
A Framework for Modelling Real-World
Knowledge Capable of Obtaining Answers
to Fuzzy and Flexible Searches

Víctor Pablos-Ceruelo and Susana Munoz-Hernandez

Abstract The Internet has become a place where massive amounts of informa-
tion and data are being generated every day. This information is most of the times
stored in a non-structured way, but the times it is structured in databases it cannot be
retrieved by using easy fuzzy queries: we need human intervention to determine how
the non-fuzzy information stored needs to be combined and processed to answer a
fuzzy query. We present a web interface for posing fuzzy and flexible queries and a
framework. Our framework allows to represent non-fuzzy concepts, fuzzy concepts
and relations between them, giving the programmer the capability to model any real-
world knowledge. It is this representation in the framework’s language what it uses
to (1) determine how to answer the query without any human intervention and (2)
provide the search engine with the information it needs to present the user a friendly
and easy to use query form. We expect this work contributes to the development of
more human-oriented fuzzy search engines.

Keywords Search engine · Fuzzy logic · Framework

This work is partially supported by research projects DESAFIOS10 (TIN2009-14599-C03-00)
funded by Ministerio Ciencia e Innovación of Spain, PROMETIDOS (P2009/TIC-1465) funded
by Comunidad Autónoma de Madrid and Research Staff Training Program (BES-2008-008320)
funded by the Spanish Ministry of Science and Innovation. It is partially supported too by the
Universidad Politécnica de Madrid entities Departamento de Lenguajes, Sistemas Informáticos
e Ingeniería de Software and Facultad de Informática.

V. Pablos-Ceruelo · S. Munoz-Hernandez (B)
The Babel Research Group, Facultad de Informática,
Universidad Politécnica de Madrid, Madrid, Spain
e-mail: susana@babel.ls.fi.upm.es
url: http://babel.ls.fi.upm.es

V. Pablos-Ceruelo
e-mail: vpablos@babel.ls.fi.upm.es

© Springer International Publishing Switzerland 2016
K. Madani et al. (eds.), Computational Intelligence,
Studies in Computational Intelligence 613,
DOI 10.1007/978-3-319-23392-5_16

281

282 V. Pablos-Ceruelo and S. Munoz-Hernandez

1 Introduction

Most of the real-world information is stored in non-fuzzy databases, but most of
the queries that we (human beings) wanna pose to a search engine are fuzzy. One
example of this is the databases containing the distance of some houses to the center
and the user query “I want a house close to the center”. Assuming that it is nonsense
to teach every search engine user how to translate the (almost always) fuzzy query the
user has in mind into a query that a machine can understand and answer, the problem
to be solved has two very different parts: recognition of the query and execution of
the recognized query.

The recognition of the query has basically two parts: syntactic and semantic
recognition. The first one has to be with the lexicographic form of the set of words
that compose the query and tries to find a query similar to the user’s one but more
commonly used. The objective with this operation is to pre-cache the answers for
the most common queries and return them in less time, although sometimes it serves
to remove typos in the user queries. An example of this is replacing “cars”, “racs”,
“arcs” or “casr” by “car”. The detection of words similar to one in the query is called
fuzzy matching and the decision to propose one of them as the “good one” is based
on statistics of usage of words and groups of words. The search engines usually ask
the user if he/she wants to change the typed word(s) by this one(s).

The semantic recognition is work still in progress and it is sometimes called
“natural language processing”. In the past search engines were tools used to retrieve
the web pages containing the words typed in the query, but today they tend to include
capabilities to understand the user query. An example is computing 4 plus 5 when
the query is “4+5” or presenting a currency converter when we write “euro dollar”.
This is still far away from our proposal: retrieving web pages containing “fast red
cars” instead of the ones containing the words “fast”, “red” and “car”.

The execution of the recognized query is the second part. Suppose a query like
“I want a restaurant close to the center”. If we assume that the computer is able to
“understand” the query then it will look for a set of restaurants in the database satis-
fying it and return them as answer, but the database does not contain any information
about “close to the center”, just the “distance of a restaurant to the center”. It needs
a mapping between the “distance” and the meaning of “close”, and this knowledge
must be stored somewhere.

One of the most successful programming languages for representing knowledge
in computer science is Prolog, whose main advantage with respect to the other ones is
being a more declarative programming language.1 Prolog is based on logic. It is usual
to identify logic with bi-valued logic and assume that the only available values are
“yes” and “no” (or “true” and “false”), but logic is much more than bi-valued logic.
In fact we use fuzzy logic (FL), a subset of logic that allow us to represent not only if

1We say that it is a more declarative programming language because it removes the necessity to
specify the flow control in most cases, but the programmer still needs to know if the interpreter
or compiler implements depth or breadth-first search strategy and left-to-right or any other literal
selection rule.

A Framework for Modelling Real-World Knowledge Capable … 283

Fig. 1 Restaurants database
and close fuzzification
function

0

1

close

100 1000 distance

an individual belongs or not to a set, but the grade in which it belongs. Supposing the
database contents, the definition for “close” in Fig. 1 and the question “Is restaurant X
close to the center?” with FL we can deduce that Il tempietto is “definitely” close
to the center, Tapasbar is “almost” close, Ni Hao is “hardly” close and Kenzo is
“not” close to the center. We highlight the words “definitely”, “almost”, “hardly”
and “not” because the usual answers for the query are “1”, “0.9”, “0.1” and “0” for
the individuals Il tempietto, Tapasbar, Ni Hao and Kenzo and the humanization of
the crisp values is done in a subsequent step by defuzzification.

Name Distance Price avg. Food type
Il_tempietto 100 30 Italian
Tapasbar 300 20 Spanish
Ni Hao 900 10 Chinese
Kenzo 1200 40 Japanese

The simplicity of the previous example introduces a question that the curious
reader might have in mind: “Does adding a column “close” of type float to the
database and computing its value for each row solves the problem?”. The answer is
yes, but only if our query is not modifiable: It does not help if we can change our
question to “I want a very close to the center restaurant” or to “I want a not very
close to the center restaurant”. Adding a column for each possible question results
into a storage problem, and in some sense it is unnecessary: all this values can be
computed from the distance value.

Getting fuzzy answers for fuzzy queries from non-fuzzy information stored in
non-fuzzy databases has been studied in some works, for example in [4], the SQLf
language. The Ph.D. thesis of Leonid Tineo [20] and the work of Dubois and Prade [6]
are good revisions, although maybe a little bit outdated. Most of the works mentioned
in this papers focus in improving the efficiency of the existing procedures, in including
new syntactic constructions or in allowing to introduce the conversion between the
non-fuzzy values needed to execute the query and the fuzzy values in the query,
for which they use a syntax rather similar to SQL (reflected into the name of the
one mentioned before). The advantages of using a syntax similar to SQL are many
(removal of the necessity to retrieve all the entries in the database, SQL programmers
can learn the new syntax easily, …) but there is an important disadvantage: the user
needs to teach the search engine how to obtain the fuzzy results from the non-fuzzy

284 V. Pablos-Ceruelo and S. Munoz-Hernandez

values stored in the database to get answers to his/her queries and this includes
that he/she must know the syntax and semantics of the language and the structure
of the database tables. This task is the one we try to remove by including in the
representation of the problem the knowledge needed to link the fuzzy knowledge
with the non-fuzzy one.

To include the links between fuzzy and non-fuzzy concepts we could use any
of the existing frameworks for representing fuzzy knowledge. Leaving apart the
theoretical frameworks, as [22], we know about the Prolog-Elf system [8], the FRIL
Prolog system [1], the F-Prolog language [9], the FuzzyDL reasoner [2], the Fuzzy
Logic Programming Environment for Research (FLOPER) [15], the Fuzzy Prolog
system [7, 21], or Rfuzzy [17]. All of them implement in some way the fuzzy set
theory introduced by Lotfi Zadeh in 1965 [23], and all of them let you implement
the connectors needed to retrieve the non-fuzzy information stored in databases, but
we needed more meta-information than the one they provide.

Retrieving the information needed to ask the query is part of the problem but,
as introduced before, it is needed to determine what the query is asking for before
answering it. Instead of providing a free-text search field and recognize the query we
do it in the other way: we did an in-depth study on which are all the questions that
we can answer from the knowledge stored in our system and we created a general
query form that allows to introduce any of this questions. This is why in Sect. 3 we
do not only present the semantics of our syntactic constructions, but the information
that helps us to instantiate the general query form for each domain.

To our knowledge, the works similar to ours are [3, 5, 19]. While the last two seem
to be theoretical descriptions with no implementation associated the first one does not
appear to be a search engine project. They provide a natural language interface that
answers queries of the types (1) does X (some individual) have some fuzzy property,
for example “Is it true that IBM is productive?”, and (2) do an amount of elements
have some fuzzy property, for example “Do most companies in central Portugal have
sales_profitability?”.

The paper is structured as follows: the syntax needed to understand it goes first
(Sect. 2), the description of our framework after (Sect. 3) and conclusions and current
work in last place (Sect. 4), as usual.

2 Syntax

We will use a signature Σ of function symbols and a set of variables V to “build”
the term universe TUΣ,V (whose elements are the terms). It is the minimal set such
that each variable is a term and terms are closed under Σ-operations. In particular,
constant symbols are terms. Similarly, we use a signature Π of predicate symbols to
define the term base TBΠ,Σ,V (whose elements are called atoms). Atoms are predi-
cates whose arguments are elements of TUΣ,V . Atoms and terms are called ground
if they do not contain variables. As usual, the Herbrand universe HU is the set of all
ground terms, and the Herbrand base HB is the set of all atoms with arguments from

A Framework for Modelling Real-World Knowledge Capable … 285

the Herbrand universe. A substitution σ or ξ is (as usual) a mapping from variables
from V to terms from TUΣ,V and can be represented in suffix ((Term)σ) or in prefix
notation (σ(Term)).

To capture different interdependencies between predicates, we will make use of
a signature Ω of many-valued connectives formed by conjunctions &1, &2, . . . , &k ,
disjunctions ∨1,∨2, . . . ,∨l , implications ←1,←2, . . . ,←m , aggregations @1, @2,

. . . , @n and tuples of real numbers in the interval [0, 1] represented by (p, v).
While Ω denotes the set of connective symbols, Ω̂ denotes the set of their respec-

tive associated truth functions. Instances of connective symbols and truth functions
are denoted by &i and &̂i for conjunctors, ∨i and ∨̂i for disjunctors, ←i and ←̂i for
implicators, @i and @̂i for aggregators and (p, v) and ˆ(p, v) for the tuples.

Truth functions for the connectives are then defined as &̂ : [0, 1]2 → [0, 1]
monotone2 and non-decreasing in both coordinates, ∨̂ : [0, 1]2 → [0, 1] monotone
in both coordinates, ←̂ : [0, 1]2 → [0, 1] non-increasing in the first and non-
decreasing in the second coordinate, @̂ : [0, 1]n → [0, 1] as a function that verifies
@̂(0, . . . , 0) = 0 and @̂(1, . . . , 1) = 1 and (p, v) ∈ Ω(0) are functions of arity 0
(constants) that coincide with the connectives.

Immediate examples for connectives that come to mind for conjunctors are: in
Łukasiewicz logic (F̂(x, y) = max(0, x + y − 1)), in Gödel logic (F̂(x, y) =
min(x, y)), in product logic (F̂(x, y) = x · y), for disjunctors: in Łukasiewicz logic
(F̂(x, y) = min(1, x + y)), in Gödel logic (F̂(x, y) = max(x, y)), in product logic
(F̂(x, y) = x · y), for implicators: in Łukasiewicz logic (F̂(x, y) = min(1, 1 − x +
y)), in Gödel logic (F̂(x, y) = yifx > yelse1), in product logic (F̂(x, y) = x ·y) and
for aggregation operators3: arithmetic mean, weighted sum or a monotone function
learned from data.

3 The Framework in Detail

As stated in the introduction, the framework we present provides (1) the syntax
needed to model any knowledge domain and (2) an enough expressive syntactical
structure for representing any query we can answer with the information stored
in the system. We can view it as the sum of three parts: (1) a configuration file
(CF) that defines the fuzzy and non-fuzzy concepts of our domain and the relations
between them, (2) a framework that understands the CF and provides (2.1) the search
capabilities and (2.2) the metainformation that the web application needs to present
the user the tools he/she needs to pose the query and (3) a web application that
(3.1) reads the metainformation, (3.2) determines the framework capabilities, (3.3)

2As usually, a n-ary function F̂ is called monotonic in the idefine-th argument (i ≤ n), if x ≤ x ′
implies F̂(x1, . . . , xi−1, x, xi+1, . . . , xn) ≤ F̂(x1, . . . , xi−1, x ′, xi+1, . . . , xn) and a function is
called monotonic if it is monotonic in all arguments.
3Note that the above definition of aggregation operators subsumes all kinds of minimum, maximum
or mean operators.

286 V. Pablos-Ceruelo and S. Munoz-Hernandez

generates an easy to use human-oriented interface for posing queries to the search
engine and (3.4) shows the answers found by the framework to the user.

The syntactical structure we use to query the search engine has been defined
after studying multiple user queries. It comprises all of them (sometimes with small
modifications) while trying to be as expressive as possible and has the form

I ′m looking f or a/an individual{
not quantifier fuzzy-pred

whose non-fuzzy-pred comp-op value

}
AND

(1)

where individual is the element we are looking for (car, skirt, restaurant, …),
quantifier is a quantifier (quite, rather, very, …), fuzzy-pred is a fuzzy predicate
(cheap, large, close to the center, …), non-fuzzy-pred is a non-fuzzy predicate (price,
size, distance to the center, …) and comp-op is a comparison operand (is equal to, is
different from, is bigger than, is lower than, is bigger than or equal to, is lower than
or equal to and is similar to). The elements in boxes can be modified and the brackets
symbolize choosing between a fuzzy predicate query or a comparison between non-
fuzzy values (which can be a fuzzy comparison). The “AND” serves to add more
lines to the query, to combine multiple conditions. Some examples of use are “I’m
looking for a restaurant not very near the city center” (Eq. 2), “I’m looking for a
restaurant whose food type is mediterranean” (Eq. 3) and “I’m looking for a restau-
rant whose food type is similar to mediterranean and near the city center” (Eq. 4).
In the examples the empty boxes mean that we do not choose any of the available
elements.

I ′m looking f or a/an restaurant

not very near the city center (2)

I ′m looking f or a/an restaurant

whose food type is mediterranean (3)

I ′m looking f or a/an restaurant

whose food type is similar to

mediterranean
near the city center

AND (4)

The syntax that we provide to model any knowledge domain is highly coupled
to the information that we need to retrieve for providing the values for “individual”,
“not”, “quantifier”, “fuzzy-pred”, “non-fuzzy-pred”, “comp-op” and “value”, and

A Framework for Modelling Real-World Knowledge Capable … 287

to present the answers in a human-readable way. This is why when we provide its
semantics we do it in two ways: by providing the formal ones and by providing
what the web interface understands from them. We present first a brief but, for our
purposes, complete introduction to the multi-adjoint semantics with priorities that we
use to give formal semantics to our syntactical constructions. For a more complete
description we recommend reading the papers cited below.

The structure used to give semantics to our programs is the multi-adjoint algebra,
presented in [10–14, 16]. The interest in using this structure is that we can obtain the
credibility for the rules that we write from real-world data, although this time we do
not focus in that advantage. We simply highlight this fact so the reader knows why
this structure and not some other one.

This structure provides us with the basis, but for our purposes we need that the max-
imum operator used to decide between multiple rules results the valid one chooses
the value of the less generic rule instead of just the higher value. This is why we
take as point of departure the work [18]. Definitions needed to understand the formal
semantics are given in advance, as usually.

In [18] the meaning of a fuzzy logic program gets conditioned by the combination
of a truth value and a priority value. So, the usual truth value v ∈ [0, 1] is converted
into (p, v) ∈ Ω(0), a tuple of real numbers between 0 and 1 where p ∈ [0, 1] denotes
the (accumulated) priority. The usual representation (p, v) is sometimes changed
into (pv) to highlight that the variable is only one and it can take the value ⊥. The
set of all possible values is symbolized by KT and the ordering between its elements
is defined as follows:

Definition 1 (� KT)

⊥ � KT ⊥ � KT (p, v)

(p1, v1) � KT (p2, v2) ↔ (p1 < p2) or (p1 = p2 and v1 ≤ v2) (5)

where < is defined as usually (vi and p j are just real numbers between 0 and 1).

Definition 2 (Multi-Adjoint Logic Program) A multi-adjoint logic program is a set
of clauses of the form

A
(p, v), &i←−−−−− @ j (B1, . . . , Bn) if COND (6)

where (p, v) ∈ KT, &i is a conjunctor, @ j an aggregator (unnecessary if k ∈ [1..1]),
A and Bk , k ∈ [1..n], are atoms and C O N D is a first-order formula (basically a bi-
valued condition) formed by the predicates in TBΠ,Σ,V , the predicates =,
=, ≥, ≤,
> and < restricted to terms from TUΣ,V , the symbol true and the conjunction ∧ and
disjunction ∨ in their usual meaning.

Definition 3 (Valuation, Interpretation) A valuation or instantiation σ : V → HU
is an assignment of ground terms to variables and uniquely constitutes a mapping
σ̂ : TBΠ,Σ,V → HB that is defined in the obvious way.

288 V. Pablos-Ceruelo and S. Munoz-Hernandez

A fuzzy Herbrand interpretation (or short, interpretation) of a fuzzy logic program
is a mapping I : HB → KT that assigns an element in our lattice to ground atoms.4

It is possible to extend uniquely the mapping I defined on HB to the set of all
ground formulas of the language by using the unique homomorphic extension. This
extension is denoted Î and the set of all interpretations of the formulas in a program
P is denoted IP.

Definition 4 (The operator ◦) The application of some conjunctor &̄ (resp. implica-
tor ←̄, aggregator @̄) to elements (p, v) ∈ KT\{⊥} refers to the application of the
truth function &̂ (resp. ←̂, @̂) to the second elements of the tuples while ◦& (resp.
◦←, ◦&) is the one applied to the first ones. The operator ◦ is defined by

x ◦& y = x + y

2
and z ◦← y = 2 ∗ z − y.

Definition 5 (Satisfaction, Model) Let P be a multi-adjoint logic program, I ∈ IP

an interpretation and A ∈ HB a ground atom. We say that a clause Cli ∈ P of the
form shown in Eq. 6 is satisfied by I or I is a model of the clause Cli (I � Cli) if
and only if (iff) for all ground atoms A ∈ HB and for all instantiations σ for which
Bσ ∈ HB (note that σ can be the empty substitution) it is true that

Î (A) � KT (p, v) &̄i @̄i (Î (B1σ), . . . , Î (Bnσ)) (7)

whenever COND is satisfied (true). Finally, we say that I is a model of the program P
and write I � P iff I � Cli for all clauses in our multi-adjoint logic program P.

Now that we have introduced the basics of our formal semantics we introduce the
syntax, semantics and what the web interface interprets from them.

The first and most important syntactic structure is the one used to define the
individuals we can play with, as “restaurants” or “houses” in the previous examples.
Since the database tables storing the information of an individual can be more than
one we decided to allow the programmer to use the Prolog facilities for mixing all
the information into a predicate and we depart from this predicate. This means that
if we have two tables for storing the information of a restaurant, one for the “food
type” (ft) and another for the “distance to the city center” (dttcc) we can write the
lines in Eqs. 8–12 to obtain all the information about a restaurant. If instead of that
we have all the information of a restaurant in just one table we can make use of the
code in Eqs. 13 and 14.

4The domain of an interpretation is the set of all atoms in the Herbrand Base (interpretations are total
functions), although for readability reasons we present interpretations as sets of pairs (A, (p, v))

where A ∈ HB and (p, v) ∈ KT\{⊥} (we omit those atoms whose interpretation is the truth
value ⊥).

A Framework for Modelling Real-World Knowledge Capable … 289

sql_persistent_location(r f t, db(′SQL ′, user, pass, ′host ′ : port)). (8)

: −sql_persistent (r f t (integer, string), r f t (id, f t), r f t). (9)

sql_persistent_location(rdttcc, db(′SQL ′, user, pass, ′host ′ : port)).
(10)

: −sql_persistent (rdttcc(integer, integer), rdttcc(id, dttcc), rdttcc).
(11)

restaurant (id, f t, dttcc) : −r f t (id, f t), rdttcc(id, dttcc). (12)

sql_persistent_location(restaurant, db(′SQL ′, user, pass, ′host ′ : port)).
(13)

: −sql_persistent (restaurant (integer, string, integer, integer),

restaurant (id, f t, yso, dttcc), restaurant). (14)

Once we have all the information accessible we use the syntactical structure in
Eq. 15 to define our virtual database table (vdbt), where pT is the name of the vdbt
(the individual or subject of our searches), pA is the arity of the predicate or the
vdbt, pN is the name assigned to a column of the vdbt pT and pT′ is a basic type,5

one of {boolean_t ype, enum_t ype, integer_t ype, f loat_t ype, string_t ype}. We
provide an example in Eq. 16 to clarify, in which the restaurant vdbt has five columns
(or the predicate has five arguments), the first for the unique identifier given to each
restaurant (its name), the second for the food type served there, the third for the
number of years since its opening, the fourth for the restaurant’s price average and
the last one for the distance to the city center from that restaurant.

de f ine_database(pT/p A, [(pN , pT ′)]) (15)

de f ine_database((id, string_t ype), (f ood_t ype, enum_t ype),

(years_since_opening, integer_t ype),

(price_average, integer_t ype),

(distance_to_the_ci ty_center, integer_t ype)]). (16)

This syntactical construction has no formal semantics because it is just for defin-
ing the input data, but it provides a lot of information to the web interface and
setters/getters that can be used in the programs. We go first for the setters/getters.
For each column defined for a vdbt the framework builds for us a setter/getter to
store/access the information in/of each cell in the database. The cell selected gets
fully determined by the predicate name (the one given to the column) and its first
argument. For example, by writing the line in Eq. 16 the framework defines for us the

5Please note that the types in our framework are not the same as the types used in Eqs. 8–14.
Nevertheless, our types are subsets of this ones. We justify in the paragraph below this one why we
need this fine-grained type control.

290 V. Pablos-Ceruelo and S. Munoz-Hernandez

predicates id(R, I d), f ood_t ype(R, FoodT ype), years_since_opening(R, Y ears),
price_average(R, Price) and distance_to_the_ci ty_center(R, Dttcc). Each one
serves to set/obtain the value in/from the database cell corresponding to the row
of restaurant R and the column with the same name as the predicate used (id,
f ood_t ype, years_since_opening, price_average and distance_to_the
_ci ty_center). With respect to the web interface, the framework notifies to it that we
have a new value for the field “individual” (the value in pT, restaurant in the example),
a list of values for non-fuzzy-pred (id, food type, years since opening, price average
and distance to the city center) and their types (string_type, enum_type, integer_type,
integer_type, integer_type). In addition to this explicit information the web interface
itself is capable of deriving from the type of each column the values that it can show
in comp-op. We show them in the table below. It is even able to detect in some cases
that it must ask the framework for the values of some field, as in the case of the
selection for the field comp-op the value “is similar to”.

Type Values for comp-op
string_t ype “is equal to” and “is different

from”
enum_t ype “is equal to”, “is different

from” and “is similar to”
interger_t ype “is equal to”, “is different

from”, “is bigger than”, “is
lower than”, “is bigger than
or equal to” and “is lower
than or equal to”

The second syntactical construction is the one used to define similarity between
the individuals of enum_t ype. It is shown in Eq. 17, where pT and pN mean the
same as in Eq. 15, V 1 and V 2 are possible values for the column pN of the vdbt pT,
column that must be of type enum_t ype, and TV is the truth value (a float number
between 0 and 1) we assign to the similarity between V 1 and V 2. We show an
example in Eq. 20, in which we say that the food type mediterranean is 0.7 similar
to the spanish food.6 The syntactical constructions in Eqs. 18 and 19 are optional
tails for the syntactical construction in Eq. 17. Since they can appear too as tails of
the constructions in Eqs. 17, 23, 27, 31, 32 and 36, we dedicate some paragraphs
(just after this one) to explain how the semantics of the constructions change when
they are used. With respect to the semantics of Eq. 17, we show them in Eq. 21. For
the variables in common we take the values written using the new syntax, while for
p, v, &i and COND we have by default7 the values 0.8, 1, product and true. We
show in Eq. 22 the translation of the example in Eq. 20 for the reader to see how the

6Be careful, we are not saying that the spanish food is 0.7 similar to the mediterranean one. You
need to add another clause with that information if you wanna say that too.
7The meaning of this “by default” is explained too in the paragraphs after this one.

A Framework for Modelling Real-World Knowledge Capable … 291

translation is done in practice. This construction does not provide any information
to the web interface.

similari t y_between(pT, pN (V 1), pN (V 2), T V) (17)

wi th_credibili t y(cred Op, credV al) (18)

only_ f or_user ′User Name′ (19)

similari t y_between(restaurant, f ood_t ype(mediterranean),

f ood_t ype(spanish), 0.7) (20)

similari t y(pT (pN (V 1, V 2)))
(p, v), &i←−−−−− T V if C O N D (21)

similari t y(restaurant (f ood_t ype(mediterranean, spanish)))
(0.8, 1), prod←−−−−−−−

0.7 if true
(22)

As outlined in the previous paragraph, the constructions in Eqs. 18 and 19 can be
used as tails for the constructions in Eqs. 17, 23, 27, 31, 32 and 36. There is another
construction that can be used as tail, the one in Eq. 24, but only for the constructions
in Eqs. 23, 27, 31, 32 and 36. This three constructions are meant to change slightly
the semantics of the original constructions when they appear as their tails, which is
done by modifying at least one of the values given “by default” to the variables p, v,
&i and COND. We explain each case separately.

The tail in Eq. 18 serves to (re)define the credibility of a clause, together with
the operator needed to combine it with its truth value. In its syntactic definition in
Eq. 18 credVal is the credibility, a number of float type, and credOp is the operator,
any conjunctor having the properties defined in Sect. 2. When we use it the values
for v and &i (usually 1 and product) are changed by the values given to the variables
credVal and credOp.

The tail in Eq. 19 is aimed at defining personalized rules, rules that only apply
when the name of the user logged in and the user name in the rule are the same one. In
the construction Username is the name of any user, a string. When we use it the value
of COND is replaced8 by COND ∧ currentUser(Me) ∧ Me = ′User Name′9
and the value for p gets increased by 0.1. While the first change is to ensure that
the rule is only used when the logged user is the selected user, the second one is
to ensure that, when the logged user is the selected user, this rule (considered to be
more specialized for the selected user) is chosen before another rule not having this
specialization.

The tail in Eq. 24 (not applicable to the construction in Eq. 17) serves to limit
the individuals for which we wanna use the fuzzy clause or rule. In the construc-
tion pN and pT mean the same as in Eq. 15, cond can take the values is_equal_to,

8Please note that we not remove the original condition, so we can combine conditions introduced
by the semantics of a clause with the conditions introduced by one or more tails.
9We use indistinctively ’,’ and ∧ because the first one is the Prolog symbol for conjunction.

292 V. Pablos-Ceruelo and S. Munoz-Hernandez

is_di f f erent_ f rom, is_bigger_than, is_lower_than, is_bigger_than_
or_equal_to and is_lower_than_or_equal_to and value can be of type integer_
t ype, enum_t ype or string_t ype. The only restrictions are that the type of value
must be the same as the one given to to the column pN of pT and that if they are of
type enum_t ype or string_t ype the only available values for cond are is_equal_to
and is_di f f erent_ f rom. When we use this tail construction the value of COND is
changed by COND∧(pN (I ndividual) condvalue), where I ndividual is basically
a vdbt row (of type pT), and the value for p gets increased by 0.05.

The first tail construction, the one in Eq. 18, is aimed at changing the clause credi-
bility. This is why it only changes the credibility value and the credibility operator in
the “by default” semantics (of the clause in which it appears as tail). On the contrary
the tails constructions in Eqs. 19 and 24 have as purpose increasing the specialization
of the clause. The first one defines that the user prefers the results of this clause to the
results of any other clause and the second one defines that, for the subset of individ-
uals of our clause domain delimited by the condition, we prefer the results provided
by this clause to the results provided by any other clause. This justifies in part the
increasing of the value of p by 0.1 when the clause contains the tail in Eq. 19 and by
0.05 when it is the one in Eq. 24. The missing part, the cause of defining different
values for each, comes from a design decision: when choosing between the results
of a personalized clause and the ones of a clause defined for a subset of individuals
we prefer the first ones. Furthermore, the use of one of the tails’ constructions does
not disallow the use of the other ones, so we can have personalized rules for a subset
of individuals of the clause’s domain. And with a defined credibility.

The third construction (shown in Eq. 23) is the one used to define the result of a
fuzzy predicate (fPredName) when this one is applied to an individual in the selected
vdbt (pT). It serves to define the rare situation in which for all the individuals in
the vdbt we have the same result and, when the construction in Eq. 24 appears as its
tail, for subsets of the set of individuals in the vdbt. In Eq. 23 the variables pT and
TV mean the same as in Eqs. 15 and 17 and fPredName is the fuzzy predicate we
are defining. Equation 25 is an example of use in which we say that the restaurant
with id Zalacain is cheap with a truth value of 0.1. The formal semantics for this
construction are shown in Eq. 26, where Individual is a variable representing the vdbt
individual for which the clause will be computed (a restaurant in the example). The
default values for p, v, &i and COND are the values 0.8, 1, product and true. From
the point of view of the interface, the inclusion of a new fuzzy predicate is taken
into account and a new predicate appears in the list of predicates from which we can
choose one for the field fuzzy-pred (see Eq. 1).

f Pred Name(pT) :∼ value(T V) (23)

i f (pN (pT) cond value). (24)

cheap(restaurant) :∼ value(0.1)

i f (id(restaurant) is_equal_to zalacain). (25)

f Pred Name(I ndividual)
(p, v), &i←−−−−− T V if C O N D (26)

A Framework for Modelling Real-World Knowledge Capable … 293

The fourth construction serves to define fuzzifications, the computation of fuzzy
values for fuzzy predicates from the non-fuzzy value that the individual has in some
column in the database. The syntax is presented in Eq. 27, where pN and pT mean
the same as in Eq. 15, fPredName is the name of the fuzzy predicate that we are
defining (the fuzzification), [(val I n, val Out)] is a list of pairs of values such that
val I n belongs to the domain of the fuzzification and val Out to its image.10 An
example in which we compute how much traditional is a restaurant from the number
of years since its opening is presented in Eq. 28. The formal semantics for this con-
struction are shown in Eq. 29, but only for one sequence of two contiguous points11

(val I n1, val Out1)(val I n2, val Out2) in Eq. 27. The default values for p, v, &i

and COND are the values 0.6, 1, product and the COND′ in Eq. 30. This value for
COND, COND′, serves to limit the domain of the generated clause. Since we generate
one clause for each piece of the piecewise function we use COND′ to ensure that we
use the clause designated for the piece our input value belongs to. The web interface
assumes that fuzzification functions are fuzzy predicates, so it includes them in the
list of available predicates for the field fp (see Eq. 1) when they are not there yet.

f Pred Name(pT) :∼ f unction(pN (pT), [(val I n, val Out)]) (27)

traditional(restaurant) :∼ f unction(years_since_opening(restaurant),

[(0, 0), (5, 0.1), (10, 0.4), (15, 1), (100, 1)]). (28)

f Pred Name(I ndividual)
(p, v), &i←−−−−−− pN (I ndividual) ∗ (val Out_2 − val Out_1)

(val I n_2 − val I n_1)

if COND (29)

COND′ = (val I n_1 < pN (I ndividual) ≤ val I n_2) (30)

The fifth syntactical construction is for defining rules and has two forms, one
used when the body depends on more than one subgoal, shown in Eq. 31, and one
used when it depends in just one subgoal, shown in Eq. 32. In Eq. 31 aggr is the
aggregator used to combine the truth values of the subgoals in complexBody, which
is just a conjunction of names of fuzzy predicates (and the vdbt they are associated to,
represented by pT), while in Eq. 32 simplexBody is just the name of a fuzzy predicate.
In both of them pT means the same as in Eq. 15 and fPredName the same as in
Eq. 27. We show an example in Eq. 35. The formal semantics for this constructions
are respectively shown in Eqs. 33 and 34 and the default values for p, v, &i and
COND are the values 0.4, 1, product and true. With respect to what the web interface
receives from this syntactic structure, it considers fuzzy rules as fuzzy predicates,
and it always includes fuzzy predicates in the list of available predicates for the field
fp (see Eq. 1) when they are not there yet.

10[(val I n, val Out)] is basically a piecewise function definition, where each two contiguous points
represent a piece.
11This “only for one sequence of two contiguous points” means that we generate one clause of the
form in Eq. 29 for each piece defined by two contiguous points.

294 V. Pablos-Ceruelo and S. Munoz-Hernandez

f Pred Name(pT) :∼ rule(aggr, complex Body) (31)

f Pred Name(pT) :∼ rule(simpleBody) (32)

f Pred Name(I ndividual)
(p, v), &i←−−−−− aggr(complex Body) if COND (33)

f Pred Name(I ndividual)
(p, v), &i←−−−−− simplex Body if COND (34)

tempting_restaurant (restaurant) :∼ rule(min, (near_the_ci ty_center(restaurant),

cheap(restaurant))) (35)

The sixth syntactical construction is the one used to define default values for
fuzzy computations. Its main goal is to avoid that the inference process stops when a
needed value is missing and it is really useful when a database can have null values.
The syntactic form is presented in Eq. 36, where pT means the same as in Eq. 15 and
f Pred Name the same as in Eq. 27. We provide two examples in Eqs. 37 and 38 in
which we say that, in absence of information, we consider that a restaurant will not
be close to the city center (this is what the zero value means) and that, in absence of
information, a restaurant is considered to be medium cheap.12 The formal semantics
for this constructions are shown in Eq. 39 and the default values for p, v, &i and
COND are the values 0, 1, product and true. With respect to what the web interface
receives from this syntactic structure, the syntactic construction for defining default
values is translated as a fuzzy predicate and the web interface always includes fuzzy
predicates in the list of available predicates for the field f p (see Eq. 1) when they are
not there yet.

f Pred Name(pT) :∼ de f aults_to(T V) (36)

near_the_ci ty_center(restaurant) :∼ de f aults_to(0). (37)

cheap(restaurant) :∼ de f aults_to(0.5). (38)

f Pred Name(I ndividual)
(p, v), &i←−−−−− T V if COND (39)

The six constructions defined before and their semantics orchestrate the intended
meaning we wanna give to our programs. We summarize in the table below the
values given to the variables p, v, &i and COND when no tail is attached to the
no-tail constructions and explain now the reasons for choosing the values that appear
there. For the variables v and &i we assign by default the values 1 and product. We
have chosen this values due to the fact that multiplying by one a number (the rule’s
truth value) results always in the same number: it does not affect the clause’s result.
Their value is only changed when the construction in Eq. 18 is used as tail, which
means that the programmer wants to change the default credibility of the clause.
The variable COND has as goal avoiding the clause from obtaining results when the

12We include two examples here so if one builds a program by taking all the examples in the
contribution the rule in Eq. 35 does not fail to obtain answers because it has not enough information
to infer results.

A Framework for Modelling Real-World Knowledge Capable … 295

condition is not satisfied. The only construction that needs by default this behaviour
is the fuzzification, as explained before. For the other constructions we assign by
default the value true and modify it when any of the constructions in Eqs. 19 and 24
appears as tails, which affects too to the value of the variable p. The value given to
the variable p is used to decide when more than one rule returns results which ones
are the valid ones. The only restriction in the selection of its default value is that its
range of values is [0, 1]. Since the tails’ constructions in Eqs. 19 and 24 can add to
it a maximum of 0.15 our default value for p must be always below or equal to 0.85
to ensure that we satisfy the restriction.

Construction p v &i COND
Similarity between
individuals

0.8 1 Product True

Fuzzy value 0.8 1 Product True
Fuzzification
function

0.6 1 Product COND′

Fuzzy rule 0.4 1 Product True
Default fuzzy
value

0 1 Product True

4 Conclusions

We present a framework for modelling the real world knowledge and a web inter-
face for posing fuzzy and flexible queries. As introduced before, the first one has
a syntax (and its semantics) with which we can capture the relations between the
fuzzy and non-fuzzy knowledge of any domain (inclusive the linking of information
from databases with real-world fuzzy concepts) and feed the search engine with the
information it needs to provide a friendly and easy to use user interface. The search
engine main advantage over the existing ones just derives from this: we avoid the
necessity to learn a complex syntax to just pose (fuzzy) queries. This, joint with
the possibility to include Prolog code (for complex tasks) makes our framework a
very powerful tool for representing the real world and answering questions about it.
A link to a beta version of our flexible search engine (with example programs, the
possibility to upload new ones, etc.) is available at our web page.

Our current research focus on deriving similarity relations from the modelization
of a problem in our framework’s language. In this way we could, for example, derive
from the RGB composition of two colors their similarity relation.

296 V. Pablos-Ceruelo and S. Munoz-Hernandez

References

1. Baldwin, J.F., Martin, T.P., Pilsworth, B.W.: Fril—Fuzzy and Evidential Reasoning in Artificial
Intelligence. Wiley, New York (1995)

2. Bobillo, F., Straccia, U.: FuzzyDL: an expressive fuzzy description logic reasoner. In: 2008
International Conference on Fuzzy Systems (FUZZ-08), pp. 923–930. IEEE Computer Society
(2008)

3. Bordogna, G. Pasi, G.: A fuzzy query language with a linguistic hierarchical aggregator. In:
Proceedings of the 1994 ACM Symposium on Applied computing, SAC’94, pp. 184–187.
ACM, New York (1994)

4. Bosc, P., Pivert, O.: SQLF: a relational database language for fuzzy querying. IEEE Trans.
Fuzzy Syst. 3(1), 1–17 (1995)

5. Bosc, P., Pivert, O.: On a strengthening connective for flexible database querying. In: 2011
IEEE International Conference on Fuzzy Systems (FUZZ), pp. 1233–1238 (2011)

6. Dubois, D., Prade, H.: Using fuzzy sets in flexible querying: why and how? In: Andreasen, T.,
Christiansen, H., Larsen, H.L. (eds.) Flexible Query Answering Systems, pp. 45–60. Kluwer
Academic Publishers, Norwell (1997)

7. Guadarrama, S., Muñoz-Hernández, S., Vaucheret, C.: Fuzzy prolog: a new approach using soft
constraints propagation. Fuzzy Sets Syst. (FSS) 144(1), 127–150 (2004). Possibilistic Logic
and Related Issues

8. Ishizuka, M., Kanai, N.: Prolog-ELF incorporating fuzzy logic. In: Proceedings of the 9th Inter-
national Joint Conference on Artificial Intelligence, IJCAI’85, pp. 701–703. Morgan Kaufmann
Publishers Inc, San Francisco (1985)

9. Li, D., Liu, D.: A Fuzzy Prolog Database System. Wiley, New York (1990)
10. Medina, J., Ojeda-Aciego, M., Vojtáš, P.: A completeness theorem for multi-adjoint logic

programming. In: FUZZ, pp. 1031–1034. IEEE (2001)
11. Medina, J., Ojeda-Aciego, M., Vojtáš, P.: Multi-adjoint logic programming with continuous

semantics. In: Eiter, T., Faber, W., Truszczynski, M. (eds.) LPNMR. Lecture Notes in Computer
Science, vol. 2173, pp. 351–364. Springer, Berlin (2001)

12. Medina, J., Ojeda-Aciego, M., Vojtáš, P.: A procedural semantics for multi-adjoint logic pro-
gramming. In: Brazdil, P., Jorge, A. (eds.) EPIA. Lecture Notes in Computer Science, vol.
2258, pp. 290–297. Springer, Berlin (2001)

13. Medina, J., Ojeda-Aciego, M., Vojtáš, P.: A multi-adjoint approach to similarity-based unifi-
cation. Electron. Notes Theor. Comput. Sci. 66(5):70–85 (2002). UNCL’2002, Unification in
Non-Classical Logics (ICALP 2002 Satellite Workshop)

14. Medina, J., Ojeda-Aciego, M., Vojtáš, P.: Similarity-based unification: a multi-adjoint approach.
Fuzzy Sets Syst. 146(1), 43–62 (2004)

15. Morcillo, P.J., Moreno, G.: Floper, a fuzzy logic programming environment for research. In:
Fundación Universidad de Oviedo (ed.) Proceedings of VIII Jornadas sobre Programación y
Lenguajes (PROLE’08), pp. 259–263. Gijón, October 2008

16. Moreno, J.M., Ojeda-Aciego, M.: On first-order multi-adjoint logic programming. In: 11th
Spanish Congress on Fuzzy Logic and Technology (2002)

17. Muñoz-Hernández, S., Pablos-Ceruelo, V., Strass, H.: RFuzzy: syntax, semantics and imple-
mentation details of a simple and expressive fuzzy tool over prolog. Inf. Sci. 181(10), 1951–
1970 (2011). Special Issue on Information Engineering Applications Based on Lattices

18. Pablos-Ceruelo, V., Muñoz-Hernández, S.: Introducing priorities in rfuzzy: syntax and seman-
tics. In: Proceedings of the 11th International Conference on Mathematical Methods in Science
and Engineering, CMMSE 2011, vol. 3, pp. 918–929, Benidorm (Alicante), June 2011

19. Ribeiro, R.A., Moreira, A.M.: Fuzzy query interface for a business database. Int. J. Hum.-
Comput. Stud. 58(4), 363–391 (2003)

20. Rodriguez, L.J.T.: A contribution to database flexible querying: fuzzy quantified queries eval-
uation, P.hD. thesis, November 2005

A Framework for Modelling Real-World Knowledge Capable … 297

21. Vaucheret, C., Guadarrama, S., Muñoz-Hernández, S.: Fuzzy prolog: a simple general imple-
mentation using CLP(R). In: Baaz, M., Voronkov, A. (eds.) LPAR. Lecture Notes in Artificial
Intelligence, vol. 2514, pp. 450–464. Springer, Berlin (2002)

22. Vojtáš, P.: Fuzzy logic programming. Fuzzy Sets Syst. 124(3), 361–370 (2001)
23. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

	A Framework for Modelling Real-World Knowledge Capable of Obtaining Answers to Fuzzy and Flexible Searches
	1 Introduction
	2 Syntax
	3 The Framework in Detail
	4 Conclusions
	References

