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Abstract The application of microarray technology to the diagnosis of cancer has
been a challenge for computational techniques because the datasets obtained have
high dimension and a few examples. In this paper two computational techniques
are applied to tumor datasets in order to carry out the task of diagnosis of cancer
(classification task) and identifying the most promising candidates among large list
of genes (gene prioritization). Both techniques obtain good classification results
but only one provides a ranking of genes as additional information and thus, more
interpretable models, being more suitable for jointly addressing both tasks.
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1 Tumor Classification from Gene Expression Data

The challenge of cancer treatment has been to target specific therapies to pathogeneti-
cally distinct tumor types, tomaximize efficacy andminimize toxicity. Improvements
in cancer classification have thus been central to advances in cancer treatment. Can-
cer classification is divided into two challenges: class discovery and class predic-
tion. Class discovery refers to defining previously unrecognized tumor subtypes.
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Class prediction refers to the assignment of particular tumor examples to already-
defined classes. In the early days, cancer classification has been relying on subjective
judgment from experienced pathologists. When microarray technology was discov-
ered began to be applied to cancer diagnosis. The most important application of
the microarray technique is to discriminate the normal and cancerous tissue sam-
ples according to their expression levels, identify a small subset of genes that are
responsible for the disease and to discover potential drugs [15].

Experimental techniques based on oligonucleotide or cDNA arrays now allow the
expression level of thousands of genes to be monitored in parallel [1]. To use the full
potential of such experiments, it is important to develop the ability to process and
extract useful information from large gene expression datasets.

Constantly improving gene expression profiling technologies are expected to pro-
vide understanding and insight into cancer related cellular processes. Gene expres-
sion data is also expected to significantly aid in the development of efficient cancer
diagnosis and classification platforms. Gene expression data can help in better under-
standing of cancer. Normal cells can evolve into malignant cancer cells through
a series of mutations in genes that control the cell cycle, apoptosis, and genome
integrity, to name only a few. As determination of cancer type and stage is often
crucial to the assignment of appropriate treatment [16], a central goal of the analy-
sis of gene expression data is the identification of sets of genes that can serve, via
expression profiling assays, as classification or diagnosis platforms.

Another important purpose of gene expression studies is to improve understanding
of cellular responses to drug treatment. Expression profiling assays performed before,
during and after treatment, are aimed at identifying drug responsive genes, indications
of treatment outcomes, and at identifying potential drug targets [9]. More generally,
complete profiles can be considered as a potential basis for classification of treatment
progression or other trends in the evolution of the treated cells.

Data obtained from cancer related gene expression studies typically consists of
expression level measurements of thousands of genes. This complexity calls for data
analysismethodologies that will efficiently aid in extracting relevant biological infor-
mation. Previous gene expression analysis work emphasizes clustering techniques
(nonsupervised classification), which aim at partitioning the set of genes into subsets
that are expressed similarly across different conditions. On the other hand, super-
vised classification techniques (also called class prediction or class discrimination)
with the aim to assign examples to predefined categories [12, 16, 19].

The objectives of supervised classification techniques are: (1) to build accurate
classifiers that enable the reliable discrimination between different cancer classes,
(2) to identify biomarkers of diseases, i.e. a small set of genes that leads to the correct
discrimination between different cancer states. This second purpose of supervised
classification can be achieved by classifiers that provide understandable results and
indicate which genes contribute to the discrimination.
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Following this line, in this paper the goal is to apply two techniqueswith embedded
capacity to discard input features and thus propose a subset of discriminative genes
(embedded methods [20]). We apply them to classify and select features to tumor
datasets in order to carry out an analysis of these datasets and to obtain the information
that provide understandable results. These techniques are the Fuzzy Random Forest
method (FRF) proposed in [3, 7] and the Feature Selection Fuzzy Random Forest
method (FRF-fs) proposed in [6].

This paper is organized as follows. First, in Sect. 2 some techniques applied to
gene expression data reported in literature are briefly described. Next, in Sect. 3,
the applied methods are described. Then, in Sect. 4 we perform an analysis of two
tumor datasets using these methods. Finally, in Sect. 5 remarks and conclusions are
presented.

2 Machine Learning and Gene Expression Data

In this section, we describe some of the machine learning techniques used for the
management of gene expression data.

2.1 Cluster Analysis Based Techniques

Clustering is one of the primary approaches to analyze such large amount of data
to discover the groups of co-expressed genes. In [18] an attempt to improve a fuzzy
clustering solution by using SVM classifier is presented. In this regard, two fuzzy
clustering algorithm, VGA and IFCM have been used.

In [1] a clustering algorithm to organize the data in a binary tree is used. The
algorithm was applied to both the genes and the tissues, revealing broad coherent
patterns that suggest a high degree of organization underlying gene expression in
these tissues. Coregulated families of genes clustered together. Clustering also sep-
arated cancerous from noncancerous tissue.

In [16] a SOM to divide the leukemia examples into cluster is used. First, they
applied a two-cluster SOM to automatically discovering the two types of leukemia.
Next, they applied a four-cluster SOM. They subsequently obtained immunopheno-
type data on the examples and found that the four classes largely corresponded to
AML, T-lineage ALL, B-lineage ALL, and B-lineage ALL, respectively. The four-
cluster SOM thus divided the examples along another key biological distinction.

In [2] a clustering based classifier is built. The clustering algorithm on which
the classifier is constructed is the CAST algorithm that takes as input a threshold
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parameter t, which controls the granularity of the resulting cluster structure, and a
similaritymeasure between the tissues. To classify a example they cluster the training
data and example, maximizing compatibility to the labeling of the training data. Then
they examine the labels of all elements of the cluster the example belongs to and use
a simple majority rule to determine the unknown label.

2.2 Techniques for Feature Selection and Supervised
Classification

Discovering novel disease genes is still challenging for constitutional genetic diseases
(a disease involving the entire body or having a widespread array of symptoms) for
which no prior knowledge is available. Performing genetic studies frequently result
in large lists of candidate genes of which only few can be followed up for further
investigation. Gene prioritization establishes the ranking of candidate genes based
on their relevance with respect to a biological process of interest, from which the
most promising genes can be selected for further analysis [19]. This is a special case
of feature selection, a well-known problem in machine learning.

In [16] a procedure that uses a fixed subset of “informative genes” is developed.
These “informative genes” are chosen based on their correlation with the class dis-
tinction.

In [12], aRandomForest ensemble is used to carry out the feature selection process
for classification from gene expression data. The technique calculates a measure of
importance for each feature based on how the permutation of the values of that
feature in the dataset affects to the classification of the out-of-bag (OOB) dataset of
each decision tree of ensemble [5]. Following this study, in [14], a Random forest
ensemble which solves the problems existing in [12] is proposed.

In [13] a study of classification of gene expression data using metaheuristics is
presented. The authors show that gene selection can be casted as a combinatorial
search problem, and consequently be handled by these optimization techniques.

In [19], four different strategies to prioritize candidate genes are proposed. These
strategies are based on network analysis of differential expression using distinct
machine learning approaches to determine whether a gene is surrounded by highly
differentially expressed genes in a functional association or protein-protein interac-
tion network.

Another work to select genes is proposed in [10]. This paper shows that a sys-
tematic and efficient algorithm, mixed integer linear programming based hyper-box
enclosure (HBE) approach, can be applied to classification of different cancer types
efficiently.
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3 Classification and Feature Selection by Fuzzy Random
Forest

In this section, we describe the methods that we will use in this paper.

3.1 Fuzzy Random Forest for Classification

We briefly describe the Fuzzy Random Forest (FRF) ensemble proposed in [3, 7].
FRF ensemble was originally presented in [3], and then extended in [7], to handle
imprecise and uncertain data. We describe the basic elements of the FRF ensem-
ble and the types of data that are supported by this ensemble in both learning and
classification phases.

Fuzzy Random Forest Learning

Let E be adataset. FRF learningphaseusesAlgorithm1 togenerate theFRFensemble
whose base classifier is a Fuzzy Decision Tree (FDT). Algorithm 2 shows the FDT
learning algorithm [8].

Algorithm 1: FRFlearning.
1: Input: E , Fuzzy Parti tion; Output: F RF
2: begin
3: repeat
4: Take a random sample of |E | examples with replacement from the dataset E
5: Apply Algorithm 2 to the examples obtained in the previous step to construct a FDT
6: until all FDTs are built to constitute the FRF ensemble
7: end

Algorithm 2 has been designed so that the FDTs can be constructed without
considering all the features to split the nodes. Algorithm 2 is an algorithm to construct
FDTs where the numerical features have been discretized by a fuzzy partition. The
domain of each numerical feature is represented by trapezoidal fuzzy sets, F1, . . . , Ff

so each internal node of the FDTs, whose division is based on a numerical feature,
generates a child node for each fuzzy set of the partition.Moreover, Algorithm 2 uses
a function, denoted by χt,N (e), that indicates the degree with which the example e
satisfies the conditions that lead to node N of FDT t . Each example e is composed
of features which can be crisp, missing, interval, fuzzy values belonging (or not) to
the fuzzy partition of the feature. Furthermore, we allow the class feature to be set-
valued. These examples (according to the value of their features) have the following
treatment:
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Algorithm 2: FDecisionTree.
1: Input: E , Fuzzy Parti tion; Output: F DT
2: begin
3: Start with the examples in E with values χFuzzy_T ree,root (e) = 1 to all examples with a single class and replicate

the examples with set-valued class and initialize their weight according to the available knowledge about their class
4: Let A be the feature set (numerical features are partitioned according to Fuzzy Partition)
5: repeat
6: Choose a feature to the split at the node N
7: loop
8: Make a random selection of features from the set A
9: Compute the information gain for each selected feature using the values χFuzzy_T ree,N (e) of each e in node N

taking into account the function μsimil(e) for the cases required
10: Choose the feature such that information gain is maximal
11: end loop
12: Divide N in children nodes according to possible selected feature outputs in the previous step and remove it from

the set A. Let En be the dataset of each child node
13: until the stopping criteria is satisfied
14: end

• Each example e used in the training of the FDT t has assigned an initial value
χt,root (e). If an example has a single class this value is 1. If an example has a set-
valued class, it is replicated with a weight according to the available knowledge
about the classes.

• According to the membership degree of the example e to different fuzzy sets of
partition of a split based on a numerical feature:

– If the value of e is crisp, the example e may belong to one or two children
nodes, i.e., μ f uzzy_set_parti tion(e) > 0. In this case χt,childnode(e) = χt,node(e) ·
μ f uzzy_set_parti tion(e).

– If the value of e is a fuzzy value matching with one of the sets of the fuzzy
partition of the feature, e will descend to the child node associated. In this case,
χt,childnode(e) = χt,node(e).

– If the value of e is a fuzzy value different from the sets of the fuzzy partition of
the feature, or the value of e is an interval value, we use a similarity measure,
μsimil(·), that, given the feature “Attr” to be used to split a node, measures the
similarity between the values of the fuzzy partition of the feature and fuzzy
values or intervals of the example in that feature. In this case, χt,childnode(e) =
χt,node · μsimil(e).

– When the example e has a missing value, the example descends to each child
node nodeh , h = 1, . . . , Hi with a modified value proportionately to the weight
of each child node. Themodified value for each nodeh is calculate asχnodeh (e) =
χnode(e) · T χnodeh

T χnode
where T χnode is the sum of the weights of the examples with

known value in the feature i at node and T χnodeh is the sum of the weights of
the examples with known value in the feature i that descend to the node nodeh .

Fuzzy Random Forest Classification

The fuzzy classifiermodule operates on FDTs of the FRF ensemble using one of these
two possible strategies: Strategy 1—Combining the information from the different
leaves reached in each FDT to obtain the decision of each individual FDT and then
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Fig. 1 Framework of FRF-fs
Dataset Feature set

Ranking process of features

Feature subsets

Data preprocess

Obtaining subset of features

Pr
es

el
ec

ti
on

an
d 

R
an

ki
ng

O
pt

im
al

fe
at

ur
e

su
bs

et

W
R

A
PP

E
R

 M
E

T
H

O
D

FI
LT

E
R

 M
E

T
H

O
D

applying the same or another combination method to generate the global decision
of the FRF ensemble; and Strategy 2—Combining the information from all leaves
reached from all FDTs to generate the global decision of the FRF ensemble.

3.2 Fuzzy Random Forest for Feature Selection

The FRF-fs method [6] is classified as a hybrid method that combines the filter and
wrapper methods. The framework (Fig. 1) consists of main steps: (1) Scaling and dis-
cretization process of the feature set; and feature pre-selection using the discretization
process; (2) The feature pre-selection ranking process using information given by
Fuzzy Random Forest ensemble; and (3) Wrapper feature selection using a classifi-
cation technique. Starting from the ordered features, this wrapper method constructs
an ascending sequence of sets of candidate features, by invoking and testing the fea-
tures stepwise. The different feature subsets obtained by this process are evaluated
by a machine learning method. In each step, the method obtains information useful
to the user: pre-selected feature subset, feature subsets ranking and optimal feature
subset.

In the filter method, we use the method proposed in [8]. From the feature subset
and the dataset obtained with the filter method, we apply FRF method. Once FRF
ensemble has been obtained, we have all the information about each FDT. Algorithm
3 describes how information provided for each FDT of the ensemble is compiled and
used to measure the importance of each feature.

More specifically, the information we get from each FDT t for each feature a is
the following:

• Information gain of node N for the feature a (I G Na) where the feature a has been
selected as the best candidate to split it.
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• Depth level of node N (PNa)where feature a has been selected as the best candidate
to split it.

• Classification accuracy Acct of FDT t when classifying the dataset O O Bt .

Algorithm 3: INFFRF Information of the FRF.
1: Input: E , Fuzzy Parti tion, T N ; Output: I N F
2: begin
3: Building a Fuzzy Random Forest (Algorithm 1 - 3.1)
4: for each FDT t=1 to T N of the FRF ensemble do
5: Save the feature a chosen to split each node N , information gain of node, I G Na , and the depth of that node PNa ,

in I N Fa .
6: Obtain the classification accuracy Acct of the FDT t with its corresponding O O Bt dataset.
7: end for
8: end

Algorithm 4 details how the information I N F obtained from the FRF ensemble
is combined to obtain an importance measure of the features where pi is the weight
we assign to feature a depending on the place where it appears in the FDT t . After
the information is combined, the output of this algorithm is a matrix (I M P) where
for each FDT t and for each feature a, the importance value obtained in the FDT t
for the feature a is stored.

Algorithm 4: IMPFRF Combining information INF.

1: Input: I N F , T N ; Output: I M P
2: begin
3: for each FDT t=1 to T N do
4: for each feature a=1 to |Attr | do
5: for all nodes N where feature a appears do
6: if PNa = i then
7: I M Pta = I M Pta + pi · I G Na with i ≥ 0 and Prootnode = 0
8: end if
9: end for
10: for each feature a=1 to |Attr | do

11: I M Pta =
(

I M Pta−min(I M Pt )
max(I M Pt )−min(I M Pt )

)
· O O Bt

12: end for
13: The vector I M Pt is ordered in descending order, I M Ptσt , where σt is the permutation obtained when ordering

I M Pt
14: end for
15: end for
16: end

The idea behind the measure of importance of each feature is that it uses the
features of the FDTs obtained and the decision nodes built with them in the following
way. The importance of a feature is determined by its depth in a FDT. Therefore a
feature that appears on the top of a FDT is more important in that FDT than another
feature that appears in the lower nodes. And, a FDT that has a classification accuracy
greater than another to classify the corresponding OOB (dataset independent of the
training dataset) is a better FDT. The final decision is agreed by the information
obtained for all FDTs.
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As a result ofAlgorithm4,weobtain for eachFDTofFRFensemble an importance
ranking of features. Specifically, we will have T N importance rankings for each
feature a. Applying an operator OWA, we add them into one ranking. This final
ranking indicates the definitive importance of the features.

OWA operators (OrderedWeighted Averaging) were introduced by Yager in 1988
[22]. OWA operators are known as compensation operators. They are aggregation
operators of numerical information that consider the order of the assessments that
will be added. In our case, we have T N ordered sets. Given a weight vector W ,
the vector R AN K represents the ranking of the pre-selected feature subset and is
obtained as follows (the vector R AN K is ordered in descending order: R AN Kσ):

OW AI M Pt = W · I M Ptσt
, for t = 1, . . . , T N

R AN Ka =
T N∑
t=1

OW AI M Ptσt (a), for a = 1, . . . , |A|

3.3 Wrapper for Feature Final Selection

Once the ranking of the pre-selected feature subset, R AN Kσ , is obtained, we have
to find an optimal subset of features. One option to search the optimal subset is
by adding a single feature at a time following a process that uses R AN Kσ . The
several feature subsets obtained by this process are evaluated by a machine learning
method that supports low quality data (called Classi f ierL Q D) with a process of
cross-validation. The detailed process of the proposed wrapper method is shown in
Algorithm 5.

Starting from the ordered feature pre-selected, construct an ascending sequence of
FRF models, by invoking and testing the features stepwise. We perform a sequential
feature introduction in two phases:

• In the first phase two feature subsets are built: the feature subsets C Fbase and
C Fcomp. A feature fi is added to the C Fbase subset only if the decrease of the error
rate using the features of C Fbase ∪ { fi } subset exceeds a threshold δ1. The idea is
that the error decrease by adding fi must be significant for that feature to belong
to the C Fbase subset. If when we classify using the subset C Fbase ∪ { fi }, an error
decrease smaller than a threshold δ1 or an error increase smaller than a threshold
δ2 is obtained, fi becomes part of the subset C Fcomp.

• The second phase starts with both C Fbase and C Fcomp sets. We fix C Fbase and
add feature subgroups from C Fcomp to build several FRF models. This phase
determines the final feature set with minimum error according to the conditions
reflected on line 22 of Algorithm 5. These conditions are interpreted as “select the
subset that decrements the error in an amount over threshold δ3 or decrements the
error in an amount below δ3 but using a smaller number of features.”
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4 FRF and Tumor Classification

In this section we examine the performance of the FRF ensemble for classification
and feature selection from gene expression data.

4.1 Gene Expression Data

In this section, we describe the three datasets that we will analyze. The first dataset
involves comparing tumor and normal examples of the same tissue, the second one
involves examples from two variants of the same disease and the third one contains
measurements of the gene expression of cancer patients and healty men.

Algorithm 5: Wrapper method.
Input: E , candidate feature set C F and information system R AN Kσ ; Output: C Fopt selected feature set
begin
C Fcomp = {} and C Fbase = { f1} where f1 is the first feature of R AN Kσ
E R R1 = Classi f ier(E,C Fbase) using cross-validation, B E = E R R1
for each fi ∈ C F , with i = 2, . . . , |C F | in the order determined by R AN Kσ do

E R RB = Classi f ierL Q D (E,C Fbase ∪ { fi }) using cross-validation
if (B E − E R RB ) > δ1 then

C Fbase = C Fbase ∪ { fi }
else

if (E R RB − B E) < δ2 then
C Fcomp = C Fcomp ∪ { fi }

end if
end if

end for
C Faux = C Fbase
for each fi ∈ C Fcomp , with i = 1, . . . , |C Fcomp | in the order determined by R AN Kσ do

B = C Fbase , ST O P = 0, j = i
while (ST O P < δ2) and ( j ≤ |C Fcomp |) do

B = B ∪ { f j }
E R RB = Classi f ierL Q D (D, B) using cross-validation
if ((B E − E R RB ) ≥ δ3) or (0 ≤ (B E − E R RB ) < δ3 and |C Faux | > |B|) then

C Faux = B, B E = E R RB
else

if (E R RB − B E) > δ2 then
ST O P = (E R RB − B E)

end if
end if
j = j + 1

end while
end for
Return: C Fopt = C Faux
end

Colon Cancer, Leukemia and Prostate Datasets. Colon tumor is a disease in which
cancerous growths are found in the tissues of the colon epithelial cells. The Colon
dataset contains 62 examples. Among them, 40 tumor biopsies are from tumors
(labeled as “negative”) and 22 normal (labeled as “positive”) biopsies are from
healthy parts of the colons of the same patients. The final assignments of the status
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of biopsy examples were made by pathological examination. The total number of
genes to be tested is 2000 [1].

In the 1960s was provided the first basis for classification of acute leukemias
into those arising from lymphoid precursors (acute lymphoblastic leukemia, ALL)
or from myeloid precursors (acute myeloid leukemia, AML). The Leukemia dataset
is a collection of expression measurements reported by [16]. The dataset contains 72
examples. These examples are divided to two variants of leukemia: 25 examples of
acute myeloid leukemia (AML) and 47 examples of acute lymphoblastic leukemia
(ALL). The source of the gene expression measurements was taken from 63 bone
marrow examples and 9 peripheral blood examples. Gene expression levels in these
72 examples were measured using high density oligonucleotide microarrays. The
expression levels of 7129 genes are reported.

Prostate dataset contains gene expression data (6033 genes for 102 examples)
from the microarray study reported by [21]. The obtained results support the notion
that the clinical behavior of prostate cancer is linked to underlying gene expres-
sion differences that are detectable at the time of diagnosis. This dataset contains
measurements of gene expression of 52 prostate patients and 50 healty men.

4.2 Estimating Prediction Errors

We apply the cross-validation method to evaluate the prediction accuracy of the
classification method. To apply this method, we partition the dataset E into k sets
of examples, C1, . . . ,Ck . Then, we construct a data set Di = E − Ci , and test
the accuracy of a model obtained from Di on the examples in Ci . We estimate the
accuracy of the method by averaging the accuracy over the k cross-validation trials.

There are several possible choices of k. A common approach is to set k =number
of examples. This method is known as leave one out cross validation (LOOCV). We
will use the LOOCV method.

Althoughour purpose is not to compare the resultswith othermethods, as a sample,
in Table1 we show the accuracy estimates for the different methods applied to the
three datasets. The results obtained in [12, 14] are calculatedwith the0.632+bootstrap
method, and the Leukemia dataset has 38 examples and 3051 features.

Estimates of classification accuracy give only a partial insight on the performance
of a method. Also, we treat all errors as having equal penalty. In the problems we
handle, however, errors have asymmetricweights.We distinguish false positive error-
normal tissues classified as tumor, and false negative errors - tumor tissues classified
as normal. In diagnostic applications, false negative errors can be detrimental, while
false positives may be tolerated.

ROC curves are used to evaluate the “power” of a classification method for dif-
ferent asymmetric weights [4, 17]. Since the area under the ROC curve (denoted by
AUC) is a portion of the area of the unit square, its value will always be between 0.0
and 1.0.A realistic classifier should not have an AUC less than 0.5 (area under the
diagonal line between (0,0) and (1,1)). The AUC has an important statistical prop-
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Table 1 Accuracy of different methods on datasets

Colon Leukemia Prostate

Correct Unclassified Correct Unclassified Correct Unclassified

ClusteringA 88.70 0.00 – – – –

Nearest
neighborA

80.60 0.00 91.60 0.00 – –

SVM, linear
kernelA

77.40 9.70 93.00 5.60 – –

SVM, quad.
kernelA

74.20 11.30 94.40 4.20 – –

Boosting,
100 iter.A

72.60 9.70 95.80 1.40 – –

NN.vsB 84.20 0.00 94.40 0.00 91.9 0.00

RF.du
(s.e.=0)B

84.10 0.00 91.30 0.00 93.9 0.00

RF.geC 91.70 0.00 99.00 0.00 96.07 0.00

FRF 91.94 0.00 98.61 0.00 96.08 0.00

The results marked with A, B and C are obtained from [2, 12, 14], respectively

Table 2 Confusion matrixes obtained with FRF

Colon Leukemia Prostate

Actual value Actual value Actual value

1 0 ALL AML 1 0

Prediction 1 37 2 ALL 46 0 1 49 1

Outcome 0 3 20 AML 1 25 0 3 49

erty: the AUC of a classifier is equivalent to the probability that the classifier will
rank a randomly chosen positive instance higher than a randomly chosen negative
instance. This is equivalent to the Wilcoxon test of ranks [17].

The confusion matrixes obtained by applying FRF to the three datasets are shown
in Table2.

Confusion matrix of Colon dataset shows five errors, and a Specificity of 0.9091
and Sensibility of 0.9250. Confusion matrix of Leukemia dataset shows one error,
and a Specificity of 1.0 and Sensibility of 0.9787. Confusion matrix of Prostate
dataset shows four errors, and a Specificity of 0.98 and Sensibility of 0.9423.

ROC curves with all features are shown in Fig. 2 and AUC values for (a) Colon,
(b) Leukemia and (c) Prostate datasets are 0.9761, 0.9991 and 0.9983 respectively.
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(a) (b) (c)

Fig. 2 ROC curves with all/selected features

Table 3 Accuracy with/without selected features with FRF method

Dataset All features Sel. features

Correct Unclassified Correct Unclassified

Colon 91.40 0.00 93.55 0.00

Leukemia 98.61 0.00 98.61 0.00

Prostate 96.08 0.00 97.06 0.00

Table 4 Confusion matrixes obtained with FRF using selected features

Colon Leukemia Prostate

Actual value Actual value Actual value

1 0 ALL AML 1 0

Prediction 1 38 2 ALL 46 1 1 50 1

Outcome 0 2 20 AML 0 25 0 2 49

4.3 Gene Selection

It is clear that the expression levels of many of the genes in our datasets are irrelevant
to the distinction between tumors. Taking such genes into account during classifi-
cation increases the dimensionality of the classification problem, presents compu-
tational difficulties, and introduces noise to the process. Another issue with a large
number of genes is the interpretability of the results. If our methods to distinguish
tumor from normal tissues is encoded in the expression levels of few genes, then we
might be able to understand the biological significance of these genes.

Thus, it is crucial to recognize whether a small number of genes can suffice
for good classification. The gene expression datasets are problematic in that they
contain a large number of genes (features) and thus methods that search over subsets
of features can be expensive.Moreover, these datasets contain only a small number of
examples, so the detection of irrelevant genes can suffer from statistical instabilities.



376 J.M. Cadenas et al.

Table 5 Features ranking in datasets

Colon Leukemia Prostate

Ranking Fe. n. Ranking Fe. n. Ranking Fe. n.

1 35.6266 419 1 31.2849 3252 1 72.6306 2619

2 17.0359 765 2 30.1804 1882 2 12.9096 5016

3 15.6419 1635 3 30.1763 1834 3 8.1136 1881

4 13.5216 824 4 26.5833 4847 4 7.9227 1359

5 13.4986 1168 5 23.9430 2288 5 7.7503 4335

6 13.4898 513 6 13.5707 2354 6 6.3471 4183

7 9.6363 1772 7 13.1465 6041 7 5.1158 4087

8 7.2361 571 8 9.8707 6376 8 5.0216 4287

9 7.0409 1546 9 4.8665 4644 9 4.2499 3616

10 6.8134 1423 10 1.4004 3623 10 4.2361 4136

11 6.7085 1761 .. ..... ... 11 4.2223 3946

12 6.6085 1939 – – – 12 4.1510 3606

13 6.4989 1990 – – – .. ..... ...

14 5.9908 377 – – – – – –

15 4.6654 1668 – – – – – –

16 4.0917 1346 – – – – – –

17 3.1929 1586 – – – – – –

18 2.3743 548 – – – – – –

19 2.0175 474 – – – – – –

20 1.8373 802 – – – – – –

21 1.7315 1867 – – – – – –

.. ..... ... – – – – – –

Significance of a Gene and Ranking. The FRF-fs method [6] to feature selection
obtains a feature ranking based on an importance measurement of each feature,
and from that ranking, an optimal feature subset. The vector R AN K (see Sect. 3.2)
contains the importance measure of the features. In Table5 a portion of that ranking
of features and their importance values is shown.

Gene Prioritization in Cancer Data. In the final phase of the FRF-fs method [6]
an optimal feature subset is obtained.

In the Colon dataset the optimal feature subset is {419, 765, 824, 1168, 513, 1772,
571, 1546, 1423, 1761, 1939, 1990, 377, 1668, 1346, 1586, 548, 474, 802, 1867}.
In addition, to give more interpretability, FRF-fs method obtains a feature partition.
In Table6 the partition obtained for this optimal features subset is shown. The first
column shows the gene number while the second one shows the different partitions
for this gene.
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Table 6 Features partition in colon dataset

Fe.n. Partitions – –

377 (0,0,0.4046,0.5246) (0.4046,0.5246,1,1) –

419 (0,0,0.6981,0.7140) (0.6981,0.7140,0.7241,0.7256) (0.7241,0.7256,1,1)

474 (0,0,0.8360,0.9194) (0.8360,0.9194,1,1) –

513 (0,0,0.5625,0.5657) (0.5625,0.5657,1,1) –

548 (0,0,0.7852,0.9132) (0.7852,0.9132,1,1) –

571 (0,0,0.3579,0.4168) (0.3579,0.4168,1,1) 7 –

765 (0,0,0.4869,0.5655) (0.4869,0.5655,0.6270,0.6286) (0.6270,0.6286,0.63,0.63)

– (0.63,0.63,0.6543,0.6769) (0.6543,0.6769,0.7320,0.7667) (0.7320,0.7677,1,1)

802 (0,0,0.4227,0.7499) (0.4227,0.7499,1,1) –

824 (0,0,0.6009,0.6017) (0.6009,0.6017,0.6026,0.6033) (0.6026,0.6033,1,1)

1168 (0,0,0.5665,0.5793) (0.5665,0.5793,1,1) –

1346 (0,0,0.4839,0.5456) (0.4839,0.5456,1,1) –

1423 (0,0,0.8269,0.8730) (0.8269,0.8730,1,1) –

1546 (0,0,0.0792,0.3206) (0.0792,0.3206,0.4904,0.5156) (0.4904,0.5156,1,1)

1586 (0,0,0.9168,0.9753) (0.9168,0.9753,1,1) –

1668 (0,0,0.2804,0.6472) (0.2804,0.6472,1,1) –

1761 (0,0,0.5641,0.5764) (0.5641,0.5764,0.5784,0.5902) (0.5784,0.5902,1,1)

1772 (0,0,0.5156,0.5172) (0.5156,0.5172,1,1 –

1867 (0,0,0.5292,0.6251) (0.5292,0.6251,1,1) –

1939 (0,0,0.8908,0.8934) (0.8908,0.8934,1,1) –

1990 (0,0,0.1022,0.3066) (0.1022,0.3066,0.4484,0.5811) (0.4484,0.5811,1,1)

In the Leukemia dataset the optimal feature subset is {3252, 4847, 2288, 2354,
6041, 6376, 4644}. In Table7 the partition obtained for this optimal features subset
is shown.

In the Prostate dataset the optimal feature subset is {2619, 5016, 1881, 1359, 4335,
4183, 4087, 4287, 3616, 4136, 3946, 3606}. In Table8 the partition obtained for this
optimal features subset is shown.

Classifying with Selected Subsets. Now, the classification procedure is applied
using the training data restricted to the subset of selected genes.

In Table3 we show the accuracy estimates for FRF method applied to the three
datasets with/without the selected features.

The confusion matrixes obtained by applying FRF to the three datasets with the
selected features are shown in Table4.

Confusion matrix of Colon dataset shows four errors, and a Specificity of 0.9091
and Sensibility of 0.9500. Confusion matrix of Leukemia dataset shows one error,
and a Specificity of 0.9600 and Sensibility of 1.0. Confusion matrix of Prostate
dataset shows three errors, and a Specificity of 0.98 and Sensibility of 0.9615. ROC
curves are shown in Fig. 2. AUC values for Colon, Leukemia and Prostate are 0.9710,
0.9987 and 0.9954 respectively.
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Table 7 Features partition in Leukemia dataset

Fe.n. Partitions – –

2288 (0,0,0.0733,0.0835) (0.0733,0.0835,1,1) –

2354 (0,0,0.1451,0.1931) (0.1451,0.1931,1,1) –

3252 (0,0,0.0681,0.0706) (0.0681,0.0706,0.0738,0.0747) (0.0738,0.0747,1,1)

4644 (0,0,0.2425,0.2427) (0.2425,0.2427,1,1) –

4847 (0,0,0.2116,0.2157) (0.2116,0.2157,0.3479,0.3531) (0.3479,0.3531,1,1)

6041 (0,0,0.1937,0.1963) (0.1937,0.1963,0.2001,0.2037) (0.2001,0.2037,1,1)

6376 (0,0,0.1408,0.1422) (0.1408,0.1422,1,1) –

Table 8 Features partition in prostate dataset
Fe.n. Partitions – –

1359 (0,0,0.0662,0.0741) (0.0662,0.0741,1,1) –

1881 (0,0,0.4734,0.4959) (0.4734,0.4959,1,1) –

2619 (0,0,0.3212,0.3870) (0.3212,0.3870,0.4740,0.4818) (0.4740,0.4818,0.4873,0.4874)

(0.4873,0.4874,0.5001,0.5062) (0.5001,0.5062,0.5134,0.5139) (0.5134,0.5139,0.5192,0.5199)

(0.5192,0.5199,0.5801,0.5866) (0.5801,0.5866,1,1) –

3606 (0,0,0.1498,0.1540) (0.1498,0.1540,0.1558,0.1614) (0.1558,0.1614,1,1)

3616 (0,0,0.6545,0.6571) (0.6545,0.6571,0.6810,0.6830) (0.6810,0.6830,1,1)

3946 (0,0,0.9506,0.9573) (0.9506,0.9573,1,1) –

4087 (0,0,0.8361,0.8783) (0.8361,0.8783,1,1) –

4136 (0,0,0.4793,0.6177) (0.4793,0.6177,1,1) –

4183 (0,0,0.0173,0.0190) (0.0173,0.0190,1,1) –

4287 (0,0,0.0099,0.0100) (0.0099,0.0100,0.0101,0.0103) (0.0101,0.0103,1,1)

4335 (0,0,0.6304,0.6436) (0.6304,0.6436,0.7509,0.7889) (0.7509,0.7889,1,1)

5016 (0,0,0.3068,0.3075) (0.3068,0.3075,0.3098,0.3098) (0.3098,0.3098,0.3121,0.3134)

(0.3121,0.3134,0.3249,0.3376) (0.3249,0.3376,1,1) –

Following the methods proposed in [11, 17], we conclude that there are no signif-
icant differences between the results obtained when using all features or the selected
ones.

We can therefore conclude that the selection of features does not cause loss of
accuracy but significantly decreases the number of features.

5 Conclusions

In this paper we have applied a fuzzy decision tree ensemble to tumor datasets with
gene expression data.

On the one hand, we have applied the ensemble to the classification of examples
described by the set of all features.On the other hand,we have applied the ensemble to
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select a gene subset and to classify examples only described with the selected genes.
The classification accuracies, in both cases, are high. These results are validated
statistically by the ROC curve and AUC area.

When we work with a fuzzy decision tree ensemble, in addition to achieve good
results, these one are provided in a highly interpretable way.

As part of the solution, the method provides a partition of numerical features
of the problem and a ranking of importance of these features which permits the
identification of sets of genes that can serve as classification or diagnosis platforms.
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