
Tree Automata Mining

Michal R. Przybylek

Abstract This paper [The article is an essentially revised version of conference
paper (Przybylek (2013) International Conference on Evolutionary Computation
Theory and Applications)] describes a new approach to mine business processes.
We define bidirectional tree languages together with their finite models and show
how they represent business processes. We offer an algebraic explanation for the
phenomenon of an evolutionary metaheuristic “skeletal algorithms”, and show how
this explanation gives rise to algorithms for recognition of bidirectional tree automata.
We use the algorithms in process mining and in discovering mathematical theories.

Keywords Evolutionary algorithms · Process mining · Language recognition ·
Minimum description length

1 Introduction

Nowadays, there is no longer any question that the quality of a company’s business processes
has a crucial impact on its sales and profits. The degree of innovation built into these business
processes, as well as their flexibility and efficiency, are critically important for the success
of the company. The importance of business processes is further revealed when their are
considered as the link between business and IT; business applications only become business
solutions when the processes are supported efficiently. The essential task of any standard
business software is and always will be to provide efficient support of internal and external
company processes.—Torsten Scholz

In order to survive in today’s global economy more and more enterprises have to
redesign their business processes. The competitive market creates the demand for
high quality services at lower costs and with shorter cycle times. In such an envi-

This work has been partially supported by Polish National Science Center, project DEC-
2011/01/N/ST6/02752.

M.R. Przybylek (B)
Faculty of Mathematics, Informatics and Mechanics,
University of Warsaw, Warsaw, Poland
e-mail: mrp@mimuw.edu.pl

© Springer International Publishing Switzerland 2016
K. Madani et al. (eds.), Computational Intelligence,
Studies in Computational Intelligence 613,
DOI 10.1007/978-3-319-23392-5_8

137

138 M.R. Przybylek

ronment business processes must be identified, described, understood and analysed
to find inefficiencies which cause financial losses. One way to achieve this is by
modelling. Business modelling is the first step towards defining a software system. It
enables the company to look afresh at how to improve organization and to discover
the processes that can be solved automatically by software that will support the busi-
ness. However, as it often happens, such a developed model corresponds more to
how people think of the processes and how they wish the processes would look like,
then to the real processes as they take place.

Another way is by extracting information from a set of events gathered during
executions of a process. Process mining [3, 10–20] is a growing technology in the
context of business process analysis. It aims at extracting this information and using
it to build a model. Process mining is also useful to check if the “a priori model”
reflects the actual situation of executions of the processes. In either case, the extracted
knowledge about business processes may be used to reorganize the processes to
reduce they time and cost for the enterprise.

Figure1 shows a typical event-log gathered during executions of a service process
in an online store. We assume that with every such an event-log there are associated:

Fig. 1 An event log

Tree Automata Mining 139

• an identifier referring to the execution (the case) of the process that generated the
event

• a unique timestamp indicating the particular moment when the event occurred
• an observable set of actions of the parallel events.

Figure2 shows a model recognized from this sample.
The aim of this paper is twofold: to extend and revise methods for exploration of

business processes developed in [7, 8] to improve their effectiveness in a business
environment; and to provide an algebraic explanation of the phenomenon of skeletal
algorithms.We show some sample applications of our algorithms: inmining business
processes and in rediscovering a mathematical theory.

Fig. 2 Discovered model

140 M.R. Przybylek

2 Skeletal Algorithms

Skeletal algorithms [7, 8] are a new branch of evolutionary metaheuristics
[1, 4–6, 9] focused on data and process mining. The basic idea behind the skele-
tal algorithm is to express a problem in terms of congruences on a structure, build
an initial set of congruences, and improve it by taking limited unions/intersections,
until a suitable condition is reached. Skeletal algorithms naturally arise in the con-
text of data/process mining, where the skeleton is the “free” structure on initial data
and a congruence corresponds to similarities in the data. In such a context, skele-
tal algorithms come equipped with fitness functions measuring the complexity of a
model.

Skeletal algorithms, search for a solution of a problem in the set of quotients of a
given structure called the skeleton of the problem. More formally, let S be a set, and
denote by Eq(S) the set of equivalence relations on S. If i ∈ S is any element, and
A ∈ Eq(S) then by [i]A we shall denote the abstraction class of i in A—i.e. the set
{ j ∈ S : j Ai}. We shall consider the following skeletal operations on Eq(S):

1. Splitting
The operation split : {0, 1}S × S × Eq(S) → Eq(S) takes a predicate P : S →
{0, 1}, an element i ∈ S, an equivalence relation A ∈ Eq(S) and gives the largest
equivalence relation R contained in A and satisfying:∀ j∈[i]A i R j ⇒ P(i) = P(j).
That is—it splits the equivalence class [i]A on two classes: one for the elements
that satisfy P and the other of the elements that do not.

2. Summing
The operation sum : S × S × Eq(S) → Eq(S) takes two elements i, j ∈ S, an
equivalence relation A ∈ Eq(S) and gives the smallest equivalence relation R
satisfying i R j and containing A. That is—it merges the equivalence class [i]A

with [j]A.
3. Union

The operation union : S × Eq(S) × Eq(S) → Eq(S) × Eq(S) takes one element
i ∈ S, two equivalence relations A, B ∈ Eq(S) and gives a pair 〈R, Q〉, where R
is the smallest equivalence relation satisfying ∀ j∈[i]B i R j and containing A, and
dually Q is the smallest equivalence relation satisfying ∀ j∈[i]A i Q j and containing
B. That is—it merges the equivalence class corresponding to an element in one
relation, with all elements taken from the equivalence class corresponding to the
same element in the other relation.

4. Intersection
The operation intersection : S × Eq(S) × Eq(S) → Eq(S) × Eq(S) takes one
element i ∈ S, two equivalence relations A, B ∈ Eq(S) and gives a pair 〈R, Q〉,
where R is the largest equivalence relation satisfying ∀x,y∈[i]A x Ry ⇒ x, y ∈
[i]B ∨ x, y /∈ [i]B and contained in A, and dually Q is the largest equivalence
relation satisfying ∀x,y∈[i]B x Qy ⇒ x, y ∈ [i]A ∨ x, y /∈ [i]A and contained in
B. That is—it intersects the equivalence class corresponding to an element in
one relation, with the equivalence class corresponding to the same element in the
other relation.

Tree Automata Mining 141

Furthermore, we assume that there is also a fitness function. There aremany things
that can be implemented differently in various problems.

2.1 Construction of the Skeleton

As pointed out earlier, the skeleton of a problem should correspond to the “free
model” build upon sample data. Observe, that it is really easy to plug in the skeleton
some priori knowledge about the solution—we have to construct a congruence rela-
tion induced by the priori knowledge and divide by it the “free unrestricted model”.
Also, this suggests the following optimization strategy—if the skeleton of a problem
is too big to efficiently apply the skeletal algorithm, we may divide the skeleton on
a family of smaller skeletons, apply to each of them the skeletal algorithm to find
quotients of themodel, glue back the quotients and apply again the skeletal algorithm
to the glued skeleton.

2.2 Construction of the Initial Population

Observe that any equivalence relation on a finite set S may be constructed by
successively applying sum operations to the identity relation, and given any equiva-
lence relation on S, we may reach the identity relation by successively applying split
operations. Therefore, every equivalence relation is constructible from any equiva-
lence relation with sum and split operations. If no priori knowledge is available, we
may build the initial population by successively applying to the identity relation both
sum and split operations.

2.3 Selection of Operations

For all operations we have to choose one or more elements from the skeleton S, and
additionally for a split operation—a splitting predicate P : S → {0, 1}. In most cases
these choices have to reflect the structure of the skeleton—i.e. if our models have
an algebraic or coalgebraic structure, then to obtain a quotient model, we have to
divide the skeleton by an equivalence relation preserving this structure, that is, by a
congruence. The easiest way to obtain a congruence is to choose operations that map
congruences to congruences. Another approach is to allow operations that move out
congruences from they class, but then “improve them” to congruences, or just punish
them in the intermediate step by the fitness function.

142 M.R. Przybylek

2.4 Choosing Appropriate Fitness Function

Data and process mining problems frequently come equipped with a natural fitness
function measuring the total complexity of data given a particular model. One of the
crucial conditions that such a function has to satisfy is the ability to easily adjust its
value on a model obtained by applying skeletal operations.

2.5 Creation of Next Population

There is a room for various approaches. We have experimented most successful with
the following strategy—append k-best congruences from the previous population to
the result of operations applied in the former step of the algorithm.

3 Tree Languages and Tree Automata

Let us first recall the definition of an ordinary tree language and automaton [2]. A
ranked alphabet is a function arity : Σ → N from a finite set of symbolsΣ to the set
of natural numbers N called arities of the symbols. We shall write σ/k to indicate
that the arity of a symbol σ ∈ Σ is k ∈ N , that is arity(σ) = k. One may think of a
ranked alphabet as of an algebraic signature—then a word over a ranked alphabet is
a ground term over corresponding signature.

Example 1 (Propositional Logic) A ranked alphabet of the propositional logic con-
sists of symbols:

{⊥/0,
/0,∨/2,∧/2,¬/1,⇒/2}

Every propositional sentence like “
 ∨ ¬⊥ ⇒ ⊥” corresponds to a word over the
above alphabet—in this case to: “⇒ (∨(
,¬(⊥)),⊥)”, or writing in a tree-like
fashion:

Following [2] we define a finite top-down tree automaton over arity : Σ → N as a
tuple A = 〈Q, qs,Δ〉, where Q is a set of states, qs ∈ Q is the initial state, and Δ is
the set of rewrite rules, or transitions, of the type:

q0(f (x1, . . . c, xn)) → f (q1(x1), . . . c, qn(xn))

Tree Automata Mining 143

where f/n ∈ Σ and qi ∈ Q for i = 0, . . . , n. The rewrite rules are defined on
the ranked alphabet arity : Σ → N extended with q/1 for q ∈ Q. A word w is

recognised by automaton A if qs(w)
Δ∗

−−−−→w, that is, if w may be obtained from
qs(w) by successively applying finitely many rules from Δ.

We shall modify the definition of a tree automaton in two directions. First, it will
be more convenient to associate symbols with states of an automaton, rather then
with transitions. Second, we extend the definition of a ranked alphabet to allow terms
return multiple results; moreover, to fit better the concept of business processes, we
identify terms that are equal up to a permutation of their arguments and results.

Definition 1 (Ranked Alphabet) A ranked alphabet is a function biarity : Σ → N ×
N+. If the ranking function is known from the context, we shall write σ/ i/j ∈ Σ for
a symbol σ ∈ Σ having input arity i and output arity j ; that is, if biarity(σ) = 〈i, j〉.
A definition of a term is more subtle, so let us first consider some special cases. By a
multiset we shall understand a function (−) from a set X to the set of positive natural
numbers N+—it assigns to an element x ∈ X its number of occurrences x in the
multiset. If X is finite, then we shall write {{x1, . . . c, x1, x2, . . . c, x2, . . . cxk, . . . c}},
where an element xk ∈ X occurs n-times when x = n, and call themultiset finite. For
multisets we use the usual set-theoretic operations ∪,∩, / defined pointwise—with
possible extension or truncation of the domains.

A simple language over a ranked alphabet Σ is the smallest set of pairs, called
simple terms, containing 〈σ/0/j,∅〉 for each nullary symbol σ/0/j ∈ Σ and closed
under the following operation: if σ/ i/j ∈ Σ and t1 = 〈x1/ i1/j1, A1〉, . . . c, tk =
〈xk/ ik/jk, Ak〉 are simple terms such that

∑k
s=1 js = i , then 〈σ/ i/j, {{tk : 1 ≤ s ≤ k}}〉

is a simple term. For convenience we write σ {{t1, . . . c, tk}} for 〈σ/ i/j, {{tk : 1 ≤ s ≤ k}}〉
and call ts a subterm of σ {{t1, . . . c, tk}}.
Example 2 (Ordinary Language) A word over an ordinary alphabet Σ may be rep-
resented as a simple term over the ranked alphabet biarity(σ) = (1, 1) for σ ∈ Σ

and biarity(ε) = (0, 1).

Example 3 (Ordinary Tree Language) A word over an ordinary ranked alphabet
may be represented as a simple term over the ranked alphabet extended with unary
symbols n/1/1 for natural numbers n ∈ N indicating a position of an argument.
A tree-representation of sentence “
 ∨ ¬⊥ ⇒ ⊥” (compare Example 1) have the
form shown on Fig. 3a. Notice, that in all semantics of (any) propositional calculus
A ∨ B ≡ B ∨ A, therefore we may use this knowledge on the syntax level and
represent sentence “
 ∨ ¬⊥ ⇒ ⊥” in a more compact form—carrying some extra
information about possible models (Fig. 3b).

We extend the notion of a simple term to allow a single term to be a subterm of more
than one term. Such extension would be trivial for ordinary terms, but here, thanks
to the ability of returning more than one value, it gives us an extra power which is
crucial for representing business processes.

144 M.R. Przybylek

(a) (b)

Fig. 3 Tree representations of sentence “
 ∨ ¬⊥ ⇒ ⊥”. a Ordinary representation. b Represen-
tation respecting symmetry of ∨

Definition 2 (Term) Let Σ be a ranked alphabet. A term over Σ is a finite acyclic
coalgebra 〈S, s0 ∈ S, subterm : S → N+S

, name : S → Σ〉 satisfying the following
compatibility conditions:

∀x∈S

∑

y∈S

subterm(x)(y) = name(x)1

∀y∈S\{s0}
∑

x∈S

subterm(x)(y) = name(y)2

where subscripts 1 and 2 indicates projections on first (i.e. input arity) and second
(i.e. output arity) component respectively Two terms 〈S, s0, subterm, name〉 and 〈S′,
s ′
0, subterm′, name′〉 are equivalent if there exists an isomorphism of the coalgebras,
that is, if there exists a bijectionσ : S → S′ such thatσ(s0) = s ′

0,N+σ ◦subterm◦σ =
subterm′ and name ◦ σ = name′.

We shall not distinguish between equivalent terms.

Example 4 (Simple Term) Consider a simple term t over a ranked alphabet Σ .
It corresponds to the term 〈S, s0 ∈ S, subterm : S → N+S

, name : S → Σ〉,
where S is the smallest multiset containing t and closed under subterms, s0 = t ,
name(σ {{t1, . . . c, tk}}) = σ and subterm(σ {{t1, . . . c, tk}}) = {{t1, . . . c, tk}}.
In line with the above example, we shall generally represent a term as a sequence of
equations (add multiple variables, please):

σ0{{t0,1, . . . c, t0,k0}} in free variables x1, . . . c, xn

x1 = σ1{{t1,1, . . . c, t1,k0}} in free variables x2, . . . c, xn

· · ·
xn = σn{{tn,1, . . . c, tn,kn }} without free variables

where ti, j are simple terms and xi are multisets of variables.

Tree Automata Mining 145

Corollary 1 Terms are tantamount to finite sets of equations of the form
x = σ {{t1, . . . c, tk}} over simple terms without cyclic dependencies of free variables.

Example 5 (Terms from a Business Process) Consider a business process:

which starts in the “start” state and ends in the “end” state. The semantics of the
process is that one have to preform simultaneously task B and at least one task A
and then either finish or repeat the whole process. Some terms t1, t2, t3 generated by
this process are:

t1 = start {{fork {{A {{x}}, B {{x}} }} }}
x = join {{end }}
t2 = start {{fork {{A {{A {{x}} }}, B{{x}} }} }}
x = join {{end }}
t3 = start {{fork {{A {{A {{A {{x}} }} }}, B{{x}} }} }}
x = join {{fork {{A {{A {{x}} }}, B{{y}} }} }}
y = join {{end }}

Generally, every term t generated by this process has to be of the following form:

t = start {{fork {{Ak1 {{x1}}, B{{x1}} }} }}
x1 = join {{ fork {{Ak2 {{x2}}, B{{x2}} }} }}

· · ·
xn−1 = join {{fork {{Akn {{xm}}, B{{xm}} }} }}

xn = join {{end }}

The whole business process cannot be represented as a single term. One could write
the following set of equations:

t = start {{x}}
x = fork {{A {{y}}, B{{z}} }}
y = A {{y}} ∨ y = z

z = join {{x}} ∨ z = join {{end }}

However, there is no term corresponding to this set—there are cyclic dependencies
between variables (for example y depends on y, also x depends on z, z depends
on x), and there are disjunctions in the set of equations.

146 M.R. Przybylek

Definition 3 (Tree Automaton) A tree automaton over a ranked alphabetΣ is a tuple
A = 〈Q, q0,Δ, name〉, where:
• Q is the set of states of the automaton
• q0 ∈ Q is the initial state of the automaton
• name is a function from set of states Q to Σ � {ε/0/1}
• Δ is a set of rewrite rules (transitions) of the form:

{{x0, . . . c, xk}} →δ {{x ′
0, . . . c, x ′

l }}

with:
k∑

i=0

name(xi)1 =
l∑

i=0

name(x ′
i)0

where x0, . . . c, xk, x ′
0, . . . c, x ′

l ∈ Q.

Notice that in the above definition there is a single initial state, but there are no final
states—an automaton finishes its run if it is in neither of the states.

Example 6 (Business Process as Tree Automaton)We shall use the following graphi-
cal representation of a tree automaton: every state is denoted by a circle with the letter

associated to the state inside the circle, every rule {{x0, . . . c, xk}}
δ

−−−−→{{x ′
0, . . . c, x ′

l }}
is denoted by a rectangle (optionally with letter δ inside); moreover this rectangle is
connected by ingoing arrows from circles denoting states {{x0, . . . c, xk}} and outgoing
arrows to circles denoting states {{x ′

0, . . . c, x ′
l }}:

For convenience we shell sometimes omit the intermediating box of a singleton
rule {{x}} → {{x ′}} and draw only a single arrow from the node representing x to the
node representing x ′. The business process from Example 5 defines over a signa-
ture Σ = {start/1/0, fork/2/1, A/1/1, B/1/1, join/1/2, end/0/1} an automaton
〈start,Σ,Δ, id〉 with rules Δ:

Tree Automata Mining 147

{{ start }} δ1→ {{ fork }}
{{ fork }} δ2→ {{A, B}}

{{A}} δ3→ {{A}}
{{A, B}} δ4→ {{ join }}
{{ join }} δ5→ {{ fork }}
{{ join }} δ6→ {{ end }}
{{ end }} δ7→ {{ }}

which may be represented as:

Example 7 (Term as a Skeletal Tree Automaton) The automaton corresponding to
a term t is constructed in two steps. First we define the following automaton. For
every s ∈ S with name(s) = σ/ i/j define a multiset:

Es = {{ εs,1, εs,2, . . . c, εs, j }}

and a rule:
{{s}} → Es

and for every p ∈ S with k = subterm(p)(s) choose any k-element subset X p of E p

and put a rule: ⋃

p∈S

X p → {{s}}

Then, for convenience, we simplify the automaton by cutting at ε-states. That is:
every pair of rules

X → {{Y, E}}
{{E}} → Z

where E consists only of ε-states, is replaced by a single rule:

X → {{Y, Z}}

148 M.R. Przybylek

The next picture illustrates the skeletal automaton constructed from term t2 from
Example 5.

Given a finite multiset X , a rule {{x0, . . . c, xk}} δ→ {{x ′
0, . . . c, x ′

l }} is applicable to X if
{{x0, . . . c, xk}} is a multisubset of X . In such a case we shall write δ[X] for the multiset
(X\{{x0, . . . c, xk}}) ∪ {{x ′

0, . . . c, x ′
l }}. We say that a term t = 〈S, s0, subtermt , namet 〉

is recognised by an automaton A = 〈Q, q0,ΔA, nameA〉 if there is a finite sequence
〈{{q0}}, {{q0 �→ s0}}〉 = T0, T1, . . . c, Tn = 〈{{ }}, {{ }}〉 with name(q0) = name(s0) satisfying
for all 0 < m < n the induction laws:

• Tm+1 = 〈δ[Xm], πm[x1 � �→, . . . c, xk � �→][x ′
1 �→ r ′

1, . . . c, x ′
l �→ r ′

l]〉• 〈Xm, πm〉 = Tm

• a rule {{x0, . . . c, xk}} δ→ {{x ′
0, . . . c, x ′

l }} ∈ ΔA is applicable to Xm and subtermt

(πm(x0)) = subtermt (πm(x1)) = · · · = subtermt (πm(xk)) = {{r0, . . . c, rl}}
• if nameA(x ′

i) = ε then r ′
i = ε{{ri }}

• if nameA(x ′
i) �= ε then namet (ri) = nameA(x ′

i) and r ′
i = ri

Notice that because Xn = {{ }}, the last applied rule has to be of the form {{x0, . . . c, xk}}
δ→ {{ }} and due to the compatibility condition on rules of a tree automaton:

k∑

i=0

nameA(xi)1 = 0

which means that the states x0, . . . c, xk generate only nullary letters. Therefore the
corresponding subterms {{π(x0), . . . c, π(xk)}} of t are nullary.

Example 8 Let us show that term t2 from Example 5 is recognised by automaton
〈start,Σ,Δ, id〉 from Example 6. Since name(t2) = start = id(start) we may put
T0 = 〈{{ strat }}, strat �→ t〉 and consider the following sequence:

• T1 = 〈{{ fork }}, fork �→ fork {{A {{A{{x}} }}, B{{x}} }} 〉 by δ1
• T2 = 〈{{A, B}}, A �→ A {{A {{x}} }}, B �→ B{{x}} 〉 by δ2
• T3 = 〈{{A, B}}, A �→ A {{A {{x}} }}, B �→ B{{x}} 〉 by δ3
• T4 = 〈{{A, B}}, A �→ A{{x}}, B �→ B{{x}}〉 by δ3
• T5 = 〈{{ join }}, join �→ join {{end }} 〉 by δ4
• T6 = 〈{{ end }}, end �→ end 〉 by δ6
• T7 = 〈{{ }}, {{ }}〉 by δ7

it is easy to verify that each Tm is constructed according to the induction laws.

Tree Automata Mining 149

4 Skeletal Algorithms in Tree Mining

Given a finite list K of sample terms over a common alphabet Σ , we shall construct
the skeletal automaton skeleton(K) = 〈q0, S,Δ, name〉 of K in the following way.
For each term Ki , 0 ≤ i < length(K) let skeleton(Ki) = 〈qi

0, Si ,Δi , namei 〉 be the
skeletal automaton of Ki constructed like in Example 7, then:

• S = {START} � ⋃
i Si

• q0 = START
• Δ = {{{ START }} → {{qi

0}} : 0 ≤ i < length(K)} � ⋃
i Δi

• name(q) =
{

START if q = START
namei (q) if q ∈ Si

That is skeleton(K) = 〈Σ, S, l, δ〉 constructed as a disjoint union of skeletal automa-
tons for tk enrichedwith two states start and end. So the skeleton of a sample is just an
automaton corresponding to the disjoint union of skeletal automaton corresponding
to each of the terms enriched with a single starting state. Such automaton describes
the situation, where all actions are different. Our algorithm will try to glue some
actions that give the same output (shall search for the best fitting automaton in the set
of quotients of the skeletal automaton). The next figure shows the skeletal automaton
of the sample t1, t2 from Example 7.

Given afinite list of sample data K , our search spaceEq(K) consists of all equivalence
relations on the set of states S of the skeletal automaton for K .

4.1 Skeletal Operations

1. Splitting
For a given congruence A, choose randomly a state q ∈ skeleton(K) and make
use of two types of predicates

• split by output: P(p) ⇔ ∃
q ′∈[q]A

∃
X

δ→Y

p ∈ X ∧ q ′ ∈ Y

• split by input: P(p) ⇔ ∃
q ′∈[q]A

∃
X

δ→Y

q ′ ∈ X ∧ p ∈ Y

2. Summing
For a given congruence A, choose randomly two states p, q such that name(p) =
name(q).

150 M.R. Przybylek

3. Union/Intersection
Given two skeletons A, B choose randomly a state q ∈ skeleton(K).

Let us note that by choosing states and predicates according to the above descrip-
tion, all skeletal operations preserve congruences on skeleton(K).

4.2 Fitness

The idea behind the fitness function for bidirectional tree automata is the same as for
ordinary finite automata analysed in [7]. The additional difficulty comes here from
two reasons: a bidirectional tree automaton can be simultaneously in a multiset of
states; moreover, two transitions may non-trivially depend on each other. Formally,

let us say that two transitions X
δ→ Y and X ′ δ′→ Y ′ are depended on each other

if X ∩ X ′ �= {{ }}, and are fully depended if X = X ′. Unfortunately, extending the
Bayesian interpretation to our framework yields a fitness function that is impractical
from the computational point of view. For this reason we shall propose a fitness
function that agrees with Bayesian interpretation only on some practical class of
bidirectional tree automata—directed tree automata. A directed tree automaton is a
bidirectional tree automaton whose each pair of rules is either fully depended or not
depended. Now if δ is a sequence of rules of a directed tree automaton, then similarly
to the Bayesian probability in [7], we may compute the probability of a multiset of
states X :

pδ(X) = Γ (k)

Γ (n + k)

k∏

i=1

c
ci

i

where:

• k is the number of rules X
δi→ Y for some Y of the automaton

• ci is the total number of i-th rule X
δi→ Y used in δ

• n = ∑k
i=1 ci is the total number of rules of the form X → Y for some Y used in δ

and the total distribution as:
p(δ) =

∏

X⊆S

pδ(X)

which corresponds to the complexity:

p(δ) = −
∑

X⊆S

log(pδ(X))

This complexity does not include any information about the exact model of an
automaton. Therefore, we have to adjust it by adding “the code” of a model. By
using two-parts codes, we may write the fitness function in the following form:

Tree Automata Mining 151

fitness(A) = length(skeleton(K)/A) −
∑

X⊆S

log(pδ(X))

where length(skeleton(K)/A) is the length of the quotient of the skeletal automaton
skeleton(K) by congruence A under any reasonable coding, and S is the set of states
of the quotient automaton. For sample problems investigated in the next section, we
chose this length to be:

clog(|S|)|{〈δ, x〉 : X
δ→ Y ∈ Δ, 0 ≤ x < size(X) + size(Y)}|

for constant 1 ≤ c ≤ 2.

5 Sample Applications

5.1 Process Mining

We shall start with a business process similar to one investigated in Example 5, but
extended with multiple states generating the same action A:

This process starts in state start then performs simultaneously at least three tasks A
and exactly one task B, and then finishes in end state. Figure4a, b shows automata
mined from 4 and 8 random samples. Notice that the first mined automaton corre-
spond to the minimal automaton recognizing any sample, and after seeing 8 samples
the initial model is fully recovered.

5.2 Theory Discovery

In this section we show a direct application of the above idea to theory discovery.
Given a finite theory over a ranked alphabet, we use true sentences from the theory
as sample data. Let us consider the following signature:

Σ = {=/2/1, cons/2/1, nil/0/1,+/2/1, 0/0/1, 1/0/1}

A natural number n will be represented as a term:

152 M.R. Przybylek

Fig. 4 Discovered models. a Model discovered after seeing 4 samples. b Model discovered from
10 samples

Fig. 5 Natural numbers. a Syntax for natural numbers. b Automaton mined from 16 samples

cons{bk · · · cons{b1, cons{b0, nil}} · · · }

where bi is either 0 or 1, bk �= 0 if n �= 0 and n = ∑k
i=0 2

kbk . Our sample data
K consists of equations 〈a + b = c〉, for0 ≤ a, b ≤ 4, c = a + b on natural
numbers. Notice, that the minimal automaton that recognises K generates the syntax
for the equational theory of natural numbers with addition. Figure5a shows minimal
automaton mined from K , and Fig. 5b shows a model discovered from 16 samples,
which accurately describes three-bit addition on natural numbers.

Tree Automata Mining 153

6 Conclusions

In this paper we defined bidirectional tree automata, and showed how they can rep-
resent business process. We adapted skeletal algorithms introduced in [7] to mine
bidirectional tree automata, resolving the problem of mining nodes that corresponds
to parallel executions of a process (i.e. AND-nodes). In future works we will be
mostly interested in validating the presented algorithms in industrial environment
and apply them to real data.

References

1. Bremermann, H.J.; Optimization through evolution and recombination. In: Yovitts, M.C. et al.
(eds.) Self-Organizing Systems 1962, p. 93106. Spartan Books, Washington (1962)

2. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D., Tison, S.,
Tommasi, M.: Tree automata techniques and applications (2007)

3. deMedeiros, A., vanDongen, B., van der Aalst,W.,Weijters, A.: Processmining: extending the
alpha-algorithm to mine short loops. In BETA Working Paper Series, Eindhoven. Eindhoven
University of Technology (2004)

4. Friedberg, R.M.: A learning machines part I. IBM J. Res. Dev. 2 (1956)
5. Friedberg, R.M., Dunham, B., North, J.H.: A learning machines part II. IBM J. Res. Dev. 3

(1959)
6. Holland, J.H.: Adaption in Natural and Artificial Systems. The University of Michigan Press,

Ann Arbor (1975)
7. Przybylek, M.R.: Skeletal algorithms in process mining. In: Studies in Computational Intelli-

gence, vol. 465. Springer, Berlin (2013)
8. Przybylek, M.R.: Process mining through tree automata. In: International Conference on Evo-

lutionary Computation Theory and Applications (2013)
9. Rechenberg, I.: Evolutions strategie–optimierung technischer systeme nach prinzipien der biol-

ogischen evolution. Ph.D. thesis (1971) [Reprinted by Fromman-Holzboog, 1973]
10. Ren, C., Wen, L., Dong, J., Ding, H., Wang, W., Qiu, M.: A novel approach for process mining

based on event types. In: IEEE SCC 2007, pp. 721–722 (2007)
11. Valiant, L.: A theory of the learnable. In: Communications of The ACM, vol. 27 (1984)
12. van der Aalst, W.: Process Mining: Discovery, Conformance and Enhancement of Business

Processes. Springer, Berlin (2011)
13. van derAalst,W., deMedeiros, A.A.,Weijters, A.: Process equivalence in the context of genetic

mining. BPM Center Report BPM-06-15. www.BPMcenter.org (2006)
14. van der Aalst, W., Pesic, M.S.M.: Beyond process mining: from the past to present and future.

BPM Center Report BPM-09-18. www.BPMcenter.org (2009)
15. van der Aalst, W., ter Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow patterns. BPM

Center Report BPM-00-02. www.BPMcenter.org (2000)
16. van derAalst,W., vanDongen, B.: Discoveringworkflowperformancemodels from timed logs.

In: Engineering and Deployment of Cooperative Information Systems, pp. 107–110 (2002)
17. van der Aalst, W., Weijters, A., Maruster, L.: Workflow mining: discovering process models

from event logs. In: BPM Center Report BPM-04-06. www.BPMcenter.org (2006)

www.BPMcenter.org
www.BPMcenter.org
www.BPMcenter.org
www.BPMcenter.org

154 M.R. Przybylek

18. Weijters, A., van derAalst,W.: Processmining: discoveringworkflowmodels from event-based
data. In: Proceedings of the 13th Belgium-Netherlands Conference on Artificial Intelligence,
pp. 283–290, Maastricht. Springer (2001)

19. Wen, L., Wang, J., Sun, J.: Detecting Implicit Dependencies Between Tasks from Event Logs.
Lecture Notes in Computer Science, vol. 3841, pp. 591–603 (2006)

20. Wynn, M., Edmond, D., van der Aalst, W., ter Hofstede, A.: Achieving a general, formal and
decidable approach to the or-join inworkflowusing reset nets. BPMCenter Report BPM-04-05.
www.BPMcenter.org (2004)

www.BPMcenter.org

	Tree Automata Mining
	1 Introduction
	2 Skeletal Algorithms
	2.1 Construction of the Skeleton
	2.2 Construction of the Initial Population
	2.3 Selection of Operations
	2.4 Choosing Appropriate Fitness Function
	2.5 Creation of Next Population

	3 Tree Languages and Tree Automata
	4 Skeletal Algorithms in Tree Mining
	4.1 Skeletal Operations
	4.2 Fitness

	5 Sample Applications
	5.1 Process Mining
	5.2 Theory Discovery

	6 Conclusions
	References

