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Abstract Physiological Computing augments the information bandwidth between a
computer and its user by continuous, real-timemonitoring of the user’s physiological
traits and responses. This is especially interesting in a context of emotional assess-
ment during human-computer interaction. The electroencephalogram (EEG) signal,
acquired on the scalp, has been extensively used to understand cognitive function,
and in particular emotion. However, this type of signal has several drawbacks, being
susceptible to noise and requiring the use of impractical head-mounted apparatuses.
For these reasons, the electrocardiogram (ECG) has been proposed as an alterna-
tive source to assess emotion, which is continuously available, and related with the
psychophysiological state of the subject. In this paper we analyzemorphological fea-
tures of the ECG signal acquired from subjects performing an attention-demanding
task. The analysis is based on various unsupervised learning techniques, which are
validated against evidence found in a previous study by our team, where EEG signals
collected for the same task exhibit distinct patterns as the subjects progress in the
task.
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1 Introduction

Physiological Computing, as a research area, integrates psychophysiological infor-
mation into computer systems by continuous, real-time monitoring of the user [1].
These systems augment the information bandwidth between the user and the com-
puter, enabling abetter interpretations of the user’s psychophysiological state. Indeed,
in natural human communication, the speaker’s attitude, posture, tone, and facial
expressions, among others, strongly influence the semantic interpretation done by
the receiver [2].

Straightforward approaches to physiological computing, requiring no extra hard-
ware, are, for example, keystroke dynamics [3], speech analysis [4], and automatic
facial expression recognition [5]. However, all these examples exhibit serious prob-
lems to their usefulness. Keystroke dynamics and speech analysis both require con-
tinuous voluntary activity, while the usefulness of facial expression analysis for
behavioral science has been recently questioned in [6]. One possible alternative
to these modalities, although requiring extra hardware, is the use of the subject’s
biosignals (e.g. electrodermal activity, peripheral temperature, blood volume pulse,
electrocardiogram, electroencephalogram signals), acquiring them during normal
human-computer interaction tasks [7, 8]. These signals have the twofold advantage
of being always available, and measuring the natural physiological responses of the
body to a given affective state, which cannot be voluntarily masked.

The electroencephalogram (EEG) signal, acquired on the scalp, has been exten-
sively used to understand cognitive function, and in particular emotion [9, 10], being
a noninvasive, cost-effective technique, with good temporal resolution [11]. How-
ever, it has various drawbacks, such as susceptibility to noise (in particular motion
artifacts and eye blinks) and, most importantly, requires the use of some kind of
head-mounted equipment to support the (typically wet) electrodes, which becomes
impractical for continued use. In this context, the electrocardiogram (ECG) signal
has been suggested as a possible option [12, 13]. Nevertheless, the usefulness of the
EEG as source of ground-truth information has not been discarded [14].

In this paper, we make a morphological analysis, using unsupervised learning
techniques, of the ECG acquired from subjects performing a task that demands high
levels of attention over a long period of time. This experiment simulates what may
happen, for instance, during an interactive educational game, extended work hours,
repetitive daily tasks, or sleep deprivation,where attention levels fluctuate throughout
the execution of the task. This is particularly important in various professions, such
as doctors, pilots, drivers or industrial equipment operators, for which momentary
or prolonged lapses of attention may be catastrophic [14]. In addition, we compare
the results obtained with the ECG signal to our previous work using the EEG, which
provided evidence that the subjects indeed exhibit distinct affective states throughout
the completion of the task [15].

The remainder of the paper is organized as follows: Sect. 2 describes the experi-
mental setup. Section3 details the proposed methodology, including the description
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of the clustering methods used, as well as several clustering validation metrics.
Section4 presents the obtained results, which are discussed in Sect. 5. Finally, Sect. 6
concludes the paper.

2 Affective Elicitation and Data Acquisition

The ECG signal presents several attributes that make it especially interesting in a
physiological computing framework. Specifically, it is continuously available, pro-
viding a rich wellbeing indicator, is related with the psychophysiological state of the
subject, and is easy to acquire unobtrusively with wearable devices. This is further
enhanced by following an off-the-person approach, where the sensors are seamlessly
integrated into objects with which subjects regularly interact, such as a keyboard,
a video game controller, or a mobile device, without the need to change normal
interaction patterns [16].

It is widely known that the basic function of the heart is to pump blood through-
out the body, demanding a highly synchronized sequence of muscular contractions.
These contractions are initiated by small electrical currents that propagate through
the heart’s muscle cells, generating an electrical signal that can be recorded at the
body surface (the ECG). In healthy individuals, the electrical activity of the heart is
guided by the self-excitatory nature of the sinus node on the left atrium (see Fig. 1),
which naturally produces electrical depolarizations at a rate of about 100 beats per
minute. However, the sinus node is under systemic control by the endocrine system
and the Autonomic Nervous System (ANS). The ANS is composed by two comple-
menting, self-balancing subsystems, the Sympathetic and Parasympathetic Nervous
Systems (SNS and PSNS, respectively). While the SNS is typically responsible for
the promotion of fight-or-flight responses in the organism (e.g. by increasing the
heart rate), the PSNS is responsible for the promotion of rest-and-digest responses,
which induce relaxation and a return to normal function. As a whole, the ANS

Fig. 1 Schematic
representation of the heart
compartments and its electric
system, showing the
contribution of each
component to the
prototypical heartbeat signal
recorded at the body surface
(used with permission from
[18])
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Fig. 2 Example matrix of
the concentration test; the
user selects, line by line, the
pairs of consecutive numbers
that add to 10

provides an access route to the affective state of a person [17], by analyzing the
patterns of physiological activity initiated by both the SNS and PSNS. In particular
for the ECG, the amplitude and latency of the P-QRS-T complexes is influenced by
multiple psychophysiological factors, and some changes in the user’s behavior result
in slight variations in the heart rate and waveform morphology.

TheECGandEEGsignals analyzedherewere acquired in the context of theHiMo-
tion project [19], an experiment to acquire information related to human-computer
interaction and physiological signals on different cognitive activities. During the
experimental session, the subjects were asked to execute various interactive cogni-
tive tasks. Particularly, a concentration task was performed, adapted from a similar
test from the MENSA set [20]. In this test, the subject is presented with a matrix of
800 integers (20 lines by 40 columns), as shown in Fig. 2. The goal of the game is to
identify, line by line, all the pairs of consecutive numbers that add to 10. This task
requires high levels of attention, as the pairs may overlap (i.e. the same number may
belong to two pairs), measuring the capacity of the subject to maintain an attentive
state over a long period of time.

Biosignal data was obtained from 24 subjects (17 males and 7 females) with ages
in the range 23.3 ± 2.4 years, using a Thought Technology ProComp2 acquisition
system, with a sampling rate of 256Hz. The ECG was acquired with Ag/AgCl elec-
trodes placed on the chest (4th intercostal space in the mid clavicular line), while the
EEG was acquired at four scalp locations according to the 10–20 system (Fp1, Fz ,
Fp2, and Oz), as shown in Fig. 3.

Fig. 3 Locations of the
acquired EEG electrodes on
the scalp (red)
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3 Proposed Methodology

It should be noted that each person has different characteristics in terms of attention
span and, as such, aside from the temporal information regarding the start and the
end of each line of the attention game, no more information is available for this data
set. Particularly, there is no ground-truth information regarding the time instants in
which the affective state of each test subject has in fact changed. For this reason, we
propose the use of unsupervised learning techniques to analyze the ECG data.

The proposed methodology is presented in Fig. 4 and it is divided in three main
stages: feature extraction, clustering, and validation of the clustering results.We start
by filtering and segmenting the raw ECG, and then we apply clustering techniques to
analyze the data. Subsequently, the results of those clustering algorithms are validated
using several metrics, exploiting our previous analysis of the same data set with the
EEG signal [15]. This somewhat follows the methodology proposed in [14], where
the EEG signal is used as a benchmark against which the performance of attention
recognition via the ECG is compared. All these stages are explained in the following
subsections.

3.1 ECG Feature Extraction

Raw ECG signals are typically affected by various noise sources such as motion arti-
facts, power line interference, and electromyographic noise. To enhance the signal-
to-noise ratio (SNR), and to reduce the influence of the cited noise sources, we used a

Fig. 4 The proposed methodology
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Fig. 5 ECG templates
obtained for subject 11

band-pass Finite Impulse Response (FIR) filter with a Hamming window of 300ms,
and cutoff frequencies of 5–20Hz. The filtered signal was then fed to a segmen-
tation algorithm, with the purpose of identifying the locations of the R peaks. For
that we used the algorithm by Engelse and Zeelenberg [21], with the modifications
proposed in [22]. Individual heartbeat segments of 600ms were extracted from the
filtered signal, between 200ms before and 400ms after the R peak. Finally, in order
to further improve the SNR, heartbeat templates were formed using sequences of
5 consecutive heartbeats, computing their element-wise mean (an example of these
templates can be seen in Fig. 5). These templates form the feature space used by the
clustering algorithms, described in Sect. 3.3.

3.2 EEG Feature Extraction

Our previous work, focusing on the EEG signal, is based on two distinct feature
extraction techniques. The first follows the traditional approach of analyzing the var-
ious EEG frequency bands, the Band Power Features (BPF). Specifically, we used
the theta (from 4 to 8Hz), lower alpha (from 8 to 10Hz), upper alpha (from 10 to
13Hz), beta (from 13 to 25Hz), and gamma (from 25 to 40Hz) bands. The sec-
ond approach uses a method of synchronization quantification, the Phase-Locking
Factor (PLF), which leverages the fact that EEG signals exhibit an oscillatory behav-
ior whose phase dynamics are modulated by the neurological tasks [23]. The PLF
between two signals is defined as [24]:

�ik =
∣
∣
∣
∣
∣

1

T

T
∑

n=1

e j (φi [n]−φk [n])
∣
∣
∣
∣
∣
, (1)

where φi [n] and φk[n], n = 1, ..., T are the phases of the signals, T is the number of
discrete time samples, and j = √−1 is the imaginary unit. Thismeasure ranges from
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0 to 1, with a value of �ik = 1 corresponding to perfect synchronization between
the two signals (constant phase lag), while the value �ik = 0 corresponds to no
synchronization. These two feature extraction methods form distinct feature spaces,
upon which clustering methods were applied.

3.3 Unsupervised Learning

Clustering is one of the central problems in Pattern Recognition andMachine Learn-
ing. Hundreds of clustering algorithms exist, differently handling issues such as
cluster shape, density, and noise, among other aspects. These techniques require the
definition of a similarity measure between patterns, be it geometrical or probabilis-
tic, which is not easy to specify in the absence of any prior knowledge about cluster
shapes and structure.

One of the classical approaches for clustering is the use of hierarchical agglomer-
ative algorithms [25], which produce a tree of nested objects (the dendrogram) that
establishes the hierarchy between the clusters. These methods only require a mea-
sure of (dis)similarity and a linkage criterion between instances, while partitional
methods (e.g. k-means or k-medoids) also require a priori the number of clusters,
and an initial assignment of data to clusters. The linkage criterion specifies how
intergroup similarity is defined. In particular, we apply the Average Link (AL) and
Ward’s Linkage (WL) criteria [26]. Furthermore, to obtain a partition of the data
from a dendrogram, we use the largest lifetime criterion [27].

Moreover, we use a new high order dissimilarity measure, called dissimilarity
increments, proposed in [28]. This measure is computed over triplets of nearest
neighbor patterns and is defined as:

dinc(xi , x j , xk) = |D∗(xi , x j ) − D∗(x j , xk)|, (2)

where x j is the nearest neighbor of xi , and xk is the nearest neighbor of x j , differ-
ent from xi . In equation (2), D∗(·, ·) can be any dissimilarity measure, such as the
Euclidean distance. The dissimilarity increments measure can give more informa-
tion about patterns belonging to the same cluster, since it changes smoothly if the
patterns are in the same cluster. In [29], an agglomerative hierarchical algorithm,
called SLDID, was proposed. This algorithm is a variant of the Single Link (SL)
criterion using the dissimilarity increments distribution (DID), which was derived
undermild approximations in [30], tomodify the way that clusters aremerged. In this
paper we used a family of DID algorithms: ALDID and WLDID. They are variants
of the traditional hierarchical clustering algorithms AL and WL, respectively. The
main difference between AL and ALDID is that in AL, in each iteration the pair of
clusters with the highest cohesion is always merged; in ALDID some tests are made
using the minimum description length (MDL) criterion between two possibilities.
These two possibilities consist in the DID of the two clusters combined, and the DID
of the two clusters separated. One advantage in using an algorithm from this family is
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that it stops merging clusters before all the data is merged into one cluster, revealing
intrinsic cluster structure in the data when the true number of clusters is unknown.

Consensus Clustering Consensus clustering, also known as Clustering combina-
tion, is a powerful technique that combines the information of multiple clustering
partitions, forming a clustering ensemble (P), and creating a consensus partition
that leverages the results of individual clustering algorithms. Recent surveys present
an overview on this research topic [31, 32]. One of the significant approaches is
the Evidence Accumulation Clustering (EAC) [33]. This framework is based on
the aggregation of object co-occurences, and the consensus partition is obtained
through a voting process among the objects. Specifically, the consensus clustering
problem is addressed by summarizing the information of the ensemble into a pair-
wise co-association matrix, where each entry holds the fraction of clusterings in the
ensemble in which a given pair of objects is placed in the same cluster:

C(i, j) = ni j

N
, i, j ∈ 1, . . . , N . (3)

For the construction of the ensemble, we use the k-means algorithm [25] with
different parameters and initializations. We created a set of N = 100 partitions1 by
randomly choosing the number of clusters, following the work in [34] where the
minimum and maximum number of clusters per partition depends on the number of
objects n, and is bound to the interval [

√
n
2 ,

√
n].

The extraction of the consensus partition can be performed using several
approaches based on the induced co-association matrix: (i) as a new (dis)similarity-
based representation of objects, where the intrinsic structure of the data is enhanced
through the evidence accumulation process, enabling the determination of the con-
sensus partition using algorithms that explicitly use similarities as input, such as
hierarchical linkage methods (as classically performed in [33]); (ii) as a new vector-
based object description, considering each line of the matrix a new feature vector
representation, and using it as input to a clustering algorithm such as the k-means
[35]; (iii) as a new probabilistic distribution characterized by the probability of pairs
of objects being in the same cluster [36].

Application to EEG and ECGThe focus of this workwas the unsupervised analysis
of the ECG signals, and for that we applied all the described techniques: (i) hier-
archical agglomerative algorithms; (ii) hierarchical agglomerative algorithms with
dissimilarity increments; (iii) consensus clustering based on evidence accumulation
clustering, using as extraction criterion the average linkage method with the number
of clusters automatically determined by the life-time criterion.

The clustering of the ECG heartbeats was performed over the means of 5 con-
secutive heartbeats. Since we are willing to compare these partitions with the ones
obtained on the context ofEEG,where for each line of the test there is only one cluster,

1This is the number typically proposed in the reference literature.
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it was necessary to post-process the obtained partitions, choosing as representative
cluster for each line the one with highest cardinality (largest time span).

In the context of EEG clustering, we applied the hierarchical agglomerative meth-
ods with and without dissimilarity increments.

3.4 Cluster Validation

Cluster validation techniques have been developed to guide the design of clustering
experiments and to assess the quality of the outcome. There are three types of cluster
validity measures [37–41]: (i) External: used to measure the goodness of a clus-
tering structure with respect to external information; (ii) Internal: used to measure
the goodness of a clustering structure without supplying any class labels; and (iii)
Relative: used to compare different clusterings.

We adopt an external clustering validation perspective, using as external source
of information the clusterings obtained with the EEG. There is a long list of external
validation indices proposed in the literature [39, 40, 42, 43],which can be categorized
as follows: (i) Counting Pairs Methods: a class of criteria based on counting the
pairs of points on which two clusterings agree/disagree, Wallace [44], Fowlkes and
Mallows [42], and Rand’s [45] are the most representatives of this class; (ii) Set
Matching: based on set matching cardinality,H criterion [39], and consistency index
(Ci) [46, 47] are representative of this class; (iii) Information Theoretic: based on
information theoretic concepts (entropy and mutual information); representatives of
this class of criteria are the Variation of Information (VI) index [39] and Dom’s index
[43].

In this work, we compare the partitions obtained with the ECG with the ones
obtained with the EEG (taken as ground-truth), and following the idea proposed in
[14]. We use indices of the three categories, to verify the consistency of the results
in several perspectives, namely: Rand [45], a modified version of the Consistency
Index entitled Average Cluster Consistency (ACC) [47], and VI [39]. All the three
indices take values between 0 and 1. Rand’s index and the ACC take the value 1 for
a perfect match between partitions, and for the VI index, 0 corresponds to a perfect
match.

4 Experimental Results

Figure6 exemplifies the clustering of the ECG templates obtained for one of the
subjects, using the clustering combination (CC) method. It shows, for each line of
the concentration task, the clusters to which the templates in that line belong to. The
first observation to note is that the lines are not characterized by a single cluster, but
rather by two or three clusters that alternate between them. However, it is possible to
perceive the existence of different groups of lines. In this particular case, lines 0–2 are
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Fig. 6 Clustering obtained
for subject 11, using the
clustering combination
method, where each color
represents a cluster, with a
total of 8 clusters; Bck
denotes the background
color of the matrix

mainly composed by clusters 1, 2, and 3, lines 4–7 are composed by clusters 7 and 8,
and the remaining lines are composed by clusters 4, 5, and 6. Another interesting note
is the fact that the number of templates per line decreases throughout the completion
of the task, implying that the first few lines of the task take longer to complete than
the last lines. These observations are valid for the majority of the subjects, although
the number of clusters and their distribution differs from subject to subject, forming
different groups of lines.

Inter-subject variability is evidenced in Fig. 7, where the clustering obtained,
across all subjects, with the EEG (using PLF features and ALDID clustering—
Fig. 7a) is compared to the clustering obtained with the ECG (using CC clustering—
Fig. 7b). Remember that, in the case of the ECG, each line is represented by the
most frequent cluster in that line. It is possible to observe that the ECG produces a
higher number of clusters than the EEG, where each cluster tends to form groups

(a) (b)

Fig. 7 Comparison of the clustering obtained with the EEG to the one obtained with the ECG,
across all subjects; each color represents one cluster
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of contiguous lines. Contrastingly, in the ECG it is frequent to have transitions to
clusters seen in previous lines.

The results of the cluster validation are shown in Tables1, 2, and 3 for the Aver-
age Cluster Consistency (ACC), Variation of Information (VI), and Rand’s index,
respectively. For the ACC criterion, the highest agreement is obtained between the
ECG clustering with CC and both the EEG clustering using AL (BPF) and ALDID
(PLF), with a value of 0.79. Regarding the VI measure, the strongest agreements are
seen for the ECG clustering using the AL algorithm, in particular with the ALDID
method applied to the PLF features from the EEG, with a value of 0.20. Concern-
ing Rand’s index, the highest value, 0.63, is obtained between the ECG clustering
through CC with the EEG clustering using WLDID (BPF).

5 Discussion

Our work addresses the following questions: (i) “Is ECG morphological analy-
sis capable of identifying affective states throughout the realization of a task that
demands a high attention span?”; (ii) “Are the obtained states related to the ones
found while analyzing EEG data?”; and (iii) “What techniques can be considered to
be more suitable for the analysis of the ECG?”

The validation of the partitions found using ECG, when considering the EEG
partitions as ground-truth, shows that there is evidence of correlation between them,
revealing that ECG can be used to infer affective states. The ECG partitions have a
much higher number of partitions than the EEG ones, leading to distinct results over
the various validation criteria (considering the different perspectives), associatedwith
moderate to high matching. This was mainly due to small variations over time of the
ECG heartbeats, that lead to slow time transitions between the different clusters.

The clustering technique that presents the best results varies depending on the vali-
dation index.When considering the average cluster consistency (ACC), the consensus
clustering (CC) obtains partitions that lead to a best match; when using variation of
information (VI) criterion, the Average Link (AL) method is the one that leads to
best match; and when using the Rand’s index there is not a method which can be
considered a clear winner. The situations with best results are partitions with high
number of clusters, which correspond to Average linkage and Consensus Clustering.

6 Conclusions

In this work we present a methodology for attention detection based on the mor-
phological analysis of ECG signals, using data collected during the course of a task
requiring a high level of attention span. We compare the ECG morphology results
with the analysis performed using the EEG. This comparison was accomplished
using clustering validation indices.
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The ECG analysis was divided into several steps. For the feature extraction step,
the signal was first digitally filtered, segmented based on the peaks found by a mod-
ification of the Engelse and Zeelenberg algorithm, and templates were formed using
means of 5 consecutive heart beats. For the clustering step, several state of the art
techniques were used, since the ECG heartbeats have very small variations over time,
leading to touching clusters.

Several clustering validation indices were used, trying to compare the partitions
using different perspectives. Each of the validation indices showed that there is a high
evidence of correlation between the partitions obtained by the ECG and the EEG.
There is not a clear winner method, but Average Linkage and Consensus Clustering
can be considered suitable methods for this kind of analysis.

Acknowledgments This work was partially funded by the Portuguese Science Foundation (FCT)
under grants PTDC/EEI-SII/2312/2012, SFRH/BD/65248/2009 and SFRH/PROTEC/49512/2009,
and by Área Departamental de Engenharia Electrónica e Telecomunicações e de Computadores
(ISEL), whose support the authors gratefully acknowledge.

References

1. Fairclough, S.H.: Fundamentals of physiological computing. Interact. Comput. 21(1), 133–145
(2009)

2. Pell, M.D., Jaywant, A., Monetta, L., Kotz, S.A.: Emotional speech processing: disentangling
the effects of prosody and semantic cues. Cogn. Emot. 25(5), 834–853 (2011)

3. Epp, C., Lippold, M., Mandryk, R.L.: Identifying emotional states using keystroke dynamics.
In: Proceedings of the 2011 Annual Conference on Human Factors in Computing Systems, pp.
715–724. ACM (2011)

4. Murray, I.R., Arnott, J.L.: Toward the simulation of emotion in synthetic speech: a review of
the literature on human vocal emotion. J. Acoust. Soc. Am. 93, 1097 (1993)

5. Zheng, W., Zhou, X., Zou, C., Zhao, L.: Facial expression recognition using kernel canonical
correlation analysis (kcca). IEEE Trans. Neural Networks 17(1), 233–238 (2006)

6. Aviezer, H., Trope, Y., Todorov, A.: Body cues, not facial expressions, discriminate between
intense positive and negative emotions. Science 338(6111), 1225–1229 (2012)

7. Canento, F., Fred, A., Silva, H., Gamboa, H., Lourenço, A.: Multimodal biosignal sensor data
handling for emotion recognition. In: Proceedings of the IEEE Sensors Conference, pp. 647–
650. IEEE Press (2011)

8. Silva, H., Fred, A., Eusebio, S., Torrado, M., Ouakinin, S.: Feature extraction for psychophys-
iological load assessment in unconstrained scenarios. In: Annual International Conference of
the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 4784–4787. IEEE Press
(2012)

9. Ahern, G.L., Schwartz, G.E.: Differential lateralization for positive and negative emotion in
the human brain: EEG spectral analysis. Neuropsychologia 23(6), 745–755 (1985)

10. Coan, J.A., Allen, J.J.: Handbook of emotion elicitation and assessment. Oxford University
Press, Oxford (2007)

11. Mak, J.N., Wolpaw, J.R.: Clinical applications of brain-computer interfaces: current state and
future prospects. IEEE Rev. Biomed. Eng. 2, 187–199 (2009)

12. Medina, L.: Identification of stress states from ECG signals using unsupervised learning meth-
ods. Master’s thesis, Universidade Técnica de Lisboa, Instituto Superior Técnico (2009)



452 C. Carreiras et al.

13. Belle, A., Ji, S.Y., Ansari, S., Hakimzadeh, R., Ward, K., Najarian, K.: Frustration detection
with electrocardiograph signal using wavelet transform. In: IEEE International Conference on
Biosciences (BIOSCIENCESWORLD), pp. 91–94. IEEE Press (2010)

14. Belle, A., Hargraves, R.H., Najarian, K.: An automated optimal engagement and attention
detection system using electrocardiogram. Comput. Math. Meth. Med. 2012 (2012)

15. Carreiras, C., Aidos, H., Silva, H., Fred, A.: Exploratory EEG analysis using clustering and
phase-locking factor. In: Proceedings of the 6th International Conference on Bio-Inspired
Systems and Signal Processing (BIOSIGNALS 2013), pp. 79–88. SCITEPRESS (2013)

16. Silva, H., Lourenço, A., Lourenço, R., Leite, P., Coutinho, D., Fred, A.: Study and evaluation
of a single differential sensor design based on electro-textile electrodes for ECG biometrics
applications. In: Proceedings of the IEEE Sensors Conference, pp. 1764–1767. IEEE Press
(2011)

17. Levenson, R.W.: Autonomic nervous system differences among emotions. Psychol. Sci. 3(1),
23–27 (1992)

18. Malmivuo, J., Plonsey, R.: Bioelectromagnetism: Principles and Applications of Bioelectric
and Biomagnetic Fields. Oxford University Press, Oxford (1995)

19. Gamboa,H., Silva, H., Fred,A.: HiMotion Project. Technical report, Instituto Superior Técnico,
Lisbon, Portugal (2007)

20. Fulton, J.: Mensa Book of Total Genius. Barnes & Noble Books, Totowa (1999)
21. Engelse,W.A.H., Zeelenberg,C.:A single scan algorithm forQRS-detection and feature extrac-

tion. Comput. Cardiol. 6, 37–42 (1979)
22. Canento, F., Lourenço, A., Silva, H., Fred, A., Raposo, N.: On real time ECG algorithms for

biometric applications. In: Proceedings of the 6th International Conference on Bio-Inspired
Systems and Signal Processing (BIOSIGNALS 2013), pp. 228–235. SCITEPRESS (2013)

23. Pfurtscheller, G., Lopes da Silva, F.H.: Event-related EEG/MEG synchronization and desyn-
chronization: basic principles. Clin. Neurophysiol. 110, 1842–1857 (1999)

24. Almeida, M., Bioucas-Dias, J., Vigário, R.: Source separation of phase-locked subspaces. In:
Proceedings of the International Conference on Independent Component Analysis and Signal
Separation, vol. 5441, pp. 203–210 (2009)

25. Jain, A.K., Dubes, R.C.: Algorithms for ClusteringData. Prentice-Hall Inc, Upper Saddle River
(1988)

26. Theodoridis, S., Koutroumbas, K.: Patern Recognition. Academic Press (1999)
27. Fred, A., Jain, A.: Evidence accumulation clustering based on the k-means algorithm. In:

Structural, Syntactic, and Statistical Pattern Recognition, pp. 303–333 (2002)
28. Fred, A., Leitão, J.: A new cluster isolation criterion based on dissimilarity increments. IEEE

Trans. Pattern Anal. Mach. Intell. 25(8), 944–958 (2003)
29. Aidos, H., Fred, A.: Hierarchical clustering with high order dissimilarities. In: Proceedings

of the 7th International Conference on Machine Learning and Data Mining (MLDM 2011).
LNCS, vol. 6871, pp. 280–293. New York, USA (2011)

30. Aidos, H., Fred, A.: Statistical modeling of dissimilarity increments for d-dimensional data:
application in partitional clustering. Pattern Recogn. 45(9), 3061–3071 (2012)

31. Ghosh, J., Acharya, A.: Cluster ensembles. WIREs Data Mining Knowled. Discovery 1(4),
305–315 (2011)

32. Vega-Pons, S., Ruiz-Shulcloper, J.: A survey of clustering ensemble algorithms. Int. J. Pattern
Recogn. Artifical Intell. (IJPRAI) 25(3), 337–372 (2011)

33. Fred, A., Jain, A.K.: Combining multiple clustering using evidence accumulation. IEEE Trans.
Pattern Anal. Mach. Intell. 27(6), 835–850 (2005)

34. Lourenço, A., Fred, A., Jain, A.K.: On the scalability of evidence accumulation clustering. In:
Proceedings of the 20th International Conference on Pattern Recognition (ICPR), pp. 782–785.
IEEE Press (2010)

35. Kuncheva, L.I., Vetrov, D.P.: Evaluation of stability of k-means cluster ensembles with respect
to random initialization. IEEE Trans. Pattern Anal. Mach. Intell. 28(11), 1798–1808 (2006)



Unsupervised Analysis of Morphological ECG Features for Attention Detection 453

36. Lourenço, A., Rota Bulò, S., Rebagliati, N., Figueiredo, M., Fred, A., Pelillo, M.: Probabilistic
evidence accumulation for clustering ensembles. In: Proceedings of the International Confer-
ence on Pattern Recognition Applications and Methods (ICPRAM), pp. 58–67. SCITEPRESS
(2013)

37. Dubes, R., Jain, A.: Validity studies in clustering methodologies. Pattern Recogn. 11, 235–254
(1979)

38. Halkidi, M., Batistakis, Y., Vazirgiannis, M.: On clustering validation techniques. J. Intell.
Inform. Syst. 17, 107–145 (2001)
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