
Chapter 11

Spectral Expansions

The mark of a mature, psychologically
healthy mind is indeed the ability to live with
uncertainty and ambiguity, but only as much
as there really is.

Julian Baggini

This chapter and its sequels consider several spectral methods for uncer-
tainty quantification. At their core, these are orthogonal decomposition
methods in which a random variable stochastic process (usually the solution
of interest) over a probability space (Θ,F , μ) is expanded with respect to an
appropriate orthogonal basis of L2(Θ, μ;R). This chapter lays the foundations
by considering spectral expansions in general, starting with the Karhunen–
Loève bi-orthogonal decomposition, and continuing with orthogonal polyno-
mial bases for L2(Θ, μ;R) and the resulting polynomial chaos decompositions.
Chapters 12 and 13 will then treat two classes of methods for the determi-
nation of coefficients in spectral expansions, the intrusive and non-intrusive
approaches respectively.

11.1 Karhunen–Loève Expansions

Fix a domain X ⊆ R
d (which could be thought of as ‘space’, ‘time’ or a

general parameter space) and a probability space (Θ,F , μ). The Karhunen–
Loève expansion of a square-integrable stochastic process U : X × Θ → R

is a particularly nice spectral decomposition, in that it decomposes U in a
bi-orthogonal fashion, i.e. in terms of components that are both orthogonal
over the spatio-temporal domain X and the probability space Θ.
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224 11 Spectral Expansions

To be more precise, consider a stochastic process U : X ×Θ → R such that

• for all x ∈ X , U(x) ∈ L2(Θ, μ;R);
• for all x ∈ X , Eμ[U(x)] = 0;
• the covariance function CU (x, y) := Eμ[U(x)U(y)] is a well-defined con-
tinuous function of x, y ∈ X .

Remark 11.1. (a) The condition that U is a zero-mean process is not a
serious restriction; if U is not a zero-mean process, then simply consider
Ũ defined by Ũ(x, θ) := U(x, θ)− Eμ[U(x)].

(b) It is common in practice to see the covariance function interpreted as
providing some information on the correlation length of the process U .
That is, CU (x, y) depends only upon ‖x − y‖ and, for some function
g : [0,∞) → [0,∞), CU (x, y) = g(‖x − y‖). A typical such g is g(r) =
exp(−r/r0), and the constant r0 encodes how similar values of U at
nearby points of X are expected to be; when the correlation length r0
is small, the field U has dissimilar values near to one another, and so is
rough; when r0 is large, the field U has only similar values near to one
another, and so is more smooth.

By abuse of notation, CU will also denote the covariance operator of U ,
which the linear operator CU : L2(X , dx;R) → L2(X , dx;R) defined by

(CUf)(x) :=

∫
X
CU (x, y)f(y) dy.

Now let {ψn | n ∈ N} be an orthonormal basis of eigenvectors of L2(X , dx;R)
with corresponding eigenvalues {λn | n ∈ N}, i.e.

∫
X
CU (x, y)ψn(y) dy = λnψn(x),

∫
X
ψm(x)ψn(x) dx = δmn.

Definition 11.2. Let X be a first-countable topological space. A function
K : X × X → R is called a Mercer kernel if

(a) K is continuous;
(b) K is symmetric, i.e. K(x, x′) = K(x′, x) for all x, x′ ∈ X ; and
(c) K is positive semi-definite in the sense that, for all choices of finitely

many points x1, . . . , xn ∈ X , the Gram matrix

G :=

⎡
⎢⎢⎣
K(x1, x1) · · · K(x1, xn)

...
. . .

...

K(xn, x1) · · · K(xn, xn)

⎤
⎥⎥⎦

is positive semi-definite, i.e. satisfies ξ ·Gξ ≥ 0 for all ξ ∈ R
n.
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Theorem 11.3 (Mercer). Let X be a first-countable topological space equipped
with a complete Borel measure μ. Let K : X × X → R be a Mercer kernel. If
x �→ K(x, x) lies in L1(X , μ;R), then there is an orthonormal basis {ψn}n∈N

of L2(X , μ;R) consisting of eigenfunctions of the operator

f �→
∫
X
K( · , y)f(y) dμ(y)

with non-negative eigenvalues {λn}n∈N. Furthermore, the eigenfunctions cor-
responding to non-zero eigenvalues are continuous, and

K(x, y) =
∑
n∈N

λnψn(x)ψn(y),

and this series converges absolutely, uniformly over compact subsets of X .

The proof of Mercer’s theorem will be omitted, since the main use of the
theorem is just to inform various statements about the eigendecomposition
of the covariance operator in the Karhunen–Loève theorem. However, it is
worth comparing the conditions of Mercer’s theorem to those of Sazonov’s
theorem (Theorem 2.49): together, these two theorems show which integral
kernels can be associated with covariance operators of Gaussian measures.

Theorem 11.4 (Karhunen–Loève). Let U : X ×Θ → R be square-integrable
stochastic process, with mean zero and continuous and square-integrable1 co-
variance function. Then

U =
∑
n∈N

Znψn

in L2, where the {ψn}n∈N are orthonormal eigenfunctions of the covariance
operator CU , the corresponding eigenvalues {λn}n∈N are non-negative, the
convergence of the series is in L2(Θ, μ;R) and uniform among compact fam-
ilies of x ∈ X , with

Zn =

∫
X
U(x)ψn(x) dx.

Furthermore, the random variables Zn are centred, uncorrelated, and have
variance λn:

Eμ[Zn] = 0, and Eμ[ZmZn] = λnδmn.

Proof. By Exercise 2.1, and since the covariance function CU is continuous
and square-integrable on X × X , it is integrable on the diagonal, and hence
is a Mercer kernel. So, by Mercer’s theorem, there is an orthonormal basis
{ψn}n∈N of L2(X , dx;R) consisting of eigenfunctions of the covariance op-
erator with non-negative eigenvalues {λn}n∈N. In this basis, the covariance
function has the representation

1 In the case that X is compact, it is enough to assume that the covariance function is
continuous, from which it follows that it is bounded and hence square-integrable on X ×X .
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CU (x, y) =
∑
n∈N

λnψn(x)ψn(y).

Write the process U in terms of this basis as

U(x, θ) =
∑
n∈N

Zn(θ)ψn(x),

where the coefficients Zn = Zn(θ) are given by orthogonal projection:

Zn(θ) :=

∫
X
U(x, θ)ψn(x) dx.

(Note that these coefficients Zn are real-valued random variables.) Then

Eμ[Zn] = Eμ

[∫
X
U(x)ψn(x) dx

]
=

∫
X
Eμ[U(x)]ψn(x) dx = 0.

and

Eμ[ZmZn] = Eμ

[∫
X
U(x)ψm(x) dx

∫
X
U(x)ψn(x) dx

]

= Eμ

[∫
X

∫
X
ψm(x)U(x)U(y)ψn(y) dydx

]

=

∫
X
ψm(x)

∫
X
Eμ[U(x)U(y)]ψn(y) dydx

=

∫
X
ψm(x)

∫
X
CU (x, y)ψn(y) dydx

=

∫
X
ψm(x)λnψn(x) dx

= λnδmn.

Let SN :=
∑N

n=1 Znψn : X ×Θ → R. Then, for any x ∈ X ,

Eμ

[|U(x)− SN (x)|2]
= Eμ[U(x)2] + Eμ[SN (x)2]− 2Eμ[U(x)SN (x)]

= CU (x, x) + Eμ

[
N∑

n=1

N∑
m=1

ZnZmψm(x)ψn(x)

]
− 2Eμ

[
U(x)

N∑
n=1

Znψn(x)

]

= CU (x, x) +

N∑
n=1

λnψn(x)
2 − 2Eμ

[
N∑

n=1

∫
X
U(x)U(y)ψn(y)ψn(x) dy

]

= CU (x, x) +

N∑
n=1

λnψn(x)
2 − 2

N∑
n=1

∫
X
CU (x, y)ψn(y)ψn(x) dy

= CU (x, x) −
N∑

n=1

λnψn(x)
2

→ 0 as N → ∞,



11.1 Karhunen–Loève Expansions 227

where the convergence with respect of x, uniformly over compact subsets of
X , follows from Mercer’s theorem. 	


Among many possible decompositions of a random field, the Karhunen–
Loève expansion is optimal in the sense that the mean-square error of any
truncation of the expansion after finitely many terms is minimal. However, its
utility is limited since the covariance function of the solution process is often
not known a priori. Nevertheless, the Karhunen–Loève expansion provides an
effective means of representing input random processes when their covariance
structure is known, and provides a simple method for sampling Gaussian
measures on Hilbert spaces, which is a necessary step in the implementation
of the methods outlined in Chapter 6.

Example 11.5. Suppose that C : H → H is a self-adjoint, positive-definite,
nuclear operator on a Hilbert space H and let m ∈ H. Let (λk, ψk)k∈N be a
sequence of orthonormal eigenpairs for C, ordered by decreasing eigenvalue
λk. Let Ξ1, Ξ2, . . . be independently distributed according to the standard
Gaussian measure N (0, 1) on R. Then, by the Karhunen–Loève theorem,

U := m+

∞∑
k=1

λ
1/2
k Ξkψk (11.1)

is anH-valued random variable with distribution N (m,C). Therefore, a finite

sum of the form m+
∑K

k=1 λ
1/2
k Ξkψk for large K is a reasonable approxima-

tion to a N (m,C)-distributed random variable; this is the procedure used to
generate the sample paths in Figure 11.1.

Note that the real-valued random variable λ
1/2
k Ξk has Lebesgue density

proportional to exp(−|ξk|2/2λk). Therefore, although Theorem 2.38 shows
that the infinite product of Lebesgue measures on span{ψk | k ∈ N} cannot
define an infinite-dimensional Lebesgue measure on H, U − m defined by
(11.1) may be said to have a ‘formal Lebesgue density’ proportional to

∏
k∈N

exp

(
−|ξk|2

2λk

)
= exp

(
−1

2

∑
k∈N

|ξk|2
λk

)

= exp

(
−1

2

∑
k∈N

|〈u −m,ψk〉H|2
λk

)

= exp

(
−1

2

∥∥C−1/2(u−m)
∥∥2
H

)

by Parseval’s theorem and the eigenbasis representation of C. This formal
derivation should make it intuitively reasonable that U is a Gaussian random
variable on H with mean m and covariance operator C. For more general
sampling schemes of this type, see the later remarks on the sampling of Besov
measures.
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Fig. 11.1: Approximate sample paths of the Gaussian distribution on
H1

0 ([0, 1]) that has mean path m(x) = x(1 − x) and covariance operator(− d2

dx2

)−1
. Along with the mean path (black), six sample paths (grey) are

shown for truncated Karhunen–Loève expansions using K ∈ N terms. Ex-
cept for the non-trivial mean, these are approximate draws from the unit
Brownian bridge on [0, 1].

Principal Component Analysis. As well as being useful for the analysis
of random paths, surfaces, and so on, Karhunen–Loève expansions are also
useful in the analysis of finite-dimensional random vectors and sample data:

Definition 11.6. A principal component analysis of an R
N -valued random

vector U is the Karhunen–Loève expansion of U seen as a stochastic process
U : {1, . . . , N} × X → R. It is also known as the discrete Karhunen–Loève
transform, the Hotelling transform and the proper orthogonal decomposition.

Principal component analysis is often applied to sample data, and is inti-
mately related to the singular value decomposition:

Example 11.7. Let X ∈ R
N×M be a matrix whose columns are M indepen-

dent and identically distributed samples from some probability measure on
R

N , and assume without loss of generality that the samples have empirical
mean zero. The empirical covariance matrix of the samples is

Ĉ := 1
MXXT.
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(If the samples do not have empirical mean zero, then the empirical mean

should be subtracted first, and then 1
M in the definition of Ĉ should be

replaced by 1
M−1 so that Ĉ will be an unbiased estimator of the true covari-

ance matrix C.) The eigenvalues λn and eigenfunctions ψn of the Karhunen–

Loève expansion are just the eigenvalues and eigenvectors of this matrix Ĉ.
Let Λ ∈ R

N×N be the diagonal matrix of the eigenvalues λn (which are non-
negative, and are assumed to be in decreasing order) and Ψ ∈ R

N×N the

matrix of corresponding orthonormal eigenvectors, so that Ĉ diagonalizes as

Ĉ = ΨΛΨT.

The principal component transform of the data X is W := ΨTX ; this is
an orthogonal transformation of RN that transforms X to a new coordinate
system in which the greatest component-wise variance comes to lie on the
first coordinate (called the first principal component), the second greatest
variance on the second coordinate, and so on.

On the other hand, taking the singular value decomposition of the data
(normalized by the number of samples) yields

1√
M
X = UΣV T,

where U ∈ R
N×N and V ∈ R

M×M are orthogonal and Σ ∈ R
N×M is diagonal

with decreasing non-negative diagonal entries (the singular values of 1√
M
X).

Then

Ĉ = UΣV T(UΣV T)T = UΣV TV ΣTUT = UΣ2UT.

from which we see that U = Ψ and Σ2 = Λ. This is just another instance
of the well-known relation that, for any matrix A, the eigenvalues of AA∗

are the singular values of A and the right eigenvectors of AA∗ are the left
singular vectors of A; however, in this context, it also provides an alternative
way to compute the principal component transform.

In fact, performing principal component analysis via the singular value
decomposition is numerically preferable to forming and then diagonalizing
the covariance matrix, since the formation of XXT can cause a disastrous
loss of precision; the classic example of this phenomenon is the Läuchli matrix

⎡
⎢⎣
1 ε 0 0

1 0 ε 0

1 0 0 ε

⎤
⎥⎦ (0 < ε  1),

for which taking the singular value decomposition (e.g. by bidiagonalization
followed by QR iteration) is stable, but forming and diagonalizing XXT is
unstable.
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Karhunen–Loève Sampling of Non-Gaussian Besov Measures. The
Karhunen–Loève approach to generating samples from Gaussian measures of
known covariance operator, as in Example 11.5, can be extended to more
general settings, in which a basis is prescribed a priori and (not necessarily
Gaussian) random coefficients with a suitable decay rate are used. The choice
of basis elements and the rate of decay of the coefficients together control the
smoothness of the sample realizations; the mathematical hard work lies in
showing that such random series do indeed converge to a well-defined limit,
and thereby define a probability measure on the desired function space.

One method for the construction of function spaces — and hence ran-
dom functions — of desired smoothness is to use wavelets. Wavelet bases are
particularly attractive because they allow for the representation of sharply
localized features — e.g. the interface between two media with different mat-
erial properties — in a way that globally smooth basis functions such as
polynomials and the Fourier basis do not. Omitting several technicalities, a
wavelet basis of L2(Rd) or L2(Td) can be thought of as an orthonormal basis
consisting of appropriately scaled and shifted copies of a single basic element
that has some self-similarity. By controlling the rate of decay of the coeffi-
cients in a wavelet expansion, we obtain a family of function spaces — the
Besov spaces — with three scales of smoothness, here denoted p, q and s. In
what follows, for any function f on R

d or T
d, define the scaled and shifted

version fj,k of f for j, k ∈ Z by

fj,k(x) := f(2jx− k). (11.2)

The starting point of a wavelet construction is a scaling function (also

known as the averaging function or father wavelet) φ̃ : R → R and a family
of closed subspaces Vj ⊆ L2(R), j ∈ Z, called a multiresolution analysis of
L2(R), satisfying

(a) (nesting) for all j ∈ Z, Vj ⊆ Vj+1;

(b) (density and zero intersection)
⋃

j∈Z
Vj = L2(R) and

⋂
j∈Z

Vj = {0};
(c) (scaling) for all j, k ∈ Z, f ∈ V0 ⇐⇒ fj,k ∈ Vj ;

(d) (translates of φ̃ generate V0) V0 = span{φ̃0,k | k ∈ Z};
(e) (Riesz basis) there are finite positive constants A and B such that, for

all sequences (ck)k∈Z ∈ �2(Z),

A‖(ck)‖�2(Z) ≤
∥∥∥∥∥
∑
k∈Z

ckφ̃0,k

∥∥∥∥∥
L2(R)

≤ B‖(ck)‖�2(Z).

Given such a scaling function φ̃ : R → R, the associated mother wavelet
ψ̃ : R → R is defined as follows:
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if φ̃(x) =
∑
k∈Z

ckφ̃(2x− k),

then ψ̃(x) =
∑
k∈Z

(−1)kck+1φ̃(2x+ k).

It is the scaled and shifted copies of the mother wavelet ψ̃ that will form the
desired orthonormal basis of L2.

Example 11.8. (a) The indicator function φ̃ = I[0,1) satisfies the self-

similarity relation φ̃(x) = φ̃(2x) + φ̃(2x− 1); the associated ψ̃ given by

ψ̃(x) = φ̃(2x)− φ̃(2x− 1) =

⎧⎪⎨
⎪⎩
1, if 0 ≤ x < 1

2 ,

−1, if 1
2 ≤ x < 1,

0, otherwise.

is called the Haar wavelet.
(b) The B-spline scaling functions σr, r ∈ N0, are piecewise polynomial of

degree r and globally Cr−1, and are defined recursively by convolution:

σr :=

{
I[0,1), for r = 0,

σr−1 � σ0, for r ∈ N,
(11.3)

where

(f � g)(x) :=

∫
R

f(y)g(x− y) dy.

Here, the presentation focusses on Besov spaces of 1-periodic functions,
i.e. functions on the unit circle T := R/Z, and on the d-dimensional unit
torus Td := R

d/Zd. To this end, set

φ(x) :=
∑
s∈Z

φ̃(x+ s) and ψ(x) :=
∑
s∈Z

ψ̃(x+ s).

Scaled and translated versions of these functions are defined as usual by
(11.2). Note that in the toroidal case the spaces Vj for j < 0 consist of
constant functions, and that, for each scale j ∈ N0, φ ∈ V0 has only 2j

distinct scaled translates φj,k ∈ Vj , i.e. those with k = 0, . . . , 2j−1. Let

Vj := span{φj,k | k = 0, . . . , 2j − 1},
Wj := span{ψj,k | k = 0, . . . , 2j − 1},

so that Wj is the orthogonal complement of Vj in Vj+1 and

L2(T) =
⋃
j∈N0

Vj =
⊕
j∈N0

Wj
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Indeed, if ψ has unit norm, then 2j/2ψj,k also has unit norm, and

{2j/2ψj,k | k = 0, . . . , 2j − 1}is an orthonormal basis of Wj , and

{2j/2ψj,k | j ∈ N0, k = 0, . . . , 2j − 1} is an orthonormal basis of L2(T),

a so-called wavelet basis.
To construct an analogous wavelet basis of L2(Td) for d ≥ 1, proceed as

follows: for ν ∈ {0, 1}d \ {(0, . . . , 0)}, j ∈ N0, and k ∈ {0, . . . , 2j − 1}d, define
the scaled and translated wavelet ψν

j,k : T
d → R by

ψν
j,k(x) := 2dj/2ψν1(2jx1 − k1) · · ·ψνd(2jxd − kd)

where ψ0 = φ and ψ1 = ψ. The system

{
ψν
j,k

∣∣ j ∈ N0, k ∈ {0, . . . , 2j − 1}d, ν ∈ {0, 1}d \ {(0, . . . , 0)}}

is an orthonormal wavelet basis of L2(Td).
The Besov space Bs

pq(T
d) can be characterized in terms of the summability

of wavelet coefficients at the various scales:

Definition 11.9. Let 1 ≤ p, q < ∞ and let s > 0. The Besov (p, q, s) norm
of a function u =

∑
j,k,ν u

ν
j,kψ

ν
j,k : T

d → R is defined by

∥∥∥∥∥∥
∑
j∈N0

∑
ν,k

uν
j,kψ

ν
j,k

∥∥∥∥∥∥
Bs

pq(T
d)

:=
∥∥∥j �→ 2js2jd(

1
2− 1

p )
∥∥(k, ν) �→ uν

j,k

∥∥
�p

∥∥∥
�q(N0)

:=

⎛
⎜⎝∑

j∈N0

2qjs2qjd(
1
2− 1

p )

⎛
⎝∑

ν,k

|uν
j,k|p

⎞
⎠

q/p
⎞
⎟⎠

1/q

,

and the Besov space Bs
pq(T

d) is the completion of the space of functions for
which this norm is finite.

Note that at each scale j, there are (2d − 1)2jd = 2(j+1)d − 2jd wavelet
coefficients. The indices j, k and ν can be combined into a single index � ∈ N.
First, � = 1 corresponds to the scaling function φ(x1) · · ·φ(xd). The remaining
numbering is done scale by scale; that is, we first number wavelets with j = 0,
then wavelets with j = 1, and so on. Within each scale j ∈ N0, the 2d − 1
indices ν are ordered by thinking them as binary representation of integers,
and an ordering of the 2jd translations k can be chosen arbitrarily. With this
renumbering,

∞∑
�=1

c�ψ� ∈ Bs
pq(T

d) ⇐⇒ 2js2jd(
1
2− 1

p )

⎛
⎝2(j+1)d−1∑

�=2jd

|c�|p
⎞
⎠

1/p

∈ �q(N0)
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For p = q, since at scale j it holds that 2jd ≤ � < 2(j+1)d, an equivalent norm
for Bs

pp(T
d) is

∥∥∥∥∥
∑
�∈N

u�ψ�

∥∥∥∥∥
Bs

pp(T
d)

�
∥∥∥∥∥
∑
�∈N

u�ψ�

∥∥∥∥∥
Xs,p

:=

( ∞∑
�=1

�(ps/d+p/2−1)|u�|p
)1/p

;

in particular if the original scaling function and mother wavelet are r times
differentiable with r > s, then Bs

22 coincides with the Sobolev space Hs.
This leads to a Karhunen–Loève-type sampling procedure for Bs

pp(T
d), as in

Example 11.5: U defined by

U :=
∑
�∈N

�−( s
d+

1
2− 1

p )κ− 1
pΞ�ψ�, (11.4)

where Ξ� are sampled independently and identically from the generalized
Gaussian measure on R with Lebesgue density proportional to exp(− 1

2 |ξ�|p),
can be said to have ‘formal Lebesgue density’ proportional to exp(−κ

2 ‖u‖pBs
pp
),

and is therefore a natural candidate for a ‘typical’ element of the Besov space
Bs

pp(T
d). More generally, given any orthonormal basis {ψk | k ∈ N} of some

Hilbert space, one can define a Banach subspace Xs,p with norm

∥∥∥∥∥
∑
�∈N

u�ψ�

∥∥∥∥∥
Xs,p

:=

( ∞∑
�=1

�(ps/d+p/2−1)|u�|p
)1/p

and define a Besov-distributed random variable U by (11.4).
It remains, however, to check that (11.4) not only defines a measure, but

that it assigns unit probability mass to the Besov space from which it is
desired to draw samples. It turns out that the question of whether or not
U ∈ Xs,p with probability one is closely related to having a Fernique theorem
(q.v. Theorem 2.47) for Besov measures:

Theorem 11.10. Let U be defined as in (11.4), with 1 ≤ p < ∞ and s > 0.
Then

‖U‖Xt,p < ∞ almost surely ⇐⇒ E[exp(α‖U‖pXt,p)] < ∞ for all α ∈ (0, κ
2 )

⇐⇒ t < s− d
p

Furthermore, for p ≥ 1, s > d
p , and t < s− d

p , there is a constant r∗ depending

only on p, d, s and t such that, for all α ∈ (0, κ
2r∗ ),

E[exp(α‖U‖Ct)] < ∞.



234 11 Spectral Expansions

11.2 Wiener–Hermite Polynomial Chaos

The next section will cover polynomial chaos (PC) expansions in greater gen-
erality, and this section serves as an introductory prelude. In this, the classical
and notationally simplest setting, we consider expansions of a real-valued ran-
dom variable U with respect to a single standard Gaussian random variable
Ξ, using appropriate orthogonal polynomials of Ξ, i.e. the Hermite polyno-
mials. This setting was pioneered by Norbert Wiener, and so it is known
as the Wiener–Hermite polynomial chaos. The term ‘chaos’ is perhaps a bit
confusing, and is not related to the use of the term in the study of dynami-
cal systems; its original meaning, as used by Wiener (1938), was something
closer to what would nowadays be called a stochastic process:

“Of all the forms of chaos occurring in physics, there is only one class which has
been studied with anything approaching completeness. This is the class of types of
chaos connected with the theory of Brownian motion.”

Let Ξ ∼ γ = N (0, 1) be a standard Gaussian random variable, and let
Hen ∈ P, for n ∈ N0, be the Hermite polynomials, the orthogonal polynomials
for the standard Gaussian measure γ with the normalization

∫
R

Hem(ξ)Hen(ξ) dγ(ξ) = n!δmn.

By the Weierstrass approximation theorem (Theorem 8.20) and the approx-
imability of L2 functions by continuous ones, the Hermite polynomials form
a complete orthogonal basis of the Hilbert space L2(R, γ;R) with the inner
product

〈U, V 〉L2(γ) := E[U(Ξ)V (Ξ)] ≡
∫
R

U(ξ)V (ξ) dγ(ξ).

Definition 11.11. Let U ∈ L2(R, γ;R) be a square-integrable real-valued
random variable. The Wiener–Hermite polynomial chaos expansion of U with
respect to the standard Gaussian Ξ is the expansion of U in the orthogonal
basis {Hen}n∈N0, i.e.

U =
∑
n∈N0

unHen(Ξ)

with scalar Wiener–Hermite polynomial chaos coefficients {un}n∈N0 ⊆ R

given by

un =
〈U,Hen〉L2(γ)

‖Hen‖2L2(γ)

=
1

n!
√
2π

∫ ∞

−∞
U(ξ)Hen(ξ)e

−ξ2/2 dξ.

Note that, in particular, since He0 ≡ 1,

E[U ] = 〈He0, U〉L2(γ) =
∑
n∈N0

un〈He0,Hen〉L2(γ) = u0,
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so the expected value of U is simply its 0th PC coefficient. Similarly, its
variance is a weighted sum of the squares of its PC coefficients:

V[U ] = E
[|U − E[U ]|2]

= E

⎡
⎣
∣∣∣∣∣
∑
n∈N

unHen

∣∣∣∣∣
2
⎤
⎦ since E[U ] = u0

=
∑

m,n∈N

umun〈Hem,Hen〉L2(γ)

=
∑
n∈N

u2
n‖Hen‖2L2(γ) by Hermitian orthogonality

=
∑
n∈N

u2
nn!.

Example 11.12. Let X ∼ N (m,σ2) be a real-valued Gaussian random
variable with mean m ∈ R and variance σ2 ≥ 0. Let Y := eX ; since logY is
normally distributed, the non-negative-valued random variable Y is said to
be a log-normal random variable. As usual, let Ξ ∼ N (0, 1) be the standard
Gaussian random variable; clearly X has the same distribution as m + σΞ,
and Y has the same distribution as emeσΞ . The Wiener–Hermite expansion
of Y as

∑
k∈N0

ykHek(Ξ) has coefficients

yk =
〈em+σΞ ,Hek(Ξ)〉

‖Hek(Ξ)‖2

=
em

k!

1√
2π

∫
R

eσξHek(ξ)e
−ξ2/2 dξ

=
em+σ2/2

k!

1√
2π

∫
R

Hek(ξ)e
−(ξ−σ)2/2 dξ

=
em+σ2/2

k!

1√
2π

∫
R

Hek(w + σ)e−w2/2 dw.

This Gaussian integral can be evaluated directly using the Cameron–Martin
formula (Lemma 2.40), or else using the formula

Hen(x + y) =

n∑
k=0

(
n

k

)
xn−kHek(y),

which follows from the derivative property He′n = nHen−1, with x = σ and
y = w: this formula yields that

yk =
em+σ2/2

k!

1√
2π

∫
R

k∑
j=0

(
k

j

)
σk−jHej(w)e

−w2/2 dw =
em+σ2/2σk

k!
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since the orthogonality relation 〈Hem,Hen〉L2(γ) = n!δmn with n = 0 implies
that every Hermite polynomial other than He0 has mean 0 under standard
Gaussian measure. That is,

Y = em+σ2/2
∑
k∈N0

σk

k!
Hek(Ξ). (11.5)

The Wiener–Hermite expansion (11.5) reveals that E[Y ] = em+σ2/2 and

V[Y ] = e2m+σ2 ∑
k∈N

(
σk

k!

)2

‖Hek‖2L2(γ) = e2m+σ2
(
eσ

2 − 1
)
.

Truncation of Wiener–Hermite Expansions. Of course, in practice, the
series expansion U =

∑
k∈N0

ukHek(Ξ) must be truncated after finitely many
terms, and so it is natural to ask about the quality of the approximation

U ≈ UK :=
K∑

k=0

ukHek(Ξ).

Since the Hermite polynomials {Hek}k∈N0 form a complete orthogonal basis
for L2(R, γ;R), the standard results about orthogonal approximations in
Hilbert spaces apply. In particular, by Corollary 3.26, the truncation error
U − UK is orthogonal to the space from which UK was chosen, i.e.

span{He0,He1, . . . ,HeK},

and tends to zero in mean square; in the stochastic context, this observation
was first made by Cameron and Martin (1947, Section 2).

Lemma 11.13. The truncation error U − UK is orthogonal to the subspace

span{He0,He1, . . . ,HeK}

of L2(R, dγ;R). Furthermore, limK→∞ UK = U in L2(R, γ;R).

Proof. Let V :=
∑K

m=0 vmHem be any element of the subspace of L2(R, γ;R)
spanned by the Hermite polynomials of degree at most K. Then

〈U − UK , V 〉L2(γ) =

〈(∑
n>K

unHen

)
,

(
K∑

m=0

vmHem

)〉

=
∑
n>K

m∈{0,...,K}

unvm〈Hen,Hem〉

= 0.
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Hence, by Pythagoras’ theorem,

‖U‖2L2(γ) = ‖UK‖2L2(γ) + ‖U − UK‖2L2(γ),

and hence ‖U − UK‖L2(γ) → 0 as K → ∞. 	


11.3 Generalized Polynomial Chaos Expansions

The ideas of polynomial chaos can be generalized well beyond the setting
in which the elementary random variable Ξ used to generate the orthogo-
nal decomposition is a standard Gaussian random variable, or even a vector
Ξ = (Ξ1, . . . , Ξd) of mutually orthogonal Gaussian random variables. Such
expansions are referred to as generalized polynomial chaos (gPC) expansions.

Let Ξ = (Ξ1, . . . , Ξd) be an R
d-valued random variable with independent

(and hence L2-orthogonal) components, called the stochastic germ. Let the
measurable rectangle Θ = Θ1 × · · · ×Θd ⊆ R

d be the support (i.e. range) of
Ξ. Denote by μ = μ1⊗· · ·⊗μd the distribution of Ξ on Θ. The objective is to
express any function (random variable, random vector, or even random field)
U ∈ L2(Θ, μ) in terms of elementary μ-orthogonal functions of the stochastic
germ Ξ.

As usual, let Pd denote the ring of all d-variate polynomials with real
coefficients, and let Pd

≤p denote those polynomials of total degree at most

p ∈ N0. Let Γp ⊆ Pd
≤p be a collection of polynomials that are mutually

orthogonal, orthogonal to Pd
≤p−1, and span Pd

=p. Assuming for convenience,
as usual, the completeness of the resulting system of orthogonal polynomials,
this yields the orthogonal decomposition

L2(Θ, μ;R) =
⊕
p∈N0

spanΓp.

It is important to note that there is a lack of uniqueness in these basis poly-
nomials whenever d ≥ 2: each choice of ordering of multi-indices α ∈ N

d
0

can yield a different orthogonal basis of L2(Θ, μ) when the Gram–Schmidt
procedure is applied to the monomials ξα.

Note that (as usual, assuming separability) the L2 space over the product
probability space (Θ,F , μ) is isomorphic to the Hilbert space tensor product
of the L2 spaces over the marginal probability spaces:

L2(Θ1 × · · · ×Θd, μ1 ⊗ · · · ⊗ μd;R) =

d⊗
i=1

L2(Θi, μi;R);
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hence, as in Theorem 8.25, an orthogonal system of multivariate polynomials
for L2(Θ, μ;R) can be found by taking products of univariate orthogonal
polynomials for the marginal spaces L2(Θi, μi;R). A generalized polynomial
chaos (gPC) expansion of a random variable or stochastic process U is simply
the expansion of U with respect to such a complete orthogonal polynomial
basis of L2(Θ, μ).

Example 11.14. Let Ξ = (Ξ1, Ξ2) be such that Ξ1 and Ξ2 are independent
(and hence orthogonal) and such that Ξ1 is a standard Gaussian random
variable and Ξ2 is uniformly distributed on [−1, 1]. Hence, the univariate
orthogonal polynomials for Ξ1 are the Hermite polynomials Hen and the
univariate orthogonal polynomials for Ξ2 are the Legendre polynomials Len.
Thus, by Theorem 8.25, a system of orthogonal polynomials for Ξ up to total
degree 3 is

Γ0 = {1},
Γ1 = {He1(ξ1),Le1(ξ2)}

= {ξ1, ξ2},
Γ2 = {He2(ξ1),He1(ξ1)Le1(ξ2),Le2(ξ2)}

= {ξ21 − 1, ξ1ξ2,
1
2 (3ξ

2
2 − 1)},

Γ3 = {He3(ξ1),He2(ξ1)Le1(ξ2),He1(ξ1)Le2(ξ2),Le3(ξ2)}
= {ξ31 − 3ξ1, ξ

2
1ξ2 − ξ2,

1
2 (3ξ1ξ

2
2 − ξ1),

1
2 (5ξ

3
2 − 3ξ2)}.

Remark 11.15. To simplify the notation in what follows, the following con-
ventions will be observed:

(a) To simplify expectations, inner products and norms, 〈 · 〉μ or simply 〈 · 〉
will denote integration (i.e. expectation) with respect to the probability
measure μ, so that the L2(μ) inner product is simply 〈X,Y 〉L2(μ) =
〈XY 〉μ.

(b) Rather than have the orthogonal basis polynomials be indexed by multi-
indices α ∈ N

d
0, or have two scalar indices, one for the degree p and one

within each set Γp, it is convenient to order the basis polynomials using
a single scalar index k ∈ N0. It is common in practice to take Ψ0 = 1 and
to have the polynomial degree be (weakly) increasing with respect to the
new index k. So, to continue Example 11.14, one could use the graded
lexicographic ordering on α ∈ N

2
0 so that Ψ0(ξ) = 1 and

Ψ1(ξ) = ξ1, Ψ2(ξ) = ξ2, Ψ3(ξ) = ξ21 − 1,

Ψ4(ξ) = ξ1ξ2, Ψ5(ξ) =
1
2 (3ξ

2
2 − 1), Ψ6(ξ) = ξ31 − 3ξ1,

Ψ7(ξ) = ξ21ξ2 − ξ2, Ψ8(ξ) =
1
2 (3ξ1ξ

2
2 − ξ1), Ψ9(ξ) =

1
2 (5ξ

3
2 − 3ξ2).

(c) By abuse of notation, Ψk will stand for both a polynomial function (which
is a deterministic function from R

d to R) and for the real-valued random
variable that is the composition of that polynomial with the stochastic
germ Ξ (which is a function from an abstract probability space to R).



11.3 Generalized Polynomial Chaos Expansions 239

Truncation of gPC Expansions. Suppose that a gPC expansion of the
form U =

∑
k∈N0

ukΨk is truncated, i.e. we consider

UK =

K∑
k=0

ukΨk.

It is an easy exercise to show that the truncation error U −UK is orthogonal
to span{Ψ0, . . . , ΨK}. It is also worth considering how many terms there are
in such a truncated gPC expansion. Suppose that the stochastic germ Ξ has
dimension d (i.e. has d independent components), and we work only with
polynomials of total degree at most p. The total number of coefficients in the
truncated expansion UK is

K + 1 =
(d+ p)!

d!p!
.

That is, the total number of gPC coefficients that must be calculated grows
combinatorially as a function of the number of input random variables and the
degree of polynomial approximation. Such rapid growth limits the usefulness
of gPC expansions for practical applications where d and p are much greater
than the order of 10 or so.

Expansions of Random Variables. Consider a real-valued random vari-
able U , which we expand in terms of a stochastic germ Ξ as

UK(Ξ) =
∑
k∈N0

ukΨk(Ξ),

where the basis functions Ψk are orthogonal with respect to the law of Ξ,
and with the usual convention that Ψ0 = 1. A first, easy, observation is that

E[U ] = 〈Ψ0U〉 =
∑
k∈N0

uk〈Ψ0Ψk〉 = u0,

so the expected value of U is simply its 0th gPC coefficient. Similarly, its
variance is a weighted sum of the squares of its gPC coefficients:

E
[|U − E[U ]|2] = E

⎡
⎣
∣∣∣∣∣
∑
k∈N0

ukΨk

∣∣∣∣∣
2
⎤
⎦

=
∑
k,�∈N

uku�〈ΨkΨ�〉

=
∑
k∈N

u2
k〈Ψ2

k 〉.
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Similar remarks apply to any truncation UK =
∑K

k=1 ukΨk of the gPC exp-
ansion of U . In view of the expression for the variance, the gPC coefficients
can be used as sensitivity indices. That is, a natural measure of how strongly
U depends upon Ψk(Ξ) is

u2
k〈Ψ2

k 〉∑
�≥1 u

2
�〈Ψ2

� 〉
.

Expansions of Random Vectors. Similarly, if U1, . . . , Un are (not neces-
sarily independent) real-valued random variables, then the R

n-valued ran-
dom variable U = [U1, . . . , Un]

T with the Ui as its components can be given
a (possibly truncated) expansion

U(ξ) =
∑
k∈N0

ukΨk(ξ),

with vector-valued gPC coefficients uk = [u1,k, . . . , un,k]
T ∈ R

n for each
k ∈ N0. As before,

E[U ] = 〈Ψ0U〉 =
∑
k∈N0

uk〈Ψ0Ψk〉 = u0 ∈ R
n

and the covariance matrix C ∈ R
n×n of U is given by

C =
∑
k∈N

uku
T
k 〈Ψ2

k 〉

i.e. its components are Cij =
∑

k∈N
ui,kuj,k〈Ψ2

k 〉.
Expansions of Stochastic Processes. Consider now a stochastic process
U , i.e. a function U : Θ × X → R. Suppose that U is square integrable in
the sense that, for each x ∈ X , U( · , x) ∈ L2(Θ, μ) is a real-valued random
variable, and, for each θ ∈ Θ, U(θ, · ) ∈ L2(X , dx) is a scalar field on the
domain X . Recall that

L2(Θ, μ;R)⊗ L2(X , dx;R) ∼= L2(Θ ×X , μ⊗ dx;R) ∼= L2
(
Θ, μ;L2(X , dx)

)
,

so U can be equivalently viewed as a linear combination of products of
R-valued random variables with deterministic scalar fields, or as a function
on Θ×X , or as a field-valued random variable. As usual, take {Ψk | k ∈ N0}
to be an orthogonal polynomial basis of L2(Θ, μ;R), ordered (weakly) by
total degree, with Ψ0 = 1. A gPC expansion of the random field U is an
L2-convergent expansion of the form

U(x, ξ) =
∑
k∈N0

uk(x)Ψk(ξ).
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The functions uk : X → R are called the stochastic modes of the process U .
The stochastic mode u0 : X → R is the mean field of U :

E[U(x)] = u0(x).

The variance of the field at x ∈ X is

V[U(x)] =
∑
k∈N

uk(x)
2〈Ψ2

k 〉,

whereas, for two points x, y ∈ X ,

E[U(x)U(y)] =

〈∑
k∈N0

uk(x)Ψk(ξ)
∑
�∈N0

u�(y)Ψ�(ξ)

〉

=
∑
k∈N0

uk(x)uk(y)〈Ψ2
k 〉

and so the covariance function of U is given by

CU (x, y) =
∑
k∈N

uk(x)uk(y)〈Ψ2
k 〉.

The previous remarks about gPC expansions of vector-valued random vari-
ables are a special case of these remarks about stochastic processe, namely
X = {1, . . . , n}. At least when dimX is low, it is very common to see the
behaviour of a stochastic field U (or its truncation UK) summarized by plots
of the mean field and the variance field, as well as a few ‘typical’ sample re-
alizations. The visualization of high-dimensional data is a subject unto itself,
with many ingenious uses of shading, colour, transparency, videos and user
interaction tools.

Changes of gPC Basis. It is possible to change between representations
of a stochastic quantity U with respect to gPC bases {Ψk | k ∈ N0} and
{Φk | k ∈ N0} generated by measures μ and ν respectively. Obviously, for
such changes of basis to work in both directions, μ and ν must at least have
the same support. Suppose that

U =
∑
k∈N0

ukΨk =
∑
k∈N0

vkΦk.

Then, taking the L2(ν)-inner product of this equation with Φ�,

〈UΦ�〉ν =
∑
k∈N0

uk〈ΨkΦ�〉ν = v�〈Ψ2
� 〉ν ,

provided that ΨkΦ� ∈ L2(ν) for all k ∈ N0, i.e.
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v� =
∑
k∈N0

uk〈ΨkΦ�〉ν
〈Ψ2

� 〉ν
.

Similarly, taking the L2(μ)-inner product of this equation with Ψ� yields that,
provided that ΦkΨ� ∈ L2(μ) for all k ∈ N0,

u� =
∑
k∈N0

vk〈ΦkΨ�〉μ
〈Ψ2

� 〉μ
.

Remark 11.16. It is possible to adapt the notion of a gPC expansion to
the situation of a stochastic germ Ξ with arbitrary dependencies among its
components, but there are some complications. In summary, suppose that
Ξ = (Ξ1, . . . , Ξd), taking values in Θ = Θ1 × · · ·×Θd, has joint law μ, which
is not necessarily a product measure. Nevertheless, let μi denote the marginal
law of Ξi, i.e.

μi(Ei) := μ(Θ1 × · · · ×Θi−1 × Ei ×Θi+1 × · · · ×Θd).

To simplify matters further, assume that μ (resp. μi) has Lebesgue density

ρ (resp. ρi). Now let φ
(i)
p ∈ P, p ∈ N0, be univariate orthogonal polynomials

for μi. The chaos function associated with a multi-index α ∈ N
d
0 is defined

to be

Ψα(ξ) :=

√
ρ1(ξ1) . . . ρd(ξd)

ρ(ξ)
φ(1)
α1

(ξ1) . . . φ
(d)
αd

(ξd).

It can be shown that the family {Ψα | α ∈ N
d
0} is a complete orthonormal

basis for L2(Θ, μ;R), so we have the usual series expansion U =
∑

α uαΨα.
Note, however, that with the exception of Ψ0 = 1, the functions Ψα are not
polynomials. Nevertheless, we still have the usual properties that truncation
error is orthogonal to the approximation subspace, and

Eμ[U ] = u0, Vμ[U ] =
∑
α
=0

u2
α〈Ψ2

α〉μ.

Remark 11.17. Polynomial chaos expansions were originally introduced in
stochastic analysis, and in that setting the stochastic germ Ξ typically has
countably infinite dimension, i.e. Ξ = (Ξ1, . . . , Ξd, . . . ). Again, for simplicity,
suppose that the components of Ξ are independent, and hence orthogonal;
let Θ denote the range of Ξ, which is an infinite product domain, and let

μ =
⊗

d∈N
μd denote the law of Ξ. For each d ∈ N, let {ψ(d)

αd | αd ∈ N0} be
a system of univariate orthogonal polynomials for Ξd ∼ μd, again with the

usual convention that ψ
(d)
0 ≡ 1. Products of the form

ψα(ξ) :=
∏
d∈N

ψ(d)
αd

(ξd)
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are again polynomials when only finitely many αd �= 0, and form an orthog-
onal system of polynomials in L2(Θ, μ;R).

As in the finite-dimensional case, there are many choices of ordering for the
basis polynomials, some of which may lend themselves to particular problems.
One possible orthogonal PC decomposition of u(Ξ) for u ∈ L2(Θ, μ;R), in
which summands are arranged in order of increasing ‘complexity’, is

u(Ξ) = f0 +
∑
d∈N

uαd
ψ(d)
αd

(Ξd)

+
∑

d1,d2∈N

uαd1
αd2

ψ(d1)
αd1

(Ξd1)ψ
(d2)
αd2

(Ξd2)

· · ·
+

∑
d1,d2,...,dk∈N

uαd1
αd2

...αdk
ψ(d1)
αd1

(Ξd1)ψ
(d2)
αd2

(Ξd2) · · ·ψ(dk)
αdk

(Ξdk
)

· · · ;

i.e., writing Ψ
(d)
αd for the image random variable ψ

(d)
αd (Ξd),

U = u0 +
∑
d∈N

uαd
Ψ (d)
αd

+
∑

d1,d2∈N

uαd1
αd2

Ψ (d1)
αd1

Ψ (d2)
αd2

(Ξd2)

· · ·
+

∑
d1,d2,...,dk∈N

uαd1
αd2

...αdk
Ψ (d1)
αd1

Ψ (d2)
αd2

· · ·Ψ (dk)
αdk

· · · .

The PC coefficients uαd
∈ R, etc. are determined by the usual orthogonal

projection relation. In practice, this expansion must be terminated at finite
k, and provided that u is square-integrable, the L2 truncation error decays
to 0 as k → ∞, with more rapid decay for smoother u, as in, e.g., Theorem
8.23.

11.4 Wavelet Expansions

Recall from the earlier discussion of Gibbs’ phenomenon in Chapter 8 that
expansions of non-smooth functions in terms of smooth basis functions such
as polynomials, while guaranteed to be convergent in the L2 sense, can have
poor pointwise convergence properties. However, to remedy such problems,
one can consider spectral expansions in terms of orthogonal bases of functions
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in L2(Θ, μ;R) that are no longer polynomials: a classic example of such a
construction is the use of wavelets, which were developed to resolve the same
problem in harmonic analysis and its applications. This section considers, by
way of example, orthogonal decomposition of random variables using Haar
wavelets, the so-called Wiener–Haar expansion.

Definition 11.18. The Haar scaling function is φ(x) := I[0,1)(x). For j ∈ N0

and k ∈ {0, . . . , 2j − 1}, let φj,k(x) := 2j/2φ(2jx− k) and

Vj := span{φj,0, . . . , φj,2j−1}.

The Haar function (or Haar mother wavelet) ψ : [0, 1] → R is defined by

ψ(x) :=

⎧⎪⎨
⎪⎩
1, if 0 ≤ x < 1

2 ,

−1, if 1
2 ≤ x < 1,

0, otherwise.

The Haar wavelet family is the collection of scaled and shifted versions ψj,k

of the mother wavelet ψ defined by

ψj,k(x) := 2j/2ψ(2jx− k) for j ∈ N0 and k ∈ {0, . . . , 2j − 1}.

The spaces Vj form an increasing family of subspaces of L2([0, 1], dx;R),
with the index j representing the level of ‘detail’ permissible in a function
f ∈ Vj : more concretely, Vj is the set of functions on [0, 1] that are constant
on each half-open interval [2−jk, 2−j(k + 1)). A straightforward calculation
from the above definition yields the following:

Lemma 11.19. For all j, j′ ∈ N0, k ∈ {0, . . . , 2j−1} and k′ ∈ {0, . . . , 2j′−1},
∫ 1

0

ψj,k(x) dx = 0, and

∫ 1

0

ψj,k(x)ψj′,k′(x) dx = δjj′δkk′ .

Hence, {1}∪ {ψj,k | j ∈ N0, k ∈ {0, 1, . . . , 2j − 1}} is a complete orthonormal
basis of L2([0, 1], dx;R). If Wj denotes the orthogonal complement of Vj in
Vj+1, then

Wj = span{ψj,0, . . . , ψj,2j−1}, and

L2([0, 1], dx;R) =
⊕
j∈N0

Wj .

Consider a stochastic germ Ξ ∼ μ ∈ M1(R) with cumulative distribution
function FΞ : R → [0, 1]. For simplicity, suppose that FΞ is continuous and
strictly increasing, so that FΞ is differentiable (with F ′

Ξ = dμ
dx = ρΞ) almost
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everywhere, and also invertible. We wish to write a random variable U ∈
L2(R, μ;R), in particular one that may be a non-smooth function of Ξ, as

U(ξ) = u0 +
∑
j∈N0

2j−1∑
k=0

uj,kψj,k(FΞ (ξ))

= u0 +
∑
j∈N0

2j−1∑
k=0

uj,kWj,k(ξ);

such an expansion will be called a Wiener–Haar expansion of U . See Figure
11.2 for an illustration comparing the cumulative distribution function of a
truncated Wiener–Haar expansion to that of a standard Gaussian, showing
the ‘clumping’ of probability mass that is to be expected of Wiener–Haar
wavelet expansions but not of Wiener–Hermite polynomial chaos expansions.
Indeed, the (sample) law of a Wiener–Haar expansion even has regions of
zero probability mass.

Note that, by a straightforward change of variables x = FΞ(ξ):

∫
R

Wj,k(ξ)Wj′ ,k′(ξ) dμ(ξ) =

∫
R

Wj,k(ξ)Wj′,k′ (ξ)ρΞ(ξ) dξ

=

∫ 1

0

ψj,k(x)ψj′,k′(x) dx

= δjj′δkk′ ,

so the family {Wj,k | j ∈ N0, k ∈ {0, . . . , 2j − 1}} forms a complete
orthonormal basis for L2(R, μ;R). Hence, the Wiener–Haar coefficients are
determined by

uj,k = 〈UWj,k〉 =
∫
R

U(ξ)Wj,k(ξ)ρΞ(ξ) dξ

=

∫ 1

0

U(F−1
Ξ (x))ψj,k(x) dx.

As in the case of a gPC expansion, the usual expressions for the mean and
variance of U hold:

E[U ] = u0 and V[U ] =
∑
j∈N0

2j−1∑
k=0

|uj,k|2.

Comparison of Wavelet and gPC Expansions. Despite the formal simi-
larities of the corresponding expansions, there are differences between wavelet
and gPC spectral expansions. For gPC expansions, the globally smooth
orthogonal polynomials used as the basis elements have the property that
expansions of smooth functions/random variables enjoy a fast convergence
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Fig. 11.2: The cumulative distribution function and binned peak-normalized
probability density function of 105 i.i.d. samples of a random variable U

with truncatedWiener–Haar expansionU =
∑J

j=0

∑2j−1
k=0 uj,kWj,k(Ξ), where

Ξ ∼ N (0, 1). The coefficients uj,k were sampled independently from uj,k ∼
2−jN (0, 1). The cumulative distribution function of a standard Gaussian is
shown dashed for comparison.
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rate, as in Theorem 8.23; no such connection between smoothness and conver-
gence rate is to be expected for Wiener–Haar expansions, in which the basis
functions are non-smooth. However, in cases in which U shows a localized
sharp variation or a discontinuity, a Wiener–Haar expansion may be more
efficient than a gPC expansion, since the convergence rate of the latter would
be impaired by Gibbs-type phenomena. Another distinctive feature of the
Wiener–Haar expansion concerns products of piecewise constant processes.
For instance, for f, g ∈ Vj the product fg is again an element of Vj ; it is
not true that the product of two polynomials of degree at most n is again a
polynomial of degree at most n. Therefore, for problems with strong depen-
dence upon high-degree/high-detail features, or with multiplicative structure,
Wiener–Haar expansions may be more appropriate than gPC expansions.
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11.6 Exercises

Exercise 11.1. Consider the negative Laplacian operator L := − d2

dx2 acting
on real-valued functions on the interval [0, 1], with zero boundary conditions.
Show that the eigenvalues μn and normalized eigenfunctions ψn of L are

μn = (πn)2,

ψn(x) =
√
2 sin(πnx).

Hence show that C := L−1 has the same eigenfunctions with eigenvalues
λn = (πn)−2. Hence, using the Karhunen–Loève theorem, generate figures
similar to Figure 11.1 for your choice of mean field m : [0, 1] → R.

Exercise 11.2. Do the analogue of Exercise 11.1 for L = (−Δ)α acting on
real-valued functions on the square [0, 1]2, again with zero boundary condi-
tions. Try α = 2 first, then try α = 1, and try coarser and finer meshes in
each case. You should see that your numerical draws from the Gaussian field
with α = 1 fail to converge, whereas they converge nicely for α > 1. Loosely
speaking, the reason for this is that a Gaussian random variable with covari-
ance (−Δ)α is almost surely in the Sobolev space Hs or the Hölder space
Cs for s < α − d

2 , where d is the spatial dimension; thus, α = 1 on the
two-dimensional square is exactly on the borderline of divergence.

Exercise 11.3. Show that the eigenvalues λn and eigenfunctions en of the
exponential covariance function C(x, y) = exp(−|x − y|/a) on [−b, b] are
given by

λn =

{
2a

1+a2w2
n
, if n ∈ 2Z,

2a
1+a2v2

n
, if n ∈ 2Z+ 1,

en(x) =

⎧⎨
⎩
sin(wnx)

/√
b− sin(2wnb)

2wn
, if n ∈ 2Z,

cos(vnx)
/√

b+ sin(2vnb)
2vn

, if n ∈ 2Z+ 1,

where wn and vn solve the transcendental equations

{
awn + tan(wnb) = 0, for n ∈ 2Z,

1− avn tan(vnb) = 0, for n ∈ 2Z+ 1.

Hence, using the Karhunen–Loève theorem, generate sample paths from the
Gaussian measure with covariance kernel C and your choice of mean path.
Note that you will need to use a numerical method such as Newton’s method
to find approximate values for wn and vn.

Exercise 11.4 (Karhunen–Loève-type sampling of Besov measures). Let
T
d := R

d/Zd denote the d-dimensional unit torus. Let {ψ� | � ∈ N} be an
orthonormal basis for L2(Td, dx;R). Let q ∈ [1,∞) and s ∈ (0,∞), and define
a new norm ‖ · ‖Xs,q on series u =

∑
�∈N

u�ψ� by
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∥∥∥∥∥
∑
�∈N

u�ψ�

∥∥∥∥∥
Xs,q

:=

(∑
�∈N

�
sq
d + q

2−1|u�|q
)1/q

.

Show that ‖ · ‖Xs,q is indeed a norm and that the set of u with ‖u‖Xs,q finite
forms a Banach space. Now, for q ∈ [1,∞), s > 0, and κ > 0, define a random
function U by

U(x) :=
∑
�∈N

�−( s
d+

1
2− 1

q )κ− 1
q Ξ�ψ�(x)

where Ξ� are sampled independently and identically from the generalized
Gaussian measure on R with Lebesgue density proportional to exp(− 1

2 |ξ|q).
By treating the above construction as an infinite product measure and con-
sidering the product of the densities exp(− 1

2 |ξ�|q), show formally that U has
‘Lebesgue density’ proportional to exp(−κ

2 ‖u‖qXs,q).
Generate sample realizations of U and investigate the effect of the var-

ious parameters q, s and κ. It may be useful to know that samples from

the probability measure β1/2

2Γ (1+ 1
q )

exp(−βq/2|x−m|q) dx can be generated as

m + β−1/2S|Y |1/q where S is uniformly distributed in {−1,+1} and Y is
distributed according to the gamma distribution on [0,∞) with parameter q,
which has Lebesgue density qe−qx

I[0,∞)(x).
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