculated in
Chapter 12, is that realizations of U are used directly. A good mental model
is that the realizations of U will be used as evaluations in a quadrature rule,
to determine an approximate orthogonal projection onto a finite-dimensional
subspace of the stochastic solution space. For this reason, these methods are
sometimes called non-intrusive spectral projection (NISP).

Consider a square-integrable stochastic process U : Θ → U taking values
in a separable Hilbert space1 U , with a spectral expansion

U =
∑

k∈N0

ukΨk

of U ∈ L2(Θ, μ;U) ∼= U ⊗ L2(Θ, μ;R) in terms of coefficients (stochastic
modes) uk ∈ U and an orthogonal basis {Ψk | k ∈ N0} of L2(Θ, μ;R). As
usual, the stochastic modes are given by

uk =
〈UΨk〉
〈Ψ2

k 〉
=

1

γk

∫

Θ

U(θ)Ψk(θ) dμ(θ). (13.1)

If the normalization constants γk := 〈Ψ2
k 〉 ≡ ‖Ψk‖2L2(μ) are known ahead of

time, then it remains only to approximate the integral with respect to μ of
the product of U with each basis function Ψk; in some cases, the normal-
ization constants must also be approximated. In any case, the aim is to use
realizations of U to determine approximate stochastic modes ũk ∈ U , with
ũk ≈ uk, and hence an approximation

Ũ :=
∑

k∈N0

ũkΨk ≈ U.

Such a stochastic process Ũ is sometimes called a surrogate or emulator for
the original process U .

1 As usual, readers will lose little by assuming that U = R on a first reading. Later, U
should be thought of as a non-trivial space of time- and space-dependent fields, so that
U(t, x; θ) =

∑
k∈N0

(t, x)Ψk(θ).
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Deterministic Quadrature. If the dimension of Θ is low and U(θ) is rela-
tively smooth as a function of θ, then an appealing approach to the estima-
tion of 〈UΨk〉 is deterministic quadrature. For optimal polynomial accuracy,
Gaussian quadrature (i.e. nodes at the roots of μ-orthogonal polynomials)
may be used. In practice, nested quadrature rules such as Clenshaw–Curtis
may be preferable since one does not wish to have to discard past solutions
of U upon passing to a more accurate quadrature rule. For multi-dimensional
domains of integration Θ, sparse quadrature rules may be used to partially
alleviate the curse of dimension.

Note that, if the basis elements Ψk are polynomials, then the normalization
constant γk := 〈Ψ2

k 〉 can be evaluated numerically but with zero quadrature
error by Gaussian quadrature with at least (k + 1)/2 nodes.

Monte Carlo and Quasi-Monte Carlo Integration. If the dimension
of Θ is high, or U(θ) is a non-smooth function of θ, then it is tempting
to resort to Monte Carlo approximation of 〈UΨk〉. This approach is also
appealing because the calculation of the stochastic modes uk can be writ-
ten as a straightforward (but often large) matrix-matrix multiplication. The
problem with Monte Carlo methods, as ever, is the slow convergence rate of
∼ (number of samples)−1/2; quasi-Monte Carlo quadrature may be used to
improve the convergence rate for smoother integrands.

Connection with Linear Least Squares. There is a close connection
between least-squares minimization and the determination of approximate
spectral coefficients via quadrature (be it deterministic or stochastic). Let
basis functions Ψ0, . . . , ΨK and nodes θ1, . . . , θN be given, and let

V :=

⎡

⎢⎢⎣

Ψ0(θ1) · · · ΨK(θ1)
...

. . .
...

Ψ0(θN ) · · · ΨK(θN )

⎤

⎥⎥⎦ ∈ R
N×(K+1) (13.2)

be the associated Vandermonde-like matrix. Also, let Q(f) :=
∑N

n=1 wnf(θn)
be an N -point quadrature rule using the nodes θ1, . . . , θN , and let W :=
diag(w1, . . . , wN ) ∈ R

N×N . For example, if the θn are i.i.d. draws from the
measure μ on Θ, then

w1 = · · · = wN =
1

N

corresponds to the ‘vanilla’ Monte Carlo quadrature rule Q.

Theorem 13.1. Given observed data yn := U(θn) for n = 1, . . . , N , and y =
[y1, . . . , yN ], the following statements about approximate spectral coefficients

ũ = (ũ0, . . . , ũK) for Ũ :=
∑K

k=0 ũkΨk are equivalent:

(a) Ũ minimizes the weighted sum of squared residuals

R2 :=

N∑

n=1

wn

∣∣Ũ(θn)− yn
∣∣2;
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(b) ũ satisfies

V TWV ũ = V TWyT; (13.3)

(c) Ũ = U in the weak sense, tested against Ψ0, . . . , ΨK using the quadrature
rule Q, i.e., for k = 0, . . . ,K,

Q
(
ΨkŨ

)
= Q

(
ΨkU

)
.

Proof. Since

V ũ =

⎡

⎢⎢⎣

Ũ(θ1)
...

Ũ(θN )

⎤

⎥⎥⎦ ,

the weighted sum of squared residuals
∑N

n=1 wn

∣∣Ũ(θn)−yn
∣∣2 for approximate

model Ũ equals ‖V ũ − yT‖2W . By Theorem 4.28, this function of ũ is mini-
mized if and only if ũ satisfies the normal equations (13.3), which shows that
(a) ⇐⇒ (b). Explicit calculation of the left- and right-hand sides of (13.3)
yields

N∑

n=1

wn

⎡

⎢⎢⎣

Ψ0(θn)Ũ(θn)
...

ΨK(θn)Ũ(θn)

⎤

⎥⎥⎦ =
N∑

n=1

wn

⎡

⎢⎢⎣

Ψ0(θn)yn
...

ΨK(θn)yn

⎤

⎥⎥⎦ ,

which shows that (b) ⇐⇒ (c) �
Note that the matrix V TWV on the left-hand side of (13.3) is

V TWV =

⎡

⎢⎢⎣

Q(Ψ0Ψ0) · · · Q(Ψ0ΨK)
...

. . .
...

Q(ΨKΨ0) · · · Q(ΨKΨK)

⎤

⎥⎥⎦ ∈ R
(K+1)×(K+1),

i.e. is the Gram matrix of the basis functions Ψ0, . . . , ΨK with respect to the
quadrature rule Q’s associated inner product. Therefore, if the quadrature
rule Q is one associated to μ (e.g. a Gaussian quadrature formula for μ, or a
Monte Carlo quadrature with i.i.d. θn ∼ μ), then V TWV will be an approx-
imation to the Gram matrix of the basis functions Ψ0, . . . , ΨK in the L2(μ)
inner product. In particular, dependent upon the accuracy of the quadrature
rule Q, we will have V TWV ≈ diag(γ0, . . . , γK), and then

ũk ≈ Q(ΨkU)

γk
,

i.e. ũk approximately satisfies the orthogonal projection condition (13.1)
satisfied by uk.
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In practice, when given {θn}Nn=1 that are not necessarily associated with
some quadrature rule for μ, along with corresponding output values {yn :=
U(θn)}Nn=1, it is common to construct approximate stochastic modes and

hence an approximate spectral expansion Ũ by choosing ũ0, . . . ũk to minimize
the some weighted sum of squared residuals, i.e. according to (13.3).

Conversely, one can engage in the design of experiments — i.e. the selection
of {θn}Nn=1 — to optimize some derived quantity of the matrix V ; common
choices include
• A-optimality, in which the trace of (V TV )−1 is minimized;
• D-optimality, in which the determinant of V TV is maximized;
• E-optimality, in which the least singular value of V TV is maximized; and
• G-optimality, in which the largest diagonal term in the orthogonal pro-
jection V (V TV )−1V T ∈ R

N×N is minimized.

Remark 13.2. The Vandermonde-like matrix V from (13.2) is often ill-
conditioned, i.e. has singular values of hugely different magnitudes. Often, this
is a property of the normalization constants of the basis functions {Ψk}Kk=0.
As can be seen from Table 8.2, many of the standard families of orthogonal
polynomials have normalization constants ‖ψk‖L2 that tend to 0 or to ∞
as k → ∞. A tensor product system {ψα}α∈Nd

0
of multivariate orthogonal

polynomials, as in Theorem 8.25, might well have

lim inf
|α|→∞

‖ψα‖L2 = 0 and lim sup
|α|→∞

‖ψα‖L2 = ∞;

this phenomenon arises in, for example, the products of the Legendre and
Hermite, or the Legendre and Charlier, bases. Working with orthonormal
bases, or using preconditioners, alleviates the difficulties caused by such ill-
conditioned matrices V .

Remark 13.3. In practice, the following sources of error arise when com-
puting non-intrusive approximate spectral expansions in the fashion outlined
in this section:
(a) discretization error comes about through the approximation of U by a

finite-dimensional subspace UM , i.e. the approximation the stochastic
modes uk by a finite sum uk ≈ ∑M

m=1 ukmφm, where {φm | m ∈ N} is
some basis for U ;

(b) truncation error comes about through the truncation of the spectral

expansion for U after finitely many terms, i.e. U ≈ ∑K
k=0 ukΨk;

(c) quadrature error comes about through the approximate nature of the
numerical integration scheme used to find the stochastic modes; classical
statistical concerns about the unbiasedness of estimators for expected
values fall into this category. The choice of integration nodes contributes
greatly to this source of error.

A complete quantification of the uncertainty associated with predictions of U
made using a truncated non-intrusively constructed spectral stochastic model
Ũ :=

∑K
k=0 ũkΨk requires an understanding of all three of these sources of
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error, and there is necessarily some tradeoff among them when trying to give
‘optimal’ predictions for a given level of computational and experimental cost.

Remark 13.4. It often happens in practice that the process U is not initially
defined on the same probability space as the gPC basis functions, in which
case some appropriate changes of variables must be used. In particular, this
situation can arise if we are given an archive of legacy data values of U
without the corresponding inputs. See Exercise 13.5 for a discussion of these
issues in the example setting of Gaussian mixtures.

Example 13.5. Consider again the simple harmonic oscillator

Ü(t) = −Ω2U(t)

with the initial conditions U(0) = 1, U̇(0) = 0. Suppose that Ω ∼
Unif([0.8, 1.2]), so that Ω = 1.0 + 0.2Ξ, where Ξ ∼ Unif([−1, 1]) is the
stochastic germ, with its associated Legendre basis polynomials. Figure 13.1
shows the evolution of the approximate stochastic modes for U , calculated
using N = 1000 i.i.d. samples of Ξ and the least squares approach of The-
orem 13.1. As in previous examples of this type, the forward solution of the
ODE is performed using a symplectic integrator with time step 0.01.

Note that many standard computational algebra routines, such as Python’s
numpy.linalg.lstsq, will solve the all the least squares problems of finding
{ũk(ti)}Kk=0 for all time points ti in a vectorized manner. That is, it is not nec-
essary to call numpy.linalg.lstsq with matrix V and data {U(t0, ωn)}Nn=1

to obtain {ũk(t0)}Kk=0, and then do the same for t1, etc. Instead, all the data
{U(ti, ωn) | n = 1, . . . , N ; i ∈ N0} can be supplied at once as a matrix,
yielding a matrix {ũk(ti) | k = 0, . . . ,K; i ∈ N0}.

13.2 Stochastic Collocation

Collocation methods for ordinary and partial differential equations are
another form of interpolation. The idea is to find a low-dimensional object —
usually a polynomial — that approximates the true solution to the differential
equation by means of exactly satisfying the differential equation at a selected
set of points, called collocation points or collocation nodes. An important
feature of the collocation approach is that an approximation is constructed
not on a pre-defined stochastic subspace, but instead uses interpolation, and
hence both the approximation and the approximation space are implicitly
prescribed by the collocation nodes. As the number of collocation nodes inc-
reases, the space in which the solution is sought becomes correspondingly
larger.
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k=0 ũk(t)Lek .

a

b

Fig. 13.1: The degree-10 Legendre PC NISP solution to the simple harmonic
oscillator equation of Example 13.5 with Ω ∼ Unif([0.8, 1.2]).
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Example 13.6 (Collocation for an ODE). Consider, for example, the initial
value problem

u̇(t) = f(t, u(t)), for t ∈ [a, b]

u(a) = ua,

to be solved on an interval of time [a, b]. Choose n points

a ≤ t1 < t2 < · · · < tn ≤ b,

called collocation nodes. Now find a polynomial p(t) ∈ R≤n[t] so that the
ODE

ṗ(tk) = f(tk, p(tk))

is satisfied for k = 1, . . . , n, as is the initial condition p(a) = ua. For example,
if n = 2, t1 = a and t2 = b, then the coefficients c2, c1, c0 ∈ R of the
polynomial approximation

p(t) =

2∑

k=0

ck(t− a)k,

which has derivative ṗ(t) = 2c2(t− a) + c1, are required to satisfy

ṗ(a) = c1 = f(a, p(a))

ṗ(b) = 2c2(b − a) + c1 = f(b, p(b))

p(a) = c0 = ua

i.e.

p(t) =
f(b, p(b))− f(a, ua)

2(b− a)
(t− a)2 + f(a, ua)(t− a) + ua.

The above equation implicitly defines the final value p(b) of the collocation
solution. This method is also known as the trapezoidal rule for ODEs, since
the same solution is obtained by rewriting the differential equation as

u(t) = u(a) +

∫ t

a

f(s, u(s)) ds

and approximating the integral on the right-hand side by the trapezoidal
quadrature rule for integrals.

It should be made clear at the outset that there is nothing stochastic about
‘stochastic collocation’, just as there is nothing chaotic about ‘polynomial
chaos’. The meaning of the term ‘stochastic’ in this case is that the colloca-
tion principle is being applied across the ‘stochastic space’ (i.e. the proba-
bility space) of a stochastic process, rather than the space/time/space-time
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domain. That is, for a stochastic process U with known values U(θn) at known

collocation points θ1, . . . , θN ∈ Θ, we seek an approximation Ũ such that

Ũ(θn) = U(θn) for n = 1, . . . , N .

There is, however, some flexibility in how to approximate Uθ) for θ �=
θ1, . . . , θN .

Example 13.7. Consider, for example, the random PDE

Lθ[U(x, θ)] = 0 for x ∈ X , θ ∈ Θ,

Bθ[U(x, θ)] = 0 for x ∈ ∂X , θ ∈ Θ,

where, for μ-a.e. θ in some probability space (Θ,F , μ), the differential ope-
rator Lθ and boundary operator Bθ are well defined and the PDE admits
a unique solution U( · , θ) : X → R. The solution U : X × Θ → R is then a
stochastic process. We now let ΘM := {θ1, . . . , θM} ⊆ Θ be a finite set of
prescribed collocation nodes. The collocation problem is to find a collocation
solution Ũ , an approximation to the exact solution U , that satisfies

Lθm

[
Ũ
(
x, θm

)]
= 0 for x ∈ X ,

Bθm

[
Ũ
(
x, θm

)]
= 0 for x ∈ ∂X ,

for m = 1, . . . ,M .

Interpolation Approach. An obvious first approach is to use interpolating
polynomials when they are available. This is easiest when the stochastic space
Θ is one-dimensional, in which case the Lagrange basis polynomials of a given
nodal set are an attractive choice of interpolation basis. As always, though,
care must be taken to use nodal sets that will not lead to Runge oscillations; if
there is very little a priori information about the process U , then constructing
a ‘good’ nodal set may be a matter of trial and error. In general, the choice
of collocation nodes is a significant contributor to the error and uncertainty
in the resulting predictions.

Given the values U(θ1), . . . , U(θN ) of U at nodes θ1, . . . , θN in a one-
dimensional space Θ, the (Lagrange-form polynomial interpolation) colloca-

tion approximation Ũ to U is given by

Ũ(θ) =
N∑

n=1

U(θn)�n(θ) =
N∑

n=1

U(θn)
∏

1≤k≤N
k �=n

θ − θk
θn − θk

.

Example 13.8. Figure 13.2 shows the results of the interpolation-collocation
approach for the simple harmonic oscillator equation considered earlier, again
for ω ∈ [0.8, 1.2]. Two nodal sets ω1, . . . , ωN ∈ R are considered: uniform
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nodes, and Chebyshev nodes. In order to make the differences between the
two solutions more easily visible, only N = 4 nodes are used.

The collocation solution Ũ( · , ωn) at each of the collocation nodes ωn is
the solution of the deterministic problem

d2

dt2
Ũ(t, ωn) = −ω2

nU(t, ωn),

Ũ(0, ωn) = 1,

d

dt
Ũ(0, ωn) = 0.

Away from the collocation nodes, Ũ is defined by polynomial interpolation:
for each t, Ũ(t, ω) is a polynomial in ω of degree at most N with pre-
scribed values at the collocation nodes. Writing this interpolation in terms
of Lagrange basis polynomials

�n(ω;ω1, . . . ωN ) :=
∏

1≤k≤N
k �=n

ω − ωk

ωn − ωk

yields

Ũ(t, ω) =

N∑

n=1

U(t, ωn)�n(ω).

As can be seen in Figure 13.2(c–d), both nodal sets have the undesir-

able property that the approximate solution Ũ(t, ω) has with the undesirable

property that
∣∣Ũ(t, ω)

∣∣ >
∣∣Ũ(0, ω)

∣∣ = 1 for some t > 0 and ω ∈ [0.8, 1.2].

Therefore, for general ω, Ũ(t, ω) is not a solution of the original ODE. How-
ever, as the discussion around Runge’s phenomenon in Section 8.5 would
lead us to expect, the regions in (t, ω)-space where such unphysical values
are attained are smaller with the Chebyshev nodes than the uniformly dis-
tributed ones.

The extension of one-dimensional interpolation methods to the multi-
dimensional case can be handled in a theoretically straightforward manner
using tensor product grids, similar to the constructions used in quadrature.
In tensor product constructions, both the grid of interpolation points and
the interpolation polynomials are products of the associated one-dimensional
objects. Thus, in a product space Θ = Θ1 × · · · ×Θd, we take nodes

θ11 , . . . , θ
1
N1

∈ Θ1

...

θd1 , . . . , θ
d
Nd

∈ Θd
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Fig. 13.2: Interpolation solutions for a simple harmonic oscillator with un-
certain natural frequency ω, U(0, ω) = 1, U̇(0, ω) = 0. Both cases use four
interpolation nodes. Note that the Chebyshev nodes produce smaller regions
in (t, ω)-space with unphysical values

∣∣Ũ(t, ω)
∣∣ > 1.
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and construct a product grid of nodes θn := (θ1n1
, . . . , θdnd

) ∈ Θ, where the
multi-index n = (n1, . . . , nd) runs over {1, . . . , N1} × · · · × {1, . . . , Nd}. The
corresponding interpolation formula, in terms of Lagrange basis polynomials,
is then

Ũ(θ) =

(N1,...,Nd)∑

n=(1,...,1)

U(θn)
d∏

i=1

�ni

(
θi; θi1, . . . , θ

i
Ni

)
.

The problem with tensor product grids for interpolative collocation is the
same as for tensor product quadrature: the curse of dimension, i.e. the large
number of nodes needed to adequately resolve features of functions on high-
dimensional spaces. The curse of dimension can be partially circumvented by
using interpolation through sparse grids, e.g. those of Smolyak type.

Collocation for arbitrary unstructured sets of nodes — such as those that
arise when inheriting an archive of ‘legacy’ data that cannot be modified
or extended for whatever reason — is a notably tricky subject, essentially
because it boils down to polynomial interpolation through an unstructured set
of nodes. Even the existence of interpolating polynomials such as analogues
of the Lagrange basis polynomials is not, in general, guaranteed.

Other Approximation Strategies. There are many other strategies for
the construction of collocation solutions, especially in high dimension, besides
polynomial bases. Common choices include splines and radial basis functions;
see the bibliographic notes at the end of the chapter for references. Another
popular method is Gaussian process regression, which is the topic of the next
section.

13.3 Gaussian Process Regression

The interpolation approaches of the previous section were all deterministic in
two senses: they assume that the values U(θn) are observed exactly, without
error and with perfect reproducibility; they also assume that the correct form
for an interpolated value Ũ(θ) away from the nodal set is a deterministic
function of the nodes and observed values. In many situations in the natural
sciences and commerce, these assumptions are not appropriate. Instead, it
is appropriate to incorporate an estimate of the observational uncertainties,
and to produce probabilistic predictions; this is another area in which the
Bayesian perspective is quite natural.

This section surveys one such method of stochastic interpolation, known
as Gaussian process regression or kriging; as ever, the quite rigid properties
of Gaussian measures hugely simplify the presentation. The essential idea is
that we will model U as a Gaussian random field; the prior information on U
consists of a mean field and a covariance operator, the latter often being given
in practice by a correlation length; the observations of U at discrete points
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are then used to condition the prior Gaussian using Schur complementation,
and thereby produce a posterior Gaussian prediction for the value of U at
any other point.

Noise-Free Observations. Suppose for simplicity that we observe the
values yn := U(θn) exactly, without any observational error. We wish to use
the data {(θn, yn) | n = 1, . . . , N} to make a prediction for the values of U at
other points in the domain Θ. To save space, we will refer to θo = (θ1, . . . , θN )
as the observed points and yo = (y1, . . . , yN) as the observed values ; together,
(θo, yo) constitute the observed data or training set. By way of contrast, we
wish to predict the value(s) yp of U at point(s) θp, referred to as the pre-
diction points or test points. We will abuse notation and write m(θo) for
(m(θ0), . . . ,m(θN )), and so on.

Under the prior assumption that U is a Gaussian random field with known
mean m : Θ → R and known covariance function C : Θ×Θ → R, the random
vector (yo, yp) is a draw from a multivariate Gaussian distribution with mean
(m(θo),m(θp)) and covariance matrix

[
C(θo, θo) C(θo, θp)T

C(θo, θp) C(θp, θp)

]

(Note that in the case of N observed data points and one new value to be
predicted, C(θo, θo) is an N ×N block, C(θp, θp) is 1× 1, and C(θo, θp) is a
1×N ‘row vector’.) By Theorem 2.54, the conditional distribution of U(θp)
given the observations U(θo) = yo is Gaussian, with its mean and variance
given in terms of the Schur complement

S := C(θp, θp)− C(θp, θo)TC(θo, θo)−1C(θo, θp)

by

U(θp)|θo, yo ∼ N (
mp + C(θp, θo)C(θo, θo)−1(yo −m(θo)), S

)
.

This means that, in practice, a draw Ũ(θp) from this conditioned Gaussian
measure would be used as a proxy/prediction for the value U(θp). Note that
S depends only upon the locations of the interpolation nodes θo and θp. Thus,
if variance is to be used as a measure of the precision of the estimate Ũ(θp),
then it will be independent of the observed data yo.

Noisy Observations. The above derivation is very easily adapted to the case
of noisy observations, i.e. yo = U(θo)+η, where η is some random noise vector.
As usual, the Gaussian case is the simplest, and if η ∼ N (0, Γ ), then the net
effect is to replace each occurrence of “C(θo, θo)” above by “Γ + C(θo, θo)”.
In terms of regularization, this is nothing other than quadratic regularization
using the norm ‖ · ‖Γ 1/2 = ‖Γ−1/2 · ‖ on R

N .
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One advantage of regularization, as ever, is that it sacrifices the interpola-
tion property (exactly fitting the data) for better-conditioned solutions and
even the ability to assimilate ‘contradictory’ observed data, i.e. θn = θm but
yn �= ym. See Figure 13.3 for simple examples.

Example 13.9. Consider Θ = [0, 1], and suppose that the prior description
of U is as a zero-mean Gaussian process with Gaussian covariance kernel

C(θ, θ′) := exp

(
−|θ − θ′|2

2�2

)
;

� > 0 is the correlation length of the process, and the numerical results
illustrated in Figure 13.3 use � = 1

4 .

(a) Suppose that values yo = 0.1, 0.8 and 0.5 are observed for U at θo = 0.1,
0.5, 0.9 respectively. In this case, the matrix C(θo, θo) and its inverse are
approximately

C(θo, θo) =

⎡

⎢⎣
1.000 0.278 0.006

0.278 1.000 0.278

0.006 0.278 1.000

⎤

⎥⎦

C(θo, θo)−1 =

⎡

⎢⎣
1.090 −0.327 0.084

−0.327 1.182 −0.327

0.084 −0.327 1.090

⎤

⎥⎦ .

Figure 13.3(a) shows the posterior mean field and posterior variance: note
that the posterior mean interpolates the given data.

(b) Now suppose that values yo = 0.1, 0.8, 0.9, and 0.5 are observed for U
at θo = 0.1, 0.5, 0.5, 0.9 respectively. In this case, because there are two
contradictory values for U at θ = 0.5, we do not expect the posterior
mean to be a function that interpolates the data. Indeed, the matrix
C(θo, θo) has a repeated row and column:

C(θo, θo) =

⎡

⎢⎢⎢⎣

1.000 0.278 0.278 0.006

0.278 1.000 1.000 0.278

0.278 1.000 1.000 0.278

0.006 0.278 0.278 1.000

⎤

⎥⎥⎥⎦ ,

and hence C(θo, θo) is not invertible. However, assuming that yo =
U(θo) + N (0, η2), with η > 0, restores well-posedness to the problem.
Figure 13.3(b) shows the posterior mean and covariance field with the
regularization η = 0.1.
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Fig. 13.3: A simple example of Gaussian process regression/kriging in one
dimension. The dots show the observed data points, the black curve the
posterior mean of the Gaussian process Ũ , and the shaded region the posterior
mean ± one posterior standard deviation.

Variations. There are many ‘flavours’ of the kriging method, essentially
determined by the choice of the prior, and in particular the choice of the
prior mean. For example, simple kriging assumes a known spatially constant
mean field, i.e. E[U(θ)] = m for all θ.

A mild generalization is ordinary kriging, in which it is again assumed
that E[U(θ)] = m for all θ, but m is not assumed to be known. This under-
determined situation can be rendered tractable by including additional ass-
umptions on the form of Ũ(θp) as a function of the data (θo, yo): one simple

assumption of this type is a linear model of the form Ũ(θp) =
∑N

n=1 wnyn
for some weights w = (w1, . . . , wN ) ∈ R

N — note well that this is not the �
same as linearly interpolating the observed data.

In this situation, as in the Gauss–Markov theorem (Theorem 6.2), the
natural criteria of zero mean error (unbiasedness) and minimal squared error

are used to determine the estimate of U(θp): writing Ũ(θp) =
∑N

n=1 wnyn, the

unbiasedness requirement that E
[
Ũ(θp)−U(θp)

]
= 0 implies that the weights

wn sum to 1, and minimizing E
[(
Ũ(θp)− U(θp)

)2]
becomes the constrained

optimization problem

minimize: C(θp, θp)− 2wTC(θp, θo) + wTC(θo, θo)w

among: w ∈ R
N

subject to:
N∑

n=1

wn = 1.
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By the method of Lagrange multipliers, the weight vector w and the Lagrange
multiplier λ ∈ R are given jointly as the solutions of

[
C(θo, θo) 1

1 0

][
w

λ

]
=

[
C(θp, θo)

1

]
. (13.4)

Even when C(θo, θo) is positive-definite, the matrix on the left-hand side is
not invertible: however, the column vector on the right-hand side does lie in
the range, and so it is possible2 to solve for (w, λ).

13.4 Bibliography

Non-intrusive methods for UQ, including non-intrusive spectral projection
and stochastic collocation, are covered by Le Mâıtre and Knio (2010, Chap-
ter 3) and Xiu (2010, Chapter 7). A classic paper on interpolation using sparse
grids is that of Barthelmann et al. (2000), and applications to UQ for PDEs
with random input data have been explored by, e.g., Nobile et al. (2008a,b).
Narayan and Xiu (2012) give a method for stochastic collocation on arbitrary
sets of nodes using the framework of least orthogonal interpolation, following
an earlier Gaussian construction of de Boor and Ron (1990). Yan et al. (2012)
consider stochastic collocation algorithms with sparsity-promoting �1 regu-
larizations. Buhmann (2003) provides a general introduction to the theory
and practical usage of radial basis functions. A comprehensive introduction
to splines is the book of de Boor (2001); for a more statistical interpretation,
see, e.g., Smith (1979).

Kriging was introduced by Krige (1951) and popularized in geostatistics by
Matheron (1963). See, e.g., Conti et al. (2009) for applications to the interpo-
lation of results from slow or expensive computational methods. Rasmussen
and Williams (2006) cover the theory and application of Gaussian processes
to machine learning; their text also gives a good overview of the relationships
between Gaussian processes and other modelling perspectives, including reg-
ularization, reproducing kernel Hilbert spaces, and support vector machines.

13.5 Exercises

Exercise 13.1. Choose distinct nodes θ1, . . . , θN ∈ Θ = [0, 1] and corre-
sponding values y1, . . . , yN ∈ R. Interpolate these data points in all the
ways discussed so far in the text. In particular, interpolate the data using

2 Indeed, many standard numerical linear algebra packages will readily solve the system
(13.4) without throwing any error whatsoever.
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apiecewise linear interpolation, using a polynomial of degree N − 1, and
using Gaussian processes with various choices of covariance kernel. Plot the
interpolants on the same axes to get an idea of their qualitative features.

Exercise 13.2. Extend the analysis of the simple harmonic oscillator from
Examples 13.5 and 13.8 to incorporate uncertainty in the initial condition,
and calculate sensitivity indices with respect to the various uncertainties.
Perform the same analyses with an alternative uncertainty model, e.g. the
log-normal model of Example 12.6.

Exercise 13.3. Perform the analogue of Exercise 13.2 for the Van der Pol
oscillator

ü(t)− μ(1− u(t)2)u̇(t) + ω2u(t) = 0.

Compare your results with those of the active subspace method (Example
10.20 and Figure 10.1).

Exercise 13.4. Extend the analysis of Exercises 13.2 and 13.3 by treating
the time step h > 0 of the numerical ODE solver as an additional source of
uncertainty and error. Suppose that the numerical integration scheme for the
ODE has a global truncation error at most Chr for some C, r > 0, and so
model the exact solution to the ODE as the computed solution plus a draw
from Unif(−Chr, Chr). Using this randomly perturbed observational data,
calculate approximate spectral coefficients for the process using the NISP
scheme. (For more sophisticated randomized numerical schemes for ODEs
and PDEs, see, e.g., Schober et al. (2014) and the works listed as part of the
Probabilistic Numerics project http://www.probabilistic-numerics.org.)

Exercise 13.5. It often happens that the process U is not initially defined
on the same probability space as the gPC basis functions: in particular, this
situation can arise if we are given an archive of legacy data values of U
without corresponding inputs. In this situation, it is necessary to transform
both sets of random variables to a common probability space. This exercise
concerns an example implementation of this procedure in the case that U is
a real-valued Gaussian mixture: for some weights w1, . . . , wJ ≥ 0 summing
to 1, means m1, . . . ,mJ ∈ R, and variances σ2

1 , . . . , σ
2
J > 0, the Lebesgue

probability density fU : R → [0,∞) of U is given as the following convex
combination of Gaussian densities:

fU (x) :=

J∑

j=1

wj√
2πσ2

j

exp

(
− (x−mj)

2

2σ2
j

)
. (13.5)

Suppose that we wish to perform a Hermite expansion of U , i.e. to write U =∑
k∈N0

ukHek(Z), where Z ∼ γ = N (0, 1). The immediate problem is that
U is defined as a function of θ in some abstract probability space (Θ,F , μ),
not as a function of z in the concrete probability space (R,B(R), γ).
(a) Let Θ = {1, . . . , J} × R, and define a probability measure μ on Θ by

http://www.probabilistic-numerics.org
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μ :=

J∑

j=1

wjδj ⊗N (mj , σ
2
j ).

(In terms of sampling, this means that draws (j, y) from μ are per-
formed by first choosing j ∈ {1, . . . , J} at random according the weight-
ing w1, . . . , wJ , and then drawing a Gaussian sample y ∼ N (mj , σ

2
j ).)

Let P : Θ → R denote projection onto the second component, i.e.
P (j, y) := y. Show that the push-forward measure P∗μ on R is the
Gaussian mixture (13.5).

(b) Let FU : R → [0, 1] denote the cumulative distribution function (CDF)
of U , i.e.

FU (x) := Pμ[U ≤ x] =

∫ x

−∞
fU (s) ds.

Show that FU is invertible, and that if V ∼ Unif([0, 1]), then F−1
U (V ) has

the same distribution as U .
(c) Let Φ denote the CDF of the standard normal distribution γ. Show, by

change of integration variables, that

〈U,Hek〉L2(γ) =

∫ 1

0

F−1
U (v)Hek(Φ

−1(v)) dv. (13.6)

(d) Use your favourite quadrature rule for uniform measure on [0, 1] to app-
roximately evaluate (13.6), and hence calculate approximate Hermite
PC coefficients ũk for U .

(e) Choose some mj and σ2
j , and generate N i.i.d. sample realizations

y1, . . . , yN of U using the observation of part (a). Approximate FU by
the empirical CDF of the data, i.e.

FU (x) ≈ F̂y(x) :=
|{1 ≤ n ≤ N | yn ≤ x}|

N
.

Use this approximation and your favourite quadrature rule for uniform
measure on [0, 1] to approximately evaluate (13.6), and hence calculate
approximate Hermite PC coefficients ũk for U . (This procedure, using the
empirical CDF, is essentially the one that we must use if we are given
only the data y and no functional relationship of the form yn = U(θn).)

(f) Compare the results of parts (d) and (e).

Exercise 13.6. Choose nodes in the square [0, 1]2 and corresponding data
values, and interpolate them using Gaussian process regression with a radial
covariance function such as C(x, x′) = exp(−‖x− x′‖2/r2), with r > 0 being
a correlation length parameter. Produce accompanying plots of the posterior
variance field.
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