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Abstract This work analyzes the behavior and effectiveness of the L-Co-R
method using a growing horizon to predict. This algorithm performs a double goal,
on the one hand, it builds the architecture of the net with a set of RBFNs, and on the
other hand, it sets a group of time lags in order to forecast future values of a time
series given. For that, it has been used a set of 20 time series, 6 different methods
found in the literature, 4 distinct forecast horizons, and 3 distinct quality measures
have been utilized for checking the results. In addition, a statistical study has been
done to confirms the good results of the method L-Co-R.

Keywords Time series forecasting · Co-evolutionary algorithms · Neural net-
works · Significant lags

1 Introduction

Formally defined, a time series is a set of observed values from a variable along
time in regular periods (for instance, every day, every month or every year) [25].
Accordingly, the work of forecasting in a time series can be defined as the task of
predicting successive values of the variable in time spaced based on past and present
observations.
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For many decades, different approaches have been used for to modelling and
forecasting time series. These techniques can be classified into three different areas:
descriptive traditional technologies, linear and nonlinear modern models, and soft
computing techniques. From all developed method, ARIMA, proposed by Box and
Jenkins [3], is possibly the most widely known and used. Nevertheless, it yields
simplistic linear models, being unable to find subtle patterns in the time series data.

New methods based on artificial neural networks, such as the one used in this
paper, on the other hand, can generate more complex models that are able to grasp
those subtle variations.

The L-Co-R method [24], developed inside the field of ANNs, makes jointly use
of Radial Basis Function Networks (RBFNs) and EAs to automatically forecast any
given time series. Moreover, L-Co-R designs adequate neural networks and selects
the time lags that will be used in the prediction, in a coevolutive [7] approach that
allows to separate the main problem in two dependent subproblems. The algorithm
evolves two subpopulations based on a cooperative scheme in which every individual
of a subpopulation collaborates with individuals from the other subpopulation in
order to obtain good solutions.

While previously work [24] was focused on 1-step ahead prediction, the main
goal of this one is to analyze the effectiveness of the L-Co-R method in the medium
and long-term horizon, using the own previously predicted values to perform next
predictions. Thus, 6 different methods used in time series forecasting have been
selected in order to test the behavior of the method.

The rest of the paper is organized as follows: Sect. 2 introduces some preliminary
topics related to this research; Sect. 3 describes themethodL-Co-R; andfinally Sect. 4
presents the experimentation and the statistical study carried out.

2 Preliminaries

Approaches proposed in time series forecasting can be mainly grouped as linear
and nonlinear models. Methods like exponential smoothing methods [34], simple
exponential smoothing, Holt’s linear methods, some variations of the Holt-Winter’s
methods, State space models [29], and ARIMA models [3], have stand out from lin-
ear methods, used chiefly for modelling time series. Nonlinear models arose because
linear models were insufficient in many real applications; between nonlinear meth-
ods it can be found regime-switching models, which comprise the wide variety of
existing threshold autoregressive models [31] as: self-exciting models [32], smooth
transition models [8], and continuous-time models [4], among others. Nevertheless,
soft computing approaches were developed in order to save disadvantages of non-
linear models like the lack of robustness in complex model and the difficulty to
use [9].
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ANNs have also been applied successfully [17] and recognized as an important
tool for time-series forecasting. Within ANNs, the utilization of RBFs as activation
functions were considered by works as [5] and [27], and applied to time series by
Carse and Fogarty [6], and Whitehead and Choate [33]. Later works like the ones by
Harpham and Dawson [13] or Du [10] focused on RBFNs for time series forecasting.

On the other hand, an issue thatmust be taken into accountwhenworkingwith time
series is the correct choice of the time lags for representing the series. Takens’ theorem
[30] establishes that if d, a d-dimensional space where d is the minimum dimension
capable of representing such a relationship, is sufficiently large is possible to build
a state space using the correct time lags and if this space is correctly rebuilt also
guarantees that the dynamics of this space is topologically identical to the dynamics
of the real systems state space.

Many methods are based in Takens’ theorem (like [19]) but, in general, the
approaches found in the literature consider the lags selection as a pre or post-
processing or as a part of the learning process [1, 23]. In the L-Co-R method the
selection of the time lags is jointly faced along with the design process, thus it
employs co-evolution to simultaneously solve these problems.

Cooperative co-evolution [26] has also been used in order to train ANNs to design
neural network ensembles [12] and RBFNs [18]. But in addition, cooperative co-
evolution is utilized in time series forecasting in works as the one by Xin [20].

3 Description of the Method

This section describes L-Co-R [24], a co-evolutionary algorithm developed to min-
imize the error obtained for automatically time series forecasting. The algorithm
works building at the same time RBFNs and sets of lags that will be used to predict
future values. For this task, L-Co-R is able to simultaneously evolve two populations
of different individual species, in which any member of each population can coop-
erate with individuals from the other one in order to generate good solutions, that
is, each individual represents itself a possible solution to the subproblem. Therefore,
the algorithm is composed of the following two populations:

• Population of RBFNs: it consists of a set of RBFNs which evolves to design a
suitable architecture of the network. This population employs real codification so
every individual represent a set of neurons (RBFs) that composes the net. During
the evolutionary process neurons can growor decrease since the number of neurons
is variable. Each neuron of the net is defined by a center (a vector with the same
dimension as the inputs) and a radius. The exact dimension of the input space is
given by an individual of the population of lags (the one chosen to evaluate the
net).

• Population of lags: it is composed of sets of lags evolves to forecast future values
of the time series. The population uses a binary codification scheme thus each gene
indicates if that specific lag in the time series will be utilized in the forecasting
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Fig. 1 General scheme of
method L-Co-R

Trend preprocessing
t = 0;
initialize P lags(t);
initialize P RBFNs(t);
evaluate individuals in P lags(t);
evaluate individuals in P RBFNs(t);
while termination condition not satisfied do
begin
t = t+1;
/* Evolve population of lags */
for i=0 to max gen lags do
begin
set threshold;
select P lags’(t) from P lags(t);
apply genetic operators in P lags’(t);
/* Evaluate P lags’(t) */

choose collaborators from P RBFNs(t);
evaluate individuals in P lags’(t);

replace individuals P lags(t) with P lags’(t);
if threshold 0
begin

diverge P lags(t);
end
end
/* Evolve population of RBFNs */
for i=0 to max gen RBFNs do
begin
select P RBFNs’(t) from P RBFNs(t);
apply genetic operators in P RBFNs’(t);
/* Evaluate P RBFNs’(t) */

choose collaborators from P lags(t);
evaluate individuals in P RBFNs’(t);

replace individuals with P RBFNs’(t);
end

end
train models and select the best one
forecast test values with the final model
Trend post-processing

process. The length of the chromosome is set at the beginning corresponding with
the specific parameter, so that it cannot vary its size during the execution of the
algorithm.

As the fundamental objective, L-Co-R forecasts any time series for any horizon
and builds appropriate RBFNs designed with suitable sets of lags, reducing any hand
made preprocessing step. Figure1 describes the general scheme of the algorithm
L-Co-R.
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L-Co-R performs a process to automatically remove the trend of the times series to
work with, if necessary. This procedure is divided into two main phases: preprocess-
ing, which takes places at the beginning of the algorithm, and post-processing, at
the end of co-evolutionary process. Basically, the algorithm checks if the time series
includes trend and, in affirmative case, the trend is removed.

The performance of L-Co-R starts with the creation of the two initial populations,
randomly generated for the first generation; then, each individual of the populations
is evaluated. The L-Co-R algorithm uses a sequential scheme in which only one
population is active, so the two population take turns in evolving. Firstly, the evolu-
tionary process of the population of lags occurs: the individuals which will belong
to the subpopulation are selected; following the CHC scheme [11], genetic operators
are applied; the collaborator for every individual is chosen from the population of
RBFNs; and the individuals are evaluated again and assigned the result as fitness.
After that, the best individuals from the subpopulation will replace the worst indi-
viduals of the population. During the evolution, the population of lags checks that
al least one gene of the chromosome must be set to one because necessarily the net
needs one input to obtained the forecasted value.

In the second place, the population of RBFNs starts the evolutionary process. For
the first generation, every net in the population has a number of neurons randomly
chosen whichmay not exceed amaximum number previously fixed. As in population
of lags, the individuals for the subpopulation are selected, the genetic operators
are applied, every individual chooses the collaborator from the population of lags,
and then, the individuals are evaluated and the result is assigned as fitness. Fitness
function is defined by the inverse of the root mean squared error At the end of the co-
evolutionary process, two models formed by a set of lags (from the first population)
and a neural network (from the second population) are obtained. On the one hand, a
model is composed of the best set of lags and its best collaborator, and on the other
hand, the other model is composed of the best net found and its best collaborator.
Then, the two models are trained again and the final model chosen is the one that
obtains the best fitness. This final model obtains the future values of the time series
used for the prediction, and then, forecasted data will be used to find next values.

The collaboration scheme used in L-Co-R is the best collaboration scheme [26].
Thus, every individual in any population chooses the best collaborator from the other
population. Only at the beginning of the co-evolutionary process, the collaborator is
selected randomly because the population has not been evaluated yet.

The method has a set of specific operators specially developed to work with
individuals from every population. The operators used by L-Co-R are the followings:

• Population of RBFNs: tournament selection, x_fix crossover, four operators to
mutate randomly chosen (C_random, R_random, Adder, and Deleter) and replace-
ment of the worst individuals by the best ones of the subpopulation.

• Population of lags: elitist selection, HUX crossover operator, replacement of the
worst individuals, and diverge (the population is restarted when it is blocked).
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4 Experimentation and Statistical Study

The main goal of the experiments is to study the behavior of the algorithm
L-Co-R using 4 different and growing horizons, and to compare the results with
other 6 methods found in the literature and for 3 different quality measures.

4.1 Experimental Methodology

The experimentation has been carried out using 20 data bases taken from the INE.1

The data represent observations from different activities and have different nature,
size, and characteristics. The data bases have been labeled as: Airline, WmFranc-
fort, WmLondon, WmMadrid, WmMilan, WmNewYork, WmTokyo, Deceases,
SpaMovSpec, Exchange, Gasoline, MortCanc, MortMade, Books, FreeHouPrize,
Prisoners, TurIn, TurOut, TUrban, and HouseFin.

To compare the effectiveness of L-Co-R it has used, on the one hand, 6 methods
found within the field of time series forecasting: Exponential smoothing method
(ETS), Croston, Theta, Random Walk (RW), Mean, and ARIMA [16], and on the
other hand, 4 different horizons in order to test the effectiveness when the horizon
rises: 1, 6, 12, and 24.

An open question when dealing with time series is the measure to be used in order
to calculate the accuracy of the obtained predictions.MeanAbsolute PercentageError
(MAPE) [2] was the first measure employed in the M-competition [21] and most
textbooks recommended it. Later, many other measures as Geometric Mean Relative
Absolute Error, Median Relative Absolute Error, Symmetric Median and Median
Absolute Percentage Error (MdAPE), and Symmetric Mean Absolute Percentage
Error, among others, were proposed [22]. However, a disadvantage was found in
these measures, they were not generally applicable and can be infinite, undefined or
can produce misleading results, as Hyndman and Koehler explained in their work
[15]. Thus, they proposed Mean Absolute Scaled Error (MASE) that is less sensitive
to outliers, less variable on small samples, and more easily interpreted.

In this work, the measures used are MAPE (i.e., mean(| pt |)), MASE (defined
as mean(| qt |)), and MdAPE (as median(| pt |) ), taking into account that Yt is the
observation at time t = 1, ..., n; Ft is the forecast of Yt ; et is the forecast error (i.e.
et = Yt − Ft ); pt = 100et/Yt is the percentage error, and qt is determined as:

qt = et

1

n − 1

n∑

i=2

| Yi − Yi−1 |

1National Statistics Institute (http://www.ine.es/).

http://www.ine.es/
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Table 1 Results of the methods L-Co-R, ETS, Croston, Theta, RW, Mean, and ARIMA, with
respect to horizon 1 and MAPE

Time series L-Co-R ETS ARIMA CROSTON THETA MEAN RW

Airline 30.380* 274.770 53.636 72.606 141.452 49.965 137.986

WmFrancfort 16.423 17.393 12.136* 40.544 22.745 64.632 25.169

WmLondres 2.860* 5.383 5.212 27.682 10.136 51.852 13.397

WmMadrid 20.101 27.035 12.930* 44.285 25.505 64.326 27.034

WmMilan 30.529* 34.858 34.823 49.750 34.078 59.840 34.823

WmNuevayork 8.259 7.182* 7.536 30.297 14.669 60.812 18.073

WmTokio 4.764* 12.807 12.591 20.556 10.575 42.627 12.591

Deceases 5.981* 8.002 8.040 7.472 7.264 9.663 8.040

SpaMovSpec 53.788* 217.978 88.197 78.648 70.500 63.288 78.935

Exchange 43.044 46.025 45.254 31.121 39.138 24.217* 33.631

Gasoline 1.654* 7.986 9.359 9.587 6.701 18.460 7.974

MortCanc 1.137* 12.979 5.440 32.489 5.889 46.655 6.256

MortMade 3.931* 13.526 31.000 46.362 40.272 42.120 12.800

Books 13.787* 23.588 23.476 23.122 22.360 24.895 22.640

FreeHouPrize 3.424* 8.540 10.227 29.271 5.215 48.746 9.220

Prisoners 8.392 3.103* 3.150 14.220 6.888 35.839 9.474

TurIn 1.357* 7.074 6.377 11.234 7.084 30.424 7.110

TurOut 8.133* 13.261 9.634 12.159 15.238 34.781 13.226

TUrban 2.734* 11.957 9.291 9.067 8.949 16.884 10.116

HouseFin 16.452* 22.296 19.555 21.548 19.947 42.314 22.887

Due to its stochastic nature, the results yielded by L-Co-R have been calculated as
the average errors over 30 executions with every time series. For each execution, the
following parameters are used in the L-Co-R algorithm: lags population size=50,
lags population generations=5, lags chromosome size=10%, RBFNs population
size=50, RBFNs population generations=10, validation rate=0.25, maximum num-
ber of neurons of first generation=0.05, tournament size=3, replacement rate=0.5,
crossover rate=0.8, mutation rate=0.2, and total number of generations=20.

Tables1, 2, 3, 4, 5, and 6, show the results of the L-Co-R and the utilized methods
to compare (ETS, Croston, Theta, RW, Mean, and ARIMA), for measures MAPE,
MASE, and MdAPE, for horizons 1, and 6, respectively. Due to space limitations,
this paper only shows results of the horizons 1 and 6, the results of the rest horizons,
12 and 24, can be accessed at https://goo.gl/frHK7z.

https://goo.gl/frHK7z
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Table 2 Results of the methods L-Co-R, ETS, Croston, Theta, RW, Mean, and ARIMA, with
respect to horizon 1 and MASE

Time series L-Co-R ETS ARIMA CROSTON THETA MEAN RW

Airline 1.913 12.707 1.441* 2.738 5.853 2.045 5.664

WmFrancfort 3.578* 3.608 7.988 7.984 4.673 12.341 5.159

WmLondres 1.648 1.603* 3.484 8.410 3.099 15.566 4.119

WmMadrid 4.442* 5.686 8.625 9.126 5.362 13.050 5.685

WmMilan 5.967* 6.684 19.327 9.263 6.534 10.986 6.678

WmNuevayork 2.667 1.837* 6.228 7.982 3.942 15.620 4.879

WmTokio 2.791 2.443 1.628* 3.935 2.129 8.364 2.402

Deceases 1.059 1.059 1.144 0.952* 0.955 1.274 1.064

SpaMovSpec 1.027 2.027 1.933 1.009 1.023 0.997* 1.010

Exchange 41.181 44.039 70.734 30.448 37.807 23.911* 32.825

Gasoline 1.198* 1.543 1.698 1.864 1.274 3.533 1.541

MortCanc 0.646 1.618 0.277* 4.098 0.725 5.917 0.796

MortMade 1.314 1.303* 1.712 4.500 3.869 4.068 1.315

Books 0.762 0.965 1.147 0.936 0.894 1.040 0.759*

FreeHouPrize 3.339* 5.642 6.805 19.468 3.487 32.371 6.183

Prisoners 14.482 5.485 4.031* 23.979 11.934 58.935 16.305

TurIn 1.903 1.902 1.950 3.151 1.824* 8.328 1.916

TurOut 2.005 2.000 2.241 2.088 2.239 5.826 1.996*

TUrban 0.886 0.978 0.897 0.772 0.744* 1.576 0.887

HouseFin 1.319 1.283 1.502 1.234 1.095* 2.426 1.322

As mentioned before, every result indicated in the tables represent the average of
30 executions for each time series. Best result per database is marked with character
’*’. Considering every horizon tested:

• Horizon 1: the L-Co-R algorithm obtains the best results in most of the time series.
With respect to MAPE, the L-Co-R algorithm obtains the best results in 15 of 20
time series used, as can be seen in Table1. Regarding MASE, L-Co-R stands
out yielding the best results for 5 time series as can be observed in Table2. And
concerning MdAPE, L-Co-R acquires better results than the other methods in 12
of 20 time series, as Table3 shows.

• Horizon 6: the L-Co-R has better results than all the other methods using MAPE
and MdAPE, as can be seen in Tables4 and 6, and the best results in 15 o the 20
time series for MASE, as can be observed in Table5.

• Horizon 12: the L-Co-R yields the best results in 19, 17, and 18 of the 19 time
series (MortCanchas not enoughvalues to usewith this horizon) respectingMAPE,
MASE, and MdAPE, respectively.
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Table 3 Results of the methods L-Co-R, ETS, Croston, Theta, RW, Mean, and ARIMA, with
respect to horizon 1 and MdAPE

Time series L-Co-R ETS ARIMA CROSTON THETA MEAN RW

Airline 15.057* 233.934 15.212 54.657 119.754 31.012 118.090

WmFrancfort 14.610 14.603 11.026* 39.259 19.960 63.868 22.750

WmLondres 3.498* 5.430 5.099 30.550 10.474 53.761 15.722

WmMadrid 22.718 28.116 11.446* 45.817 26.787 65.307 28.116

WmMilan 30.476* 34.685 34.643 50.040 33.872 60.072 34.643

WmNuevayork 9.114 4.598* 5.712 35.253 16.505 63.598 23.137

WmTokio 5.517* 9.864 9.556 18.782 9.075 40.967 9.556

Deceases 4.267* 5.464 5.458 6.121 4.440 7.144 5.458

SpaMovSpec 17.669* 107.283 54.033 51.653 53.104 54.045 51.568

Exchange 44.368 46.597 45.961 34.121 38.832 27.517 36.521

Gasoline 1.792* 7.587 8.923 9.045 6.429 18.825 7.563

MortCanc 11.25 9.694 5.116 30.568 4.047* 44.528 5.339

MortMade 3.459* 12.111 28.374 45.704 41.989 41.482 15.629

Books 4.868* 18.111 18.093 17.230 16.566 20.509 11.567

FreeHouPrize 1.803* 5.222 6.572 29.683 5.201 49.044 9.748

Prisoners 6.766 1.512* 1.621 12.651 5.287 34.665 7.817

TurIn 2.945* 6.627 4.605 11.696 4.779 31.502 6.669

TurOut 5.289* 11.331 7.689 11.518 10.873 36.500 11.392

TUrban 5.290 8.262 6.374 6.822 4.922* 17.828 8.900

HouseFin 18.286 22.623 17.297* 21.279 18.845 43.533 23.684

• Horizon 24: the L-Co-R algorithm obtains better results than the other methods
in 17, 16, and 16 of the 17 time series (MortCanc, MortMade, and FreeHouPrize
have not enough values to use with this horizon) with regard to MAPE, MASE,
and MdAPE, respectively.

Thus, the L-Co-R algorithm is able to achieve a more accurate forecast in the
most time series for any of the horizons and quality measures considered.

4.2 Analysis of the Results

To analyze in more detail the results and check whether the observed differences
are significant, two main steps are performed: firstly, identifying whether exist dif-
ferences in general between the methods used in the comparison; and secondly,
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Table 4 Results of the methods L-Co-R, ETS, Croston, Theta, RW, Mean, and ARIMA, with
respect to horizon 6 and MAPE

Time series L-Co-R ETS ARIMA CROSTON THETA MEAN RW

Airline 28.740* 277.892 48.025 63.178 128.199 44.240 123.817

WmFrancfort 0.531* 19.056 13.004 43.264 25.102 66.250 27.844

WmLondres 0.113* 5.281 5.074 29.310 10.699 52.935 14.427

WmMadrid 0.312* 29.678 13.565 46.994 27.928 66.061 29.678

WmMilan 1.203* 38.440 38.403 52.914 37.562 62.369 38.403

WmNuevayork 0.140* 7.553 7.961 32.490 16.318 62.045 20.251

WmTokio 0.232* 13.255 13.052 20.777 10.908 42.825 13.052

Deceases 0.508* 8.266 8.309 7.385 7.440 10.085 8.309

SpaMovSpec 24.791* 235.399 93.095 82.501 72.432 64.599 82.821

Exchange 0.320* 46.431 33.296 30.949 39.226 24.028 33.465

Gasoline 0.205* 7.985 9.439 9.709 6.656 18.833 7.972

MortCanc 0.135* 12.562 5.963 36.563 5.829 51.164 6.334

MortMade 0.008* 15.078 34.276 55.378 49.472 50.875 12.375

Books 5.831* 23.590 21.059 23.026 22.118 25.159 21.274

FreeHouPrize 1.863* 12.678 15.393 30.282 5.416 49.478 10.517

Prisoners 0.204* 3.357 3.423 15.034 7.516 36.448 10.333

TurIn 0.042* 7.110 6.758 11.858 7.076 30.956 7.170

TurOut 0.603* 39.240 10.230 12.386 14.984 35.319 12.836

TUrban 2.052* 11.764 8.811 8.591 8.408 17.084 9.832

HouseFin 6.729* 21.571 18.953 20.797 19.092 42.674 22.177

determining if the best method is significant better than the rest of the methods. To
do this, first of all it has to be decided if is possible to use parametric o non-parametric
statistical techniques. An adequate use of parametric statistical techniques reaching
three necessary conditions: independency, normality and homoscedasticity [28].

Owing to the former conditions are not fulfilled, the Friedman and Iman-
Davenport non-parametric tests have been used. Tables with results of these tests
are available at https://goo.gl/frHK7z. They show, from left to right, the Friedman
and Iman-Davenport values (χ2 and FF , respectively), the corresponding critical
values for each distribution by using a level of significance α = 0.05, and the p-value
obtained for the measures utilized. Finally, the critical values of Friedman and Iman-
Davenport are smaller than the statistic, it means that there are significant differences
among the methods in all cases.

https://goo.gl/frHK7z
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Table 5 Results of the methods L-Co-R, ETS, Croston, Theta, RW, Mean, and ARIMA, with
respect to horizon 6 and MASE

Time series L-Co-R ETS ARIMA CROSTON THETA MEAN RW

Airline 1.595 12.290 1.585* 2.278 5.133 1.772 4.921

WmFrancfort 1.247* 3.946 2.360 8.548 5.133 12.831 5.675

WmLondres 1.317* 1.637 1.570 9.141 3.369 16.408 4.553

WmMadrid 1.302* 6.827 3.025 10.680 6.427 14.922 6.827

WmMilan 1.181* 7.915 7.908 10.710 7.735 12.537 7.908

WmNuevayork 1.235* 1.884 1.968 8.317 4.231 15.633 5.265

WmTokio 1.531* 2.459 2.423 3.862 2.150 8.182 2.423

Deceases 0.956* 1.113 1.119 0.963 0.997 1.348 1.119

SpaMovSpec 0.958 2.114 1.037 0.983 0.966 0.939* 0.984

Exchange 1.147* 44.047 32.240 30.039 37.574 23.546 32.399

Gasoline 0.051* 1.567 1.860 1.913 1.286 3.647 1.565

MortCanc 0.918 1.077 0.527 3.202 0.483* 4.497 0.533

MortMade 1.077* 1.689 3.876 6.335 5.641 5.810 1.370

Books 1.020 0.979 0.838 0.948 0.900 V1.062 0.730*

FreeHouPrize 1.214* 8.940 10.874 21.782 3.917 35.550 7.606

Prisoners 0.484* 5.684 5.795 24.350 12.457 57.773 17.012

TurIn 1.047* 1.863 1.728 3.225 1.769 8.237 1.882

TurOut 0.966* 5.986 1.556 2.131 2.200 5.912 1.943

TUrban 0.951 1.028 0.806 0.788 0.751* 1.705 0.928

HouseFin 1.026* 1.328 1.035 1.275 1.121 2.565 1.369

In addition, Friedman provides a ranking of the algorithms, so that the method
with a lowest result is taken as the control algorithm. For this reason, and according
to Tables7, 8, 9, and 10, the L-Co-R algorithm results to be the control algorithm for
all horizons considered and the three quality measures used.

In order to check if the control algorithm has statistical differences regarding
the other methods used, the Holm procedure [14] is used. Tables11, 12, 13, and
14 presents the results of the Holm’s procedure since shows the adjusted p values
from each comparison between the algorithm control and the rest of the methods for
MAPE, MASE, and MdAPE, and for horizons 1, 6, 12, and 24 considering a level
of significance of alpha = 0.05.

As can be seen in Tables11, 12, 13, and 14, there are significant differences
among L-Co-R and all the rest of the methods in the most of the cases. Analyzing
more specifically for every horizon:
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Table 6 Results of the methods L-Co-R, ETS, Croston, Theta, RW, Mean, and ARIMA, with
respect to horizon 6 and MdAPE

Time series L-Co-R ETS ARIMA CROSTON THETA MEAN RW

Airline 10.574* 223.150 13.222 31.476 89.154 26.266 85.401

WmFrancfort 2.332* 18.331 12.116 41.042 22.880 64.928 25.017

WmLondres 0.214* 5.394 5.078 30.658 11.247 53.833 15.853

WmMadrid 0.544* 28.484 12.129 46.094 27.270 65.484 28.484

WmMilan 0.519* 35.445 35.406 50.623 34.852 60.538 35.406

WmNuevayork 0.681* 4.909 5.755 36.166 18.312 64.112 24.221

WmTokio 1.207* 10.732 10.701 19.139 9.307 41.390 10.701

Deceases 0.513* 5.187 5.288 5.913 4.161 7.295 5.288

SpaMovSpec 7.824* 168.443 56.282 53.019 51.034 53.070 52.883

Exchange 0.011* 47.169 35.914 33.658 39.600 27.009 36.075

Gasoline 0.000* 7.353 8.995 9.394 6.365 19.412 7.329

MortCanc 0.152* 8.130 6.145 31.959 1.844 46.068 2.630

MortMade 2.582* 13.471 35.704 56.770 51.644 52.227 12.953

Books 1.849* 18.596 14.479 18.871 16.656 20.948 11.838

FreeHouPrize 1.547* 9.491 12.482 31.042 6.549 50.029 11.493

Prisoners 0.178* 1.786 1.906 14.123 6.422 35.766 9.371

TurIn 0.561* 6.781 5.482 12.795 4.614 32.355 6.671

TurOut 0.232* 35.128 8.219 11.965 10.860 37.078 10.784

TUrban 1.707* 8.341 6.054 6.431 4.729 17.642 8.694

HouseFin 3.028* 21.422 17.257 20.053 18.059 43.246 22.495

Table 7 Friedman’s test ranking

MAPE MASE MdAPE

L-Co-R 1.55 L-Co-R 2.63 L-Co-R 1.90

Theta 3.30 Theta 2.85 ARIMA 2.98

ARIMA 3.32 RW 3.60 Theta 3.10

RW 4.28 ETS 3.62 RW 4.15

ETS 4.40 Croston 4.60 ETS 4.23

Croston 5.00 ARIMA 4.65 Croston 5.30

Mean 6.15 Mean 6.05 Mean 6.35

Control algorithms are located in first row

• Horizon 1: significant differences exist between L-Co-R and the rest of the method
for MAPE. With respect to MASE, there exist significant differences between the
L-Co-R algorithm and Mean, ARIMA, and Croston, although it is not appropriate
to assure that with methods ETS, RW, and Theta. Regarding MdAPE, L-Co-R has
significant differences with all methods except ARIMA, as can be seen Table11.
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Table 8 Friedman’s test ranking

MAPE MASE MdAPE

L-Co-R 1.00 L-Co-R 1.70 L-Co-R 1.00

ARIMA 3.33 ARIMA 3.13 Theta 3.25

Theta 3.45 Theta 3.30 ARIMA 3.33

RW 4.35 RW 4.10 RW 4.10

ETS 4.68 ETS 4.63 ETS 4.48

Croston 5.05 Croston 5.00 Croston 5.45

Mean 6.15 Mean 6.15 Mean 6.40

Control algorithms are located in first row

Table 9 Friedman’s test ranking

MAPE MASE MdAPE

L-Co-R 1.00 L-Co-R 1.26 L-Co-R 1.05

ARIMA 3.40 ARIMA 3.24 Theta 2.53

Theta 3.42 Theta 3.42 ARIMA 2.55

RW 4.37 RW 4.26 RW 4.11

ETS 4.61 ETS 4.61 ETS 4.39

Croston 5.11 Croston 5.05 Croston 5.10

Mean 6.11 Mean 6.16 Mean 6.26

Control algorithms are located in first row

Table 10 Friedman’s test ranking

MAPE MASE MdAPE

L-Co-R 1.00 L-Co-R 1.18 L-Co-R 1.18

ARIMA 3.26 ARIMA 3.02 ARIMA 2.91

Theta 3.59 Theta 3.65 Theta 3.59

RW 4.44 RW 4.41 RW 4.29

ETS 4.76 ETS 4.74 ETS 4.74

Croston 4.88 Croston 4.94 Croston 5.24

Mean 6.05 Mean 6.05 Mean 6.06

Control algorithms are located in first row

• Horizon 6: L-Co-R has significant differences with all methods used, for every
measure considered, as Table12 shows.

• Horizon 12: there are significant differences among the control algorithm, L-Co-R,
and the rest of the methods in all cases, as can be observed in Table13.

• Horizon 24: as with horizons 6 and 12, there are also significant differences
between L-Co-R and other methods, as Table14 shows.
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Table 11 Adjusted p values of Holm’s procedure between the control algorithm (L-Co-R) and the
other methods for MAPE, MASE, and MdAPE with respect to horizon 1

MAPE MASE MdAPE

Mean 1.654E-11 Mean 5.340E-07 Mean 7.311E-11

Croston 4.412E-07 ARIMA 3.034E-03 Croston 6.454E-07

ETS 3.020E-05 Croston 3.839E-03 ETS 6.654E-04

RW 6.635E-05 ETS 1.432E-01 RW 9.890E-04

ARIMA 9.367E-03 RW 1.535E-01 Theta 7.898E-02

Theta 1.041E-02 Theta 7.419E-01 ARIMA 1.156E-01

Values lower than alpha = 0.05 indicate significant differences between L-Co-R and the corre-
sponding algorithm

Table 12 Adjusted p values of Holm’s procedure between the control algorithm (L-Co-R) and the
other methods for MAPE, MASE, and MdAPE with respect to horizon 6

MAPE MASE MdAPE

Mean 4.742E-14 Mean 7.311E-11 Mean 2.684E-15

Croston 3.055E-09 Croston 1.361E-06 Croston 7.311E-11

ETS 7.463E-08 ETS 1.854E-05 ETS 3.640E-07

RW 9.395E-07 RW 4.427E-04 RW 5.681E-06

Theta 3.352E-04 Theta 1.917E-02 ARIMA 6.654E-04

ARIMA 6.654E-04 ARIMA 3.698E-02 Theta 9.889E-04

Values lower than alpha = 0.05 indicate significant differences between L-Co-R and the corre-
sponding algorithm

Table 13 Adjusted p values of Holm’s procedure between the control algorithm (L-Co-R) and the
other methods for MAPE, MASE, and MdAPE with respect to horizon 12

MAPE MASE MdAPE

Mean 3.238E-13 Mean 2.874E-12 Mean 1.051E-13

Croston 4.704E-09 Croston 6.417E-08 Croston 7.372E-09

ETS 2.690E-07 ETS 1.856E-06 ETS 1.856E-06

RW 1.540E-06 RW 1.866E-05 RW 1.328E-05

Theta 5.517E-04 Theta 2.078E-03 ARIMA 3.611E-04

ARIMA 6.337E-04 ARIMA 4.862E-03 Theta 4.165E-04

Values lower than alpha = 0.05 indicate significant differences between L-Co-R and the corre-
sponding algorithm

In conclusion, it is possible to confirm that the L-Co-R method is able to achieve
a better forecast in majority of cases even when the horizon grows, comparing with
the other 6 methods utilized and concerning to 3 different quality measures.
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Table 14 Adjusted p values of Holm’s procedure between the control algorithm (L-Co-R) and the
other methods for MAPE, MASE, and MdAPE with respect to horizon 24

MAPE MASE MdAPE

Mean 8.646E-12 Mean 4.421E-11 Mean 4.421E-11

Croston 1.609E-07 Croston 3.357E-07 Croston 4.306E-08

ETS 3.757E-07 ETS 1.563E-06 ETS 1.563E-06

RW 3.414E-06 RW 1.263E-05 RW 2.581E-05

Theta 4.775E-04 Theta 8.551E-04 Theta 1.134E-03

ARIMA 2.240E-03 ARIMA 1.240E-02 ARIMA 1.918E-02

Values lower than alpha = 0.05 indicate significant differences between L-Co-R and the corre-
sponding algorithm
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