
Chapter 10

Sensitivity Analysis and Model
Reduction

Le doute n’est pas un état bien agréable, mais
l’assurance est un état ridicule.

Voltaire

The topic of this chapter is sensitivity analysis, which may be broadly
understood as understanding how f(x1, . . . , xn) depends upon variations not
only in the xi individually, but also combined or correlated effects among
the xi. There are two broad classes of sensitivity analyses: local sensitivity
analyses study the sensitivity of f to variations in its inputs at or near a
particular base point, as exemplified by the calculation of derivatives; global
sensitivity analyses study the ‘average’ sensitivity of f to variations of its
inputs across the domain of definition of f , as exemplified by the McDiarmid
diameters and Sobol′ indices introduced in Sections 10.3 and 10.4 respectively.

A closely related topic is that of model order reduction, in which it is
desired to find a new function f̃ , a function of many fewer inputs than f , that
can serve as a good approximation to f . Practical problems from engineering
and the sciences can easily have models with millions or billions of inputs
(degrees of freedom). Thorough exploration of such high-dimensional spaces,
e.g. for the purposes of parameter optimization or a Bayesian inversion, is all
but impossible; in such situations, it is essential to be able to resort to some
kind of proxy f̃ for f in order to obtain results of any kind, even though their
accuracy will be controlled by the accuracy of the approximation f̃ ≈ f .
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198 10 Sensitivity Analysis and Model Reduction

10.1 Model Reduction for Linear Models

Suppose that the model mapping inputs x ∈ Cn to outputs y = f(x) ∈ Cm

is actually a linear map, and so can be represented by a matrix A ∈ Cm×n.
There is essentially only one method for the dimensional reduction of such
linear models, the singular value decomposition (SVD).

Theorem 10.1 (Singular value decomposition). Every matrix A ∈ Cm×n

can be factorized as A = UΣV ∗, where U ∈ Cm×m is unitary (i.e. U∗U =
UU∗ = I), V ∈ Cn×n is unitary, and Σ ∈ R

m×n
≥0 is diagonal. Furthermore,

if A is real, then U and V are also real.

Remark 10.2. The existence of an SVD-like decomposition for an operator
A between Hilbert spaces is essentially the definition of A being a compact
operator (cf. Definition 2.48).

The columns of U are called the left singular vectors of A; the columns
of V are called the right singular vectors of A; and the diagonal entries of
Σ are called the singular values of A. While the singular values are unique,
the singular vectors may fail to be. By convention, the singular values and
corresponding singular vectors are ordered so that the singular values form a
decreasing sequence

σ1 ≥ σ2 ≥ · · · ≥ σmin{m,n} ≥ 0.

Thus, the SVD is a decomposition of A into a sum of rank-1 operators:

A = UΣV ∗ =

min{m,n}∑

j=1

σjuj ⊗ vj =

min{m,n}∑

j=1

σjuj〈vj , · 〉.

The singular values and singular vectors are closely related to the eigen-
pairs of self-adjoint and positive semi-definite matrices A∗A:
(a) If m < n, then the eigenvalues of A∗A are σ2

1 , . . . , σ
2
m and n−m zeros,

and the eigenvalues of AA∗ are σ2
1 , . . . , σ

2
m.

(b) If m = n, then the eigenvalues of A∗A and of AA∗ are σ2
1 , . . . , σ

2
n.

(c) If m > n, then the eigenvalues of A∗A are σ2
1 , . . . , σ

2
n and the eigenvalues

of AA∗ are σ2
1 , . . . , σ

2
n and m− n zeros.

In all cases, the eigenvectors of A∗A are the columns of V , i.e. the right
singular vectors of A, and the eigenvectors of AA∗ are the columns of U , i.e.
the left singular vectors of A.

The appeal of the SVD is that it can be calculated in a numerically stable
fashion (e.g. by bidiagonalization via Householder reflections, followed by a
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variant of the QR algorithm for eigenvalues), and that it provides optimal
low-rank approximation of linear operators in a sense made precise by the
next two results:

Theorem 10.3 (Courant–Fischer minimax theorem). For A ∈ C
m×n and a

subspace E ⊆ Cn, let

∥∥A|E
∥∥
2
:= sup

x∈E\{0}

‖Ax‖2
‖x‖2 ≡ sup

x∈E\{0}

〈x,A∗Ax〉1/2
‖x‖2

be the operator 2-norm of A restricted to E. Then the singular values of A
satisfy, for k = 1, . . . ,min{m,n},

σk = inf
subspaces E s.t.
codimE=k−1

∥∥A|E
∥∥
2
= inf

subspaces E s.t.
codimE≤k−1

∥∥A|E
∥∥
2
.

Proof. Let A have SVD A = UΣV ∗, and let v1, . . . , vn be the columns of
V , i.e. the eigenvectors of A∗A. Then, for any x ∈ Cn,

x =

n∑

j=1

〈x, vj〉vj , ‖x‖2 =

n∑

j=1

|〈x, vj〉|2,

A∗Ax =

n∑

j=1

σ2
j 〈x, vj〉vj , 〈x,A∗Ax〉 =

n∑

j=1

σ2
j |〈x, vj〉|2.

Let E ⊆ Cn have codimE ≤ k−1. Then the k-dimensional subspace spanned
by v1, . . . , vk has some x �= 0 in common with E, and so

〈x,A∗Ax〉 =
k∑

j=1

σ2
j |〈x, vj〉|2 ≥ σ2

k

k∑

j=1

|〈x, vj〉|2 = σ2
k‖x‖2.

Hence, σk ≤ ∥∥A|E
∥∥ for any E with codimE ≤ k − 1.

It remains only to find some E with codimE = k−1 for which σk ≥ ∥∥A|E
∥∥.

Take E := span{vk, . . . , vn}. Then, for any x ∈ E,

〈x,A∗Ax〉 =
n∑

j=k

σ2
j |〈x, vj〉|2 ≤ σ2

k

n∑

j=k

|〈x, vj〉|2 = σ2
k‖x‖2,

which completes the proof. 
�
Theorem 10.4 (Eckart–Young low-rank approximation theorem). Given
A ∈ Cm×n, let Ak ∈ Cm×n be the matrix formed from the first k singular
vectors and singular values of A, i.e.

Ak :=

k∑

j=1

σjuj ⊗ vj . (10.1)
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Then
σk+1 = ‖A−Ak‖2 = inf

X∈C
m×n

rankX≤k

‖A−X‖2.

Hence, as measured by the operator 2-norm,
(a) Ak is the best approximation to A of rank at most k; and
(b) if A ∈ Cn×n, then A is invertible if and only if σn > 0, and σn is the

distance of A from the set of singular matrices.

Proof. Let Mk denote the set of matrices in Cm×n with rank ≤ k, and let
X ∈ Mk. Since rankX +dimkerX = n, it follows that codimkerX ≤ k. By
Theorem 10.3,

σk+1 ≤ sup
x∈E

codimE≤k

‖Ax‖2
‖x‖2 .

Hence,

σk+1 ≤ sup
x∈kerX

‖Ax‖2
‖x‖2 = sup

x∈kerX

‖(A−X)x‖2
‖x‖2 ≤ ‖A−X‖2.

Hence σk+1 ≤ infX∈Mk
‖A−X‖2.

Now consider Ak as given by (10.1), which certainly has rankAk ≤ k.
Now,

A−Ak =

r∑

j=k+1

σjuj ⊗ vj ,

where r := rankA. Write x ∈ Cn as x =
∑n

j=1〈x, vj〉vj . Then

(A−Ak)x =

r∑

j=k+1

σjuj〈vj , x〉,

and so

‖(A−Ak)x‖22 =

r∑

j=k+1

σ2
j |〈vj , x〉|2

≤ σ2
k+1

r∑

j=k+1

|〈vj , x〉|2

≤ σ2
k+1‖x‖22

Hence, ‖A−Ak‖2 ≤ σk+1. 
�
See Chapter 11 for an application of the SVD to the analysis of sam-

ple data from random variables, a discrete variant of the Karhunen–Loève
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expansion, known as principal component analysis (PCA). Simply put, when
A is a matrix whose columns are independent samples from some stochastic
process (random vector), the SVD of A is the ideal way to fit a linear structure
to those data points. One may consider nonlinear fitting and dimensionality
reduction methods in the same way, and this is known as manifold learning.
There are many nonlinear generalizations of the SVD/PCA: see the bibliog-
raphy for some references.

10.2 Derivatives

One way to understand the dependence of f(x1, . . . , xn) upon x1, . . . , xn near
some nominal point x̄ = (x̄1, . . . , x̄n) is to estimate the partial derivatives of
f at x̄, i.e. to approximate

∂f

∂xi
(x̄) := lim

h→0

f(x̄1, . . . , x̄i + h, . . . , x̄n)− f(x̄)

h
.

For example, for a function f of a single real variable x, and with a fixed step
size h > 0, the derivative of f at x̄ may be approximated using the forward
difference

df

dx
(x̄) ≈ f(x̄+ h)− f(x̄)

h

or the backward difference

df

dx
(x̄) ≈ f(x̄)− f(x̄− h)

h
.

Similarly, the second derivative of f might be approximated using the second
order central difference

d2f

dx2
(x̄) ≈ f(x̄+ h)− 2f(x̄) + f(x̄− h)

h2
.

Ultimately, approximating the derivatives of f in this way is implicitly a poly-
nomial approximation: polynomials coincide with their Taylor expansions,
their derivatives can be computed exactly, and we make the approximation
that f ≈ p =⇒ f ′ ≈ p′. Alternatively, we can construct a randomized
estimate of the derivative of f at x̄ by random sampling of x near x̄ (i.e. x
not necessarily of the form x = x̄+ hei), as in the simultaneous perturbation
stochastic approximation (SPSA) method of Spall (1992).

An alternative paradigm for differentiation is based on the observation that
many numerical operations on a computer are in fact polynomial operations,
so they can be differentiated accurately using the algebraic properties of
differential calculus, rather than the analytical definitions of those objects.
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A simple algebraic structure that encodes first derivatives is the concept of
dual numbers, the abstract algebraic definition of which is as follows:

Definition 10.5. The dual numbers Rε are defined to be the quotient of the
polynomial ring R[x] by the ideal generated by the monomial x2.

In plain terms, Rε = {x0+x1ε | x0, x1 ∈ R}, where ε �= 0 has the property
that ε2 = 0 (ε is said to be nilpotent). Addition and subtraction of dual
numbers is handled componentwise; multiplication of dual numbers is han-
dled similarly to multiplication of complex numbers, except that the relation
ε2 = 0 is used in place of the relation i2 = −1; however, there are some addi-
tional subtleties in division, which is only well defined when the real part of
the denominator is non-zero, and is otherwise multivalued or even undefined.
In summary:

(x0 + x1ε) + (y0 + y1ε) = (x0 + y0) + (x1 + y1)ε,

(x0 + x1ε)− (y0 + y1ε) = (x0 − y0) + (x1 − y1)ε,

(x0 + x1ε)(y0 + y1ε) = x0y0 + (x0y1 + x1y0)ε

x0 + x1ε

y0 + y1ε
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x0

y0
+

y0x1 − x0y1
y20

ε, if y0 �= 0,

x1

y1
+ zε, for any z ∈ R if x0 = y0 = 0,

undefined, if y0 = 0 and x0 �= 0.

A helpful representation of Rε in terms of 2× 2 real matrices is given by

x0 + x1ε ←→
[
x0 x1

0 x0

]
so that ε ←→

[
0 1

0 0

]
.

One can easily check that the algebraic rules for addition, multiplication, etc.
in Rε correspond exactly to the usual rules for addition, multiplication, etc.
of 2× 2 matrices.

Automatic Differentiation. A useful application of dual numbers is auto-
matic differentiation, which is a form of exact differentiation that arises as
a side-effect of the algebraic properties of the nilpotent element ε, which
behaves rather like an infinitesimal in non-standard analysis. Given the al-
gebraic properties of the dual numbers, any polynomial p(x) := p0 + p1x +
· · ·+ pnx

n ∈ R[x]≤n, thought of as a function p : R → R, can be extended to
a function p : Rε → Rε. Then, for any x0 + x1ε ∈ Rε,
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p(x0 + x1ε) =

n∑

k=0

pk(x0 + x1ε)
k

=

(
n∑

k=0

pkx
k
0

)
+
(
p1x1ε+ 2p2x0x1ε+ · · ·+ npnx

n−1
0 x1ε
)

= p(x0) + p′(x0)x1ε.

Thus the derivative of a real polynomial at x is exactly the coefficient of ε in its
dual-number extension p(x+ε). Indeed, by considering Taylor series, it follows
that the same result holds true for any analytic function (see Exercise 10.1).
Since many numerical functions on a computer are evaluations of polynomials
or power series, the use of dual numbers offers accurate symbolic differenti-
ation of such functions, once those functions have been extended to accept
dual number arguments and return dual number values. Implementation of
dual number arithmetic is relatively straightforward for many common pro-
gramming languages such as C/C++, Python, and so on; however, technical
problems can arise when interfacing with legacy codes that cannot be modi-
fied to operate with dual numbers.

Remark 10.6. (a) An attractive feature of automatic differentiation is that
complicated compositions of functions can be differentiated exactly using
the chain rule

(f ◦ g)′(x) = f ′(g(x))g′(x)

and automatic differentiation of the functions being composed.
(b) For higher-order derivatives, instead of working in a number system for

which ε2 = 0, one works in a system in which ε3 or some other higher
power of ε is zero. For example, to obtain automatic second derivatives,
consider

Rε,ε2 = {x0 + x1ε + x2ε
2 | x0, x1, x2 ∈ R}

with ε3 = 0. The derivative at x of a polynomial p is again the coefficient
of ε in p(x + ε), and the second derivative is twice (i.e. 2! times) the
coefficient of ε2 in p(x+ ε).

(c) Analogous dual systems can be constructed for any commutative ring R,
by defining the dual ring to be the quotient ring R[x]/(x2) — a good
example being the ring of square matrices over some field. The image of
x under the quotient map then has square equal to zero and plays the
role of ε in the above discussion.

(d) Automatic differentiation of vector-valued functions of vector arguments
can be accomplished using a nilpotent vector ε = (ε1, . . . , εn) with the
property that εiεj = 0 for all i, j ∈ {1, . . . , n}; see Exercise 10.3.

The Adjoint Method. A common technique for understanding the impact
of uncertain or otherwise variable parameters on a system is the so-called
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adjoint method, which is in fact a cunning application of the implicit function
theorem (IFT) from multivariate calculus:

Theorem 10.7 (Implicit function theorem). Let X , Y and Z be Banach
spaces, let W ⊆ X × Y be open, and let f ∈ Ck(W ;Z) for some k ≥ 1.
Suppose that, at (x̄, ȳ) ∈ W , the partial Fréchet derivative ∂f

∂y (x̄, ȳ) : Y → Z
is an invertible bounded linear map. Then there exist open sets U ⊆ X about
x̄, V ⊆ Y about ȳ, with U × V ⊆ W , and a unique ϕ ∈ Ck(U ;V ) such that

{(x, y) ∈ U × V | f(x, y) = f(x̄, ȳ)} = {(x, y) ∈ U × V | y = ϕ(x)} ,

i.e. the contour of f through (x̄, ȳ) is locally the graph of ϕ. Furthermore, U
can be chosen so that ∂f

∂y (x, ϕ(x)) is boundedly invertible for all x ∈ U , and

the Fréchet derivative dϕ
dx (x) : X → Y of ϕ at any x ∈ U is the composition

dϕ

dx
(x) = −

(
∂f

∂y
(x, ϕ(x))

)−1(
∂f

∂x
(x, ϕ(x))

)
. (10.2)

We now apply the IFT to derive the adjoint method for sensitivity analysis.
Let U and Θ be (open subsets of) Banach spaces. Suppose that uncertain
parameters θ ∈ Θ and a derived quantity u ∈ U are related by an implicit
function of the form F (u, θ) = 0; to take a very simple example, suppose that
u : [−1, 1] → R solves the boundary value problem

− d

dx

(
eθ

d

dx
u(x)

)
= (x− 1)(x+ 1), − 1 < x < 1,

u(x) = 0, x ∈ {±1}.

Suppose also that we are interested in understanding the effect of changing
θ upon the value of a quantity of interest q : U ×Θ → R. To be more precise,
the aim is to understand the derivative of q(u, θ) with respect to θ, with u
depending on θ via F (u, θ) = 0, at some nominal point (ū, θ̄).

Observe that, by the chain rule,

dq

dθ
(ū, θ̄) =

∂q

∂u
(ū, θ̄)

∂u

∂θ
(ū, θ̄) +

∂q

∂θ
(ū, θ̄). (10.3)

Note that (10.3) only makes sense if u can be locally expressed as a differen-
tiable function of θ near (ū, θ̄): by the IFT, a sufficient condition for this is
that F is continuously Fréchet differentiable near (ū, θ̄) with ∂F

∂u (ū, θ̄) invert-
ible. Using this insight, the partial derivative of the solution u with respect
to the parameters θ can be eliminated from (10.3) to yield an expression that
uses only the partial derivatives of the explicit functions F and q.

To perform this elimination, observe that the total derivative of F vanishes
everywhere on the set of (u, θ) ∈ U ×Θ such that F (u, θ) = 0 (or, indeed, on
any level set of F ), and so the chain rule gives
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dF

dθ
=

∂F

∂u

∂u

∂θ
+

∂F

∂θ
≡ 0.

Therefore, since ∂F
∂u (ū, θ̄) is invertible,

∂u

∂θ
(ū, θ̄) = −

(
∂F

∂u
(ū, θ̄)

)−1
∂F

∂θ
(ū, θ̄), (10.4)

as in (10.2) in the conclusion of the IFT. Thus, (10.3) becomes

dq

dθ
(ū, θ̄) = − ∂q

∂u
(ū, θ̄)

(
∂F

∂u
(ū, θ̄)

)−1
∂F

∂θ
(ū, θ̄) +

∂q

∂θ
(ū, θ̄), (10.5)

which, as desired, avoids explicit reference to ∂u
∂θ .

Equation (10.4) can be re-written as

∂q

∂θ
(ū, θ̄) = λ

∂F

∂θ
(ū, θ̄)

where the linear functional λ ∈ U ′ is the solution to

λ
∂F

∂u
(ū, θ̄) = − ∂q

∂u
(ū, θ̄), (10.6)

or, equivalently, taking the adjoint (conjugate transpose) of (10.6),

(
∂F

∂u
(ū, θ̄)

)∗
λ∗ = −

(
∂q

∂u
(ū, θ̄)

)∗
, (10.7)

which is known as the adjoint equation. This is a powerful tool for investi-
gating the dependence of q upon θ, because we can now compute dq

dθ without
ever having to work out the relationship between θ and u or its derivative
∂u
∂θ explicitly — we only need partial derivatives of F and q with respect to
θ and u, which are usually much easier to calculate. We then need only solve
(10.6)/(10.7) for λ, and then substitute that result into (10.5).

Naturally, the system (10.6)/(10.7) is almost never solved by explicitly
computing the inverse matrix; instead, the usual direct (e.g. Gaussian elimi-
nation with partial pivoting, the QR method) or iterative methods (e.g. the
Jacobi or Gauss–Seidel iterations) are used. See Exercise 10.4 for an example
of the adjoint method for an ODE.

Remark 10.8. Besides their local nature, the use of partial derivatives as
sensitivity indices suffers from another problem well known to students of
multivariate differential calculus: a function can have well-defined partial
derivatives that all vanish, yet not be continuous, let alone locally constant.
The standard example of such a function is f : R2 → R defined by
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f(x, y) :=

⎧
⎨

⎩

xy

x2 + y2
, if (x, y) �= (0, 0),

0, if (x, y) = (0, 0).

This function f is discontinuous at (0, 0), since approaching (0, 0) along the
line x = 0 gives

lim
x=0
y→0

f(x, y) = lim
y→0

f(0, y) = lim
y→0

0 = 0

but approaching (0, 0) along the line x = y gives

lim
y=x→0

f(x, y) = lim
x→0

x2

2x2
=

1

2
�= 0.

However, f has well-defined partial derivatives with respect to x and y at
every point in R2, and in particular at the origin:

∂f

∂x
(x, y) =

⎧
⎨

⎩

y3 − x2y

(x2 + y2)2
, if (x, y) �= (0, 0),

0, if (x, y) = (0, 0),

∂f

∂y
(x, y) =

⎧
⎨

⎩

x3 − xy2

(x2 + y2)2
, if (x, y) �= (0, 0),

0, if (x, y) = (0, 0).

Such pathologies do not arise if the partial derivatives are themselves contin-
uous functions. Therefore, before placing much trust in the partial derivatives
of f as local sensitivity indices, one should check that f is C1.

10.3 McDiarmid Diameters

Unlike the partial derivatives of the previous section, which are local measures
of parameter sensitivity, this section considers global ‘L∞-type’ sensitivity
indices that measure the sensitivity of a function of n variables or parameters
to variations in those variables/parameters individually.

Definition 10.9. The ith McDiarmid subdiameter of f : X :=
∏n

i=1 Xi → K

is defined by

Di[f ] := sup
{|f(x)− f(y)|∣∣x, y ∈ X such that xj = yj for j �= i

}
;

equivalently, Di[f ] is

sup

{
|f(x)− f(x1, . . . , xi−1, x

′
i, xi+1, . . . , xn)|

∣∣∣∣
x = (x1, . . . , xn) ∈ X

and x′
i ∈ Xi

}
.
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The McDiarmid diameter of f is

D[f ] :=

√√√√
n∑

i=1

Di[f ]2.

Remark 10.10. Note that although the two definitions of Di[f ] given above
are obviously mathematically equivalent, they are very different from a com-
putational point of view: the first formulation is ‘obviously’ a constrained
optimization problem in 2n variables with n− 1 constraints (i.e. ‘difficult’),
whereas the second formulation is ‘obviously’ an unconstrained optimization
problem in n+ 1 variables (i.e. ‘easy’).

Lemma 10.11. For each j = 1, . . . , n, Dj [ · ] is a seminorm on the space of
bounded functions f : X → K, as is D[ · ].
Proof. Exercise 10.5. 
�

The McDiarmid subdiameters and diameter are useful not only as sensi-
tivity indices, but also for providing a rigorous upper bound on deviations of
a function of independent random variables from its mean value:

Theorem 10.12 (McDiarmid’s bounded differences inequality). Let X =
(X1, . . . , Xn) be any random variable with independent components taking
values in X =

∏n
i=1 Xi, and let f : X → R be absolutely integrable with

respect to the law of X and have finite McDiarmid diameter D[f ]. Then, for
any t ≥ 0,

P
[
f(X) ≥ E[f(X)] + t

] ≤ exp

(
− 2t2

D[f ]2

)
, (10.8)

P
[
f(X) ≤ E[f(X)]− t

] ≤ exp

(
− 2t2

D[f ]2

)
, (10.9)

P
[|f(X)− E[f(X)]| ≥ t

] ≤ 2 exp

(
− 2t2

D[f ]2

)
. (10.10)

Corollary 10.13 (Hoeffding’s inequality). Let X = (X1, . . . , Xn) be a
random variable with independent components, taking values in the cuboid∏n

i=1[ai, bi]. Let Sn := 1
n

∑n
i=1 Xi. Then, for any t ≥ 0,

P
[
Sn − E[Sn] ≥ t

] ≤ exp

(
− −2n2t2∑n

i=1(bi − ai)2

)
,

and similarly for deviations below, and either side, of the mean.

McDiarmid’s and Hoeffding’s inequalities are just two examples of a
broad family of inequalities known as concentration of measure inequalities.
Roughly put, the concentration of measure phenomenon, which was first
noticed by Lévy (1951), is the fact that a function of a high-dimensional
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random variable with many independent (or weakly correlated) components
has its values overwhelmingly concentrated about the mean (or median). An
inequality such as McDiarmid’s provides a rigorous certification criterion: to
be sure that f(X) will deviate above its mean by more than t with probability
no greater than ε ∈ [0, 1], it suffices to show that

exp

(
− 2t2

D[f ]2

)
≤ ε

i.e.

D[f ] ≤ t

√
2

log ε−1
.

Experimental effort then revolves around determining E[f(X)] and D[f ];
given those ingredients, the certification criterion is mathematically rigor-
ous. That said, it is unlikely to be the optimal rigorous certification criterion,
because McDiarmid’s inequality is not guaranteed to be sharp. The calcula-
tion of optimal probability inequalities is considered in Chapter 14.

To prove McDiarmid’s inequality first requires a lemma bounding the
moment-generating function of a random variable:

Lemma 10.14 (Hoeffding’s lemma). Let X be a random variable with mean
zero taking values in [a, b]. Then, for t ≥ 0,

E
[
etX
] ≤ exp

(
t2(b− a)2

8

)
.

Proof. By the convexity of the exponential function, for each x ∈ [a, b],

etx ≤ b − x

b− a
eta +

x− a

b− a
etb.

Therefore, applying the expectation operator,

E
[
etX
] ≤ b

b− a
eta +

a

b− a
etb = eφ(t).

Observe that φ(0) = 0, φ′(0) = 0, and φ′′(t) ≤ 1
4 (b− a)2. Hence, since exp is

an increasing and convex function,

E
[
etX
] ≤ exp

(
0 + 0t+

(b− a)2

4

t2

2

)
= exp

(
t2(b− a)2

8

)
. 
�

We can now give the proof of McDiarmid’s inequality, which uses Ho-
effding’s lemma and the properties of conditional expectation outlined in
Example 3.22.
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Proof of McDiarmid’s inequality (Theorem 10.12). Let Fi be the
σ-algebra generated by X1, . . . , Xi, and define random variables Z0, . . . , Zn

by Zi := E[f(X)|Fi]. Note that Z0 = E[f(X)] and Zn = f(X). Now consider
the conditional increment (Zi − Zi−1)|Fi−1. First observe that

E[Zi − Zi−1|Fi−1] = 0,

so that the sequence (Zi)i≥0 is a martingale. Secondly, observe that

Li ≤
(
Zi − Zi−1

∣∣Fi−1

) ≤ Ui,

where

Li := inf
�
E[f(X)|Fi−1, Xi = �]− E[f(X)|Fi−1],

Ui := sup
u

E[f(X)|Fi−1, Xi = u]− E[f(X)|Fi−1].

Since Ui − Li ≤ Di[f ], Hoeffding’s lemma implies that

E

[
es(Zi−Zi−1)

∣∣∣Fi−1

]
≤ es

2Di[f ]
2/8. (10.11)

Hence, for any s ≥ 0,

P[f(X)− E[f(X)] ≥ t]

= P
[
es(f(X)−E[f(X)]) ≥ est

]

≤ e−st
E
[
es(f(X)−E[f(X)])

]
by Markov’s ineq.

= e−st
E

[
es

∑n
i=1 Zi−Zi−1

]
as a telescoping sum

= e−st
E

[
E

[
es

∑n
i=1 Zi−Zi−1

∣∣∣Fn−1

]]
by the tower rule

= e−st
E

[
es

∑n−1
i=1 Zi−Zi−1E

[
es(Zn−Zn−1)

∣∣∣Fn−1

]]

since Z0, . . . , Zn−1 are Fn−1-measurable, and

≤ e−stes
2Dn[f ]

2/8
E

[
es

∑n−1
i=1 Zi−Zi−1

]

by (10.11). Repeating this argument a further n− 1 times shows that

P[f(X)− E[f(X)] ≥ t] ≤ exp

(
−st+

s2

8
D[f ]2
)
. (10.12)

The right-hand side of (10.12) is minimized by s = 4t/D[f ]2, which yields
McDiarmid’s inequality (10.8). The inequalities (10.9) and (10.10) follow
easily from (10.8). 
�
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10.4 ANOVA/HDMR Decompositions

The topic of this section is a variance-based decomposition of a function
of n variables that goes by various names such as the analysis of variance
(ANOVA), the functional ANOVA, the high-dimensional model representa-
tion (HDMR), or the integral representation. As before, let (Xi,Fi, μi) be a
probability space for i = 1, . . . , n, and let (X ,F , μ) be the product space.
Write N := {1, . . . , n}, and consider a (F -measurable) function of interest
f : X → R. Bearing in mind that in practical applications n may be large
(103 or more), it is of interest to efficiently identify
• which of the xi contribute in the most dominant ways to the variations
in f(x1, . . . , xn),

• how the effects of multiple xi are cooperative or competitive with one
another,

• and hence construct a surrogate model for f that uses a lower-dimensional
set of input variables, by using only those that give rise to dominant
effects.

The idea is to write f(x1, . . . , xn) as a sum of the form

f(x1, . . . , xn) = f∅ +

n∑

i=1

f{i}(xi) +
∑

1≤i<j≤n

f{i,j}(xi, xj) + . . . (10.13)

=
∑

I⊆N
fI(xI).

Experience suggests that ‘typical real-world systems’ f exhibit only low-order
cooperativity in the effects of the input variables x1, . . . , xn. That is, the terms
fI with |I| � 1 are typically small, and a good approximation of f is given
by, say, a second-order expansion,

f(x1, . . . , xn) ≈ f∅ +
n∑

i=1

f{i}(xi) +
∑

1≤i<j≤n

f{i,j}(xi, xj).

Note, however, that low-order cooperativity does not necessarily imply that
there is a small set of significant variables (it is possible that f{i} is large
for most i ∈ {1, . . . , n}), nor does it say anything about the linearity or
non-linearity of the input-output relationship. Furthermore, there are many
HDMR-type expansions of the form given above; orthogonality criteria can
be used to select a particular HDMR representation.

Recall that, for I ⊆ N , the conditional expectation operator

f �→ Eμ[f(x1, . . . , xn)|xi, i ∈ I] =

∫
∏

i∈I Xi

f(x1, . . . , xn) d
⊗

i∈I

μi(xi)

is an orthogonal projection operator from L2(X , μ;R) to the set of square-
integrable measurable functions that are independent of xi for i ∈ I, i.e. that
depend only on xi for i ∈ N \ I. Let
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P∅f := Eμ[f ]

and, for non-empty I ⊆ N ,

PIf := Eμ[f(x1, . . . , xn)|xi, i /∈ I]−
∑

J�I

PJf.

The functions fI := PIf provide a decomposition of f of the desired form
(10.13). By construction, we have the following:

Theorem 10.15 (ANOVA). For each i ⊆ N , the linear operator PI is an
orthogonal projection of L2(X , μ;R) onto

FI :=

{
f

∣∣∣∣∣
f is independent of xj for j /∈ I

and, for i ∈ I,
∫ 1
0 f(x) dμi(xi) = 0

}
⊆ L2(X , μ;R).

Furthermore, the linear operators PI are idempotent, commutative and
mutually orthogonal, i.e.

PIPJf = PJPIf =

{
PIf, if I = J ,

0, if I �= J ,

and form a resolution of the identity:

∑

I⊆N
PIf = f.

Thus, L2(X , μ;R) =
⊕

I⊆N FI is an orthogonal decomposition of L2(X , μ;R),
so Parseval’s formula implies the following decomposition of the variance
σ2 := ‖f − P∅f‖2L2(μ) of f :

σ2 =
∑

I⊆D
σ2
I , (10.14)

where

σ2
∅ := 0,

σ2
I :=

∫

X
(PIf)(x)

2 dμ(x).

Two commonly used ANOVA/HDMR decompositions are random sam-
pling HDMR, in which μi is uniform measure on [0, 1], and Cut-HDMR, in
which an expansion is performed with respect to a reference point x̄ ∈ X ,
i.e. μ is the unit Dirac measure δx̄:
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f∅(x) = f(x̄),

f{i}(x) = f(x̄1, . . . , x̄i−1, xi, x̄i+1, . . . , x̄n)− f∅(x)

f{i,j}(x) = f(x̄1, . . . , x̄i−1, xi, x̄i+1, . . . , x̄j−1, xj , x̄j+1, . . . , x̄n)

− f{i}(x)− f{j}(x)− f∅(x)

...

Note that a component function fI of a Cut-HDMR expansion vanishes at
any x ∈ X that has a component in common with x̄, i.e.

fI(x) = 0 whenever xi = x̄i for some i ∈ I.

Hence,

fI(x)fJ (x) = 0 whenever xk = x̄k for some k ∈ I ∪ J .

Indeed, this orthogonality relation defines the Cut-HDMR expansion.

Sobol′ Sensitivity Indices. The decomposition of the variance (10.14)
given by an HDMR/ANOVA decomposition naturally gives rise to a set of
sensitivity indices for ranking the most important input variables and their
cooperative effects. An obvious (and näıve) assessment of the relative imp-
ortance of the variables xI is the variance component σ2

I , or the normalized
contribution σ2

I/σ
2. However, this measure neglects the contributions of those

xJ with J ⊆ I, or those xJ such that J has some indices in common with I.
With this in mind, Sobol′ (1990) defined sensitivity indices as follows:

Definition 10.16. Given an HDMR decomposition of a function f of n
variables, the lower and upper Sobol′ sensitivity indices of I ⊆ N are,
respectively,

τ2I :=
∑

J⊆I

σ2
J , and τ2I :=

∑

J∩I �=∅

σ2
J .

The normalized lower and upper Sobol′ sensitivity indices of I ⊆ N are,
respectively,

s2I := τ2I/σ
2, and s2I := τ2I/σ

2.

Since
∑

I⊆N σ2
I = σ2 = ‖f − f∅‖2L2, it follows immediately that, for each

I ⊆ N ,

0 ≤ s2I ≤ s2I ≤ 1.

Note, however, that while Theorem 10.15 guarantees that σ2 =
∑

I⊆N σ2
I , in�

general Sobol′ indices satisfy no such additivity relation:

1 �=
∑

I⊆N
s2I <
∑

I⊆N
s2I �= 1.
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The decomposition of variance (10.14), and sensitivity indices such as the
Sobol′ indices, can also be used to form approximations to f with lower-
dimensional input domain: see Exercise 10.8.

10.5 Active Subspaces

The global sensitivity measures discussed above, such as Sobol′ indices and
McDiarmid diameters, can be used to identify a collection of important input
parameters for a given response function. By way of contrast, the active
subspace method seeks to identify a collection of important directions that
are not necessarily aligned with the coordinate axes.

In this case, we take as the model input space X = [−1, 1]n ⊆ Rn, and
f : X → R is a function of interest. Suppose that, for each x ∈ X , both
f(x) ∈ R and ∇f(x) ∈ Rn can be easily evaluated — note that evaluation of
∇f(x) might be accomplished by many means, e.g. finite differences, auto-
matic differentiation, or use of the adjoint method. Also, let X be equipped
with a probability measure μ. Informally, an active subspace for f will be a
linear subspace of Rn for which f varies a lot more on average (with respect
to μ) along directions in the active subspace than along those in the comple-
mentary inactive subspace.

Suppose that all pairwise products of the partial derivatives of f are inte-
grable with respect to μ. Define C = C(∇f, μ) ∈ Rn×n by

C := EX∼μ

[
(∇f(X))(∇f(X))T

]
. (10.15)

Note that C is symmetric and positive semi-definite, so it diagonalizes as

C = WΛWT,

where W ∈ Rn×n is an orthogonal matrix whose columns w1, . . . , wn are
the eigenvectors of C, and Λ ∈ Rn×n is a diagonal matrix with diagonal
entries λ1 ≥ · · · ≥ λn ≥ 0, which are the corresponding eigenvalues of C.
A quick calculation reveals that the eigenvalue λi is nothing other than the
mean-squared value of the directional derivative in the direction wi:

λi = wT
i Cwi = wT

i Eμ

[
(∇f)(∇f)T

]
wi = Eμ

[
(∇f · wi)

2
]
. (10.16)

In general, the eigenvalues of C may be any non-negative reals. If, however,
some are clearly ‘large’ and some are ‘small’, then this partitioning of the
eigenvalues and observation (10.16) can be used to define a new coordinate
system on R

n such that in some directions f values ‘a lot’ and on others it
varies ‘only a little’. More precisely, write Λ and W in block form as
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Λ =

[
Λ1 0

0 Λ2

]
, and W =

[
W1 W2

]
, (10.17)

where Λ1 ∈ Rk×k and W1 ∈ Rn×k with k ≤ n; of course, the idea is that
k � n, and that λk � λk+1. This partitioning of the eigenvalues and eigen-
vectors of C defines new variables y ∈ Rk and z ∈ Rn−k by

y := WT
1 x, and z := WT

2 x. (10.18)

so that x = W1y + W2z. Note that the (y, z) coordinate system is simply
a rotation of the original x coordinate system. The k-dimensional subspace
spanned by w1, . . . , wk is called the active subspace for f over X with respect
to μ. The heuristic requirement that f should vary mostly in the directions
of the active subspace is quantified by the eigenvalues of C:

Proposition 10.17. The mean-squared gradients of f with respect to the
active coordinates y ∈ Rk and inactive coordinates z ∈ Rn−k satisfy

Eμ

[
(∇yf)

T(∇yf)
]
= λ1 + · · ·+ λk,

Eμ

[
(∇zf)

T(∇zf)
]
= λk+1 + · · ·+ λn.

Proof. By the chain rule, the gradient of f(x) = f(W1y+W2z) with respect
to y is given by

∇yf(x) = ∇yf(W1y +W2z)

= WT
1 ∇xf(W1y +W2z)

= WT
1 ∇xf(x).

Thus,

Eμ

[
(∇yf)

T(∇yf)
]
= Eμ

[
tr
(
(∇yf)(∇yf)

T
)]

= trEμ

[
(∇yf)(∇yf)

T
]

= tr
(
WT

1 Eμ

[
(∇xf)(∇xf)

T
]
W1

)

= tr
(
WT

1 CW1

)

= trΛ1

= λ1 + · · ·+ λk.

This proves the claim for the active coordinates y ∈ Rk; the proof for the
inactive coordinates z ∈ Rn−k is similar. 
�

Proposition 10.17 implies that a function for which λk+1 = · · · = λn = 0
has ∇zf = 0 μ-almost everywhere in X . Unsurprisingly, for such functions,
the value of f depends only on the active variable y and not upon the inactive
variable z:
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Proposition 10.18. Suppose that μ is absolutely continuous with respect to
Lebesgue measure on X , and suppose that f : X → R is such that λk+1 =
· · · = λn = 0. Then, whenever x1, x2 ∈ X have equal active component, i.e.
WT

1 x1 = WT
1 x2, it follows that f(x1) = f(x2) and ∇xf(x1) = ∇xf(x2).

Proof. The gradient ∇zf being zero everywhere in X implies that f(x1) =
f(x2). To show that the gradients are equal, assume that x1 and x2 lie in the
interior of X . Then for any v ∈ Rn, let

x′
1 = x1 + hv, and x′

2 = x2 + hv,

where h ∈ R is small enough that x′
1 and x′

2 lie in the interior of X . Note
that WT

1 x
′
1 = WT

1 x
′
2, and so f(x′

1) = f(x′
2). Then

c = v · (∇xf(x1)−∇xf(x2))

= lim
h→0

(f(x′
1)− f(x1))− (f(x′

2)− f(x2))

h

= 0.

Simple limiting arguments can be used to extend this result to x1 or x2 ∈ ∂X .
Since v ∈ Rn was arbitrary, it follows that ∇xf(x1) = ∇xf(x2). 
�
Example 10.19. In some cases, the active subspace can be identified exactly
from the form of the function f :
(a) Suppose that f is a ridge function, i.e. a function of the form f(x) :=

h(a · x), where h : R → R and a ∈ Rn. In this case, C has rank one, and
the eigenvector defining the active subspace is w1 = a/‖a‖, which can be
discovered by a single evaluation of the gradient anywhere in X .

(b) Consider f(x) := h(x·Ax), where h : R → R and A ∈ Rn×n is symmetric.
In this case,

C = 4AE[(h′)2xxT]AT,

where h′ = h′(x·Ax) is the derivative of h. Provided h′ is non-degenerate,
kerC = kerA.

Numerical Approximation of Active Subspaces. When the expected
value used to define the matrix C and hence the active subspace decom-
position is approximated using Monte Carlo sampling, the active subspace
method has a nice connection to the singular value decomposition (SVD).
That is, suppose that x(1), . . . , x(M) are M independent draws from the prob-
ability measure μ. The corresponding Monte Carlo approximation to C is

C ≈ Ĉ :=
1

M

M∑

m=1

∇f(x(m))∇f(x(m))T.
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The eigendecomposition of Ĉ as Ĉ = Ŵ Λ̂ŴT can be computed as before.
However, if

G :=
1√
M

[
∇f(x(1)) · · · ∇f(x(M))

]
∈ R

n×M ,

then Ĉ = GGT, and an SVD of G is given by G = Ŵ Λ̂1/2V T for some
orthogonal matrix V . In practice, the eigenpairs Ŵ and Λ̂ from the finite-
sample approximation Ĉ are used as approximations of the true eigenpairs
W and Λ of C.

The SVD approach is more numerically stable than an eigendecomposition,
and is also used in the technique of principal component analysis (PCA).
However, PCA applies the SVD to the rectangular matrix whose columns
are samples of a vector-valued response function, and posits a linear model
for the data; the active subspace method applies the SVD to the rectangular
matrix whose columns are the gradient vectors of a scalar-valued response
function, and makes no linearity assumption about the model.

Example 10.20. Consider the Van der Pol oscillator

ü(t)− μ(1− u(t)2)u̇(t) + ω2u(t) = 0,

with the initial conditions u(0) = 1, u̇(0) = 0. Suppose that we are interested
in the state of the oscillator at time T := 2π; if ω = 1 and μ = 0, then
u(T ) = u(0) = 1. Now suppose that ω ∼ Unif([0.8, 1.2]) and μ ∼ Unif([0, 5]);
a contour plot of u(T ) as a function of ω and μ is shown in Figure 10.1(a).

Sampling the gradient of u(T ) with respect to the normalized coordinates

x1 := 2
ω − 0.8

1.2− 0.8
− 1 ∈ [−1, 1]

x2 := 2
μ

5
− 1 ∈ [−1, 1]

gives an approximate covariance matrix

E
[∇xu(T )(∇xu(T ))

T
] ≈ Ĉ =

[
1.776 −1.389

−1.389 1.672

]
,

which has the eigendecomposition Ĉ = Ŵ Λ̂ŴT with

Λ̂ =

[
3.115 0

0 0.3339

]
and Ŵ =

[
0.7202 0.6938

−0.6938 0.7202

]
.

Thus — at least over this range of the ω and μ parameters — this system has
an active subspace in the direction w1 = (0.7202,−0.6938) in the normalized
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Fig. 10.1: Illustration of Example 10.20. Subfigure (a) shows contours of the
state at time T = 2π of a Van der Pol oscillator with initial state 1.0 and
velocity 0.0, as a function of natural frequency ω and damping μ. This system
has an active subspace in the (0.144,−1.735) direction; roughly speaking,
‘most’ of the contours are perpendicular to this direction. Subfigure (b) shows
a projection onto this directions of 1000 samples of u(T ), with uniformly
distributed ω and μ, in the style of Exercise 10.9; this further illustrates the
almost one-dimensional nature of the system response.
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x-coordinate system. In the original (ω, μ)-coordinate system, this active sub-
space lies in the (0.144,−1.735) direction.

Applications of Active Subspaces. The main motivation for determining
an active subspace for f : X → R is to then approximate f by a function F
of the active variables alone, i.e.

f(x) = f(W1y +W2z) ≈ F (W1y).

Given such an approximation, F ◦W1 can be used as a proxy for f for the
purposes of optimization, optimal control, forward and inverse uncertainty
propagation, and so forth.
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10.7 Exercises

Exercise 10.1. Consider a power series f(x) :=
∑

n∈N0
anx

n, thought of as
a function f : R → R, with radius of convergence R. Show that the extension
f : Rε → Rε of f to the dual numbers satisfies

f(x+ ε) = f(x) + f ′(x)ε

whenever |x| < R. Hence show that, if g : R → R is an analytic function, then
g′(x) is the coefficient of ε in g(x+ ε).

Exercise 10.2. An example partial implementation of dual numbers in
Python is as follows:

class DualNumber(object):

def __init__(self, r, e):

# Initialization of real and infinitesimal parts.

self.r = r

self.e = e

def __repr__(self):

# How to print dual numbers

return str(self.r) + " + " + str(self.e) + " * e"

def __add__(self, other):

# Overload the addition operator to allow addition of

# dual numbers.

if not isinstance(other, DualNumber):

new_other = DualNumber(other, 0)

else:

new_other = other

r_part = self.r + new_other.r

e_part = self.e + new_other.e

return DualNumber(r_part, e_part)

Following the template of the overloaded addition operator, write anal-
ogous methods def __sub__(self, other), def __mul__(self, other),
and def __div__(self, other) for this DualNumber class to overload the
subtraction, multiplication and division operators. The result will be that any
numerical function you have written using the standard arithmetic operations
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+, -, *, and / will now accept DualNumber arguments and return DualNumber

values in accordance with the rules of dual number arithmetic.
Once you have done this, the following function will accept a function f

as its argument and return a new function f_prime that is the derivative of
f, calculated using automatic differentiation:

def AutomaticDerivative(f):

# Accepts a function f as an argument and returns a new

# function that is the derivative of f, calculated using

# automatic differentiation.

def f_prime(x):

f_x_plus_eps = f(DualNumber(x, 1))

deriv = f_x_plus_eps.e

return deriv

return f_prime

Test this function using several functions of your choice, and verify that it
correctly calculates the derivative of a product (the Leibniz rule), a quotient
and a composition (the chain rule).

Exercise 10.3. Let f : Rn → Rm be a polynomial or convergent power series

f(x) =
∑

α

cαx
α

in x = (x1, . . . , xn), where α = (α1, . . . , αn) ∈ Nn
0 are multi-indices, cα ∈ Rm,

and xα := xα1

1 · · ·xαn
n . Consider the dual vectors over Rn obtained by adjoin-

ing a vector element ε = (ε1, . . . , εn) such that εiεj = 0 for all i, j ∈ {1, . . . , n}.
Show that

f(x+ ε) =
∑

α

cα

n∑

i=1

αix
α−eiεi

and hence that ∂f
∂xi

(x) is the coefficient of εi in f(x+ ε).

Exercise 10.4. Consider an ODE of the form u̇(t) = f(u(t); θ) for an un-
known u(t) ∈ R, where θ ∈ R is a vector of parameters, and f : R2 → R is
a smooth vector field. Define the local sensitivity of the solution u about a
nominal parameter value θ∗ ∈ R to be the partial derivative s := ∂u

∂θ (θ
∗).

Show that this sensitivity index s evolves according to the adjoint equation

ṡ(t) =
∂f

∂u

(
u(t; θ∗); θ∗

)
s(t) +

∂f

∂θ

(
u(t; θ∗); θ∗

)
.

Extend this result to a vector-valued unknown u(t), and vector of parameters
θ = (θ1, . . . , θn).

Exercise 10.5. Show that, for each j = 1, . . . , n, the McDiarmid subdiam-
eter Dj [ · ] is a seminorm on the space of bounded functions f : X → K, as is
the McDiarmid diameter D[ · ]. What are the null-spaces of these seminorms?
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Exercise 10.6. Define, for constants a, b, c, d ∈ R, f : [0, 1]2 → R by

f(x1, x2) := a+ bx1 + cx2 + dx1x2.

Show that the ANOVA decomposition of f (with respect to uniform measure
on the square) is

f∅ = a+ b
2 + c

2 + d
2 ,

f{1}(x1) =
(
b + d

2

)(
x1 − 1

2

)
,

f{2}(x2) =
(
c+ d

2

)(
x2 − 1

2

)
,

f{1,2}(x1, x2) = d
(
x1 − 1

2

)(
x2 − 1

2

)
.

Exercise 10.7. Let f : [−1, 1]2 → R be a function of two variables. Sketch
the vanishing sets of the component functions of f in a Cut-HDMR expansion
through x̄ = (0, 0). Do the same exercise for f : [−1, 1]3 → R and x̄ = (0, 0, 0),
taking particular care with second-order terms like f{1,2}.

Exercise 10.8. For a function f : [0, 1]n → R with variance σ2, suppose that
the input variables of f have been ordered according to their importance in
the sense that σ2

{1} ≥ σ2
{2} ≥ · · · ≥ σ2

{n} ≥ 0. The truncation dimension of f

with proportion α ∈ [0, 1] is defined to be the least dt = dt(α) ∈ {1, . . . , n}
such that ∑

∅ �=I⊆{1,...,dt}
σ2
I ≥ ασ2,

i.e. the first dt inputs explain a proportion α of the variance of f . Show that

fdt(x) :=
∑

I⊆{1,...,dt}
fI(xI)

is an approximation to f with error
∥∥f − fdt

∥∥2
L2 ≤ (1 − α)σ2. Formulate

and prove a similar result for the superposition dimension ds, the least ds =
ds(α) ∈ {1, . . . , n} such that

∑

∅ �=I⊆{1,...,n}
#I≤ds

σ2
I ≥ ασ2,

Exercise 10.9. Building upon the notion of a sufficient summary plot
developed by Cook (1998), Constantine (2015, Section 1.3) offers the fol-
lowing “quick and dirty” check for a one-dimensional active subspace for
f : [−1, 1]n → R that can be evaluated a limited number — say, M — times
with the available resources:
(a) Draw M samples x1, . . . , xM ∈ [−1, 1]n according to some probability

distribution on the cube, e.g. uniform measure.
(b) Evaluate f(xm) for m = 1, . . . ,M .
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(c) Find (a0, a1, . . . , an) ∈ R1+n to minimize

J(a) :=
1

2

∥∥∥∥∥∥∥∥

⎡

⎢⎢⎣

1 xT
1

...
...

1 xT
M

⎤

⎥⎥⎦

⎡

⎢⎢⎣

a0
...

an

⎤

⎥⎥⎦−

⎡

⎢⎢⎣

f(x1)
...

f(xn)

⎤

⎥⎥⎦

∥∥∥∥∥∥∥∥

2

2

.

is minimal. Note that this step can be interpreted as forming a linear
statistical regression model.

(d) Let a′ := (a1, . . . , an), and define a unit vector w ∈ Rn by w := a′/‖a′‖2.
(e) Produce a scatter plot of the points (w · xm, f(xm)) for m = 1, . . . ,M .

If this scatter plot looks like the graph of a single-valued function, then
this is a good indication that f has a one-dimensional active subspace in
the w direction.

One interpretation of this procedure is that it looks for a rotation of the
domain [−1, 1]n such that, in this rotated frame of reference, the graph of f
looks ‘almost’ like a curve — though it is not necessary that f be a linear
function of w ·x. Examine your favourite model f for a one-dimensional active
subspace in this way.
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