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Abstract Many volcanic areas around the World are densely populated and
urbanized. For instance, Mount Etna (Italy) is home to approximately one million
people, despite being the most active volcano in Europe. Mapping both the physical
threat and the exposure and vulnerability of people and material properties to vol-
canic hazards can help local authorities to guide decisions about where to locate a
priori critical infrastructures (e.g. hospitals, power plants, railroads, etc.) and human
settlements and to devise for existing locations and facilities appropriate mitigation
measures. We here present the application of Parallel Genetic Algorithms for opti-
mizing earth barriers construction by morphological evolution, to divert a case study
lava flow that is simulated by the numerical Cellular Automata model Sciara-fv2
at Mt Etna volcano (Sicily, Italy). The devised area regards Rifugio Sapienza, a
touristic facility located near the summit of the volcano, where the methodology was
applied for the optimization of the position, orientation and extension of an earth
barrier built to protect the zone. The study has produced extremely positive results,
providing insights and scenarios for the area representing, to our knowledge, the first
application of morphological evolution for lava flow mitigation.

Keywords Evolutionary computation · Genetic algorithms · Parallel computing ·
Decision support system · Cellular automata · Morphological evolution

1 Introduction

When dealing with lava flow risk assessment, the use of thematic maps of volcanic
hazard is of fundamental relevance to support policy managers and administrators
in effective land use planning and taking proper actions that are required during an
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emergency phase. In particular, hazard maps are a key tool for emergency management
by describing the threat that can be expected at a certain location for future erup-
tions. At Mt. Etna (Italy), the most active volcano in Europe, the majority of events
that have occurred in the last four centuries report damage to human properties in
numerous towns on the volcano flanks [1]. Current efforts for hazard evaluation and
contingency planning in volcanic areas depend heavily on hazard maps and numerical
simulations for the purpose of individuating affected areas in advance.

Although many computational modeling methods [2–4] for lava flow simulation
and related techniques for the compilation of susceptibility maps are already known to
the international scientific community, the problem of defining a standard method-
ology for the construction of protection works, in order to mitigate volcanic risk,
remains open. Techniques to slow down and divert lava flows, caused by collisions
with protective measures such as artificial barriers [5, 6] or dams [7], are now to be
considered empirical, exclusively based on past experiences. The proper positioning
of protective measures in the considered area may depend on many factors (viscosity
of the magma, output rates, volume erupted, steepness of the slope, topography, eco-
nomic costs). As a consequence, in this context one of the major scientific challenges
for volcanologists is to provide efficient and effective solutions.

Morphological Evolution (ME) is a recent development within the field of engi-
neering design, by which evolutionary computation techniques are used to tackle
complex design projects. This branch of evolutionary computation is also known as
evolutionary design and it is a multidisciplinary endeavour that integrates concepts
from evolutionary algorithms, engineering, and complex systems to solve engineer-
ing design problems [8]. Morphological evolution has been largely explored in evo-
lutionary robotics, both for the design of imaginary 3D robotics bodies [9] and for
the efficient and autonomous design of adaptive moving robots [10]. Principles of
evolutionary design have been also applied in structural engineering at different level
of the design process, from the structural design itself to the logistic involved in the
construction [11].

This paper describes the application of ME by Parallel Genetic Algorithms
(PGAs), for the first time to our knowledge, for optimizing earth barriers construc-
tion to divert a case study lava flow that is simulated by the latest release fv2 of the
SCIARA Cellular Automata lava flow model [12]. Cellular Automata (CA) were
introduced in 1947 by John von Neumann [13], quickly gaining the attention of
the Scientific Community both as powerful parallel computational models and as a
convenient apparatus for modeling and simulating several types of complex physi-
cal phenomena. CA have been applied to a variety of fields and their major interest
regard their pratical use in Complex Systems modelling in Physics, Biology, Earth
Sciences and Engineering (e.g., see [14–17]).The GA fitness evaluation, which was
adopted for evaluating the “goodness” of the protective works of the CA model gen-
erated lava flow scenarios, has implied a massive use of the numerical simulator
that runs thousands of concurrent simulations for every GA generation computa-
tion. Therefore, a GPGPU (General Purpose computation with Graphic Processor
Units) library was developed to accelerate the GA execution. A visualization sys-
tem [18] was also implemented, thereby allowing interactive analysis of the results.
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Eventually, a study of GA dynamics, with reference to emergent behaviors, is also
discussed later. In the following, after the description of the case study adopted for
the experiments (Sect. 2), the main characteristics of the implemented algorithm,
framework and results are presented (Sect. 3). Section 4 concludes the paper with
final comments and future works.

2 The Case Study: The 2001 Mt Etna Eruption

The 2001 eruption of Mt. Etna began on July 17, characterized by lava emission
from several vents on the southern flank of the volcano, at elevations of 2100, 2550,
2600, 2700, 2950, 3050 m, the latter four being directly connected to the conduit of
the SE crater [19] (see Fig. 1). Lava flows emitted from the lowermost vents (2100,
2550, 2600–2700 m) caused damage and threatened some important facilities and
infrastructure, which were protected by earthen barriers. Effusion rates at the main
eruptive vents were estimated daily by [1] from the volume/time ratio and were
obtained by careful mapping of the flow area and estimating its mean thickness.
The facilities of the Sapienza zone were undoubtedly at risk because of their short
distance from the 2700 and 2550 m effusive vents (respectively 3 and 2.5 km). The
most probable path for the lava flow emitted from the 2100 m fissure was simulated
(Crisci et al. 2001 and M.T. Pareschi, unpublished reports to Civil Protection) and was
considered for the carried out experiments presented in the next sections. Thirteen
artificial barriers were built during the July August 2001 Mt. Etna eruption. Their
locations, together with investigated area here considered, are shown in the map
of Fig. 1. The flow emitted from the lower vent, the 2100 m fissure, immediately
interrupted the road SP92 and invaded a part of the adjacent wide parking area
located between Mts. Silvestri and the Sapienza zone (1900 m a.s.l.). Starting on 21
July, a large barrier was progressively built on the eastern flank of the flow to protect
two tourist facilities. This barrier worked properly and the two buildings were saved.
The lava flow emitted from the 2100 m fracture descended about 6 km southwards
(Fig. 1) and after the SP92 road near Mts. Silvestri it cut some other minor rural roads
and destroyed a few isolated country houses. Had the lava advanced further, it would
have re-crossed the SP92 road at a lower elevation, causing the complete isolation of
the upper part of Mt. Etna. Workers and machines were moved to a possible critical
point on the western front ready to build a diversion barrier to protect the road. An
intervention plan was also set up for the protection of the Nicolosi and Belpasso
villages, located on the most probable path of the lava, at only 4 km distance from
its lowermost front. Eventually, the rate effusion decrease beginning in the last days
of July prevented any further advance of the flow and thus the planned interventions
were not necessary.
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Fig. 1 Set of interventions
carried out during the 2001
eruption event to divert the
lava flow away from the
facilities. The green
perimeters represent the
Rifugio Sapienza and other
facilities (security area),
which delimitates the area
that has to be protected by
the flow for the study. The
red perimeter (work area),
specifies the area in which
the earth barrier can be
located (Base figure taken
from [5])

3 Morphological Evolution of Protective Works
Through Parallel Genetic Algorithms

Genetic Algorithms (GAs) [20] are general-purpose iterative search algorithms
inspired by natural selection and genetics. Among other applications, GA have been
applied to combinatorial problems [21] in the study of the interaction between evolu-
tion and learning [22], evolutionary robotics [23, 24], for improving the performance
of CA in resolving difficult computational tasks (e.g. [25]). GAs based methods have
also been applied to CA for modelling bioremediation of contaminated soils [26] and
for the optimisation of lava and debris flow simulation models (e.g., [27–30]).

GAs simulate the evolution of a population of candidate solutions, called pheno-
types, to a specific problem by favouring the reproduction of the best individuals.
Phenotypes are codified by genotypes, typically using strings, whose elements are
called genes. In order to determine the best possible solution of a given problem, the
GA must explore the so-called search (or solution) space, defined as the set of all
possible values that the genotype can assume. The members of the initial population
evaluated by means of a “fitness function”, determining the individuals “adaptivity”
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Fig. 2 Example of barriers
encoding into a GA
genotype. The height of the
intermediate points of each
barrier is obtained by
connecting the work
protections extremes through
a linear function
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value (also called fitness value), i.e. a measure of its goodness in resolving the prob-
lem. Best individuals are chosen by means of a “selection” operator and reproduced
by applying random “genetic” operators to form a new population of offspring. Typ-
ical genetic operators are “crossover” and “mutation”: they represent a metaphor of
sexual reproduction and of genetic mutation, respectively. The overall sequence of
fitness assignment, selection, crossover, and mutation is repeated over many gener-
ations (i.e. the GA iterations) producing new populations of individuals. According
to the individual’s probability of selection, any change that actually increases the
individual’s fitness will be more likely to be preserved over the selection process,
thus obtaining better generationsas stated by the fundamental theorem of genetic
algorithms [20]. For a complete overview of GAs, see [31, 32].

While GAs have been applied several times in the past for optimizing CA models,
as the ones previously reported, by considering the 2001 Nicolosi case study, in this
work GAs were adopted in conjunction with the SCIARA-fv2 CA model for the
morphological evolution of protective works to control lava flows. The numerical
model finite set of states was extended by introducing two substates defined as:

Z ⊆ R (1)

where Z is the set of cells of the cellular automaton that specifies the Safety Zone,
which delimitates the area that has to be protected by the lava flow and

P ⊆ R, P ∩ Z = � (2)

where P is the set of CA cells that identifies the Protection Measures Zone identifying
the area in which the protection works are to be located.

The Protection work W = B1, B2, . . . , Bn was represented as a set of barriers,
where every barrier Bi = Ni1, Ni2 is composed by a pair of nodes Nij = xij, yij, zij,
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where xij, yij represent CA coordinates for the generic node j of the barrier i , and zij

the height (expressed in m). The solutions were encoded into a GA genotype, directly
as integer values (Fig. 2) and a population of 100 individuals, randomly generated
inside the Protection Measures Zone, was considered.

Two different fitness functions were considered to suitably evaluate the goodness
of a given solution: f1, based on the areal comparison between the simulated event and
the Safety Zone (in terms of affected area) and f2, which considers the total volume
of the protection works in order to reduce intervention costs and environmental
impact.More formally, the f1 objective function is defined as:

f1 = μ(S ∩ Z)

μ(S ∪ Z)
(3)

where S and Z respectively identify the areal extent of the simulated lava event
and the Safety Zone area, with μ(S ∩ Z) e μ(S ∪ Z) being the measures of their
intersection and union. The function f1, assumes values within the range [0, 1] where
0 occurs when the simulated event and Safety Zone Area are completely disjointed
(best possible simulation) and 1 occurs when simulated event and Safety Zone Area
perfectly overlap (worst possible simulation).

The f2 objective function is defined as:

f2 =
∑|W |

i=1 pc · d(Bi ) · h(Bi )

Vmax
(4)

where d(Bi ) and h(Bi ) represent the length (in meters) and the average height of the
ith barrier, respectively. The parameter pc is the cell side and Vmax ∈ R is a threshold
parameter (i.e., the maximum building volume) given by experts, for the function
normalization. Since the barriers are composed of two nodes, the function can be
written as:

f2 =
∑|W |

i=1 pc · d(Ni1, Ni2) · h̄(Ni1, Ni2)

Vmax
(5)

where h̄(Ni1, Ni2) = |zi1+zi2|
2 is considered as the average height value between

two different nodes and d(Ni1, Ni2) = √
(xi1 − xi2)2 + (yi1 − yi2)2 identifies the

Euclidean distance between them. The final fitness function f2 is thus:

f2 =
∑|W |

i=1 pc · √
(xi1 − xi2)2 + (yi1 − yi2)2 · |zi1+zi2|

2

Vmax
(6)

The function f2, assumes values within the range [0, 1]: it is nearly 0 when the work
protection is the cheapest possible, 1 otherwise.
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For the genotype fitness evaluation, a composite (aggregate) function f3 was also
introduced as follows:

f3 = f1 · ω1 + f2 · ω2 (7)

where ω1,ω2 ∈ R and (ω1 + ω2) = 1, represent weight parameters associated to f1

and f2. Several different values where tested and the considered ones in this work
chosen on the basis of trial and error techniques.The goal for the GA is to find a
solution that minimizes the considered objective function f3 ∈ [0, 1].

In order to classify each genotype in the population, at every generation run, the
algorithm executes the following steps:

1. CA cells elevation a.s.l. are increased/decreased in height on the basis of the geno-
type decoding (i.e., the barrier cells). In addition, an extending Bresenham‘s orig-
inal algorithm [33] is applied to determine the cells inside the segment between
the work protection extremes and f2 subsequently computed.

2. A SCIARA-fv2 simulation is performed (about 40000 calculation steps) and the
impact of the lava thickness on Z area ( f1 computation) is evaluated.

3. f3 is computed and individuals are sorted according to their fitness.

The adopted GA is a rank based and elitist model, as at each step only the best
genotypes generate off-spring. The 20 individuals which have the highest fitness
generate five off-spring each and the 20 × 5 = 100 offspring constitute the next
generation. After the rank based selection, the mutation operator is applied with the
exception of the first 5 individuals.

The complete list of GA characteristics and parameters is reported in Table 1. Each
gene mutation probability depends on its representation: pmc for genes corresponding
to coordinates value and pmh viceversa. Therefore, if during the mutation process, a
coordinate gene is chosen to be modified, the new value will depend on the parameters
xmax and ymax which represent the cell radius within the node, the position of which
can vary. The interval [hmin, hmax ] is the range within which the values of height
nodes are allowed to vary (Fig. 3). This strategy ensures the possibility for the GA
to provide, as output, either protective barriers or ditches.

To ensure a better exploration of the search space and to avoid a fast convergence
of solutions to local optima a n point crossover operator has been introduced. Two
parent individuals are randomly chosen from the mating pool and two different
cutting points for each parents are selected. Cut points always coincide with the first
gene of a sub-solution and after the selection portions of the sub-solution chosen in
the genotype, they are exchanged. The crossover operator is applied according to a
prefixed probability, pc, for each sub-solution encoded in the genotype.

3.1 Parallel Implementation and Performance

The fitness evaluation of a GA individual consists in an entire CA simulation,
followed by a comparison of the obtained result with the actual case study. This phase
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Table 1 List of parameters of the adopted GA

GA parameters Specification Value

gl Genotypes length 6

ps Population size 100

ng Number of generations 100

pmc Coord. gene mutation
probability

0.5

xmax Gene x position variation
radius

10

ymax Gene y position variation
radius

10

pmh Height gene mutation
probability

0.5

hmin height min variation range −5

hmax height max variation range 10

pc crossover probability 0.05

ch+ Cost to build 1

ch− Cost to dig 1

ω f 1 f1 weight parameter 0.90

ω f 2 f2 weight parameter 0.10

Fig. 3 Graphical
representation of the
genotype mutation phase.
Each gene, representing a
CA coordinate, can vary
within a variation radius
[xmax , ymax ]

x11 y11 z11 x12 y12 z12

N11 N12
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x11

y11

x12

y12

z11

z12

ymax

xmax

may require several seconds, or even several hours: for example, on a 2-Quadcore
Intel Xeon E5472, 3.00 GHz CPU such evaluation requires approximately 10 min,
as at least 40,000 CA steps are required for a simulation. For instance, if the GA
population is composed of 100 individuals, the time required to run one seed test
(100 generation steps) exceeds 69 days. Moreover, the GA execution can grow,
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depending on both the extent of the considered area and the number of different tests
to run.

As a consequence, a CPU/GPU library was developed to accelerate the GA run-
ning. Specifically, a “Master-Slave” model was adopted in which the Host-CPU
(Master) executes the GA steps (selection, population replacement, mutation and
crossover), while GPU cores (slaves) evaluate the individuals fitness (i.e., a com-
plete SCIARA-fv2 simulation).

Since the most intensively computational work is needed for this latter phase, a
multi-simulator was devised to efficiently exploit the considered GPGPU hardware,
in order to permit the execution of more simulations in parallel. For this purpose, two
different implementation strategies were implemented and a landscape benchmark
case study was considered, modeled through a Digital Elevation Model composed
of 200 × 318 square cells with a side of 10 m. In addition, a set of 50 hypothetical
barriers placed with 2 different inclinations (135, 225◦) to the lava flow direction was
considered leading to a total of 100 simulations to be performed. Four CUDA devices
were used in the experiments: a nVidia Tesla C2075 and three nVidia Geforce graphic
cards, namely the GTX480, GTX 580 and the GTX 680. Also, in order to quantify the
achieved parallel speedup, sequential versions of the same GPU strategies were run
on a workstation equipped with a 2-Quadcore Intel Xeon E5472 (3.00 GHz) CPU.

Starting from previous research in CA modelling by means of GPGPU
(e.g. [34–37]), a first straightforward parallel implementation, labeled as WCSI
(Whole Cellular Space Implementation) was considered where the CUDA kernels
operate on the whole cellular space. However, since the transition function of the
currently active cells (i.e., cells containing lava) is invoked, simulating only one sim-
ulation at a time would imply a high percentage of uselessly scheduled threads. In
addition, given the limited extension of most simulations (on average, 20 % of cells
of the entire automaton are active during a single simulation), the number of active
threads would be too low to allow the GPU to effectively activate the latency-hiding
mechanism [38] of CUDA. To increase thread occupancy, in the WCSI approach more
than a single lava episode are simultaneously executed. This means that the main
CUDA kernel is executed over a number of simulations which are simultaneously
executed at the same CA step. In particular, each simulation performed is mapped on
a different value of z and on a grid of threads composed of 16 × 16 blocks. That is,
the grid of threads used for the CA transition function is three-dimensional, with the
base representing the considered CA space and the vertical dimension corresponding
to the different launched simulations.

Using the adopted GPU devices, the algorithm was implemented with the WCSI
approach and execution times evaluated for a variable number of simultaneous lava
simulations. For a fair comparison, the sequential version of the same algorithm
was used and the elapsed time achieved by the CPU was 26039 s. According to the
results shown in Fig. 4a, the GTX 680 achieved the lowest elapsed time of 650,96 s,
concurrently simulating 50 lava events. The gain provided by the parallelisation in
terms of computing time was significant and corresponded to a parallel speedup of
over 40 for the used CPU (Fig. 4).
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Fig. 4 Elapsed time as a function of simultaneous lava events usign the WCSI (a) and DGI (b)
approaches on different considered GPGPU hardware

For CA lava flow models, the application of the transition function can be restricted
to the only active cells where computation is actually taking place. Thus, the CA space
can be confined within a rectangular bounding box (RBB). This optimization drasti-
cally reduces execution times, since the sub-rectangle is usually quite smaller than the
original CA space. This may result in having a high percentage of computationally
inactive threads in the CUDA grid, as in the case of the WCSI CA implementation.
For these reasons, a second approach was developed in which the grid of threads is
dynamically computed during the simulation in order to keep low the number of com-
putationally irrelevant threads. In such an approach, labelled as DGI (Dynamic Grid
Implementation), a number of lava flow simulations are simultaneously executed as
in the WCSI procedure.

In addition, at each CA step the procedure involves the computation of the smallest
common rectangular bounding box (CRBB) that includes any active cells in every
concurrent simulation. Figure 5 shows all kernels required by the CA step that are

Fig. 5 Mapping of the CA
transition function into a
CUDA grid of threads (right)
in case of the simultaneous
lava flows (left)
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mapped on such CRBB, thus reducing the number of useless threads and significantly
improving the computational performance.

An analogous strategy based on the bounding box has been developed for the
sequential version of the program. for a fair comparison. Using the reference CPU,
such sequential procedure required 20180 s on the same case study. Figure 4b shows
times taken by the parallel DGI approach as a function of the number of concurrent
simulations. As seen, the GTX 680 achieved the lowest elapsed time of 301,18 s,
giving rise to a parallel speedup of 67.

3.2 Experiment and Results

By considering the Nicolosi lava flow event (barriers uphill from Sapienza Zone) and
by adopting the parallel multi-simulator described in the previous section, ten GA
runs (based on different random seeds) of 100 generation steps each were carried out,
each one with a different initial population. The elapsed time achieved for the ten
GA runs was less than nine hours of computation on a 10 multi-GPU GTX 680 GPU
Kepler Devices Cluster (note that the same experiment, on a sequential machine,
would had lasted more than seven months). Furthermore, during the running, a Visu-
alization System Software [18], based on OpenGL and C++ and integrated into Qt
interface, allowed the interactive visualization and analysis phases of the results.

For this preliminary experiment, only solutions with two nodes were considered
(|W | = 1), while Z and P were chosen as in Fig. 1. The cardinality of W (Protection
work) and the gene values in which they are allowed to vary (depending of Z area),
define the search space Sr for the GA:

Sr = {[Pxmin , Pxmax

] × [
Pymin , Pymax

] × [(
hmin · ng

)
,
(
hmax · ng

)]}2|W | (8)

The temporal evolution of the f3 fitness is graphically reported in Fig. 7a, in terms
of average results over the ten considered experiments. GA experiment parameters
values are also listed in Table 1. The related CA simulation, obtained by adopting
the best individual is shown in Fig. 6.

The study, though preliminary, has produced quite satisfying results. Among dif-
ferent best individuals generated by the GA for each seed test, the best one (Table 2)
consists of a barrier with an average height of 7,5 and 410 m in length with an incli-
nation angle of 141◦ with respect to the direction of the lava flow. The barrier (its
properties are shown in Table 2) completely deviates the flow avoiding that the lava
reaches the inhabited and building facilities areas. It is worth to note that, the best
solution provided by GA (Fig. 6) in this work is approximately five times more effi-
cient (in term of total m3 volume used to keep safe tha safety areas) respect to the
one applied in the real case (Fig. 1), consisting of thirteen earthen barriers.
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Fig. 6 SCIARA—fv2 simulation visualization adopting the GA best solution. As seen, the devised
barrier (blue) completely diverts the lava flow from the Safety Areas (red)
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Fig. 7 Temporal evolution of composite f3 fitness of best individual (in black) and of average
fitness of whole population (in gray) (a). Temporal evolution of average fitness f1 (in red) and
f2 (in green) of whole population (b). Fitness values were obtained as an average of 10 GA runs,
carried out by adopting different seeds for generation of random numbers

3.3 Considerations on the GA Dynamics and Emergent
Behaviors

In the GA experiments that have been performed, individuals with high fitness
evolved rapidly, even if the initial population was randomly generated and the search
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Table 2 Properties of the best barrier evolved by GA run

Barrier Prop-
ertiers

Length (m) Height (m) Base Width (m) Volume (m3) Inclination (◦)

[206,96,2]
[238,122,13]

410 7,5 10 24750 141

Fig. 8 Nodes distribution of
the best 100 solutions
generated by the GA. Scale
values indicates occurrence
of nodes

space was quite large (Eq. 8). By analyzing several individuals evolved in ten dif-
ferent GA executions, similar solutions were observed. This behavior is due to the
presence of problem constraints (e.g. morphology, lava vent, emission rate, Z and P
areas) that lead the GA to search in a “region” of the solution space characterized by
a so called “local optimum”. In particular, f1 reaches the minimum value (0) around
the twentieth GA generation and the remaining 80 runs are used by GA for the f2

optimization (cf. Fig. 7b).
In any case, the evolutionary process has shown, in accordance with the opinion of

the scientific community [5, 39], the ineffectiveness of barriers placed perpendicular
to the lava flow direction despite diagonally oriented solutions (130–160◦).

Furthermore, a systematic exploitation of morphological characteristics by GA,
during the evolutionary process, has emerged. To better investigate such GA emer-
gence behaviour, a study of nodes distribution was conducted (Fig. 8). By considering
the best 100 solutions provided by GA, each node was classified on the basis of the
slope proximity calculation, as an average of altitude differences between node neigh-
borhood cells (with radius 10) and the central cell. More formally, the function that
assigns to each generic node j a slope proximity value is defined as:

sp j =
∑|X |

i=1 z̄i − z̄0

|X | (9)

where X is the set of cells that identifies the neighborhood of j and z̄i ∈ Qz is
the topographics altitude (index 0 represents the central cell). As shown in Fig. 9,
starting from the tenth GA generation, the evolutionary process has shown an increase
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Fig. 9 Temporal evolution
of average slope proximity
values for the best
individuals
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in slope proximity values. Therefore, after the f1 optimization (cf. Fig. 7b), in order
to minimize f2, there is a specific evolutionary temporal phase (i.e., up to the 25th
generation) where the algorithm generates solutions that are located in the proximity
of elevated slopes.

4 Conclusions and Future Works

This paper has presented a novel approach for devising protective measures to divert
lava flows. Starting from the problem of the high computational complexity of the
GA algorithm, a library was developed for executing a large number of concurrent
lava simulations using GPGPU. The parallel speedups attained through the proposed
approaches and by considering GPGPU hardware, were indeed significant. In fact,
the adoption of PGAs permitted to perform, in reasonable times, a greater number
of tests shortening the execution by a factor of 67. In addition to the GA algorithm
acceleration implementation, an interaction visualization system was also developed
for the analysis phases of the results.

In this preliminary release of the algorithm only two nodes based solutions were
considered and evaluated on the basis of two fitness functions. The first fitness
function guarantees the goodness of the solution in terms of security; the second
one minimizes the environmental impact.

First observations of the GA results permitted to conjecture the presence of a local
optima in the search space, probably due to problem constraints. To better investi-
gate GA dynamic characteristics, a study of nodes distribution was also conducted
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and a systematic exploitation of morphological characteristics by GA during the
evolutionary process emerged.

PGAs experiments, carried out by considering the Nicolosi case-study, demon-
strated that artificial barriers can successfully change the direction of lava flow in
order to protect predefined point of interests.

In particular, by performing extensive experiments, simulations demonstrated that
protective works are more effective when placed nearly parallel to the flow direction,
while a barrier placed perpendicular to the flow direction can only stop the flux
temporarily, ultimately allowing the solidified crust to accumulate and cause the
following mass to go over the barrier.

Though preliminary, the study has produced extremely positive results and simula-
tions have demonstrated that GAs can represent a valid tool to determine protection
works construction in order to mitigate the lava flows risk. However, considering
two-nodes barriers is a strong limitation and a critical aspect of GA implementa-
tions that can significantly improve the efficiency of the final solution is the the
possibility to provide multi-barrier protection measures. For this reason, future work
will firstly consider the investigation of solutions consisting of multiple protective
interventions and the introduction of lava cooling by water jets as parameter of the
methodology. By considering the hazard evaluation context, an important application
of the methodology could be to take into account as an event to be mitigated a grid of
hypothetical vents defined as the source for the simulations to be carried out. In this
case, protection measures provided by the GA can represent a preventive solution
to assess the effect of possible human interventions. Furthermore, it could be very
important to evaluate the extension of this method to other different complex natural
phenomena such as a debris flow models.
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