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Abstract We propose a tool for controlling the complexity of Genetic Programming
models. The tool is supported by the theory of Vapnik-Chervonekis dimension (VCD)
and is combined with a novel representation of models named straight line program.
Experimental results, implemented on conventional algebraic structures (such as
polynomials), show that the empirical risk, penalized by suitable upper bounds for
the Vapnik-Chervonenkis dimension, gives a generalization error smaller than the
use of statistical conventional techniques such as Bayesian or Akaike information
criteria.

Keywords Genetic Programming · Straight Line Program · Pfaffian Operator ·
Symbolic Regression

1 Introduction

Inductive inference from examples is one of the most studied problems in Artifi-
cial Intelligence and has been addressed for many years using different techniques.
Among them are included statistical methods such as inference techniques, regres-
sion and decision trees and other machine learning methods like neuronal networks
and support vector machines [3, 12, 18, 20].
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In the last two decades, genetic programming (GP) has been applied to solving
problems of inductive learning with some remarkable success [15–17, 19]. The gen-
eral procedure involves the evolution of populations of data structures that represent
models for the target function. In the evolutive process, the fitness function for eval-
uating the population measures some empirical error between the empirical value of
the target function and the value of the considered individual over the sample set.
Usually this fitness function must be regularized with some term that depends on the
complexity of the model. Identifying optimal ways to measure the complexity of the
model is one of the main goals in the process of regularization.

Most of the work devoted to develop GP strategies for solving inductive learning
problems makes use of the GP-trees as data structures for representing programs
[14]. We have proposed a new data structure named straight line program (slp) to
deal with the problem of learning by examples in the framework of genetic pro-
gramming. The slp has a good performance in solving symbolic regression problem
instances as shown in (see [2]). A slp consists of a finite sequence of computational
assignments. Each assignment is obtained by applying some function (selected from
a given set) to a set of arguments that can be variables, constants or pre-computed
results. The slp structure can describe complex computable functions using a few
amount of computational resources than GP-trees. The key point for explaining this
feature is the ability of slp’s for reusing previously computed results during the eval-
uation process. Another advantage with respect to trees is that the slp structure can
describe multivariate functions by selecting a number of assignments as the output
set. Hence one single slp has the same representation capacity as a forest of trees.
We study the practical performance of ad-hoc recombination operators for slps and
we apply the slp- based GP approach to regression. In addition we study the Vapnik-
Chervonekis dimension of slps representing models. We consider families of slp’s
constructed from a set of Pfaffian functions. Pfaffian functions are solutions of trian-
gular systems of first order partial differential equations with polynomial coefficients.
As examples, polynomials, exponential functions, trigonometric functions on some
particular intervals and, in general, analytic algebraic functions are Pfaffian. The
main outcome of this work is a penalty term for the fitness function of a genetic
programming strategy based on slp’s to solve inductive learning problems. Experi-
mental results point out that the slp structure, if suitably regularized, may result in a
robust tool for supervised learning.

2 Supervised Learning and Regression

Genetic Programming can be seen as a direct evolution method of computer programs
for inductive learning. Inductive GP can be considered as a specialization of GP,
in that it uses the framework of the last one in order to solve inductive learning
problems. These problems are, in general, searching problems where the target is
to construct some prediction model from a finite set of observed data. Providing a
framework for studying inductive learning problems is one of the goals of Statistical
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Learning Theory. In this sense the inclusion of methods from Statistical Learning
Theory into the GP paradigm is a relevant contribution to inductive GP. Inductive
inference process consists of three steps: to observe a phenomenon, to construct a
model of that phenomenon and to make predictions by using this model. Given some
sample set obtained by means of the observation step, it could seem that the best
model might fit exactly the data, but this situation could lead to a poor performance
on unseen instances in the presence of noise. Hence, the general idea is to look for
a model that fits well the data set, being at the same time as simple as possible.
This immediately raises the question of how to measure the complexity of a model.
There are many ways to do this. For example we would prefer models with a small
number of free parameters, which corresponds to simple mathematical formulas.
In other cases where the model is represented by a program, we would consider
the length of the program as a complexity measure. Usually, for tree structures, a
measure of the complexity is the height or the width of the tree. There is no universal
way of measuring the complexity of the model and the choice of a specific measure
inherently depends on the problem at hand.

We will consider symbolic regression formulation under the general setting for
predictive learning (see, [7, 21, 22]). The goal is to estimate an unknown real-valued
function that fits a given finite sample set of data points. More formally, we consider
an input space X = IRn and an output space Y = IR. We are given a sample of m pairs
z = (xi , yi )1≤i≤m . These examples are drawn according to an unknown probability
measure ρ on the product space Z = X × Y and they are generated according to an
independent identically distributed (i.i.d.) process. As usual, probability measure ρ
factorizes through its marginal distribution in X ,ρ(x), and the conditional distribution
in Y , ρ(y|x), that is:

ρ(x, y) = ρ(x)ρ(y|x) (1)

The goal is to construct a function f : X → Y which predicts the value y ∈ Y from
a given x ∈ X. To choose the function f we use a criterion of a low probability
of error. The best estimation of the function is the mean of the output conditional
probability:

g(x) =
∫

yρ(y|x) (2)

A learning method selects the best model f ∈ H, whereH is some class of functions.
In general, the error of the estimator f , ε( f ), is written as

ε( f ) =
∫

Q(x, f, y)dρ, (3)

where Q measures some notion of loss between f (x) and the target value y, and ρ is
the distribution from which examples (x, y) are drawn to the learner. For regression
tasks one usually takes Q(x, f, y) = (y − f (x))2.
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For a class of functions H of finite bounded complexity (for instance trees with
bounded size or height), the model can be chosen minimizing the empirical error,
also known as empirical risk:

εm( f ) = 1

m

m∑
i=1

Q(xi , f, yi ) (4)

Obviously, this method will have a good performance when the optimal model
belongs to the complexity bounded class of functions considered. Nevertheless, usu-
ally we are not able to make such an assumption and a large class H must be consid-
ered. In this case, the problem of regression estimation requires optimal selection of
model complexity in addition to model estimation via minimization of the empirical
risk.

Analytical models selection criteria estimate the real error (Eq. 3) as a function of
the empirical error (Eq. 4) with a penalty term related with some measure of model
complexity:

ε( f ) = εm( f ) ∗ pen(h, m); ∗ ∈ {+, ·} (5)

where f is the model, h is the model complexity and m is the size of the sample set.
In the above equation, there exists a degree of freedom which is the selection of the
measure h for the model complexity. This measure always depends on the considered
class H and more exactly on the representation structure for the models in H. For
example if the functions are described by multivariate polynomials, h is usually the
number of monomials or a linear function involving the degree of the polynomial.
In other cases, when the elements of H are represented by programs or trees, some
typical complexity measures are the length of the programs or the size of the trees.

In this work, as we will see in the next sections, the classes H are families of
programs named straight line programs, that are constructed from a set of operators
F and a set of terminals T . The elements of F are Pfaffian functions, that is, a more
general class of functions than polynomials or rational functions. Pfaffian functions
include, for example, the analytic algebraic functions as for instance square root
extraction.

Motivated by the concept of degree of polynomials, in our programs we will only
consider the non-scalar instructions for measuring the complexity of the model. The
non-scalar instructions are those in which the selected operator in F is different from
{+,−}. The main theoretical result in this work is the computation of a polynomial
upper bound for a new complexity measure of our straight line programs with Pfaffian
instructions, that does not involve the length of the corresponding program, but only
the number of the non-scalar instructions. A simplification of this complexity measure
will be considered in the Eq. (5) for the fitness regularization in GP with our structure.
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3 Straight Line Program Genetic Programming

Straight line programs have a large history in the field of Computational Algebra. A
particular class of straight line programs, known in the literature as arithmetic cir-
cuits, constitutes the underlying computation model in Algebraic Complexity Theory
[6]. Arithmetic circuits with the standard arithmetic operations {+,−, ∗, /} are the
natural model of computation for studying the computational complexity of algo-
rithms solving problems with an algebraic flavor. They have been used in linear
algebra problems [4], in quantifier elimination [13] and in algebraic geometry [9,
10]. Also, slp’s constitute a promising alternative to the trees in the field of Genetic
Programming (see [2]). The formal definition of the straight line program structure
is as follows: Let F = { f1, . . . , fn} be a set of functions, where fi has arity ai , for
1 ≤ i ≤ n, and let T = {t1, . . . , tm} be a set of terminals. A straight line program
(slp) over F and T is a finite sequence of computational instructions Γ = {I1, . . . , Il}
where

Ik ≡ uk := f jk (α1, . . . ,αa jk
); with f jk ∈ F,

αi ∈ T for all i if k = 1 and αi ∈ T ∪ {u1, . . . , uk−1} for 1 < k ≤ l.

Terminal set T is of the form T = V ∪ C , where V = {x1, . . . , xn} is a finite
set of variables and C = {c1, . . . , cq} is a finite set of constants. The number of
instructions l is the length of Γ.

Note that if we consider the slp Γ as the code of a program, then a new variable
ui is introduced at each instruction Ii . We will denote by Γ = {u1, . . . , ul} a slp.
Each of the non-terminal variables ui can be considered as an expression over the
set of terminals T constructed by a sequence of recursive compositions from the set
of functions F. The set of all slp’s over F and T is denoted by SL P(F, T ).

An output set of a slp Γ = {u1, . . . , ul} is any set of non-terminal variables of
Γ , that is, O(Γ ) = {ui1 , . . . , uit }, i1 < · · · < it . Provided that V = {x1, . . . , x p} ⊂
T is the set of terminal variables, the function computed by Γ, denoted by ΦΓ :
I p → Ot , is defined recursively in the natural way and satisfies ΦΓ (a1, . . . , ap) =
(b1, . . . , bt ), where b j stands for the value of the expression over V of the non-
terminal variable ui j when we replace the variable xk with ak; 1 ≤ k ≤ p.

Example 1 Let F be the set given by the three binary standard arithmetic operations,
F = {+,−, ∗} and let T = {1, x1, x2} be the set of terminals. In this situation any slp
over F and T is a finite sequence of instructions where each instruction represents
a polynomial in two variables with integer coefficients. If we consider the following
slp Γ of length 5 with output set O(Γ ) = {u5}:

Γ ≡

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u1 := x1 + 1
u2 := u1 ∗ u1

u3 := x2 + x2

u4 := u2 ∗ u3

u5 := u4 − u3

(6)
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Fig. 1 Directed graph
representing a slp u5 := -

u4 := *

u2 := *

u1 := +

x1 1

u3 := +

x2 x2

then the function computed by Γ is the polynomial

ΦΓ = 2x2(x1 + 1)2 − 2x2

Every slp, Γ = {u1, . . . , ul}, over F and T can be represented by a directed
acyclic graph GΓ = (V, E). The set of vertices is V = T ′ ∪ {u1, . . . , ul}, where T ′
contains all terminals involved in the computation. The set of edges E is constructed
as follows: for every k, 1 ≤ k ≤ l, we draw an edge (uk,αi ) for each i ∈ {1, . . . , a jk }.
Note that T ′ is the set of leaves of GΓ and it is a subset of the set T of terminals.
Figure 1 is a directed graph representing the slp described in Eq. (6)

For computing the initial population, the well known methods for trees (see [14])
can be easily adapted to slp’s. In order to compute the fitness function in a GP process
to solve a particular problem, the computation of the function ΦΓ , considering its
own definition, would be often necessary.

3.1 SLP Crossover and Mutation

For slp-GP, 1-point crossover and in general k-point crossover are easily defined.
However, a new specific crossover operation that produces another type of informa-
tion exchange between the two selected parents, has been designed. The objective is
to carry subexpressions from one parent to the other. A subexpression is captured by
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an instruction ui and all the instructions that are used to compute the expression over
the set of terminals represented by ui . Now follows a description of this crossover
with a clarifying example.

Given two slp’s, Γ1 and Γ2, first a position k en Γ1 is randomly selected. Let Suk be
the set of all instructions related to the computation of the subexpression associated
to node uk . We obtain the first offspring by randomly selecting an allowed position t
in Γ2 and making the substitution of a part of its instructions by those instructions in
Suk suitably renamed. For the second offspring we symmetrically repeat the strategy.

Example: Consider F = {∗,+}, L = 5 and T = {x, y}. Let Γ1 and Γ2 be the
following two slp’s:

Γ1 ≡

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u1 := x + y
u2 := u1 ∗ u1

u3 := u1 ∗ x
u4 := u3 + u2

u5 := u3 ∗ u2

Γ2 ≡

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u1 := x ∗ x
u2 := u1 + y
u3 := u1 + x
u4 := u2 ∗ x
u5 := u1 + u4

If k = 3 then Su3 = {u1, u3}, and t must be selected in {2, . . . , 5}. If for instance
t = 3, then the first offspring is as follows.

Γ ′
1 ≡

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u1 := x ∗ x
u2 := x + y
u3 := u2 ∗ x
u4 := u2 ∗ x
u5 := u1 + u4

For the second offspring, if the selected position in Γ2 is k ′ = 4, then Su4 =
{u1, u2, u4}. Now if t = 5, then the offspring will be

Γ ′
2 ≡

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u1 := x + y
u2 := u1 ∗ u1

u3 := x ∗ x
u4 := u3 + y
u5 := u4 ∗ x

The mutation operation in the slp structure consists of a change in one of the
instructions. This change can be either the substitution of the complete instruction by
another one randomly generated, or a little modification of just one of the arguments
of the function in F that defines the instruction.
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4 Pfaffian Functions and VCD of Formulas

In this section we introduce some tools concerning the geometry of sets defined by
boolean combinations of sign conditions over Pfaffian functions (semi-Pfaffian sets
in the mathematical literature). A complete survey on the subject is due to Gabrielov
and Vorobjov [8].

Definition 1 Let U ⊂ Rn be an open domain. A Pfaffian chain of length q ≥ 1 and
degree D ≥ 1 in U is a sequence of real analytic functions f1, . . . , fq in U satisfying
a system of differential equations

∂ fi

∂x j
= Pi, j (x, f1(x), . . . , fi (x)) (7)

for i = 1, . . . q where Pi, j ∈ R[x, y1, . . . , yi ] are polynomials of degree at most D
and x = x1, . . . , xn.

A function f on U is called a Pfaffian of order q and degree (D, d) if

f (x) = P(x, f1(x), . . . , fq(x)) (8)

where P ∈ R[x, y1, . . . , yq ] is a polynomial of degree at most d ≥ 1 and f1, . . . , fq

is a Pfaffian chain of length q and degree D.
The following functions are Pfaffian: sin(x), defined on the interval (−π +

2πr,π + 2πr); tan(x), defined on the interval (−π/2 + πr,π/2 + πr); ex defined
in R; log x defined on x > 0; 1/x defined on x �= 0.

√
x defined on x ≥ 0. More

generally, analytic algebraic functions are Pfaffian.

Definition 2 Let F be a class of subsets of a set X . We say that F shatters a set
A ⊂ X if for every subset E ⊂ A there exists S ∈ F such that E = S ∩ A. The
VCD of F is the cardinality of the largest set that is shattered by F .

Next we announce an upper bound for the VCD of a family of concept classes
whose membership tests are computed by straight line programs involving Pfaffian
operators over the real numbers. An important new issue is that we do not consider
an upper bound for the length of the slp’s. In previous results about VCD of programs
or families of computation trees, a time bound approximated by the number of steps
of the program execution or by the height of the computation tree is needed [11]. In
our case we only need a bound for the number of the non-scalar slp’s instructions.
Those are instructions involving operations which are not in {+,−}.

A rough estimation of the V C dimension of slps using Pfaffian operators can be
obtained computing the number of free parameters in families of slps with bounded
non-scalar complexity. To do this let T = {t1, . . . , tn} be a set of terminals and let
F = {+,−∗, /, sign} ∪ { f1, . . . , fq} be a set of functions, where the elements fi

constitute a Pfaffian chain of length q with arities bounded by A and the sign function
is defined as sign(x) = 1 if x > 0 and 0 otherwise.
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Let Γn,L be the collection of slp′s Γ over F and T using at most L non-scalar
operations and a free number of scalar operations. Then, the number of free para-
meters of a universal slp ΓU that parameterizes the elements of the family Γn,L is
exactly:

N := L[3 + q + A(n + L − 1

2
) + 1] + n (9)

The proof is as follows. Introduce a set of parameters α, β and γ taking values in
Zk for a suitable natural number k, such that each slp in the family can be obtained
specializing the parameters. For this purpose we define u−n+m = tm, for 1 ≤ m ≤ n.

Note that any non-scalar assignment ui , 1 ≤ i ≤ L in a slp Γ belonging to Γn,L is a
function of t = (t1, . . . , tn) that can be parameterized as follows:

ui = Ui (α,β,γ)(t) =

γi
−n[αi

−n(

i−1∑
j=−n+1

α j
i1 u j ) ∗ (

i−1∑
j=−n+1

α j
i2 u j )+

+(1 − αi
−n)[βi

−n

∑i−1
j=−n+1 α j

i1 u j∑i−1
j=−n+1 α j

i2 u j

+

+(1 − βi
−n)sgn(

i−1∑
j=−n+1

α j
i1 u j )]]+

+(1 − γi
−n)[

q∑
k=1

γi
k fk(

i−1∑
j=−n+1

α j
i1 u j , . . . ,

i−1∑
j=−n+1

α j
i A u j )]

Now considering the last assignment as the output set of the slp Γ, this last
assignment is parameterized as:

U =
L∑

j=−n+1

α j u j

where u j , 1 ≤ j ≤ L are the non-scalar assignments.
Finally counting the number of introduced parameters we will obtain Eq. (9). The

estimation given in that equation can be converted, after certain algebraic manipula-
tions, into an upper bound using theory of Pfaffian operators (see [8]). We omit the
proof due to lack of space.

Main Theorem. Let ΓL ,n the set of slps with n variables, at most L non-scalar
operations, using operators in F that contains the operations {+,−, ∗, /, sign} and
Pfaffian operations f , where each f belongs to a fixed Pfaffian chain { f1, . . . , fq} of
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length q and degree D ≥ 2. Let N be as in Eq. (3). Then, the Vapnik-Chervonenkis
dimension of Ck,n is in the class:

O((q(N + n))2 + (N + n)(L + q)log2((N + n)(L + 1)(4 + D))) (10)

Simplification. If we consider as constants parameters n, q, D and d, the VCD of
the class is at most O(L4). This quantity gives an idea of the asymptotic maximum
order of VCD of common classes of G P-models. We point out that this quantity is
an upper bound and, possibly, far from being an optimal bound, but it can be used as
starting point in further experimental developments.

5 Model Selection Criterion

In supervised learning problems like regression and classification a considerable
amount of effort has been done for obtaining good generalization error bounds. The
results by Vapnik (see [22]) state the following error bound:

ε( f ) ≤ εm( f ) +
√

h(log(2m/h) + 1) − log(η/4)

m
, (11)

where h must be substituted by the upper bound of the VCD of the hypothesis class
that contains the model f , η is the probability that the error bound is violated and m
is the sample size. As usual in this context ε( f ) and εm( f ) stand, respectively, for
the true mean square error and the empirical mean square error of the model f.

In our case, f will be represented by a straight line program Γ ∈ SL P(F, T )

where T contains n variables and F contains the operations on real numbers
{+,−, ∗, /, sign} and Pfaffian operations over the reals. Note that the sets F and
T are invariants throughout the model selection process. Hence, the search space of
models forms a nested structure:

C1 ⊂ C2 ⊂ · · · ⊂ CL ⊂ · · ·

where CL represents the class of slp’s in SL P(F, T ) that have at most L non-scalar
instructions. In this situation we will finally choose the model that minimizes the
right side of Eq. (5).

6 Experimental Results

In this section we present the obtained results after an experimental phase in which
symbolic regression problem instances were solved using the selection criterion
described in the previous section. Our proposal is to consider straight line programs
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with Pfaffian instructions as the structure that represents the model. Then a GP
algorithm is executed considering the recombination operators for slp’s described
in Sect. 2 and with fitness regularization function expressed in Eq. (11). So we pro-
pose a model estimation via structural risk minimization (SRM). For the complexity
measure h of the model, we will use the VCD bound in 4.

We will consider additive gaussian noise in the sample set z = (xi , yi )1≤i≤m .
Hence, for a target function g, the sample set verifies: yi = g(xi ) + ε, where ε is
independent and identically distributed (i.i.d.) zero mean random error.

We will compare the effectiveness of the VCD fitness regularization method
(VCD-SRM) with two well known representative statistical methods with different
penalization terms:

• Akaike Information Criterion (AIC) which is as follows (see [1]):

ε( f ) = εm( f ) + 2h

m
σ2 (12)

• Bayesian Information Criterion (BIC) (see [5]):

ε( f ) = εm( f ) + (ln m)
h

m
σ2 (13)

In the above expressions h stands for the number of free parameters of the model
(Eq. 9).

For measuring the quality of the final selected model, we have considered a new
set of unseen points, generated without noise from the target function. This new set of
examples is known as the test set or validation set. So, let (xi , yi )1≤i≤ntest a validation
set for the target function g(x) (i.e. yi = g(xi )) and let f (x) be the model estimated
from the training data. Then the prediction risk εntest is defined by the mean square
error between the values of f and the true values of the target function g over the
validation set:

εntest = 1

ntest

ntest∑
i=1

( f (xi ) − yi )
2 (14)

For the first experiment we have considered a set of 500 multivariate polynomials
with real coefficients whose degrees are bounded by 5. The number of variables
varies from 1 to 5 with 100 polynomials for each case.

A second experiment was performed considering some well known real bench-
mark problems. In all cases, when the GP process finishes, the best individual is
selected as the proposed model for the corresponding target function.

We shall denote the set of polynomials as Pn
R[X ] with X = (x1, . . . , xn), 1 ≤

n ≤ 5 and xi ∈ [−1, 1] ∀i. The individuals are slp’s over F = {+,−, ∗, /, sqrt,-
sin, cos, exp}. In order to avoid errors generated by divisions by zero, instead of
the traditional division we will use in our computation the operation usually named
“protected division”, that returns 1 if the denominator is zero. Besides the variables
xi , the terminal set also includes five constants ci , 1 ≤ i ≤ 5, randomly generated

http://dx.doi.org/10.1007/978-3-319-23392-5_2
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in [−1, 1]. Observe that although the target functions are polynomials, our set F
not only contains the operators of sum, difference and product, but also contains
other Pfaffian functions. This situation increments considerably the search space.
Nevertheless, note that in a real problem situation usually we do not know if the
target function is a polynomial or not.

The parameters for the GP process are the following: population size M = 200,

probability of crossover pc = 0, 9, probability of mutation pm = 0, 05, and tour-
nament selection of size 5. The real length of the slp’s in the population is bounded
by 40. Elitism and a particular generational replacement are used. In this sense, the
offsprings do not necessarily replace their parents. After a crossover we have four
individuals: two parents and two offsprings. We select the two best individuals with
different fitness values. The motivation is to prevent premature convergence and to
maintain diversity in the population.

As we are considering multivariate polynomials as target functions, the difficulty
of the problem instance increases with the number of variables. Hence, to vary the size
of the sample set as a function of the number of variables is a reasonable decission.
Note that an upper bound for the number of monomials in a polynomial with n
variables and degree d is 4 · dn+1 and this is also a quite good estimation for a lower
bound of the size of the sample set. Thus, in our case we have considered sample
sets of size 4 · 5n+1, 1 ≤ n ≤ 5. In this experiment one execution for each strategy
has been performed over the 500 generated target functions. In every execution the
process finishes after 250 generations were completed. Finally, the validation set
consists of a number of unseen points that is equal to two times the size of the
sample set (Table 1).

Figures 2 and 3 represent the empirical distribution of the executions of the three
compared strategies over the sets of polynomials. We have separated the polynomial
sets by the number of variables, from one to five. These empirical distributions are
displayed using standard box plot notation with marks at the best execution, 25 %,

Table 1 Values of means and variances

P1
R[X ] μ σ P2

R[X ] μ σ

AI C 0.39 0.42 AI C 1.17 0.86

B I C 0.38 0.41 B I C 1.25 0.85

V C D 0.24 0.27 V C D 0.82 0.54

P3
R[X ] μ σ P4

R[X ] μ σ

AI C 2.62 1.28 AI C 4.79 1.49

B I C 2.89 1.57 B I C 5.08 1.74

V C D 2.24 0.85 V C D 4.76 1.43

P5
R[X ] μ σ

AI C 8.51 2

B I C 8.63 2.16

V C D 8.63 2.17
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Fig. 2 Empirical distribution of the executions, for the univariate and bivariate polynomials
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Fig. 3 Empirical distributions of the executions, for the multivariate polynomials with 3, 4, and 5
variables

50 %, 75 % and the worst execution, always considering the prediction risk of the
selected model, represented on the y-axis and defined by the mean square error
between the values of the model and the true values of the target function over the
validation set. We also include tables that show means and variances as well as the
prediction risk of the best obtained model for each method.

As we can see from the above figures and tables, it seems that VCD regularization
performs better than the well known regularization methods AIC and BIC. This is
more clear for the polynomials up to three variables and not so clear for the rest of the
polynomial sets. This could be because for polynomials with four and five variables,
as they constitute more complex problem instances, it would be necessary a large
number of generations in the evolutive process. In order to confirm the comparative
results of the studied strategies we have made crossed statistical hypothesis tests.
The obtained results are showed in Table 2. Roughly speaking, the null-hypothesis
in each test with associated pair (i, j) is that strategy i is not better than strategy j.
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Table 2 Results of the crossed statistical hypothesis tests about the comparative quality of the
studied strategies

P1
R[X ] AI C B I C V C D

AI C 0.91 1

B I C 0.30 1

V C D 3.93 · 10−4 1.1 · 10−3

P2
R[X ] AI C B I C V C D

AI C 3.91 · 10−2 1

B I C 0.96 1

V C D 1.86 · 10−5 1.12 · 10−7

P3
R[X ] AI C B I C V C D

AI C 7.7 · 10−2 0.99

B I C 0.99 1

V C D 1.2 · 10−2 3.93 · 10−4

P4
R[X ] AI C B I C V C D

AI C 0.12 0.90

B I C 0.77 0.99

V C D 0.27 2.7 · 10−3

P5
R[X ] AI C B I C V C D

AI C 0.44 0.52

B I C 0.77 0.78

V C D 0.61 0.37

Table 3 Prediction risk of the model obtained from the best execution

Instance AI C B I C V C D

P1
R[X ] 3.40 · 10−2 3.44 · 10−2 4.32 · 10−3

P2
R[X ] 0.20 0.19 0.22

P3
R[X ] 0.82 0.77 0.42

P4
R[X ] 2.33 2.43 2.33

P5
R[X ] 4.88 5.13 5.20

Hence if value ai j in Table 2 is less than a significance value α, we can reject the
corresponding null-hypothesis (Table 3, Fig. 4).

Taking into account the results of the crossed statistical hypothesis tests with a
significance value α = 0.05, we can confirm that our proposed regularization method
based on the VC dimension of families of SLP’s is the best of the studied strategies
for the considered sets of multivariate polynomials.
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Fig. 4 Empirical distribution of the executions, for functions associated to real problems

7 Conclusions

Straight line programs constitute a promising structure for representing models in the
Genetic Programming framework. Indeed, as it was published in a previous work,
slp’s outperform the traditional tree structure when GP strategies are applied for
some kind of regression problems. In this paper we try to control the complexity
of populations of slp’s while they evolve in order to find good models for solving
symbolic regression problem instances. The evolving structure is constructed from
a set of functions that contains Pfaffian operators. We have considered the Vapnik
Chervonenkis dimension as a complexity measure and we have found a theoretical
upper bound of the VCD of families of slp’s over Pfaffian operators as an important
generalization of similar results for more simple sets of operators including rational
functions. This theoretical upper bound is polynomial in the number of the non-
scalar instructions of the family of the slp’s. As a consequence of the main result, we
propose a regularized fitness function included in a evolutionary strategy for solving
symbolic regression problem instances. We have compared our fitness function based
on the VCD upper bound with two well known statistical penalization criteria. The
experimental results obtained after the execution of the compared strategies over two
different groups of target functions, show that our proposed complexity measure and
its corresponding penalization criterion is better than the others in over the group of
the three real problem instances where the VCD regularization method is clearly the
best.
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