
Chapter 1

Introduction

We must think differently about our ideas —
and how we test them. We must become more
comfortable with probability and uncertainty.
We must think more carefully about the as-
sumptions and beliefs that we bring to a
problem.

The Signal and the Noise: The Art of
Science and Prediction

Nate Silver

1.1 What is Uncertainty Quantification?

This book is an introduction to the mathematics of Uncertainty Quantifi-
cation (UQ), but what is UQ? It is, roughly put, the coming together of
probability theory and statistical practice with ‘the real world’. These two
anecdotes illustrate something of what is meant by this statement:
• Until the early-to-mid 1990s, risk modelling for catastrophe insurance
and re-insurance (i.e. insurance for property owners against risks aris-
ing from earthquakes, hurricanes, terrorism, etc., and then insurance for
the providers of such insurance) was done on a purely statistical basis.
Since that time, catastrophe modellers have tried to incorporate models
for the underlying physics or human behaviour, hoping to gain a more
accurate predictive understanding of risks by blending the statistics and
the physics, e.g. by focussing on what is both statistically and physically
reasonable. This approach also allows risk modellers to study interesting
hypothetical scenarios in a meaningful way, e.g. using a physics-based
model of water drainage to assess potential damage from rainfall 10% in
excess of the historical maximum.
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• Over roughly the same period of time, deterministic engineering mod-
els of complex physical processes began to incorporate some element of
uncertainty to account for lack of knowledge about important physical
parameters, random variability in operating circumstances, or outright
ignorance about what the form of a ‘correct’ model would be. Again the
aim is to provide more accurate predictions about systems’ behaviour.

Thus, a ‘typical’ UQ problem involves one or more mathematical models for
a process of interest, subject to some uncertainty about the correct form
of, or parameter values for, those models. Often, though not always, these
uncertainties are treated probabilistically.

Perhaps as a result of its history, there are many perspectives on what
UQ is, including at the extremes assertions like “UQ is just a buzzword for
statistics” or “UQ is just error analysis”. These points of view are somewhat
extremist, but they do contain a kernel of truth: very often, the probabilistic
theory underlying UQ methods is actually quite simple, but is obscured by
the details of the application. However, the complications that practical app-
lications present are also part of the essence of UQ: it is all very well giving
an accurate prediction for some insurance risk in terms of an elementary
mathematical object such as an expected value, but how will you actually go
about evaluating that expected value when it is an integral over a million-
dimensional parameter space? Thus, it is important to appreciate both the
underlying mathematics and the practicalities of implementation, and the
presentation here leans towards the former while keeping the latter in mind.

Typical UQ problems of interest include certification, prediction, model
and software verification and validation, parameter estimation, data assimi-
lation, and inverse problems. At its very broadest,

“UQ studies all sources of error and uncertainty, including the following: system-
atic and stochastic measurement error; ignorance; limitations of theoretical models;
limitations of numerical representations of those models; limitations of the accuracy
and reliability of computations, approximations, and algorithms; and human error.
A more precise definition is UQ is the end-to-end study of the reliability of scientific
inferences.” (U.S. Department of Energy, 2009, p. 135)

It is especially important to appreciate the “end-to-end” nature of UQ
studies: one is interested in relationships between pieces of information, not
the ‘truth’ of those pieces of information/assumptions, bearing in mind that
they are only approximations of reality. There is always going to be a risk of
‘Garbage In, Garbage Out’. UQ cannot tell you that your model is ‘right’ or
‘true’, but only that, if you accept the validity of the model (to some quanti-
fied degree), then you must logically accept the validity of certain conclusions
(to some quantified degree). In the author’s view, this is the proper interpre-
tation of philosophically sound but somewhat unhelpful assertions like “Veri-
fication and validation of numerical models of natural systems is impossible”
and “The primary value of models is heuristic” (Oreskes et al., 1994). UQ
can, however, tell you that two or more of your modelling assumptions are
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mutually contradictory, and hence that your model is wrong, and a complete
UQ analysis will include a meta-analysis examining the sensitivity of the
original analysis to perturbations of the governing assumptions.

A prototypical, if rather over-used, example for UQ is an elliptic PDE with
uncertainty coefficients:

Example 1.1. Consider the following elliptic boundary value problem on a
connected Lipschitz domain X ⊆ R

n (typically n = 2 or 3):

−∇ · (κ∇u) = f in X , (1.1)

u = b on ∂X .

Problem (1.1) is a simple but not overly näıve model for the pressure field u
of some fluid occupying a domain X . The domain X consists of a material,
and the tensor field κ : X → R

n×n describes the permeability of this material
to the fluid. There is a source term f : X → R, and the boundary condition
specifies the values b : ∂X → R that the pressure takes on the boundary of X .
This model is of interest in the earth sciences because Darcy’s law asserts that
the velocity field v of the fluid flow in this medium is related to the gradient
of the pressure field by

v = κ∇u.

If the fluid contains some kind of contaminant, then it may be important to
understand where fluid following the velocity field v will end up, and when.

In a course on PDE theory, you will learn that, for each given positive-
definite and essentially bounded permeability field κ, problem (1.1) has a
unique weak solution u in the Sobolev space H1

0 (X ) for each forcing term f
in the dual Sobolev space H−1(X ). This is known as the forward problem.
One objective of this book is to tell you that this is far from the end of
the story! As far as practical applications go, existence and uniqueness of
solutions to the forward problem is only the beginning. For one thing, this
PDE model is only an approximation of reality. Secondly, even if the PDE
were a perfectly accurate model, the ‘true’ κ, f and b are not known precisely,
so our knowledge about u = u(κ, f, b) is also uncertain in some way. If κ, f
and b are treated as random variables, then u is also a random variable,
and one is naturally interested in properties of that random variable such
as mean, variance, deviation probabilities, etc. This is known as the forward
propagation of uncertainty, and to perform it we must build some theory for
probability on function spaces.

Another issue is that often we want to solve an inverse problem: perhaps
we know something about f , b and u and want to infer κ via the relationship
(1.1). For example, we may observe the pressure u(xi) at finitely many points
xi ∈ X ; This problem is hugely underdetermined, and hence ill-posed; ill-
posedness is characteristic of many inverse problems, and is only worsened
by the fact that the observations may be corrupted by observational noise.
Even a prototypical inverse problem such as this one is of enormous practical
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interest: it is by solving such inverse problems that oil companies attempt to
infer the location of oil deposits in order to make a profit, and seismologists
the structure of the planet in order to make earthquake predictions. Both
of these problems, the forward and inverse propagation of uncertainty, fall
under the very general remit of UQ. Furthermore, in practice, the domain
X and the fields f , b, κ and u are all discretized and solved for numerically
(i.e. approximately and finite-dimensionally), so it is of interest to understand
the impact of these discretization errors.

Epistemic and Aleatoric Uncertainty. It is common to divide uncer-
tainty into two types, aleatoric and epistemic uncertainty. Aleatoric uncer-
tainty — from the Latin alea, meaning a die — refers to uncertainty about
an inherently variable phenomenon. Epistemic uncertainty — from the Greek
ὲπιστήμη, meaning knowledge — refers to uncertainty arising from lack of
knowledge. If one has at hand a model for some system of interest, then epis-
temic uncertainty is often further subdivided into model form uncertainty, in
which one has significant doubts that the model is even ‘structurally correct’,
and parametric uncertainty, in which one believes that the form of the model
reflects reality well, but one is uncertain about the correct values to use for
particular parameters in the model.

To a certain extent, the distinction between epistemic and aleatoric un-
certainty is an imprecise one, and repeats the old debate between frequentist
and subjectivist (e.g. Bayesian) statisticians. Someone who was simultane-
ously a devout Newtonian physicist and a devout Bayesian might argue that
the results of dice rolls are not aleatoric uncertainties — one simply doesn’t
have complete enough information about the initial conditions of die, the
material and geometry of the die, any gusts of wind that might affect the
flight of the die, and so forth. On the other hand, it is usually clear that
some forms of uncertainty are epistemic rather than aleatoric: for example,
when physicists say that they have yet to come up with a Theory of Every-
thing, they are expressing a lack of knowledge about the laws of physics in
our universe, and the correct mathematical description of those laws. In any
case, regardless of one’s favoured interpretation of probability, the language
of probability theory is a powerful tool in describing uncertainty.

Some Typical UQ Objectives. Many common UQ objectives can be illus-
trated in the context of a system, F , that maps inputs X in some space X to
outputs Y = F (X) in some space Y. Some common UQ objectives include:
• The forward propagation or push-forward problem. Suppose that the un-
certainty about the inputs of F can be summarized in a probability distri-
bution μ on X . Given this, determine the induced probability distribution
F∗μ on the output space Y, as defined by

(F∗μ)(E) := Pμ({x ∈ X | F (x) ∈ E}) ≡ Pμ[F (X) ∈ E].
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This task is typically complicated by μ being a complicated distribution,
or F being non-linear. Because (F∗μ) is a very high-dimensional object,
it is often more practical to identify some specific outcomes of interest
and settle for a solution of the following problem:

• The reliability or certification problem. Suppose that some set Yfail ⊆ Y
is identified as a ‘failure set’, i.e. the outcome F (X) ∈ Yfail is undesirable
in some way. Given appropriate information about the inputs X and
forward process F , determine the failure probability,

Pμ[F (X) ∈ Yfail].

Furthermore, in the case of a failure, how large will the deviation from
acceptable performance be, and what are the consequences?

• The prediction problem. Dually to the reliability problem, given a maxi-
mum acceptable probability of error ε > 0, find a set Yε ⊆ Y such that

Pμ[F (X) ∈ Yε] ≥ 1− ε.

i.e. the prediction F (X) ∈ Yε is wrong with probability at most ε.
• An inverse problem, such as state estimation (often for a quantity that
is changing in time) or parameter identification (usually for a quantity
that is not changing, or is non-physical model parameter). Given some
observations of the output, Y , which may be corrupted or unreliable in
some way, attempt to determine the corresponding inputs X such that
F (X) = Y . In what sense are some estimates for X more or less reliable
than others?

• The model reduction or model calibration problem. Construct another
function Fh (perhaps a numerical model with certain numerical parame-
ters to be calibrated, or one involving far fewer input or output variables)
such that Fh ≈ F in an appropriate sense. Quantifying the accuracy of
the approximation may itself be a certification or prediction problem.

Sometimes a UQ problem consists of several of these problems coupled
together: for example, one might have to solve an inverse problem to produce
or improve some model parameters, and then use those parameters to propa-
gate some other uncertainties forwards, and hence produce a prediction that
can be used for decision support in some certification problem.

Typical issues to be confronted in addressing these problems include the
high dimension of the parameter spaces associated with practical problems;
the approximation of integrals (expected values) by numerical quadrature;
the cost of evaluating functions that often correspond to expensive computer
simulations or physical experiments; and non-negligible epistemic uncertainty
about the correct form of vital ingredients in the analysis, such as the func-
tions and probability measures in key integrals.

The aim of this book is to provide an introduction to the fundamen-
tal mathematical ideas underlying the basic approaches to these types of
problems. Practical UQ applications almost always require some ad hoc
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combination of multiple techniques, adapted and specialized to suit the cir-
cumstances, but the emphasis here is on basic ideas, with simple illustrative
examples. The hope is that interested students or practitioners will be able
to generalize from the topics covered here to their particular problems of int-
erest, with the help of additional resources cited in the bibliographic discus-
sions at the end of each chapter. So, for example, while Chapter 12 discusses
intrusive (Galerkin) methods for UQ with an implicit assumption that the
basis is a polynomial chaos basis, one should be able to adapt these ideas to
non-polynomial bases.

A Word of Warning. UQ is not a mature field like linear algebra or single-�
variable complex analysis, with stately textbooks containing well-polished
presentations of classical theorems bearing August names like Cauchy, Gauss
and Hamilton. Both because of its youth as a field and its very close eng-
agement with applications, UQ is much more about problems, methods and
‘good enough for the job’. There are some very elegant approaches within
UQ, but as yet no single, general, over-arching theory of UQ.

1.2 Mathematical Prerequisites

Like any course or text, this book has some prerequisites. The perspective on�
UQ that runs through this book is strongly (but not exclusively) grounded
in probability theory and Hilbert spaces, so the main prerequisite is familiar-
ity with the language of linear functional analysis and measure/probability
theory. As a crude diagnostic test, read the following sentence:

Given any σ-finite measure space (X ,F , μ), the set of all F -measurable functions
f : X → C for which

∫
X |f |2 dμ is finite, modulo equality μ-almost everywhere, is a

Hilbert space with respect to the inner product 〈f, g〉 := ∫
X f̄g dμ.

None of the symbols, concepts or terms used or implicit in that sentence
should give prospective students or readers any serious problems. Chapters 2
and 3 give a recap, without proof, of the necessary concepts and results, and
most of the material therein should be familiar territory. In addition, Chap-
ters 4 and 5 provide additional mathematical background on optimization
and information theory respectively. It is assumed that readers have greater
prior familiarity with the material in Chapters 2 and 3 than the material in
Chapters 4 and 5; this is reflected in the way that results are presented mostly
without proof in Chapters 2 and 3, but with proof in Chapters 4 and 5.

If, in addition, students or readers have some familiarity with topics such as
numerical analysis, ordinary and partial differential equations, and stochas-
tic analysis, then certain techniques, examples and remarks will make more
sense. None of these are essential prerequisites, but, some ability and willing-
ness to implement UQ methods — even in simple settings — in, e.g., C/C++,
Mathematica, Matlab, or Python is highly desirable. (Some of the concepts
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Fig. 1.1: Outline of the book (Leitfaden). An arrow from m to n indicates
that Chapter n substantially depends upon material in Chapter m.

covered in the book will be given example numerical implementations in
Python.) Although the aim of this book is to give an overview of the mathe-
matical elements of UQ, this is a topic best learned in the doing, not through
pure theory. However, in the interests of accessibility and pedagogy, none
of the examples or exercises in this book will involve serious programming
legerdemain.

1.3 Outline of the Book

The first part of this book lays out basic and general mathematical tools
for the later discussion of UQ. Chapter 2 covers measure and probability
theory, which are essential tools given the probabilistic description of many
UQ problems. Chapter 3 covers some elements of linear functional analysis
on Banach and Hilbert spaces, and constructions such as tensor products, all
of which are natural spaces for the representation of random quantities and
fields. Many UQ problems involve a notion of ‘best fit’, and so Chapter 4 pro-
vides a brief introduction to optimization theory in general, with particular
attention to linear programming and least squares. Finally, although much of
the UQ theory in this book is probabilistic, and is furthermore an L2 theory,
Chapter 5 covers more general notions of information and uncertainty.
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The second part of the book is concerned with mathematical tools that
are much closer to the practice of UQ. We begin in Chapter 6 with a mathe-
matical treatment of inverse problems, and specifically their Bayesian inter-
pretation; we take advantage of the tools developed in Chapters 2 and 3 to
discuss Bayesian inverse problems on function spaces, which are especially
important in PDE applications. In Chapter 7, this leads to a specific class of
inverse problems, filtering and data assimilation problems, in which data and
unknowns are decomposed in a sequential manner. Chapter 8 introduces or-
thogonal polynomial theory, a classical area of mathematics that has a double
application in UQ: orthogonal polynomials are useful basis functions for the
representation of random processes, and form the basis of powerful numer-
ical integration (quadrature) algorithms. Chapter 9 discusses these quadra-
ture methods in more detail, along with other methods such as Monte Carlo.
Chapter 10 covers one aspect of forward uncertainty propagation, namely
sensitivity analysis and model reduction, i.e. finding out which input par-
ameters are influential in determining the values of some output process.
Chapter 11 introduces spectral decompositions of random variables and other
random quantities, including but not limited to polynomial chaos methods.
Chapter 12 covers the intrusive (or Galerkin) approach to the determination
of coefficients in spectral expansions; Chapter 13 covers the alternative non-
intrusive (sample-based) paradigm. Finally, Chapter 14 discusses approaches
to probability-based UQ that apply when even the probability distributions
of interest are uncertain in some way.

The conceptual relationships among the chapters are summarized in Figure
1.1.

1.4 The Road Not Taken

There are many topics relevant to UQ that are either not covered or discussed
only briefly here, including: detailed treatment of data assimilation beyond
the confines of the Kálmán filter and its variations; accuracy, stability and
computational cost of numerical methods; details of numerical implementa-
tion of optimization methods; stochastic homogenization and other multiscale
methods; optimal control and robust optimization; machine learning; issues
related to ‘big data’; and the visualization of uncertainty.
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