
Automated Graphical User Interface
Testing Framework—Evoguitest—Based
on Evolutionary Algorithms

Gentiana Ioana Latiu, Octavian Augustin Cret and Lucia Vacariu

Abstract Software testing has become an important phase in software applications’
lifecycle. Graphical User Interface (GUI) components can be found in a large num-
ber of desktops and web applications and also in a wide variety of mobile devices.
In the last years GUIs have become more and more complex and interactive, their
testing process requiring an interaction with the GUI components, mainly by gen-
erating mouse, keyboard and touch events. Given their increased importance, GUIs
verification for correctness contributes to the establishment of the correct function-
ality of the corresponding software application. The current research on GUI testing
methodologies primarily focuses on automated testing. This paper presents EvoGU-
ITest, a novel automated GUI testing framework based on evolutionary algorithms
which tests the GUI independently from the application code itself. The framework
is designed for testing GUIs of web applications. Results have been compared, based
on specific metrics, with others existing frameworks.

Keywords Graphical user interface testing · Evolutionary algorithms · Automated
testing framework

1 Introduction

GUI is a specification for the look and feel of the software application [1]. A GUI
consists of graphical elements such as windows, icons, menus, buttons, textboxes.
A well designed GUI must be intuitive and user friendly, being the image of the

G.I. Latiu (B) · O.A. Cret · L. Vacariu
Computer Science Department, Technical University of Cluj-Napoca,
26-28 Baritiu Street, Cluj-napoca, Romania
e-mail: Gentiana.Latiu@cs.utcluj.ro

O.A. Cret
e-mail: Octavian.Cret@cs.utcluj.ro

L. Vacariu
e-mail: Lucia.Vacariu@cs.utcluj.ro

© Springer International Publishing Switzerland 2016
K. Madani et al. (eds.), Computational Intelligence,
Studies in Computational Intelligence 613,
DOI 10.1007/978-3-319-23392-5_3

39

40 G.I. Latiu et al.

application. A good quality of the GUI is necessary and the diminishing of the
testing cost becomes an important requirement. The GUI’s set of components can be
a crucial point in the users’ decisions to either use or not use that specific software
application [2].

While GUIs have become ubiquitous and increasingly complex, their testing
remains largely ad-hoc. Due to its complexity, the testing process is problematic
and time-consuming [3].

During themanual GUI testing process, each test case needs a long time to execute
(tens of seconds, for a medium complexity GUI). The manual checking process of
the results needs another time spent by the human tester, which is also of a few tens
of seconds. If for instance there is a suite of 10,000 test cases to be applied, then the
total testing time becomes enormous (hundreds of hours) [4].

If the test cases are executed automatically, it takes around 3 seconds for each test
case to be executed, and another 1 second for checking the output results. 10,000 test
cases need around 10 hours to be executed, which shows an acceleration of one order
of magnitude compared to the manual testing process [4]—that is why the research
mainly focuses on automatic GUI testing.

Different frameworks were built to automate the testing process for Web applica-
tions GUIs, to eliminate the human tester involvement, etc., but many of these were
made either for some particulary GUI software systems, or for the systems at a very
general level.

A survey by Al-Zain et al. on automation testing tools for web applications shows,
using different criteria (the effectiveness of recorder/playback tools, handling of page
waits, cross browser compatibility, technical support, and the number of different
techniques available to programmatically locate elements on web pages), that free
and simple tools can be more powerful and time saving, compared to commercially
sophisticated and expensive tools [5]. The authors have also summarized the best
practices and guidelines to be considered when adopting automated GUI functional
tests for web applications [5].

A comparative study of automated testing tools was conducted in [6]. Based on
criteria such as the efforts involvedwith generating test scripts, capability to playback
the scripts, result reports, speed and cost, Mercury QuickTest Professional and the
AutomatedQATestComplete have been compared. Analyzing the features supported
by these two functional testing tools, which help minimizing the resources in script
maintenance and increasing the efficiency of script reuse, the authors conclude that
both tools are good, but for data security needs the QuickTest Professional is better.

Some years ago, test cases were generated randomly during the automatic GUI
testing process. Because the coverage of random input testing was very weak, the
scientific community started studying the usage of the EvolutionaryAlgortihms (EA)
for automating the GUI testing process.

To only mention some of the most spectacular applications of EA in real life,
we could say that in the last years the Evolutionary Art was used in a lot of appli-
cations, with interactive EAs in which the user assigns scores to images based on
their suitability [7]; also, the EvoSpace framework is used for developing interactive
algorithms for artistic design [8].

Automated Graphical User Interface Testing Framework—Evoguitest … 41

The rest of this paper is organized as follows: Sect. 2 describes the automatic
process for GUI testing, Sect. 3 provides a detailed description of the EA process,
Sect. 4 describes our novel proposed Web GUI testing framework (EvoGUITest).
In this Section the framework architecture and the experimental results are also
presented. Section5 concludes the paper, summarizing the future work planned.

2 Automatic GUI Testing

The GUI testing is a process which aims at testing the software application’s user
interface and detecting if the GUI is functionally correct. GUI testing includes check-
ing the way the software application handles mouse and keyboard events [9].

The automatic GUI testing process includes automatic manual testing tasks per-
formed by human testers. By the automatic testing process, a software program
executes the testing tasks and analyzes if the GUI under test is functionally correct.

Automatic GUI testing can be executed using different techniques.

2.1 Capture/Replay Tools

These tools have two modes of functioning: capture and replay. In capture (record)
mode, the tool is able to record testers’ actions while they are interacting with the
GUI. The set of actions is recorded inside test scripts. These tools provide a scripting
language which can be used by engineers for maintaining the test scripts.

In replay mode, the recorded test scripts are executed. During the execution of
each test script, some mouse or keyboard events are executed on the GUI. The test
scripts’ execution process is automatic and can be repeated several times.

Themost important disadvantage of these GUI testing tools is the lack of structure
of the test scripts, which makes the maintenance process difficult. These tools don’t
provide any support to design and evaluate test cases based on coverage criteria.

Three examples for these tools are: Selenium [10], WinRunner [11] and Rational
Robot [12].

2.2 Random Input Testing

This testing technique is also referred in the literature as stochastic testing ormonkeys
testing [13]. Random input testing refers to the idea that somebody seats in front of a
software application and interacts randomly with it, by sending keyboard and mouse
events.

42 G.I. Latiu et al.

The goal of monkeys testing is to crash the GUI of the software application under
test. Theygenerate tests cases randomlywithout knowing anything about the software
application. The biggest problem of this testing technique is that monkeys cannot
recognize software errors. There is a smarter category of monkeys called “smart
monkeys” which have some knowledge about the software application under test.
These monkeys can find more bugs, but they are more expensive to be developed [2].

Even if random input testing tools have a weak coverage, one of the biggest soft-
ware companies has reported that 10–20% of the bugs in their software applications
were found by using random input testing method [13].

2.3 Unit Testing Frameworks

Unit testing technique for GUI testing requires programming the test cases. Unit
testing frameworks like NUnit [14] can be used for executing GUI test cases.

These tools are helpful in case many bugs can only be discovered through a
particular sequence of actions.With these tools the tester has towrite code to simulate
user interaction with the GUI under test. After executing the test cases the tester
should check if the result obtained is the one expected.

In order to be effective, the GUI testing process using unit testing frameworks
needs a lot of programming effort. There are some GUI libraries such as Abbot [15]
which provide methods to simulate user interaction.

2.4 Model-Based Testing

Model-based testing requires that GUI states and events are described with a cer-
tain type of model. Having these models in place, the test cases can be generated
automatically, either randomly or according to some particular coverage criteria.

The model-based testing process is presented in Fig. 1.
The model based testing process starts with the construction of the GUI’s model.

The model is used to generate test cases which are then executed over the GUI. In
the last step, the obtained results are compared to the expected results described in
the model.

The most important existing testing models used for model based testing are the
following ones [4]:

• Event Sequence Graph (ESG)—a directed graph which contains a finite set of
nodes and a finite set of edges. Each node represents a GUI event and the sequence
of nodes represents the sequence of GUI events [16].

• Event Flow Graph (EFG) and Event Interaction Graph (EIG)—inside the EFG,
each node represents aGUI event and all eventswhich canbe executed immediately
after one event are directly linkedwith directed edges from this event. A path inside

Automated Graphical User Interface Testing Framework—Evoguitest … 43

Fig. 1 Model based testing

Test case generation

GUI Model

GUI

Test case execution

Results checking

the EFG represents a sequence of GUI events and can be considered a test case.
EIG is the later version of the EFG. The EIG’s structure is composed by all the
GUI events which represent the GUI nodes and all relationships between events
which represent the graph edges.

Themodel-based testing technique is usually used to test the structural representation
of a GUI [17].

Some of the frameworks used in the testing process of the GUIs of Web applica-
tions areWebGuitar [18], Artemis [19], Atusa [20] and Kudzu [21]. Web Guitar uses
the ESG model; Atusa and Kudzu use the EIG model, all being based on functional
testing. Artemis has a grey-box testing style, both structural and functional.

The EvoGUITest framework that was developed by our team uses in the beginning
of testing process a random input testing method for generating the first set of test
cases. Then the test cases evolve using an evolutionary process. The aim of the
EvoGUITest framework is to determine the longest sequence of events which tests as
many GUI controls as possible. The EvoGUITest framework will be further detailed
in Sect. 4.

3 Evolutionary Algorithms

EAs are software programs that attempt to solve complex problems by mimicking
the processes of Darwinian evolution [22]. They operate on a population of possible
solutions by applying the principle called survival of the fittest to produce better
approximations to a solution [23].

During the EA process a big number of artificial individuals search the solution
over the problem space.

44 G.I. Latiu et al.

The artificial individuals are usually represented by vectors of binary values. Each
individual encodes a possible solution for the problem which needs to be solved.

Themost widely known EA is the Genetic Algorithm (GA). In the following, both
Genetic Algorithm and the Simulated Annealing (SA) algorithm will be presented.
These two algorithms were used for generating test cases inside the EvoGUITest
application.

3.1 Genetic Algorithms

GA originated from the work of John Holland. They are the most obvious mapping
of natural evolutionary process into a software application [24].

TheGAprocess beginswith a set of candidate solutionswhich is called population.
A population is composed of individuals who are constituted from one ormore genes.
A population’s individuals are used to form a new population by using crossover and
mutation operators. During the GA process there is an expectation that the newly
generated individuals are better than their parents.

GAs are well known and widely used in scientific and technical research because
of their parallel nature, of their design space exploration and also due to their ability
to solve non-linear problems [25].

A GA has four important phases:

• Evaluation—during this phase each individual is evaluated by the evaluation
method. The fitness function is used for evaluation. It calculates how good the
individual is to satisfy the test criteria;

• Selection—during this phase individuals are chosen randomly from the current
population for creating new individuals in the next generation. The main idea
of the selection methods is that fittest individual has the biggest probability of
survival; therefore he has a greater probability to be picked for reproduction;

• Crossover—during this phase, recombination reproduces the chosen individuals
and pair wise information will be exchanged and will result in a new population
[25]. The crossover process joins two selected individuals at a crossover point, thus
producing two new offsprings. During crossover, for instance the first parent’s
right half genes can be exchanged with the subsequent right half of the second
parent. After crossover is performed, each parent pair will result in two offsprings.
Crossover is the operator which is responsible for improving the individuals;

• Mutation—during this phase a randomly chosen bit is changed from ‘0’ to ‘1’ or
from ‘1’ to ‘0’. Each bit inside an individual has the same probability to mutate.
Mutation is the operator which is responsible for introducing variety inside the
population.

Automated Graphical User Interface Testing Framework—Evoguitest … 45

3.2 Simulated Annealing

SA is a probabilistic method for finding the global minimum of a cost function that
may possess several local minima [26]. This algorithm emulates the physical process
whereby a solid is slowly cooled until its structure becomes frozen. This happens at
a minimum energy configuration.

The SA algorithm has four basic elements [27]:

• Configurations—these represent the possible problem solutions over which the
process will search for the problem solution;

• Move Set—this set represents the computations performed to move from one con-
figuration to another, as annealing proceeds;

• Cost Function—measures how “good” a particular configuration is;
• Cooling Schedule—anneal the problem from a randomly generated possible solu-
tion to a good solution. Usually the schedule needs a starting hot temperature and
different rules for establishing when the current temperature should be decreased,
by which amount temperature should be lowered and when the process should
take end.

The most important feature of the SA algorithm is that it is a probabilistic method
where during the search process themoves that increase the cost function are accepted
in addition to moves which decrease the cost function [28]. This feature is the central
point of the algorithmwhich enables the search process to locate the global minimum
among all the other local minima.

The most important challenge in improving the performance of the SA algorithm
is to decrease the temperature and in the same time to ensure that the process does
not stop in a local minimum.

The goal of the SA algorithm is to find the quickest annealing schedule that
achieves a value for finding the global minimum equal to unity [28].

The SA algorithm is suitable for solving large scale optimization problems inside
which the global minimum is located among many local minima values.

4 EvoGUITest

EvoGUITest is a novel GUI automatic testing framework based on evolutionary
algorithms. It automatically generates test cases which are used afterwards for testing
the GUI. The test cases suite is generated automatically by an EA-based process.
EvoGUITest’s objective is to find the sequence of events which produces the biggest
number of changes inside the GUI in aminimum amount of time. A bigger number of
changes inside the GUI guarantee a better coverage of the search space, i.e. capturing
a greater number of situations for testing the GUI’s functionality.

46 G.I. Latiu et al.

4.1 The EvoGUITest Framework Architecture

The EvoGUITest application is a GUI testing framework which uses EAs for gener-
ating GUI test cases. It is developed in JavaScript and it runs on client side. Being
developed in JavaScript it is very easy to be extended without any need of extra tools
to write JavaScript. EvoGUITest is able to generate test cases for Web applications
which have a GUI component already developed.

The testing process with this GUI testing framework consists of the following
main steps:

• Analysis—the GUI state together with each GUI controls’ states are analyzed. The
result of this step is the list of HTML properties and events which correspond with
each control located inside GUI;

• Test Cases Generation—generate test cases by using the specific EAs methods;
• Test Cases Execution—executes test cases;
• Results Verification—verifies the results after the execution of the test cases.

Figure2 presents the main components of the EvoGUITest framework.
The most important part of the framework is the module which generates test

cases using EAs. Each test case is represented by an individual. The first population
of individuals is randomly generated Fig. 3 shows such an initial population for the
classical Calculator application running under Windows.

Each individual consists of an array of genes, each corresponding to a GUI con-
trol. In Fig. 3 the array of genes for each individual corresponds to an array of ids
which correspond to each GUI control. Each GUI control which appears inside an
individual is linked with a user action on the GUI. After the first population of indi-
viduals is generated, the individuals are evolved by means of the EA process. After
each generation, the new individuals are displayed together with their objective, age
and fitness function. Figure4 shows the individuals from the first generation. The
population of individuals is generated for testing the GUI of a complex application.
The individuals are classified so that the first one is the best individual from the
current generation. As it can be easily observed, the first individual is the one which

Fig. 2 The EvoGUITest
architecture

Test cases execution module

Test cases generation module

Analysis module

Results verification module

Automated Graphical User Interface Testing Framework—Evoguitest … 47

Fig. 3 Randomly generated individuals for testing GUI of a calculator application

Fig. 4 First generation of individuals for testing a complex GUI component

48 G.I. Latiu et al.

contains more button controls; therefore it is the one which produces the biggest
number of changes inside theGUI. The age represents the current generation number.
The objective column contains the objective value for each individual, and the fitness
column contains the fitness value assigned to each individual. The objective attribute
represents the performance of the individuals, while the fitness value represents rang
of individuals inside the hierarchy.

For example, if we have the following objective values:

Individual 1: 2
Individual 2: 1000
Individual 3: 65536

if the roulette wheel selection will be applied on the above population of individuals
the last individual won’t have any chance to be selected for reproduction. If we assign
a fitness function for each individual, who have the following values:

Individual1 : 2 Fitness : 0.5
Individual2 : 1000 Fitness : 0.3
Individual3 : 65536 Fitness : 0.2

then the last individual has a small chance to be selected for crossover.
The objective functionwhich evaluates each individual is presented in formula (1):

Objective = (1/no_of_changes)+
1/(100× no_of_similar_states)+
1/(100× no_of_useless_states)

(1)

Each individual should produce the greatest number of changes and the smallest
number of similar states and useless actions. A useless action is an action which
doesn’t produce any change inside the GUI. A similar state is a state which has
already appeared earlier inside the set of states produced by the same individual.

The EvoGUITest framework contains a separate section where the user can set
values for the most important parameters used by the GA and SA algorithms. For
each one of these two algorithms, the user can select the values for the parameters
presented in Table1. The variables that affect the outcome of the SA algorithm are:

Table 1 Parameters list for GA and SA algorithms

GA Values SA Values

Number of individuals 40 Initial temperature 100

Number of genes (min, max) Min: 10
Max: 25

Epsilon 0.001

Number of selected pairs for crossover 20 Alpha 0.999

Mutation probability 0.2 –

Mutation addition probability 0.5 –

Mutation removal probability 0.5 –

Number of generations 50 –

Automated Graphical User Interface Testing Framework—Evoguitest … 49

the initial temperature, the rate at which the temperature decreases (alpha) and the
stopping condition of the algorithm (epsilon).

The number of individuals indicates how many individuals exist in each popula-
tion while the number of generations represents the generations for which the GA
algorithm will be performed. The number of genes represents the minimum and the
maximum length of each individual from the first population. The number of selected
pairs for crossover represents howmany individualswill be selected for reproduction.
The mutation probability refers to the application of the mutation operator. Mutation
can be applied in two ways: either by removing a gene from an individual or by
adding a new gene.

Figure5 displays the section which consists of the GA parameters list for the
EvoGUITest application.

Fig. 5 GA parameters
settings area

50 G.I. Latiu et al.

4.2 The EvoGUITest Experimental Results

All the experiments were performed on a computing system having the following
configuration: Intel I3 processor, 2.2GHz, Windows 7 Operating System. Three
GUIs were tested: the first one is a simple GUI which consists of two buttons and
two textboxes, the second one is the GUI of the classic Calculator application from
Windows and the last one is a complex GUI which consists of more than twenty user
controls.

For test cases generationweusedboth theGAand theSAalgorithms.The selection
method used for GA algorithm was the roulette wheel method. For each specific
parameter, for each algorithm, the values presented in Table1 were used in order to
generate the test cases. These values were chosen to be used for running EAs based
on our empirical studies done before. All the EAs’ specific parameters’ values were
setup after we have tried hundred of runs with different values for these parameters.
The values for which we have obtained the best results were chosen.

Figures6, 7 and 8 present the test results obtained for each of the three GUIs using
the GA and the SA algorithms for evolving the test cases suite.

Fig. 6 Test case generation
for the simple GUI

Fig. 7 Test case generation
for the Calculator GUI

Fig. 8 Test case generation
for the complex GUI

Automated Graphical User Interface Testing Framework—Evoguitest … 51

Table 2 Best individuals’ performance for the GA and SA algorithms

GUI GA Performance No. of GUI
Changes

SA Performance No. of GUI
Changes

Best individual
for simple GUI
testing

0.001 14 0.0029 11

Best individual
for Calculator
GUI testing

0.0012 19 0.0019 15

Best individual
for complex GUI
testing

0.0015 27 0.0034 23

Table 3 Convergence time(s) for the GA and SA algorithms

GUI Type GA Convergence (s) SA Convergence (s)

Simple GUI testing 30 46

Calculator GUI testing 40 57

Complex GUI testing 60 78

The performance of the best individuals for both GA and SA algorithms is pre-
sented in Table2.

From Figs. 6, 7, 8 and Table2 one can notice that the GA is able to find better test
data compared to the SA algorithm. GA manages to find out the sequence of events
which produces more changes inside GUI in comparison with SA. The individual
which produces the biggest number of changes inside the GUI is the one which has
the smallest value of its fitness function, because the testing problem is transformed
into a minimization problem. It shows that individuals have evolved from the first
generation to the last one. The best individual from the last generation produces the
biggest number of changes inside the GUI; therefore, it has the smallest value of the
fitness function.

The mean value of convergence time (in seconds) obtained from ten runs of each
algorithm is presented in Table3.

The convergence time for GA algorithm is smaller than the convergence time
obtained for SA algorithm.

4.3 Performance Metrics

To evaluate the testing results obtained with the EvoGUITest framework we made a
series of tests using other available open source frameworks.

52 G.I. Latiu et al.

To facilitate frameworks comparisons and provide information about the frame-
works’ performances, some metrics had to be defined. The defined metrics are as
general as possible, in order to be applicable on any testing software that might be
used for testing the GUIs of Web applications.

The metrics we defined are:

• Metrics #1: Number of HTML content errors per number of source code lines
(NECL)

This metric represents the number of HTML content errors found over the number
of source code lines of the tested application. The metric offers an idea about the
density of HTML errors in the application source code. Measuring this parameter
gives an image of the application’s quality.

• Metrics #2: Average number of HTML content errors per number of source code
lines (ANECL)

This metric represents the average number of HTML content errors over the
number of source code lines of the tested applications. This parameter gives an
idea about the density of HTML errors compared to the average size of the tested
application. Measuring this parameter also gives an image of the tested application’s
quality.

• Metrics #3: Number of HTML content errors per test suite (NETS)

This metric indicates the number of HTML content errors discovered after testing
the software application over the number of tests in the test suite. It can be extended
for any other applications and test suites. Its extension refers to the total number of

HTML errors over the total number of tests run for all the tested applications.

• Metrics #4: Average number of HTML content errors per test suite (ANETS)

The metric represents the average number of HTML content errors found over the
number of tests in the test suite. This parameter offers an idea about the density of
HTML errors discovered by each test from the test suites. It gives an image of the
quality of the tests used in the testing process.

• Metrics #5: Number of HTML content errors per test (NET)

The metric represents the number of HTML content errors found after testing the
software application with one single test from the suite of tests.

• Metrics #6: Average number of HTML content errors per test (ANET)

Thismetric represents the average number ofHTMLcontent errors found by a certain
testing scenario. It shows the average abilities of a testing scenario to find errors in
the tested graphical interface.

Automated Graphical User Interface Testing Framework—Evoguitest … 53

4.4 Experimental Results

Figure9 presents a comparison between four test suites composed of ten test cases
each. The test suites were generated with EvoGUITest, Selenium [8], WinRunner [9]
and Rational Robot [10]. They were used in the regression testing phase for detecting
errors inside a set of benchmark Web applications.

From Fig. 9 one can notice that the test suite generated using EvoGUITest is able
to findmore defects in comparison with other test suites based on the two functioning
modes (i.e. capture and replay), even if they contain the same number of tests. This
illustrates the fact that the test suite generated with EvoGUITest is better than those
generated with Selenium, WinRunner and Rational Robot frameworks.

Artemis [17], Atusa [18] and Kudzu [19] frameworks for testing the GUIs of
Web applications were used to observe the similarities and differences with our
EvoGUITest framework.

The number of benchmark applications that were tested in order to make com-
parisons between EvoGUITest and Artemis, respective Atusa frameworks, was 30,
and the number of tests from the tests suite was 100. These Web applications were
selected among popular Web applications available on the Internet.

Figure10 shows the differences between EvoGUITest and Artemis when they
were used for finding out errors in different Web graphical interfaces.

The number of errors discovered in the HTML code by EvoGUITest and Artemis
are presented in Table4. In case of just two applications out of 30, the Artemis
framework had better results than our EvoGUITest framework.

Using the NECL, NETS and NET metrics defined before, in Table5 we present
the better results obtained by EvoGUITest, compared to those obtained using the
Artemis framework. The results clearly show better results for EvoGUITest.

Figure11 shows the differences between EvoGUITest and Atusa when looking
for errors in the 30 benchmark applications tested.
The results of the number of errors discovered in theHTML code by EvoGUITest and
Atusa are presented in Table6. In all the 30 of tested cases, EvoGUITest framework
had better results than Atusa framework.

Fig. 9 Number of defects
discovered by different
testing frameworks

54 G.I. Latiu et al.

Fig. 10 Errors find out by EvoGUITest and Artemis

Table 4 Errors in HTML code discovered by EvoGUITest and Artemis

Tested Applications Lines code number EvoGuiTest (HTML
errors number)

Artemis (HTML errors
number)

3dModeller 393 12 13

BallPool 256 10 7

FractalViewer 750 18 16

HTMLEdit 568 13 12

Pacman 1857 20 17

AjaxPool 250 17 15

AjaxTabsContent 156 10 9

DragableBoxes 697 15 14

DynamicArticles 156 11 8

Homeostasis 2037 6 7

Qatrix 1712 4 3

Durandal 2159 6 5

Breeze 14730 20 18

Simple HTML5
Drawing Application

439 9 8

PartialJs 5857 23 21

Shipyard 73 3 2

KoLite 381 12 11

HTML CodeSniffer 1433 18 16

Postman 199 7 5

(continued)

Automated Graphical User Interface Testing Framework—Evoguitest … 55

Table 4 (continued)

Tested Applications Lines code number EvoGuiTest (HTML
errors number)

Artemis (HTML errors
number)

Monologue 215 4 2

Census Tool 1567 2 1

Computer Language
Benchmarks Game

1678 3 2

Moddular 945 5 4

Draw a stickman 785 2 1

MemoLane 567 9 7

Pandora 1128 2 1

Lights 957 7 5

jsPerf 589 11 8

BrowserQuest 1368 14 10

RemoteTilt 688 8 5

Average 1486 10 8

Table 5 Metrics results for EvoGUITest and Artemis

Applications EvoGuiTest Artemis

NECL NETS NET NECL NETS NET

3dModeller 0.03 12 0.12 0.033 13 0.13

BallPool 0.039 10 0.1 0.027 7 0.07

FractalViewer 0.024 18 0.18 0.021 16 0.16

HTMLEdit 0.022 13 0.13 0.021 12 0.12

Pacman 0.01 20 0.2 0.009 17 0.17

AjaxPool 0.068 17 0.17 0.06 15 0.15

AjaxTabsContent 0.064 10 0.1 0.057 9 0.09

DragableBoxes 0.021 15 0.15 0.02 14 0.14

DynamicArticles 0.07 11 0.11 0.05 8 0.08

Homeostasis 0.002 6 0.06 0.003 7 0.07

Qatrix 0.002 4 0.04 0.002 3 0.03

Durandal 0.003 6 0.06 0.002 5 0.05

Breeze 0.001 20 0.2 0.001 18 0.18

Simple HTML5 Draw-
ing Application

0.02 9 0.09 0.018 8 0.08

PartialJs 0.004 23 0.23 0.003 21 0.21

Shipyard 0.04 3 0.03 0.027 2 0.02

KoLite 0.031 12 0.12 0.028 11 0.11

HTML CodeSniffer 0.012 18 0.18 0.011 16 0.16

(continued)

56 G.I. Latiu et al.

Table 5 (continued)

Applications EvoGuiTest Artemis

NECL NETS NET NECL NETS NET

Postman 0.0351 7 0.07 0.025 5 0.05

Monologue 0.0186 4 0.04 0.009 2 0.02

Census Tool 0.001 2 0.02 0.001 1 0.01

Computer Language
Benchmarks Game

0.001 3 0.03 0.001 2 0.02

Moddular 0.005 5 0.05 0.004 4 0.04

Draw a stickman 0.002 2 0.02 0.001 1 0.01

MemoLane 0.015 9 0.09 0.012 7 0.07

Pandora 0.001 2 0.02 0.001 1 0.01

Lights 0.007 7 0.07 0.005 5 0.05

jsPerf 0.018 11 0.11 0.0135 8 0.08

BrowserQuest 0.010 14 0.14 0.007 10 0.1

RemoteTilt 0.011 8 0.08 0.007 5 0.05

ANECL ANETS ANET ANECL ANETS ANET

Average for NECL,
NETS, NET

0.0195 10 0.1 0.0159 8 0.084

Fig. 11 Errors discovered by EvoGUITest and Atusa

Automated Graphical User Interface Testing Framework—Evoguitest … 57

Table 6 Errors in HTML code find out by EvoGUITest and Atusa

Tested applications Lines code number EvoGuiTest (HTML
errors number)

Atusa (HTML errors
number)

TUDU 580 9 8

Coach Yourself 150 7 6

AJAX Rss Reader 600 9 7

Ajax Desktop Tutorial 856 12 11

Ajax for Chat 678 10 8

Ultra-lightweight
charts for AJAX

1234 16 13

Quick calendar using
AJAX

453 12 10

Edit in place with
AJAX

745 15 13

AJAX file upload
tutorial

897 19 16

Safer Contact Forms
without Captcha

1145 13 11

Using AJAX with
Captcha

459 6 4

AutoCompleter in
AJAX

239 7 6

AJAX ShoutBox 712 4 3

Dragable Ajax 324 2 1

Making Ajax Work
with Screen Readers

123 2 1

Backpack 890 5 4

Base Camp 1256 16 14

BrainKing 2367 18 17

Realtime HTML
editor

543 13 11

Remember the Milk 967 20 18

WeBoggle 1145 11 9

XHTML Live Chat 678 6 4

ThickBox 564 4 3

TreehouseChat 343 7 6

Super Maryo World 756 15 11

Spell Check Demo 897 20 17

Slider Bar Demo 235 9 8

nexImage 123 12 11

Tacos 378 7 5

ZK Demo 456 10 9

Average 693 10 8

58 G.I. Latiu et al.

Table 7 Metrics results for EvoGUITest and Atusa

Aplications EvoGuiTest Atusa

NECL NETS NET NECL NETS NET

TUDU 0.015 9 0.09 0.013 8 0.08

Coach Yourself 0.046 7 0.07 0.04 6 0.06

AJAX Rss Reader 0.015 9 0.09 0.011 7 0.07

Ajax Desktop Tutorial 0.014 12 0.12 0.013 11 0.11

Ajax for Chat 0.0147 10 0.1 0.0118 8 0.08

Ultra-lightweight charts
for AJAX

0.013 16 0.16 0.010 13 0.13

Quick calendar using
AJAX

0.0264 12 0.12 0.022 10 0.1

Edit in place with AJAX 0.020 15 0.15 0.017 13 0.13

AJAXfile upload tutorial 0.021 19 0.19 0.0178 16 0.16

Safer Contact Forms
without Captcha

0.011 13 0.13 0.009 11 0.11

Using AJAX with
Captcha

0.0130 6 0.06 0.008 4 0.04

AutoCompleter in AJAX 0.0292 7 0.07 0.0251 6 0.06

AJAX ShoutBox 0.005 4 0.04 0.004 3 0.03

Dragable Ajax 0.006 2 0.02 0.003 1 0.01

Making Ajax Work with
Screen Readers

0.0162 2 0.02 0.008 1 0.01

Backpack 0.005 5 0.05 0.004 4 0.04

Base Camp 0.0127 16 0.16 0.011 14 0.14

BrainKing 0.007 18 0.18 0.007 17 0.17

Realtime HTML editor 0.024 13 0.13 0.020 11 0.11

Remember the Milk 0.008 20 0.2 0.007 18 0.18

WeBoggle 0.009 11 0.11 0.007 9 0.09

XHTML Live Chat 0.008 6 0.06 0.005 4 0.04

ThickBox 0.007 4 0.04 0.005 3 0.03

TreehouseChat 0.020 7 0.07 0.017 6 0.06

Super Maryo World 0.019 15 0.15 0.014 11 0.11

Spell Check Demo 0.022 20 0.2 0.018 17 0.17

Slider Bar Demo 0.038 9 0.09 0.034 8 0.08

nexImage 0.097 12 0.12 0.089 11 0.11

Tacos 0.018 7 0.07 0.013 5 0.05

ZK Demo 0.021 10 0.1 0.019 9 0.09

ANECL ANETS ANET ANECL ANETS ANET

Average for NECL,
NETS, NET

0.0193 10 0.1 0.0154 8 0.088

Automated Graphical User Interface Testing Framework—Evoguitest … 59

Using theNECL,NETSandNETmetrics inTable7wepresent the results obtained
byEvoGUITest and compare them to those obtained byAtusa framework. The results
show that EvoGUITest had better results than Atusa for all metrics.

The third comparison was made with the Kudzu framework. For 28 benchmark
applications that were tested, Fig. 12 shows the errors obtained by EvoGUITest and
by Kudzu frameworks.

The number of errors discovered in theHTMLcode byEvoGUITest andKudzu for
28 benchmark applications are presented in Table8. In the tested cases when errors
were discovered, EvoGUITest framework had better or same results than Kudzu
framework. In just one single case (the TVGuide application), Kudzu discovered
one error while EvoGUITest was unable to find any error.

Using theNECL,NETSandNETmetrics inTable9wepresent the results obtained
by EvoGUITest framework, compared to Kudzu framework. The results show that
EvoGUITest had better results than Kudzu.

All the comparisons made until now show that the results obtained with EvoGUI-
Test framework in automated testing of graphical user interfaces forWeb applications
have a better quality. The EvoGUITest framework managed to find out more errors
in the HTML code and to generate more performing test suites than others similar
frameworks.

Fig. 12 Errors discovered by EvoGUITest and Kudzu

60 G.I. Latiu et al.

Table 8 Errors in HTML code discovered by EvoGUITest and Kudzu

Tested Applications Lines Code
Number

Tests Suite
Dimension

EvoGuiTest(HTML
errors number)

Kudzu (HTML
errors number)

Plaxo 17854 178 1 1

Academia 1604 16 1 1

AJAXIm 9328 93 3 2

FacebookChat 15789 144 – –

ParseUri 601 6 1 1

Word Monkey 5437 93 22 20

Calorie Watcher 2808 28 2 –

Birthday Reminder 1678 16 2 –

Simple Calculator 2340 93 3 1

AskAWord 2690 93 2 1

Block Notes 1798 28 2 1

Expenses Manager 3608 32 – –

Listy 2564 26 1 1

Notes LP 3516 30 – –

Progress Bar 1439 15 – –

Todo List 2076 20 – –

TVGuide 3789 32 – 1

Zip Code Gas 5587 54 2 1

AJAX Rater 4312 47 2 1

AJAX Newsletter
Signup

4789 87 4 3

Lace 3912 76 7 5

Monket Calendar 2945 34 6 5

Opera Platform 12347 120 – –

Slide Show System 5489 67 5 3

NetDirector 3675 104 – –

Metatron Chat
Engine

4012 81 1 1

FileChucker 2934 72 2 1

Chihuahua Word
Puzzle

5476 55 4 2

Average 4799 62 3 2

Automated Graphical User Interface Testing Framework—Evoguitest … 61

Table 9 Metrics results for EvoGUITest and Kudzu

Aplications EvoGuiTest Kudzu

NECL NETS NET NECL NETS NET

Plaxo 0 1 0.005 0.00005 1 0.005

Academia 0.0006 1 0.062 0.0006 1 0.062

AJAXIm 0.0003 3 0.032 0.0002 2 0.021

FacebookChat 0 0 0 0 0 0

ParseUri 0.0016 1 0.166 0.0016 1 0.166

Word Monkey 0.004 22 0.23 0.0036 20 0.21

Calorie Watcher 0.0007 2 0.071 0 0 0

Birthday Reminder 0.0011 2 0.12 0 0 0

Simple Calculator 0.0012 3 0.032 0.0004 1 0.01

AskAWord 0.0007 2 0.021 0.0003 1 0.01

Block Notes 0.0011 2 0.071 0.0005 1 0.035

Expenses Manager 0 0 0 0 0 0

Listy 0.0003 1 0.038 0.0003 1 0.038

Notes LP 0 0 0 0 0 0

Progress Bar 0 0 0 0 0 0

Todo List 0 0 0 0 0 0

TVGuide 0 0 0 0.0002 1 0.031

Zip Code Gas 0.0003 2 0.037 0.0001 1 0.018

AJAX Rater 0.0004 2 0.042 0.0002 1 0.021

AJAX Newsletter
Signup

0.0008 4 0.045 0.0006 3 0.034

Lace 0.0017 7 0.092 0.0012 5 0.065

Monket Calendar 0.002 6 0.176 0.0016 5 0.147

Opera Platform 0 0 0 0 0 0

Slide Show System 0.0009 5 0.074 0.0005 3 0.044

NetDirector 0 0 0 0 0 0

Metatron Chat Engine 0.0002 1 0.012 0.0002 1 0.012

FileChucker 0.0006 2 0.0277 0.0003 1 0.013

Chihuahua Word Puzzle 0.0007 4 0.0727 0.0003 2 0.0363

ANECL ANETS ANET ANECL ANETS ANET

Average for NECL,
NETS, NET

0.0006 3 0.050 0.0004 2 0.034

5 Conclusions and Future Work

This paper presents EvoGUITest, an original framework for automatically testing
graphical user interfaces of Web applications based on EAs techniques. The main
features of the EvoGUITest framework are the following:

62 G.I. Latiu et al.

• It tests the GUI separately from the application source code itself;
• It automatically generates and executes the test suite;
• It is able to find the sequence of events which produces the biggest number of
changes inside the GUI, so it checks the biggest possible number of controls
inside the GUI.

TheEvoGUITest framework is original because it runs on client side, being developed
in Javascript and it tests the GUI of the application separately from the software
application itself. To the best of our knowledge, it is the first GUI testing application
developed only using JavaScript. The advantage of using JavaScript is that it is
platform-independent and it can testGUI components developed in any programming
language. The extension of the framework is very easy to make because there is no
need of any extra tools to write JavaScript code. This can be done using any plain
text or HTML editor.

EvoGUITest has the objective to find out the most important sequence of events
which produces the biggest number of changes inside the GUI. By producing the
biggest number of changes, the sequence is able to verify as many components as
possible inside the GUI.

EvoGUITest is able to discover the most important sequence of GUI events.
Future work will involve using EvoGUITest framework for testing larger projects.

We will also focus on using EvoGUITest for regression testing. The test cases suite
will be used to check if the GUI still functions correctly after each development
change is performed. The framework will be extended with other evolutionary algo-
rithms: Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO)
algorithms.

A complete automated testing framework based on EAs could be designed and
implemented, for completely automating the GUI testing process.

Acknowledgments This work was supported by a grant of the Romanian National Authority for
Scientific Research, CNDI-UEFISCDI, project number 47/2012.

References

1. Jansen, B.J.: The Graphical User Interface: an introduction. In: Seminal Works in Computer
Human Interaction, vol. 30(2), pp. 24-26. ACM, New York (1998)

2. Pimenta, A.: Automated Specification-based Testing of Graphical User Interfaces. Ph.D. The-
sis, Department of Electrical and Computer Engineering, Porto University, Portugal (2006)

3. Ganov, S., Killmar, C., Khurshid, S., Perry, D.: Test generation for graphical user interfaces
based on symbolic execution. In: Proceedings of the 3rd InternationalWorkshop onAutomation
of Software Test , pp. 35-40. ACM, New York (2008)

4. Yang, X.: Graphic User Interface Modelling and Testing Automation. Ph.D. Thesis, School of
Engineering and Science, Victoria University Melbourne, Australia (2011)

5. Al-Zain, S., Eleyan, D., Hassouneh, Y.: Comparing GUI automation testing tools for dynamic
web applications. Asian J. Comput. Inf. Syst. 01(02), 38–48 (2013)

6. Kaur,M., Kumari, R.: Comparative study of automated testing tools: testcomplete and quicktest
pro. Int. J. Comput. Appl. 24(1), 1–7 (2011)

Automated Graphical User Interface Testing Framework—Evoguitest … 63

7. Bergen, S., Ross, J.: Evolutionary art using summed multi-objective ranks. In: Genetic Pro-
gramming Theory and Practice VIII, vol. 8, pp. 227–244. Springer Science, Berlin (2011)

8. Valdez-Garcia, M., Trujillo, l., Fernandez de Vega, F., Guervos, J.M., Olague, G.: EvoSpace-
Interactive: a framework to develop distributed collaborative-interactive evolutionary algo-
rithms for artistic design. In: Evolutionary and Biologically Inspired Music, Design, Sound
Art and Design, LNCS, vol. 7834, pp. 121–132. Springer (2013)

9. Prabhu, J., Malmurugan, N.: A survey on automated GUI testing procedures. Eur. J. Sci. Res.
64(3), 456–462 (2011)

10. Selenium Framework. http://seleniumhq.org
11. WinRunner Framework. http://mercury.com
12. Rational Robot Framework. http://www-01.ibm.com/software/awdtools/tester/robot/
13. Nyman, N.: In defense of monkey testing. In: Software Testing and Quality Engineering Mag-

azine, pp. 18–21 (2000)
14. NUnit Framework. http://nunit.org
15. Abbot GUI libraries. http://abbot.sourceforge.net
16. Belli, F.: Finite-State testing and analysis of Graphical User Interfaces. In: Proceedings of the

12th International Symposium on Software Reliability Engineering, pp. 34–43. IEEE Xplore
(2001)

17. Qureshi, I.A., Nadeem, A.: GUI testing techniques: a survey. Int. J. Future Comput. Commun.
vol. 2(2), pp. 142–146 (2013)

18. Web Guitar. http://www.cs.umd.edu/~atif/GUITAR-Web
19. Artzi, S., Dolby, J., Jensen, S. H., Moller, A., Tip, F.: A framework for automated testing of

JavaScript web applications. In: Proceedings of the 33rd International Conference on Soft-
ware Engineering, pp. 571–580. ACM, New York (2011)

20. Mesbah, A., Van Deursen, A.: Invariant-Based automatic testing of AJAX user interfaces. In:
Proceedings of the 31st International Conference on Software Engineering, pp. 210–220. IEEE
Computer Society Washington, DC (2009)

21. Saxena, P., Akhawe, D., Hanna, S., McCamant, S., Song, D., Mao, F.: A symbolic execution
framework for JavaScript. In: Proceedings of 31st IEEE Symposium on Security and Privacy,
pp. 513–528. IEEE Computer Society Washington, DC (2010)

22. Jones, G.: Genetic and evolutionary algorithms. In: Encyclopedia of Computational Chemistry,
pp.1–10. Wiley (1990)

23. Pohlheim, H.: Evolutionary algorithms: overview, methods and operators. In: Geneticand Evo-
lutionary Algorithm Toolbox for Matlab (2006)

24. Streichert, F.: Evolutionary Algorithms in Multi-Modal and Multi-Objective Environments,
Ph.D. Thesis, Department of Computer Architecture, University of Tubingen, Germany (2007)

25. Rauf, A.: Coverage Analysis for GUI Testing, Ph.D. Thesis, Department of Computer Science,
National University of Computer and Emerging Sciences Islamabad, Pakistan (2010)

26. Bertsimas, D., Tsitsiklis, J.: Simulated annealing. Stat. Sci. 8(1), 10–15 (1993)
27. Ruthenbar, R.: Simulated Annealing algorithms: an overview. IEEE Circuits Devices Mag. 5,

19–26 (1989)
28. Nascimento, V., Carvalho, V., Castilho, C., Soares, E., Bittencourt, C., Woodruff, D.: The

simulated annealing global search algorithm applied to the crystallography of surfaces by
Leed. In: Surface Review and Letters, vol. 6(5), pp. 651–661 (1999)

http://seleniumhq.org
http://mercury.com
http://www-01.ibm.com/software/awdtools/tester/robot/
http://nunit.org
http://abbot.sourceforge.net
http://www.cs.umd.edu/~atif/GUITAR-Web

	Automated Graphical User Interface Testing Framework---Evoguitest---Based on Evolutionary Algorithms
	1 Introduction
	2 Automatic GUI Testing
	2.1 Capture/Replay Tools
	2.2 Random Input Testing
	2.3 Unit Testing Frameworks
	2.4 Model-Based Testing

	3 Evolutionary Algorithms
	3.1 Genetic Algorithms
	3.2 Simulated Annealing

	4 EvoGUITest
	4.1 The EvoGUITest Framework Architecture
	4.2 The EvoGUITest Experimental Results
	4.3 Performance Metrics
	4.4 Experimental Results

	5 Conclusions and Future Work
	References

