
Artificial Curiosity Emerging Human-Like
Behavior: Toward Fully Autonomous
Cognitive Robots

Kurosh Madani, Christophe Sabourin and Dominik M. Ramík

Abstract This chapter is devoted to autonomous cognitive machines by mean of the
design of an artificial curiosity based cognitive system for autonomous high-level
knowledge acquisition from visual information. Playing a chief role as well in visual
attention as in interactive high-level knowledge construction, the artificial curiosity
is realized through combining visual saliency detection andMachine-Learning based
approaches. Experimental results validating the deployment of the investigated sys-
tem have been obtained using as well simulation facilities as a real humanoid robot
acquiring visually knowledge about its surrounding environment interacting with a
human tutor. As show the reported results and experiments, the proposed cognitive
system allows themachine to discover autonomously the surroundingworld in which
it may evolve, to learn new knowledge about it and to describe it using human-like
natural utterances.

1 Introduction and Problem Stating

If nowadays machines and robotic bodies are fully automated outperforming human
capacities, nonetheless, none of them can be called truly intelligent or pretend defeat-
ing human’s cognitive skills. The fact that human-like machine-cognition is still
beyond the reach of contemporary science only proves how difficult the problem is.
Somewhat, it is due to the fact that the science is still far from fully understanding
the human cognitive system. On the other hand, it is so because if contemporary
machines are often fully automatic, they linger rarely fully autonomous in their
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knowledge acquisition. Nevertheless, the concepts of bio-inspired or human-like
machine-cognition remain foremost sources of inspiration for achieving intelligent
systems (intelligent machines, intelligent robots, etc…).

Emergence of cognitive phenomena in machines has been and remains active part
of research efforts since the rise of Artificial Intelligence (AI) in the middle of the
last century. Among others, [1] provides a survey on cognitive systems. It accounts
on different paradigms of cognition in artificial agents markedly on the contrast of
emergent versus cognitivist paradigms and on their hybrid combinations. It is also
worth of mentioning the work of [2] which brings an in-depth review on a number
of existing cognitive architectures such those which adheres to the symbolic theory
and reposes on the assumption that human knowledge can be divided to two kinds:
declarative and procedural. Another discussed architecture belongs to class of those
using “If-Then” deductive rules dividing knowledge again on two kinds: concepts
and skills. In contrast to above-mentioned works, the work of [3] focuses the area of
research on cognition and cognitive robots discussing purposes linking knowledge
representation, sensing and reasoning in cognitive robots. However, there is no cog-
nition without perception (a cognitive system without the capacity to perceive would
miss the link to the real world and so it would be impaired) and thus autonomous
acquisition of knowledge from perception is a problem that should not be skipped
when dealing with cognitive systems.

Prominently to the machine-cognition’s issue is the question: “what is the compel
or the motivation for a cognitive system to acquire new knowledge?” For human
cognitive system Berlyne states, that it is the curiosity that is the motor of seeking
for new knowledge [4]. Consequently a few works have been since there dedicated
to incorporation of curiosity into a number of artificial systems including embod-
ied agents or robots. However the number of works using some kind of curiosity
motivated knowledge acquisition with implementation to real agents (robots) is still
relatively small. Often authors view curiosity only as an auxiliary mechanism in
robot’s exploration behavior. One of early implementations of artificial curiosity
may be found in [5]. Accordingly to the author, the introduction of curiosity further
helps the system to actively seek similar situations in order to learn more. On the
field of developmental and cognitive robotics a similar approach may be found in
[6] where authors present an approach including a mechanism called “Intelligent
Adaptive Curiosity”. Two experiments with AIBO robot are presented showing that
the curiosity mechanism successfully stimulates the learning progress. In a recent
publication, authors of [7] implement the psychological notion of surprise-curiosity
into the decision making process of an agent exploring an unknown environment.
Authors conclude that the surprise-curiosity driven strategy outperformed classical
exploration strategy regarding the time-energy consumed in exploring the delved
environment. On the other hand, the concept of surprise, relating closely the notion
of curiosity, has been exploited in [8] by a robot using the surprise in order to discover
new objects and acquire their visual representations. Finally, the concept of curios-
ity has been successfully used in [9] for learning affordances of a mobile robot in
navigation task. The mentioned works are attempting to respond the question: “how
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an autonomous cognitive system should be designed in order to exhibit the behavior
and functionality close to its human users”.

That is why even though curiosity killed a cat,1 taking into consideration the
enticing benefits of curiosity, we have made it our principle foundation in investi-
gated concept. The present paper is devoted to the description of a cognitive system
based on artificial curiosity for high-level human-like knowledge acquisition from
visual information. The goal of the investigated system is to allow the machine (such
as a humanoid robot) to observe, to learn and to interpret the world in which it
evolves, using appropriate terms from human language, while not making use of
a priori knowledge. This is done by word-meaning anchoring based on learning
by observation stimulated (steered) by artificial curiosity and by interaction with the
human. Our model is closely inspired by juvenile learning behavior of human infants
[10, 11].

In Sect. 2, we detail our approach by outlining its architecture and principles. We
explain how the machine generates its beliefs about the world from observing the
surrounding environment and the role of human-robot interaction in the learning
process. Section3 focuses the validation of the proposed approach using as well
simulation facilities as a real robot evolving in real environment. Finally Sect. 4
discusses the achieved results and outlines the future work.

2 Brief Overview of Multi-level Cognitive Concept

Accordingly to Berlyne’s theory of human curiosity [4], two cognitive levels con-
tribute to human’s desire of acquiring new knowledge. The first is so-called “per-
ceptual curiosity”, which leads to increased perception of stimuli. It is a lower level
cognitive function, more related to perception of new, surprising or unusual sensory
input. It contrasts to repetitive or monotonous perceptual experience. The other one
is called “epistemic curiosity”, which is more related to the “desire for knowledge
that motivates individuals to learn new ideas, eliminate information-gaps, and solve
intellectual problems” [12]. It also seems that it acts to stimulate long-term memory
in remembering newor surprising (e.g.whatmay be contrastingwith already learned)
information [13]. By observing the state of the art (including the referenced ones),
it may be concluded that the curiosity is usually used as an auxiliary mechanism
instead of being the fundamental basis of the knowledge acquisition. To our best
knowledge there is no work to date which considers curiosity in context of machine
cognition as a drive for knowledge acquisition on both low (perceptual) level and high
(“semantic”) level of the system. Without striving for biological plausibility whilst
by analogy with natural curiosity, we founded our system on two cognitive levels
([14, 15]). Depicted in Fig. 1, the first ahead of reflexive visual attention plays the role

1In ‘Different’, Eugene O’Neill, 1920: BENNY—(with a wink): “Curiosity killed a cat! Ask me no
questions and I’ll tell you no lies.”
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Fig. 1 General bloc-diagram of the proposed curiosity driven architecture (left) and principle of
curiosity-based Stimulation-Satisfaction mechanism for knowledge acquisition (right)

of perceptual curiosity and the second copingwith intentional learning-by-interaction
undertakes the role of epistemic curiosity.

2.1 From Observation to Interpretation

The problem of autonomous learning conveys the inbuilt problem of distinguishing
the pertinent sensory information from the impertinent one. The solution to this task
is natural for human, it remain very far from being obvious for a robot. In fact,
when a human points to one object among many others giving a description of that
pointed object using his human natural language, the robot still has to distinguish,
which of the detected features and perceived characteristics of the object the human
is referring to. To achieve correct anchoring, the proposed architecture adopts the
following strategy. By using its perceptual curiosity, realized thanks to artificial
salient vision and adaptive visual attention (described in [16–18]), the robot extracts
features from important objects found in the scene along with the words the human
used to describe the objects. Then, the robot generates its beliefs about which words
could describe which features. Using the generated beliefs as organisms in a genetic
algorithm, the robot determines its “most coherent belief”. To calculate the fitness,
a classifier is trained and used to interpret the objects the robot has already seen.
The utterances pronounced by the human for each object are compared with those
the robot would use to describe it based on its current belief. The closer the robot’s
description is to that given by the human, the higher the fitness is. Once the evolution
has been finished, the belief with the highest fitness is adopted by the robot and is
used to interpret occurrences of new (unseen) objects. Figure2 depicts through an
example important parts and operations of the proposed system.

Let us suppose a robot equipped by a sensor observing the surrounding world
and interacting with the human. The world is represented as a set of features I =
{i1, i2, . . . , ik}, which can be acquired by robot’s sensor. Each time the robot makes
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Fig. 2 Example showing main parts of the system’s operation in the case of autonomous learning
of colors

an observation o, its epistemic curiosity stimulates it to interact with the human
asking him to gives a set of utterances UH describing the found salient objects. Let
us denote the set of all utterances ever given about the world as U . The observation
o is defined as an ordered pair o = {Il , UH }, where Il ⊆ I , expressed by (1),
stands for the set of features obtained from observation and UH ⊆ U is the set
of utterances (describingO) given by human in the context of that observation. i p

denotes the pertinent information for a given u (i.e. features that can be described
semantically as u in the language used for communication between the human and
the robot), ii the impertinent information (i.e. features that are not described by
the given u, but might be described by another ui ∈ U ) and sensor noiseε. The
goal is to distinguish the pertinent information from the impertinent one and to
correctly map the utterances to appropriate perceived stimuli (features). Let us define
an interpretation X (u) = {

u, I j
}
of an utterance u as an ordered pair where I j ⊆ I

is a set of features from I . So, the belief B is defined accordingly to (2) as an ordered
set of interpreting utterances u from U .

Il =
⋃

UH

i p (u) +
⋃

UH

ii (u) + ε (1)

B = {X (u1) , . . . , X (un)} with n = |U | (2)
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Accordingly to the criterion expressed by (3), one can calculate the belief B which
interprets coherently the observations made so far: in other words, by looking for
such a belief, which minimizes across all the observations oq ∈ O the difference
between the utterances UHq made by human, and those utterances UBq , made by the
system by using the belief B. Thus, B is a mapping from the set U to I : all members
of U map to one or more members of I and no two members of U map to the same
member of I .

argmin
B

⎛

⎝
|O|∑

q=1

∣
∣UHq − UBq

∣
∣

⎞

⎠ (3)

2.2 The Most Coherent Interpretation Search

Although the interpretation’s coherence is worked out by computing the belief B
accordingly to Eq. (3), the system has to look for a belief B, which would make
the robot describing a particular scene with utterances as close and as coherent as
possible to those that a human would made on the same (or similar) scene. For
this purpose, instead performing the exhaustive search over all possible beliefs, we
propose to search for a suboptimal belief by means of a Genetic Algorithm (GA).
For doing that, we assume that each organism within it has its genome constituted
by a belief, which, results into genomes of equal size |U | containing interpretations
X (u) of all utterances from U .

In our genetic algorithm, the genomes’ generation is a belief generation process
generating genomes (e.g. beliefs) as follows. For each interpretation X (u) the process
explores whole the set O . For each observation oq ∈ O , if u ∈ UHq then features
iq ∈ Iq (with Iq ⊆ I ) are extracted. As described in (1), the extracted set of features
contains as well pertinent as impertinent features. The coherent belief generation is
done by deciding, which features iq ∈ Iq may possibly be the pertinent ones. The
decision is driven by two principles. The first one is the principle of “proximity”,
stating that any feature i is more likely to be selected as pertinent in the context of u,
if its distance to other already selected features is comparatively small. The second
principle is the “coherence” with all the observations in O . This means, that any
observation oq ∈ O , corresponding to u ∈ UHq , has to have at least one feature
assigned into Iq of the current X(u) = {

u, Iq
}
.

To evaluate a given organism, a classifier is trained, whose classes are the utter-
ances from U and the training data for each class u ∈ Uare those corresponding
toX (u) = {

u, Iq
}
, i.e. the features associated with the given u in the genome. This

classifier is used through whole set O of observations, classifying utterances u ∈ U
describing each oq ∈ O accordingly to its extracted features. Such a classification
results in the set of utterances UBq (meaning that a belief B is tested regarding the
qth observation). The fitness function evaluating the fitness of each above-mentioned
organism is defined as “disparity” between UBq and UHq (defined in previous
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subsection) which is computed accordingly to the Eq. (4), where ν is the number
of utterances that are not present in both sets UBq and UHq (e.g. either missed or
are superfluous utterances interpreting the given features). The globally best fitting
organism is chosen as the belief that best explains observations O made (by robot).

D (ν) = 1

1 + ν
withν = ∣

∣UHq ∪ UBq

∣
∣ − ∣

∣UHq ∩ UBq

∣
∣ (4)

Figure3 gives the bloc diagram of the designed evolutionary process. It is important
to note that here the above-describedGAbased evolutionary process doesn’t operates
as only an optimizer but it generate the machines (e.g. robot’s) most coherent belief
about the observation accomplished by this robot and about the way that the same
robot will autonomously construct a human-like description of the observed reality.
In other words, it is the GA based evolutionary process that drives the robot’s most
coherent semantic understanding of the observed reality. It plays also a key role in
implementation of the epistemic curiosity because the drop of the search for the most
coherent belief, due to leakage of knowledge about the observed reality, makes the
robot interacting with its human counterpart and thus drives its epistemic curiosity.

Fig. 3 Bloc diagram of described genetic algorithm’s workflow. The left part describes the genetic
algorithm itself, while the right part focuses on the fitness evaluation workflow
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2.3 Role of Human-Robot Interaction

Human beings learn both by observation and by interaction with the world and with
other human beings. The former is captured in our system in the “best interpretation
search” outlined previous subsections. The latter type of learning requires that the
robot be able to communicate with its environment and is facilitated by learning
by observation, which may serve as its bootstrap. In our approach, the learning by
interaction is carried out in two kinds of interactions: human-to-robot and robot-
to-human. The human-to-robot interaction is activated anytime the robot interprets
wrongly the world. When the human receives a wrong response (from robot), he
provides the robot a new observation by uttering the desired interpretation. The robot
takes this new corrective knowledge about the world into account and searches for a
new interpretation of the world conformably to this new observation. The robot-to-
human interaction may be activated when the robot attempts to interpret a particular
feature classified with a very low confidence: a sign that this feature is a borderline
example. In this case, it may be beneficial to clarify its true nature. Thus, led by
the epistemic curiosity, the robot asks its human counterpart to make an utterance
about the uncertain observation. If the robot’s interpretation is not conforming to the
utterance given by the human (robot’s interpretation was wrong), this observation is
recorded as a new knowledge and a search for the new interpretation is started.

3 Implementation and Validation Results

The validation of the proposed system has been performed on the basis of both
simulation of the designed system as by an implementation on a real humanoid
robot. A video capturing different parts of the experiment may be found online on:
http://youtu.be/W5FD6 zXihOo. As real robot we have considered NAO robot (a
small humanoid robot from Aldebaran Robotics) which provides a number of facil-
ities such as onboard camera (vision), communication devices and onboard speech
generator. The fact that the above-mentioned facilities been already available offers
a huge save of time, even if those faculties remain quite basic in that kind of robots.

Although the usage of the presented system is not specifically bound to humanoid
robots, it is pertinent to state two main reasons why a humanoid robot is used for the
system’s validation. The first reason for this is that from the definition of the term
“humanoid”, a humanoid robot is aspired to make its perception close to the human’s
one, entailing amore human-like experience of the world. This is an important aspect
to be considered in context of sharing knowledge between a human and a robot. The
second reason is that humanoid robots are specifically designed to interact with
humans in a “natural” way by using e.g. a loudspeaker and microphone set in order
to allow for a bi-directional communication with human by speech synthesis and
speech analysis and recognition. This is of importance when speaking about a natural
human-robot interaction during learning.
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3.1 Simulation Based Validation and Results

The simulation based validation finds its pertinence in assessment of the investigated
cognitive-system’s performances. In fact, due to difficulties inherent to organization
of strictly same experimental protocols on different real robots and within various
realistic contexts, the simulated validation becomes an appealing way to ensure that
the protocol remains the same. For simulation based evaluation of the behavior of
the above-described system, we have considered color names learning problem. In
everyday dialogs, people tend to describe objects, which they see, with only a few
color terms (usually only one or two), although the objects in itself contains many
more colors. Also different people can have slightly different preferences on what
names to use for which color. Due to this, learning color names is a difficult task and
it is a relevant sample problem to test our system.

In the simulated environment, images of real-world objects were presented to the
system alongside with textual tags describing colors present on each object. The
images were taken from the Columbia Object Image Library (COIL) contains 1000
color images of different views of 100 objects database. Five fluent English speakers
were asked to describe each object in terms of colors. We restricted the choice of
colors to “Black”, “Gray”, “White”, “Red”, “Green”, “Blue” and “Yellow”, based on
the color opponent process theory [19] (Schindler 1964). The tagging of the entire
set of images was highly coherent across the subjects. In each run of the experiment,
we have randomly chosen a tagged set.

The utterances were given in the form of text extracted from the descriptions.
The object was accepted as correctly interpreted if the system’s and the human’s
interpretations were equal. The rate of correctly described objects from the test set
was approximately 91%. Figure4 gives the result of interpretation by the system of
the colors of the WCS table. Figure5 shows the learning rate versus the increasing
number of exposures of each color.

Fig. 4 Original WCS table (upper image), its system’s made interpretation (lower image)
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Fig. 5 The rate of correct
learning versus the number
of presented examples (of the
same object) to the system

3.2 Implementation on Real Robot

The designed system has been implemented on NAO robot (from Aldebaran
Robotics). It is a small humanoid robot which provides a number of facilities such
as onboard camera (vision), communication devices and onboard speech generator.
The fact that the above-mentioned facilities are already available offers a huge save
of time, even if those faculties remain quite basic in that kind of robots. If NAO
robot integrates an onboard speech-recognition algorithm (e.g. some kind of speech-
to-text converter) which is sufficient for “hearing” the tutor, however its onboard
speech generator is a basic text-to-speech converter. It is not sufficient to allow the
tutor and the robot conversing in natural speech. To overcome NAO’s limitations
relating this purpose, the TreeTagger tool2 was used in combination with robot’s
speech-recognition system to obtain the part-of-speech information from situated
dialogs. Standard English grammar rules were used to determine whether the sen-
tence is demonstrative (e.g. for example: “This is an apple.”), descriptive (e.g. for
example: “The apple is red.”) or an order (e.g. for example: “Describe this thing!”).
To communicate with the tutor, the robot used its text-to-speech engine.

The core of the implementation’s architecture is split into fivemain units: Commu-
nication Unit (CU), Navigation Unit (NU), Low-level Knowledge Acquisition Unit
(LKAU), High-level Knowledge Acquisition Unit (HLAU) and Behavior Control
Unit (BCU). Figure6 illustrates the bloc-diagram of the implementation’s architec-
ture. The aforementioned units control NAO robot (symbolized by its sensors, its
actuators and its interfaces in Fig. 6) through its already available hardware and soft-
ware facilities. In other words, the above-mentioned architecture controls the whole
robot’s behavior.

The purpose of NU is to allow the robot to position itself in space with respect
to objects around it and to use this knowledge to navigate within the surround-
ing environment. Capacities needed in this context are obstacle avoidance and

2 Developed by the ICL at University of Stuttgart, available online at: http://www.ims.uni-stuttgart.
de/projekte/corplex/TreeTagger.

http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger
http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger
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Fig. 6 Block diagram of the implementation’s architecture

determination of distance to objects. Its sub-unit handling spatial orientation receives
its inputs from the camera and from the LKAU. To get to the bottom of the obstacle
avoidance problem, we have adopted a technique based on ground color modeling.
Inspired by the work presented in [20], color model of the ground helps the robot to
distinguish free-space from obstacles.

The LKAU ensures gathering of visual knowledge, such as detection of salient
objects and their learning (by the sub-unit in charge of salient object detection)
and sub-recognition (see [18, 21]). Those activities are carried out mostly in an
“unconscious” manner, i.e. they are run as an automatism in “background” while
collecting salient objects and learning them. The learned knowledge is stored in
Long-term Memory for further use.

TheHKAU is the centerwhere the intellectual behavior of the robot is constructed.
Receiving its features from the LKAU (visual features) and from the CU (linguis-
tic features), this unit processes the beliefs’ generation, the most coherent belief’s
emergence and constructs the high-level semantic representation of acquired visual
knowledge. Unlike the LKAU, this unit represents conscious and intentional cog-
nitive activity. In some way, it operates as a baby who learns from observation and
from verbal interaction with adults about what he observes developing in this way
his own representation and his own opinion about the observed world [22].

The CU is in charge of robots communication. It includes an output communica-
tion channel and an input communication channel. The output channel is composed
of a Text-To-Speech engine which generates human voice through loud-speakers. It
receives the text from the BCU. The input channel takes its input from a microphone
and through an Automated Speech Recognition engine (available in NAO) the syn-
tax and semantic analysis (designed and incorporated in BCU) it provides the BCU
labeled chain of strings representing the heard speech.

The BCU plays the role of a coordinator of robot’s behavior. It handles data flows
and issues command signals for other units, controlling the behavior of the robot and
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Fig. 7 Robot and the subset of collected objects used for learning (left-side picture) and the recog-
nition by robot of two objects among those learned by the robot in different posture and in different
location (right-side picture)

its suitable reactions to external events (including its interaction with humans). BCU
received its inputs from all other units and returns its outputs to each concerned unit
including robot’s devices (e.g. sensors, actuators and interfaces) [22]. The human-
robot interaction is performed by this unit in cooperationwithHLAU. In other words,
driven by HLAU, a part of the robot’s epistemic curiosity based behavior is handled
by BCU.

3.3 Experimental Validation

The total of 25 every-day objects was collected for purposes of the experiment. The
collected set has been randomly divided into two sets for training and for testing
(Fig. 7). The learning set objects were placed around the robot and then a human
tutor pointed to each of them calling it by its name. Using its 640 × 480 monocular
color camera, the robot discovered and learned the objects around it by the salient
object detection approach we have described in [18]. Here, this approach has been
extended by detecting the movement of the human’s hand to achieve joint attention.
In this way, the robot was able to determine what object the tutor is referring to and
to learn its name. The right-side picture in Fig. 7 shows the recognition by robot of
two objects among those learned by the robot in different posture and in different
location.

During the experiment, the robot has been asked to learn a subset among the
25 considered objects: in term of associating the name of each detected object to
that object. At the same time, a second learning has been performed involving the
interaction with the tutor who has successively pointed the above-learned objects
describing (e.g. telling) to the robot the color of each object. Extracted from the
video of the experimental validation, Fig. 8 shows the robot observing and learning
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Fig. 8 Experimental setup showing tutor pointing different objects from learning set and robot
learning those objects

different objects chosen by the human tutor. Here-bellow an example of the Human-
Robot interactive learning is reported:

• Human [pointing a red aid-kit]: “This is a first-aid-kit!”
• Robot: “I will remember that this is a first-aid-kit.”
• Human: “It is red and white”.
• Robot: “OK, the first-aid-kit is red and the white.”

After learning the names and colors of the discovered objects, the robot is asked
to describe a number of objects including as well some of already learned objects but
in different posture (for example the yellow box presented in reverse posture) as a
number of still unseen objects (as for example a red apple or a white teddy-bear). The
robot has successfully described, in a coherent linguistics, the presented seen and
unseen objects. Extracted from the video of the experimental validation, Fig. 9 shows
the human tutor asking the robot to describe the pointed object (which is a red apple)
in term of colors (left-side picture of Fig. 9) and the ground truth detected objects as
the robot perceives them. Finally, Fig. 10 shows two examples of observed objects’
interpretation by the robot. Here-bellow is the Human-Robot interaction during the
experiment:

• Human [pointing the unseen white teddy-bear]: “Describe this!”
• Robot: “It is white!”
• Human: [pointing the already seen, but reversed, yellow box]: “Describe this!”
• Robot: “It is yellow!”
• Human: [pointing the unseen apple]: “Describe this!”
• Robot: “It is red!”
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Fig. 9 Experimental setup showing tutor pointing a red apple which has not been seen before, (by
the robot) asking the robot to describe that object in term of colors (left-side picture) and the ground
truth detected objects as the robot perceives them (right-side picture)

Fig. 10 Two objects observed and interpreted by the robot: the original image provided by robot’s
camera (left-side pictures) and the interpretation of those objects by the robot (right-side pictures).
For the “apple”, the robot’s given description was “the object is red”. For the box, the description
was “the object is blue and white”

4 Conclusion and Perspectives

This chapter has presented, discussed and validated a cognitive system for high-level
knowledge acquisition based on the notion of artificial curiosity. Driving as well the
lower as the higher levels of the presented cognitive system, the emergent artificial
curiosity allow such a system to learn in an autonomous manner new knowledge
about unknown surrounding world and to complete (enrich or correct) its knowledge
by interacting with a human. Experimental results, performed as well on a simulation
platform as using the NAO robot show the pertinence of the investigated concepts as
well as the efsfectiveness of the designed system. Although it is difficult to make a
precise comparison due to different experimental protocols, the results we obtained
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show that our system is able to learn faster and from significantly fewer examples,
than the most of more-or-less similar implementations.

Based on obtained results, it is thus justified to say, that a robot endowedwith such
artificial curiosity based intelligence will necessarily include autonomous cognitive
capabilities. With respect to this, several appealing perspectives are pursuing to push
further the presentedwork. The current implemented version allows the robot towork
with a single category or property at a time (e.g. for example the color in utterances
like “it is red”). We are working on extending its ability to allow the learning of
multiple categories at the same time and to distinguish which of the used words are
related to which category. While, concerning the middle-term perspectives of this
work, they will focus aspects reinforcing the autonomy of such cognitive robots. The
ambition here is integration of the designed system to a system of larger capabilities
realizing multi-sensor artificial machine-intelligence. There, it will play the role of
an underlying part for machine cognition and knowledge acquisition.
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