Selective Image Compression Using MSIC
Algorithm

Enrique Pelayo, David Buldain and Carlos Orrite

Abstract This paper presents a new algorithm, Magnitude Sensitive Image Com-
pression (MSIC), as areliable and efficient approach for selective image compression.
The algorithm uses MSCL neural networks (in direct and masked versions). These
kind of neural networks tend to focus the learning process in data space zones with
high values of a user-defined magnitude function. This property can be used for
image compression to divide the image in irregular blocks, with higher resolution in
areas of interest. These blocks are compressed by Vector Quantization in a later step,
giving as aresult that different areas of the image receive distinct compression ratios.
Results in several examples demonstrate the better performance of MSIC compared
to JPEG or other SOM based image compression algorithms.

Keywords Image compression - Competitive learning - Neural networks - Saliency *
Self organizing maps *+ JPEG - DCT - MSCL

1 Introduction

In the human vision system the attention is attracted to visually salient stimuli,
and therefore only scene locations sufficiently different from their surroundings are
processed in detail. This provides the necessary motivation to devise a novel image
compression method capable of applying distinct compression ratios to different
zones of the image according to their saliency.

In this paper we make use of the Magnitude Sensitive Competitive Learning
Algorithm (MSCL) [1]. MSCL is a Vector Quantization method based on compet-
itive learning, where units compete not only by distance but also by a user defined
magnitude. Using saliency as the magnitude, units tends to model more accurately

This work is partially supported by Spanish Grant TIN2010-20177 (MICINN) and FEDER and
by the regional government DGA-FSE.

E. Pelayo () - D. Buldain - C. Orrite

Aragon Institute for Engineering Research, University of Zaragoza, Zaragoza, Spain

e-mail: epelayoc@gmail.com

url: http://i3a.unizar.es/en

© Springer International Publishing Switzerland 2016 419
K. Madani et al. (eds.), Computational Intelligence,

Studies in Computational Intelligence 613,
DOI 10.1007/978-3-319-23392-5_23

420 E. Pelayo et al.

the salient areas of the images, and therefore the neural network behaviour imitates
the human vision system.

Vector quantization (VQ) is a classical quantization method. In the context of
image processing, basic vector quantization consists in dividing the input image into
regular blocks of pixels of a pre-defined size, where each block is considered as a
D-dimensional vector. Each of these input vectors from the original image is replaced
by the index of its nearest codeword, so only this index is transmitted through the
media. The whole codebook serve as a database known on the reconstruction site.
This scheme reduces the transmission rate while maintaining a good visual quality.
Figure 1a shows this scheme.

In VQ, compression level depends on two factors, the number of blocks and the
level of compression of each block. Both factors are related in an inverse way. Lower
number of blocks means that they are higher in size, and therefore higher is the bit
depth necessary to codify each block for a similar quality.

Some authors [2-5] have already used some VQ variants, such as Kohonen neural
network [6] for image compression. These algorithms use a fixed block size and
concentrate in several ways to get a smaller codification of each block or to improve
the quality of the codification. Laha [2] uses surface fitting of data assigned to each
codeword instead of the codeword itself, which improves the visual quality of the
results. [3-5] apply DCT filtering [7] to each block previous to the quantization step
to lower the dimension of the input data. On the other hand, [3] takes advantage of
the topological ordering property of the SOM neural network to codify indexes with
a few bytes.

In this paper blocks may have different size, chosen according to its relevance
(which is selected following the image saliency). Blocks located in areas of high
image saliency are smaller than those assigned with low saliency. As bit depth used in
the quantization step is the same for all blocks, quantization error increases directly
with the block size in areas of low image saliency. Therefore, a lower number of
blocks are used to represent the whole image increasing the overall image compres-
sion and preserving at the same time the quality of most relevant areas.

Another important difference with the above mentioned methods is that, in our
approach, block shapes are, in general, irregular, i.e., neither rectangular nor squared.
Therefore, quantization has to take into account samples that may have invalid com-
ponents. Figure 1b shows the basic idea of the proposed algorithm for grayscale
images. It requires to transmit the block centers and index. At the receiver, it is pos-
sible to regenerate the shape and mask of each block and locate it with it center and
magnitude. Then, with its index, the block image is regenerated and summed up to
form the whole image. In Sect.4 we present the complete algorithm, more complex
to reduce the amount of data to be transmitted.

The remainder of this paper is organized as follows. Section 2 describes the MSCL
algorithm. Section4 shows its use to achieve selective image compression focused
on the most salient regions of an image with the method that we call Magnitude
Sensitive Image Compression (MSIC). A comparative between MSCL and classical
JPEG and SOM based VQ algorithms for a high compression ratio task is carried
out in Sect. 5. Finally, Sect. 6 concludes with a discussion and ideas for future work.

Selective Image Compression Using MSIC Algorithm 421

(a) 3 Transmitter &
Original Block -
irr\"lgﬂga Vectorization processing Quantization
L
. : L
Regenerated Image Block v =
image formin i H
g g deprocessing LUT. :
ﬂ DCT'1 :
Receiver
g J
(b) i Transmitter)
Original Block Masked
image Vectorization processing Quantization hea
- centers
7 ? —n e LLLY
Magnitude / Trained Irregular é
MAP centers blocks =
S 2 g A
—
% Transmission =
4~ o E ~
Regenerated | Image Masked Block v :
image forming deprocessing -
LUT :
ot
Receiver

b

Fig. 1 Basic idea of Competitive Learning algorithms in the task of image compression for
grayscale images. Top Common CL algorithm. Bottom MSIC algorithm. Differences with other
CL algortihms are the use of a MSCL to get block centers (centers are trained weights of MSCL
units), the use of irregular blocks and the masked quantization/deprocessing

422 E. Pelayo et al.

2 The MSCL Algorithm

MSCL is a type of artificial neural network that is trained using unsupervised learning
to produce a representation of the input space of the training samples depending on a
magnitude. Codebook M is formed by M weight vectors. Prototype of unit m € M
is described by a vector of weights w,,(¢) € RP? and the magnitude value mu,,.
This value is calculated with the function M F (i,), that is a measure of any feature
or property of the data inside the Voronoi region of unit m, or a function of its
parameters.

The idea behind the use of this magnitude term is that, during competition between
two units situated at similar distance from the input sample, the winner will be the
unit with the lowest magnitude value. As a result of the training process units will
be forced to move from the data regions with low M F' (i, t) values to regions where
this magnitude function is higher. MSCL follows next steps, that are repeated until
a termination condition is achieved:

Global Unit Competition. At this point, we form the local winner set S, (S C M)
with the Mj,., units closest to the input sample as: S = {s1, 52, ..., Sy, }-

x(@) = ws (D] < X)) — Wy ()| Vm ¢ SAs €S (D

Local Unit Competition. Winner unit j is selected from units belonging to S, as
the one that minimizes the product of its magnitude value with the distance of its
weights to the input data vector, following this equation:

j= argrgin(mus(t)y 1% () — wy (@) 1) @)

Winner and Magnitude Updating. For all units in the map, weights and magnitude
are adjusted iteratively for each training sample, following:

Wit + 1) = wi(0) + () (x() — w; (1) 3)
mu;(t+1)=MF(j,t) “4)

In the above equations, y defines the strength of the magnitude during the com-
petition. c () is the learning factor, calculated as a(t) = (1/h; ()P, where h (@)
stands for the number of input signals for which unit j has been winner so far, and
B is a scalar value between 0 and 1. The winner j is also called the best matching
unit (BMU).

Selective Image Compression Using MSIC Algorithm 423

3 The Masked MSCL Algorithm

The new proposed image compression algorithm will require the capability of dealing
with incomplete data, as blocks to be compressed are irregular (in shape and size).
Here we present a masked version of MSCL that is able to deal with data samples
of different size (we speak of ‘masked’ data). To use this algorithm we will consider
that each data sample consists in two vectors, X = (x,...,Xp) € RP? the data
vector itself (with the maximal possible dimension of a data sample D), and its
corresponding mask msk = (msky, ..., mskp) € RP. The mask is a vector with
ones in the the valid components of x and zeros in the other components.

The algorithm follows the same steps than MSCL, but both competition and
updates are slightly more complex as it has to be considered the mask. Changes are
the following:

1. Only valid components (corresponding mask is one) are considered for global
and local competition:

[Imsk(z) o (x(r) — ws ()| < [[msk(r) o (x(1) —wWn(@)| Vm ¢ S, 5 €S (5)

Jj = argmin(muy ()" - [msk(t) o (x(t) — ws (1)) (6)
seS
2. Instead of scalar «, algorithm uses vector alpha = («y, ..., ap) € RP as the

learning factor, where o is:

)

1/hjq ifmskg =1
O = .
0 otherwise.
Here £ 4 is the number of times up to the moment that component d has taken a
valid value when unit j was a winner.
3. Only valid components (those with msk; = 1) of winner weights are updated:

wia(t + 1) = wja(t) + g (xa() — wja(t)) 3

4 Magnitude Sensitive Image Compression

Figure 2 shows the whole MSIC algorithm applied to grayscale images, where image
compression, in the transmitter, is represented on the top and the image restoration
process at the receiver is depicted on the bottom. Image is compressed with different
quality according to a selected user magnitude. Section 4.6 explain how to extent this
methodology to color images.

424 E. Pelayo et al.

TRANSMITTER
__————— Block Mean —————Pp
#3 .
3 Mean extraction i
?ngma! 5 Vockorchioh > qQuantization Img B
mage MSCL Img. Center e = Index
.............. Img Size z

L Map 5 Map
restoration | %' Block LUT | | =
Regenerated |_ 4

Saliencymap

Saliency Map ¥ \E
Map Mean ——————————1

Map Cenlers
N
#5 :
mage 4 R g
[restoration 5 Block Mean

Img. Block LUT Img. Index
Centers extraction =

MSCL Img. Center (2)

174
Regenerated MS?:;:HUI'E | ll i Map Block LUT t— Map Index ——
Image |

< Map |, =
h #4 restoration = ®‘

Regenerated ‘\ﬁ_ =

Saliency map -

RECEIVER

Fig. 2 Global algorithm for grayscale images. Marked with #n the corresponding subsection with
the detailed explanation and, also showing the order of processing steps in the transmitter and
receiver

In this work we use as magnitude the saliency map, with the same size as the
processed image, provided by a user function. Section 5 explain these functions.

The results of the compression are a group of image blocks encoded by indexes.
Unlike other image compression methods, our algorithm uses blocks of different
sizes, which are located at any position of the image. Therefore, this implies that
block centers and sizes has to be sent to the receiver, apart from the corresponding
index. As this approach would mean the transmission of huge quantity of information,
we have adopted an alternative solution.

We use the saliency map to train a MSCL network, using as inputs the coordinates
(x1, x2) of each pixel and the saliency as magnitude. After training, the weights of
its units (codewords) are the block centers (bc(k), k = 1...Np.). The surrounding
assigned to the Voronoi region of each block-center configure the corresponding

Selective Image Compression Using MSIC Algorithm 425

blocks. The image is so fragmented in so many blocks as units in this network (Np,).
In Sect.4.1 we will show how to determine the block sizes (and block limits) for
each codeword or unit. This process encodes the saliency map with low quality, and
both the encoded image and the encoded map are transmitted.

At the receiver first the saliency map is regenerated, and with it, the image block
limits and centers can be calculated. They are used with the image indexes to restore
the image.

It is worth noting that it is necessary an additional step at the transmitter. Instead
of using directly the saliency map to extract the image blocks, we first decode a
saliency map from the encoded map that has to be transmitted. Then we calculate
the image centers and limits of image blocks using this Regenerated Saliency Map
that will be also regenerated by the receiver.

Summarizing the MSIC algorithm steps are:

. Map quantization (at transmitter).

. Map restoration (at transmitter).

. Image quantization (at transmitter).
. Map restoration (at receiver).

. Image restoration (at receiver).

O R O R N R

MSIC algorithm uses several MSCL networks: M SC L ;¢ (map center) to extract
map blocks, M SC L ¢ (image center) to extract image blocks, and a pool of MSCLs
that he call MSCL picture library (M SC L p;¢) to generate indexes that encode each
block pixels, and act as Look-Up-Table to decode the block shapes with these indexes.
This library is calculated using the masked version of MSCL (see Sect. 3) as blocks
may have irregular shapes. The first and second neural networks are trained online
during map and image quantization. Their codewords are the block centers. However
MSCLpjcr form a codebook database that is trained offline. It is known by the
transmitter and the receiver as a library of the method. Finally receiver uses another
MSCL (M SCL¢,), that becomes identical to M SC L;c when trained at receiver.
Following sections explain the process in detail.

4.1 Saliency Map Quantization

The idea is to consider the saliency map as an image and apply the same compression
steps that will be applied to the image.

First step corresponds to the block extraction from the saliency map according to
the saliency values. We train a MSCL network (M SC L ;¢) using the 2D coordinates
of each pixel(x) as inputs and the following magnitude function:

>y saliency(Xy;)

MF(,t) = VO

€))

426 E. Pelayo et al.

Pixel
coordinates

Pixel
coordinates

MSCL 1 (1)
MF(it) = hits()

T

0] Img/Map block
1 0] Mask

Fig. 3 Neural networks used in the MSIC algorithm: Top BMUy;c and BMU . It is important
to mention that this last MSCL is used also in receiver (BM Uj¢>). Bottom Block extraction phase.
Each block delivers the block limits, the image and a binary mask. M SC L p;cr (/) neural network,
where a input sample (vectorized block from the extraction phase) has several masked components

where xy; are the data samples belonging to the Voronoi region of uniti attime ¢, V; (¢)
is the number of samples in the Voronoi region, and saliency(x) is the pixel saliency
of the corresponding sample. Trained unit weights correspond to the coordinates of
the unit in the image, and the magnitude value is the mean of the saliency inside its
Voronoi region. Once trained, it is possible to find the best matching unit (BM Uy ¢)
assigned to every pixel (using magnitude during competition). The block assigned
to each unit is the rectangle wrapping its Voronoi region. A block mask of equal size
than the block is also provided in order to mark the pixels belonging to that irregular
Voronoi region, see Fig.3. We used 40 units for M SC L ;¢ in our experiment. With
this small number of units a coarse saliency map is obtained, but it is enough to define
areas with high saliency.

To codify each of the blocks by VQ, we first resize the block to a squared shape
with side value as the maximum between its horizontal and vertical block sizes.
The block and the mask are inserted in the squared image filling with zeros the void
rows or columns. After that, both are resized to a vector form. We use mean-removed
vectors to have a better quantification. Mean value of saliency in each block of pixels,
that we call mean block-saliency (m(x, y)), is sent encoded by 7 bits.

The resulting vector is separated according to its size and dispatched for training
or testing to the MSCL picture library (M SC L p;cr (1)). This pool of codebooks are
trained separately only once and become a lookup table in the algorithm. In order to
avoid the transmission of the whole codebook pool it is known by both the transmitter
and the receiver.

Each codebook of the pool, with 256 codewords, is dedicated to a precise input-
vector length. This election of the same number of codewords for different block

Selective Image Compression Using MSIC Algorithm 427

sizes forces that larger blocks present less detail in pictorial content than smaller
blocks. We have chosen a limited group of sizes that model several size possibilities
(the value of [is the length of the square edge to which we have resized the block):
[=14,6,7,8,10,15,29].

This pool of codebooks can be specialized in the type of images considered in the
transmission task, or can be generated using an universal library of training images.
The images for training are processed following previous described steps, but the
magnitude function chosen for these M SCL p;cr(l) networks is the hit frequency
of each unit, that is:

MF(i,t) = hits(i, t) (10)

During competition the BMUp;cr is calculated using the masked version of
MSCL in order to avoid the zero-padding mentioned before. Each time a sample
is presented to each neural network of the pool, the corresponding mask is also
presented, and only masked weight components are used to compete (see Fig.3,
Right). Each sample might have different masked components. In this way, only
pixels corresponding to the Voronoi region of a block are used to find its BMUpjcr.

At the end of this step, the magnitude map has been divided in 40 blocks. We
have to send to the receiver the following information of each block: Map indexes
(BMUpcr) (1 byte), Map mean (7 bits) and Map Centers (2 bytes). Size of each
block is not necessary because it is calculated with the block centers.

4.2 Map Restoration at Transmitter

Map representing the saliency of the image is also restored at transmitter with the
information generated at the previous step. This is because the restored map will
be used at both transmitter and receiver to define the block centers of the image,
so results are the same in both sides. Map restoration is accomplished following
the previous step in inverse order. First we calculate Voronoi regions assigned to
each of the Map Centers by searching the BM Uy, ¢ of each pixel in MSC L y;c. The
codewords of this neural network are the Map Centers. Additionally, we calculate
block limits and mask wrapping by a rectangle the area corresponding to the Voronoi
region of each center.

With the i index of the new block, it is converted again into an image block
by the look-up table created with M SCL p;cr(l). The codeword of the BMUpcr
consists of the pictorical content of the block image, but needs to be displaced with the
mean block-saliency value of the corresponding block. After summing the mean, it is
masked by the binary mask and added to the regenerated saliency map. Repeating the
process for all the blocks we obtain the regenerated saliency map, that will represent
the saliency values of pixels for the reconstructed image.

428 E. Pelayo et al.

4.3 Image Quantization

A similar strategy to the previously described step is followed for image quantization.
Blocks are extracted training the M SC L ;¢ (with the coordinates at each pixel) to get
the image block centers according to the Regenerated Saliency Map at the transmitter.
Then the Voronoi regions of each of these centers are calculated. Blocks are extracted
and vectorized. After removing the mean, each image block is processed using the
masked version of MSCL with the MSCLp;cr(l) (once again using the masked
version of MSCL) that corresponds its size, in order to use the most similar pictorial
content of the library that will be included in the reconstructed image. It is only
necessary to send the corresponding block mean and index from the MSCLp;cr (1)
for each block.

4.4 Map Restoration at Receiver

Map restoration at receiver is accomplished following exactly the same process
than map restoration at transmitter. To do it, the receiver uses for each block its
Map index, mean block-saliency, block-center and the same offline MSCL p;c7 (1)
picture library. As operations are the same and they are applied to the same data,
the Regenerated Saliency Map at receiver is exactly the same than the one at the
transmitter.

4.5 Image Restoration

Last step in the whole process is image restoration, using the received means of block-
saliency, the pixel indexes and the regenerated saliency map. This step is similar to
the previous described Map restoration with small changes.

The main difference is that the image block centers are not available (they have
not been transmitted). They are calculated training a new MSCL (M SCL¢), with
the coordinates of each pixel, and the magnitude values in the Regenerated Saliency
Map (magnitude that was calculated with (9) at the emitter). This neural network
becomes identical to M SCL;c. The weights of MSCL ¢, are the centers of the
image blocks, and their Voronoi regions define the masks and limits.

Once again, image indexes are presented to the look-up table created with
MSCLp;cr(l) (according to the block size) that returns the block shape. Final
image is regenerated by adding means of block-saliency, masking each block and
positioning it in the image (adding it to the regenerated image as we had done before
with the saliency map).

Selective Image Compression Using MSIC Algorithm 429

4.6 Extension to Color Images

Figure 4 defines the flowchart to use MSCL in the case of color images. The process
is similar to the used in the case of grayscale images, but applied to each of the color
components of the image.

First, we calculate the saliency map from the color image. With this saliency map
we extract and quantify blocks as described in Sect. 4.1, blocks which are restored at
transmitter as mentioned in Sect.4.2. As a result of this step we get the map block-
centers, block-means and indexes. Encoding is made with the previously trained
MSCLpicr(l) picture library.

Then, original RGB image is transformed to the L-a-b color space. The reason
of selecting this color codification is that it has been demonstrated its suitability for

interpreting the real world [8].
TRANSMITTER
4 L-a-b blocks .

Indexes & means

:

MSCL Shape
library

[-a-b Colormap

Original
Image

i a0 Index
Re:n::qtinn mfnif(earm —>
Saliency
Map
RECEIVER Y

La-b blocks -

Indexes & means

Regenerated
L-a-b Colormap

Regenerated
Regenerated Saliency Map

i
Image ks

Regeneration

Map Index
Mean & cenlers

Fig. 4 Global algorithm for color images. Each color component is processed separately as in the
grayscale method. However this process is exemplified with a different magnitude definition for
the saliency map, oriented to preserve the detail of the image for certain colors selected by the user

430 E. Pelayo et al.

Now with these L-a-b color components of the image, we follow the process
indicated in Sect.4.3. Each of them will be trained with a MSCL neural net-
work (MSCL;c_;1, MSCL;c_y, MSCLjc_p,) and it will return the block sizes
and indexes for each component. The indexes of the blocks are also encoded with
MSCLprcr ().

Once at receiver saliency map is restored (see Sect.4.4). Then, we follow the
image restoration step, applied to each L-a-b component. Its centers are calculated
training three MSCL networks (M SCLco—1, MSCLico—q, MSCLjc2-p,), With
the coordinates of each pixel, and the regenerated saliency map. These neural net-
works becomes identical to those at the transmitter.

To get the final image, we transform the restored L-a-b image to RGB.

5 Experimental Results

5.1 Grayscale Images

Simulations were conducted on four 256 x 256 gray scaled images (65536 bytes),
all of them are typical in image compression benchmarking tasks.

We applied the MSIC algorithm, with the following MSCL training parameters:
15 cycles and learning factor varying along the training process from 0.9 to 0.05.
We used Graph-Based Visual Saliency GBV S(x) ([9]) as the pixel saliency of the
corresponding sample. However, it is possible to use other kind of magnitudes to
define which areas of the image are compressed more or less deeply.

JPEG was applied with the standard Matlab implementation and a compression
Quality of Q = 3 or Q = 5 (i.e., with a high compression ratio).

We also compare with the algorithm described in [5], whose main steps are fol-
lowed for all the mentioned SOM based algorithms: The original image is divided
into small blocks (we select a size of 8§ x 8 to achieve a similar compression ratio
to JPEG or MSCL). Then, 2-D DCT is first performed on each block. The DC term
is directly send for reconstruction, and the AC terms after low-pass filtering (we
only consider 8 AC coefficients) is fed to a SOM network for training or testing. All
experiments were carried out with the following parameters: 256 units, 5 training
cycles and B calculated so the learning factor decreases from 0.9 to 0.05.

The number of bytes used to compress each image was the same for MSCL and
JPEG (see Table 1) and fixed to 2048 for SOM.

For evaluation purpose, we use the mean squared error (MSE) as an objective
measurement for the performance. Table 1 shows the resulting mean of the MSE in
10 tests using our algorithm compared to JPEG and SOM applied to 4 test images.
We present a second column showing the value of MSE but only calculated in those
pixels which saliency is over 50 %. Standard deviation is also shown (in brackets).

To obtain the generic pictorial library MSCLp;cr(l) we used three additional
images different to the images used in testing from [10] with the same training

Selective Image Compression Using MSIC Algorithm 431

Table 1 Mean MSE for the whole image as well as for areas with saliency over 50 % (grayscale
example)

Image Q/Bytes JPEG(Tot/50 %) SOM(Tot/50 %) MSIC(Tot/50 %)

Lena 05/2010 212.3/340.4 205.4/374.0 501.1(18.2)/211.0(6.1)
Street 05/2127 | 302.3/369.0 322.1/465.3 466.2(7.8)/210.6(4.2)
Boat 05/1988 263.9/383.7 280.4/486.6 436.4(12.3)/282.0(5.6)
Fish 03/2090 485.7/597.7 466.3/904.3 895.8(15.8)/254.2(9.6)

Standard deviation is also shown (in brackets)

parameters. This number is quite low, but enough to show the good performance
of our proposal. However, in a real scenario it would be necessary to use a higher
number of images to get a suitable pictorial library. Moreover, we have not used any
entropic coding applied to indexes which would have result in a further compression.

As expected, the MSE value calculated for the whole image area given by JPEG
is lower than the one provided by MSIC, because prototypes tend to focus on zones
with high saliency while other areas in the image are under-represented.

However, when MSE was calculated taking into account only those pixels with
high saliency, MSIC obtained better results than JPEG or SOM. This effect can be
clearly appreciated by visual inspection of the images represented in Fig.5. They
show how MSIC achieves a higher detail level at image areas of high saliency. In the
case of JPEG, it tends to fill up big portions of the image with plain blocks, being
unable to obtain a good detail at any part of the image. On the other hand, SOM
produces slightly blurred images due to the low frequency filtering.

The new algorithm could also be used in compression applications with other
magnitude functions instead of saliency. Figure 6 shows the compressed results of
applying MSIC using different Magnitude Functions to the street image. From left
to right, first image is the original one, second image is MSIC using the same Mag-
nitude Functions than the one used in (9). The Magnitude function in third image
is the same of equation (9), but using 1 — GBV S(x) instead of the pixel saliency
of the corresponding sample. The fourth image uses the value of the vertical coor-
dinate (normalized to one) and finally the fifth one uses the value of the vertical
coordinate (normalized to one) minus one. It can be clearly seen that depending
on the defined Magnitude Function, certain areas are compressed in with quality
(foreground, background, top or bottom of the image).

This toy example was only presented to show the possibilities of achieving selec-
tive compression in different areas of the image just by varying the Magnitude Func-
tion.

MSIC algorithm is much more slower than JPEG. In a serial execution on single
core computer, JPEG processing takes only 0.11 % of the total processing time of
MSIC (that in our tests it take 6.8 s for compressing each of the grayscale test images).
Most of the time (91.6 %) is spent on block extraction (34 % of which is used in
extracting blocks from the saliency map and 66 % in extracting blocks from the

432 E. Pelayo et al.

Fig. 5 Top in columns Original image, saliency map, MSIC, JPEG and SOM compression for the
test images. Bottom Lena detail in the three methods. It can be clearly seen that the Lena face,
compressed with MSIC shows a more natural view (almost like painted with Pointillism technique)
than the other methods that have square block borders

Fig. 6 Original ‘Street’ image and the compressed images using MSIC with four different magni-
tude functions

Selective Image Compression Using MSIC Algorithm 433

image). Block encoding and decoding takes 6.7 % of the time, and 1.7 % the rest of
the algorithm.

However processing time can be reduced using parallel processing and compiled
libraries (now simulated in Matlab). The slowest task is finding the best matching unit
for both, defining the Voronoi region to extract a block, and for encoding-decoding.
This task represents the 68 % of the block extraction time, and the 51 % of the
encoding-decoding time. It is a slow process because in our sequential implemen-
tation we must, for each sample, calculate the distances from sample to each of the
units. In a parallel implementation, this processing could be applied simultaneously
for all units. Then using for instance 1000 units, block extraction time could be only
29.3 % of initial total time. Using similar approach for encoding-decoding the final
processing time can be reduced to be 2.3 s (34.3 % of the original processing time).

5.2 Color Images

In the color experiments, it is applied the same method explained in Sect. 4.6, with
the same parameters used in the grayscale case.

We use a different saliency definition focused in those image zones with colors
selected by the user. This type of compression, preserving with more detail image
zones with certain color selection, may have different applications. For instance, in
medical images, the specialist may define the colors of those areas that has to be well
preserved. Other application is in video transmission limited by narrow bandwidths,
as in underwater image transmission. In that case it is possible to work with a highly
compressed global image, and if the user wants a higher definition in areas of a specific
color, MSIC could get to a better definition of those areas, obviously degrading others
to keep the limited bandwidth.

To calculate the saliency map with the magnitude values for the pixels, we first
calculate the saliency map for each color in the set of colors. The saliency map of a
selected color is obtained by binarizing the image, based on thresholding the distance
of the pixel color and the selected color. Then we apply a border detection algorithm
to get the edges of the image zones painted in that color.

The saliency map of the image is obtained as the maximum of the filtered edge
images for all the set of colors. Using this value of magnitude, we get more units
in the interesting regions whose colors are similar to the defined set. JPEG was
implemented using Matlab and different compression qualities.

The experiments use the four test images depicted in the first column of Fig.7.
The second column shows the resulting saliency maps for the images. To maintain
the details of the fish in the first image, it is used as color set: orange and white.
The flower image uses dark and clear pink, the boat image uses only brown and the
parachute image uses pink and black from the parachutist.

Table2 shows in the first column the resulting mean of the MSE in 10 tests
using MSCL compared to JPEG. Second column shows the value MSE calculated in

434 E. Pelayo et al.

Fig.7 Top in columns Original color image, saliency map generated for a one or two-color selection
(fish with orange and white; flower with dark and clear pink; boat with brown; parachute with pink
and black), MSIC and JPEG compression for the test images. Bottom Fish image detail in both
compression methods

those pixels with saliency over 50 %. Standard deviation is also shown (in brackets).
Number of bytes and quality are also shown.

As expected, the MSE value calculated for the whole image area is lower using
JPEG than the one provided by MSIC. However, when MSE was calculated taking
into account only those pixels exhibiting a high saliency, MSIC obtained the best
results.

Selective Image Compression Using MSIC Algorithm 435

Table 2 Mean MSE for the whole image as well as for areas with saliency over 50 % (color
example)

Image Q/Bytes JPEG(Tot/50 %) MSIC(Tot/50 %)

Fish Q3/1702 1328/2695 2193(20.7)/1789(40.3)
Flower Q5/1722 862/1299 3540(227.1) /1167(49.4)
Boat Q6/1720 1303/1570 2366(87.4)/1190(25.3)
Sky Q5/1706 967/2312 240(58.2) /468(19.7)

Standard deviation is also shown (in brackets)

6 Conclusions

In this paper we have shown how grayscale and color images compressed with
MSIC exhibit a higher quality in relevant areas of the image when compared to other
compression methods such as JPEG or SOM based algorithms.

MSIC has been proved to be a reliable and efficient approach to achieve selective
Vector Quantization. This selectivity can be used in image compression to set the
block centers focused on certain areas of the image to be compressed in a further step
by Vector Quantization. The novelty of the algorithm is that areas of interest, which
can be defined by a magnitude function, would receive lower compression than the
rest of the image. Another novelty of the algorithm is that the image composition
uses irregular blocks of pixels that tend to be smaller in zones of high interest and
broader in zones of low interest.

These properties of the algorithm may be modulated for different applications by
choosing the adequate magnitude function according to the desired task. For instance,
it could be a good choice to use the Viola-Jones algorithm instead of GBSV to
highlight some particular areas when dealing with facial areas in images with people.
Another potential application is the compression of satellite and aerial imagery of the
Earth. In that case, Automatic Building Extraction from Satellite Imagery algorithms
may be used to define the areas of interest. Then, MSIC may compress the images
keeping higher detail in the built areas. In a similar way, medical image storage tools
might use MSIC to save images compressed with higher detail in certain biological
tissues or anatomical structures.

Several applications that require image transmission with low bandwidth may use
the algorithm, as in underwater image transmission, where there are low data rates
compared to terrestrial communication. Another example of magnitude would be
simply the predicted position of the user’s fovea on the image in the next frame. This
magnitude is useful for application in virtual reality glasses, where the image zone,
that is predicted the user is going to focus his fovea, will present the highest detail,
while surrounding zones can be more compressed.

Future work comprises several research lines such as the use of entropy coding for
the information of each compressed image block, filtering each image with DCTs,
and comparison against other compression algorithms. Another point to be analysed
is the kind of images used to generate the generic pictorial codebooks used for

436 E. Pelayo et al.

compression and restoration, as the library of training images can be selected for the
chosen task. The test of the algorithm in different tasks as mentioned in the previous
paragraph is another research line left for future.

References

1. Pelayo, E., Buldain, D., Orrite, C.: Magnitude sensitive competitive learning. Neurocomputing
112, 4-18 (2013)

2. Laha, A., Pal, N., Chanda, B.: Design of vector quantizer for image compression using self-
organizing feature map and surface fitting. IEEE Trans. Image Process. 13(10), 1291-1303
(2004)

3. Amerijckx, C., Legat, J.D., Verleysen, M.: Image compression using self-organizing maps.
Syst. Anal. Modell. Simul. 43(11), 1529-1543 (2003)

4. Harandi, M., Gharavi-Alkhansari, M.: Low bitrate image compression using self-organized
kohonen maps. In: Proceedings 2003 International Conference on Image Processing, ICIP’03,
vol. 3, pp. 267-270 (2003)

5. Liou, R.J., Wu, J.: Image compression using sub-band DCT features for self-organizing map
system. J. Comput. Sci. Appl. 3(2) (2007)

6. Kohonen, T.: The self-organizing map. Neurocomputing 21(1), 1-6 (1998)

7. Ahmed, N., Natarajan, T., Rao, K.R.: Discrete cosine transform. IEEE Trans. Comput. 100(1),
90-93 (1974)

8. Cheung, Y.: Onrival penalization controlled competitive learning for clustering with automatic
cluster number selection. IEEE Trans. Knowl. Data Eng. 17, 1583-1588 (2005)

9. Harel, J., Koch, C., Perona, P.: Graph-based visual saliency. In: NIPS’06, pp. 545-552 (2006)

10. Computer Vision Group, U.0.G.: Dataset of standard 512x512 grayscale test images. http://
decsai.ugr.es/cvg/CG/base.htm (2002)

http://decsai.ugr.es/cvg/CG/base.htm
http://decsai.ugr.es/cvg/CG/base.htm

	Selective Image Compression Using MSIC Algorithm
	1 Introduction
	2 The MSCL Algorithm
	3 The Masked MSCL Algorithm
	4 Magnitude Sensitive Image Compression
	4.1 Saliency Map Quantization
	4.2 Map Restoration at Transmitter
	4.3 Image Quantization
	4.4 Map Restoration at Receiver
	4.5 Image Restoration
	4.6 Extension to Color Images

	5 Experimental Results
	5.1 Grayscale Images
	5.2 Color Images

	6 Conclusions
	References

