
Studies in Computational Intelligence 613

Kurosh Madani
António Dourado
Agostinho Rosa
Joaquim Filipe
Janusz Kacprzyk    Editors 

Computational 
Intelligence
Revised and Selected Papers of the 
International Joint Conference, IJCCI 
2013, Vilamoura, Portugal, September 
20–22, 2013



Studies in Computational Intelligence

Volume 613

Series editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: kacprzyk@ibspan.waw.pl



About this Series

The series “Studies in Computational Intelligence” (SCI) publishes new develop-
ments and advances in the various areas of computational intelligence—quickly and
with a high quality. The intent is to cover the theory, applications, and design
methods of computational intelligence, as embedded in the fields of engineering,
computer science, physics and life sciences, as well as the methodologies behind
them. The series contains monographs, lecture notes and edited volumes in
computational intelligence spanning the areas of neural networks, connectionist
systems, genetic algorithms, evolutionary computation, artificial intelligence,
cellular automata, self-organizing systems, soft computing, fuzzy systems, and
hybrid intelligent systems. Of particular value to both the contributors and the
readership are the short publication timeframe and the worldwide distribution,
which enable both wide and rapid dissemination of research output.

More information about this series at http://www.springer.com/series/7092

http://www.springer.com/series/7092


Kurosh Madani • António Dourado
Agostinho Rosa • Joaquim Filipe
Janusz Kacprzyk
Editors

Computational Intelligence
Revised and Selected Papers
of the International Joint Conference,
IJCCI 2013, Vilamoura, Portugal,
September 20–22, 2013

123



Editors
Kurosh Madani
Images, Signals and Intelligence Systems
Laboratory

University PARIS-EST Créteil (UPEC)
Créteil
France

António Dourado
Departamento de Engenharia Informatica
Polo II—Pinhal de Marrocos

University of Coimbra
Coimbra
Portugal

Agostinho Rosa
Lasseb-ISR-IST
Technical University of Lisbon (IST)
Lisbon
Portugal

Joaquim Filipe
Rua do Vale de Chaves, Estefanilha
Polytechnic Institute of Setúbal/INSTICC
Setúbal
Portugal

Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
Warsaw
Poland

ISSN 1860-949X ISSN 1860-9503 (electronic)
Studies in Computational Intelligence
ISBN 978-3-319-23391-8 ISBN 978-3-319-23392-5 (eBook)
DOI 10.1007/978-3-319-23392-5

Library of Congress Control Number: 2015950009

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)



Preface

The present book includes extended and revised versions of a set of selected papers
from the Fifth International Joint Conference on Computational Intelligence (IJCCI
2013). Sponsored by the Institute for Systems and Technologies of Information,
Control and Communication (INSTICC), IJCCI 2013 was held in Vilamoura,
Algarve, Portugal, from 20 to 22 September, 2013, and was organized in cooper-
ation with the AAAI—Association for the Advancement of Artificial Intelligence,
APNNA—Asia Pacific Neural Network Assembly, and ACM SIGART—ACM
Special Interest Group on Artificial Intelligence.

Since its first edition in 2009, the purpose of the International Joint Conference
on Computational Intelligence (IJCCI) has been to bring together researchers,
engineers and practitioners in computational technologies, especially those related
to the areas of fuzzy computation, evolutionary computation and neural computa-
tion. IJCCI is composed of three co-located conferences, each one specialized in
one of the aforementioned areas. Namely:

– International Conference on Evolutionary Computation Theory and
Applications (ECTA)

– International Conference on Fuzzy Computation Theory and Applications
(FCTA)

– International Conference on Neural Computation Theory and Applications
(NCTA)

Their aim is to provide major forums for scientists, engineers and practitioners
interested in the study, analysis, design, and application of these techniques to all
fields of human activity.

In ECTA, modeling and implementation of bio-inspired systems namely on the
evolutionary premises, both theoretically and in a broad range of application fields,
is the central scope. Considered as a subfield of computational intelligence focused
on combinatorial optimization problems, evolutionary computation is associated
with systems that use computational models of evolutionary processes as the key
elements in design and implementation, i.e., computational techniques which are
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inspired by the evolution of biological life in the natural world. A number of
evolutionary computational models have been proposed, including evolutionary
algorithms, genetic algorithms, evolution strategies, evolutionary programming,
swarm optimization, and artificial life.

In FCTA, results and perspectives of modeling and implementation of fuzzy
systems, in a broad range of fields, are presented and discussed. Fuzzy computation,
based on the theory of fuzzy sets and fuzzy logic, is dedicated to the solution of
information processing, system analysis, knowledge extraction from data, and
decision problems. Fuzzy computation takes advantages of the powerful available
technologies to find useful solutions for problems in many fields, such as medical
diagnosis, automated learning, image processing, and understanding, and systems
control.

NCTA is focused on modeling and implementation of artificial neural networks
computing architectures. Neural computation and artificial neural networks have
seen a continuous explosion of interest in recent decades, and are being successfully
applied across an impressive range of problem domains, including areas as diverse
as finance, medicine, engineering, geology, and physics, providing appealing
solutions to problems as varied as prediction, classification, decision making, or
control. Numerous architectures, learning strategies, and algorithms have been
introduced in this highly dynamic field in the last couple of decades.

During the joint conference, IJCCI received 111 paper submissions from 30
countries, which demonstrates the global dimension of this conference. Of 111
papers, 24 papers were published as full papers (21.6 % of submissions) and 29
were accepted for short presentation (26 % of submissions). Moreover, 13 were
accepted for poster presentation. These ratios denote a high level of quality which
we aim to continue reinforcing in the next edition of this conference. This book
includes revised and extended versions of a strict selection of the best papers
presented at the conference.

On behalf of the Conference Organizing Committee, we would like to thank all
participants. First of all, to the authors, whose quality work is the essence of the
conference, and to the members of the Program Committee, who helped us with
their expertise and diligence in reviewing the papers. As we all know, producing a
post-conference book, within the high technical-level exigency, requires efforts of
many individuals. We wish also to thank all the members of our Organizing
Committee, whose work and commitment were invaluable.

December 2013 Kurosh Madani
António Dourado
Agostinho Rosa
Joaquim Filipe
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Incremental Hough Transform: A New
Method for Circle Detection

A. Oualid Djekoune, Khadidja Messaoudi and Mahmoud Belhocine

Abstract The circle Hough transform (CHT) is a fundamental issue in image
processing applications of industrial parts or tools. Because of its drawbacks, various
modifications have been suggested to increase its performance. Most of them have
met the problem of implicit evaluation of trigonometric functions that makes the
implementation difficult. The CORDIC algorithm is used to simplify the trigono-
metric calculations when the basic CHT algorithm is implemented into a digital
device such as FPGA. Although, this solution require computation time and device
resources consumption for the CORDIC IP implementation. This paper presents a
modified CHT method, called Incremental circle Hough transform (ICHT), suitable
for hardware implementation. This method is mainly used to get around the imple-
mentation of CORDIC IP. This paper provides also the errors analysis of the proposed
method against the basic CHT method to illustrate that it can replace the basic CHT
method for small values of the resolution ε of the angle θ .

Keywords Hough transform · Incremental hough transform · Circle hough trans-
form · Circle detection

1 Introduction

Shape recognition is one of the most important tasks in the image processing and
pattern recognition. Many methods for detecting geometric primitives have been
proposed. The Hough transform (HT) and its extensions constitute a popular and
robust method for extracting analytic curves. It was first applied to the recognition of
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straight lines [3] and later extended to circles [4], ellipses [21] and arbitrarily shaped
objects [15].

The principal concept of the HT is to define a mapping between an image space
and a parameter space. Each feature point (or a set of feature points) in an image is
mapped to the parameter space to vote for the parameters whose associated curves
pass through the data point(s). The votes for each curve are accumulated, and after
all the points in an image have been considered, local maxima in the parameter space
correspond to the parameters of the detected curves. The curves detection in the
image space therefore become a peak detection problem in the parameter space. The
advantages of the HT include robustness to noise, shape distortions and to occlu-
sions/missing parts of an object. Its main disadvantage is the fact that computational
and storage requirements of the algorithm increase as a power of the dimensionality
of the curve. This means that the computational complexity and storage requirements
are O(n2) for straight lines, O(n3) for circles and O(n5) for ellipses [5].

To overcome of this disadvantage, we introduce in this paper a newmodified CHT
method, called Incremental circle Hough transform (ICHT), that is aimed at improv-
ing the voting process. For each input point in the image, the new method computes
incrementally the circle point coordinates passing through the input point using new
formulation of the parametric representation of the circle. By using approximations
on cosine and sine in the parametric representation of the circle, the new formulation
is: easy to use because the point coordinates of the circle at the iteration n is computed
from the coordinates point of the circle of the iteration n − 1 by using simple equa-
tions; provides a solution to the use of trigonometric functions that causes problems
in digital device implementations such as FPGA; can be seen as a solution to the use
of the CORDIC (Cordinate Rotation Digital Computer) algorithm, and finally very
suitable for parallelization in the calculation of circles point coordinates that passing
through the input point in the image.

In this paper, we show in detail the feasibility and the simplicity of the introduced
method which can replace the basic CHT method both in software and hardware
applications.

The paper is organized as follow: In Sect. 2, we position our work relative to
some published CHT methods existing in the literature. In Sect. 3, we present an
overview of the basic CHT algorithm followed by its hardware implementation with
or without the CORDIC algorithm. The details, algorithm development, the errors
analysis and the software implementation of the proposed method are shown in the
Sect. 4. Finally, conclusion and future work are given in the Sect. 5.

2 Related Works

Extracting circles from images has received more attention for several decades
because an extracted circle can be used to yield the location of circular object in
many industrial applications. Many variations on original CHT method have been
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proposed to increase its performance. One type ofmethod address issues of efficiency
to reduce significantly the amount of computation and storage required to implement
the Hough transform [14], Another type of method replaces the formal parameter-
ization of the target object with a look-up table, the Generalized Hough Transform
(GHT), allowing theHough approach to be used to detect arbitrary shapes [1]. A third
type of method uses the probabilistic interpretation of the Hough approach [13, 16].
Other type of method uses the randomized selection of edge points and geometrical
properties of the circle [2, 10, 20], and the edge orientation information of each edge
pixel to reduce the computing time or the requirement of the accumulator [12]. And
finally the type of method proposes a variety of voting scheme used in the Hough
transform [17]. An excellent reviews of a number of circle detection methods based
on variations of the Hough transform can be found in [22].

Other than the software solution of the CHT drawbacks, we also find in the
literature, the hardware solution which provides an attractive solution to compu-
tationally intensive applications in real-time whilst maintaining the flexibility of a
software solution [7, 18]. The Hough Transform has traditionally been implemented
using complex processor architecture. These are either slow or complicated due to
the transform’s intensive calculations of trigonometric, multiplication and addition
operations [6]. To overcome thismajor setback, theCORDIC algorithm is used [6, 8].
The CORDIC algorithm can be used to calculate elementary trigonometric functions
such as sine, cosine, tangent, and arctangent as well as ln and exp.

In this context, we present in this work a new ICHT method aimed at improving
the voting process. This method fully both exploits the software and the hardware
solution advantages because it doesn’t use any trigonometric calculations, simple to
use, easily fitted into digital device, such as FPGA, without consuming too device
resources, and very suitable for a parallel implementation.

3 The Basic CHT Method

3.1 An Overview

A circle with centre (a, b) and radius r , in a binary image, is specified by the para-
meters (a, b, r) in the equation:

(x − a)2 + (y − b)2 = r2 (1)

with (x, y) the set edge pixels that make up the circumference of this circle.
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The parametric representation of the circle is:

{
x = a + r cos θ

y = b + r sin θ
(2)

For each edge pixel, the basic Hough transformmethod constructs a circular cone, in
the (a, b, r) parameter space (or Hough space), resulting from the voting process of
the (a, b, r) parameters whose associated circles pass through the considered pixel by
using a fourfold loop over x , y, a and b (Fig. 1). This operation runs slowly because
it is mainly due to the both use a large number of mathematical operations (1) and
trigonometric calculations (2). This raises the computational cost of the transform,
often to unacceptable levels.

For simplicity, some works in the literature set the radius to a constant value
(hard coded) or provide the user with the option of setting a range (maximum and
minimum) prior to running the application, or use the edge direction information to
limit voting to a section of the cone, or use the CORDIC algorithm to overcome to
intensive calculations of trigonometric, multiplication and addition operations of the
CHT [8].

3.2 Hardware Implementation

The CORDIC algorithm is one of the existing hardware solutions of the CHT (or
HT) implementation to overcome its intensive calculation of trigonometric, multipli-
cation and addition operations. In follows we will show how the CORDIC algorithm
works, its hardware implementation on a FPGA circuit alone and with the basic CHT
algorithm.

3.2.1 The CORDIC Algorithm

The CORDIC algorithm, proposed by Volder in 1959 [19], is used to calculate ele-
mentary trigonometric functions such as sine, cosine, tangent, and arctangent as well
as ln and exp. It provides an iterative method of performing vector rotations by arbi-
trary angles using only shifts and adds. Let two points (x, y) and (x ′, y′) resulting
of a rotation of a vector by an angle ϕ (Fig. 2). We have then:

{
x = R sinβ
y = R cosβ

(3)
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Fig. 1 Relationship between a binary image plan and the Hough space. a P1, P2 and P3 are edge
pixels belonging to a same imaginary circle with r0 the radius and (a0, b0) the coordinates of its
centre. b Each edge pixel from the binary image generates a circular cone in the Hough space.
The cones in the Hough space intersect at (a0, b0, r0) corresponding to the parameters of the circle
formed by the edge pixels P1, P2 and P3

and
{

x́ = R sin(β + ϕ)

ý = R cos(β + ϕ)
(4)
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Fig. 2 Rotation of vector by
the angle ϕ

combining the Eqs. (3) and (4), we get:

{
x́ = x cosϕ − y sinϕ = (x − y tanϕ) cosϕ
ý = y cosϕ + x sinϕ = (y + x tanϕ) cosϕ

(5)

we have:

ϕ0 = atan2− j ≈ 2− j , j > 3 (6)

if we choose j = 4, so ϕ � and cosϕ ≈ 1, we get then:

{
x́ = x − y 2−4

ý = y + x 2−4 (7)

to generalize for all points:

{
Xi+1 = Xi − Yi 2−4

Yi+1 = Yi − Xi 2−4 (8)

where i is the iteration index. So, to sweep one quarter of the circle, the number of
micro rotation is equal to (π/2)/2−4 ≈ 25 iterations.

3.2.2 Hardware Implementation of the CORDIC Algorithm

A hardware implementation of the CORDIC algorithm was presented in [9]. In this
work the CORDIC IP was implemented on Agility RC10 board witch contains the
Xilinx Spartan 3L XC3S1500L-4-FG320 FPGA circuit, in order to compute the
following functions: sinus, cosine, and arctangent and vector magnitude (Fig. 3).
The implementation results are given in the Table1. Implemented alone, it consumes
a significant amount of device resources.
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Fig. 3 CORDIC IP architecture [9]

3.2.3 Hardware Implementation of the CORDIC with the Basic
CHT Algorithms

The hardware implementation on a FPGA circuit of the basic CHTwith the CORDIC
algorithms was presented in [8] (Fig. 4). In this work, the CORDIC IP is used in
rotation mode in order to compute the sine and cosine functions. The resulting
architecture was implemented on the V2MB1000 board witch contains the Xil-
inx Virtex-II, XC2V1000-4fg456C FPGA device. This implementation results in
a complication of the final architecture and a significant consumption of the device
resources. The device resources consumption are given in the Table2.
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Table 1 Resources used by the CORDIC IP

Number of BUFGMUXs 1 out of 8 12%

Number of External IOBs 162 out of 221 73%

Number of SLICEs 352 out of 13312 2%

Number of Slice Flip Flop 166 out of 26624 1%

Fig. 4 The basic CHT with the CORDIC implementation architecture [8]

Table 2 Resources used of the proposed architecture

Number of Slices 578 out of 5120 11%

Number of ExternalIOBs 19 out of 324 5%

Number of GCLKs 3 out of 16 18%

Number of BRAMs 8 out of 40 20%

Despite the implementations above are not performed on the same Xilinx device
board, we can estimate that the CORDIC device resources occupation regarding the
number of slices is almost half (578/352).

Furthermore, the basic CHT is generally not implemented alone. It is a module
often used with other modules performing a given task. Save device resources in a
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FPGA circuit is giving the possibility to integrate other modules in the same circuit
thus avoiding the use of a additional FPGA circuits. Hence our motivation, find a
trick to avoid the use of the CORDIC algorithm when implementing the basic CHT.

4 The New ICHT Method

4.1 Algorithm Development

Themain goal of this work is to try to improve the basic CHT tomake it simple to use,
and easily adapted and fitted into the digital device without consuming too device
resources. Thus combining both advantages of hard and soft solutions described
above.

Our improvement mainly concerns the voting process, it uses new equations, or
formulation, of the parametric representation of a circle. These equations compute
incrementally the coordinates point of a circle, such that each coordinates point of a
circle at the iteration n is computed from the coordinates point of the same circle of
the iteration n − 1. We proceeded as follows:

For discrete values of the angle, (2) is written as follows we have used the same
notation as in [7, 18]:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xn = a + r cos θn

yn = b + r sin θn

x0 = a + r
y0 = b
θn = n ε

nθ = 2π
ε

0 � θn < 2π
0 � n

(9)

with n, ε and nθ are, respectively, the angle index, the angle resolution and the number
of angle values in the θ interval.

To make (3) as incremental, it must be written in the following form:

{
xn+1 = f (xn, yn)

yn+1 = f (xn, yn)
(10)

i.e., the point coordinates of the circle (xn+1, yn+1) at the iteration n + 1 is only
computed from the point coordinates of the circle (xn, yn) of the iteration n.
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By replacing n by n + 1 in (9), we will have:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

xn+1 = a + r cos θn+1

= a + r cos[(n + 1)ε]
= a + r [cos nε cos ε − sin nε sin ε]

yn+1 = b + r sin θn

= b + r sin[(n + 1)ε]
= b + r [sin nε cos ε − cos nε sin ε]

(11)

Making the approximation, in the expression above, on cosine and sine for the
small values of the angle by assuming cos ε = 1 and sin ε = ε. The Eq. (11) becomes:

⎧⎪⎪⎨
⎪⎪⎩

xn+1 = a + r [cos nε − ε sin nε]
= xn − rε sin nε

yn = b + r [sin nε + ε cos nε]
= yn − rε cos nε

(12)

Note that from (9), we can get:

{
r cos nε = xn − a
r sin nε = yn − b

(13)

By replacing (13) in (12), then rearranging the obtained expression to get the
following general expression of our new ICHT method:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

xn+1 = xn − ε yn + ε b
yn+1 = yn + ε xn − ε a
x0 = a + r
y0 = b
0 ≤ n < nθ

nθ = 2π
ε

(14)

We can note that (2) and (14) are almost similar except that (2) is highly dependent
to the trigonometric functions, which is not the case with (14). We can therefore
conclude that (14) is:

• Purely incremental,
• Doesn’t use any trigonometric calculations,
• Simple to use,
• Can be seen as an alternative to the CORDIC algorithm,
• Can be easily fitted into digital device such as FPGA,
• Can be very suitable for parallelization.
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Fig. 5 The circles
CircleICHT and CircleCHT
drawn at a fixed position with
radius = 100 and ε = 0.5◦

4.2 Error Analysis

In the following, we show the errors, if exist, caused by the above approximations
when using (2) and (14) to draw circles.

When drawing two circles (CircleICHT and CircleCHT) with the same parameters
using (2) and (14), we note that the points of the two circles overlap for small values
of θ and diverge for larger values of θ (Fig. 5).

There are many criteria which can be considered to evaluate this divergence, but
in our study the most important point relates to errors analysis. The errors analysis
is measured using: the average error (Eaverage) and the quadratic error (Equadratic)

between the radii resulting from the generated points using the two above equations;
the difference area (Diffarea) and the Jaccard coefficient (CoefJaccard) to compare the
similarity of the two generated circles. The Jaccard coefficient measures the ratio of
the intersection area of two sets divided by the area of their union [11].

These errors are computed from different values of the radius R and the resolution
ε of the θ angle. They are expressed as follows:

Eaverage = 1

nθ

∑nθ −1

n=0
(RICHT[n] − RCHT[n]) (15)

Equadratic = 1

nθ

∑nθ −1

n=0
(RICHT[n] − RCHT[n])2 (16)

with RCHT[n] and RICHT[n] the radii computed from the coordinates point at the nth
value of θ using (2) and (14).

It is interesting to note that our new ICHT method achieves very small errors for
small values of the resolution ε of the angle θ which remainwithin a narrow tolerance
despite the high that can have the radius R. But these errors increase considerably
when the resolution ε increases with high value of the radius R (Figs. 6, 7, 8 and 9).

The Figs. 6, 7, 8 and 9 show that for values of the resolution ε less than 1◦, the
errors Eaverage, Equadratic and Diffarea are very small, and consequently the CoefJaccard
value reach the one value. The one value means that the two circles are substantially
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Fig. 6 The average error in
a 2D and b 3D version
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similar. Beyond the value 1◦ and for small values of the radius R, the CoefJaccard
value decreases giving rise to significant divergences.

The Figs. 6 and 7 show that the average error and the difference area between
CircleICHT and CircleCHT circles increases linearly with a slope depending on the
values of the resolution ε of the angle θ . This gives us an idea of how the computed
points, from expression (14), diverge from those computed from (2).

In conclusion, our new ICHT method can replace the basic CHT method for
small values of the resolution ε of the angle θ with the advantage of does’nt using
any trigonometric calculations, It then compete the CORDIC algorithm when imple-
mented into digital device.
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Fig. 7 The quadratic error
in a 2D and b 3D version
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4.3 Implementation

The new ICHT method is tested against the basic CHT method. This will be done
to illustrate the consequences of the used approximations in the parametric repre-
sentation of the circle in the processing time of the voting process and to see the
computational efficiency of the Hough space of the two methods. The new ICHT
method and the basic CHT method were implemented in the programming language
Matlab v.7. The implementation was performed using a laptop PC equipped with 2.6
GHz i5 processor and 6GB RAM. A real grey scale image, of size 225 × 220 pixel
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Fig. 8 The difference area
between CircleICHT and
CircleCHT circles in a 2D
and b 3D version
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is used (Fig. 10). The binary edge points shown in (Fig. 8) are obtained by using the
Matlab Canny operator.

The voting process algorithm of the new ICHT and the basic CHT methods,
applied in a binary edge image, are performed using rmin = 10 and rMax =√
2252 + 2202 ∼= 315. The ε resolution value of the θ angle is initially set by the

user.
The Table3 assess the time processing of the two methods, where the time of the

voting process, the time required to process one binary edge pixel, and the time ratio
are presented. The binary edge image of the Fig. 11 is used using different values
of the resolution ε of the θ angle. The processing time per pixel, in milliseconds,
is obtained by dividing the time of the voting process, expressed in second, by the
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Fig. 9 The Jaccard
coefficient in a 2D and b 3D
version
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number of the binary edge point contained in the Fig. 11, in our case this number is
equal to 2508. The time ratio is obtained, in this case, by dividing the time of the
voting process of the basic CHT method by the time of the voting process of the new
ICHT method. The Table3 not only show that the new ICHT method is fast more
than the basic CHT method but it is more than two time faster.

After evaluating the processing time of the two methods, now we try to show the
Hough space obtained from these two methods. The Figs. 12 and 13 show the plans
of the Hough space with the radius R = 10, and confirm the conclusions done above.
The Hough spaces obtained from these two methods are the same for values of the
resolution less than 1◦, and diverge significantly beyond the value 1◦.
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Fig. 10 The test image

Fig. 11 Binary edge image
using Deriche operator

Table 3 Processing time of the voting process

ε(◦) CHT(s) ICHT(s) Time per pixel (ms) CHT/ICHT Time ratio

0.05 862.39 412.51 343.85/164.48 2.09

0.1 438 211.60 174.64/84.37 2.07

0.5 96.69 49.55 38.54/19.76 1.95

1.0 50.87 26.24 20.28/10.46 1.94

5.0 10.5 5.15 4.19/2.05 2.04

10.0 5.32 2.51 2.12/1.0 2.12

15.0 3.6 1.62 1.43/0.64 2.22

20.0 2.73 1.20 1.09/0.48 2.27



Incremental Hough Transform: A New Method for Circle Detection 19

Fig. 12 Hough space plan with radius = 20 and ε = 0.05◦ obtained from both a the basic CHT
method and b our new ICHT method



20 A.O. Djekoune et al.

Fig. 13 Hough space plan with radius = 20 and ε = 5◦ obtained from both a the basic CHT
method and b our new ICHT method
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5 Conclusions

Wepresented a newmodified CHTmethodwith enhanced formulation for improving
the computational performance and efficiency of the voting process of the basic CHT.
Called Incremental circleHough transform (ICHT), themethod fully both exploits the
software and the hardware solution advantages with no trigonometric calculations,
it can be seen as an alternative to the CORDIC algorithm and consequently easily
fitted into digital device, such as FPGA, without consuming too device resources,
and very suitable for a parallel implementation.

We have presented theoretical and errors analysis of our method, and have shown
experimentally that, for small values of angle, the newmethod has the same accuracy
as the basic CHT method.

We are currently trying to further improve the time of the voting process of the
proposed ICHT by changing if possible the expression (14).
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Self-adaptive Evolutionary Many-Objective
Optimization Based on Relation ε-Preferred

Nicole Drechsler

Abstract Many real-world optimizationproblems consist of severalmutually depen-
dent subproblems. If more than three optimization objectives are involved in the
optimization process, the so-called Many-Objective Optimization is a challenge in
the area of multi-objective optimization. Often, the objectives have different levels
of importance that have to be considered. For this, relation ε-Preferred has been pre-
sented, that enables to compare and rank multi-dimensional solutions. ε-Preferred
is controlled by a parameter ε that has influence on the quality of the results. In this
paper for the setting of the epsilon values three heuristics have been investigated.
To demonstrate the behavior and efficiency of these methods an Evolutionary Algo-
rithm for the multi-dimensional Nurse Rostering Problem is proposed. It is shown
by experiments that former approaches are outperformed by heuristics that are based
on self-adaptive mechanisms.

Keywords Many-objective optimization · Nurse rostering problem · Relation
ε-preferred · User preferences

1 Introduction

During the last 20 years solving Multi-Objective Optimization (MOO) problems
is getting more and more important. Many real-world problems consist of multi-
ple competing subproblems that have to be optimized in parallel. For Evolutionary
Algorithms (EAs) many approaches have been presented that cope with MOO prob-
lems [1–4]. If more than three objectives are involved in the optimization process
the corresponding problems are called many-objective optimization problems. Espe-
cially, if real-world optimization problems are of interest, more than three objectives
are considered during the optimization process [5–7]. Furthermore, in industrial
problems optimization criteria have often different levels of importance. These user
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preferences have to be taken into account during optimization. Considering both,
many-objective optimization and user preferences, there is a need for optimization
models that combine these properties [8–12].

To overcome these problems one classical method to combine multiple optimiza-
tion criteria with user preferences is the Weighted Sum approach. Here, a single value
is computed by a linear combination of the considered criteria. By the choice of the
weights for each criterion the influence of the user preference can be controlled. It
is often used in industrial applications, because it is easy to implement and at a first
view scales well. Further examinations have shown that it is a challenge to adjust the
weights such that the search is guided in the desired direction [5, 13]. A disadvantage
of the weighted sum approach is that it is incapable to find compromise solutions of
concave Pareto fronts. A further classical approach is the use of Non-dominated Sets
that is based on the Pareto-Dominance relation [14]. Using the Dominance relation
a ranking between multi-dimensional solutions can be required. If EAs are used for
MOO, the method NSGA-II [3] is a basic approach that is based on non-dominated
sorting. It is suitable in low dimensions, but for more than three objectives more
sophisticated approaches are required [15, 16]. As an alternative, the hypervolume
indicator is proposed, i.e. to each candidate solution an indicator value is assigned,
but due to the computational complexity it can only be applied in low dimensions.
An approximation of the hypervolume for higher dimensions is presented in [4].

In further developments relation ε-Preferredhas beenproposed formany-objective
optimization [17]. Using relation ε-Preferred a ranking between solutions can be
determined and solutions that are incomparable using Dominates can be distin-
guished. Thus ε-Preferred is a refinement of relation Dominates. In [12] the model
based on ε-Preferred has been enlarged such that it can also handle user preferences
(priorities). For this model, the influence of parameter ε has been investigated and
method AEP, that determines ε automatically, has been presented. In this context
the Nurse Rostering Problem (NRP) has been considered, i.e. a scheduling problem
where a working plan for employees in a hospital has to be computed. The proposed
method is compared to the well-known NSGA-II approach, because the modeling
of user preferences as proposed in this article can easily be used within this method.
A comparison to more sophisticated approaches, like e.g. the MOEA/D [18] or the
hypervolume approach [4] can not directly be performed: Taking the user defined
priorities into account, the comparison to these approaches without user preference
modeling is not meaningful, because the usage of user preferences is not provided.

In this paper anEvolutionary Algorithm that makes use of the ε-Preferred relation
including user preferences is applied to the NRP.1 In contrast to [12] the full potential
of the presented model has been exploited. To model the user preferences in [12]
only two types of priorities are used, the soft constraints and hard constraints. The
hard constraints have a higher priority during optimization than the soft constraints.
The hard constraints map the rules of the nurse station. Each soft constraint itself

1For the investigation of this approach the NRP has been used as application, because it consists
of many objectives with different levels of priorities. There, in contrast to standard benchmarks for
MOO (DTLZ [19]), the priorities are provided in the benchmark files.
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consists of up to 90 rules that have different user preferences. These user preferences
are directly given as weights in the benchmark examples [20]. Then, a weighted
sum is constructed to compute the constraints. Using the soft and hard constraints,
a multi-dimensional fitness function is computed, such that the hard constraint and
for each employee the corresponding soft constraints are provided. Following this,
benchmarks with up to 17 optimization criteria are considered. In contrast, in this
approach each rule of the soft constraints is treated as a separated optimization
criterion. This leads to fitness functions with up to 90 objectives. For each rule a
priority is calculated dependent on the weight that is specified in the benchmark. In
the experiments it is shown that the results from [12] can be further improved if the
advanced model as described above is used.

Furthermore, the justification of the epsilon values is examined. Two self-adapting
methods for epsilon adaptation are presented. It is shown in our experiments that AEP
[12] can be further improved. Additionally, an approach based on Weighted Sums is
outperformed, where previously published methods fail.

2 Preliminaries

First, we give a short introduction into the basic techniques of multi-objective opti-
mization and relations used for comparison.

2.1 Multi-objective Optimization

A multi-objective optimization problem is defined as follows: Given a search space
Ω , an evaluation function f : Ω → R

m is defined to calculate the fitness vector
F(A) : ∀A ∈ Ω of size m. Then we have to minimize (or maximize) the elements
of F(A). In the following we assume, without loss of generality, that F has to be
minimized for all objectives. According to [14] it holds:

Definition 1 Let A, B ∈ Ω .

A ≺dominates B :⇔ ∃ j : Fj (A) < Fj (B) : Fi (A) � Fi (B), 1 � i � m. (1)

Based on this, we can describe the Pareto set as

χ : ∀p ∈ χ : �q ∈ Ω : q ≺dominates p. (2)

It can be directly seen from the definition that for A, B ∈ Ω element A dominates B
only if A is better than B in at least one component and equal or better in all compo-
nents. RelationDominates is a partial order. In evolutionarymulti-objective optimiza-
tion relation Dominates is used to perform Non-dominated Sorting [3]: All elements
of a population are compared using dominates and the non-dominated elements are
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computed. This set is called Non-dominated Set. Disregarding the Non-dominated
Set the next level of non-dominated elements is considered. This is repeated, until
all elements are classified. The elements A ∈ Ω in the Non-dominated Set are equal
or not comparable and hence, the designer is interested in solutions from the Non-
dominated Set.

2.2 Relation Preferred

In [5] a refinement of relation Dominates has been presented. The approach is well-
suited for problems in many-objective optimization, i.e. if more than three optimiza-
tion criteria are considered. In [3] it has been shown that in higher dimensions more
than 90% of the population are Non-dominated elements and thus, a ranking used
for selectionmechanisms cannot be performed. To overcome these problems relation
Preferred is defined as follows:

Definition 2 Let A, B ∈ Ω and 1 ≤ i, j,≤ m.

A ≺pre f erred B :⇔ |{i : Fi (A) < Fi (B)}| > |{ j : Fj (B) < Fj (A)}|. (3)

Relation Preferred considers the number of different objectives of A and B. A is
preferred to B if i(i < m) objectives of A are smaller or equal than the corresponding
objectives in B and only j ( j < i) objectives of B are smaller or equal than the
corresponding objectives in A.

Using relation Preferred the solutions in a population are classified in so-called
Satisfiability Classes (SCs) [5]. All solutions A ∈ Ω are compared using relation
Preferred. Then the relation graph is constructed, where each element is a node and
preferences are represented by edges. Preferred is not a partial order, because the
relation graph can have cycles, and thus it is not transitive.

To overcome this property the relation graph is modified such that cycles are
eliminated. The main idea is that elements that are included in a cycle should be
ranked equally. For this the Strongly Connected Components (SCC) of the graph
are computed by a linear time DFS-based algorithm [21]. Then the relation graph
is modified such that each SCC is replaced by a new node representing all elements
in the corresponding cycle. Doing so, all cycles in the relation are eliminated. The
relation that is represented by the acyclic relation graph is transitive and antisym-
metric, which is sufficient for our purposes. Level sorting of the nodes in the acyclic
relation graph determines a ranking of SCCs, where each level defines a SC. This is
illustrated in the following example:

Example 1 Consider some solution vectors from R
3, i.e. each vector is a solution

consisting of three objectives (m1, m2, m3):

(0, 1, 2) (1, 1, 2) (2, 1, 1) (7, 0, 9) (8, 7, 1) (1, 9, 6)
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(a) (b) (c)

Fig. 1 Relation graph and Satisfiability Classes

The relation graph of these elements and relation Preferred is given in Fig. 1a. Ele-
ments (0, 1, 2), (1, 1, 2) and (2, 1, 1) are preferred to the remaining elements, but
(0, 1, 2) and (2, 1, 1) ((1, 1, 2) and (2, 1, 1)) are not comparable. Additionally, element
(0, 1, 2) is preferred to (1, 1, 2). The remaining three vectors (8, 7, 1), (1, 9, 6), and
(7, 0, 9) are pairwise comparable. But as can be seen in the relation graph they
describe a “cycle”. Thus relation Preferred is not transitive. For more details see [5].

2.3 Relation ε-Preferred

In [17] an enlargement for many-objective optimization of relation Preferred has
been introduced. For the proposed relation ε-Preferred fitness limits εi , 1 ≤ i ≤ m,

for each dimension are defined.

Definition 3 Let A, B ∈ Ω and εi , 1 � i � m.

A ≺ε−exceed B ⇔ |{i : Fi (A) < Fi (B) ∧ |Fi (A) − Fi (B)| > εi }| (4)

> |{ j : Fj (A) > Fj (B) ∧ |Fj (A) − Fj (B)| > ε j }| (5)

ε-exceed counts how often a solution exceeds the given limits εi . Then solution A is
better than solution B with respect to the limits εi , if A has more exceeding than B.
Using ε-exceed the extension ε-Preferred is defined as follows:

Definition 4 Given two solutions A, B ∈ Ω .

A ≺ε−pre f erred B ⇔ A ≺ε−exceed B ∨ (B ⊀ε−exceed A ∧ A ≺pre f erred B) (6)
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First it is counted how often a solution exceeds the ε-limits and the better solution is
determined. If both solutions are in the given range Preferred is used for comparison.

Example 2 Consider some solution vectors fromR
3, i.e. the results of three objective

functions:

(7, 0, 9) (8, 7, 1) (1, 9, 6)

Additionally, let εi = 5, 1 ≤ i ≤ 3. (7, 0, 9) ≺ε−pre f erred (8, 7, 1), because for the
second objective it holds |0 − 7| > ε2, where solution (7, 0, 9) “wins”, and for the
third it holds |9−1| > ε3, where solution (8, 7, 1) “wins”. Since each solution has an
ε-exceeding objective, Preferred is used for comparison. The same argumentation
holds for (8, 7, 1) ≺ε−pre f erred (1, 9, 6) and (1, 9, 6) ≺ε−pre f erred (7, 0, 9).

Analogously to Preferred relation ε-Preferred is not transitive. Thus, the algorithm
that computes the SCCs is applied to the relation graph as described in Sect. 2.2 and
in [5].

2.4 Relation Prio-ε-Preferred

In many real world applications the optimization criteria have user specific prefer-
ences that have to be modeled during the optimization process. To model priorities
of optimization objectives in [12] relation Prio-ε-Preferred is defined. It is a com-
bination of relation ε-Preferred and a lexicographic ordering of the objectives.

Let us assume that priorities 1, 2, . . . , k are assigned to the objectives in an ascend-
ing ordering, i.e. the lower the index i, 1 ≤ i ≤ k, the higher the priority.

Definition 5 Let p = (p1, . . . , pk) be a priority vector. pi determines the number
of objectives that have priority i . The priority of an objective is calculated by the
function:

pr : {1, . . . , m} → {1, . . . , k} (7)

The subvector of objectives c|i of priority i is defined as

c|i ∈ R
pi , c|i = (cr , . . . , cs) (8)

where

r =
i−1∑
j=1

p j + 1 ∧ s =
i∑

j=1

p j . (9)
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Fig. 2 Sketch of basic
algorithm

Prio-ε-Preferred (population) {
for all (individuals)
{
calculate pairwise Prio-ε-Preferred () ;
construct relation graph () ;
calculate strongly connected components () ;
perform level sorting () ;

}
return level of individuals ; //ranking

}

For A, B ∈ Ω the relation ≺ε−priopre f (Prio-ε-Preferred) is defined by

A ≺ε−priopre f B : ⇔ ∃ j ∈ {1, . . . , k} : A| j ≺ε−pre f erred B| j (10)
∧ (∀h < j : A|h ⊀ε−pre f erred B|h ∧ B|h ⊀ε−pre f erred A|h) (11)

To perform a ranking of a set of elements, analogously to Sect. 2.2 the Satisfiability
Classes are computed. For this a set of elements is pairwise compared using Prio-
ε-Preferred and the relation graph is constructed. Then the algorithm for finding the
Strongly-Connected Components (SCC) is applied to eliminate cycles in the relation
graph. A sketch of the algorithm is given in Fig. 2.

To give an impression on the properties of relation Prio-ε-Preferred an example
is considered.

Example 3 Let us consider a problemwith 5 objectiveswith 3 different priorities. Let
c = (c1, c2, c3, c4, c5) a solution vector and p = (1, 3, 1) a priority vector, i.e. one
objective has priority 1 (i.e. p1 = 1), three objectives have priority 2 (p2 = 3) and
one objective has priority 3 (p3 = 1). This leads to the function pr with pr(1) = 1,
pr(2) = 2, pr(3) = 2, pr(4) = 2, and pr(5) = 3 what means that the first objective
has priority 1, the second objective priority 2, and so on. For priority 2 the projection
is c|2 ∈ R

3, c|2 = (c2, c3, c4), since r = 1 + 1 = 2 and s = 1 + 3 = 4.
Now, let us consider two solution vectors, A = (2, 7, 0, 9, 15) and B =

(2, 1, 9, 6, 5). Then it holds, that B ≺ε−priopre f A. For this, first the objectives with
priority 1 are compared. Since they are equal, next the objectives with priority 2 are
compared with relation ≺ε−pre f erred , i.e. (1, 9, 6) ≺ε−pre f erred (7, 0, 9) (see Exam-
ple2) which leads to the statement B ≺ε−priopre f A. The last objective has not to be
considered anymore, because it has lowest priority and the decision, which solution
is better with respect to relation ≺ε−priopre f , has already been made.

3 Nurse Rostering Problem

In this section a description of theNurse Rostering Problem (NRP) and the algorithm
for evolutionary many-objective optimization is given.
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3.1 Problem Description

Since several years the NRP is of high interest andmany approaches for optimization
have been presented [20, 22]. The NRP is a utilization planning problem, where a
working plan for employees in a hospital has to be determined. Working shifts, like
e.g. day shift, night shift, stand-by shift, long shift or vacations have to be assigned
to each employee and working day, such that sufficient employees are on duty and
the working contracts of the employees are fulfilled.

For optimization solution schedules have to be evaluated by a fitness function.
The fitness function consists of multiple criteria, that can be categorized in hard
constraints that have to be fulfilled and soft constraints that improve the fitness
function. A solution can still be valid, even though a soft constraint is not fulfilled.
But indeed, a solution that does not fulfill soft constraints can be rejected by the
planner. The constraints are given as rules that are specified in the benchmarks
[20]. The benchmarks are available from [23]. The rules can be categorized into the
following main areas:

1. Rules of the nurse station, e.g. sufficient nurses per shift
2. Restrictions by law, e.g. maximal hours of work per day or maximal working

days per month
3. Rules resulting from ergonomics, e.g. having ergonomic shift pattern

Following the benchmarks from [20] the rule of the first category is modeled as
hard constraint, whereas the rules of item 2. and 3. are given as soft constraints. The
influence of the rules in the fitness function is controlled by weights that are given
in the benchmarks. Concerning the weights in the benchmarks it is assumed to use a
Weighted Sum for the calculation of the fitness function. In this application schedules
for up to 16 employees for a planning period of 30 days are considered. Instead of
using a weighted sum, the weights of the rules determine a priority that is used by
relation Prio-ε-Preferred. The details are described in Sect. 3.2.

Example 4 In Fig. 3 an example of a schedule for theNRP is given. To each employee
A–H and day (02nd–29th) a shift is assigned, where the shifts are labeled as follows:
Day shift (D), night shift (N). In the vertical columns the rules of the nurse station are
evaluated. In this example for shift D three employees and for shift N one employee
have to be on duty. This hard constraint is fulfilled for each day. For the maximal
workingdays permonth the vertical rowshave to be evaluated.Notice, that employees
E-H have half time positions, thus they have less working days. It can be seen that
the ergonomic rules of the shift pattern (soft constraints) are fulfilled, i.e. desired
patterns like e.g. DDDNN are given in the solution. Undesired patterns like single
shifts are not scheduled. For more details about the NRP see [20, 22, 23].
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1 2 3 4

02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

M T W T F S S M T W T F S S M T W T F S S M T W T F S S

A D D D D D D D D D D D D D D D N N N

B D D D D N N D D D D N N D D D D D D

C D D N N D D D D D D D D D N N D D D

D N N D D D D D D D D D D D D D D N N

E D D D D D N N N D D

F N N N D D D D D D D

G D D N N N D D D D D

H D D D N N N N D D D

Fig. 3 Example nurse rostering schedule for benchmark GPost

3.2 Proposed Model for Many-Objective Optimization

In this application an Evolutionary Algorithm (EA) is used to optimize the schedules.
Details of representation of the individuals and evolutionary operators are left out
due to page limitation.

The fitness function F(A), A ∈ Ω , consists of m functions Fi , 1 ≤ i ≤ m, that
are directly derived from the benchmark under consideration. For each hard and soft
constraint in the benchmark an objective Fi is defined that has to be minimized.
Following Definition5 the priority function pr for the objectives is calculated such
that the higher the weight of an objective i the higher is the priority pr(i). First, the
objectives that correspond to hard constraints get the highest priority value 1. The
remaining objectives that correspond to soft constraints get priority values depending
on its weights. Objectives that have the highest weight value given in the benchmark
lead to priority 2, i.e. pr(i) = 2,∀i with maximumweight. Then, the objectives with
maximum weight are disregarded and again the objectives with maximum weight
are considered, they get priority 3. Following this, the next weights are considered
one after another. This is repeated, until a priority is assigned to each objective. The
number of priorities of the considered benchmarks ranges from 2 to 10.

For the ranking of the solutions relation Prio-ε-Preferred is used. The solutions
are compared using relationPrio-ε-Preferred. Then, the relation graph is constructed
and the SCCs of the directed graph are computed as described in Sect. 2. For the
determination of the epsilon values several methods are examined that adapt the
epsilon values automatically. In Sect. 4 several methods for the justification of the
epsilon values are proposed.
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4 Approaches for ε-Adaptation

The justification of the epsilon values for relation Prio-ε-Preferred is an interesting
task. For this in [12] the influence of the epsilon values in relation Prio-ε-Preferred
has been investigated. It has been shown that the choice of the epsilon values influ-
ences the quality of the optimization. A method called AEP (Adapted Epsilon Pre-
ferred) has been proposed that adapts the epsilon values automatically. AEP is a
straight forward method that computes the same epsilon value for all objectives. In
this section more sophisticated methods for the adaptation of the epsilon values are
presented. The methods examined in the experiments are described in the following:

Adapted Epsilon Preferred (AEP) [12]. In method AEP for all objectives one
epsilon value is determined. Therefore, one individual out of the best Satisfia-
bility class (SC) derived by relation Prio-ε-Preferred is randomly chosen. The
new epsilon value is determined by the average value of all objectives of that
individual:

ε =
m∑

j=1

I ndbest, j

m
(12)

where I ndbest, j is the j th objective of an randomly chosen individual out of the
best SC. The epsilon value is updated in each generation. The idea behind this
method is that individuals can be distinguished by relation Prio-ε-Preferred, if
the difference of the individuals exceeds the calculated average range.

Median Epsilon Preferred (MEP). InmethodMEPone separated epsilon value for
each objective is calculated. For this all individuals in a population are considered
and for each objective the epsilon value is set to the median of each objective:

ε j = median({I ndi, j |1 ≤ i ≤ |P|}), 1 ≤ j ≤ m (13)

where m is the number of objectives, |P| is the size of the population and I ndi, j

is the j th objective of the i th individual in population P .
Self-adaptation 1 (SA1). For each objective a separated epsilon value is calculated.

First, the epsilon values are initialized usingmethodAEP. Then in each generation
a randomly chosen epsilon value is decremented. If this reduces the number of
SCs, this step is revised. The idea is that a higher number of SCs leads to a
meaningful ranking of the solutions.

Self-adaptation 2 (SA2). Again, for each objective a separated epsilon value is cal-
culated. The epsilon values are initialized using method AEP. Then in each gen-
eration for a randomly chosen objective the epsilon is bisected, if the set of best
elements has not changed for 100 generations. The idea is to give more restriction
in the ranking mechanism, if the optimization is in progress.
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Table 1 Properties of benchmarks for the NRP

Benchmark Rules/objectives Priorities Employees Days

Millar-2Shift-DATA1 11 2 8 14

WHPP 12 2 30 14

Valouxis-1 15 4 16 28

GPost 42 6 8 28

ORTEC01 92 10 16 31

Table 2 Comparison of standard methods

MOO model [12] Proposed MOO model

Benchmark Objectives Weighted Sum AEP NSGA-II AEP

Millar-2Shift-DATA1 11 1310 1590 1390 1190

WHPP 12 29 - 133 27

Valouxis-1 15 13986 16692 148500 13542

GPost 42 7159 7557 26528 11830

ORTEC01 92 9132 11672 36740 10040

5 Experimental Results

In this section the experimental results of the presented approaches are described.
The benchmarks for the NRP are taken from [23]. and its properties are summarized
in Table1. The optimization rules given in the benchmark directly correspond to
the objectives (column Rules/Objectives). The number of different priorities of the
objectives are given in column Priorities. Columns Employees and Days show the
benchmarks’ number of employees and the planning period, respectively. For each
benchmark and for each method presented in Sect. 4 the EA is run 10 times with
different random seeds. Then, the average value over these 10 runs is calculated. The
population size is set to 50 and the EA runs for 5000 generations. The average values
of the presented approaches are given in Tables2 and 3. The methods are compared
using theWeighted Sum. For this, the objectives are transferred into a single objective
fitness function, such that the weights in the benchmarks are taken to weight each
objective.2

In a first series of experiments the proposed model for MOO, where for each rule
an objective is defined, is compared to the restricted model from [12]. There only
hard and soft constraints are considered as optimization objectives. For both models
method AEP from [12] is applied to the NRP. The average values can be seen in
columns AEP of Table2. The results can be improved, if a refinement of the model
for MOO as proposed in this paper is performed.

2Originally the benchmarks are designed for optimization using a Weighted Sum. Thus, the weights
are justified by a planner and directly given in the benchmark.
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Table 3 Comparison of ε-adaptation methods for the proposed MOO model

Benchmark Objectives Weighted Sum NSGA-II AEP MEP SA1 SA2

Millar-2Shift-DATA-1 11 1310 1390 1190 1540 1280 1220

WHPP 12 29 133 27 32 27 24

Valouxis-1 15 13986 148500 13542 12890 11852 13132

GPost 42 7159 26528 11830 12300 13006 11401

ORTEC01 92 9132 36740 10040 10927 11549 10618

Additionally, AEP is compared to NSGA-II [3], which is a basic method in
evolutionary multi-objective optimization (see column NSGA-II). For comparison,
analogously to Prio-ε-Preferred NSGA-II is extended such that it can also handle
priorities.3 Thus, it is comparable to the methods that are based on relation Prio-
ε-Preferred. Furthermore, it can be seen that AEP outperforms NSGA-II for each
considered benchmark. Especially for Valouxis-1 an improvement of more than 90%
can be observed. Furthermore, a comparison to an approach that is based onWeighted
Sums is given. It is a single objective evolutionary algorithm, where the weights in
the benchmarks are used to calculate the fitness function. The comparison shows that
for most benchmarks the overall quality has been improved.

In a next series of experiments the approaches for adaptation of the epsilon values
presented in this paper are compared. The results are summarized in columns MEP,
SA1 and SA2 of Table3. A comparison to NSGA-II in Table2 shows that MEP fails
only for one example (Millar-2Shift-DATA1), whereas the self-adaptive approaches
SA1 and SA2 improve NSGA-II for all benchmarks. For three out of the considered
benchmarks both methods compute better results than the weighted sum approach.
Notice, the benchmarks are designed such that optimization with Weighted Sums can
easily be performed, i.e. the weights are specified in the benchmark. Thus, even these
results can be improved, if the full potential of the proposedmodel formany-objective
optimization is used. Only for benchmarks GPost and ORTEC01 SA1 and SA2 fail
to calculate the best results. Both benchmarks consist of 42 and more objectives.
A comparison shows that AEP can be improved using the self-adapting techniques
SA1 and SA2. It is focus of current work to investigate the self-adapting techniques
such that also problems with a higher number of objectives are solved sufficiently.

To give an impression on the quality of the priority based optimization presented
above a solution element out of the best SC derived by SA1 is compared to an element
from the non-dominated set derived by NSGA-II. In Figs. 4 and 5 a comparison for
benchmarks Valouxis-1 and WHPP is shown. The objectives and its priorities are

3The main reason for using NSGA-II for comparison is that it can easily be enlarged such that it
can handle priorities as described in this paper. Other methods like e.g. Hype [4] are more suitable
for Many-Objective Optimization, but it is not obvious how to incorporate the priorities. This is an
interesting task for further developments.
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Fig. 4 Comparison of solutions: benchmark Valouxis-1

Fig. 5 Comparison of solutions: benchmark WHPP

specified at the x-axis. For benchmark Valouxis-1 it can be seen, that the solution
obtained by SA1 has only 5 objectives over zero, whereas NSGA-II has 10 objectives
over zero. This means that the solution obtained by SA1 is Preferred to the solution
obtained by method NSGA-II. Additionally, if the absolute values of the objectives
are compared, SA1 performs better than NSGA-II. The same observation holds for
benchmark WHPP. For this example the objectives with priorities 1 and 2 are solved
optimally. For objectives with priority 3 it can be observed that the solution obtained
by SA1 even Dominates the solution from NSGA-II.



36 N. Drechsler

6 Conclusions

In this paper a model for Many-Objective Optimization, i.e. optimization problems
with more than three objectives, based on the Prio-ε-Preferred relation has been
investigated. For this, heuristics for the determination of the epsilon values are
presented. The model is applied to the Nurse Rostering Problem, a resource plan-
ning problem where different working shifts have to be assigned to the nurses in a
hospital. To compare the proposed methods experiments on benchmark examples
are performed. It turned out that using self-adapting mechanisms for the adaption
of the epsilon value NSGA-II and an approach based on Weighted Sums can be
outperformed.
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Automated Graphical User Interface
Testing Framework—Evoguitest—Based
on Evolutionary Algorithms

Gentiana Ioana Latiu, Octavian Augustin Cret and Lucia Vacariu

Abstract Software testing has become an important phase in software applications’
lifecycle. Graphical User Interface (GUI) components can be found in a large num-
ber of desktops and web applications and also in a wide variety of mobile devices.
In the last years GUIs have become more and more complex and interactive, their
testing process requiring an interaction with the GUI components, mainly by gen-
erating mouse, keyboard and touch events. Given their increased importance, GUIs
verification for correctness contributes to the establishment of the correct function-
ality of the corresponding software application. The current research on GUI testing
methodologies primarily focuses on automated testing. This paper presents EvoGU-
ITest, a novel automated GUI testing framework based on evolutionary algorithms
which tests the GUI independently from the application code itself. The framework
is designed for testing GUIs of web applications. Results have been compared, based
on specific metrics, with others existing frameworks.

Keywords Graphical user interface testing · Evolutionary algorithms · Automated
testing framework

1 Introduction

GUI is a specification for the look and feel of the software application [1]. A GUI
consists of graphical elements such as windows, icons, menus, buttons, textboxes.
A well designed GUI must be intuitive and user friendly, being the image of the
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application. A good quality of the GUI is necessary and the diminishing of the
testing cost becomes an important requirement. The GUI’s set of components can be
a crucial point in the users’ decisions to either use or not use that specific software
application [2].

While GUIs have become ubiquitous and increasingly complex, their testing
remains largely ad-hoc. Due to its complexity, the testing process is problematic
and time-consuming [3].

During themanual GUI testing process, each test case needs a long time to execute
(tens of seconds, for a medium complexity GUI). The manual checking process of
the results needs another time spent by the human tester, which is also of a few tens
of seconds. If for instance there is a suite of 10,000 test cases to be applied, then the
total testing time becomes enormous (hundreds of hours) [4].

If the test cases are executed automatically, it takes around 3 seconds for each test
case to be executed, and another 1 second for checking the output results. 10,000 test
cases need around 10 hours to be executed, which shows an acceleration of one order
of magnitude compared to the manual testing process [4]—that is why the research
mainly focuses on automatic GUI testing.

Different frameworks were built to automate the testing process for Web applica-
tions GUIs, to eliminate the human tester involvement, etc., but many of these were
made either for some particulary GUI software systems, or for the systems at a very
general level.

A survey by Al-Zain et al. on automation testing tools for web applications shows,
using different criteria (the effectiveness of recorder/playback tools, handling of page
waits, cross browser compatibility, technical support, and the number of different
techniques available to programmatically locate elements on web pages), that free
and simple tools can be more powerful and time saving, compared to commercially
sophisticated and expensive tools [5]. The authors have also summarized the best
practices and guidelines to be considered when adopting automated GUI functional
tests for web applications [5].

A comparative study of automated testing tools was conducted in [6]. Based on
criteria such as the efforts involvedwith generating test scripts, capability to playback
the scripts, result reports, speed and cost, Mercury QuickTest Professional and the
AutomatedQATestComplete have been compared. Analyzing the features supported
by these two functional testing tools, which help minimizing the resources in script
maintenance and increasing the efficiency of script reuse, the authors conclude that
both tools are good, but for data security needs the QuickTest Professional is better.

Some years ago, test cases were generated randomly during the automatic GUI
testing process. Because the coverage of random input testing was very weak, the
scientific community started studying the usage of the EvolutionaryAlgortihms (EA)
for automating the GUI testing process.

To only mention some of the most spectacular applications of EA in real life,
we could say that in the last years the Evolutionary Art was used in a lot of appli-
cations, with interactive EAs in which the user assigns scores to images based on
their suitability [7]; also, the EvoSpace framework is used for developing interactive
algorithms for artistic design [8].
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The rest of this paper is organized as follows: Sect. 2 describes the automatic
process for GUI testing, Sect. 3 provides a detailed description of the EA process,
Sect. 4 describes our novel proposed Web GUI testing framework (EvoGUITest).
In this Section the framework architecture and the experimental results are also
presented. Section5 concludes the paper, summarizing the future work planned.

2 Automatic GUI Testing

The GUI testing is a process which aims at testing the software application’s user
interface and detecting if the GUI is functionally correct. GUI testing includes check-
ing the way the software application handles mouse and keyboard events [9].

The automatic GUI testing process includes automatic manual testing tasks per-
formed by human testers. By the automatic testing process, a software program
executes the testing tasks and analyzes if the GUI under test is functionally correct.

Automatic GUI testing can be executed using different techniques.

2.1 Capture/Replay Tools

These tools have two modes of functioning: capture and replay. In capture (record)
mode, the tool is able to record testers’ actions while they are interacting with the
GUI. The set of actions is recorded inside test scripts. These tools provide a scripting
language which can be used by engineers for maintaining the test scripts.

In replay mode, the recorded test scripts are executed. During the execution of
each test script, some mouse or keyboard events are executed on the GUI. The test
scripts’ execution process is automatic and can be repeated several times.

Themost important disadvantage of these GUI testing tools is the lack of structure
of the test scripts, which makes the maintenance process difficult. These tools don’t
provide any support to design and evaluate test cases based on coverage criteria.

Three examples for these tools are: Selenium [10], WinRunner [11] and Rational
Robot [12].

2.2 Random Input Testing

This testing technique is also referred in the literature as stochastic testing ormonkeys
testing [13]. Random input testing refers to the idea that somebody seats in front of a
software application and interacts randomly with it, by sending keyboard and mouse
events.
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The goal of monkeys testing is to crash the GUI of the software application under
test. Theygenerate tests cases randomlywithout knowing anything about the software
application. The biggest problem of this testing technique is that monkeys cannot
recognize software errors. There is a smarter category of monkeys called “smart
monkeys” which have some knowledge about the software application under test.
These monkeys can find more bugs, but they are more expensive to be developed [2].

Even if random input testing tools have a weak coverage, one of the biggest soft-
ware companies has reported that 10–20% of the bugs in their software applications
were found by using random input testing method [13].

2.3 Unit Testing Frameworks

Unit testing technique for GUI testing requires programming the test cases. Unit
testing frameworks like NUnit [14] can be used for executing GUI test cases.

These tools are helpful in case many bugs can only be discovered through a
particular sequence of actions.With these tools the tester has towrite code to simulate
user interaction with the GUI under test. After executing the test cases the tester
should check if the result obtained is the one expected.

In order to be effective, the GUI testing process using unit testing frameworks
needs a lot of programming effort. There are some GUI libraries such as Abbot [15]
which provide methods to simulate user interaction.

2.4 Model-Based Testing

Model-based testing requires that GUI states and events are described with a cer-
tain type of model. Having these models in place, the test cases can be generated
automatically, either randomly or according to some particular coverage criteria.

The model-based testing process is presented in Fig. 1.
The model based testing process starts with the construction of the GUI’s model.

The model is used to generate test cases which are then executed over the GUI. In
the last step, the obtained results are compared to the expected results described in
the model.

The most important existing testing models used for model based testing are the
following ones [4]:

• Event Sequence Graph (ESG)—a directed graph which contains a finite set of
nodes and a finite set of edges. Each node represents a GUI event and the sequence
of nodes represents the sequence of GUI events [16].

• Event Flow Graph (EFG) and Event Interaction Graph (EIG)—inside the EFG,
each node represents aGUI event and all eventswhich canbe executed immediately
after one event are directly linkedwith directed edges from this event. A path inside
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Fig. 1 Model based testing

Test case generation 

GUI Model 

GUI 

Test case execution 

Results checking 

the EFG represents a sequence of GUI events and can be considered a test case.
EIG is the later version of the EFG. The EIG’s structure is composed by all the
GUI events which represent the GUI nodes and all relationships between events
which represent the graph edges.

Themodel-based testing technique is usually used to test the structural representation
of a GUI [17].

Some of the frameworks used in the testing process of the GUIs of Web applica-
tions areWebGuitar [18], Artemis [19], Atusa [20] and Kudzu [21]. Web Guitar uses
the ESG model; Atusa and Kudzu use the EIG model, all being based on functional
testing. Artemis has a grey-box testing style, both structural and functional.

The EvoGUITest framework that was developed by our team uses in the beginning
of testing process a random input testing method for generating the first set of test
cases. Then the test cases evolve using an evolutionary process. The aim of the
EvoGUITest framework is to determine the longest sequence of events which tests as
many GUI controls as possible. The EvoGUITest framework will be further detailed
in Sect. 4.

3 Evolutionary Algorithms

EAs are software programs that attempt to solve complex problems by mimicking
the processes of Darwinian evolution [22]. They operate on a population of possible
solutions by applying the principle called survival of the fittest to produce better
approximations to a solution [23].

During the EA process a big number of artificial individuals search the solution
over the problem space.
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The artificial individuals are usually represented by vectors of binary values. Each
individual encodes a possible solution for the problem which needs to be solved.

Themost widely known EA is the Genetic Algorithm (GA). In the following, both
Genetic Algorithm and the Simulated Annealing (SA) algorithm will be presented.
These two algorithms were used for generating test cases inside the EvoGUITest
application.

3.1 Genetic Algorithms

GA originated from the work of John Holland. They are the most obvious mapping
of natural evolutionary process into a software application [24].

TheGAprocess beginswith a set of candidate solutionswhich is called population.
A population is composed of individuals who are constituted from one ormore genes.
A population’s individuals are used to form a new population by using crossover and
mutation operators. During the GA process there is an expectation that the newly
generated individuals are better than their parents.

GAs are well known and widely used in scientific and technical research because
of their parallel nature, of their design space exploration and also due to their ability
to solve non-linear problems [25].

A GA has four important phases:

• Evaluation—during this phase each individual is evaluated by the evaluation
method. The fitness function is used for evaluation. It calculates how good the
individual is to satisfy the test criteria;

• Selection—during this phase individuals are chosen randomly from the current
population for creating new individuals in the next generation. The main idea
of the selection methods is that fittest individual has the biggest probability of
survival; therefore he has a greater probability to be picked for reproduction;

• Crossover—during this phase, recombination reproduces the chosen individuals
and pair wise information will be exchanged and will result in a new population
[25]. The crossover process joins two selected individuals at a crossover point, thus
producing two new offsprings. During crossover, for instance the first parent’s
right half genes can be exchanged with the subsequent right half of the second
parent. After crossover is performed, each parent pair will result in two offsprings.
Crossover is the operator which is responsible for improving the individuals;

• Mutation—during this phase a randomly chosen bit is changed from ‘0’ to ‘1’ or
from ‘1’ to ‘0’. Each bit inside an individual has the same probability to mutate.
Mutation is the operator which is responsible for introducing variety inside the
population.



Automated Graphical User Interface Testing Framework—Evoguitest … 45

3.2 Simulated Annealing

SA is a probabilistic method for finding the global minimum of a cost function that
may possess several local minima [26]. This algorithm emulates the physical process
whereby a solid is slowly cooled until its structure becomes frozen. This happens at
a minimum energy configuration.

The SA algorithm has four basic elements [27]:

• Configurations—these represent the possible problem solutions over which the
process will search for the problem solution;

• Move Set—this set represents the computations performed to move from one con-
figuration to another, as annealing proceeds;

• Cost Function—measures how “good” a particular configuration is;
• Cooling Schedule—anneal the problem from a randomly generated possible solu-
tion to a good solution. Usually the schedule needs a starting hot temperature and
different rules for establishing when the current temperature should be decreased,
by which amount temperature should be lowered and when the process should
take end.

The most important feature of the SA algorithm is that it is a probabilistic method
where during the search process themoves that increase the cost function are accepted
in addition to moves which decrease the cost function [28]. This feature is the central
point of the algorithmwhich enables the search process to locate the global minimum
among all the other local minima.

The most important challenge in improving the performance of the SA algorithm
is to decrease the temperature and in the same time to ensure that the process does
not stop in a local minimum.

The goal of the SA algorithm is to find the quickest annealing schedule that
achieves a value for finding the global minimum equal to unity [28].

The SA algorithm is suitable for solving large scale optimization problems inside
which the global minimum is located among many local minima values.

4 EvoGUITest

EvoGUITest is a novel GUI automatic testing framework based on evolutionary
algorithms. It automatically generates test cases which are used afterwards for testing
the GUI. The test cases suite is generated automatically by an EA-based process.
EvoGUITest’s objective is to find the sequence of events which produces the biggest
number of changes inside the GUI in aminimum amount of time. A bigger number of
changes inside the GUI guarantee a better coverage of the search space, i.e. capturing
a greater number of situations for testing the GUI’s functionality.
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4.1 The EvoGUITest Framework Architecture

The EvoGUITest application is a GUI testing framework which uses EAs for gener-
ating GUI test cases. It is developed in JavaScript and it runs on client side. Being
developed in JavaScript it is very easy to be extended without any need of extra tools
to write JavaScript. EvoGUITest is able to generate test cases for Web applications
which have a GUI component already developed.

The testing process with this GUI testing framework consists of the following
main steps:

• Analysis—the GUI state together with each GUI controls’ states are analyzed. The
result of this step is the list of HTML properties and events which correspond with
each control located inside GUI;

• Test Cases Generation—generate test cases by using the specific EAs methods;
• Test Cases Execution—executes test cases;
• Results Verification—verifies the results after the execution of the test cases.

Figure2 presents the main components of the EvoGUITest framework.
The most important part of the framework is the module which generates test

cases using EAs. Each test case is represented by an individual. The first population
of individuals is randomly generated Fig. 3 shows such an initial population for the
classical Calculator application running under Windows.

Each individual consists of an array of genes, each corresponding to a GUI con-
trol. In Fig. 3 the array of genes for each individual corresponds to an array of ids
which correspond to each GUI control. Each GUI control which appears inside an
individual is linked with a user action on the GUI. After the first population of indi-
viduals is generated, the individuals are evolved by means of the EA process. After
each generation, the new individuals are displayed together with their objective, age
and fitness function. Figure4 shows the individuals from the first generation. The
population of individuals is generated for testing the GUI of a complex application.
The individuals are classified so that the first one is the best individual from the
current generation. As it can be easily observed, the first individual is the one which

Fig. 2 The EvoGUITest
architecture
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Test cases generation module 

Analysis module 

Results verification module 
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Fig. 3 Randomly generated individuals for testing GUI of a calculator application

Fig. 4 First generation of individuals for testing a complex GUI component
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contains more button controls; therefore it is the one which produces the biggest
number of changes inside theGUI. The age represents the current generation number.
The objective column contains the objective value for each individual, and the fitness
column contains the fitness value assigned to each individual. The objective attribute
represents the performance of the individuals, while the fitness value represents rang
of individuals inside the hierarchy.

For example, if we have the following objective values:

Individual 1: 2
Individual 2: 1000
Individual 3: 65536

if the roulette wheel selection will be applied on the above population of individuals
the last individual won’t have any chance to be selected for reproduction. If we assign
a fitness function for each individual, who have the following values:

Individual1 : 2 Fitness : 0.5
Individual2 : 1000 Fitness : 0.3
Individual3 : 65536 Fitness : 0.2

then the last individual has a small chance to be selected for crossover.
The objective functionwhich evaluates each individual is presented in formula (1):

Objective = (1/no_of_changes)+
1/(100× no_of_similar_states)+
1/(100× no_of_useless_states)

(1)

Each individual should produce the greatest number of changes and the smallest
number of similar states and useless actions. A useless action is an action which
doesn’t produce any change inside the GUI. A similar state is a state which has
already appeared earlier inside the set of states produced by the same individual.

The EvoGUITest framework contains a separate section where the user can set
values for the most important parameters used by the GA and SA algorithms. For
each one of these two algorithms, the user can select the values for the parameters
presented in Table1. The variables that affect the outcome of the SA algorithm are:

Table 1 Parameters list for GA and SA algorithms

GA Values SA Values

Number of individuals 40 Initial temperature 100

Number of genes (min, max) Min: 10
Max: 25

Epsilon 0.001

Number of selected pairs for crossover 20 Alpha 0.999

Mutation probability 0.2 –

Mutation addition probability 0.5 –

Mutation removal probability 0.5 –

Number of generations 50 –
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the initial temperature, the rate at which the temperature decreases (alpha) and the
stopping condition of the algorithm (epsilon).

The number of individuals indicates how many individuals exist in each popula-
tion while the number of generations represents the generations for which the GA
algorithm will be performed. The number of genes represents the minimum and the
maximum length of each individual from the first population. The number of selected
pairs for crossover represents howmany individualswill be selected for reproduction.
The mutation probability refers to the application of the mutation operator. Mutation
can be applied in two ways: either by removing a gene from an individual or by
adding a new gene.

Figure5 displays the section which consists of the GA parameters list for the
EvoGUITest application.

Fig. 5 GA parameters
settings area
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4.2 The EvoGUITest Experimental Results

All the experiments were performed on a computing system having the following
configuration: Intel I3 processor, 2.2GHz, Windows 7 Operating System. Three
GUIs were tested: the first one is a simple GUI which consists of two buttons and
two textboxes, the second one is the GUI of the classic Calculator application from
Windows and the last one is a complex GUI which consists of more than twenty user
controls.

For test cases generationweusedboth theGAand theSAalgorithms.The selection
method used for GA algorithm was the roulette wheel method. For each specific
parameter, for each algorithm, the values presented in Table1 were used in order to
generate the test cases. These values were chosen to be used for running EAs based
on our empirical studies done before. All the EAs’ specific parameters’ values were
setup after we have tried hundred of runs with different values for these parameters.
The values for which we have obtained the best results were chosen.

Figures6, 7 and 8 present the test results obtained for each of the three GUIs using
the GA and the SA algorithms for evolving the test cases suite.

Fig. 6 Test case generation
for the simple GUI

Fig. 7 Test case generation
for the Calculator GUI

Fig. 8 Test case generation
for the complex GUI
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Table 2 Best individuals’ performance for the GA and SA algorithms

GUI GA Performance No. of GUI
Changes

SA Performance No. of GUI
Changes

Best individual
for simple GUI
testing

0.001 14 0.0029 11

Best individual
for Calculator
GUI testing

0.0012 19 0.0019 15

Best individual
for complex GUI
testing

0.0015 27 0.0034 23

Table 3 Convergence time(s) for the GA and SA algorithms

GUI Type GA Convergence (s) SA Convergence (s)

Simple GUI testing 30 46

Calculator GUI testing 40 57

Complex GUI testing 60 78

The performance of the best individuals for both GA and SA algorithms is pre-
sented in Table2.

From Figs. 6, 7, 8 and Table2 one can notice that the GA is able to find better test
data compared to the SA algorithm. GA manages to find out the sequence of events
which produces more changes inside GUI in comparison with SA. The individual
which produces the biggest number of changes inside the GUI is the one which has
the smallest value of its fitness function, because the testing problem is transformed
into a minimization problem. It shows that individuals have evolved from the first
generation to the last one. The best individual from the last generation produces the
biggest number of changes inside the GUI; therefore, it has the smallest value of the
fitness function.

The mean value of convergence time (in seconds) obtained from ten runs of each
algorithm is presented in Table3.

The convergence time for GA algorithm is smaller than the convergence time
obtained for SA algorithm.

4.3 Performance Metrics

To evaluate the testing results obtained with the EvoGUITest framework we made a
series of tests using other available open source frameworks.
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To facilitate frameworks comparisons and provide information about the frame-
works’ performances, some metrics had to be defined. The defined metrics are as
general as possible, in order to be applicable on any testing software that might be
used for testing the GUIs of Web applications.

The metrics we defined are:

• Metrics #1: Number of HTML content errors per number of source code lines
(NECL)

This metric represents the number of HTML content errors found over the number
of source code lines of the tested application. The metric offers an idea about the
density of HTML errors in the application source code. Measuring this parameter
gives an image of the application’s quality.

• Metrics #2: Average number of HTML content errors per number of source code
lines (ANECL)

This metric represents the average number of HTML content errors over the
number of source code lines of the tested applications. This parameter gives an
idea about the density of HTML errors compared to the average size of the tested
application. Measuring this parameter also gives an image of the tested application’s
quality.

• Metrics #3: Number of HTML content errors per test suite (NETS)

This metric indicates the number of HTML content errors discovered after testing
the software application over the number of tests in the test suite. It can be extended
for any other applications and test suites. Its extension refers to the total number of

HTML errors over the total number of tests run for all the tested applications.

• Metrics #4: Average number of HTML content errors per test suite (ANETS)

The metric represents the average number of HTML content errors found over the
number of tests in the test suite. This parameter offers an idea about the density of
HTML errors discovered by each test from the test suites. It gives an image of the
quality of the tests used in the testing process.

• Metrics #5: Number of HTML content errors per test (NET)

The metric represents the number of HTML content errors found after testing the
software application with one single test from the suite of tests.

• Metrics #6: Average number of HTML content errors per test (ANET)

Thismetric represents the average number ofHTMLcontent errors found by a certain
testing scenario. It shows the average abilities of a testing scenario to find errors in
the tested graphical interface.
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4.4 Experimental Results

Figure9 presents a comparison between four test suites composed of ten test cases
each. The test suites were generated with EvoGUITest, Selenium [8], WinRunner [9]
and Rational Robot [10]. They were used in the regression testing phase for detecting
errors inside a set of benchmark Web applications.

From Fig. 9 one can notice that the test suite generated using EvoGUITest is able
to findmore defects in comparison with other test suites based on the two functioning
modes (i.e. capture and replay), even if they contain the same number of tests. This
illustrates the fact that the test suite generated with EvoGUITest is better than those
generated with Selenium, WinRunner and Rational Robot frameworks.

Artemis [17], Atusa [18] and Kudzu [19] frameworks for testing the GUIs of
Web applications were used to observe the similarities and differences with our
EvoGUITest framework.

The number of benchmark applications that were tested in order to make com-
parisons between EvoGUITest and Artemis, respective Atusa frameworks, was 30,
and the number of tests from the tests suite was 100. These Web applications were
selected among popular Web applications available on the Internet.

Figure10 shows the differences between EvoGUITest and Artemis when they
were used for finding out errors in different Web graphical interfaces.

The number of errors discovered in the HTML code by EvoGUITest and Artemis
are presented in Table4. In case of just two applications out of 30, the Artemis
framework had better results than our EvoGUITest framework.

Using the NECL, NETS and NET metrics defined before, in Table5 we present
the better results obtained by EvoGUITest, compared to those obtained using the
Artemis framework. The results clearly show better results for EvoGUITest.

Figure11 shows the differences between EvoGUITest and Atusa when looking
for errors in the 30 benchmark applications tested.
The results of the number of errors discovered in theHTML code by EvoGUITest and
Atusa are presented in Table6. In all the 30 of tested cases, EvoGUITest framework
had better results than Atusa framework.

Fig. 9 Number of defects
discovered by different
testing frameworks
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Fig. 10 Errors find out by EvoGUITest and Artemis

Table 4 Errors in HTML code discovered by EvoGUITest and Artemis

Tested Applications Lines code number EvoGuiTest (HTML
errors number)

Artemis (HTML errors
number)

3dModeller 393 12 13

BallPool 256 10 7

FractalViewer 750 18 16

HTMLEdit 568 13 12

Pacman 1857 20 17

AjaxPool 250 17 15

AjaxTabsContent 156 10 9

DragableBoxes 697 15 14

DynamicArticles 156 11 8

Homeostasis 2037 6 7

Qatrix 1712 4 3

Durandal 2159 6 5

Breeze 14730 20 18

Simple HTML5
Drawing Application

439 9 8

PartialJs 5857 23 21

Shipyard 73 3 2

KoLite 381 12 11

HTML CodeSniffer 1433 18 16

Postman 199 7 5

(continued)
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Table 4 (continued)

Tested Applications Lines code number EvoGuiTest (HTML
errors number)

Artemis (HTML errors
number)

Monologue 215 4 2

Census Tool 1567 2 1

Computer Language
Benchmarks Game

1678 3 2

Moddular 945 5 4

Draw a stickman 785 2 1

MemoLane 567 9 7

Pandora 1128 2 1

Lights 957 7 5

jsPerf 589 11 8

BrowserQuest 1368 14 10

RemoteTilt 688 8 5

Average 1486 10 8

Table 5 Metrics results for EvoGUITest and Artemis

Applications EvoGuiTest Artemis

NECL NETS NET NECL NETS NET

3dModeller 0.03 12 0.12 0.033 13 0.13

BallPool 0.039 10 0.1 0.027 7 0.07

FractalViewer 0.024 18 0.18 0.021 16 0.16

HTMLEdit 0.022 13 0.13 0.021 12 0.12

Pacman 0.01 20 0.2 0.009 17 0.17

AjaxPool 0.068 17 0.17 0.06 15 0.15

AjaxTabsContent 0.064 10 0.1 0.057 9 0.09

DragableBoxes 0.021 15 0.15 0.02 14 0.14

DynamicArticles 0.07 11 0.11 0.05 8 0.08

Homeostasis 0.002 6 0.06 0.003 7 0.07

Qatrix 0.002 4 0.04 0.002 3 0.03

Durandal 0.003 6 0.06 0.002 5 0.05

Breeze 0.001 20 0.2 0.001 18 0.18

Simple HTML5 Draw-
ing Application

0.02 9 0.09 0.018 8 0.08

PartialJs 0.004 23 0.23 0.003 21 0.21

Shipyard 0.04 3 0.03 0.027 2 0.02

KoLite 0.031 12 0.12 0.028 11 0.11

HTML CodeSniffer 0.012 18 0.18 0.011 16 0.16

(continued)
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Table 5 (continued)

Applications EvoGuiTest Artemis

NECL NETS NET NECL NETS NET

Postman 0.0351 7 0.07 0.025 5 0.05

Monologue 0.0186 4 0.04 0.009 2 0.02

Census Tool 0.001 2 0.02 0.001 1 0.01

Computer Language
Benchmarks Game

0.001 3 0.03 0.001 2 0.02

Moddular 0.005 5 0.05 0.004 4 0.04

Draw a stickman 0.002 2 0.02 0.001 1 0.01

MemoLane 0.015 9 0.09 0.012 7 0.07

Pandora 0.001 2 0.02 0.001 1 0.01

Lights 0.007 7 0.07 0.005 5 0.05

jsPerf 0.018 11 0.11 0.0135 8 0.08

BrowserQuest 0.010 14 0.14 0.007 10 0.1

RemoteTilt 0.011 8 0.08 0.007 5 0.05

ANECL ANETS ANET ANECL ANETS ANET

Average for NECL,
NETS, NET

0.0195 10 0.1 0.0159 8 0.084

Fig. 11 Errors discovered by EvoGUITest and Atusa
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Table 6 Errors in HTML code find out by EvoGUITest and Atusa

Tested applications Lines code number EvoGuiTest (HTML
errors number)

Atusa (HTML errors
number)

TUDU 580 9 8

Coach Yourself 150 7 6

AJAX Rss Reader 600 9 7

Ajax Desktop Tutorial 856 12 11

Ajax for Chat 678 10 8

Ultra-lightweight
charts for AJAX

1234 16 13

Quick calendar using
AJAX

453 12 10

Edit in place with
AJAX

745 15 13

AJAX file upload
tutorial

897 19 16

Safer Contact Forms
without Captcha

1145 13 11

Using AJAX with
Captcha

459 6 4

AutoCompleter in
AJAX

239 7 6

AJAX ShoutBox 712 4 3

Dragable Ajax 324 2 1

Making Ajax Work
with Screen Readers

123 2 1

Backpack 890 5 4

Base Camp 1256 16 14

BrainKing 2367 18 17

Realtime HTML
editor

543 13 11

Remember the Milk 967 20 18

WeBoggle 1145 11 9

XHTML Live Chat 678 6 4

ThickBox 564 4 3

TreehouseChat 343 7 6

Super Maryo World 756 15 11

Spell Check Demo 897 20 17

Slider Bar Demo 235 9 8

nexImage 123 12 11

Tacos 378 7 5

ZK Demo 456 10 9

Average 693 10 8
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Table 7 Metrics results for EvoGUITest and Atusa

Aplications EvoGuiTest Atusa

NECL NETS NET NECL NETS NET

TUDU 0.015 9 0.09 0.013 8 0.08

Coach Yourself 0.046 7 0.07 0.04 6 0.06

AJAX Rss Reader 0.015 9 0.09 0.011 7 0.07

Ajax Desktop Tutorial 0.014 12 0.12 0.013 11 0.11

Ajax for Chat 0.0147 10 0.1 0.0118 8 0.08

Ultra-lightweight charts
for AJAX

0.013 16 0.16 0.010 13 0.13

Quick calendar using
AJAX

0.0264 12 0.12 0.022 10 0.1

Edit in place with AJAX 0.020 15 0.15 0.017 13 0.13

AJAXfile upload tutorial 0.021 19 0.19 0.0178 16 0.16

Safer Contact Forms
without Captcha

0.011 13 0.13 0.009 11 0.11

Using AJAX with
Captcha

0.0130 6 0.06 0.008 4 0.04

AutoCompleter in AJAX 0.0292 7 0.07 0.0251 6 0.06

AJAX ShoutBox 0.005 4 0.04 0.004 3 0.03

Dragable Ajax 0.006 2 0.02 0.003 1 0.01

Making Ajax Work with
Screen Readers

0.0162 2 0.02 0.008 1 0.01

Backpack 0.005 5 0.05 0.004 4 0.04

Base Camp 0.0127 16 0.16 0.011 14 0.14

BrainKing 0.007 18 0.18 0.007 17 0.17

Realtime HTML editor 0.024 13 0.13 0.020 11 0.11

Remember the Milk 0.008 20 0.2 0.007 18 0.18

WeBoggle 0.009 11 0.11 0.007 9 0.09

XHTML Live Chat 0.008 6 0.06 0.005 4 0.04

ThickBox 0.007 4 0.04 0.005 3 0.03

TreehouseChat 0.020 7 0.07 0.017 6 0.06

Super Maryo World 0.019 15 0.15 0.014 11 0.11

Spell Check Demo 0.022 20 0.2 0.018 17 0.17

Slider Bar Demo 0.038 9 0.09 0.034 8 0.08

nexImage 0.097 12 0.12 0.089 11 0.11

Tacos 0.018 7 0.07 0.013 5 0.05

ZK Demo 0.021 10 0.1 0.019 9 0.09

ANECL ANETS ANET ANECL ANETS ANET

Average for NECL,
NETS, NET

0.0193 10 0.1 0.0154 8 0.088
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Using theNECL,NETSandNETmetrics inTable7wepresent the results obtained
byEvoGUITest and compare them to those obtained byAtusa framework. The results
show that EvoGUITest had better results than Atusa for all metrics.

The third comparison was made with the Kudzu framework. For 28 benchmark
applications that were tested, Fig. 12 shows the errors obtained by EvoGUITest and
by Kudzu frameworks.

The number of errors discovered in theHTMLcode byEvoGUITest andKudzu for
28 benchmark applications are presented in Table8. In the tested cases when errors
were discovered, EvoGUITest framework had better or same results than Kudzu
framework. In just one single case (the TVGuide application), Kudzu discovered
one error while EvoGUITest was unable to find any error.

Using theNECL,NETSandNETmetrics inTable9wepresent the results obtained
by EvoGUITest framework, compared to Kudzu framework. The results show that
EvoGUITest had better results than Kudzu.

All the comparisons made until now show that the results obtained with EvoGUI-
Test framework in automated testing of graphical user interfaces forWeb applications
have a better quality. The EvoGUITest framework managed to find out more errors
in the HTML code and to generate more performing test suites than others similar
frameworks.

Fig. 12 Errors discovered by EvoGUITest and Kudzu
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Table 8 Errors in HTML code discovered by EvoGUITest and Kudzu

Tested Applications Lines Code
Number

Tests Suite
Dimension

EvoGuiTest(HTML
errors number)

Kudzu (HTML
errors number)

Plaxo 17854 178 1 1

Academia 1604 16 1 1

AJAXIm 9328 93 3 2

FacebookChat 15789 144 – –

ParseUri 601 6 1 1

Word Monkey 5437 93 22 20

Calorie Watcher 2808 28 2 –

Birthday Reminder 1678 16 2 –

Simple Calculator 2340 93 3 1

AskAWord 2690 93 2 1

Block Notes 1798 28 2 1

Expenses Manager 3608 32 – –

Listy 2564 26 1 1

Notes LP 3516 30 – –

Progress Bar 1439 15 – –

Todo List 2076 20 – –

TVGuide 3789 32 – 1

Zip Code Gas 5587 54 2 1

AJAX Rater 4312 47 2 1

AJAX Newsletter
Signup

4789 87 4 3

Lace 3912 76 7 5

Monket Calendar 2945 34 6 5

Opera Platform 12347 120 – –

Slide Show System 5489 67 5 3

NetDirector 3675 104 – –

Metatron Chat
Engine

4012 81 1 1

FileChucker 2934 72 2 1

Chihuahua Word
Puzzle

5476 55 4 2

Average 4799 62 3 2
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Table 9 Metrics results for EvoGUITest and Kudzu

Aplications EvoGuiTest Kudzu

NECL NETS NET NECL NETS NET

Plaxo 0 1 0.005 0.00005 1 0.005

Academia 0.0006 1 0.062 0.0006 1 0.062

AJAXIm 0.0003 3 0.032 0.0002 2 0.021

FacebookChat 0 0 0 0 0 0

ParseUri 0.0016 1 0.166 0.0016 1 0.166

Word Monkey 0.004 22 0.23 0.0036 20 0.21

Calorie Watcher 0.0007 2 0.071 0 0 0

Birthday Reminder 0.0011 2 0.12 0 0 0

Simple Calculator 0.0012 3 0.032 0.0004 1 0.01

AskAWord 0.0007 2 0.021 0.0003 1 0.01

Block Notes 0.0011 2 0.071 0.0005 1 0.035

Expenses Manager 0 0 0 0 0 0

Listy 0.0003 1 0.038 0.0003 1 0.038

Notes LP 0 0 0 0 0 0

Progress Bar 0 0 0 0 0 0

Todo List 0 0 0 0 0 0

TVGuide 0 0 0 0.0002 1 0.031

Zip Code Gas 0.0003 2 0.037 0.0001 1 0.018

AJAX Rater 0.0004 2 0.042 0.0002 1 0.021

AJAX Newsletter
Signup

0.0008 4 0.045 0.0006 3 0.034

Lace 0.0017 7 0.092 0.0012 5 0.065

Monket Calendar 0.002 6 0.176 0.0016 5 0.147

Opera Platform 0 0 0 0 0 0

Slide Show System 0.0009 5 0.074 0.0005 3 0.044

NetDirector 0 0 0 0 0 0

Metatron Chat Engine 0.0002 1 0.012 0.0002 1 0.012

FileChucker 0.0006 2 0.0277 0.0003 1 0.013

Chihuahua Word Puzzle 0.0007 4 0.0727 0.0003 2 0.0363

ANECL ANETS ANET ANECL ANETS ANET

Average for NECL,
NETS, NET

0.0006 3 0.050 0.0004 2 0.034

5 Conclusions and Future Work

This paper presents EvoGUITest, an original framework for automatically testing
graphical user interfaces of Web applications based on EAs techniques. The main
features of the EvoGUITest framework are the following:
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• It tests the GUI separately from the application source code itself;
• It automatically generates and executes the test suite;
• It is able to find the sequence of events which produces the biggest number of
changes inside the GUI, so it checks the biggest possible number of controls
inside the GUI.

TheEvoGUITest framework is original because it runs on client side, being developed
in Javascript and it tests the GUI of the application separately from the software
application itself. To the best of our knowledge, it is the first GUI testing application
developed only using JavaScript. The advantage of using JavaScript is that it is
platform-independent and it can testGUI components developed in any programming
language. The extension of the framework is very easy to make because there is no
need of any extra tools to write JavaScript code. This can be done using any plain
text or HTML editor.

EvoGUITest has the objective to find out the most important sequence of events
which produces the biggest number of changes inside the GUI. By producing the
biggest number of changes, the sequence is able to verify as many components as
possible inside the GUI.

EvoGUITest is able to discover the most important sequence of GUI events.
Future work will involve using EvoGUITest framework for testing larger projects.

We will also focus on using EvoGUITest for regression testing. The test cases suite
will be used to check if the GUI still functions correctly after each development
change is performed. The framework will be extended with other evolutionary algo-
rithms: Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO)
algorithms.

A complete automated testing framework based on EAs could be designed and
implemented, for completely automating the GUI testing process.
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Evolving Protection Measures for Lava
Risk Management Decision Making

Giuseppe Filippone, Donato D’Ambrosio, Davide Marocco
and William Spataro

Abstract Many volcanic areas around the World are densely populated and
urbanized. For instance, Mount Etna (Italy) is home to approximately one million
people, despite being the most active volcano in Europe. Mapping both the physical
threat and the exposure and vulnerability of people and material properties to vol-
canic hazards can help local authorities to guide decisions about where to locate a
priori critical infrastructures (e.g. hospitals, power plants, railroads, etc.) and human
settlements and to devise for existing locations and facilities appropriate mitigation
measures. We here present the application of Parallel Genetic Algorithms for opti-
mizing earth barriers construction by morphological evolution, to divert a case study
lava flow that is simulated by the numerical Cellular Automata model Sciara-fv2
at Mt Etna volcano (Sicily, Italy). The devised area regards Rifugio Sapienza, a
touristic facility located near the summit of the volcano, where the methodology was
applied for the optimization of the position, orientation and extension of an earth
barrier built to protect the zone. The study has produced extremely positive results,
providing insights and scenarios for the area representing, to our knowledge, the first
application of morphological evolution for lava flow mitigation.

Keywords Evolutionary computation · Genetic algorithms · Parallel computing ·
Decision support system · Cellular automata · Morphological evolution

1 Introduction

When dealing with lava flow risk assessment, the use of thematic maps of volcanic
hazard is of fundamental relevance to support policy managers and administrators
in effective land use planning and taking proper actions that are required during an
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emergency phase. In particular, hazard maps are a key tool for emergency management
by describing the threat that can be expected at a certain location for future erup-
tions. At Mt. Etna (Italy), the most active volcano in Europe, the majority of events
that have occurred in the last four centuries report damage to human properties in
numerous towns on the volcano flanks [1]. Current efforts for hazard evaluation and
contingency planning in volcanic areas depend heavily on hazard maps and numerical
simulations for the purpose of individuating affected areas in advance.

Although many computational modeling methods [2–4] for lava flow simulation
and related techniques for the compilation of susceptibility maps are already known to
the international scientific community, the problem of defining a standard method-
ology for the construction of protection works, in order to mitigate volcanic risk,
remains open. Techniques to slow down and divert lava flows, caused by collisions
with protective measures such as artificial barriers [5, 6] or dams [7], are now to be
considered empirical, exclusively based on past experiences. The proper positioning
of protective measures in the considered area may depend on many factors (viscosity
of the magma, output rates, volume erupted, steepness of the slope, topography, eco-
nomic costs). As a consequence, in this context one of the major scientific challenges
for volcanologists is to provide efficient and effective solutions.

Morphological Evolution (ME) is a recent development within the field of engi-
neering design, by which evolutionary computation techniques are used to tackle
complex design projects. This branch of evolutionary computation is also known as
evolutionary design and it is a multidisciplinary endeavour that integrates concepts
from evolutionary algorithms, engineering, and complex systems to solve engineer-
ing design problems [8]. Morphological evolution has been largely explored in evo-
lutionary robotics, both for the design of imaginary 3D robotics bodies [9] and for
the efficient and autonomous design of adaptive moving robots [10]. Principles of
evolutionary design have been also applied in structural engineering at different level
of the design process, from the structural design itself to the logistic involved in the
construction [11].

This paper describes the application of ME by Parallel Genetic Algorithms
(PGAs), for the first time to our knowledge, for optimizing earth barriers construc-
tion to divert a case study lava flow that is simulated by the latest release fv2 of the
SCIARA Cellular Automata lava flow model [12]. Cellular Automata (CA) were
introduced in 1947 by John von Neumann [13], quickly gaining the attention of
the Scientific Community both as powerful parallel computational models and as a
convenient apparatus for modeling and simulating several types of complex physi-
cal phenomena. CA have been applied to a variety of fields and their major interest
regard their pratical use in Complex Systems modelling in Physics, Biology, Earth
Sciences and Engineering (e.g., see [14–17]).The GA fitness evaluation, which was
adopted for evaluating the “goodness” of the protective works of the CA model gen-
erated lava flow scenarios, has implied a massive use of the numerical simulator
that runs thousands of concurrent simulations for every GA generation computa-
tion. Therefore, a GPGPU (General Purpose computation with Graphic Processor
Units) library was developed to accelerate the GA execution. A visualization sys-
tem [18] was also implemented, thereby allowing interactive analysis of the results.
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Eventually, a study of GA dynamics, with reference to emergent behaviors, is also
discussed later. In the following, after the description of the case study adopted for
the experiments (Sect. 2), the main characteristics of the implemented algorithm,
framework and results are presented (Sect. 3). Section 4 concludes the paper with
final comments and future works.

2 The Case Study: The 2001 Mt Etna Eruption

The 2001 eruption of Mt. Etna began on July 17, characterized by lava emission
from several vents on the southern flank of the volcano, at elevations of 2100, 2550,
2600, 2700, 2950, 3050 m, the latter four being directly connected to the conduit of
the SE crater [19] (see Fig. 1). Lava flows emitted from the lowermost vents (2100,
2550, 2600–2700 m) caused damage and threatened some important facilities and
infrastructure, which were protected by earthen barriers. Effusion rates at the main
eruptive vents were estimated daily by [1] from the volume/time ratio and were
obtained by careful mapping of the flow area and estimating its mean thickness.
The facilities of the Sapienza zone were undoubtedly at risk because of their short
distance from the 2700 and 2550 m effusive vents (respectively 3 and 2.5 km). The
most probable path for the lava flow emitted from the 2100 m fissure was simulated
(Crisci et al. 2001 and M.T. Pareschi, unpublished reports to Civil Protection) and was
considered for the carried out experiments presented in the next sections. Thirteen
artificial barriers were built during the July August 2001 Mt. Etna eruption. Their
locations, together with investigated area here considered, are shown in the map
of Fig. 1. The flow emitted from the lower vent, the 2100 m fissure, immediately
interrupted the road SP92 and invaded a part of the adjacent wide parking area
located between Mts. Silvestri and the Sapienza zone (1900 m a.s.l.). Starting on 21
July, a large barrier was progressively built on the eastern flank of the flow to protect
two tourist facilities. This barrier worked properly and the two buildings were saved.
The lava flow emitted from the 2100 m fracture descended about 6 km southwards
(Fig. 1) and after the SP92 road near Mts. Silvestri it cut some other minor rural roads
and destroyed a few isolated country houses. Had the lava advanced further, it would
have re-crossed the SP92 road at a lower elevation, causing the complete isolation of
the upper part of Mt. Etna. Workers and machines were moved to a possible critical
point on the western front ready to build a diversion barrier to protect the road. An
intervention plan was also set up for the protection of the Nicolosi and Belpasso
villages, located on the most probable path of the lava, at only 4 km distance from
its lowermost front. Eventually, the rate effusion decrease beginning in the last days
of July prevented any further advance of the flow and thus the planned interventions
were not necessary.
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Fig. 1 Set of interventions
carried out during the 2001
eruption event to divert the
lava flow away from the
facilities. The green
perimeters represent the
Rifugio Sapienza and other
facilities (security area),
which delimitates the area
that has to be protected by
the flow for the study. The
red perimeter (work area),
specifies the area in which
the earth barrier can be
located (Base figure taken
from [5])

3 Morphological Evolution of Protective Works
Through Parallel Genetic Algorithms

Genetic Algorithms (GAs) [20] are general-purpose iterative search algorithms
inspired by natural selection and genetics. Among other applications, GA have been
applied to combinatorial problems [21] in the study of the interaction between evolu-
tion and learning [22], evolutionary robotics [23, 24], for improving the performance
of CA in resolving difficult computational tasks (e.g. [25]). GAs based methods have
also been applied to CA for modelling bioremediation of contaminated soils [26] and
for the optimisation of lava and debris flow simulation models (e.g., [27–30]).

GAs simulate the evolution of a population of candidate solutions, called pheno-
types, to a specific problem by favouring the reproduction of the best individuals.
Phenotypes are codified by genotypes, typically using strings, whose elements are
called genes. In order to determine the best possible solution of a given problem, the
GA must explore the so-called search (or solution) space, defined as the set of all
possible values that the genotype can assume. The members of the initial population
evaluated by means of a “fitness function”, determining the individuals “adaptivity”



Evolving Protection Measures for Lava Risk Management Decision Making 69

Fig. 2 Example of barriers
encoding into a GA
genotype. The height of the
intermediate points of each
barrier is obtained by
connecting the work
protections extremes through
a linear function
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value (also called fitness value), i.e. a measure of its goodness in resolving the prob-
lem. Best individuals are chosen by means of a “selection” operator and reproduced
by applying random “genetic” operators to form a new population of offspring. Typ-
ical genetic operators are “crossover” and “mutation”: they represent a metaphor of
sexual reproduction and of genetic mutation, respectively. The overall sequence of
fitness assignment, selection, crossover, and mutation is repeated over many gener-
ations (i.e. the GA iterations) producing new populations of individuals. According
to the individual’s probability of selection, any change that actually increases the
individual’s fitness will be more likely to be preserved over the selection process,
thus obtaining better generationsas stated by the fundamental theorem of genetic
algorithms [20]. For a complete overview of GAs, see [31, 32].

While GAs have been applied several times in the past for optimizing CA models,
as the ones previously reported, by considering the 2001 Nicolosi case study, in this
work GAs were adopted in conjunction with the SCIARA-fv2 CA model for the
morphological evolution of protective works to control lava flows. The numerical
model finite set of states was extended by introducing two substates defined as:

Z ⊆ R (1)

where Z is the set of cells of the cellular automaton that specifies the Safety Zone,
which delimitates the area that has to be protected by the lava flow and

P ⊆ R, P ∩ Z = � (2)

where P is the set of CA cells that identifies the Protection Measures Zone identifying
the area in which the protection works are to be located.

The Protection work W = B1, B2, . . . , Bn was represented as a set of barriers,
where every barrier Bi = Ni1, Ni2 is composed by a pair of nodes Nij = xij, yij, zij,
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where xij, yij represent CA coordinates for the generic node j of the barrier i , and zij

the height (expressed in m). The solutions were encoded into a GA genotype, directly
as integer values (Fig. 2) and a population of 100 individuals, randomly generated
inside the Protection Measures Zone, was considered.

Two different fitness functions were considered to suitably evaluate the goodness
of a given solution: f1, based on the areal comparison between the simulated event and
the Safety Zone (in terms of affected area) and f2, which considers the total volume
of the protection works in order to reduce intervention costs and environmental
impact.More formally, the f1 objective function is defined as:

f1 = μ(S ∩ Z)

μ(S ∪ Z)
(3)

where S and Z respectively identify the areal extent of the simulated lava event
and the Safety Zone area, with μ(S ∩ Z) e μ(S ∪ Z) being the measures of their
intersection and union. The function f1, assumes values within the range [0, 1] where
0 occurs when the simulated event and Safety Zone Area are completely disjointed
(best possible simulation) and 1 occurs when simulated event and Safety Zone Area
perfectly overlap (worst possible simulation).

The f2 objective function is defined as:

f2 =
∑|W |

i=1 pc · d(Bi ) · h(Bi )

Vmax
(4)

where d(Bi ) and h(Bi ) represent the length (in meters) and the average height of the
ith barrier, respectively. The parameter pc is the cell side and Vmax ∈ R is a threshold
parameter (i.e., the maximum building volume) given by experts, for the function
normalization. Since the barriers are composed of two nodes, the function can be
written as:

f2 =
∑|W |

i=1 pc · d(Ni1, Ni2) · h̄(Ni1, Ni2)

Vmax
(5)

where h̄(Ni1, Ni2) = |zi1+zi2|
2 is considered as the average height value between

two different nodes and d(Ni1, Ni2) = √
(xi1 − xi2)2 + (yi1 − yi2)2 identifies the

Euclidean distance between them. The final fitness function f2 is thus:

f2 =
∑|W |

i=1 pc · √
(xi1 − xi2)2 + (yi1 − yi2)2 · |zi1+zi2|

2

Vmax
(6)

The function f2, assumes values within the range [0, 1]: it is nearly 0 when the work
protection is the cheapest possible, 1 otherwise.
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For the genotype fitness evaluation, a composite (aggregate) function f3 was also
introduced as follows:

f3 = f1 · ω1 + f2 · ω2 (7)

where ω1,ω2 ∈ R and (ω1 + ω2) = 1, represent weight parameters associated to f1

and f2. Several different values where tested and the considered ones in this work
chosen on the basis of trial and error techniques.The goal for the GA is to find a
solution that minimizes the considered objective function f3 ∈ [0, 1].

In order to classify each genotype in the population, at every generation run, the
algorithm executes the following steps:

1. CA cells elevation a.s.l. are increased/decreased in height on the basis of the geno-
type decoding (i.e., the barrier cells). In addition, an extending Bresenham‘s orig-
inal algorithm [33] is applied to determine the cells inside the segment between
the work protection extremes and f2 subsequently computed.

2. A SCIARA-fv2 simulation is performed (about 40000 calculation steps) and the
impact of the lava thickness on Z area ( f1 computation) is evaluated.

3. f3 is computed and individuals are sorted according to their fitness.

The adopted GA is a rank based and elitist model, as at each step only the best
genotypes generate off-spring. The 20 individuals which have the highest fitness
generate five off-spring each and the 20 × 5 = 100 offspring constitute the next
generation. After the rank based selection, the mutation operator is applied with the
exception of the first 5 individuals.

The complete list of GA characteristics and parameters is reported in Table 1. Each
gene mutation probability depends on its representation: pmc for genes corresponding
to coordinates value and pmh viceversa. Therefore, if during the mutation process, a
coordinate gene is chosen to be modified, the new value will depend on the parameters
xmax and ymax which represent the cell radius within the node, the position of which
can vary. The interval [hmin, hmax ] is the range within which the values of height
nodes are allowed to vary (Fig. 3). This strategy ensures the possibility for the GA
to provide, as output, either protective barriers or ditches.

To ensure a better exploration of the search space and to avoid a fast convergence
of solutions to local optima a n point crossover operator has been introduced. Two
parent individuals are randomly chosen from the mating pool and two different
cutting points for each parents are selected. Cut points always coincide with the first
gene of a sub-solution and after the selection portions of the sub-solution chosen in
the genotype, they are exchanged. The crossover operator is applied according to a
prefixed probability, pc, for each sub-solution encoded in the genotype.

3.1 Parallel Implementation and Performance

The fitness evaluation of a GA individual consists in an entire CA simulation,
followed by a comparison of the obtained result with the actual case study. This phase
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Table 1 List of parameters of the adopted GA

GA parameters Specification Value

gl Genotypes length 6

ps Population size 100

ng Number of generations 100

pmc Coord. gene mutation
probability

0.5

xmax Gene x position variation
radius

10

ymax Gene y position variation
radius

10

pmh Height gene mutation
probability

0.5

hmin height min variation range −5

hmax height max variation range 10

pc crossover probability 0.05

ch+ Cost to build 1

ch− Cost to dig 1

ω f 1 f1 weight parameter 0.90

ω f 2 f2 weight parameter 0.10

Fig. 3 Graphical
representation of the
genotype mutation phase.
Each gene, representing a
CA coordinate, can vary
within a variation radius
[xmax , ymax ]

x11 y11 z11 x12 y12 z12
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z11
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xmax

may require several seconds, or even several hours: for example, on a 2-Quadcore
Intel Xeon E5472, 3.00 GHz CPU such evaluation requires approximately 10 min,
as at least 40,000 CA steps are required for a simulation. For instance, if the GA
population is composed of 100 individuals, the time required to run one seed test
(100 generation steps) exceeds 69 days. Moreover, the GA execution can grow,
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depending on both the extent of the considered area and the number of different tests
to run.

As a consequence, a CPU/GPU library was developed to accelerate the GA run-
ning. Specifically, a “Master-Slave” model was adopted in which the Host-CPU
(Master) executes the GA steps (selection, population replacement, mutation and
crossover), while GPU cores (slaves) evaluate the individuals fitness (i.e., a com-
plete SCIARA-fv2 simulation).

Since the most intensively computational work is needed for this latter phase, a
multi-simulator was devised to efficiently exploit the considered GPGPU hardware,
in order to permit the execution of more simulations in parallel. For this purpose, two
different implementation strategies were implemented and a landscape benchmark
case study was considered, modeled through a Digital Elevation Model composed
of 200 × 318 square cells with a side of 10 m. In addition, a set of 50 hypothetical
barriers placed with 2 different inclinations (135, 225◦) to the lava flow direction was
considered leading to a total of 100 simulations to be performed. Four CUDA devices
were used in the experiments: a nVidia Tesla C2075 and three nVidia Geforce graphic
cards, namely the GTX480, GTX 580 and the GTX 680. Also, in order to quantify the
achieved parallel speedup, sequential versions of the same GPU strategies were run
on a workstation equipped with a 2-Quadcore Intel Xeon E5472 (3.00 GHz) CPU.

Starting from previous research in CA modelling by means of GPGPU
(e.g. [34–37]), a first straightforward parallel implementation, labeled as WCSI
(Whole Cellular Space Implementation) was considered where the CUDA kernels
operate on the whole cellular space. However, since the transition function of the
currently active cells (i.e., cells containing lava) is invoked, simulating only one sim-
ulation at a time would imply a high percentage of uselessly scheduled threads. In
addition, given the limited extension of most simulations (on average, 20 % of cells
of the entire automaton are active during a single simulation), the number of active
threads would be too low to allow the GPU to effectively activate the latency-hiding
mechanism [38] of CUDA. To increase thread occupancy, in the WCSI approach more
than a single lava episode are simultaneously executed. This means that the main
CUDA kernel is executed over a number of simulations which are simultaneously
executed at the same CA step. In particular, each simulation performed is mapped on
a different value of z and on a grid of threads composed of 16 × 16 blocks. That is,
the grid of threads used for the CA transition function is three-dimensional, with the
base representing the considered CA space and the vertical dimension corresponding
to the different launched simulations.

Using the adopted GPU devices, the algorithm was implemented with the WCSI
approach and execution times evaluated for a variable number of simultaneous lava
simulations. For a fair comparison, the sequential version of the same algorithm
was used and the elapsed time achieved by the CPU was 26039 s. According to the
results shown in Fig. 4a, the GTX 680 achieved the lowest elapsed time of 650,96 s,
concurrently simulating 50 lava events. The gain provided by the parallelisation in
terms of computing time was significant and corresponded to a parallel speedup of
over 40 for the used CPU (Fig. 4).
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Fig. 4 Elapsed time as a function of simultaneous lava events usign the WCSI (a) and DGI (b)
approaches on different considered GPGPU hardware

For CA lava flow models, the application of the transition function can be restricted
to the only active cells where computation is actually taking place. Thus, the CA space
can be confined within a rectangular bounding box (RBB). This optimization drasti-
cally reduces execution times, since the sub-rectangle is usually quite smaller than the
original CA space. This may result in having a high percentage of computationally
inactive threads in the CUDA grid, as in the case of the WCSI CA implementation.
For these reasons, a second approach was developed in which the grid of threads is
dynamically computed during the simulation in order to keep low the number of com-
putationally irrelevant threads. In such an approach, labelled as DGI (Dynamic Grid
Implementation), a number of lava flow simulations are simultaneously executed as
in the WCSI procedure.

In addition, at each CA step the procedure involves the computation of the smallest
common rectangular bounding box (CRBB) that includes any active cells in every
concurrent simulation. Figure 5 shows all kernels required by the CA step that are

Fig. 5 Mapping of the CA
transition function into a
CUDA grid of threads (right)
in case of the simultaneous
lava flows (left)
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mapped on such CRBB, thus reducing the number of useless threads and significantly
improving the computational performance.

An analogous strategy based on the bounding box has been developed for the
sequential version of the program. for a fair comparison. Using the reference CPU,
such sequential procedure required 20180 s on the same case study. Figure 4b shows
times taken by the parallel DGI approach as a function of the number of concurrent
simulations. As seen, the GTX 680 achieved the lowest elapsed time of 301,18 s,
giving rise to a parallel speedup of 67.

3.2 Experiment and Results

By considering the Nicolosi lava flow event (barriers uphill from Sapienza Zone) and
by adopting the parallel multi-simulator described in the previous section, ten GA
runs (based on different random seeds) of 100 generation steps each were carried out,
each one with a different initial population. The elapsed time achieved for the ten
GA runs was less than nine hours of computation on a 10 multi-GPU GTX 680 GPU
Kepler Devices Cluster (note that the same experiment, on a sequential machine,
would had lasted more than seven months). Furthermore, during the running, a Visu-
alization System Software [18], based on OpenGL and C++ and integrated into Qt
interface, allowed the interactive visualization and analysis phases of the results.

For this preliminary experiment, only solutions with two nodes were considered
(|W | = 1), while Z and P were chosen as in Fig. 1. The cardinality of W (Protection
work) and the gene values in which they are allowed to vary (depending of Z area),
define the search space Sr for the GA:

Sr = {[Pxmin , Pxmax

] × [
Pymin , Pymax

] × [(
hmin · ng

)
,
(
hmax · ng

)]}2|W | (8)

The temporal evolution of the f3 fitness is graphically reported in Fig. 7a, in terms
of average results over the ten considered experiments. GA experiment parameters
values are also listed in Table 1. The related CA simulation, obtained by adopting
the best individual is shown in Fig. 6.

The study, though preliminary, has produced quite satisfying results. Among dif-
ferent best individuals generated by the GA for each seed test, the best one (Table 2)
consists of a barrier with an average height of 7,5 and 410 m in length with an incli-
nation angle of 141◦ with respect to the direction of the lava flow. The barrier (its
properties are shown in Table 2) completely deviates the flow avoiding that the lava
reaches the inhabited and building facilities areas. It is worth to note that, the best
solution provided by GA (Fig. 6) in this work is approximately five times more effi-
cient (in term of total m3 volume used to keep safe tha safety areas) respect to the
one applied in the real case (Fig. 1), consisting of thirteen earthen barriers.
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Fig. 6 SCIARA—fv2 simulation visualization adopting the GA best solution. As seen, the devised
barrier (blue) completely diverts the lava flow from the Safety Areas (red)
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Fig. 7 Temporal evolution of composite f3 fitness of best individual (in black) and of average
fitness of whole population (in gray) (a). Temporal evolution of average fitness f1 (in red) and
f2 (in green) of whole population (b). Fitness values were obtained as an average of 10 GA runs,
carried out by adopting different seeds for generation of random numbers

3.3 Considerations on the GA Dynamics and Emergent
Behaviors

In the GA experiments that have been performed, individuals with high fitness
evolved rapidly, even if the initial population was randomly generated and the search
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Table 2 Properties of the best barrier evolved by GA run

Barrier Prop-
ertiers

Length (m) Height (m) Base Width (m) Volume (m3) Inclination (◦)

[206,96,2]
[238,122,13]

410 7,5 10 24750 141

Fig. 8 Nodes distribution of
the best 100 solutions
generated by the GA. Scale
values indicates occurrence
of nodes

space was quite large (Eq. 8). By analyzing several individuals evolved in ten dif-
ferent GA executions, similar solutions were observed. This behavior is due to the
presence of problem constraints (e.g. morphology, lava vent, emission rate, Z and P
areas) that lead the GA to search in a “region” of the solution space characterized by
a so called “local optimum”. In particular, f1 reaches the minimum value (0) around
the twentieth GA generation and the remaining 80 runs are used by GA for the f2

optimization (cf. Fig. 7b).
In any case, the evolutionary process has shown, in accordance with the opinion of

the scientific community [5, 39], the ineffectiveness of barriers placed perpendicular
to the lava flow direction despite diagonally oriented solutions (130–160◦).

Furthermore, a systematic exploitation of morphological characteristics by GA,
during the evolutionary process, has emerged. To better investigate such GA emer-
gence behaviour, a study of nodes distribution was conducted (Fig. 8). By considering
the best 100 solutions provided by GA, each node was classified on the basis of the
slope proximity calculation, as an average of altitude differences between node neigh-
borhood cells (with radius 10) and the central cell. More formally, the function that
assigns to each generic node j a slope proximity value is defined as:

sp j =
∑|X |

i=1 z̄i − z̄0

|X | (9)

where X is the set of cells that identifies the neighborhood of j and z̄i ∈ Qz is
the topographics altitude (index 0 represents the central cell). As shown in Fig. 9,
starting from the tenth GA generation, the evolutionary process has shown an increase
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Fig. 9 Temporal evolution
of average slope proximity
values for the best
individuals
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in slope proximity values. Therefore, after the f1 optimization (cf. Fig. 7b), in order
to minimize f2, there is a specific evolutionary temporal phase (i.e., up to the 25th
generation) where the algorithm generates solutions that are located in the proximity
of elevated slopes.

4 Conclusions and Future Works

This paper has presented a novel approach for devising protective measures to divert
lava flows. Starting from the problem of the high computational complexity of the
GA algorithm, a library was developed for executing a large number of concurrent
lava simulations using GPGPU. The parallel speedups attained through the proposed
approaches and by considering GPGPU hardware, were indeed significant. In fact,
the adoption of PGAs permitted to perform, in reasonable times, a greater number
of tests shortening the execution by a factor of 67. In addition to the GA algorithm
acceleration implementation, an interaction visualization system was also developed
for the analysis phases of the results.

In this preliminary release of the algorithm only two nodes based solutions were
considered and evaluated on the basis of two fitness functions. The first fitness
function guarantees the goodness of the solution in terms of security; the second
one minimizes the environmental impact.

First observations of the GA results permitted to conjecture the presence of a local
optima in the search space, probably due to problem constraints. To better investi-
gate GA dynamic characteristics, a study of nodes distribution was also conducted
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and a systematic exploitation of morphological characteristics by GA during the
evolutionary process emerged.

PGAs experiments, carried out by considering the Nicolosi case-study, demon-
strated that artificial barriers can successfully change the direction of lava flow in
order to protect predefined point of interests.

In particular, by performing extensive experiments, simulations demonstrated that
protective works are more effective when placed nearly parallel to the flow direction,
while a barrier placed perpendicular to the flow direction can only stop the flux
temporarily, ultimately allowing the solidified crust to accumulate and cause the
following mass to go over the barrier.

Though preliminary, the study has produced extremely positive results and simula-
tions have demonstrated that GAs can represent a valid tool to determine protection
works construction in order to mitigate the lava flows risk. However, considering
two-nodes barriers is a strong limitation and a critical aspect of GA implementa-
tions that can significantly improve the efficiency of the final solution is the the
possibility to provide multi-barrier protection measures. For this reason, future work
will firstly consider the investigation of solutions consisting of multiple protective
interventions and the introduction of lava cooling by water jets as parameter of the
methodology. By considering the hazard evaluation context, an important application
of the methodology could be to take into account as an event to be mitigated a grid of
hypothetical vents defined as the source for the simulations to be carried out. In this
case, protection measures provided by the GA can represent a preventive solution
to assess the effect of possible human interventions. Furthermore, it could be very
important to evaluate the extension of this method to other different complex natural
phenomena such as a debris flow models.

Acknowledgments Authors gratefully acknowledge the support of NVIDIA Corporation for this
research. The work was partially funded by the European Commission European Social Fund (ESF)
and by the Regione Calabria (Italy).

References

1. Behncke, B., Neri, M.: The July-August 2001 eruption of Mt. Etna (Sicily). Bull. Volcanol.
65(7), 461–476 (2003)

2. Miyamoto, H., Sasaki, S.: Simulating lava flows by an improved cellular automata method.
Comput. Geosci. 23, 283–292 (1997)

3. Avolio, M.V., Crisci, G.M., Di Gregorio, S., Rongo, R., Spataro, W., D’Ambrosio, D.: Pyro-
clastic flows modelling using Cellular Automata. Comput. Geosci. 32, 897–911 (2006)

4. Del Negro, C., Fortuna, L., Herault, A., Vicari, A.: Simulations of the 2004 lava flow at Etna
volcano using the magflow cellular automata model. Bull. Volcanol. 70(7), 805–812 (2008)

5. Barberi, F., Brondi, F., Carapezza, M., Cavarra, L., Murgia, C.: Earthen barriers to control lava
flows in the 2001 eruption of Mt. Etna. J. Volcanol. Geoth. Res. 123, 231–243 (2003)

6. Colombrita, R.: Methodology for the construction of earth barriers to divert lava flows: the Mt.
Etna 1983 eruption. Bull. Volcanol. 47(4), 1009–1038 (1984)

7. Barberi, F., Carapezza, M., Valenza, M., Villari, L.: The control of lava flow during the 1991–
1992 eruption of Mt. Etna. J. Volcanol. Geoth. Res. 56, 1–34 (1993)



80 G. Filippone et al.

8. Bentley, P.: An introduction to evolutionary design by computers. In: Bentley, P.J. (ed.) Evo-
lutionary Design by Computers, ch. 1, pp. 1–73. Morgan Kaufman, San Francisco (1999)

9. Sims, K.: Evolving 3d morphology and behavior by competition. In: Proceedings of Artificial
Life IV, pp. 28–39. MIT Press (1994)

10. Bongard, J.: Morphological change in machines accelerates the evolution of robust behavior.
In: Proceedings of the National Academy of Sciences, vol. 108, pp. 1234–1239 (2011)

11. Kicinger, R., Arciszewski, T., Jong, K.D.: Evolutionary computation and structural design: a
survey of the state-of-the-art. Comput. Struct. 83, 1943–1978 (2005)

12. Spataro, W., Avolio, M.V., Lupiano, V., Trunfio, G.A., Rongo, R., D’Ambrosio, D.: The latest
release of the lava flows simulation model SCIARA: First application to Mt Etna (Italy) and
solution of the anisotropic flow direction problem on an ideal surface. In: Proceedings of
International Conference on Computational Science, vol. 1, pp. 17–26. Procedia Computer
Science (2010)

13. Neumann, J.V.: Theory of Self-Reproducing Automata. University of Illinois Press, Champaign
(1966)

14. Chopard, B., Droz, M.: Cellular Automata Modeling of Physical Systems. Cambridge Univer-
sity Press, Cambridge (2000)

15. Trunfio, G.A., D’Ambrosio, D., Rongo, R., Spataro, W., Di Gregorio, S.: A new algorithm for
simulating wildfire spread through cellular automata. ACM Trans. Model. Comput. Simul. 22,
6:1–6:26 (2011)

16. Succi, S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Clarendon Press,
Oxford (2001)

17. Crisci, G.M., Gregorio, S.D., Rongo, R., Spataro, W.: Pyr: a cellular automata model for
pyroclastic flows and application to the 1991 mt. pinatubo eruption. Future Gen. Comput. Syst.
21(7), 1019–1032 (2005)

18. Filippone, G., D’Ambrosio Spataro, D., Marocco, D.: An interactive visualization system for
lava flows cellular automata simulations using CUDA. In: Poster Presented at GPU Technology
Conference. San Jose, California (2013)

19. Barberi, F., Carapezza, M.L.: Mt. Etna: Volcano Laboratory, ch. The Control of Lava Flows at
Mt. Etna, pp. 357–369. American Geophysical Union, Washington (2004)

20. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with
Applications to Biology, Control, and Artificial Intelligence. The MIT Press, Cambridge (1992)

21. Goncalves, J.F., Resende, M.G.: Biased random-key genetic algorithms forcombinatorial opti-
mization. J. Heuristics 17(5), 487–525 (2011)

22. Hinton, G.E., Nowlan, S.J.: How learning can guide evolution. Complex Syst. pp. 495–502
(1987)

23. Nolfi, S., Marocco, D.: Evolving robots able to integrate sensory-motor information over time.
Theory Biosci. 120, 287–310 (2001)

24. ElSayed, A., Kongar, E., Gupta, S., Sobh, T.: A robotic-driven disassembly sequence generator
for end-of-life electronic products. J. Intell. Rob. Syst. 68(1), 43–52 (2012)

25. Piwonska, A., Seredynski, F., Szaban, M.: Learning cellular automata rules for binary classi-
fication problem. J. Supercomput. 63(3), 800–815 (2013)

26. Di Gregorio, S., Serra, R., Villani, M.: Applying cellular automata to complex environmental
problems: the simulation of the bioremediation of contaminated soils. Theoret. Comput. Sci.
217(1), 131–156 (1999)

27. Iovine, G., D’Ambrosio, D., Di Gregorio, S.: Applying genetic algorithms for calibrating a
hexagonal cellular automata model for the simulation of debris flows characterised by strong
inertial effects, Geomorphology, vol. 66, no.14, pp. 287–303 (2005)

28. Rongo, R., Spataro, W., D’Ambrosio, D., Avolio, M.V., Trunfio, G.A., Di Gregorio, S.: Lava
flow hazard evaluation through cellular automata and genetic algorithms: an application to Mt
Etna volcano. Fundam. Inf. 87, 247–267 (2008)

29. D’Ambrosio, D., Rongo, R., Spataro, W., Trunfio, G.A.: Meta-model assisted evolutionary
optimization of cellular automata: an application to the sciara model. In: Proceedings of the
9th International Conference on Parallel Processing and Applied Mathematics - Volume Part
II, PPAM’11, pp. 533–542. Springer, Berlin (2012)



Evolving Protection Measures for Lava Risk Management Decision Making 81

30. D’Ambrosio, D., Rongo, R., Spataro, W., Trunfio, G.: Optimizing Cellular Automata through
a Meta-model Assisted Memetic Algorithm. In: Proceedings of Parallel Problem Solving from
Nature - PPSN XII, Lecture Notes in Computer Science, vol. 7492, pp. 317–326. Springer,
Berlin (2012)

31. Genetic Algorithms in Search, Optimization and Machine Learning, 1st edn. Addison-Wesley
Longman Publishing Co. Inc., Boston (1989)

32. Mitchell, M.: An introduction to Genetic Algorithms. MIT Press, Cambridge (1996)
33. Bresenham, J.: Algorithm for computer control of a digital plotter. IBM Syst. J. 4(1), 25–30

(1965)
34. Filippone, G., Spataro, W., Spingola, G., D’Ambrosio, D., Rongo, R., Perna, G., Di Gregorio,

S.: GPGPU programming and cellular automata: Implementation of the SCIARA lava flow
simulation code. In: 23rd European Modeling and simulation Symposium (WMSS), pp. 12–
14. Rome, September 2011

35. Di Gregorio, S., Filippone, G., Spataro, W., Trunfio, G.A.: Accelerating wildfire susceptibility
mapping through GPGPU. J. Parallel Distrib. Comput. 73(8), 1183–1194 (2013)

36. D’Ambrosio, D., Filippone, G., Marocco, D., Rongo, R., Spataro, W.: Efficient application of
gpgpu for lava flow hazard mapping. J. Supercomput. 65(2), 630–644 (2013)

37. D’Ambrosio, D., Filippone, G., Rongo, R., Spataro, W., Trunfio, G.A.: Cellular automata and
GPGPU: an application to lava flow modeling. Int. J. Grid High Perform. Comput. 4, 30–47
(2012)

38. NVIDIA Corporation, CUDA C Best Practices Guide. NVIDIA Corporation, 2701 San Tomas
Expressway, Santa Clara 95050, USA, 5.0 ed. (2012)

39. Fujita, E., Hidaka, M., Goto, A., Umino, S.: Simulations of measures to control lava flows.
Bulletin of Volcanology 71, 401–408 (2009)



A Targeted Estimation of Distribution
Algorithm Compared to Traditional
Methods in Feature Selection

Geoffrey Neumann and David Cairns

Abstract The Targeted Estimation of Distribution Algorithm (TEDA) introduces
into an EDA/GA hybrid framework a ‘Targeting’ process, whereby the number of
active genes, or ‘control points’, in a solution is driven in an optimal direction. For
larger feature selection problems with over a thousand features, traditional methods
such as forward and backward selection are inefficient. Traditional EAsmay perform
better but are slow to optimize if a problem is sufficiently noisy that most large
solutions are equally ineffective and it is only when much smaller solutions are
discovered that effective optimization may begin. By using targeting, TEDA is able
to drive down the feature set size quickly and so speeds up this process. This approach
was tested on feature selection problems with between 500 and 20,000 features using
all of these approaches and it was confirmed that TEDA finds effective solutions
significantly faster than the other approaches.

Keywords Estimation of distribution algorithms · Feature selection ·Genetic algo-
rithms · Hybrid algorithms

1 Introduction

Classification problems concern the task of sorting samples, defined by a set of
features, into two or more classes. Feature Subset Selection (FSS) is the process
by which redundant or unnecessary features are removed from consideration [5].
Reducing the number of redundant features used is vital as it may improve classi-
fication accuracy, allow for faster classification and enable a human expert to focus
on the most important features [10]. We therefore approach the problem of FSS with

G. Neumann (B) · D. Cairns
Computing Science and Mathematics, University of Stirling, Stirling, UK
e-mail: gkn@cs.stir.ac.uk
url: http://www.cs.stir.ac.uk/

D. Cairns
e-mail: dec@cs.stir.ac.uk

© Springer International Publishing Switzerland 2016
K. Madani et al. (eds.), Computational Intelligence,
Studies in Computational Intelligence 613,
DOI 10.1007/978-3-319-23392-5_5

83

http://www.cs.stir.ac.uk/


84 G. Neumann and D. Cairns

two objectives: to develop a FSS algorithm that is able to find feature subsets that
are as small as possible while also enabling samples to be classified with as great an
accuracy as possible.

Evolutionary Algorithms (EAs) have often been applied to FSS problems. An EA
is a heuristic technique where a random population of potential solutions is generated
and then combined based on a fitness score to produce new solutions. Due to their
population based nature they are able to investigate multiple possible sets of features
simultaneously. They are implicitly parallel and investigate features as sets rather
than individually.

Due to the fact that features are often correlated [2] this can make them more
effective than techniques that only consider features individually. Estimation of Dis-
tribution Algorithms (EDAs) are a class of EA that build an estimated model of the
population using several fit individuals. This is in contrast to Genetic Algorithms
(GAs) that produce new individuals by crossing over genes (in this case features)
between two parent individuals.

EDAs can offer advantages over GAs as they are able to discover patterns within
the population and they are able to explicitly model relationships between features.
Cantu-Paz [3] demonstrated that bothGAs andEDAswere equally capable of solving
FSS problems but that a simple GAwas able to find good solutions faster than EDAs.

Inza [10] introduced the concept of using EDAs for feature selection. He com-
pared an EDA to both traditional hill climbing approaches (Forward Selection and
Recursive Feature Elimination, a form of Backward Selection) and GAs and found
that an EDA was able to find significantly more effective feature sets than any of the
techniques that it was compared against [11]. This work is motivated by the goal of
combining the beneficial properties of both GAs and EDAs, enabling good solutions
to be found rapidly while using a probability distribution model to make the most
informed choice of features to select.

Many investigations of FSS problems, including those of Cantu-Paz and of Inza
et al., looked at problems with fewer than 100 features. Many real world problems
involvemuch larger feature sets.We therefore explore applyingEAs to problemswith
between 500 and 20,000 features. For these problems the initial number of features is
so large that complex EDA approaches are impractical [11]. Many of these problems
are very noisy and only a small proportion of the features are useful [9]. For problems
which are so noisy that only a tiny proportion of features are useful, driving down
the size of the feature set is an important part of the optimization process.

To achieve this objective, techniques such as constraining the number of fea-
tures and then iteratively removing features to fit within this constraint have been
explored [21]. In this approach a decision needs to be made as to what value to set the
constraint to. This is problematic as it requires previous knowledge of the problem.
In this work, we demonstrate a GA/EDA hybrid that is specifically designed to drive
down the number of features to consider before attempting to build an EDA model.

Targeted EDA (TEDA) was initially developed to solve time series problems by
finding the optimal number of actions or ‘interventions’, required to solve these
problems (a process referred to as ‘Intervention Targeting’ or ‘Feature Targeting’).
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Previouswork on time series problems has shown that TEDA is effective at solving
‘bang bang control’ problems [16] and other problems [17] where there is a concept
of parameters or features being either ‘on’ or ‘off’ and where a key consideration
is the total number of variables that are ‘on’ in a solution. TEDA works by making
a prediction as to how many features or interventions should set to ‘on’ in an ideal
solution. This is achieved by examining the number of features set to ‘on’ in two or
more parent solutions, before deciding which features should be used.

TEDA transitions over time from initially operating like a GA to operating like an
EDA. The transition occurs as the population starts to converge and the probability
distribution becomes more reliable. This paper addresses whether TEDA can use
this capability to determine the number of features needed to solve a FSS problem
and so effectively find both small and accurate feature subsets. In applying TEDA to
FSS problems we are also testing TEDA’s ability to solve problems much larger than
those that it has previously been tested with and we introduce a new modification to
TEDA which makes its transitioning process more efficient and less dependent on
prior knowledge of the problem.

We also investigate how Fitness Directed Crossover (FDC) [7] performs on these
problems. FDC is a precursor to TEDA that introduced intervention targeting as a
part of the crossover operation. FDC provides a useful performance baseline for the
intervention targeting component of TEDA but does not include the EDA elements
that are introduced by TEDA.

We begin this paper with a discussion of the background to this research area,
introducing existing FSS and classification techniques. We then introduce TEDA in
Sect. 3. The final three sections are used for explaining our methodology (Sect. 4),
presenting our results (Sect. 5), and exploring any conclusions drawn (Sect. 6).

2 Background

2.1 Classification

A typical classification problem will involve constructing a classifier based on sam-
ples in a training set where the class that a given sample belongs to is already known.
New samples are then classified based on the information extracted from the train-
ing set. Popular approaches include K Nearest Neighbour (KNN) [12] and Support
Vector Machines (SVM). In KNN the k individuals in the training set that are most
similar to the new sample are used to determine the new sample’s class. SVM is
a classification technique where two classes are distinguished by drawing between
them the hyperplane that separates the instances of each class by the greatest possi-
ble margin. New samples are then classified based on which side of the hyperplane
they fall on. For the experiments detailed here we have used the LIBSVM library for
SVMs [4].
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2.2 Feature Subset Selection

Feature Subset Selection (FSS), anNPhard problem inmachine learning, involves the
identification of the minimum number of features that will most accurately classify
a given set of samples. As there are 2n possible subsets of a feature set of length
n an exhaustive search is not possible and so various search heuristics have been
developed [5]. Techniques can be divided into filter and wrapper methods [13].
Filters build feature sets by calculating the capacity of features to separate classes
whereas wrappers use the final classifier to assess complete feature sets. Wrapper
methods can be more powerful than filter methods because they consider multiple
features at once and yet they tend to be more computationally expensive [9].

Forward Selection and Backward Selection [13] are also popular search methods
as they have been described as being less prone to over fitting than wrapper methods
such as TEDA [8]. In Forward Selection the most informative feature is selected to
begin with. After this a greedy search is carried out and the second most informative
feature is added. This process is repeated until a feature set of size L , a pre-specified
limit, is reached or no further improvement can be achieved by adding any of the
remaining features. In Backward Selection an SVM initially attempts to carry out
classification using the entire feature set. The SVM assigns a weight to each feature
and the least useful features are eliminated. An alternative to the greedy search that
does not require as many iterations is to order the features by usefulness and then use
the top n features as the feature set. A decision then needs to be made as to where
to draw the line between features used in the feature set and features that are to be
discarded. One method that has been discussed before [22] is to introduce a random
dummy feature or probe to the feature set and to discard any features that perform
less well at the classification task than this dummy feature.

2.3 Genetic Algorithms

In GAs, new solutions are generated by exchanging genetic information between
two fit solutions via a crossover process. Following crossover each new solution
may, with a small probability, be mutated to a different value. The aim of this step is
to introduce variability into the gene pool.

The main varieties of crossover are distinguished by the method in which genes
from the two parents are selected. In One Point Crossover a single index is selected
within the genome to be the position where the parents are to be crossed over. A
new child will be produced that combines the genes taken from before the index in
one parent with the genes taken from after the index in the other parent. Two Point
Crossover is similar except that the genome is split at two separate points, dividing
eachparent into three parts.WhenusingUniform Crossover to generate newsolutions
a separate decision is made for each individual gene as to which parent it should be
copied from. In this work One Point Crossover is used as a benchmark as it has
previously been shown to be reasonably effective at feature selection problems [3].
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2.4 Fitness Directed Crossover

FDCcanbeused in optimal control problems to provide aGAbased crossovermethod
that will drive intervention selection towards levels used by the fittest individuals that
have been selected for breeding [7]. FDCwas usedwith fixed length encodingswhere
every gene corresponded to an intervention and either had a value greater than 0 (on)
or had a value of 0 (off). FDC starts with a population of solutions that have been
randomly initialised to either an on or off setting. To produce the next generation,
two parents are selected via tournament selection and used to derive a target number
of interventions IT . New children are produced with exactly IT genes set to ‘on’ as
using the FDC rule given in Eq. (1).

IT = IF + (2T − 1)(I1 − I2)(F1 − F2) (1)

The number of interventions set in parent one and parent two are denoted as
I1 and I2 respectively. F1 and F2 are the normalised fitnesses of the above two
parent solutions compared against the current population and IF is the number of
interventions in the fitter solution. T is 0 for a minimisation problem and 1 for a
maximisation problem. The effect of this equation is to set the target number of
interventions IT such that if the fitter parent has more interventions than the less fit
parent then IT will be greater than the number in the fitter parent and vice versa. The
level of overshoot is determined by the difference in fitness between the two parents.

Once IT has been determined, we need to choose which particular interventions
to set. We start by placing all interventions set in both parent solutions in the set
Sdup and all interventions set in only one parent in the set Ssingle. Interventions to set
are then selected randomly from Sdup until either IT interventions have been set or
Sdup is empty. If more interventions are needed then interventions will be selected
randomly from Ssingle until it is empty or IT has been reached.

2.5 Estimation of Distribution Algorithms

EDAs use a set of relatively fit solutions to build a probability model indicating how
likely it is that a given gene has a particular value. They sample this model to produce
new solutions that are centred around the derived probability distribution. Univariate
EDAs treat every gene as independent whereas multivariate approaches also model
interdependencies between genes.Multivariate EDAs are essential inmany problems
where genes are highly interrelated but they have the disadvantage that, as the num-
ber of interactions increases, there is a substantial increase in computational effort
required to model these interdependencies [14].
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One of the simplest and best known univariate EDAs is the Univariate Marginal
Distribution Algorithm (UMDA) [15]. For a binary problem, Eq. (2) shows how
UMDA calculates the marginal probability, ρi , that the gene at index i is set.

ρi = 1

|B|
∑

xεB,xi =1

1 (2)

ρi = 1∑
xεB fx

∑
xεB,xi =1

fx (3)

Here B is a subset of fit solutions selected from the current population. ρi is the
proportion of members of B in which xi is true. Alternatively, we can weight the
probability based on the normalised fitness f of each solution where xi is true, as
shown in Eq. (3).

Once the probabilities for each gene being set have been calculated, new solu-
tions are generated by sampling this distribution according to probability ρi . Using
ρ directly to provide the probability of setting genes in new solutions is the simplest
method of probability distribution sampling and the method that is used by UMDA,
but a number of alternative sampling techniques have been explored [14]. In Popu-
lation Based Incremental Learning (PBIL) [1] a sampling vector is produced where
every gene has an initial probability 0.5 and each generation a learning rate is used
to move each of these values in the direction of ρ.

2.6 Hybrid Algorithms

TEDA falls into the category of hybrid algorithms that use both GAs and EDAs.
These approaches are useful as neither EDAs nor GAs perform better than the other
approach on all problems. On some problems EDAs become trapped in local optima
while on other problems they produce faster convergence thanGAs. It can be difficult
to predict whether an EDA or a GA will perform better for a particular problem [18].
One hybrid approach developed by Pena is called GA-EDA [18]. This approach
generates two populations, one through an EDA and one through a GA. Individuals
are then selected from these populations to form the next generation based on their
fitness. Zhang proposed an approach calledGuidedMutation that produces new solu-
tions that contain amixture of genes copied from a promising individual and sampled
from an EDA style probability distribution [23]. Aside from these approaches, most
of the work done on hybridising EDAs or GAs with other techniques appears to have
focussed on integrating local search or simulated annealing techniques into either
GAs or EDAs instead of combining the two [18]. We have not found any techniques
that dynamically transition over time from a GA to an EDA based on population
convergence, allowing the GA to move towards the global optima before applying
an EDA.
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3 TEDA

The main principle behind TEDA is that it should use feature targeting in a similar
manner to FDC and that it should transition from behaving like a GA before the
population has converged to behaving like anEDAafter it has converged. Specifically,
the pre-convergence behaviour of TEDA should match that of FDC as this proved
effective when using the targeting principle. This transitioning process is important
as dictating exactly how many features solutions should have risks causing a loss
of diversity in the population. It is therefore necessary to use an explorative method
early on. In addition to this, a number of authors have noted the tendency of simple
Gaussian EDAs to prematurely converge [14, 19].

TEDA is described in detail in Algorithms1–3. The main steps of the process are
as described below:

1. The population is randomly initialized.
2. The fitness of the population is evaluated.
3. A set of parents from the population is selected to form a ‘breeding pool’, B,

of size b. The transitioning process controls how this set of parents is selected
(described in more detail below).

4. The fittest and least fit individuals are selected from B and used as parents I1 and
I2 in the FDC rule (Eq.1) to decide on the number of features to set in offspring
(IT ).

5. A probability model is built from B according to Eq. (3). This is used instead
of Eq. (2) because the transitioning process means that TEDA initially uses a
very small breeding pool and so the frequency of features is not always a useful
measure.

6. b new solutions are created from B. For each new solution, features are selected
and set until IT features have been set. Features found in all members of the
breeding pool are preferentially selected and then the remaining features are
selected at random and set based on their marginal probability, as with standard
UMDA.

7. Steps 3–6 are repeated until a new population has been generated.
8. Steps 2–7 are repeated until a specified number of generations has passed.

3.1 Controlling TEDA Transitioning

The TEDA transitioning process controls whether TEDA behaves like an EDA or a
GA by managing the size of two sets:

• S is the ‘selection pool’, this consists of the fittest s solutions in the population.
• The breeding pool B contains the b parents that are used to build the probability
model and so generate new solutions. B is selected from S using tournament
selection.
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The sizes of B and S are limited to between bmin and bmax and between smin and
smax respectively. To begin with s is equal to smax where smax is set to the size of the
whole population. B will initially contain bmin parents where bmin is 2. In this initial
configuration, TEDA operates as a standard GA, selecting 2 parents for breeding
from the whole population with tournament selection. The crossover mechanism is
equivelent to that used by FDC.

The decision on whether to add another parent to B is made with a probability p,
as calculated according to Eq. (4). This measures the similarity between two parents.

p = | f1 ∩ f2|
| f1 ∪ f2| (4)

In this equation, f1 and f2 are the feature sets of the two parents that are being
compared. These two parents are the last two that were added to B. Initially they
will be the first two parents in the pool. If a parent is added according to this rule, the
process is repeated until the first occurrence of a parent not being added or b reaches
bmax.

When a new parent is added, s is decreased. The result is that as the level of
variance within the population decreases, the selection pressure increases. s may be
decreased until it reaches smin. We recommend that bmin and smax should be equal in
value. If this is the case then TEDA is likely to ultimately use the fittest b individuals
in the population to build a probability model, and therefore behave like an EDA.

This method of transitioning is a recent innovation for TEDA. Previously, the
level of difference between chromosomes was calculated by randomly selecting a
set of pairs from the population and obtaining D̄, the average Hamming distance
within this set of pairs.

b = bmax − (D̄/dmax)(bmax − bmin)

s = smin + (D̄/dmax)(smax − smin) (5)

Equation (5) shows how D̄ was used to move b and s. dmax was a tuneable value set
by the user with the role of controlling the speed of transitioning. The new approach
has an advantage over this method in that by not using dmax it eliminates a parameter
that previously needed tuning. In order to ensure smooth transitioning, the value that
d should be set to had to be carefully chosen based on the size of the genome and
how the size of the solutions that TEDA generates varied over time. Given that in this
problemwe are workingwith feature sets that range in size from 500 to 20,000 genes,
we cannot make a prediction as to what size of valid solutions TEDA will uncover.
It would therefore be difficult to accurately tune this parameter. The probabilistic
aspect of the new method ensures that the transitioning process responds smoothly
and appropriately to the current population diversity. The new method is also more
efficient than the previous method as there is no need to select a large number of
individuals in order to estimate the diversity across the whole population.
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Allmethods use genome similarity between solutions tomeasure populationdiver-
sity. This should be a more reliable indicator than using the variance in fitness across
the population. Previouswork [16] has shown that for some problems the fitness func-
tion is volatile, leading to situations where a sharp drop in fitness variance may not
necessarily mean that the population has converged and the probability distributions
can be relied upon.

Algorithm 1. TEDA Pseudocode- Main Evolution Loop.

function Evolve

P0 ← InitialisePopulation()
s ← smax � normally smax = popSize
for g = 0 → generations do

∀Pgi ∈ Pg AssessFitness(Pgi )
Pg+1 ← Elite(Pg)
while |Pg+1| < popSize do

B ← GetBreedingPool(l, b, Pg)
it ← GetTargetNumOfFeats(B)
ρ ← BuildUMDAProbabilityModel(B)
Sall ← ∀i ∈ ρ where ρi = 1
Ssome ← ∀i ∈ ρ where 0 < ρi < 1
for b times do

I ← Mutate(Breed(Sall , Ssome, ρ, it ))
Pg+1 ← Pg+1 ∪ I

3.2 Genome Encoding

Two versions of TEDA have been explored. Initially TEDA was designed for fixed
length integer strings that were treated as binary strings [16]. Later, TEDA was
modified to best perform with a routing problem that featured variable length chro-
mosomes [17]. In this paper a variable length encoding is used due to FSS problems
tending towards large and sparse chromosomes. In this case, chromosomes consist
of an ordered list of all the selected features. Despite this internal representation, the
chromosomes are treated as fixed length binary strings with each feature being either
‘on’ (present in the chromosome) or ‘off’ (not present), creating behaviour that is
functionally the same as standard TEDA.

4 Experimental Method

This section demonstrates the performance ofTEDAcomparedwithEAs and sequen-
tial feature selectionmethods on a set of test feature selection problems. In addition to
TEDA, the algorithms that have been included are forward selection, FDC, a standard
EDA using UMDA and a standard GA using one point crossover, previously shown
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Algorithm 2. TEDA Pseudocode- Selection and Transitioning.

function GetBreedingPool

S ← bestSelection(s)
b ← bmin � normally bmin = 2
B1, B2 ← tournamentSelectionFromSet(S)
p ← getOverlap(Bb,Bb−1)
while random(1) < p do

b ← b + 1
s ← s - 1
S ← bestSelection(s)
Bb ← tournamentSelectionFromSet(S)
if b = bmax then

p ← 0
else

p ← getOverlap(Bb,Bb−1)

function getOverlap(B1, B2)
f̄1 ← all features in B1
f̄2 ← all features in B2
return size( f1 ∩ f2) / size( f1 ∪ f2)

Algorithm 3. TEDA Pseudocode- Breeding.

function GetTargetNumOfFeats(B, t)
Q ← Fittest(B) ∪ LeastFit(B)
I f ← NumberOfFeaturesIn(Fittest(B))
I1 = NumberOfFeaturesIn(Q1)
F1 = Fitness(Q1)
I2 = NumberOfFeaturesIn(Q2)
F2 = Fitness(Q2)
It ← I f + (2t − 1)(I1 − I2)(F1 − F2)

return It

function Breed(Sall , Ssome,ρ, it )
A ← {} � Make new individual
while It > 0 and Sall 	= {} do

r ← random feature ∈ Sall
A ← A ∪ r
It ← It − 1
remove Sallr from Sall

while It > 0 and Ssome 	= {} do
r ← random feature ∈ Ssome
if ρr > random(1.0) then

A ← A ∪ r
It ← It − 1
remove Ssomer from Ssome

return A
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Table 1 Datasets

Name Domain Type Feat.

Arcene Mass spectrometry Dense 10,000

Dexter Text classification Sparse 20,000

Madelon Artificial Dense 500

Name Train (pos.) Test (pos.)

Arcene 100 (44) 100 (44)

Dexter 300 (150) 300 (150)

Madelon 2000 (1000) 600 (300)

to be effective at FSS problems [3]. UMDA1 is a configuration of UMDA that uses
parameters common in literature. As such, it does not use mutation and builds a
probability model using Eq. (2) from a breeding pool consisting of the top 50% of
the population. UMDA2 is a configuration of UMDA with parameters that match
those used in TEDA. As such, it uses the same mutation rate as used in TEDA and
builds a probability model using Eq. (3) from a breeding pool consisting of the top
10% of the population.

4.1 The Datasets

Tests were carried out on three datasets taken from the NIPS 2003 feature selection
challenge [9]. These were all binary classification problems. The only preprocessing
and data formatting steps applied to the datasets are those described in [9].

Table1 provides the domain, type, training set size and the test set size for each
dataset. All information is from [9] except for the the numbers of positive samples
which can be found in [6]. Madelon is an artificial dataset designed to feature a
high level of interdependency between features, and so by using it we are able to
demonstrate how well TEDA performs in a highly multivariate environment [9]. All
three datasets are relatively balanced, and so a simple accuracy score is used to assess
how successful the classifiers that we use are.

4.2 The Fitness Function

The basis for the fitness function is the accuracy, calculated as the percentage of
samples in the test set that are correctly classified. A penalty is subtracted from this
to reflect the fact that smaller numbers of features are preferable. Given an accuracy
value of a, a feature set of size l and a penalty of p, the fitness function f is calculated
as f = a − lp. LIBSVM, A Support Vector Machine produced by [4] is used as the
classifier with all parameters kept at their default values.
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Table 2 Evolutionary
parameters

Parameter Value

Population size 100

Crossover probability (for GAs) 1

Mutation probability 0.05

Generations 100

Tournament size 5

Elitism 1

Penalty (p) 10/n

TEDA: smin and bmax 10

TEDA: smax 100

TEDA: bmin 2

4.3 Evolutionary Parameters

All algorithms were implemented using the ECJ toolkit and were all tested with the
parameters given in Table2, in which n is the maximum number of features for each
problem.

Generational replacement was used with one elite individual being kept from
one generation to the next. Tournament selection of size 5 was used for all genetic
algorithms.

The same mutation technique was applied to every algorithm. For each solution
mutation is attempted a number of times equal to the current size of the feature set.
Each time mutation is carried out with a probability of 0.05. If mutation is to be
carried out, then with a probability of 0.5, a feature currently not used will be picked
at random and added to the feature set, otherwise a feature will be picked at random
and removed from the feature set.

For each algorithm, every individual in the starting population was initialised by
first choosing a size k between 1 and n. Features are then chosen at random until
k features have been selected. The only constraint placed on which solutions may
be produced, either through initialisation, breeding or mutation, is that all solutions
must have between 1 and n features and no feature may appear more than once in
the same solution.

The following section shows the results for 50 runs of each algorithm on each
of the three problems. For each problem three graphs are provided, showing the
following metrics:

• The accuracy achieved by the fittest individual in the population on the y axis
against the number of generations on the x axis. This accuracy is given as a per-
centage of test set samples correctly classified.

• The number of features used by the fittest individual in the population on the y
axis against the number of fitness evaluations on the x axis.
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• The accuracy achieved by the fittest individual in the population on the y axis
against time on the x axis. This is the mean of the times that each solution in the
population took to complete the classification task. This is important as classifi-
cation can be time consuming for these large problems that use a lot of features.
The mean for each population at each generation is then added to a running total
and it is this total that is plotted. From this data we also present, in tabular form,
the length of time that each algorithm took to reach a given accuracy level.

Each test was run 50 times and, for each graph, the value plotted is the median of
the 50 runs with first and third quartiles given by the variance bars. The median was
judged to be more reliable than the mean due to the fact that the variance in accuracy
and feature set sizes do not follow a normal distribution.

5 Results

5.1 TEDA Compared to Sequential Selection

The results shown in Fig. 1 compare classification accuracy over time for TEDA
against forward selection using both greedy search and probe based methods.

Both variants of forward selection are slower at reaching an optimum than TEDA
as they require more fitness function evaluations. Using a probe, every feature is
independently evaluated in order for them to be ranked. In this problem this cor-
responds to 20,000 evaluations. By contrast, a 100 generation run of TEDA with a
population of 100 corresponds to only 10,000 evaluations, only a fraction of which
TEDA actually needs to achieve a high fitness.

Even though evaluating a single feature is less time consuming than evaluating a
large feature set these results show that the total amount of time taken is still greater.
Using the greedy search method a fitness of 92.73 was ultimately achieved after the
search eventually terminated after 179,963 evaluations. This number is much higher
than the other approaches as the greedy search involves making multiple iterations
across the population. This method has a worst case complexity of O(n2/2). Where
the number of features is 20,000, as in this problem, this means that the maximum
number of evaluations that it may take is 20,0002/2 or 2 × 108.

Both methods ultimately reach an optimum that is lower than that reached by
TEDA. This may be because of a previously documented limitation of both forward
and backward selection [20]. In Forward Selection, a selected feature cannot later be
eliminated and in Backward Selection an eliminated feature cannot later be selected.
This prevents the techniques from carrying out further exploration once a potential
solution has been discovered. In such a large search space the need to carry out
further exploration to ultimately find the optimal feature set is especially important.

Backward selection is expected to take even longer than forward selection using
a greedy search as it too involves iteratively making changes to the feature set, with
each change consisting of the removal of one feature. The tests here show that the
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Fig. 1 Dexter—forward selection

most effective solutions that TEDA is able to discover usually contain less than
1,000 features. To discover solutions of this size starting with the entire feature
set of 20,000, backward selection would take 19,0002/2 evaluations. Each of these
evaluations would be much more time consuming than those carried out through
forward selection as much larger candidate feature sets would be tested each time,
starting with the entire population. Backward Selection is therefore likely to be
prohibitively expensive.

Given these results, it would seem that sequential methods do not scale effectively
for problems of this size and therefore the rest of this paper will concentrate on the
comparison between TEDA and other evolutionary algorithms.

5.2 TEDA Compared to Evolutionary Algorithms

Classification Task: Dexter. The results for the Dexter classification problem are
shown in Figs. 2, 3 and 4. The results in Fig. 2 show that TEDA is consistently able
to find better solutions than any of the other techniques up until at least the 50th
generation. UMDA1 performs worse than any other technique throughout the test.
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Fig. 2 Dexter—accuracy versus generations

Fig. 3 Dexter—features versus generations

The graph in Fig. 3 indicates that algorithms that are most effective at finding
accurate feature sets also tend to be more effective at finding smaller feature sets.
The exception is FDC, which finds feature sets that are of an accuracy similar to those
found by UMDA2 but tend be smaller. When we compare performance against time
(Fig. 4) rather than against number of evaluations, the margin of difference between
TEDA and UMDA2, the GA and UMDA1 is greater. This is because the feature sets
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Fig. 4 Dexter—accuracy versus classification time

that TEDA finds are smaller and so quicker to evaluate. Classification with these
smaller feature sets is completed in less time.

It is interesting that it appears that this problem is unsuitable for a conventional
EDA. It might be the case that in problems where effective feature sets are small,
fit solutions can only be found once the size of the explored feature set has been
substantially reduced. Due to the high level of noise in Dexter, determining a useful
probability distribution model for a large set of candidate features of which only a
few are valid can be difficult.

In the initial population it is possible that some small feature sets are generated by
chance. Due to the feature penalty, these are likely to have a better fitness compared to
other solutions in the population. In a conventional EDA the large breeding pool may
obscure these solutions as they will have little effect on the probability distribution.
A GA may select such solutions as one of its two parents and when it does so it is
likely to produce a smaller child solution. Whilst GAs might by chance produce new
solutions of the same size as these small solutions, TEDA and FDC do this explicitly
and drive beyond the size of these solutions to find even smaller feature sets.

UMDA2, which uses a smaller breeding pool and mutation like a GA, is able
to overcome the noise that affects UMDA1 while taking advantage of the ability of
EDAs to exploit patterns within the population and so proves more effective. This
advantage that EDAs demonstrate explains why TEDA outperforms FDC.

Classification Task: Arcene. The accuracies obtained by selecting features for the
Arcene classification task are shown in Fig. 5. From these results, it can be seen
that FDC and TEDA both find better solutions early on than the other approaches.
UMDA2 starts to perform slightly better than these approaches from around gener-
ation 25 onwards but for the first 10 generations it is completely unable to improve
upon the fittest individual in the initial population. UMDA1 is only able to start
improving after about generation 70. The standard GA is also slower at finding good
solutions than TEDA and FDC, even though it is more effective early on thanUMDA.

By looking at the number of features used (Fig. 6) we can see that for bothUMDAs
the fittest solution in the initial population has amedian size of 75 and that for a period
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Fig. 5 Arcene—accuracy versus generations

Fig. 6 Arcene—features versus generations

of time both techniques are unable to improve upon this. This is considerably smaller
than themaximum feature set size of 10,000 features.We can assume that the sizes of
solutions in the initial population is evenly distributed across the range 1 to 10,000.
Small individuals would be effectively invisible to the probability model.

It would appear that the situation is the same for both Arcene and Dexter. Initial
high levels of noise mean that until an algorithm starts to explore smaller solutions all
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Fig. 7 Arcene—accuracy versus classification time

solutions are equally ineffective. A GA might by chance select a small solution and
breed a new, similarly sized solution but TEDA accelerates this process by making
it explicit. As with Dexter, Fig. 7 shows that these small solutions can be classified
more efficiently than larger solutions and so, when plotted against time, we see that
TEDA and FDC have almost completed a 100 generation run before UMDA and the
GA start to discover effective solutions.

Classification Task: Madelon. The results for the Madelon classification task are
shown in Figs. 8, 9 and 10. In the Madelon problem both TEDA and UMDA2 find
good feature sets quicker than the other techniques but UMDA1 eventually overtakes
both techniques. Both FDC and the GA are less effective. A traditional EDA is
more effective at this problem than the other problems possibly because the need
to dramatically reduce the size of feature set does not apply in this case. The initial
feature set size is considerably smaller and there is less noise, so feature sets that use
a large proportion of the available features can be very effective. Figure9 confirms
this, showing no steep declines or sudden drops in feature set size as seen in the other
problems. TEDA and FDC show the greatest reduction in the size of feature set and
UMDA1 shows the least reduction, as with the other problems. Despite not reducing
the feature set size as fast or as far as for the other problems, plotted against time
(Fig. 10), TEDA is still able to find good solutions earlier than the other techniques
(Table3).
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Fig. 8 Madelon—accuracy versus generations

Fig. 9 Madelon—features versus generations

Fig. 10 Madelon—accuracy versus classification time
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Table 3 Seconds to reach accuracy level

Dexter

Acc. TEDA UMDA2 FDC GA UMDA1

70.0 0.29 0.3 0.31 0.34 1.65*

76.0 0.4 0.43 0.43 0.54* 2.73*

82.0 0.6 0.63 0.65 0.82* 4.02*

88.0 0.81 1.1* 0.92* 1.46* 6.16*

Arcene

70.0 2.06 3.44* 2.07 3.03* 26.42*

74.0 2.08 3.49* 2.11 3.11* 26.53*

78.0 2.12 3.49* 2.16 3.27* 26.68*

82.0 2.18 3.58* 2.21 3.38* −
86.0 2.28 3.69* 2.35 3.63* −
Madelon

70.0 23.54 24.79 24.02 23.52 30.67

74.0 39.98 35.74 50.0 52.19* 50.01*

78.0 52.43 67.28* 69.27 92.89* 96.97*

82.0 74.17 123.1* 106.58* 168.88* 175.93*

86.0 136.32 210.82* 200.73* 343.32* 270.93*

6 Conclusions

In this work we have shown the benefits of applying TEDA to feature selection
problems. We have tested TEDA on three FSS problems from literature and in all
three cases it was able to find feature sets that were both small and accurate in
comparably quicker time and less effort than standard EDAs and GAs. The speed
with which TEDA finds these small solutions enables it to complete fitness function
evaluations at a faster rate than comparable algorithms. It is able to solve problems
that are of a size and sparsity that pose problems for other approaches. Tests were
run with problems with 10,000 and 20,000 features and sequential selection methods
do not appear to scale well for problems of this size. Although EDAs are capable of
selecting a suitable feature set, they are unable to effectively optimise a feature set
until the size is significantly reduced. From our results, we therefore conclude that
TEDA is a suitable algorithm for problems that contain a sparse set of useful features
within a large number of possible features and where fitness function evaluations are
time consuming.
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Genetic Programming Model Regularization

César L. Alonso, José Luis Montaña and Cruz Enrique Borges

Abstract We propose a tool for controlling the complexity of Genetic Programming
models. The tool is supported by the theory of Vapnik-Chervonekis dimension (VCD)
and is combined with a novel representation of models named straight line program.
Experimental results, implemented on conventional algebraic structures (such as
polynomials), show that the empirical risk, penalized by suitable upper bounds for
the Vapnik-Chervonenkis dimension, gives a generalization error smaller than the
use of statistical conventional techniques such as Bayesian or Akaike information
criteria.

Keywords Genetic Programming · Straight Line Program · Pfaffian Operator ·
Symbolic Regression

1 Introduction

Inductive inference from examples is one of the most studied problems in Artifi-
cial Intelligence and has been addressed for many years using different techniques.
Among them are included statistical methods such as inference techniques, regres-
sion and decision trees and other machine learning methods like neuronal networks
and support vector machines [3, 12, 18, 20].
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In the last two decades, genetic programming (GP) has been applied to solving
problems of inductive learning with some remarkable success [15–17, 19]. The gen-
eral procedure involves the evolution of populations of data structures that represent
models for the target function. In the evolutive process, the fitness function for eval-
uating the population measures some empirical error between the empirical value of
the target function and the value of the considered individual over the sample set.
Usually this fitness function must be regularized with some term that depends on the
complexity of the model. Identifying optimal ways to measure the complexity of the
model is one of the main goals in the process of regularization.

Most of the work devoted to develop GP strategies for solving inductive learning
problems makes use of the GP-trees as data structures for representing programs
[14]. We have proposed a new data structure named straight line program (slp) to
deal with the problem of learning by examples in the framework of genetic pro-
gramming. The slp has a good performance in solving symbolic regression problem
instances as shown in (see [2]). A slp consists of a finite sequence of computational
assignments. Each assignment is obtained by applying some function (selected from
a given set) to a set of arguments that can be variables, constants or pre-computed
results. The slp structure can describe complex computable functions using a few
amount of computational resources than GP-trees. The key point for explaining this
feature is the ability of slp’s for reusing previously computed results during the eval-
uation process. Another advantage with respect to trees is that the slp structure can
describe multivariate functions by selecting a number of assignments as the output
set. Hence one single slp has the same representation capacity as a forest of trees.
We study the practical performance of ad-hoc recombination operators for slps and
we apply the slp- based GP approach to regression. In addition we study the Vapnik-
Chervonekis dimension of slps representing models. We consider families of slp’s
constructed from a set of Pfaffian functions. Pfaffian functions are solutions of trian-
gular systems of first order partial differential equations with polynomial coefficients.
As examples, polynomials, exponential functions, trigonometric functions on some
particular intervals and, in general, analytic algebraic functions are Pfaffian. The
main outcome of this work is a penalty term for the fitness function of a genetic
programming strategy based on slp’s to solve inductive learning problems. Experi-
mental results point out that the slp structure, if suitably regularized, may result in a
robust tool for supervised learning.

2 Supervised Learning and Regression

Genetic Programming can be seen as a direct evolution method of computer programs
for inductive learning. Inductive GP can be considered as a specialization of GP,
in that it uses the framework of the last one in order to solve inductive learning
problems. These problems are, in general, searching problems where the target is
to construct some prediction model from a finite set of observed data. Providing a
framework for studying inductive learning problems is one of the goals of Statistical
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Learning Theory. In this sense the inclusion of methods from Statistical Learning
Theory into the GP paradigm is a relevant contribution to inductive GP. Inductive
inference process consists of three steps: to observe a phenomenon, to construct a
model of that phenomenon and to make predictions by using this model. Given some
sample set obtained by means of the observation step, it could seem that the best
model might fit exactly the data, but this situation could lead to a poor performance
on unseen instances in the presence of noise. Hence, the general idea is to look for
a model that fits well the data set, being at the same time as simple as possible.
This immediately raises the question of how to measure the complexity of a model.
There are many ways to do this. For example we would prefer models with a small
number of free parameters, which corresponds to simple mathematical formulas.
In other cases where the model is represented by a program, we would consider
the length of the program as a complexity measure. Usually, for tree structures, a
measure of the complexity is the height or the width of the tree. There is no universal
way of measuring the complexity of the model and the choice of a specific measure
inherently depends on the problem at hand.

We will consider symbolic regression formulation under the general setting for
predictive learning (see, [7, 21, 22]). The goal is to estimate an unknown real-valued
function that fits a given finite sample set of data points. More formally, we consider
an input space X = IRn and an output space Y = IR. We are given a sample of m pairs
z = (xi , yi )1≤i≤m . These examples are drawn according to an unknown probability
measure ρ on the product space Z = X × Y and they are generated according to an
independent identically distributed (i.i.d.) process. As usual, probability measure ρ
factorizes through its marginal distribution in X ,ρ(x), and the conditional distribution
in Y , ρ(y|x), that is:

ρ(x, y) = ρ(x)ρ(y|x) (1)

The goal is to construct a function f : X → Y which predicts the value y ∈ Y from
a given x ∈ X. To choose the function f we use a criterion of a low probability
of error. The best estimation of the function is the mean of the output conditional
probability:

g(x) =
∫

yρ(y|x) (2)

A learning method selects the best model f ∈ H, whereH is some class of functions.
In general, the error of the estimator f , ε( f ), is written as

ε( f ) =
∫

Q(x, f, y)dρ, (3)

where Q measures some notion of loss between f (x) and the target value y, and ρ is
the distribution from which examples (x, y) are drawn to the learner. For regression
tasks one usually takes Q(x, f, y) = (y − f (x))2.
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For a class of functions H of finite bounded complexity (for instance trees with
bounded size or height), the model can be chosen minimizing the empirical error,
also known as empirical risk:

εm( f ) = 1

m

m∑
i=1

Q(xi , f, yi ) (4)

Obviously, this method will have a good performance when the optimal model
belongs to the complexity bounded class of functions considered. Nevertheless, usu-
ally we are not able to make such an assumption and a large class H must be consid-
ered. In this case, the problem of regression estimation requires optimal selection of
model complexity in addition to model estimation via minimization of the empirical
risk.

Analytical models selection criteria estimate the real error (Eq. 3) as a function of
the empirical error (Eq. 4) with a penalty term related with some measure of model
complexity:

ε( f ) = εm( f ) ∗ pen(h, m); ∗ ∈ {+, ·} (5)

where f is the model, h is the model complexity and m is the size of the sample set.
In the above equation, there exists a degree of freedom which is the selection of the
measure h for the model complexity. This measure always depends on the considered
class H and more exactly on the representation structure for the models in H. For
example if the functions are described by multivariate polynomials, h is usually the
number of monomials or a linear function involving the degree of the polynomial.
In other cases, when the elements of H are represented by programs or trees, some
typical complexity measures are the length of the programs or the size of the trees.

In this work, as we will see in the next sections, the classes H are families of
programs named straight line programs, that are constructed from a set of operators
F and a set of terminals T . The elements of F are Pfaffian functions, that is, a more
general class of functions than polynomials or rational functions. Pfaffian functions
include, for example, the analytic algebraic functions as for instance square root
extraction.

Motivated by the concept of degree of polynomials, in our programs we will only
consider the non-scalar instructions for measuring the complexity of the model. The
non-scalar instructions are those in which the selected operator in F is different from
{+,−}. The main theoretical result in this work is the computation of a polynomial
upper bound for a new complexity measure of our straight line programs with Pfaffian
instructions, that does not involve the length of the corresponding program, but only
the number of the non-scalar instructions. A simplification of this complexity measure
will be considered in the Eq. (5) for the fitness regularization in GP with our structure.
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3 Straight Line Program Genetic Programming

Straight line programs have a large history in the field of Computational Algebra. A
particular class of straight line programs, known in the literature as arithmetic cir-
cuits, constitutes the underlying computation model in Algebraic Complexity Theory
[6]. Arithmetic circuits with the standard arithmetic operations {+,−, ∗, /} are the
natural model of computation for studying the computational complexity of algo-
rithms solving problems with an algebraic flavor. They have been used in linear
algebra problems [4], in quantifier elimination [13] and in algebraic geometry [9,
10]. Also, slp’s constitute a promising alternative to the trees in the field of Genetic
Programming (see [2]). The formal definition of the straight line program structure
is as follows: Let F = { f1, . . . , fn} be a set of functions, where fi has arity ai , for
1 ≤ i ≤ n, and let T = {t1, . . . , tm} be a set of terminals. A straight line program
(slp) over F and T is a finite sequence of computational instructions Γ = {I1, . . . , Il}
where

Ik ≡ uk := f jk (α1, . . . ,αa jk
); with f jk ∈ F,

αi ∈ T for all i if k = 1 and αi ∈ T ∪ {u1, . . . , uk−1} for 1 < k ≤ l.

Terminal set T is of the form T = V ∪ C , where V = {x1, . . . , xn} is a finite
set of variables and C = {c1, . . . , cq} is a finite set of constants. The number of
instructions l is the length of Γ.

Note that if we consider the slp Γ as the code of a program, then a new variable
ui is introduced at each instruction Ii . We will denote by Γ = {u1, . . . , ul} a slp.
Each of the non-terminal variables ui can be considered as an expression over the
set of terminals T constructed by a sequence of recursive compositions from the set
of functions F. The set of all slp’s over F and T is denoted by SL P(F, T ).

An output set of a slp Γ = {u1, . . . , ul} is any set of non-terminal variables of
Γ , that is, O(Γ ) = {ui1 , . . . , uit }, i1 < · · · < it . Provided that V = {x1, . . . , x p} ⊂
T is the set of terminal variables, the function computed by Γ, denoted by ΦΓ :
I p → Ot , is defined recursively in the natural way and satisfies ΦΓ (a1, . . . , ap) =
(b1, . . . , bt ), where b j stands for the value of the expression over V of the non-
terminal variable ui j when we replace the variable xk with ak; 1 ≤ k ≤ p.

Example 1 Let F be the set given by the three binary standard arithmetic operations,
F = {+,−, ∗} and let T = {1, x1, x2} be the set of terminals. In this situation any slp
over F and T is a finite sequence of instructions where each instruction represents
a polynomial in two variables with integer coefficients. If we consider the following
slp Γ of length 5 with output set O(Γ ) = {u5}:

Γ ≡

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u1 := x1 + 1
u2 := u1 ∗ u1

u3 := x2 + x2

u4 := u2 ∗ u3

u5 := u4 − u3

(6)
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Fig. 1 Directed graph
representing a slp u5 := -

u4 := *

u2 := *

u1 := +

x1 1

u3 := +

x2 x2

then the function computed by Γ is the polynomial

ΦΓ = 2x2(x1 + 1)2 − 2x2

Every slp, Γ = {u1, . . . , ul}, over F and T can be represented by a directed
acyclic graph GΓ = (V, E). The set of vertices is V = T ′ ∪ {u1, . . . , ul}, where T ′
contains all terminals involved in the computation. The set of edges E is constructed
as follows: for every k, 1 ≤ k ≤ l, we draw an edge (uk,αi ) for each i ∈ {1, . . . , a jk }.
Note that T ′ is the set of leaves of GΓ and it is a subset of the set T of terminals.
Figure 1 is a directed graph representing the slp described in Eq. (6)

For computing the initial population, the well known methods for trees (see [14])
can be easily adapted to slp’s. In order to compute the fitness function in a GP process
to solve a particular problem, the computation of the function ΦΓ , considering its
own definition, would be often necessary.

3.1 SLP Crossover and Mutation

For slp-GP, 1-point crossover and in general k-point crossover are easily defined.
However, a new specific crossover operation that produces another type of informa-
tion exchange between the two selected parents, has been designed. The objective is
to carry subexpressions from one parent to the other. A subexpression is captured by
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an instruction ui and all the instructions that are used to compute the expression over
the set of terminals represented by ui . Now follows a description of this crossover
with a clarifying example.

Given two slp’s, Γ1 and Γ2, first a position k en Γ1 is randomly selected. Let Suk be
the set of all instructions related to the computation of the subexpression associated
to node uk . We obtain the first offspring by randomly selecting an allowed position t
in Γ2 and making the substitution of a part of its instructions by those instructions in
Suk suitably renamed. For the second offspring we symmetrically repeat the strategy.

Example: Consider F = {∗,+}, L = 5 and T = {x, y}. Let Γ1 and Γ2 be the
following two slp’s:

Γ1 ≡

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u1 := x + y
u2 := u1 ∗ u1

u3 := u1 ∗ x
u4 := u3 + u2

u5 := u3 ∗ u2

Γ2 ≡

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u1 := x ∗ x
u2 := u1 + y
u3 := u1 + x
u4 := u2 ∗ x
u5 := u1 + u4

If k = 3 then Su3 = {u1, u3}, and t must be selected in {2, . . . , 5}. If for instance
t = 3, then the first offspring is as follows.

Γ ′
1 ≡

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u1 := x ∗ x
u2 := x + y
u3 := u2 ∗ x
u4 := u2 ∗ x
u5 := u1 + u4

For the second offspring, if the selected position in Γ2 is k ′ = 4, then Su4 =
{u1, u2, u4}. Now if t = 5, then the offspring will be

Γ ′
2 ≡

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u1 := x + y
u2 := u1 ∗ u1

u3 := x ∗ x
u4 := u3 + y
u5 := u4 ∗ x

The mutation operation in the slp structure consists of a change in one of the
instructions. This change can be either the substitution of the complete instruction by
another one randomly generated, or a little modification of just one of the arguments
of the function in F that defines the instruction.
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4 Pfaffian Functions and VCD of Formulas

In this section we introduce some tools concerning the geometry of sets defined by
boolean combinations of sign conditions over Pfaffian functions (semi-Pfaffian sets
in the mathematical literature). A complete survey on the subject is due to Gabrielov
and Vorobjov [8].

Definition 1 Let U ⊂ Rn be an open domain. A Pfaffian chain of length q ≥ 1 and
degree D ≥ 1 in U is a sequence of real analytic functions f1, . . . , fq in U satisfying
a system of differential equations

∂ fi

∂x j
= Pi, j (x, f1(x), . . . , fi (x)) (7)

for i = 1, . . . q where Pi, j ∈ R[x, y1, . . . , yi ] are polynomials of degree at most D
and x = x1, . . . , xn.

A function f on U is called a Pfaffian of order q and degree (D, d) if

f (x) = P(x, f1(x), . . . , fq(x)) (8)

where P ∈ R[x, y1, . . . , yq ] is a polynomial of degree at most d ≥ 1 and f1, . . . , fq

is a Pfaffian chain of length q and degree D.
The following functions are Pfaffian: sin(x), defined on the interval (−π +

2πr,π + 2πr); tan(x), defined on the interval (−π/2 + πr,π/2 + πr); ex defined
in R; log x defined on x > 0; 1/x defined on x �= 0.

√
x defined on x ≥ 0. More

generally, analytic algebraic functions are Pfaffian.

Definition 2 Let F be a class of subsets of a set X . We say that F shatters a set
A ⊂ X if for every subset E ⊂ A there exists S ∈ F such that E = S ∩ A. The
VCD of F is the cardinality of the largest set that is shattered by F .

Next we announce an upper bound for the VCD of a family of concept classes
whose membership tests are computed by straight line programs involving Pfaffian
operators over the real numbers. An important new issue is that we do not consider
an upper bound for the length of the slp’s. In previous results about VCD of programs
or families of computation trees, a time bound approximated by the number of steps
of the program execution or by the height of the computation tree is needed [11]. In
our case we only need a bound for the number of the non-scalar slp’s instructions.
Those are instructions involving operations which are not in {+,−}.

A rough estimation of the V C dimension of slps using Pfaffian operators can be
obtained computing the number of free parameters in families of slps with bounded
non-scalar complexity. To do this let T = {t1, . . . , tn} be a set of terminals and let
F = {+,−∗, /, sign} ∪ { f1, . . . , fq} be a set of functions, where the elements fi

constitute a Pfaffian chain of length q with arities bounded by A and the sign function
is defined as sign(x) = 1 if x > 0 and 0 otherwise.
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Let Γn,L be the collection of slp′s Γ over F and T using at most L non-scalar
operations and a free number of scalar operations. Then, the number of free para-
meters of a universal slp ΓU that parameterizes the elements of the family Γn,L is
exactly:

N := L[3 + q + A(n + L − 1

2
) + 1] + n (9)

The proof is as follows. Introduce a set of parameters α, β and γ taking values in
Zk for a suitable natural number k, such that each slp in the family can be obtained
specializing the parameters. For this purpose we define u−n+m = tm, for 1 ≤ m ≤ n.

Note that any non-scalar assignment ui , 1 ≤ i ≤ L in a slp Γ belonging to Γn,L is a
function of t = (t1, . . . , tn) that can be parameterized as follows:

ui = Ui (α,β,γ)(t) =

γi
−n[αi

−n(

i−1∑
j=−n+1

α j
i1 u j ) ∗ (

i−1∑
j=−n+1

α j
i2 u j )+

+(1 − αi
−n)[βi

−n

∑i−1
j=−n+1 α j

i1 u j∑i−1
j=−n+1 α j

i2 u j

+

+(1 − βi
−n)sgn(

i−1∑
j=−n+1

α j
i1 u j )]]+

+(1 − γi
−n)[

q∑
k=1

γi
k fk(

i−1∑
j=−n+1

α j
i1 u j , . . . ,

i−1∑
j=−n+1

α j
i A u j )]

Now considering the last assignment as the output set of the slp Γ, this last
assignment is parameterized as:

U =
L∑

j=−n+1

α j u j

where u j , 1 ≤ j ≤ L are the non-scalar assignments.
Finally counting the number of introduced parameters we will obtain Eq. (9). The

estimation given in that equation can be converted, after certain algebraic manipula-
tions, into an upper bound using theory of Pfaffian operators (see [8]). We omit the
proof due to lack of space.

Main Theorem. Let ΓL ,n the set of slps with n variables, at most L non-scalar
operations, using operators in F that contains the operations {+,−, ∗, /, sign} and
Pfaffian operations f , where each f belongs to a fixed Pfaffian chain { f1, . . . , fq} of
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length q and degree D ≥ 2. Let N be as in Eq. (3). Then, the Vapnik-Chervonenkis
dimension of Ck,n is in the class:

O((q(N + n))2 + (N + n)(L + q)log2((N + n)(L + 1)(4 + D))) (10)

Simplification. If we consider as constants parameters n, q, D and d, the VCD of
the class is at most O(L4). This quantity gives an idea of the asymptotic maximum
order of VCD of common classes of G P-models. We point out that this quantity is
an upper bound and, possibly, far from being an optimal bound, but it can be used as
starting point in further experimental developments.

5 Model Selection Criterion

In supervised learning problems like regression and classification a considerable
amount of effort has been done for obtaining good generalization error bounds. The
results by Vapnik (see [22]) state the following error bound:

ε( f ) ≤ εm( f ) +
√

h(log(2m/h) + 1) − log(η/4)

m
, (11)

where h must be substituted by the upper bound of the VCD of the hypothesis class
that contains the model f , η is the probability that the error bound is violated and m
is the sample size. As usual in this context ε( f ) and εm( f ) stand, respectively, for
the true mean square error and the empirical mean square error of the model f.

In our case, f will be represented by a straight line program Γ ∈ SL P(F, T )

where T contains n variables and F contains the operations on real numbers
{+,−, ∗, /, sign} and Pfaffian operations over the reals. Note that the sets F and
T are invariants throughout the model selection process. Hence, the search space of
models forms a nested structure:

C1 ⊂ C2 ⊂ · · · ⊂ CL ⊂ · · ·

where CL represents the class of slp’s in SL P(F, T ) that have at most L non-scalar
instructions. In this situation we will finally choose the model that minimizes the
right side of Eq. (5).

6 Experimental Results

In this section we present the obtained results after an experimental phase in which
symbolic regression problem instances were solved using the selection criterion
described in the previous section. Our proposal is to consider straight line programs
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with Pfaffian instructions as the structure that represents the model. Then a GP
algorithm is executed considering the recombination operators for slp’s described
in Sect. 2 and with fitness regularization function expressed in Eq. (11). So we pro-
pose a model estimation via structural risk minimization (SRM). For the complexity
measure h of the model, we will use the VCD bound in 4.

We will consider additive gaussian noise in the sample set z = (xi , yi )1≤i≤m .
Hence, for a target function g, the sample set verifies: yi = g(xi ) + ε, where ε is
independent and identically distributed (i.i.d.) zero mean random error.

We will compare the effectiveness of the VCD fitness regularization method
(VCD-SRM) with two well known representative statistical methods with different
penalization terms:

• Akaike Information Criterion (AIC) which is as follows (see [1]):

ε( f ) = εm( f ) + 2h

m
σ2 (12)

• Bayesian Information Criterion (BIC) (see [5]):

ε( f ) = εm( f ) + (ln m)
h

m
σ2 (13)

In the above expressions h stands for the number of free parameters of the model
(Eq. 9).

For measuring the quality of the final selected model, we have considered a new
set of unseen points, generated without noise from the target function. This new set of
examples is known as the test set or validation set. So, let (xi , yi )1≤i≤ntest a validation
set for the target function g(x) (i.e. yi = g(xi )) and let f (x) be the model estimated
from the training data. Then the prediction risk εntest is defined by the mean square
error between the values of f and the true values of the target function g over the
validation set:

εntest = 1

ntest

ntest∑
i=1

( f (xi ) − yi )
2 (14)

For the first experiment we have considered a set of 500 multivariate polynomials
with real coefficients whose degrees are bounded by 5. The number of variables
varies from 1 to 5 with 100 polynomials for each case.

A second experiment was performed considering some well known real bench-
mark problems. In all cases, when the GP process finishes, the best individual is
selected as the proposed model for the corresponding target function.

We shall denote the set of polynomials as Pn
R[X ] with X = (x1, . . . , xn), 1 ≤

n ≤ 5 and xi ∈ [−1, 1] ∀i. The individuals are slp’s over F = {+,−, ∗, /, sqrt,-
sin, cos, exp}. In order to avoid errors generated by divisions by zero, instead of
the traditional division we will use in our computation the operation usually named
“protected division”, that returns 1 if the denominator is zero. Besides the variables
xi , the terminal set also includes five constants ci , 1 ≤ i ≤ 5, randomly generated

http://dx.doi.org/10.1007/978-3-319-23392-5_2
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in [−1, 1]. Observe that although the target functions are polynomials, our set F
not only contains the operators of sum, difference and product, but also contains
other Pfaffian functions. This situation increments considerably the search space.
Nevertheless, note that in a real problem situation usually we do not know if the
target function is a polynomial or not.

The parameters for the GP process are the following: population size M = 200,

probability of crossover pc = 0, 9, probability of mutation pm = 0, 05, and tour-
nament selection of size 5. The real length of the slp’s in the population is bounded
by 40. Elitism and a particular generational replacement are used. In this sense, the
offsprings do not necessarily replace their parents. After a crossover we have four
individuals: two parents and two offsprings. We select the two best individuals with
different fitness values. The motivation is to prevent premature convergence and to
maintain diversity in the population.

As we are considering multivariate polynomials as target functions, the difficulty
of the problem instance increases with the number of variables. Hence, to vary the size
of the sample set as a function of the number of variables is a reasonable decission.
Note that an upper bound for the number of monomials in a polynomial with n
variables and degree d is 4 · dn+1 and this is also a quite good estimation for a lower
bound of the size of the sample set. Thus, in our case we have considered sample
sets of size 4 · 5n+1, 1 ≤ n ≤ 5. In this experiment one execution for each strategy
has been performed over the 500 generated target functions. In every execution the
process finishes after 250 generations were completed. Finally, the validation set
consists of a number of unseen points that is equal to two times the size of the
sample set (Table 1).

Figures 2 and 3 represent the empirical distribution of the executions of the three
compared strategies over the sets of polynomials. We have separated the polynomial
sets by the number of variables, from one to five. These empirical distributions are
displayed using standard box plot notation with marks at the best execution, 25 %,

Table 1 Values of means and variances

P1
R[X ] μ σ P2

R[X ] μ σ

AI C 0.39 0.42 AI C 1.17 0.86

B I C 0.38 0.41 B I C 1.25 0.85

V C D 0.24 0.27 V C D 0.82 0.54

P3
R[X ] μ σ P4

R[X ] μ σ

AI C 2.62 1.28 AI C 4.79 1.49

B I C 2.89 1.57 B I C 5.08 1.74

V C D 2.24 0.85 V C D 4.76 1.43

P5
R[X ] μ σ

AI C 8.51 2

B I C 8.63 2.16

V C D 8.63 2.17
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Fig. 2 Empirical distribution of the executions, for the univariate and bivariate polynomials
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Fig. 3 Empirical distributions of the executions, for the multivariate polynomials with 3, 4, and 5
variables

50 %, 75 % and the worst execution, always considering the prediction risk of the
selected model, represented on the y-axis and defined by the mean square error
between the values of the model and the true values of the target function over the
validation set. We also include tables that show means and variances as well as the
prediction risk of the best obtained model for each method.

As we can see from the above figures and tables, it seems that VCD regularization
performs better than the well known regularization methods AIC and BIC. This is
more clear for the polynomials up to three variables and not so clear for the rest of the
polynomial sets. This could be because for polynomials with four and five variables,
as they constitute more complex problem instances, it would be necessary a large
number of generations in the evolutive process. In order to confirm the comparative
results of the studied strategies we have made crossed statistical hypothesis tests.
The obtained results are showed in Table 2. Roughly speaking, the null-hypothesis
in each test with associated pair (i, j) is that strategy i is not better than strategy j.
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Table 2 Results of the crossed statistical hypothesis tests about the comparative quality of the
studied strategies

P1
R[X ] AI C B I C V C D

AI C 0.91 1

B I C 0.30 1

V C D 3.93 · 10−4 1.1 · 10−3

P2
R[X ] AI C B I C V C D

AI C 3.91 · 10−2 1

B I C 0.96 1

V C D 1.86 · 10−5 1.12 · 10−7

P3
R[X ] AI C B I C V C D

AI C 7.7 · 10−2 0.99

B I C 0.99 1

V C D 1.2 · 10−2 3.93 · 10−4

P4
R[X ] AI C B I C V C D

AI C 0.12 0.90

B I C 0.77 0.99

V C D 0.27 2.7 · 10−3

P5
R[X ] AI C B I C V C D

AI C 0.44 0.52

B I C 0.77 0.78

V C D 0.61 0.37

Table 3 Prediction risk of the model obtained from the best execution

Instance AI C B I C V C D

P1
R[X ] 3.40 · 10−2 3.44 · 10−2 4.32 · 10−3

P2
R[X ] 0.20 0.19 0.22

P3
R[X ] 0.82 0.77 0.42

P4
R[X ] 2.33 2.43 2.33

P5
R[X ] 4.88 5.13 5.20

Hence if value ai j in Table 2 is less than a significance value α, we can reject the
corresponding null-hypothesis (Table 3, Fig. 4).

Taking into account the results of the crossed statistical hypothesis tests with a
significance value α = 0.05, we can confirm that our proposed regularization method
based on the VC dimension of families of SLP’s is the best of the studied strategies
for the considered sets of multivariate polynomials.



Genetic Programming Model Regularization 119

AIC BIC VCD

6
8

10
12

14
abalone

AIC BIC VCD

2.
0e

−
07

6.
0e

−
07

1.
0e

−
06

1.
4e

−
06

ailerons

AIC BIC VCD

20
40

60
80

10
0
12

0
14

0

autoMPG8

Fig. 4 Empirical distribution of the executions, for functions associated to real problems

7 Conclusions

Straight line programs constitute a promising structure for representing models in the
Genetic Programming framework. Indeed, as it was published in a previous work,
slp’s outperform the traditional tree structure when GP strategies are applied for
some kind of regression problems. In this paper we try to control the complexity
of populations of slp’s while they evolve in order to find good models for solving
symbolic regression problem instances. The evolving structure is constructed from
a set of functions that contains Pfaffian operators. We have considered the Vapnik
Chervonenkis dimension as a complexity measure and we have found a theoretical
upper bound of the VCD of families of slp’s over Pfaffian operators as an important
generalization of similar results for more simple sets of operators including rational
functions. This theoretical upper bound is polynomial in the number of the non-
scalar instructions of the family of the slp’s. As a consequence of the main result, we
propose a regularized fitness function included in a evolutionary strategy for solving
symbolic regression problem instances. We have compared our fitness function based
on the VCD upper bound with two well known statistical penalization criteria. The
experimental results obtained after the execution of the compared strategies over two
different groups of target functions, show that our proposed complexity measure and
its corresponding penalization criterion is better than the others in over the group of
the three real problem instances where the VCD regularization method is clearly the
best.
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A Radial Basis Function Neural
Network-Based Coevolutionary Algorithm
for Short-Term to Long-Term Time Series
Forecasting

E. Parras-Gutierrez, V.M. Rivas and J.J. Merelo

Abstract This work analyzes the behavior and effectiveness of the L-Co-R
method using a growing horizon to predict. This algorithm performs a double goal,
on the one hand, it builds the architecture of the net with a set of RBFNs, and on the
other hand, it sets a group of time lags in order to forecast future values of a time
series given. For that, it has been used a set of 20 time series, 6 different methods
found in the literature, 4 distinct forecast horizons, and 3 distinct quality measures
have been utilized for checking the results. In addition, a statistical study has been
done to confirms the good results of the method L-Co-R.

Keywords Time series forecasting · Co-evolutionary algorithms · Neural net-
works · Significant lags

1 Introduction

Formally defined, a time series is a set of observed values from a variable along
time in regular periods (for instance, every day, every month or every year) [25].
Accordingly, the work of forecasting in a time series can be defined as the task of
predicting successive values of the variable in time spaced based on past and present
observations.

E. Parras-Gutierrez · V.M. Rivas
Department of Computer Sciences, University of Jaen, Campus Las Lagunillas s/n,
23071 Jaen, Spain
e-mail: eparrasg@vrivas.es

V.M. Rivas
e-mail: vrivas@vrivas.es

J.J. Merelo (B)
Department of Computers, Architecture and Technology, University of Granada,
C/ Periodista Daniel Saucedo s/n, 18071 Granada, Spain
e-mail: jmerelo@geneura.ugr.es

© Springer International Publishing Switzerland 2016
K. Madani et al. (eds.), Computational Intelligence,
Studies in Computational Intelligence 613,
DOI 10.1007/978-3-319-23392-5_7

121



122 E. Parras-Gutierrez et al.

For many decades, different approaches have been used for to modelling and
forecasting time series. These techniques can be classified into three different areas:
descriptive traditional technologies, linear and nonlinear modern models, and soft
computing techniques. From all developed method, ARIMA, proposed by Box and
Jenkins [3], is possibly the most widely known and used. Nevertheless, it yields
simplistic linear models, being unable to find subtle patterns in the time series data.

New methods based on artificial neural networks, such as the one used in this
paper, on the other hand, can generate more complex models that are able to grasp
those subtle variations.

The L-Co-R method [24], developed inside the field of ANNs, makes jointly use
of Radial Basis Function Networks (RBFNs) and EAs to automatically forecast any
given time series. Moreover, L-Co-R designs adequate neural networks and selects
the time lags that will be used in the prediction, in a coevolutive [7] approach that
allows to separate the main problem in two dependent subproblems. The algorithm
evolves two subpopulations based on a cooperative scheme in which every individual
of a subpopulation collaborates with individuals from the other subpopulation in
order to obtain good solutions.

While previously work [24] was focused on 1-step ahead prediction, the main
goal of this one is to analyze the effectiveness of the L-Co-R method in the medium
and long-term horizon, using the own previously predicted values to perform next
predictions. Thus, 6 different methods used in time series forecasting have been
selected in order to test the behavior of the method.

The rest of the paper is organized as follows: Sect. 2 introduces some preliminary
topics related to this research; Sect. 3 describes themethodL-Co-R; andfinally Sect. 4
presents the experimentation and the statistical study carried out.

2 Preliminaries

Approaches proposed in time series forecasting can be mainly grouped as linear
and nonlinear models. Methods like exponential smoothing methods [34], simple
exponential smoothing, Holt’s linear methods, some variations of the Holt-Winter’s
methods, State space models [29], and ARIMA models [3], have stand out from lin-
ear methods, used chiefly for modelling time series. Nonlinear models arose because
linear models were insufficient in many real applications; between nonlinear meth-
ods it can be found regime-switching models, which comprise the wide variety of
existing threshold autoregressive models [31] as: self-exciting models [32], smooth
transition models [8], and continuous-time models [4], among others. Nevertheless,
soft computing approaches were developed in order to save disadvantages of non-
linear models like the lack of robustness in complex model and the difficulty to
use [9].
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ANNs have also been applied successfully [17] and recognized as an important
tool for time-series forecasting. Within ANNs, the utilization of RBFs as activation
functions were considered by works as [5] and [27], and applied to time series by
Carse and Fogarty [6], and Whitehead and Choate [33]. Later works like the ones by
Harpham and Dawson [13] or Du [10] focused on RBFNs for time series forecasting.

On the other hand, an issue thatmust be taken into accountwhenworkingwith time
series is the correct choice of the time lags for representing the series. Takens’ theorem
[30] establishes that if d, a d-dimensional space where d is the minimum dimension
capable of representing such a relationship, is sufficiently large is possible to build
a state space using the correct time lags and if this space is correctly rebuilt also
guarantees that the dynamics of this space is topologically identical to the dynamics
of the real systems state space.

Many methods are based in Takens’ theorem (like [19]) but, in general, the
approaches found in the literature consider the lags selection as a pre or post-
processing or as a part of the learning process [1, 23]. In the L-Co-R method the
selection of the time lags is jointly faced along with the design process, thus it
employs co-evolution to simultaneously solve these problems.

Cooperative co-evolution [26] has also been used in order to train ANNs to design
neural network ensembles [12] and RBFNs [18]. But in addition, cooperative co-
evolution is utilized in time series forecasting in works as the one by Xin [20].

3 Description of the Method

This section describes L-Co-R [24], a co-evolutionary algorithm developed to min-
imize the error obtained for automatically time series forecasting. The algorithm
works building at the same time RBFNs and sets of lags that will be used to predict
future values. For this task, L-Co-R is able to simultaneously evolve two populations
of different individual species, in which any member of each population can coop-
erate with individuals from the other one in order to generate good solutions, that
is, each individual represents itself a possible solution to the subproblem. Therefore,
the algorithm is composed of the following two populations:

• Population of RBFNs: it consists of a set of RBFNs which evolves to design a
suitable architecture of the network. This population employs real codification so
every individual represent a set of neurons (RBFs) that composes the net. During
the evolutionary process neurons can growor decrease since the number of neurons
is variable. Each neuron of the net is defined by a center (a vector with the same
dimension as the inputs) and a radius. The exact dimension of the input space is
given by an individual of the population of lags (the one chosen to evaluate the
net).

• Population of lags: it is composed of sets of lags evolves to forecast future values
of the time series. The population uses a binary codification scheme thus each gene
indicates if that specific lag in the time series will be utilized in the forecasting
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Fig. 1 General scheme of
method L-Co-R

Trend preprocessing
t = 0;
initialize P lags(t);
initialize P RBFNs(t);
evaluate individuals in P lags(t);
evaluate individuals in P RBFNs(t);
while termination condition not satisfied do
begin
t = t+1;
/* Evolve population of lags */
for i=0 to max gen lags do
begin
set threshold;
select P lags’(t) from P lags(t);
apply genetic operators in P lags’(t);
/* Evaluate P lags’(t) */

choose collaborators from P RBFNs(t);
evaluate individuals in P lags’(t);

replace individuals P lags(t) with P lags’(t);
if threshold 0
begin

diverge P lags(t);
end
end
/* Evolve population of RBFNs */
for i=0 to max gen RBFNs do
begin
select P RBFNs’(t) from P RBFNs(t);
apply genetic operators in P RBFNs’(t);
/* Evaluate P RBFNs’(t) */

choose collaborators from P lags(t);
evaluate individuals in P RBFNs’(t);

replace individuals with P RBFNs’(t);
end

end
train models and select the best one
forecast test values with the final model
Trend post-processing

process. The length of the chromosome is set at the beginning corresponding with
the specific parameter, so that it cannot vary its size during the execution of the
algorithm.

As the fundamental objective, L-Co-R forecasts any time series for any horizon
and builds appropriate RBFNs designed with suitable sets of lags, reducing any hand
made preprocessing step. Figure1 describes the general scheme of the algorithm
L-Co-R.
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L-Co-R performs a process to automatically remove the trend of the times series to
work with, if necessary. This procedure is divided into two main phases: preprocess-
ing, which takes places at the beginning of the algorithm, and post-processing, at
the end of co-evolutionary process. Basically, the algorithm checks if the time series
includes trend and, in affirmative case, the trend is removed.

The performance of L-Co-R starts with the creation of the two initial populations,
randomly generated for the first generation; then, each individual of the populations
is evaluated. The L-Co-R algorithm uses a sequential scheme in which only one
population is active, so the two population take turns in evolving. Firstly, the evolu-
tionary process of the population of lags occurs: the individuals which will belong
to the subpopulation are selected; following the CHC scheme [11], genetic operators
are applied; the collaborator for every individual is chosen from the population of
RBFNs; and the individuals are evaluated again and assigned the result as fitness.
After that, the best individuals from the subpopulation will replace the worst indi-
viduals of the population. During the evolution, the population of lags checks that
al least one gene of the chromosome must be set to one because necessarily the net
needs one input to obtained the forecasted value.

In the second place, the population of RBFNs starts the evolutionary process. For
the first generation, every net in the population has a number of neurons randomly
chosen whichmay not exceed amaximum number previously fixed. As in population
of lags, the individuals for the subpopulation are selected, the genetic operators
are applied, every individual chooses the collaborator from the population of lags,
and then, the individuals are evaluated and the result is assigned as fitness. Fitness
function is defined by the inverse of the root mean squared error At the end of the co-
evolutionary process, two models formed by a set of lags (from the first population)
and a neural network (from the second population) are obtained. On the one hand, a
model is composed of the best set of lags and its best collaborator, and on the other
hand, the other model is composed of the best net found and its best collaborator.
Then, the two models are trained again and the final model chosen is the one that
obtains the best fitness. This final model obtains the future values of the time series
used for the prediction, and then, forecasted data will be used to find next values.

The collaboration scheme used in L-Co-R is the best collaboration scheme [26].
Thus, every individual in any population chooses the best collaborator from the other
population. Only at the beginning of the co-evolutionary process, the collaborator is
selected randomly because the population has not been evaluated yet.

The method has a set of specific operators specially developed to work with
individuals from every population. The operators used by L-Co-R are the followings:

• Population of RBFNs: tournament selection, x_fix crossover, four operators to
mutate randomly chosen (C_random, R_random, Adder, and Deleter) and replace-
ment of the worst individuals by the best ones of the subpopulation.

• Population of lags: elitist selection, HUX crossover operator, replacement of the
worst individuals, and diverge (the population is restarted when it is blocked).
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4 Experimentation and Statistical Study

The main goal of the experiments is to study the behavior of the algorithm
L-Co-R using 4 different and growing horizons, and to compare the results with
other 6 methods found in the literature and for 3 different quality measures.

4.1 Experimental Methodology

The experimentation has been carried out using 20 data bases taken from the INE.1

The data represent observations from different activities and have different nature,
size, and characteristics. The data bases have been labeled as: Airline, WmFranc-
fort, WmLondon, WmMadrid, WmMilan, WmNewYork, WmTokyo, Deceases,
SpaMovSpec, Exchange, Gasoline, MortCanc, MortMade, Books, FreeHouPrize,
Prisoners, TurIn, TurOut, TUrban, and HouseFin.

To compare the effectiveness of L-Co-R it has used, on the one hand, 6 methods
found within the field of time series forecasting: Exponential smoothing method
(ETS), Croston, Theta, Random Walk (RW), Mean, and ARIMA [16], and on the
other hand, 4 different horizons in order to test the effectiveness when the horizon
rises: 1, 6, 12, and 24.

An open question when dealing with time series is the measure to be used in order
to calculate the accuracy of the obtained predictions.MeanAbsolute PercentageError
(MAPE) [2] was the first measure employed in the M-competition [21] and most
textbooks recommended it. Later, many other measures as Geometric Mean Relative
Absolute Error, Median Relative Absolute Error, Symmetric Median and Median
Absolute Percentage Error (MdAPE), and Symmetric Mean Absolute Percentage
Error, among others, were proposed [22]. However, a disadvantage was found in
these measures, they were not generally applicable and can be infinite, undefined or
can produce misleading results, as Hyndman and Koehler explained in their work
[15]. Thus, they proposed Mean Absolute Scaled Error (MASE) that is less sensitive
to outliers, less variable on small samples, and more easily interpreted.

In this work, the measures used are MAPE (i.e., mean(| pt |)), MASE (defined
as mean(| qt |)), and MdAPE (as median(| pt |) ), taking into account that Yt is the
observation at time t = 1, ..., n; Ft is the forecast of Yt ; et is the forecast error (i.e.
et = Yt − Ft ); pt = 100et/Yt is the percentage error, and qt is determined as:

qt = et

1

n − 1

n∑
i=2

| Yi − Yi−1 |

1National Statistics Institute (http://www.ine.es/).

http://www.ine.es/
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Table 1 Results of the methods L-Co-R, ETS, Croston, Theta, RW, Mean, and ARIMA, with
respect to horizon 1 and MAPE

Time series L-Co-R ETS ARIMA CROSTON THETA MEAN RW

Airline 30.380* 274.770 53.636 72.606 141.452 49.965 137.986

WmFrancfort 16.423 17.393 12.136* 40.544 22.745 64.632 25.169

WmLondres 2.860* 5.383 5.212 27.682 10.136 51.852 13.397

WmMadrid 20.101 27.035 12.930* 44.285 25.505 64.326 27.034

WmMilan 30.529* 34.858 34.823 49.750 34.078 59.840 34.823

WmNuevayork 8.259 7.182* 7.536 30.297 14.669 60.812 18.073

WmTokio 4.764* 12.807 12.591 20.556 10.575 42.627 12.591

Deceases 5.981* 8.002 8.040 7.472 7.264 9.663 8.040

SpaMovSpec 53.788* 217.978 88.197 78.648 70.500 63.288 78.935

Exchange 43.044 46.025 45.254 31.121 39.138 24.217* 33.631

Gasoline 1.654* 7.986 9.359 9.587 6.701 18.460 7.974

MortCanc 1.137* 12.979 5.440 32.489 5.889 46.655 6.256

MortMade 3.931* 13.526 31.000 46.362 40.272 42.120 12.800

Books 13.787* 23.588 23.476 23.122 22.360 24.895 22.640

FreeHouPrize 3.424* 8.540 10.227 29.271 5.215 48.746 9.220

Prisoners 8.392 3.103* 3.150 14.220 6.888 35.839 9.474

TurIn 1.357* 7.074 6.377 11.234 7.084 30.424 7.110

TurOut 8.133* 13.261 9.634 12.159 15.238 34.781 13.226

TUrban 2.734* 11.957 9.291 9.067 8.949 16.884 10.116

HouseFin 16.452* 22.296 19.555 21.548 19.947 42.314 22.887

Due to its stochastic nature, the results yielded by L-Co-R have been calculated as
the average errors over 30 executions with every time series. For each execution, the
following parameters are used in the L-Co-R algorithm: lags population size=50,
lags population generations=5, lags chromosome size=10%, RBFNs population
size=50, RBFNs population generations=10, validation rate=0.25, maximum num-
ber of neurons of first generation=0.05, tournament size=3, replacement rate=0.5,
crossover rate=0.8, mutation rate=0.2, and total number of generations=20.

Tables1, 2, 3, 4, 5, and 6, show the results of the L-Co-R and the utilized methods
to compare (ETS, Croston, Theta, RW, Mean, and ARIMA), for measures MAPE,
MASE, and MdAPE, for horizons 1, and 6, respectively. Due to space limitations,
this paper only shows results of the horizons 1 and 6, the results of the rest horizons,
12 and 24, can be accessed at https://goo.gl/frHK7z.

https://goo.gl/frHK7z
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Table 2 Results of the methods L-Co-R, ETS, Croston, Theta, RW, Mean, and ARIMA, with
respect to horizon 1 and MASE

Time series L-Co-R ETS ARIMA CROSTON THETA MEAN RW

Airline 1.913 12.707 1.441* 2.738 5.853 2.045 5.664

WmFrancfort 3.578* 3.608 7.988 7.984 4.673 12.341 5.159

WmLondres 1.648 1.603* 3.484 8.410 3.099 15.566 4.119

WmMadrid 4.442* 5.686 8.625 9.126 5.362 13.050 5.685

WmMilan 5.967* 6.684 19.327 9.263 6.534 10.986 6.678

WmNuevayork 2.667 1.837* 6.228 7.982 3.942 15.620 4.879

WmTokio 2.791 2.443 1.628* 3.935 2.129 8.364 2.402

Deceases 1.059 1.059 1.144 0.952* 0.955 1.274 1.064

SpaMovSpec 1.027 2.027 1.933 1.009 1.023 0.997* 1.010

Exchange 41.181 44.039 70.734 30.448 37.807 23.911* 32.825

Gasoline 1.198* 1.543 1.698 1.864 1.274 3.533 1.541

MortCanc 0.646 1.618 0.277* 4.098 0.725 5.917 0.796

MortMade 1.314 1.303* 1.712 4.500 3.869 4.068 1.315

Books 0.762 0.965 1.147 0.936 0.894 1.040 0.759*

FreeHouPrize 3.339* 5.642 6.805 19.468 3.487 32.371 6.183

Prisoners 14.482 5.485 4.031* 23.979 11.934 58.935 16.305

TurIn 1.903 1.902 1.950 3.151 1.824* 8.328 1.916

TurOut 2.005 2.000 2.241 2.088 2.239 5.826 1.996*

TUrban 0.886 0.978 0.897 0.772 0.744* 1.576 0.887

HouseFin 1.319 1.283 1.502 1.234 1.095* 2.426 1.322

As mentioned before, every result indicated in the tables represent the average of
30 executions for each time series. Best result per database is marked with character
’*’. Considering every horizon tested:

• Horizon 1: the L-Co-R algorithm obtains the best results in most of the time series.
With respect to MAPE, the L-Co-R algorithm obtains the best results in 15 of 20
time series used, as can be seen in Table1. Regarding MASE, L-Co-R stands
out yielding the best results for 5 time series as can be observed in Table2. And
concerning MdAPE, L-Co-R acquires better results than the other methods in 12
of 20 time series, as Table3 shows.

• Horizon 6: the L-Co-R has better results than all the other methods using MAPE
and MdAPE, as can be seen in Tables4 and 6, and the best results in 15 o the 20
time series for MASE, as can be observed in Table5.

• Horizon 12: the L-Co-R yields the best results in 19, 17, and 18 of the 19 time
series (MortCanchas not enoughvalues to usewith this horizon) respectingMAPE,
MASE, and MdAPE, respectively.
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Table 3 Results of the methods L-Co-R, ETS, Croston, Theta, RW, Mean, and ARIMA, with
respect to horizon 1 and MdAPE

Time series L-Co-R ETS ARIMA CROSTON THETA MEAN RW

Airline 15.057* 233.934 15.212 54.657 119.754 31.012 118.090

WmFrancfort 14.610 14.603 11.026* 39.259 19.960 63.868 22.750

WmLondres 3.498* 5.430 5.099 30.550 10.474 53.761 15.722

WmMadrid 22.718 28.116 11.446* 45.817 26.787 65.307 28.116

WmMilan 30.476* 34.685 34.643 50.040 33.872 60.072 34.643

WmNuevayork 9.114 4.598* 5.712 35.253 16.505 63.598 23.137

WmTokio 5.517* 9.864 9.556 18.782 9.075 40.967 9.556

Deceases 4.267* 5.464 5.458 6.121 4.440 7.144 5.458

SpaMovSpec 17.669* 107.283 54.033 51.653 53.104 54.045 51.568

Exchange 44.368 46.597 45.961 34.121 38.832 27.517 36.521

Gasoline 1.792* 7.587 8.923 9.045 6.429 18.825 7.563

MortCanc 11.25 9.694 5.116 30.568 4.047* 44.528 5.339

MortMade 3.459* 12.111 28.374 45.704 41.989 41.482 15.629

Books 4.868* 18.111 18.093 17.230 16.566 20.509 11.567

FreeHouPrize 1.803* 5.222 6.572 29.683 5.201 49.044 9.748

Prisoners 6.766 1.512* 1.621 12.651 5.287 34.665 7.817

TurIn 2.945* 6.627 4.605 11.696 4.779 31.502 6.669

TurOut 5.289* 11.331 7.689 11.518 10.873 36.500 11.392

TUrban 5.290 8.262 6.374 6.822 4.922* 17.828 8.900

HouseFin 18.286 22.623 17.297* 21.279 18.845 43.533 23.684

• Horizon 24: the L-Co-R algorithm obtains better results than the other methods
in 17, 16, and 16 of the 17 time series (MortCanc, MortMade, and FreeHouPrize
have not enough values to use with this horizon) with regard to MAPE, MASE,
and MdAPE, respectively.

Thus, the L-Co-R algorithm is able to achieve a more accurate forecast in the
most time series for any of the horizons and quality measures considered.

4.2 Analysis of the Results

To analyze in more detail the results and check whether the observed differences
are significant, two main steps are performed: firstly, identifying whether exist dif-
ferences in general between the methods used in the comparison; and secondly,
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Table 4 Results of the methods L-Co-R, ETS, Croston, Theta, RW, Mean, and ARIMA, with
respect to horizon 6 and MAPE

Time series L-Co-R ETS ARIMA CROSTON THETA MEAN RW

Airline 28.740* 277.892 48.025 63.178 128.199 44.240 123.817

WmFrancfort 0.531* 19.056 13.004 43.264 25.102 66.250 27.844

WmLondres 0.113* 5.281 5.074 29.310 10.699 52.935 14.427

WmMadrid 0.312* 29.678 13.565 46.994 27.928 66.061 29.678

WmMilan 1.203* 38.440 38.403 52.914 37.562 62.369 38.403

WmNuevayork 0.140* 7.553 7.961 32.490 16.318 62.045 20.251

WmTokio 0.232* 13.255 13.052 20.777 10.908 42.825 13.052

Deceases 0.508* 8.266 8.309 7.385 7.440 10.085 8.309

SpaMovSpec 24.791* 235.399 93.095 82.501 72.432 64.599 82.821

Exchange 0.320* 46.431 33.296 30.949 39.226 24.028 33.465

Gasoline 0.205* 7.985 9.439 9.709 6.656 18.833 7.972

MortCanc 0.135* 12.562 5.963 36.563 5.829 51.164 6.334

MortMade 0.008* 15.078 34.276 55.378 49.472 50.875 12.375

Books 5.831* 23.590 21.059 23.026 22.118 25.159 21.274

FreeHouPrize 1.863* 12.678 15.393 30.282 5.416 49.478 10.517

Prisoners 0.204* 3.357 3.423 15.034 7.516 36.448 10.333

TurIn 0.042* 7.110 6.758 11.858 7.076 30.956 7.170

TurOut 0.603* 39.240 10.230 12.386 14.984 35.319 12.836

TUrban 2.052* 11.764 8.811 8.591 8.408 17.084 9.832

HouseFin 6.729* 21.571 18.953 20.797 19.092 42.674 22.177

determining if the best method is significant better than the rest of the methods. To
do this, first of all it has to be decided if is possible to use parametric o non-parametric
statistical techniques. An adequate use of parametric statistical techniques reaching
three necessary conditions: independency, normality and homoscedasticity [28].

Owing to the former conditions are not fulfilled, the Friedman and Iman-
Davenport non-parametric tests have been used. Tables with results of these tests
are available at https://goo.gl/frHK7z. They show, from left to right, the Friedman
and Iman-Davenport values (χ2 and FF , respectively), the corresponding critical
values for each distribution by using a level of significance α = 0.05, and the p-value
obtained for the measures utilized. Finally, the critical values of Friedman and Iman-
Davenport are smaller than the statistic, it means that there are significant differences
among the methods in all cases.

https://goo.gl/frHK7z
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Table 5 Results of the methods L-Co-R, ETS, Croston, Theta, RW, Mean, and ARIMA, with
respect to horizon 6 and MASE

Time series L-Co-R ETS ARIMA CROSTON THETA MEAN RW

Airline 1.595 12.290 1.585* 2.278 5.133 1.772 4.921

WmFrancfort 1.247* 3.946 2.360 8.548 5.133 12.831 5.675

WmLondres 1.317* 1.637 1.570 9.141 3.369 16.408 4.553

WmMadrid 1.302* 6.827 3.025 10.680 6.427 14.922 6.827

WmMilan 1.181* 7.915 7.908 10.710 7.735 12.537 7.908

WmNuevayork 1.235* 1.884 1.968 8.317 4.231 15.633 5.265

WmTokio 1.531* 2.459 2.423 3.862 2.150 8.182 2.423

Deceases 0.956* 1.113 1.119 0.963 0.997 1.348 1.119

SpaMovSpec 0.958 2.114 1.037 0.983 0.966 0.939* 0.984

Exchange 1.147* 44.047 32.240 30.039 37.574 23.546 32.399

Gasoline 0.051* 1.567 1.860 1.913 1.286 3.647 1.565

MortCanc 0.918 1.077 0.527 3.202 0.483* 4.497 0.533

MortMade 1.077* 1.689 3.876 6.335 5.641 5.810 1.370

Books 1.020 0.979 0.838 0.948 0.900 V1.062 0.730*

FreeHouPrize 1.214* 8.940 10.874 21.782 3.917 35.550 7.606

Prisoners 0.484* 5.684 5.795 24.350 12.457 57.773 17.012

TurIn 1.047* 1.863 1.728 3.225 1.769 8.237 1.882

TurOut 0.966* 5.986 1.556 2.131 2.200 5.912 1.943

TUrban 0.951 1.028 0.806 0.788 0.751* 1.705 0.928

HouseFin 1.026* 1.328 1.035 1.275 1.121 2.565 1.369

In addition, Friedman provides a ranking of the algorithms, so that the method
with a lowest result is taken as the control algorithm. For this reason, and according
to Tables7, 8, 9, and 10, the L-Co-R algorithm results to be the control algorithm for
all horizons considered and the three quality measures used.

In order to check if the control algorithm has statistical differences regarding
the other methods used, the Holm procedure [14] is used. Tables11, 12, 13, and
14 presents the results of the Holm’s procedure since shows the adjusted p values
from each comparison between the algorithm control and the rest of the methods for
MAPE, MASE, and MdAPE, and for horizons 1, 6, 12, and 24 considering a level
of significance of alpha = 0.05.

As can be seen in Tables11, 12, 13, and 14, there are significant differences
among L-Co-R and all the rest of the methods in the most of the cases. Analyzing
more specifically for every horizon:
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Table 6 Results of the methods L-Co-R, ETS, Croston, Theta, RW, Mean, and ARIMA, with
respect to horizon 6 and MdAPE

Time series L-Co-R ETS ARIMA CROSTON THETA MEAN RW

Airline 10.574* 223.150 13.222 31.476 89.154 26.266 85.401

WmFrancfort 2.332* 18.331 12.116 41.042 22.880 64.928 25.017

WmLondres 0.214* 5.394 5.078 30.658 11.247 53.833 15.853

WmMadrid 0.544* 28.484 12.129 46.094 27.270 65.484 28.484

WmMilan 0.519* 35.445 35.406 50.623 34.852 60.538 35.406

WmNuevayork 0.681* 4.909 5.755 36.166 18.312 64.112 24.221

WmTokio 1.207* 10.732 10.701 19.139 9.307 41.390 10.701

Deceases 0.513* 5.187 5.288 5.913 4.161 7.295 5.288

SpaMovSpec 7.824* 168.443 56.282 53.019 51.034 53.070 52.883

Exchange 0.011* 47.169 35.914 33.658 39.600 27.009 36.075

Gasoline 0.000* 7.353 8.995 9.394 6.365 19.412 7.329

MortCanc 0.152* 8.130 6.145 31.959 1.844 46.068 2.630

MortMade 2.582* 13.471 35.704 56.770 51.644 52.227 12.953

Books 1.849* 18.596 14.479 18.871 16.656 20.948 11.838

FreeHouPrize 1.547* 9.491 12.482 31.042 6.549 50.029 11.493

Prisoners 0.178* 1.786 1.906 14.123 6.422 35.766 9.371

TurIn 0.561* 6.781 5.482 12.795 4.614 32.355 6.671

TurOut 0.232* 35.128 8.219 11.965 10.860 37.078 10.784

TUrban 1.707* 8.341 6.054 6.431 4.729 17.642 8.694

HouseFin 3.028* 21.422 17.257 20.053 18.059 43.246 22.495

Table 7 Friedman’s test ranking

MAPE MASE MdAPE

L-Co-R 1.55 L-Co-R 2.63 L-Co-R 1.90

Theta 3.30 Theta 2.85 ARIMA 2.98

ARIMA 3.32 RW 3.60 Theta 3.10

RW 4.28 ETS 3.62 RW 4.15

ETS 4.40 Croston 4.60 ETS 4.23

Croston 5.00 ARIMA 4.65 Croston 5.30

Mean 6.15 Mean 6.05 Mean 6.35

Control algorithms are located in first row

• Horizon 1: significant differences exist between L-Co-R and the rest of the method
for MAPE. With respect to MASE, there exist significant differences between the
L-Co-R algorithm and Mean, ARIMA, and Croston, although it is not appropriate
to assure that with methods ETS, RW, and Theta. Regarding MdAPE, L-Co-R has
significant differences with all methods except ARIMA, as can be seen Table11.
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Table 8 Friedman’s test ranking

MAPE MASE MdAPE

L-Co-R 1.00 L-Co-R 1.70 L-Co-R 1.00

ARIMA 3.33 ARIMA 3.13 Theta 3.25

Theta 3.45 Theta 3.30 ARIMA 3.33

RW 4.35 RW 4.10 RW 4.10

ETS 4.68 ETS 4.63 ETS 4.48

Croston 5.05 Croston 5.00 Croston 5.45

Mean 6.15 Mean 6.15 Mean 6.40

Control algorithms are located in first row

Table 9 Friedman’s test ranking

MAPE MASE MdAPE

L-Co-R 1.00 L-Co-R 1.26 L-Co-R 1.05

ARIMA 3.40 ARIMA 3.24 Theta 2.53

Theta 3.42 Theta 3.42 ARIMA 2.55

RW 4.37 RW 4.26 RW 4.11

ETS 4.61 ETS 4.61 ETS 4.39

Croston 5.11 Croston 5.05 Croston 5.10

Mean 6.11 Mean 6.16 Mean 6.26

Control algorithms are located in first row

Table 10 Friedman’s test ranking

MAPE MASE MdAPE

L-Co-R 1.00 L-Co-R 1.18 L-Co-R 1.18

ARIMA 3.26 ARIMA 3.02 ARIMA 2.91

Theta 3.59 Theta 3.65 Theta 3.59

RW 4.44 RW 4.41 RW 4.29

ETS 4.76 ETS 4.74 ETS 4.74

Croston 4.88 Croston 4.94 Croston 5.24

Mean 6.05 Mean 6.05 Mean 6.06

Control algorithms are located in first row

• Horizon 6: L-Co-R has significant differences with all methods used, for every
measure considered, as Table12 shows.

• Horizon 12: there are significant differences among the control algorithm, L-Co-R,
and the rest of the methods in all cases, as can be observed in Table13.

• Horizon 24: as with horizons 6 and 12, there are also significant differences
between L-Co-R and other methods, as Table14 shows.
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Table 11 Adjusted p values of Holm’s procedure between the control algorithm (L-Co-R) and the
other methods for MAPE, MASE, and MdAPE with respect to horizon 1

MAPE MASE MdAPE

Mean 1.654E-11 Mean 5.340E-07 Mean 7.311E-11

Croston 4.412E-07 ARIMA 3.034E-03 Croston 6.454E-07

ETS 3.020E-05 Croston 3.839E-03 ETS 6.654E-04

RW 6.635E-05 ETS 1.432E-01 RW 9.890E-04

ARIMA 9.367E-03 RW 1.535E-01 Theta 7.898E-02

Theta 1.041E-02 Theta 7.419E-01 ARIMA 1.156E-01

Values lower than alpha = 0.05 indicate significant differences between L-Co-R and the corre-
sponding algorithm

Table 12 Adjusted p values of Holm’s procedure between the control algorithm (L-Co-R) and the
other methods for MAPE, MASE, and MdAPE with respect to horizon 6

MAPE MASE MdAPE

Mean 4.742E-14 Mean 7.311E-11 Mean 2.684E-15

Croston 3.055E-09 Croston 1.361E-06 Croston 7.311E-11

ETS 7.463E-08 ETS 1.854E-05 ETS 3.640E-07

RW 9.395E-07 RW 4.427E-04 RW 5.681E-06

Theta 3.352E-04 Theta 1.917E-02 ARIMA 6.654E-04

ARIMA 6.654E-04 ARIMA 3.698E-02 Theta 9.889E-04

Values lower than alpha = 0.05 indicate significant differences between L-Co-R and the corre-
sponding algorithm

Table 13 Adjusted p values of Holm’s procedure between the control algorithm (L-Co-R) and the
other methods for MAPE, MASE, and MdAPE with respect to horizon 12

MAPE MASE MdAPE

Mean 3.238E-13 Mean 2.874E-12 Mean 1.051E-13

Croston 4.704E-09 Croston 6.417E-08 Croston 7.372E-09

ETS 2.690E-07 ETS 1.856E-06 ETS 1.856E-06

RW 1.540E-06 RW 1.866E-05 RW 1.328E-05

Theta 5.517E-04 Theta 2.078E-03 ARIMA 3.611E-04

ARIMA 6.337E-04 ARIMA 4.862E-03 Theta 4.165E-04

Values lower than alpha = 0.05 indicate significant differences between L-Co-R and the corre-
sponding algorithm

In conclusion, it is possible to confirm that the L-Co-R method is able to achieve
a better forecast in majority of cases even when the horizon grows, comparing with
the other 6 methods utilized and concerning to 3 different quality measures.
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Table 14 Adjusted p values of Holm’s procedure between the control algorithm (L-Co-R) and the
other methods for MAPE, MASE, and MdAPE with respect to horizon 24

MAPE MASE MdAPE

Mean 8.646E-12 Mean 4.421E-11 Mean 4.421E-11

Croston 1.609E-07 Croston 3.357E-07 Croston 4.306E-08

ETS 3.757E-07 ETS 1.563E-06 ETS 1.563E-06

RW 3.414E-06 RW 1.263E-05 RW 2.581E-05

Theta 4.775E-04 Theta 8.551E-04 Theta 1.134E-03

ARIMA 2.240E-03 ARIMA 1.240E-02 ARIMA 1.918E-02

Values lower than alpha = 0.05 indicate significant differences between L-Co-R and the corre-
sponding algorithm

Acknowledgments This work has been supported by the regional projects TIC-3928 and -TIC-
03903 (Feder Funds), the Spanish project TIN 2012-33856 (Feder Founds), TIN 2011-28627-C04-
02 (Feder Funds).

References

1. Araújo, R.: A quantum-inspired evolutionary hybrid intelligent apporach fo stock market pre-
diction. Int. J. Intell. Comput. Cybern. 3(10), 24–54 (2010)

2. Bowerman, B., O’Connell, R., Koehler, A.: Forecasting: Methods and Applications. Thomson
Brooks/Cole, Belmont, CA (2004)

3. Box, G., Jenkins, G.: Time series analysis: forecasting and control. Holden Day, San Francisco
(1976)

4. Brockwell, P., Hyndman, R.: On continuous-time threshold autoregression. Int. J. Forecast.
8(2), 157–173 (1992)

5. Broomhead, D., Lowe, D.: Multivariable functional interpolation and adaptive networks. Com-
plex Syst. 2, 321–355 (1988)

6. Carse, B., Fogarty, T.: Fast evolutionary learning of minimal radial basis function neural net-
works using a genetic algorithm. In: Proceedings of Evolutionary Computing. LNCS, vol.
1143, pp. 1–22 Springer, Heidelberg (1996)

7. Castillo, P., Arenas, M., Merelo, J., and Romero, G.: Cooperative co-evolution of multilayer
perceptrons. In:Mira, J., lvarez, J.R. (eds.) ComputationalMethods inNeuralModeling, LNCS,
vol. 2686, pp. 358–365. Springer, Heidelberg (2003)

8. Chan, K., Tong, H.: On estimating thresholds in autoregressive models. J. Time Ser. Anal. 7(3),
179–190 (1986)

9. Clements, M., Franses, P., Swanson, N.: Forecasting economic and financial time-series with
non-linear models. Int. J. Forecast. 20(2), 169–183 (2004)

10. Du, H., Zhang, N.: Time series prediction using evolving radial basis function networks with
new encoding scheme. Neurocomputing 71(7–9), 1388–1400 (2008)

11. Eshelman, L.: The chc adptive search algorithm: how to have safe search when engaging
in nontraditional genetic recombination. In: Proceedings of 1st Workshop on Foundations of
Genetic Algorithms, pp. 265–283 (1991)

12. García-Pedrajas,N.,Hervas-Martínez,C.,Ortiz-Boyer,D.:Cooperative coevolution of artificial
neural network ensembles for pattern classification. IEEE Trans. Evol. Comput. 9(3), 271–302
(2005)



136 E. Parras-Gutierrez et al.

13. Harpham, C., Dawson, C.: The effect of different basis functions on a radial basis func-
tion network for time series prediction: a comparative study. Neurocomputing 69(16–18),
2161–2170 (2006)

14. Holm, S.: A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6(2), 65–70
(1979)

15. Hyndman, R., Koehler, A.: Another look at measures of forecast accuracy. Int. J. Forecast.
22(4), 679–688 (2006)

16. Hyndman, R.J., Khandakar, Y.: Automatic time series forecasting: the forecast package for r.
J. Stat. Softw. 27(3), 1–22 (2008)

17. Jain, A., Kumar, A.: Hybrid neural network models for hydrologic time series forecasting.
Appl. Soft Comput. 7(2), 585–592 (2007)

18. Li, M., Tian, J., Chen, F.: Improving multiclass pattern recognition with a co-evolutionary
rbfnn. Pattern Recogn. Lett. 29(4), 392–406 (2008)

19. Lukoseviciute, K., Ragulskis, M.: Evolutionary algorithms for the selection of time lags for
time series forecasting by fuzzy inference systems. Neurocomputing 73(10–12), 2077–2088
(2010)

20. Ma,X.,Wu,H.: Power system short-term load forecasting based on cooperative co-evolutionary
immune network model. In: Proceedings of 2nd International Conference on Education Tech-
nology and Computer, pp. 582–585 (2010)

21. Makridakis, S., Andersen, A., Carbone, R., Fildes, R., Hibon, M., Lewandowski, R., Newton,
J., Parzen, E., Winkler, R.: The accuracy of extrapolation (time series) methods: Results of a
forecasting competition. J. Forecast. 1(2), 111–153 (1982)

22. Makridakis, S., Hibon, M.: The m3-competition: results, conclusions and implications. Int. J.
Forecast. 16(4), 451–476 (2000)

23. Maus, A., Sprott, J.C.: Neural network method for determining embedding dimension of a time
series. Commun. Nonlinear Sci. Numer. Simul. 16(8), 3294–3302 (2011)

24. Parras-Gutierrez, E., Garcia-Arenas, M., Rivas, V., del Jesus, M.: Coevolution of lags and rbfns
for time series forecasting: L-co-r algorithm. Soft Comput. 16(6), 919–942 (2012)

25. Pea, D.: Análisis de Series Temporales. Alianza Editorial (2005)
26. Potter, M., De Jong, K.: A cooperative coevolutionary approach to function optimization. In:

Proceedings of Parallel Problem Solving from Nature, LNCS, vol. 866, pp. 249–257. Springer,
Heidelberg (1994)

27. Rivas, V., Merelo, J., Castillo, P., Arenas, M., Castellano, J.: Evolving rbf neural networks for
time-series forecasting with evrbf. Inf. Sci. 165(3–4), 207–220 (2004)

28. Sheskin, D.: Handbook of parametric and nonparametric statistical procedures. Chapman &
Hall/CRC, Boca Raton (2004)

29. Snyder, R.: Recursive estimation of dynamic linear models. J. Roy. Stat. Soc. Ser. B (Method-
ological) 47(2), 272–276 (1985)

30. Takens, F.:Dynamical systems and turbulence, LectureNotes InMathematics, vol. 898,Chapter
Detecting Strange Attractor in Turbulence, pp. 366–381. Springer, New York, NY (1980)

31. Tong, H.: On a threshold model. Pattern Recogn. signal process. NATO ASI Ser. E: Appl. Sc.
29, 575–586 (1978)

32. Tong, H.: Threshold models in non-linear time series analysis. Springer, Berlin (1983)
33. Whitehead, B., Choate, T.: Cooperative-competitive genetic evolution of radial basis function

centers and widths for time series prediction. IEEE Trans. Neural Netw. 7(4), 869–880 (1996)
34. Winters, P.: Forecasting sales by exponentially weighted moving averages. Manage.Sci. 6(3),

324–342 (1960)



Tree Automata Mining

Michal R. Przybylek

Abstract This paper [The article is an essentially revised version of conference
paper (Przybylek (2013) International Conference on Evolutionary Computation
Theory and Applications)] describes a new approach to mine business processes.
We define bidirectional tree languages together with their finite models and show
how they represent business processes. We offer an algebraic explanation for the
phenomenon of an evolutionary metaheuristic “skeletal algorithms”, and show how
this explanation gives rise to algorithms for recognition of bidirectional tree automata.
We use the algorithms in process mining and in discovering mathematical theories.

Keywords Evolutionary algorithms · Process mining · Language recognition ·
Minimum description length

1 Introduction

Nowadays, there is no longer any question that the quality of a company’s business processes
has a crucial impact on its sales and profits. The degree of innovation built into these business
processes, as well as their flexibility and efficiency, are critically important for the success
of the company. The importance of business processes is further revealed when their are
considered as the link between business and IT; business applications only become business
solutions when the processes are supported efficiently. The essential task of any standard
business software is and always will be to provide efficient support of internal and external
company processes.—Torsten Scholz

In order to survive in today’s global economy more and more enterprises have to
redesign their business processes. The competitive market creates the demand for
high quality services at lower costs and with shorter cycle times. In such an envi-

This work has been partially supported by Polish National Science Center, project DEC-
2011/01/N/ST6/02752.

M.R. Przybylek (B)
Faculty of Mathematics, Informatics and Mechanics,
University of Warsaw, Warsaw, Poland
e-mail: mrp@mimuw.edu.pl

© Springer International Publishing Switzerland 2016
K. Madani et al. (eds.), Computational Intelligence,
Studies in Computational Intelligence 613,
DOI 10.1007/978-3-319-23392-5_8

137



138 M.R. Przybylek

ronment business processes must be identified, described, understood and analysed
to find inefficiencies which cause financial losses. One way to achieve this is by
modelling. Business modelling is the first step towards defining a software system. It
enables the company to look afresh at how to improve organization and to discover
the processes that can be solved automatically by software that will support the busi-
ness. However, as it often happens, such a developed model corresponds more to
how people think of the processes and how they wish the processes would look like,
then to the real processes as they take place.

Another way is by extracting information from a set of events gathered during
executions of a process. Process mining [3, 10–20] is a growing technology in the
context of business process analysis. It aims at extracting this information and using
it to build a model. Process mining is also useful to check if the “a priori model”
reflects the actual situation of executions of the processes. In either case, the extracted
knowledge about business processes may be used to reorganize the processes to
reduce they time and cost for the enterprise.

Figure1 shows a typical event-log gathered during executions of a service process
in an online store. We assume that with every such an event-log there are associated:

Fig. 1 An event log
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• an identifier referring to the execution (the case) of the process that generated the
event

• a unique timestamp indicating the particular moment when the event occurred
• an observable set of actions of the parallel events.

Figure2 shows a model recognized from this sample.
The aim of this paper is twofold: to extend and revise methods for exploration of

business processes developed in [7, 8] to improve their effectiveness in a business
environment; and to provide an algebraic explanation of the phenomenon of skeletal
algorithms.We show some sample applications of our algorithms: inmining business
processes and in rediscovering a mathematical theory.

Fig. 2 Discovered model
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2 Skeletal Algorithms

Skeletal algorithms [7, 8] are a new branch of evolutionary metaheuristics
[1, 4–6, 9] focused on data and process mining. The basic idea behind the skele-
tal algorithm is to express a problem in terms of congruences on a structure, build
an initial set of congruences, and improve it by taking limited unions/intersections,
until a suitable condition is reached. Skeletal algorithms naturally arise in the con-
text of data/process mining, where the skeleton is the “free” structure on initial data
and a congruence corresponds to similarities in the data. In such a context, skele-
tal algorithms come equipped with fitness functions measuring the complexity of a
model.

Skeletal algorithms, search for a solution of a problem in the set of quotients of a
given structure called the skeleton of the problem. More formally, let S be a set, and
denote by Eq(S) the set of equivalence relations on S. If i ∈ S is any element, and
A ∈ Eq(S) then by [i]A we shall denote the abstraction class of i in A—i.e. the set
{ j ∈ S : j Ai}. We shall consider the following skeletal operations on Eq(S):

1. Splitting
The operation split : {0, 1}S × S × Eq(S) → Eq(S) takes a predicate P : S →
{0, 1}, an element i ∈ S, an equivalence relation A ∈ Eq(S) and gives the largest
equivalence relation R contained in A and satisfying:∀ j∈[i]A i R j ⇒ P(i) = P( j).
That is—it splits the equivalence class [i]A on two classes: one for the elements
that satisfy P and the other of the elements that do not.

2. Summing
The operation sum : S × S × Eq(S) → Eq(S) takes two elements i, j ∈ S, an
equivalence relation A ∈ Eq(S) and gives the smallest equivalence relation R
satisfying i R j and containing A. That is—it merges the equivalence class [i]A

with [ j]A.
3. Union

The operation union : S × Eq(S) × Eq(S) → Eq(S) × Eq(S) takes one element
i ∈ S, two equivalence relations A, B ∈ Eq(S) and gives a pair 〈R, Q〉, where R
is the smallest equivalence relation satisfying ∀ j∈[i]B i R j and containing A, and
dually Q is the smallest equivalence relation satisfying ∀ j∈[i]A i Q j and containing
B. That is—it merges the equivalence class corresponding to an element in one
relation, with all elements taken from the equivalence class corresponding to the
same element in the other relation.

4. Intersection
The operation intersection : S × Eq(S) × Eq(S) → Eq(S) × Eq(S) takes one
element i ∈ S, two equivalence relations A, B ∈ Eq(S) and gives a pair 〈R, Q〉,
where R is the largest equivalence relation satisfying ∀x,y∈[i]A x Ry ⇒ x, y ∈
[i]B ∨ x, y /∈ [i]B and contained in A, and dually Q is the largest equivalence
relation satisfying ∀x,y∈[i]B x Qy ⇒ x, y ∈ [i]A ∨ x, y /∈ [i]A and contained in
B. That is—it intersects the equivalence class corresponding to an element in
one relation, with the equivalence class corresponding to the same element in the
other relation.
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Furthermore, we assume that there is also a fitness function. There aremany things
that can be implemented differently in various problems.

2.1 Construction of the Skeleton

As pointed out earlier, the skeleton of a problem should correspond to the “free
model” build upon sample data. Observe, that it is really easy to plug in the skeleton
some priori knowledge about the solution—we have to construct a congruence rela-
tion induced by the priori knowledge and divide by it the “free unrestricted model”.
Also, this suggests the following optimization strategy—if the skeleton of a problem
is too big to efficiently apply the skeletal algorithm, we may divide the skeleton on
a family of smaller skeletons, apply to each of them the skeletal algorithm to find
quotients of themodel, glue back the quotients and apply again the skeletal algorithm
to the glued skeleton.

2.2 Construction of the Initial Population

Observe that any equivalence relation on a finite set S may be constructed by
successively applying sum operations to the identity relation, and given any equiva-
lence relation on S, we may reach the identity relation by successively applying split
operations. Therefore, every equivalence relation is constructible from any equiva-
lence relation with sum and split operations. If no priori knowledge is available, we
may build the initial population by successively applying to the identity relation both
sum and split operations.

2.3 Selection of Operations

For all operations we have to choose one or more elements from the skeleton S, and
additionally for a split operation—a splitting predicate P : S → {0, 1}. In most cases
these choices have to reflect the structure of the skeleton—i.e. if our models have
an algebraic or coalgebraic structure, then to obtain a quotient model, we have to
divide the skeleton by an equivalence relation preserving this structure, that is, by a
congruence. The easiest way to obtain a congruence is to choose operations that map
congruences to congruences. Another approach is to allow operations that move out
congruences from they class, but then “improve them” to congruences, or just punish
them in the intermediate step by the fitness function.
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2.4 Choosing Appropriate Fitness Function

Data and process mining problems frequently come equipped with a natural fitness
function measuring the total complexity of data given a particular model. One of the
crucial conditions that such a function has to satisfy is the ability to easily adjust its
value on a model obtained by applying skeletal operations.

2.5 Creation of Next Population

There is a room for various approaches. We have experimented most successful with
the following strategy—append k-best congruences from the previous population to
the result of operations applied in the former step of the algorithm.

3 Tree Languages and Tree Automata

Let us first recall the definition of an ordinary tree language and automaton [2]. A
ranked alphabet is a function arity : Σ → N from a finite set of symbolsΣ to the set
of natural numbers N called arities of the symbols. We shall write σ/k to indicate
that the arity of a symbol σ ∈ Σ is k ∈ N , that is arity(σ ) = k. One may think of a
ranked alphabet as of an algebraic signature—then a word over a ranked alphabet is
a ground term over corresponding signature.

Example 1 (Propositional Logic) A ranked alphabet of the propositional logic con-
sists of symbols:

{⊥/0,
/0,∨/2,∧/2,¬/1,⇒/2}

Every propositional sentence like “
 ∨ ¬⊥ ⇒ ⊥” corresponds to a word over the
above alphabet—in this case to: “⇒ (∨(
,¬(⊥)),⊥)”, or writing in a tree-like
fashion:

Following [2] we define a finite top-down tree automaton over arity : Σ → N as a
tuple A = 〈Q, qs,Δ〉, where Q is a set of states, qs ∈ Q is the initial state, and Δ is
the set of rewrite rules, or transitions, of the type:

q0( f (x1, . . . c, xn)) → f (q1(x1), . . . c, qn(xn))
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where f/n ∈ Σ and qi ∈ Q for i = 0, . . . , n. The rewrite rules are defined on
the ranked alphabet arity : Σ → N extended with q/1 for q ∈ Q. A word w is

recognised by automaton A if qs(w)
Δ∗

−−−−→w, that is, if w may be obtained from
qs(w) by successively applying finitely many rules from Δ.

We shall modify the definition of a tree automaton in two directions. First, it will
be more convenient to associate symbols with states of an automaton, rather then
with transitions. Second, we extend the definition of a ranked alphabet to allow terms
return multiple results; moreover, to fit better the concept of business processes, we
identify terms that are equal up to a permutation of their arguments and results.

Definition 1 (Ranked Alphabet) A ranked alphabet is a function biarity : Σ → N ×
N+. If the ranking function is known from the context, we shall write σ/ i/j ∈ Σ for
a symbol σ ∈ Σ having input arity i and output arity j ; that is, if biarity(σ ) = 〈i, j〉.
A definition of a term is more subtle, so let us first consider some special cases. By a
multiset we shall understand a function (−) from a set X to the set of positive natural
numbers N+—it assigns to an element x ∈ X its number of occurrences x in the
multiset. If X is finite, then we shall write {{x1, . . . c, x1, x2, . . . c, x2, . . . cxk, . . . c}},
where an element xk ∈ X occurs n-times when x = n, and call themultiset finite. For
multisets we use the usual set-theoretic operations ∪,∩, / defined pointwise—with
possible extension or truncation of the domains.

A simple language over a ranked alphabet Σ is the smallest set of pairs, called
simple terms, containing 〈σ/0/j,∅〉 for each nullary symbol σ/0/j ∈ Σ and closed
under the following operation: if σ/ i/j ∈ Σ and t1 = 〈x1/ i1/j1, A1〉, . . . c, tk =
〈xk/ ik/jk, Ak〉 are simple terms such that

∑k
s=1 js = i , then 〈σ/ i/j, {{tk : 1 ≤ s ≤ k}}〉

is a simple term. For convenience we write σ {{t1, . . . c, tk}} for 〈σ/ i/j, {{tk : 1 ≤ s ≤ k}}〉
and call ts a subterm of σ {{t1, . . . c, tk}}.
Example 2 (Ordinary Language) A word over an ordinary alphabet Σ may be rep-
resented as a simple term over the ranked alphabet biarity(σ ) = (1, 1) for σ ∈ Σ

and biarity(ε) = (0, 1).

Example 3 (Ordinary Tree Language) A word over an ordinary ranked alphabet
may be represented as a simple term over the ranked alphabet extended with unary
symbols n/1/1 for natural numbers n ∈ N indicating a position of an argument.
A tree-representation of sentence “
 ∨ ¬⊥ ⇒ ⊥” (compare Example 1) have the
form shown on Fig. 3a. Notice, that in all semantics of (any) propositional calculus
A ∨ B ≡ B ∨ A, therefore we may use this knowledge on the syntax level and
represent sentence “
 ∨ ¬⊥ ⇒ ⊥” in a more compact form—carrying some extra
information about possible models (Fig. 3b).

We extend the notion of a simple term to allow a single term to be a subterm of more
than one term. Such extension would be trivial for ordinary terms, but here, thanks
to the ability of returning more than one value, it gives us an extra power which is
crucial for representing business processes.
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(a) (b)

Fig. 3 Tree representations of sentence “
 ∨ ¬⊥ ⇒ ⊥”. a Ordinary representation. b Represen-
tation respecting symmetry of ∨

Definition 2 (Term) Let Σ be a ranked alphabet. A term over Σ is a finite acyclic
coalgebra 〈S, s0 ∈ S, subterm : S → N+S

, name : S → Σ〉 satisfying the following
compatibility conditions:

∀x∈S

∑
y∈S

subterm(x)(y) = name(x)1

∀y∈S\{s0}
∑
x∈S

subterm(x)(y) = name(y)2

where subscripts 1 and 2 indicates projections on first (i.e. input arity) and second
(i.e. output arity) component respectively Two terms 〈S, s0, subterm, name〉 and 〈S′,
s ′
0, subterm′, name′〉 are equivalent if there exists an isomorphism of the coalgebras,
that is, if there exists a bijectionσ : S → S′ such thatσ(s0) = s ′

0,N+σ ◦subterm◦σ =
subterm′ and name ◦ σ = name′.

We shall not distinguish between equivalent terms.

Example 4 (Simple Term) Consider a simple term t over a ranked alphabet Σ .
It corresponds to the term 〈S, s0 ∈ S, subterm : S → N+S

, name : S → Σ〉,
where S is the smallest multiset containing t and closed under subterms, s0 = t ,
name(σ {{t1, . . . c, tk}}) = σ and subterm(σ {{t1, . . . c, tk}}) = {{t1, . . . c, tk}}.
In line with the above example, we shall generally represent a term as a sequence of
equations (add multiple variables, please):

σ0{{t0,1, . . . c, t0,k0}} in free variables x1, . . . c, xn

x1 = σ1{{t1,1, . . . c, t1,k0}} in free variables x2, . . . c, xn

· · ·
xn = σn{{tn,1, . . . c, tn,kn }} without free variables

where ti, j are simple terms and xi are multisets of variables.



Tree Automata Mining 145

Corollary 1 Terms are tantamount to finite sets of equations of the form
x = σ {{t1, . . . c, tk}} over simple terms without cyclic dependencies of free variables.

Example 5 (Terms from a Business Process) Consider a business process:

which starts in the “start” state and ends in the “end” state. The semantics of the
process is that one have to preform simultaneously task B and at least one task A
and then either finish or repeat the whole process. Some terms t1, t2, t3 generated by
this process are:

t1 = start {{fork {{A {{x}}, B {{x}} }} }}
x = join {{end }}
t2 = start {{fork {{A {{A {{x}} }}, B{{x}} }} }}
x = join {{end }}
t3 = start {{fork {{A {{A {{A {{x}} }} }}, B{{x}} }} }}
x = join {{fork {{A {{A {{x}} }}, B{{y}} }} }}
y = join {{end }}

Generally, every term t generated by this process has to be of the following form:

t = start {{fork {{Ak1 {{x1}}, B{{x1}} }} }}
x1 = join {{ fork {{Ak2 {{x2}}, B{{x2}} }} }}

· · ·
xn−1 = join {{fork {{Akn {{xm}}, B{{xm}} }} }}

xn = join {{end }}

The whole business process cannot be represented as a single term. One could write
the following set of equations:

t = start {{x}}
x = fork {{A {{y}}, B{{z}} }}
y = A {{y}} ∨ y = z

z = join {{x}} ∨ z = join {{end }}

However, there is no term corresponding to this set—there are cyclic dependencies
between variables (for example y depends on y, also x depends on z, z depends
on x), and there are disjunctions in the set of equations.
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Definition 3 (Tree Automaton) A tree automaton over a ranked alphabetΣ is a tuple
A = 〈Q, q0,Δ, name〉, where:
• Q is the set of states of the automaton
• q0 ∈ Q is the initial state of the automaton
• name is a function from set of states Q to Σ � {ε/0/1}
• Δ is a set of rewrite rules (transitions) of the form:

{{x0, . . . c, xk}} →δ {{x ′
0, . . . c, x ′

l }}

with:
k∑

i=0

name(xi )1 =
l∑

i=0

name(x ′
i )0

where x0, . . . c, xk, x ′
0, . . . c, x ′

l ∈ Q.

Notice that in the above definition there is a single initial state, but there are no final
states—an automaton finishes its run if it is in neither of the states.

Example 6 (Business Process as Tree Automaton)We shall use the following graphi-
cal representation of a tree automaton: every state is denoted by a circle with the letter

associated to the state inside the circle, every rule {{x0, . . . c, xk}}
δ

−−−−→{{x ′
0, . . . c, x ′

l }}
is denoted by a rectangle (optionally with letter δ inside); moreover this rectangle is
connected by ingoing arrows from circles denoting states {{x0, . . . c, xk}} and outgoing
arrows to circles denoting states {{x ′

0, . . . c, x ′
l }}:

For convenience we shell sometimes omit the intermediating box of a singleton
rule {{x}} → {{x ′}} and draw only a single arrow from the node representing x to the
node representing x ′. The business process from Example 5 defines over a signa-
ture Σ = {start/1/0, fork/2/1, A/1/1, B/1/1, join/1/2, end/0/1} an automaton
〈start,Σ,Δ, id〉 with rules Δ:



Tree Automata Mining 147

{{ start }} δ1→ {{ fork }}
{{ fork }} δ2→ {{A, B}}

{{A}} δ3→ {{A}}
{{A, B}} δ4→ {{ join }}
{{ join }} δ5→ {{ fork }}
{{ join }} δ6→ {{ end }}
{{ end }} δ7→ {{ }}

which may be represented as:

Example 7 (Term as a Skeletal Tree Automaton) The automaton corresponding to
a term t is constructed in two steps. First we define the following automaton. For
every s ∈ S with name(s) = σ/ i/j define a multiset:

Es = {{ εs,1, εs,2, . . . c, εs, j }}

and a rule:
{{s}} → Es

and for every p ∈ S with k = subterm(p)(s) choose any k-element subset X p of E p

and put a rule: ⋃
p∈S

X p → {{s}}

Then, for convenience, we simplify the automaton by cutting at ε-states. That is:
every pair of rules

X → {{Y, E}}
{{E}} → Z

where E consists only of ε-states, is replaced by a single rule:

X → {{Y, Z}}



148 M.R. Przybylek

The next picture illustrates the skeletal automaton constructed from term t2 from
Example 5.

Given a finite multiset X , a rule {{x0, . . . c, xk}} δ→ {{x ′
0, . . . c, x ′

l }} is applicable to X if
{{x0, . . . c, xk}} is a multisubset of X . In such a case we shall write δ[X ] for the multiset
(X\{{x0, . . . c, xk}}) ∪ {{x ′

0, . . . c, x ′
l }}. We say that a term t = 〈S, s0, subtermt , namet 〉

is recognised by an automaton A = 〈Q, q0,ΔA, nameA〉 if there is a finite sequence
〈{{q0}}, {{q0 �→ s0}}〉 = T0, T1, . . . c, Tn = 〈{{ }}, {{ }}〉 with name(q0) = name(s0) satisfying
for all 0 < m < n the induction laws:

• Tm+1 = 〈δ[Xm], πm[x1 � �→, . . . c, xk � �→][x ′
1 �→ r ′

1, . . . c, x ′
l �→ r ′

l ]〉• 〈Xm, πm〉 = Tm

• a rule {{x0, . . . c, xk}} δ→ {{x ′
0, . . . c, x ′

l }} ∈ ΔA is applicable to Xm and subtermt

(πm(x0)) = subtermt (πm(x1)) = · · · = subtermt (πm(xk)) = {{r0, . . . c, rl}}
• if nameA(x ′

i ) = ε then r ′
i = ε{{ri }}

• if nameA(x ′
i ) �= ε then namet (ri ) = nameA(x ′

i ) and r ′
i = ri

Notice that because Xn = {{ }}, the last applied rule has to be of the form {{x0, . . . c, xk}}
δ→ {{ }} and due to the compatibility condition on rules of a tree automaton:

k∑
i=0

nameA(xi )1 = 0

which means that the states x0, . . . c, xk generate only nullary letters. Therefore the
corresponding subterms {{π(x0), . . . c, π(xk)}} of t are nullary.

Example 8 Let us show that term t2 from Example 5 is recognised by automaton
〈start,Σ,Δ, id〉 from Example 6. Since name(t2) = start = id(start) we may put
T0 = 〈{{ strat }}, strat �→ t〉 and consider the following sequence:

• T1 = 〈{{ fork }}, fork �→ fork {{A {{A{{x}} }}, B{{x}} }} 〉 by δ1
• T2 = 〈{{A, B}}, A �→ A {{A {{x}} }}, B �→ B{{x}} 〉 by δ2
• T3 = 〈{{A, B}}, A �→ A {{A {{x}} }}, B �→ B{{x}} 〉 by δ3
• T4 = 〈{{A, B}}, A �→ A{{x}}, B �→ B{{x}}〉 by δ3
• T5 = 〈{{ join }}, join �→ join {{end }} 〉 by δ4
• T6 = 〈{{ end }}, end �→ end 〉 by δ6
• T7 = 〈{{ }}, {{ }}〉 by δ7

it is easy to verify that each Tm is constructed according to the induction laws.
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4 Skeletal Algorithms in Tree Mining

Given a finite list K of sample terms over a common alphabet Σ , we shall construct
the skeletal automaton skeleton(K ) = 〈q0, S,Δ, name〉 of K in the following way.
For each term Ki , 0 ≤ i < length(K ) let skeleton(Ki ) = 〈qi

0, Si ,Δi , namei 〉 be the
skeletal automaton of Ki constructed like in Example 7, then:

• S = {START} � ⋃
i Si

• q0 = START
• Δ = {{{ START }} → {{qi

0}} : 0 ≤ i < length(K )} � ⋃
i Δi

• name(q) =
{

START if q = START
namei (q) if q ∈ Si

That is skeleton(K ) = 〈Σ, S, l, δ〉 constructed as a disjoint union of skeletal automa-
tons for tk enrichedwith two states start and end. So the skeleton of a sample is just an
automaton corresponding to the disjoint union of skeletal automaton corresponding
to each of the terms enriched with a single starting state. Such automaton describes
the situation, where all actions are different. Our algorithm will try to glue some
actions that give the same output (shall search for the best fitting automaton in the set
of quotients of the skeletal automaton). The next figure shows the skeletal automaton
of the sample t1, t2 from Example 7.

Given afinite list of sample data K , our search spaceEq(K ) consists of all equivalence
relations on the set of states S of the skeletal automaton for K .

4.1 Skeletal Operations

1. Splitting
For a given congruence A, choose randomly a state q ∈ skeleton(K ) and make
use of two types of predicates

• split by output: P(p) ⇔ ∃
q ′∈[q]A

∃
X

δ→Y

p ∈ X ∧ q ′ ∈ Y

• split by input: P(p) ⇔ ∃
q ′∈[q]A

∃
X

δ→Y

q ′ ∈ X ∧ p ∈ Y

2. Summing
For a given congruence A, choose randomly two states p, q such that name(p) =
name(q).
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3. Union/Intersection
Given two skeletons A, B choose randomly a state q ∈ skeleton(K ).

Let us note that by choosing states and predicates according to the above descrip-
tion, all skeletal operations preserve congruences on skeleton(K ).

4.2 Fitness

The idea behind the fitness function for bidirectional tree automata is the same as for
ordinary finite automata analysed in [7]. The additional difficulty comes here from
two reasons: a bidirectional tree automaton can be simultaneously in a multiset of
states; moreover, two transitions may non-trivially depend on each other. Formally,

let us say that two transitions X
δ→ Y and X ′ δ′→ Y ′ are depended on each other

if X ∩ X ′ �= {{ }}, and are fully depended if X = X ′. Unfortunately, extending the
Bayesian interpretation to our framework yields a fitness function that is impractical
from the computational point of view. For this reason we shall propose a fitness
function that agrees with Bayesian interpretation only on some practical class of
bidirectional tree automata—directed tree automata. A directed tree automaton is a
bidirectional tree automaton whose each pair of rules is either fully depended or not
depended. Now if δ is a sequence of rules of a directed tree automaton, then similarly
to the Bayesian probability in [7], we may compute the probability of a multiset of
states X :

pδ(X) = Γ (k)

Γ (n + k)

k∏
i=1

c
ci

i

where:

• k is the number of rules X
δi→ Y for some Y of the automaton

• ci is the total number of i-th rule X
δi→ Y used in δ

• n = ∑k
i=1 ci is the total number of rules of the form X → Y for some Y used in δ

and the total distribution as:
p(δ) =

∏
X⊆S

pδ(X)

which corresponds to the complexity:

p(δ) = −
∑
X⊆S

log(pδ(X))

This complexity does not include any information about the exact model of an
automaton. Therefore, we have to adjust it by adding “the code” of a model. By
using two-parts codes, we may write the fitness function in the following form:
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fitness(A) = length(skeleton(K )/A) −
∑
X⊆S

log(pδ(X))

where length(skeleton(K )/A) is the length of the quotient of the skeletal automaton
skeleton(K ) by congruence A under any reasonable coding, and S is the set of states
of the quotient automaton. For sample problems investigated in the next section, we
chose this length to be:

clog(|S|)|{〈δ, x〉 : X
δ→ Y ∈ Δ, 0 ≤ x < size(X) + size(Y )}|

for constant 1 ≤ c ≤ 2.

5 Sample Applications

5.1 Process Mining

We shall start with a business process similar to one investigated in Example 5, but
extended with multiple states generating the same action A:

This process starts in state start then performs simultaneously at least three tasks A
and exactly one task B, and then finishes in end state. Figure4a, b shows automata
mined from 4 and 8 random samples. Notice that the first mined automaton corre-
spond to the minimal automaton recognizing any sample, and after seeing 8 samples
the initial model is fully recovered.

5.2 Theory Discovery

In this section we show a direct application of the above idea to theory discovery.
Given a finite theory over a ranked alphabet, we use true sentences from the theory
as sample data. Let us consider the following signature:

Σ = {=/2/1, cons/2/1, nil/0/1,+/2/1, 0/0/1, 1/0/1}

A natural number n will be represented as a term:
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Fig. 4 Discovered models. a Model discovered after seeing 4 samples. b Model discovered from
10 samples

Fig. 5 Natural numbers. a Syntax for natural numbers. b Automaton mined from 16 samples

cons{bk · · · cons{b1, cons{b0, nil}} · · · }

where bi is either 0 or 1, bk �= 0 if n �= 0 and n = ∑k
i=0 2

kbk . Our sample data
K consists of equations 〈a + b = c〉, for0 ≤ a, b ≤ 4, c = a + b on natural
numbers. Notice, that the minimal automaton that recognises K generates the syntax
for the equational theory of natural numbers with addition. Figure5a shows minimal
automaton mined from K , and Fig. 5b shows a model discovered from 16 samples,
which accurately describes three-bit addition on natural numbers.
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6 Conclusions

In this paper we defined bidirectional tree automata, and showed how they can rep-
resent business process. We adapted skeletal algorithms introduced in [7] to mine
bidirectional tree automata, resolving the problem of mining nodes that corresponds
to parallel executions of a process (i.e. AND-nodes). In future works we will be
mostly interested in validating the presented algorithms in industrial environment
and apply them to real data.
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Alternative Topologies for GREEN-PSO

Stephen M. Majercik

Abstract The expense of evaluating the function to be optimized can make it diffi-
cult to apply the Particle Swarm Optimization (PSO) algorithm in the real world.
Approximating the function is one way to address this issue, but an alternative
is conservation of function evaluations. GREEN-PSO (GR-PSO) adopts the latter
approach: given a fixed number of function evaluations, GR-PSO conserves them
by probabilistically choosing a subset of particles smaller than the entire swarm
on each iteration and allowing only those particles to perform function evaluations.
Since fewer function evaluations are used on each iteration, the algorithm can use
more particles and/or more iterations for a given number of function evaluations.
GR-PSO has been shown to be effective using the global topology, performing as
well as, or better than, the standard PSO algorithm (S-PSO) [7]. We extend these
results by showing that GR-PSO can achieve significantly better performance than
S-PSO, in terms of both best function value achieved and rate of error reduction,
using three other topologies—ring, von Neumann, and Moore—on a set of six stan-
dard benchmark functions, and that the von Neumann and Moore topologies can be
more effective topologies for GR-PSO than the global topology.

Keywords Particle swarm optimization · Swarm intelligence

1 Introduction

Swarm intelligence is a natural phenomenon in which complex behavior emerges
from the collective activities of a large number of simple individuals who interact
with each other and their environment in very limited ways. A number of swarm
based optimization techniques have been developed, among them Particle Swarm
Optimization (PSO). PSO, loosely based on the phenomenon of birds flocking, was
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introduced by Kennedy and Eberhart [5]. In this algorithm, virtual particles “fly”
through the solution space in search of high-quality solutions. In the original algo-
rithm, the search trajectory of a particle is influenced by both the best solution it has
found so far (the personal best) and the best solution the entire swarm has found so
far (the global best). The algorithm iteratively updates the velocities and positions of
the particles in a way that biases the search toward the personal bests and the global
best, converging on a (hopefully) global optimum. PSO is one of the most widely
used swarm based algorithms and has been successfully applied to many real world
problems [10]. Many variants of the PSO algorithm have been proposed; see [12]
for an extensive listing.

In the standard PSO algorithm, every particle evaluates the function being opti-
mized (the objective function) on every iteration in order to determine the fitness
of the candidate solution at the particle’s new position. A typical PSO algorithm
uses 20–40 particles and tens of thousands of iterations to find even a suboptimal,
but acceptable, solution, and this high number of function evaluations can be diffi-
cult to achieve in real world applications if the function the algorithm is trying to
optimize—for example, a complex control mechanism—is computationally or finan-
cially expensive to evaluate, or requires time consuming simulations and/or human
interaction [6].

A common way of addressing this problem is to use function approximation,
which can takemany forms, such as response surfacemethods, radial basis functions,
Kriging (DACEmodels), Gaussian process regression, support vector machines, and
neural networks [6].Another approximation technique is fitness inheritance, inwhich
the objective function value, or fitness, of an individual is approximated based on
the fitnesses of one or more other individuals [11].

Instead of using less expensive—but possibly less effective—function approxima-
tions, an algorithm could use fewer function evaluations during each iteration. This
is the approach adopted by GREEN-PSO (GR-PSO) [7]. On each iteration, GR-PSO
permits only a subset of the particles in the swarm to do function evaluations and uses
the conserved function evaluations to increase the number of particles in the swarm
and/or the number of iterations that are possible, given a fixed number of function
evaluations.Majercik [7] showed that GR-PSO could achieve performance compara-
ble to or, in a number of cases, better than that of the standard PSO algorithm, and as
good as a type of function approximation that is similar to GR-PSO. It was unclear,
however, to what extent the performance of GR-PSO was dependent on the global
topology used in their tests. We extend their results by showing that GR-PSO can
achieve significantly better performance than S-PSO, in terms of both best function
value achieved and rate of error reduction, using three other topologies—ring, von
Neumann, and Moore—and that the von Neumann and Moore topologies can be
more effective topologies for GR-PSO than the global topology.

In Sect. 2, we describe the basic PSO algorithm and the GR-PSO algorithm. In
Sect. 3, we discuss related work. We describe and discuss the results of our experi-
ments in Sect. 4, and we conclude with some ideas for future work in Sect. 5.
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2 PSO and GR-PSO

In this section, we describe the standard PSO algorithm and GREEN-PSO.

2.1 Standard PSO

The standard PSO algorithm (S-PSO) uses a swarm of particles to iteratively search
a d-dimensional solution space for good solutions. The particles are guided by their
own experience and that of the swarm. The number of particles in the swarm is
fixed and each particle’s current position and velocity, xi and vi , respectively, are
initialized randomly. Particle i remembers the best solution it has found so far (the
personal best, or pbest), pi , and the best solution found so far by the particles in
particle i’s neighborhood (the neighborhood best, or nbest), gi . (The original PSO
algorithm used the global topology, in which the neighborhood of every particle is
the entire swarm and gi is the global best, or gbest.) The velocity vi of particle i is
updated during each iteration such that its motion is biased toward both pi and gi ,
and the new velocity is used to update its position xi . There are a number of basic
PSO algorithms. For purposes of comparison, we adopt the PSO algorithm with a
constriction coefficient χ and velocity limits as described in [10]. The velocity and
position update equations are:

vi ← χ(vi + U(0, φ1) ⊗ ( pi − xi ) + U(0, φ2) ⊗ (gi − xi )) (1)

xi ← xi + vi (2)

where:

• φ1 and φ2, the acceleration coefficients that scale the attraction of particle i to pi
and gi , respectively, are equal and have the value 2.05,

• U(0, φi ) is a vector of real random numbers uniformly distributed in [0, φi ], which
is randomly generated at each iteration for each particle,

• ⊗ is component-wise multiplication, and
• χ is the standard constriction coefficient (approximatley 0.7298).

Finally, each component of vi is kept within a range [Vmin, Vmax], where Vmin and
Vmax are the minimum and maximum values of the search space and are identical for
each dimension.

2.2 GREEN-PSO

The PSO algorithm is often motivated by referencing the human problem solving
process, in which an individual, confronted with a problem, looks for a solution
based partially on her own experience solving that problem in the past and partially
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on the experience of others who have solved that problem before. Continuing that
analogy, the problem solver will need to evaluate her efforts periodically, but it is
unclear when she should do that. Some evaluation is necessary to direct her efforts
productively, but (1) evaluation may be expensive, in terms of one or more resources,
(2) a potentially successful path of inquiry might be prematurely terminated if it is
difficult to accurately assess the value of the current solution, and (3) it is not always
clear when the quality of the current solution is sufficiently different from that of
the most recently evaluated solution to justify a new evaluation. For these reasons,
while trying to improve the best solution she has found in the past, she might suspend
evaluation of her efforts for a period of time.

In S-PSO, the points at which an evaluation might be done are well-defined.
On each iteration, a particle moves and the new position might be a better solution.
S-PSO requires that a particle’s position be evaluatedwhenever itmoves. The analogy
above suggests that it might be better to evaluate a particle’s position less frequently.
GR-PSO puts this idea into practice in the following way: GR-PSO operates like
S-PSO, except that each particle, after calculating a new velocity and updating its
position according to that velocity, performs a function evaluation (FE) on its new
position with some probability probFE, where 0.0 < probFE < 1.0. This means
that on every iteration, the expected number of particles doing a function evaluation
is (n × probFE), where n is the number of particles in the swarm, so the expected
number of iterations is (FEsmax/(n × probFE)), where FEsmax is the total number of
function evaluations available. This allows the swarm to use more particles and/or
more iterations. For example, in the standard PSO algorithm, 20,000 function eval-

Algorithm 1: GR-PSO.
Inputs:1

n, the size of the swarm2
f , the function to be optimized (minimized)3
FEsmax, the maximum number of function evaluations4
probFE, the probability of doing a function evaluation5

Outputs:6
x∗, the position of the minimum function value found7
f (x∗), the value of the function at that position8

for i ← 1 . . . n do9
Initialize particle i with a random position and velocity;10

while number FEs performed < FEsmax do11
for i ← 1 . . . n do12

pi ← position of best solution particle i has found so far;13
gi ← position of best solution found by particle i’s neighborhood so far;14
vi ← velocity of particle i updated from Eq.1 using pi and gi ;15
xi ← position of particle i updated from Eq.2;16
if randomDouble < probFE then17

Calculate f (xi ) and update pi , gi , and x∗;18

return x∗ and f (x∗)19
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uations would allow a swarm of 100 particles to do 200 iterations. If each particle
does a function evaluation with a probability of 0.5, we could, for example, increase
the number of iterations to 400, or increase the size of the swarm to 200 particles,
or some combination of these two strategies. See Algorithm 1 for pseudocode for
GR-PSO.

3 Related Work

Fitness inheritance, the approximation technique closest to the GR-PSO approach,
approximates the value of the objective function for a particle’s current position
based on the function values of some set of particles designated as its “parents,”
thereby avoiding function evaluations. GR-PSO can be viewed as an extreme form
of fitness inheritance; a particle that does not do a function evaluation is its own
parent, inheriting its own objective function value directly.

The work of [11] is the only work we know of that incorporates fitness inheri-
tance into a PSO algorithm. They tested the effectiveness of twelve fitness inheri-
tance techniques and four fitness approximation techniques in a multi-objective PSO
algorithm. Majercik [7] compared GR-PSO using the global topology to the best
three of these techniques (as ranked by [11]) and found that the performance of
all three was never better than the best GR-PSO algorithms and that the majority
of GR-PSO algorithms was better than all three of these techniques, although the
differences in performance were, in some cases, quite small.

Akat andGazi [1] describe a decentralized, asynchronous approach that allows the
PSO algorithm to be implemented on multiple processors with very weak require-
ments on communication between those processors. Particles reside on different
processors. At each time step, each particle/processor has access only to some subset
of other particles/processors; thus, there may be significant intervals during which
a particle p has received no information from particle p′; it may even be the case
that, on a given iteration, a particle receives no information from any other parti-
cles, in which case its position and velocity remain the same. They report that the
performance of their approach was comparable to standard PSO implementations.

GR-PSO is similar to their work in that a particle in GR-PSO that is not doing a
function evaluation can be thought of as residing on a processor that no other particle
is in communication with (including itself). An important difference, which may
account for the difference in performance (GR-PSOperforms better than the standard
PSO algorithm), is that the communication links between particles/processors are
always changing, so that when a particles/processor finds a new personal best, this
information will be immediately available only to those other particles/processors
that are communicating with that processor at the time. In GR-PSO, however, if a
particle does a function evaluation and finds a new personal best, all other particles
in its neighborhood have access to that information immediately.

In other work, [2] considered the effect of the information flow topology on the
performance of three approaches to creating non-reciprocal dynamic neighborhoods,
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which can be represented as directed graphs. If these digraphs are strongly connected
over time, i.e. if there is a fixed interval such that the union of the digraphs over every
interval of iterations of that length is strongly connected, then information flow in the
swarm will be preserved and every particle eventually has access to the information
gathered by every other particle. An interesting open question is whether GR-PSO
is operating in a similar fashion, creating temporary, smaller neighborhoods, where
a neighborhood is the subset of particles that are doing function evaluations. The
inhabitants of those neighborhoods are constantly changing, but they are connected
over time. It is possible that the probability of doing a function evaluation is regu-
lating the connectedness of these shifting neighborhoods. An investigation into this
possibility could shed light on the performance of GR-PSO and the performance of
PSO algorithms that use dynamic neighborhoods, in general.

Finally, the results of [7] suggest an intriguing relationship with work of García-
Nieto and Alba [4]. They tested a variant of the standard PSO algorithm in which
the neighborhood for each particle on each iteration is constructed by choosing k
other particles, or “informants,” randomly. They tested the algorithm over a range of
values for k and found evidence for a quasi-optimal neighborhood size of approxi-
mately 6. In a sense, the expected number of particles doing function evaluations in
GR-PSO during an iteration can be viewed as the number of informants for every
particle in each iteration, since it is these particles that could potentially provide new
information. Majercik [7] suggested that there might be an optimal range for the
expected number of particles doing function evaluations during an iteration, and that
this range might be similar to the optimal range for the number of informants in the
work of García-Nieto and Alba. This is still an open question.

4 Experimental Results

We tested GR-PSO on six standard benchmark functions in 30 dimensions: Sphere,
Rosenbrock, Ackley, Griewank, Rastrigin, and Penalized Function P8. (See [3] for
definitions of these functions.) Sphere and Rosenbrock are uni-modal functions,
while Ackley, Griewank, Rastrigin, and Penalized Function P8 aremulti-modal func-
tions with many local optima. The optimum (minimum) value for all of these func-
tions is 0.0 and, in all but two cases (the Rosenbrock Function and the Penalized
Function P8), this value is obtained at (0, 0, . . . , 0). For the latter two functions,
this value is obtained at (1, 1, . . . , 1) and (−1,−1, . . . ,−1), respectively. We used
asymmetric initialization and randomly shifted the location of the optimum away
from the center of the search space in order to avoid the tendency of PSO algorithms
to converge to the center [9].

We compared the performance of GR-PSO to that of the standard PSO algorithm
described in Sect. 2.1, conducting tests on four standard PSO topologies: global, ring,
von Neumann, and Moore. As noted above, the neighborhood of each particle in the
global topology is the entire swarm. In the ring topology, the particles can be thought
of as being arranged in a ring, and the neighbors of a particle are the two particles
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on either side of it. In the von Neumann and Moore topologies, the particles can be
thought of as being arranged on a toroidal grid. In the von Neumann topology, the
neighbors of a particle are the four particles to the north, south, east, and west of it.
In the Moore topology, the neighbors are the eight particles around it. We fixed the
number of function evaluations at 10,000, and averaged the results of 100 runs for
each function.

Tests in [7] indicated that a swarm size of 20 or 50 particles produced good
results, given 10,000 FEs. As they noted, although a probFE of less than 1.0 provides
additional iterations, a smaller swarm (10 particles) is unable to explore the space
effectively, in spite of the additional iterations, while larger swarms (100 and 200
particles) consume too many of those additional iterations, degrading performance.
Their tests also indicated that probFE values of 0.05, 0.1, and 0.2 were good choices.
For S-PSO, their tests indicated that 20 and 50 particles were good choices for
swarm size.

We tested GR-PSO for each of the four topologies on a range of swarm sizes and
probFEs and our findings confirmed these choices for swarm size and probFE. Thus,
we show results for six GR-PSO algorithms—20 particles with probFEs of 0.05,
0.1, and 0.2, and 50 particles with probFEs of 0.05, 0.1, and 0.2—and two S-PSO
algorithms—20 particles and 50 particles—applied to each of the four topologies:
global, ring, von Neumann, and Moore.

The results of our tests are presented in Tables1 and 2. For each of the 192
combinations of function, algorithm, and topology we show the mean and standard
deviation of the lowest function value found over 100 runs. For each function and
topology, the results of the three best algorithms are shown in bold-face; the best
result is italicized as well.

Of the 24 function-topology cases, GR-PSO has the best performance in 19 of
those (79%), and in 12 of those cases has the lowest standard deviation as well.
S-PSO has the best performance in five of the 24 cases (21%), and, in three of those
cases, the lowest standard deviation. Notably, in 18 of the 24 cases (75%), S-PSO
has the worst performance of the eight algorithms, the 50-particle S-PSO algorithm
being responsible for all of them. This is not surprising, given that the larger swarm
reduces the number of iterations to 200, whereas all of the other algorithms have
at least 2,000 iterations and as many as 10,000 iterations (the 20 particle GR-PSO
algorithm with a probFE of 0.05).

The performance gain of GR-PSO over S-PSO is particularly notable in the case
of the Sphere function. The minimum function value found by the best GR-PSO
algorithm was five orders of magnitude lower than that found by the best S-PSO
algorithm. This performance was achieved by the global topology algorithm using
the smaller swarm size and the lowest probFE (20 particles, probFE of 0.05), which is
to be expected, since the smooth surface of this function means that any reasonable
algorithm will tend to get closer to the minimum, given more iterations, and the
smaller swarm size and lowest probFE provide the most iterations of all the GR-PSO
algorithms.

Although they did not report the results, [7] indicated that GR-PSO using the
ring topology did not yield the same performance gains over S-PSO with the ring
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Table 1 Performance of GR-PSO and S-PSO (average over 100 runs)

Function Algorithm Mean function value and standard deviation

Ring von Neumann Moore Global

Sphere GR-PSO-20-0.05 2.05e-02 3.82e-06 4.56e-08 1.03e-08

2.90e-02 4.80e-06 9.92e-08 3.79e-08

GR-PSO-20-0.1 9.26e-03 5.67e-06 1.92e-07 4.20e-08
9.83e-03 8.45e-06 3.82e-07 1.69e-07

GR-PSO-20-0.2 1.17e-02 1.49e-04 6.97e-07 3.08e-07
1.41e-02 1.42e-03 1.62e-06 1.07e-06

GR-PSO-50-0.05 1.08e+02 1.08e+00 5.67e-02 3.71e-05

1.09e+02 1.06e+00 5.26e-02 4.71e-05

GR-PSO-50-0.1 8.03e+01 1.22e+00 9.07e-02 1.53e-04

6.96e+01 9.57e-01 8.02e-02 1.91e-04

GR-PSO-50-0.2 6.99e+01 1.96e+00 2.42e-01 1.53e-03

5.42e+01 1.55e+00 2.01e-01 2.40e-03

S-PSO-20 4.38e-01 2.12e-02 6.27e-03 3.35e-03

3.20e-01 1.82e-02 7.36e-03 6.97e-03

S-PSO-50 3.13e+02 4.92e+01 1.79e+01 7.86e-01

1.76e+02 2.37e+01 9.33e+00 6.43e-01

Rosenbrock GR-PSO-20-0.05 4.36e+01 3.32e+01 3.76e+01 3.52e+01
3.11e+01 2.10e+01 2.23e+01 2.40e+01

GR-PSO-20-0.1 4.22e+01 3.35e+01 3.49e+01 3.65e+01

2.85e+01 1.87e+01 2.36e+01 2.38e+01

GR-PSO-20-0.2 4.03e+01 3.42e+01 3.43e+01 3.53e+01

2.70e+01 1.84e+01 2.11e+01 2.09e+01

GR-PSO-50-0.05 6.79e+01 3.73e+01 3.40e+01 3.59e+01

3.84e+01 2.06e+01 1.84e+01 2.12e+01

GR-PSO-50-0.1 5.87e+01 4.01e+01 3.40e+01 3.49e+01
3.23e+01 2.44e+01 1.67e+01 1.92e+01

GR-PSO-50-0.2 5.65e+01 3.97e+01 3.81e+01 3.82e+01

2.86e+01 2.16e+01 2.17e+01 2.38e+01

S-PSO-20 3.90e+01 3.56e+01 3.48e+01 3.36e+01

2.32e+01 2.03e+01 1.90e+01 1.91e+01

S-PSO-50 8.03e+01 4.32e+01 3.87e+01 4.31e+01

2.86e+01 2.05e+01 1.97e+01 2.68e+01

Ackley GR-PSO-20-0.05 6.43e+00 6.54e+00 7.67e+00 1.06e+01

8.38e+00 8.42e+00 7.97e+00 7.24e+00

GR-PSO-20-0.1 7.50e+00 7.10e+00 7.83e+00 9.83e+00

8.91e+00 8.56e+00 8.40e+00 7.46e+00

GR-PSO-20-0.2 7.87e+00 6.20e+00 6.14e+00 8.85e+00

9.05e+00 8.47e+00 7.91e+00 7.74e+00

GR-PSO-50-0.05 8.81e+00 5.33e+00 5.74e+00 7.19e+00

(continued)
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Table 1 (continued)

Function Algorithm Mean function value and standard deviation

Ring von Neumann Moore Global

7.05e+00 8.15e+00 8.98e+00 8.80e+00
GR-PSO-50-0.1 9.21e+00 5.46e+00 5.25e+00 7.48e+00

7.23e+00 8.11e+00 8.69e+00 9.06e+00
GR-PSO-50-0.2 8.13e+00 6.04e+00 4.73e+00 6.91e+00

6.95e+00 8.27e+00 8.25e+00 8.95e+00

S-PSO-20 6.47e+00 5.75e+00 6.77e+00 9.00e+00

8.70e+00 8.47e+00 8.64e+00 8.23e+00

S-PSO-50 9.97e+00 7.81e+00 6.11e+00 7.58e+00

6.78e+00 7.42e+00 7.02e+00 8.91e+00

Key: GR-PSO-n-p = GR-PSO with n particles and probFE = p
S-PSO-n = S-PSO with n particles

Table 2 Performance of GR-PSO and S-PSO (average over 100 runs)

Function Algorithm Mean function value and standard deviation

Ring von Neumann Moore Global

Griewank GR-PSO-20-0.05 8.54e-02 1.27e-02 3.73e-02 4.51e-02

9.17e-02 1.67e-02 7.92e-02 6.01e-02

GR-PSO-20-0.1 4.85e-02 1.35e-02 1.80e-02 7.83e-02

5.25e-02 1.87e-02 2.33e-02 2.89e-01

GR-PSO-20-0.2 5.19e-02 1.47e-02 2.94e-02 5.29e-02

6.32e-02 2.24e-02 6.98e-02 1.50e-01

GR-PSO-50-0.05 2.24e+00 7.40e-01 1.25e-01 1.76e-02
1.28e+00 2.09e-01 8.75e-02 2.59e-02

GR-PSO-50-0.1 1.97e+00 7.67e-01 2.18e-01 1.18e-02

9.99e-01 1.91e-01 1.54e-01 1.49e-02

GR-PSO-50-0.2 1.76e+00 9.04e-01 3.77e-01 2.06e-02
7.01e-01 1.57e-01 2.08e-01 2.97e-02

S-PSO-20 4.84e-01 6.72e-02 3.50e-02 8.81e-02

2.08e-01 7.74e-02 5.32e-02 3.92e-01

S-PSO-50 3.73e+00 1.48e+00 1.18e+00 6.15e-01

1.64e+00 2.46e-01 9.96e-02 2.71e-01

Rastrigin GR-PSO-20-0.05 1.18e+02 9.08e+01 9.83e+01 1.27e+02

4.78e+01 3.75e+01 5.34e+01 8.01e+01

GR-PSO-20-0.1 1.15e+02 8.38e+01 1.05e+02 1.23e+02

3.95e+01 3.37e+01 5.31e+01 8.22e+01

GR-PSO-20-0.2 1.10e+02 7.92e+01 8.13e+01 1.14e+02

3.92e+01 2.72e+01 3.27e+01 6.20e+01

GR-PSO-50-0.05 1.33e+02 8.00e+01 6.93e+01 8.12e+01
4.41e+01 2.65e+01 2.22e+01 3.72e+01

(continued)
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Table 2 (continued)

Function Algorithm Mean function value and standard deviation

Ring von Neumann Moore Global

GR-PSO-50-0.1 1.35e+02 7.54e+01 7.09e+01 8.58e+01

5.17e+01 2.34e+01 2.30e+01 3.81e+01

GR-PSO-50-0.2 1.27e+02 7.88e+01 6.49e+01 7.43e+01
3.85e+01 2.06e+01 2.04e+01 2.74e+01

S-PSO-20 9.81e+01 7.35e+01 7.51e+01 8.52e+01

3.00e+01 2.35e+01 2.20e+01 3.21e+01

S-PSO-50 1.33e+02 9.11e+01 7.95e+01 7.41e+01

2.99e+01 2.04e+01 1.74e+01 2.40e+01

Penalized Fnc
P8

GR-PSO-20-0.05 4.46e+00 7.09e-01 8.13e-01 7.31e-01

3.20e+00 1.03e+00 1.34e+00 1.26e+00

GR-PSO-20-0.1 5.11e+00 8.27e-01 4.93e-01 6.87e-01
3.33e+00 1.09e+00 7.14e-01 1.00e+00

GR-PSO-20-0.2 4.86e+00 1.08e+00 6.18e-01 8.87e-01

3.00e+00 1.61e+00 8.72e-01 1.30e+00

GR-PSO-50-0.05 7.12e+04 4.77e+00 2.14e+00 4.96e-01

2.54e+05 3.60e+00 1.92e+00 7.04e-01

GR-PSO-50-0.1 2.74e+04 6.95e+00 2.61e+00 6.50e-01
9.32e+04 4.60e+00 1.96e+00 8.63e-01

GR-PSO-50-0.2 1.36e+04 6.58e+00 3.04e+00 9.23e-01

4.36e+04 4.98e+00 2.01e+00 1.26e+00

S-PSO-20 5.38e+00 2.45e+00 1.56e+00 1.51e+00

3.17e+00 1.73e+00 1.37e+00 1.47e+00

S-PSO-50 9.52e+03 1.12e+01 6.10e+00 3.38e+00

2.26e+04 6.54e+00 3.64e+00 2.20e+00

Key: GR-PSO-n-p = GR-PSO with n particles and probFE = p
S-PSO-n = S-PSO with n particles

topology, as GR-PSOwith the global topology achieved compared to S-PSOwith the
global topology (although GR-PSO with the global topology outperformed S-PSO
with the ring topology in many cases). Our results confirm the latter result, but differ
from the first result, in that GR-PSO with the ring topology frequently outperforms
S-PSO with that topology.

In 16 of the 24 function-topology cases, GR-PSO algorithms are the three best
performing algorithms. The force of this observation is weakened by the fact that
more GR-PSO algorithms were tested than S-PSO algorithms, so, in each function-
topology case, we applied a Mann Whitney test to compare the performance of the
best GR-PSO algorithm to that of the best S-PSO algorithm. In each case, we rank
ordered the best function values for the 100 runs of the two algorithms, and applied
a 2-tailed Mann-Whitney U-test to compare the ranks. Since the samples were large
enough (> 20), the distribution of the U statistic approximates a normal distribution,
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so we report the Z-score, which is typically used in such cases, as well as the U-score
and p-value (see Table3). The results indicate a statistically significant difference in
the distributions of the two groups at the 0.01 level for 16 of the 19 cases in which
the best GR-PSO algorithm outperforms the best S-PSO algorithm. Three of the five
cases in which the best S-PSO algorithm outperforms the best GR-PSO algorithm
are statistically significant, two at the 0.05 level and one at the 0.01 level. Thus, a GR-
PSO algorithm was better than either S-PSO algorithm in 16 cases and, statistically,
as good as the best S-PSO algorithm in two more cases.

We also compared the performance of the best GR-PSO algorithm and the best
S-PSO algorithm for each function, regardless of topology. The performance of GR-
PSO was better than that of S-PSO in all cases and the difference was significant in
five of the six cases at the 0.01 level: Sphere (p = 0.0), Rosenbrock (p = 0.0099),
Griewank (p = 0.0), Rastrigin (p = 0.0031), and Penalized Function P8 (p = 0.0).
The difference in the case of Ackley was not significant at that level (p = 0.0751).

None of the 24 GR-PSO algorithm-topology cases is clearly best, but our results
do provide some guidance. If we look at the distribution of the three best-performing
and the three worst-performing algorithm-topology combinations over all functions
(the three best and worst, instead of the best and worst, to help compensate for the
small differences among performances), we find that any algorithm with the ring

Table 3 Statistical significance of differences between performance of best GR-PSO algorithm
and performance of best S-PSO algorithm

Function Mann Whitney statistics

Ring von Neumann Moore Global

Sphere U = 3 U = 0 U = 0 U = 0

Z = 13.44 Z = 13.44 Z = 13.44 Z = 13.44

p = 0.0 p = 0.0 p = 0.0 p = 0.0

Rosenbrock U = 6178 U = 5767 U = 6311 U = 5540

Z = 2.10 Z = 2.85 Z = −1.85 Z = −3.27

p = 0.0357 p = 0.0044 p = 0.0643 p = 0.0011

Ackley U = 6801 U = 6950 U = 2879 U = 5208

Z = −0.95 Z = −0.68 Z = 8.16 Z = 3.88

p = 0.3421 p = 0.4965 p = 0.0 p = 0.0001

Griewank U = 128 U = 1600 U = 4977 U = 3160

Z = 13.21 Z = 10.51 Z = 4.30 Z = 7.64

p = 0.0 p = 0.0 p = 0.0 p = 0.0

Rastrigin U = 6098 U = 6972 U = 5318 U = 7117

Z = −2.24 Z = −0.64 Z = 3.68 Z = 0.37

p = 0.0251 p = 0.5222 p = 0.0002 p = 0.7114

Penalized
Function P8

U = 5859 U = 2508 U = 3033 U = 3285

Z = 2.68 Z = 8.84 Z = 7.87 Z = 7.41

p = 0.0074 p = 0.0 p = 0.0 p = 0.0
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topology is a poor choice. Algorithms using the ring topology are never responsible
for one of the best three, and are responsible for one of the worst three in 16 of the
36 cases, confirming the judgment in [7] that ring is a poor choice of topology for
GR-PSO. The global topology is responsible for the other two worst performance
cases. Of the 18 best performance cases, five are von Neumann, nine are Moore, and
four are global.

We conjecture that the poor performance of the ring topology is due to the fact that
the ring topology and GR-PSO both operate to reduce the availability of information
in the swarm, GR-PSO by delaying the discovery of better solutions, and the ring
topology by reducing the immediate impact of a better solution to four other particles.
It may be that these two effects combine to reduce the availability of new information
to a degree that compromises the effectiveness of the swarm.

The same numbers for the von Neumann,Moore, and global topologies are shown
in the first three columns of Table4, where the number of best three performances is
shown along with the number of worst three performances in parentheses. The worst
performing cases from ring are distributed almost entirely among the von Neumann
50-particle algorithms and the global 20-particle algorithms. Moore seems to be a
good choice, since it is not responsible for any of the worst performing cases, but its
best performing cases are spread among the six algorithms, offering no clear overall
recommendation. We get more guidance if we look at these numbers for each of
the von Neumann, Moore, and global topologies individually (the last three columns
of Table4). We see that in the Moore topology all of the GR-PSO algorithms are
responsible for about the same number of best and worst cases, and each algorithm
is responsible for almost the same number of best cases as worst cases (identical in
four algorithms). Thus, there is no clear algorithm recommendation for this topology.

Performance in the von Neumann and global cases, however, is not as evenly
distributed. The 20-particle algorithms using the von Neumann topology and the
50-particle algorithms using the global topology are clearly better choices. For each
probFE, the 20-particle von Neumann algorithm is responsible for at least as many
best performance cases, and fewer worst performance cases, as the corresponding

Table 4 Best and worst performing algorithm-topology combinations

von Neumann, Moore, and Global

GR-PSO Algo-
rithm

von
Neumann

Moore Global von
Neumann

Moore Global

GR-PSO-20-0.05 2 (0) 1 (0) 1 (2) 4 (2) 3 (3) 2 (4)

GR-PSO-20-0.1 2 (0) 1 (0) 1 (2) 4 (2) 3 (3) 2 (4)

GR-PSO-20-0.2 0 (0) 1 (0) 0 (2) 5 (1) 4 (2) 2 (4)

GR-PSO-50-0.05 1 (3) 1 (0) 1 (0) 1 (5) 3 (3) 4 (2)

GR-PSO-50-0.1 0 (4) 3 (0) 1 (0) 2 (4) 3 (3) 5 (1)

GR-PSO-50-0.2 0 (4) 2 (0) 0 (1) 2 (4) 2 (4) 3 (3)

GR-PSO-n-p = GR-PSO with n particles and probFE = p
# of best three performances (# of worst three performances)
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20-particle Moore algorithm. Furthermore, each of the 20-particle von Neumann
algorithms has at least twice as many best performance cases as worst performance
cases. The same is true for the 50-particle global topology algorithms and their
corresponding Moore algorithms (except that the 50-particle global topology with
a probFE of 0.2 has the same number of best performance and worst performance
cases. Over all the topologies, however, the 20-particle von Neumann topology is
responsible for more best performances than the 50-particle global topology, so our
overall recommendation (although tentative since it is based on a small number of
tests), is to use a 20-particle swarm with the von Neumann topology and a probFE
of 0.05, 0.1, or 0.2.

Since the motivation behind GR-PSO is to achieve good performance using
fewer function evaluations, it makes sense to look at how rapidly the GR-PSO algo-
rithms reduce error compared to the S-PSO algorithms. In Fig. 1, we show, for each
function, the reduction in error for the first 5,000 FEs achieved by the three 20-
particle GR-PSO algorithmswith the vonNeumann topology, and the 20-particle and
50-particle S-PSO algorithms.We show the 20-particle GR-PSO algorithms because
they are always able to reduce error more rapidly than any of the 50-particle algo-
rithms (supporting our recommendation above of the 20-particle algorithms). We
note that the error reduction results for the Moore topology are virtually identical
to the von Neumann topology results shown; the results for the global topology are
similar. Note that the performance of the three GR-PSO algorithms is often so close
as to be indistinguishable. Note also that the scale of the y-axis is not the same for
all functions since the necessary ranges of values varies greatly.

In all but one function (Penalized Function P8), all three of the GR-PSO algo-
rithms reduce error faster than both of the S-PSO algorithms. By FE 5,000, with the
exception of one function (Sphere), the 20-particle S-PSO algorithm has caught up
with the GR-PSO algorithms. The difference between the three GR-PSO algorithms
and the 50-particle S-PSO algorithm, however, is clear over the entire interval of FEs
for every function. While this difference at FE 5,000 is only one order of magnitude
or less for the Rosenbrock, Ackley, Griewank, and Rastrigin functions, it is three and
four orders of magnitude for the Sphere and Penalized P8 functions, respectively.

Finally, a natural question to ask is whether the effectiveness of GR-PSO depends
on the neighborhood influence model, which specifies which particles in a particle’s
neighborhood will affect that particle’s trajectory. The tests reported above used the
neighborhood-best influence model, in which a particle’s trajectory is affected by
its own personal best and the neighborhood best. The other major neighborhood
influence model is the fully informed particle swarm (FIPS), in which the trajectory
of a particle is biased towards the personal bests of all the particles in its neighbor-
hood [8]. We ran the same tests reported above using FIPS-GR-PSO, a version of
GR-PSO that uses the FIPS neighborhood influence model. In the version of FIPS
that we used, a particle is affected by the personal bests of all the particles in its
neighborhood, including its own personal best, equally.

The results of the FIPS tests were unambiguous. In every one of the 24 function-
topology cases, one of theS-PSOalgorithmswas responsible for the best performance
and, in 22 of those cases, the other S-PSO algorithm was responsible for the second
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Fig. 1 Mean absolute value error as a function of number of function evaluations (von Neymann
topology)

best performance. GR-PSO is clearly not effective in the FIPS setting. If, as we did
for the neighborhood-best influence model, we look at the distribution of the three
best-performing and three worst-performing algorithm-topology combinations over
all functions, we find that the ring topology is responsible for all 18 of the three best
performances and is not responsible for any of the three worst. The global topology
is responsible for 15 of the three worst performances and the Moore topology is
responsible for the remaining three. This is in stark contrast to the results for the
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neighborhood-best algorithms, in which the ring topology was responsible for the
best performance in only one of the 36 cases, and theworst performance in 28 of those
cases. So, the ring topology, which was the worst topology in the neighborhood-best
setting, is now the best.

We conjecture that the poor performance of FIPS-GR-PSO can be explained
by looking at the degree to which the impact of newly discovered personal bests
is diluted by the inclusion of all the neighborhood personal bests in the velocity
updates of the particles. Since function evaluations are being done so infrequently
(in the recommended configuration, between one and four function evaluations in the
entire swarm during an iteration), new personal bests are discovered infrequently. Let
us assume that one particle has discovered a new personal best by doing an FE, but
that all the other particles have not found new personal bests recently. Suppose that
this new personal best is also a neighborhood best. In the global topology using the
neighborhood-best influence model, this new (potentially better) personal best will
be responsible for half of the change in velocity of every other particle. In the FIPS
model, however, a particle is affected by all the personal bests in its neighborhood so,
in this scenario, the new personal best will be responsible for only 1/n of the change
in velocity of every other particle, where n is the number of particles in the swarm.
So, even though new bests are discovered less frequently in GR-PSO, suggesting that
it might be better to strengthen their impact, the FIPS model weakens their impact.

This suggests that FIPS-GR-PSOwould perform better when the neighborhood is
smaller, since this would decrease the ratio of old to new information, given the same
amount of new information. We would also expect that performance would be better
when probFE is higher, since this would tend to increase the number of recently
discovered personal bests in a neighborhood. Our FIPS-GR-PSO tests strongly con-
firm the first conjecture, since the ring topology outperformed the other topologies
in every case, and, although not as strong, there was evidence supporting the sec-
ond conjecture (the 20-particle ring topology algorithm with the highest probFE was
responsible for six of the eight best performances of the 20-particle ring algorithms).

We tested the conjecture that the age of personal bests matters by modifying
FIPS-GR-PSO so that a particle includes another particle in its neighborhood only if
that particle has done an FE during the previous three iterations, thereby imposing a
maximum age on personal bests. The performance of this version of FIPS-GR-PSO
was better in five of the function-algorithm cases (by two orders of magnitude in
three cases, and four and seven orders of magnitude in the other two cases). Not
surprisingly, smaller neighborhoods and higher probFEs were still better—three of
these cases used the ring topology with a probFE of 0.2. This provides some support
for our conjecture, butmorework is needed to determinewhether differentmaximum
ages or a more sophisticated version of this approach would improve performance
more broadly. In any case, this suggests the possiblity that the information provided
by bests should be used differently depending on how old it is, regardless of which
neighborhood influence model is being used.
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5 Conclusions and Further Work

We have shown that GR-PSO can outperform the standard PSO algorithm using
any one of three topologies—von Neumann, Moore, and global—and that the von
Neumann and Moore topologies can be more effective than the global topology. In
particular, our results indicate that a 20-particle swarm using the vonNeumann topol-
ogy and a probFE of 0.05, 0.1, or 0.2 is a good overall configuration for GR-PSO.
We also tested FIPS-GR-PSO, a version of GR-PSO that uses the FIPS neighbor-
hood influence model, and found that the GR-PSO function evaluation conservation
strategy was not effective in the FIPS setting.

The function evaluation conservation technique we tested is very simple; there are
a number of possibilities for more sophisticated conservation mechanisms. We are
currently exploring a version of GR-PSO in which each particle has its own probFE
that is adjusted each time an FE is done. If the FE produces a new personal best,
the particle’s probFE is increased to 0.5 to make it more likely that any continued
improvement will be noticed. If the FE results in a value that is not even as good as
the value of the current position, the probFE is reduced to 0.01 in order to discourage
further function evaluations in an area of the search space that does not appear
promising. If the FE reveals a solution that is better than the current one, but not a
new personal best, the probFE is set to an intermediate level of 0.2. In a sense, this
mechanism provides a novel way to control exploration and exploitation. Given a
lower probability of doing function evaluations, personal and neighborhood bests are
discovered less frequently and, since particles aremoving based on older information,
the balance is tipped away from exploitation toward exploration.

The decision about whether to do a function evaluation does not need to be prob-
abilistic. It might be productive to think about FE usage in terms of a priority queue.
In the current version of GR-PSO, every particle does an FE with the same probabil-
ity on each iteration. Instead, each particle might be assigned an FE priority that is
periodically updated, and the particle with the highest priority is given the next FE.
In the simplest version of this idea, a particle’s priority would increase by a small
amount every time it does not get an FE and would be greatly reduced whenever it
does. This simple mechanism would result in particles taking turns using FEs, but
a priority udpate mechanism that incorporated other information, such as the recent
history of the particle (e.g. the distance it has moved and the change in its function
value over the last k FEs), the recent history of the neighborhood best, and the recent
FE usage in the particle’s neighborhood, has the potential to distribute FEs in a more
effective manner.

Regardless of the mechanism by which function evaluations are conserved, it
might be useful for a particle to have the opportunity to revisit past solutions that
were not evaluated, in an effort to recovermissed high quality solutions. For example,
a particle could save some number of positions for which it did not do a function
evaluation and, under certain circumstances (e.g. if stagnation is detected in the
particle’s neighborhood), pick one of those positions randomly and evaluate it.
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Finally, a better understanding of the impact of FE conservation on the information
dynamics of the swarmwould be useful. In any algorithm that seeks to take advantage
of swarm behavior, the mechanism that generates and propagates information is
critical.GR-PSOoperates by reducing the rate atwhich new information is generated,
and the amount of this reduction is the same for all iterations. Perhaps it would
be better to vary the amount of this reduction during the optimization process. For
example, preliminary experiments sugggest that it is better to reduce the generation of
new information earlier in the process. This makes some sense since, as noted above,
a reduction in new information encourages exploration, which would be especially
valuable earlier in the process. An understanding of the reasons behind this might
allow us to improve performance by managing information flow more explicitly.
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A Hybrid Shuffled Frog-Leaping Algorithm
for the University Examination Timetabling
Problem

Nuno Leite, Fernando Melício and Agostinho C. Rosa

Abstract The problem of examination timetabling is studied in this work. We pro-
pose a hybrid solution heuristic based on the Shuffled Frog-Leaping Algorithm
(SFLA) for minimising the conflicts in the students’s exams. The hybrid algorithm,
named Hybrid SFLA (HSFLA), improves a population of frogs (solutions) by iter-
atively optimising each memeplex, and then shuffling the memeplexes in order to
distribute the best performing frogs by the memeplexes. In each iteration the frogs
are improved based on three operators: crossover and mutation operators, and a local
search operator based on the Simulated Annealing metaheuristic. For the mutation
and local search, we use twowell known neighbourhood structures. The performance
of the proposed method is evaluated on the 13 instances of the Toronto datasets from
the literature. Computational results show that the HSFLA is competitive with state-
of-the-art methods, obtaining the best results on average in seven of the 13 instances.

Keywords Examination timetabling ·Memetic algorithm · Shuffled Frog-Leaping
Algorithm · Simulated annealing · Toronto benchmarks

1 Introduction

Examination timetabling is an important practical problem faced by schools and uni-
versities every epoch. This problem, known as theExamination Timetabling Problem
(ETTP), consists in scheduling students’s exams into a limited number of time slots
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and rooms subject to a set of constraints. The constraints are divided into hard (can-
not be violated) and soft (can be violated) constraints. One universal hard constraint
specifies that cannot exist any student with two ormore exams scheduled for the same
time period. An universal soft constraint involves spacing out the student’s exams
according to some measure. Usually, the optimisation goal is then to minimise the
violations of this constraint or/and other soft constraints while satisfying the hard
ones. This problem is further classified as Uncapacitated ETTP (if the room capacity
is infinite) or Capacitated ETTP (if the room capacity is limited).

The ETTP, like other educational timetabling problems (e.g. school and course
timetabling), belong to the class of NP-complete problems, which constrains the
application of exact solution methods (e.g. Mathematical programming techniques
or Dynamic Programming) to problem instances of limited size. Often, real instances
found in practice are too large to be solved by exact methods, so several heuristic
based methods have recently been proposed with great success. The first works
to solve the ETTP were proposed in the 1960s decade. Until now this problem
was approached using very different techniques. Carter [14] first classified these
approaches into four types: sequential methods, cluster methods, constraint-based
methods and generalised search. Later, Petrovic and Burke [22] specified more six
types: hybrid evolutionary algorithms,metaheuristics,multi-criteria approaches, case
based reasoning techniques, hyper-heuristics and adaptive approaches. A recent and
detailed overview of the proposed methods to solve the ETTP can be found in [23].

The Shuffled Frog-Leaping Algorithm (SFLA) is a memetic metaheuristic pro-
posed in 2003 [16, 17]. The SFLA was applied to many areas and problems,
namely: TSP [30], Clustering [4], Flow-shop Scheduling [29], multiobjective opti-
misation [24], ETTP [28], among others. The SFLAwas first applied to the ETTP by
Wang et al. [28] (in chinese). The authors proposed aDiscrete SFLA (DSFLA)where
solutions are encoded using a time permutation scheme suited to be manipulated by
the DSFLA. As the original SFLA is only suitable for continuous optimisation prob-
lems, a specific update operator was defined for the discrete case of ETTP. The
algorithm manipulates both feasible and infeasible solutions, being these last ones
penalized to avoid further exploring them. The DSFLA is evaluated on four datasets
of the Capacitated Toronto benchmark data (Toronto variant c in [23]).

In our previous work [20] we presented a novel adaptation of SFLA for solv-
ing the ETTP. The proposed algorithm is applied to the complete set of Uncapaci-
tated Toronto benchmark data (Toronto variant b in [23]), and compared with other
techniques in the literature. In the present work, we extend and improve the previ-
ous algorithm by applying three operators when updating the worst frog: crossover
and mutation operators and a local search step based on the Simulated Annealing
metaheuristic. The proposed hybrid solution heuristic was evaluated on the Toronto
benchmark data achieving competitive results.

The paper is organized as follows. The next section presents the Examination
Timetabling problem formulation. Section3 presents the original SFLA model.
Section4 describes the proposed hybrid heuristic algorithm for solving the ETTP.
Section5 presents simulation results and analysis of the proposed algorithm. Finally,
conclusions and future work are presented in Sect. 6.
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2 Problem Description and Formulation

We now describe the studied Uncapacitated ETTP problem in more detail as well as
the examination timetabling data used. The problem formulation was adapted from
the descriptions presented in [2, 5]. The following terms were defined:

• Ei is a set of N examinations (i = 1, . . . , N ).
• T is the number of time slots.

• C = (ci j )N×N , Conflict matrix, is a symmetric matrix of size N where each
element, denoted by ci j (i, j ∈ {1, . . . , N }), represents the number of students
attending exams i and j . The diagonal elements cii denote the total of students
enrolled in exam i .

• M is the number of students.
• tk (1 ≤ tk ≤ T ) denotes the assigned time slot for exam k (k ∈ {1, . . . , N }).

The uncapacitated problem studied has one hard constraint where exams that
have common students cannot be scheduled in the same time slot. A soft constraint
is defined for measuring the proximity cost of conflicting exams, which should be
scheduled as far as possible fromeachother. Theoptimisation objective is tominimise
the sum of proximity costs given as:

minimise
1

M
·

N−1∑
i=1

N∑
j=i+1

ci j · prox(i, j) (1)

where

prox(i, j) =
{
25−|ti −t j | i f 1 ≤ |ti − t j | ≤ 5
0 otherwise ,

(2)

subject to

N−1∑
i=1

N∑
j=i+1

ci j · λ(ti , t j ) = 0 and λ(ti , t j ) =
{
1 i f ti = t j

0 otherwise
. (3)

Equation (2) measures the proximity cost of exams i and j which is greater than
zero for exams that are five or less time slots apart. Equation (3) represents the hard
constraint mentioned above.

The set of benchmarks used to evaluate our algorithm are known as the Toronto
datasets, and its specifications are presented in Table1 [23].
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Table 1 Specifications of the 13 Toronto benchmark instances (version I)

Dataset Students Exams Enrolments Density of the
conflict matrix

Time slots

car91 16925 682 56877 0.13 35

car92 18419 543 55522 0.14 32

ear83 1125 190 8109 0.27 24

hec92 2823 81 10632 0.42 18

kfu93 5349 461 25113 0.06 20

lse91 2726 381 10918 0.06 18

pur93 30032 2419 120681 0.03 42

rye92 11483 486 45051 0.07 23

sta83 611 139 5751 0.14 13

tre92 4360 261 14901 0.18 23

uta92 21266 622 58979 0.13 35

ute92 2750 184 11793 0.08 10

yor83 941 181 6034 0.29 21

The density of the conflict matrix in the fifth column is computed as the ratio of the number of
non-zero elements of this matrix to the total number of matrix elements. The last column shows the
minimum number of time slots of a feasible solution

3 Shuffled Frog-Leaping Algorithm

In the SFLA, a population of F frogs, denoted U (i), i = 1, . . . , F , with identical
structure, but different adaptation to the environment, is maintained. The F frogs
are divided into m substructures called memeplexes, where they “search for food”
(they are optimised, in the algorithm sense) and meanwhile, exchange information
(exchange memes) with other frogs, trying to reach the food localisation (global
optimum). Each memeplex is comprised of n frogs, so that F = mn. After searching
locally in their memeplex, the frogs are ranked and shuffled in order to go, eventually,
to a different memeplex and exchange their memes with the frogs located there.
The main steps of the SFLA are depicted in Fig. 1a. The local search employed
corresponds to the so calledFrog-Leaping local searchFig. 1b. The ranking comprises
sorting the frogs in descending order of performance. The partition of frogs is as
follows. The first frog (the frog with the best fitness) in the sorted list is allocated to
the memeplex 1; the second frog is allocated to the memeplex 2, and so on, so that
the frog m will go to memeplex m; then, the m + 1 frog will go to memeplex 1, the
m + 2 frog will go to memeplex 2, and the process continues in this fashion for the
remainder frogs.

In the original SFLA [16], in order to prevent the algorithm getting stuck in a
local optima, a submemeplex of size q < n is constructed in each memeplex. The
individual frogs in the memeplex are selected to form a submemeplex according to
their fitness. The selection strategy is to give higher weights to frogs that have higher
performance values and less weight to those with lower performance values [16].
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(a) (b)

Fig. 1 Shuffled Frog-Leaping Algorithm: a Main algorithm steps; b Frog-Leaping local search.
Illustrations adapted from [4]

In each submemeplex, the Pb and Pw vectors denote, respectively, the best and the
worst frog. At the end of each iteration of the Frog-Leaping local search, the worst
frog in the submemeplex is updated according to the following rule:

S =
{
min {int [rand ∗ (Pb − Pw)] , Smax } , for a positive step
max {int [rand ∗ (Pb − Pw)] ,−Smax } , for a negative step

(4)

U (q) = Pw + S (5)
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where S denotes the update step size, rand represents a random number between
(0, 1) and Smax is defined as the maximum step size that any frog can take. The idea
of this step is to update the worst frog position towards the direction of the best frog
in the memeplex.

4 Hybrid SFLA for ETTP

Our hybrid heuristic algorithm for solving the ETTP incorporates features from
the basic SFLA and the Simulated Annealing (SA) metaheuristic [19]. The hybrid
algorithm is named HSFLA. The algorithm flow is illustrated in Fig. 2. It starts by
generating a population of feasible solutions which is then optimised by the HSFLA.
The SA metaheuristic has the following known features:

– SA local search can lead to near optimal solutions if a slow annealing process is
conducted, at the cost of a longer execution time.

– The quality of the optimised solution depends not only on the SA parameters
but also on the initial solution. If the initial solution is not very optimised, the
improvement attained could be considerable; on the other way, when we rerun SA
on an optimised solution, we could obtain a worse solution or a better solution,
but in the last case the improvement is marginal.

Fig. 2 Flow of the hybrid heuristic algorithm. A set of feasible solutions is obtained using the
Saturation Degree graph colouring heuristic. Next, these solutions are organized into memeplexes
and optimised using the hybrid SFLA. In the SFLA local search, the memeplex’s worst frog is
replaced by a new frog which results from the combination of the memeplex’s best and worst frogs
followed by application of the SA metaheuristic
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The HSFLA was designed taking these points into consideration. It works like a
multi-start SA optimising different initial solutions. It maintains elitism by keeping
the global best frog. After shuffling the memeplexes, the SA is executed again on
solutions of a given memeplex, and the process is repeated for all the memeplexes
for a given number of time loops (Fig. 1a). In the next sections we describe the main
aspects of the algorithm which are the following: (1) the solution representation,
(2) the initialisation procedure, (3) the neighbourhood structure, and (4) the SFLA’s
worst frog improvement and random frog generation.

4.1 Solution Representation

Each individual frog (solution) is represented by an array of dimension equal to the
number of time slots, where each position contains an array of exams scheduled at
that time slot. Figure4 shows the graphical representation of three solutions (the ti ’s
are the time slots and the e j ’s are the exams). In our method, only feasible solutions
are manipulated as all the operators produce feasible timetables. The fitness of a
solution is the value of the proximity cost function that we are minimising, which is
a measure of the soft constraint violations (see Eq. (1)).

4.2 Initialisation Procedure

The initial frog population is created using a construction algorithm that is based
on the Saturation Degree graph colouring heuristic [12]. To construct each solution,
the approach begins with an empty timetable and the most difficult exams to insert
(exams with the least number of available periods) are selected next for insertion
(in case of ties, one of the eligible exams is selected randomly). The remainder,
less complex, exams to be inserted have more feasible periods available, which will
facilitate their insertion. In this heuristic only the hard constraints are met when
searching for feasible time slots where to schedule the exams.

4.3 Neighbourhood Structure

Local search methods like SA start from an initial solution and explore other candi-
date solutions in the neighbourhood. The neighbourhood comprises a set of solutions
that are reached from the initial one by applying a move. The search progresses by
moving to a candidate solution (whichmay ormay not improve the previous solution,
depending on the method) and repeating the process until a given stopping criterion
is met. In our approach we use two neighbourhoods, PeriodSwap and KempeChain,
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Fig. 3 An example of the Kempe chain heuristic (Adapted from [15].)Moving exam e1 from period
ti to period t j while maintaining feasibility implies moving the conflicting exams (e6, e7, and e8)
from period t j to period ti . In each turn, conflicting exams remaining in ti (e3 and e4) also have
to be moved to period t j . In the worst case, when all exams have conflicts, a swap of the exams
between the two time slots occurs

published in the literature. The neighbourhoods are, respectively, denoted N1 and
N2, and are defined as follows.

Neighbourhood N1: exchange exams in time slot ti with exams in time slot t j , where
ti and t j are two randomly chosen time slots. This neighbourhood was introduced
in [9]. It maintains the solution feasibility since all exams in a time slot are swapped.

Neighbourhood N2: perturb, in a feasible fashion, an exam included in a Kempe
chain. Figure3 illustrates the application of this operator. The Kempe chain neigh-
bourhood was first applied to the ETTP in [26].

Neighbourhoods N1 and N2 are applied in the HSFLA’s worst frog improvement
step, described in detail next.

4.4 Worst Frog Improvement and Random Frog Generation

In the original SFLA, each solution (frog) is a vector, and the worst performance
frog within each submemeplex is updated towards the direction of the best frog,
according to Eqs. (4) and (5) (see Fig. 1b). In our adaptation of the SFLA for the
ETTP, we update the worst frog by applying three operators. These are specified in
the Algorithm 1 and described in the sequel. In Step 1, we combine the worst and
best frogs in order to produce the new candidate frog. The crossover operation is
illustrated and explained on Fig. 4. In Step 2, we apply a mutation operator using
neighbourhood N1 to the solution P

′
w obtained in the Step 1. In Step 3, we apply the
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SA metaheuristic with neighbourhood N2 to the solution P
′
w obtained in the Step 2.

The SA implemented is described in Algorithm 2. Each step is executed with a given
probability, so in the event that no operator is applied, the new candidate frog P

′
w is

equal to Pb.

Algorithm 1. Worst frog improvement procedure.
Input: Pb , Pw : Memeplex’s best and worst frogs.

Output: P
′
w : New candidate frog. It will replace Pw if it is better.

Set P
′
w = Pb.

1: With probability pc make P
′
w = crossover(Pb, Pw), according to Fig. 4.

2: With probability pm make P
′
w = mutationN1 (P

′
w).

3: With probability pi make P
′
w = S AN2 (P

′
w).

The crossover operator in Step 1 was adapted from the crossover operator of [3].
As can be observed from Fig. 4, this operator produces feasible solutions, so no
special constraint-handling techniques are needed.

Executing the steps of the SFLA (Fig. 1b), the new frog is going to replace the
worst frog if it is better than this last one. Otherwise, the procedure is repeated but

(a) (b)

(c)

Fig. 4 Crossover between Pb and Pw . The new frog P
′
w in (c) is the result of combining the best

frog Pb (a) with the worst frog Pw (b). Initially, make P
′
w = Pb. Then, insert into P

′
w , at a random

time slot (shown dark shaded in (a) and (c)), exams chosen from a random time slot from solution
Pw (shown dark shaded in (b)). When inserting these exams (shown light gray in (c)), some could
be infeasible or already existing in that time slot (respectively, the case of e8 and e11 in (c)). These
exams are not inserted. The duplicated exams in the other time slots are removed. We apply the
above procedure three times, combining three random time slots from Pw with three time slots
from Pb
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substituting Pb by the global best frog, Pg . If the new frog doesn’t still improve over
the worst frog U (q), then a random solution is generated as the new U (q), replacing
the worst frog. To generate a random frog, we use the construction method (based
on the graph colouring heuristic), described in Sect. 4.2.

Algorithm 2. Simulated Annealing (algorithm for minimisation of f ).
Input: Tmax : Initial temperature. R: Temperature decreasing rate.

k: Number of iterations at a fixed temperature. Tmin : Final temperature.
Output: u: optimised solution after the annealing process.

1: Make T = Tmax , t = 0, and choose a solution u (at random)
2: Select a neighbour of u, say v

If f (v) < f (u) Then make u = v Else make u = v with probability
p( f u, f v) = exp(( f u − f v)/(T · f u))

Repeat Step 2 k times
3: Make t = t + 1. Set T = g(t), where g(t) = Tmax · e−R·t

If T < Tmin Then Stop Else go to Step 2

5 Experiments and Comparisons

5.1 Problem Instances and Experimental Settings

The performance of the HSFLA was evaluated using the Toronto datasets (see
Table1). The algorithm was programmed in the C++ language. The hardware and
software specifications are: Intel Core i7-2630QM, CPU @ 2.00 GHz × 8, with 8
GB RAM; OS: Ubuntu 12.04, 32 bit; Compiler used: GCC v. 4.6.3. The parameters
of SFLA are: Population size F = 50, Memeplex count m = 10, Memeplex and
Submemeplex size n = q = 5 (no submemeplexes were defined), and Number of
time loops (convergence criterion) L = 3. The Simulated Annealing parameters are:
Tmax = 0.1, r = 0.00001, k = 5, and Tmin = 0.0000001. For this cooling schedule
the number of evaluations done in each SA is 6 907 760. The crossover, mutation and
improvement probabilities, respectively, pc, pm, and pi , were set equal to 0.1. The
parameter values were chosen empirically, in a way to achieve a reasonable balance
between global and local exploration, and also establish a satisfactory compromise
between solution quality and execution time. To obtain our computational results,
the HSFLA is run five times on each instance with different random seeds.

5.2 Comparative Results and Discussion

Tables2 and 3 show the best results of the HSFLA on the Toronto datasets as well
as a selection of the best results available in the literature. In the last two rows of
each table, the TP and TP (11) indicate, respectively, the total penalty for the 13



A Hybrid Shuffled Frog-Leaping Algorithm … 183

Table 2 Computational results of HSFLA and comparison with selection of best algorithms from
literature

Data Set Carter
et al. [13]

Burke and
Newall [10]

Merlot
et al. [21]

Burke and
Newall [7]

Burke
et al. [5]

Kendall and
Hussin [18]

car91 7.10 4.65 5.10 5.00 4.80 5.37

car92 6.20 4.10 4.30 4.30 4.20 4.67

ear83 36.40 37.05 35.10 36.20 35.40 40.18

hec92 10.80 11.54 10.60 11.60 10.80 11.86

kfu93 14.00 13.90 13.50 15.00 13.70 15.84

lse91 10.50 10.82 10.50 11.00 10.40 –

pur93 3.90 – – – 4.80 –

rye92 7.30 – 8.40 – 8.90 –

sta83 161.50 168.73 157.30 161.90 159.10 157.38

tre92 9.60 8.35 8.40 8.40 8.30 8.39

uta92 3.50 3.20 3.50 3.40 3.40 –

ute92 25.80 25.83 25.10 27.40 25.70 27.60

yor83 41.70 37.28 37.40 40.80 36.70 –

TP (11) 327.10 325.45 310.80 325.00 312.50

TP 338.30 326.20

Data Set Yang and
Petrovic [31]

Burke and
Bykov [8]

Burke and
Bykov [9]

Caramia
et al. [11]

Abdullah
et al. [2]

Sabar
et al. [25]

car91 4.50 4.42 4.58 6.60 4.42 4.79

car92 3.93 3.74 3.81 6.00 3.76 3.90

ear83 33.71 32.76 32.65 29.30 32.12 34.69

hec92 10.83 10.15 10.06 9.20 9.73 10.66

kfu93 13.82 12.96 12.81 13.80 12.62 13.00

lse91 10.35 9.83 9.86 9.60 10.03 10.00

pur93 – – 4.53 3.70 – –

rye92 8.53 – 7.93 6.80 – 10.97

sta83 158.35 157.03 157.03 158.20 156.94 157.04

tre92 7.92 7.75 7.72 9.40 7.86 7.87

uta92 3.14 3.06 3.16 3.50 2.99 3.10

ute92 25.39 24.82 24.79 24.40 24.90 25.94

yor83 36.35 34.84 34.78 36.20 34.95 36.18

TP (11) 308.29 301.36 301.25 306.20 300.32 307.17

TP 313.71 316.70

Values in bold represent the best results reported. “–” indicates that the corresponding instance is
not tested or a feasible solution cannot be obtained
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Table 3 Computational results of HSFLA and comparison with selection of best algorithms from
literature (continued)

Data Set Burke
et al. [6]

Abdullah
et al. [3]

Turabieh and
Abdullah [27]

Demeester
et al. [15]

Abdullah and
Alzaqebah [1]

HSFLA

car91 4.90 4.35 4.81 4.52 4.76 4.59

car92 4.10 3.82 4.11 3.78 3.94 3.86

ear83 33.20 33.76 36.10 32.49 33.61 32.72

hec92 10.30 10.29 10.95 10.03 10.56 10.08

kfu93 13.20 12.86 13.21 12.90 13.44 12.87

lse91 10.40 10.23 10.20 10.04 10.87 9.85

pur93 – – – 5.67 – 4.47

rye92 – – – 8.05 8.81 8.00

sta83 156.90 156.90 159.74 157.03 157.09 157.03

tre92 8.30 8.21 8.00 7.69 7.94 7.78

uta92 3.30 3.22 3.32 3.13 3.27 3.15

ute92 24.90 25.41 26.17 24.77 25.36 24.76

yor83 36.30 36.35 36.23 34.64 35.74 34.85

TP (11) 305.80 305.40 312.84 301.02 306.58 301.54

TP 314.74 314.01

Table 4 Computational results of HSFLA and comparison with the best algorithms from literature

Data Set HSFLA (five runs) Burke and
Bykov [8]

Caramia
et al. [11]

A bdullah et al. [2] (five runs)

fmin fave σ fmin fmin fmin fave

car91 4.59 4.62 0.03 4.42 6.60 4.42 4.81

car92 3.86 3.87 0.01 3.74 6.00 3.76 3.95

ear83 32.72 32.80 0.07 32.76 29.30 32.12 33.69

hec92 10.08 10.10 0.01 10.15 9.20 9.73 10.10

kfu93 12.87 12.91 0.03 12.96 13.80 12.62 12.97

lse91 9.85 9.90 0.06 9.83 9.60 10.03 10.34

pur93 4.47 4.49 0.03 – 3.70 – –

rye92 8.00 8.03 0.03 – 6.80 – –

sta83 157.03 157.03 0.00 157.03 158.20 156.94 157.30

tre92 7.78 7.84 0.05 7.75 9.40 7.86 8.20

uta92 3.15 3.18 0.02 3.06 3.50 2.99 3.32

ute92 24.76 24.80 0.02 24.82 24.40 24.90 25.41

yor83 34.85 35.00 0.09 34.84 36.20 34.95 36.27

TP (11) 301.54 302.05 301.36 306.20 300.32 306.36

TP 314.01 314.57 316.70

Values in bold represent the best results reported. “–” indicates that the corresponding instance is
not tested or a feasible solution cannot be obtained
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Table 5 Computational results of HSFLA and comparison with the best algorithms from literature
(continued)

Data Set Abdullah et al. [3] Burke et al. [6] Demeester et al. [15] (10 runs) Burke and

(five runs) (100 runs) Bykov [9] (20 runs)

fmin fmin fmin fave fmin fave

car91 4.35 4.90 4.52 4.64 4.58 4.68

car92 3.82 4.10 3.78 3.86 3.81 3.92

ear83 33.76 33.20 32.49 32.69 32.65 32.91

hec92 10.29 10.30 10.03 10.06 10.06 10.22

kfu93 12.86 13.20 12.90 13.24 12.81 13.02

lse91 10.23 10.40 10.04 10.21 9.86 10.14

pur93 – – 5.67 5.75 4.53 4.71

rye92 – – 8.05 8.20 7.93 8.06

sta83 156.90 156.90 157.03 157.05 157.03 157.05

tre92 8.21 8.30 7.69 7.79 7.72 7.89

uta92 3.22 3.30 3.13 3.17 3.16 3.26

ute92 25.41 24.90 24.77 24.88 24.79 24.82

yor83 36.35 36.30 34.64 34.83 34.78 35.16

TP (11) 305.40 305.80 301.02 302.42 301.25 303.07

TP 314.74 316.37 313.71 315.84

instances and the total penalty except the pur93 and rye92 instances. Tables4 and
5 compare HSFLAwith the top seven best algorithms. For the HSFLAwe present the
lowest penalty value fmin , the average penalty value fave, and the standard deviation
σ over five independent runs. For the reference algorithms we present the best and
average (where available) results and the number of runs. The authors analysed in
Tables4 and 5 mention computation times that are within several minutes—1h, to
several hours (12hmaximum). Demeester et al. [15]mention 12h of running time for
all the instances. Table6 compares the execution times of the HSFLA and Demeester
et al.’s algorithm. For the largest instance, pur93, the stopping criterion was the
completion of a single run of the SA metaheuristic.

The best results obtained by HSFLA are comparable with the ones produced by
state-of-the-art algorithms, and it is able to produce some of the best average results.
We also observe that the HSFLA obtains the lowest sum of average cost on the TP
and TP (11) quantities, for the Toronto datasets. For the larger instances, the HSFLA
registers long execution times, however good solutions are obtained soon after thefirst
SA searches. Further studies should focus on the HSFLA parameters optimisation in
order to shorten the execution timewhile not degrading the performance significantly.
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Table 6 Minimum and average fitness and standard deviation comparison

Data set HSFLA (5 runs) Demeester et al. [15] (10 runs)

Execution
time (h)

fmin fave σ Stopping
criterion
(h)

fmin fave σ

car91 27 4.59 4.62 0.03 4 4.68 4.75 0.05

12 4.52 4.64 0.05

car92 14 3.86 3.87 0.01 4 3.84 3.94 0.05

12 3.78 3.86 0.06

ear83 6 32.72 32.80 0.07 2 32.82 33.02 0.16

12 32.49 32.69 0.13

hec92 1 10.08 10.10 0.01 1 10.09 10.20 0.13

12 10.03 10.06 0.03

kfu93 17 12.87 12.91 0.03 2 13.06 13.45 0.31

12 12.90 13.24 0.20

lse91 10 9.85 9.90 0.06 2 10.06 10.38 0.19

12 10.04 10.21 0.13

pur93 15 4.47 4.49 0.03 4 6.45 6.57 0.07

12 5.67 5.75 0.05

rye92 17 8.00 8.03 0.03 4 8.18 8.31 0.10

12 8.05 8.20 0.12

sta83 4 157.03 157.03 0.00 1 157.03 157.05 0.01

tre92 8 7.78 7.84 0.05 2 7.73 7.91 0.06

12 7.69 7.79 0.07

uta92 30 3.15 3.18 0.02 2 3.32 3.37 0.03

12 3.13 3.17 0.03

ute92 3 24.76 24.80 0.02 2 24.83 24.99 0.24

12 24.77 24.88 0.17

yor83 5 34.85 35.00 0.09 2 34.79 35.06 0.25

12 34.64 34.83 0.14

Total σave Total σave

157 314.01 314.57 0.0346 32 316.88 319.00 0.13

145 314.74 316.37 0.0916

For the pur93 instance the HSLFA was stopped after executing one local search with SA

6 Conclusions and Future Research Directions

We presented a hybrid solution heuristic that combines features from the SFLA and
the SA metaheuristic. The experimental evaluation of the HSFLA shows that it is
competitivewith state-of-the-art methods. In the set of the 13 instances of the Toronto
benchmarkdata it attains the lowest sumof average costwith a lowstandarddeviation.
In seven out of the 13 instances our approach gets better results on average when
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compared with the methods from the literature. The algorithm main disadvantage is
the time taken on the larger instances, which is too high. On the smaller instances,
however, themethod is time competitivewith one of the best methods analysed (work
of Demeester et al.). In the simulations done we’ve used the same parameters without
special fine tuning.

Further studies should address the parameter optimisation of the SAmetaheuristic
or other competitive metaheuristic (e.g. Tabu search, Great Deluge Algorithm) could
be used. Further analysis on the remainder parameters of HSFLA should be carried
out in order to get optimal algorithm performance.

As future research, we intend to apply our solution method to the instances of the
1st Track (Examination Timetabling) of the 2nd International Timetabling Compe-
tition (ITC2007), which contain more hard and soft constraints.
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Model-Based Fuzzy System for Multimodal
Image Segmentation

Joanna Czajkowska

Abstract In this paper, a new model-based fuzzy system for multimodal 3-D image
segmentation inMRseries is introduced. The presented fuzzy systemcalculates affin-
ity values for fuzzy connectedness segmentation procedure, which is the main stage
of the processing. The fuzzy rules, generated for the system simulating a radiological
analysis, are structured on the basis of Gaussian mixture model of analyzed image
regions. For themodel parameters estimation, differentMRmodalities, acquired dur-
ing a single examination, are used. The segmentation abilities of a prototype system
have been tested on two medical databases. The first one consists of 27 examinations
with bone tumors, which are visualized with two different MR sequences. The sec-
ond one is the database of brain tumors with ground truth description obtained from
the MICCAI 2012 Challenge on Multimodal Brain Tumor Segmentation.

Keywords Model based analysis · Fuzzy interference system · Fuzzy
connectedness analysis · Gaussian mixture model

1 Introduction

According to [1, 2], a bone tumor is an abnormal growth of cells within a single
bone, spreading to another one, muscles or soft tissue in their surroundings. They are
usually found in children and young adults and their early diagnosis can be crucial
for the applied treatment. The diversity of bone tumors in children still features
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many diagnostic and therapeutic problems. Determination of their nature requires
experience and close collaboration of specialists from various areas. Despite the
significant progress of imaging techniques, many cases are diagnosed too late.

The bone tumor diagnostics is mostly based on Magnetic Resonance (MR)
imaging, where during a single examination, series in different MR modalities are
acquired. However, different tumor types vary in their appearance even in the same
modality. Largely, only the comparative radiological analysis which takes several
acquired series into consideration enables a reliable diagnosis.

Due to the fact that bone tumors are quite rare, the problem of their segmentation is
not often discussed in literature. Varied intensity levels in MR sequences of different
tumors cause the described segmentation methods [3–5] to be dedicated to only one
tumor type. Awide range of currently available imaging techniques differentiates the
segmentation procedure to dynamic MR based [4, 6] as well as static MR based [3,
5] techniques. All the procedures presented in the mentioned papers combine the
information coming from different MRmodalities. The segmentation algorithm pro-
posed in [3] is based on fuzzy connectedness analysis developed by [7, 8] and is
commonly used in different medical applications [9, 10]. The fuzzy connectedness
principles have been tested in dozens of studies in past 15years.

The brain tumors, which are detailed, examined and described in literature [11]
still remain one of the most difficult tumors to be diagnosed and treated. They are
histologically very weakly delimited from healthy tissue [12]. Necrosis and extended
edema are also frequently visible there. These make the proper delineation of active
tumor a laborious and difficult task [11, 12].

Most of the approaches to brain tumor analysis are studies on automatic segmen-
tation algorithms. However, because of the variety of their shapes and locations,
the semi-automatic methods are also common. The existing approaches use region
growing and fuzzy connectedness based methods [10] as well as active contours and
its geodesic modification [13].

Different fuzzy logic based techniques are available which are dedicated to med-
ical applications [14–16]. The fully automated fuzzy topology method used for brain
image analysis is proposed in [17]. Brain analysis investigating its morphological
changes based on a combination of Bayesian classification with Gaussian Mixture
Model (GMM) and fuzzy active surface is presented in [14].

The differences in grey intensity levels, which build bone tumor areas depending
on their location in the human body, make reliable automatic segmentation and direct
application of mentioned procedures impossible. Conversely, this paper presents a
novel segmentation algorithm which is insensitive to tumor type and location in
the body. This novel algorithm combines GMM and fuzzy inference systems in the
fuzzy connectedness procedure. The developed 3-D segmentation method is based
on previously segmented tumor and surrounding tissue regions on a single slice.
Additionally, it adopts the fuzzy inference system parameters to enable the analysis
of the whole study.

As already mentioned, radiological diagnostics of tumors relies on comparative
analysis of differentMR imageswhich are acquired during one examination.Keeping
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this in mind, in the presented methodology a parallel analysis of two different MR
series is applied.

In the following section, a short introduction to the fuzzy connectedness-based
segmentation procedure is given. In Sect. 3 the membership functions, structured
based on GMM, are described. Section4 introduces the used fuzzy inference sys-
tem and Sect. 5 presents the developed algorithm. Discussion concerning performed
experiments and achieved segmentation results is given in Sect. 6. Then, the last
section (Sect. 7) concludes the work and presents some plans for the future.

2 Fuzzy Connectedness Based Segmentation

The idea of fuzzy connectedness analysis in image processing and image segmenta-
tion has been given inworks [7, 8]. Theirmethodology operates onmultidimensional,
multifeature sets of data by connecting and ordering them. The points classified into
an object are strongly connected while other relations have relatively lower values
when it comes to points outside the object. Inmedical image segmentation amultifea-
ture data set often consists of grey intensity levels of pixels (or voxels—in volumetric
data) in acquired CT, MR, US etc. studies. The image fusion methods, applied after-
wards, make it possible to analyze all of them simultaneously. In the presented study
only MR data of bone and brain tumors are collected; however, the multifeature data
set is constructed with different MR modalities, namely T2-weighted, T1-weighted,
T1-weighted contrast enhanced, etc.

Then, the segmentation procedure takes local similarities of the analyzed voxels
into consideration while exploring their position e = (ex, ey, ez) and reading their
gray intensity levels Id(e), where d = {1, . . . , D} is the dimensionality of feature
space.

Fuzzy connectedness of two image points is estimated on the basis of their fuzzy
relation—fuzzy affinity κ

κ = {((e, d),μκ(e, d)) : (e, d) ∈ C × C}, (1)

where μκ ∈ [0, 1] is the fuzzy affinity membership function of spels (spatial ele-
ments) e and d. The reflexive: μκ(e, e) = 1 and symmetric: μκ(e, d) = μκ(d, e)
fuzzy affinity is mostly given as

μκ(e, d) = μα(e, d) · g(μω(e, d),μψ(e, d)), (2)

whereμα is the functional formof adjacency relationα,whileμω andμψ are intensity-
based and intensity gradient-based components of the affinity, respectively. There
are different forms of (2) discussed in [10], from which the most popular in medical
applications is the weighted Gaussian variant

μκ(e, d) = μα · (w1H1(e, d) + w2H2(e, d)), (3)
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with parameters w1 and w2 denoting positive constants which fulfill

w1 + w2 = 1. (4)

Components H1 and H2 are defined as:

H1(e, d) = exp

(
− 1

2σ2
1

(
I(e)+I(d)

2 − λ1

)2
)

,

H2(e, d) = exp
(
− 1

2σ2
2

(|I(e) − I(d)| − λ2
)2)

.

(5)

Pairs λ1, σ1 and λ2, σ2 are the expected parameters of the segmented object, describ-
ing its gray intensity and gradient.

To determine the relations of spels e and d the concept of digital path has been
introduced [8]. A nonempty path ped from e = e(1) to d = e(m) is any sequence of
elements 〈e(1), e(2), . . . , e(m)〉, such that for any i ∈ [1, m − 1] pair 〈ei, e(i+1)〉 a link
exists. The strength of a path is given by the strength of its weakest link (with the
smallest affinity). The strength of the ”strongest” path between two image points
(spels) e and d describes their connectedness.

Finally, the fuzzy κ-connectedness relation K between two image points e and d
is given as follows

μK(e, d) = max
ped∈Ped

[μN (ped)], (6)

where
μN (ped) = min

i
{μκ(e

(i), e(i+1))}. (7)

Fuzzy affinity scene �o with respect to object’s starting point o is then given by

�o(e) = μK(o, e). (8)

Then, the segmented fuzzy object O(o) containing starting point o is obtained using
the thresholding procedure on scene �o. The problem of threshold selection is solved
by introducing the second object, treated as a background region with its own seed
point b. Therefore, spel e belongs to object O(o) if μK(o, e) > μK(b, e). The
already described approach is called the Relative Fuzzy Connectedness method and
it is discussed in detail in [8, 10]. To solve the shortest path problem the authors
use the dynamic programming approach, which in [18] has been replaced by the
Dijkstra’s Algorithm. In the later FC applications [19] also the single seed points,
belonging to the object as well as the background, have been replaced by the seed
points sets.

In cases of clearly visible tissues and sharp enough edges, the already described
FC-based segmentation method yields very good results because based on the
selected seed point areas, the required intensity and intensity gradient parameters
are easy to estimate. The pathologies, like soft tissue tumors, with a more complex
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Fig. 1 A bone cyst which is visualized on a single slice coming from two different MR coronal
series: left—STIR, right—FSE T1-weighted

structure can be segmented by applying a clustering based FC analysis, presented
in [20]. The analyzed image data are first clustered and the calculated clusters para-
meters are then utilized in the FC step.

The idea introduced in this paper is to adopt the fuzzy connectedness approach
to multifeature tumor analysis. The presented methodology is based on two differ-
ent MR modalities. Two exemplary images of a bone cyst on coronal Short Time
Inversion Recovery (STIR) and Fast Spin-Echo (FSE) T1-weighted series are shown
in Fig. 1. In the radiological diagnosis the comparative analysis of both series is
utilized. Hence, first, different 3-D multifeature clustering procedures [21, 22] have
been applied. However, none of the implementedmultifeature algorithms has yielded
satisfactory final segmentation results. Therefore, a fuzzy inference system which
simulates experts reasoning, described in the following sections, has been developed.

Let us assume that there are two reference regions selected on a single slice: tumor
area and the background, respectively. The areas are then transferred into both ana-
lyzed modalities. Let the already given regions constitute the expert knowledge. Due
to the fact that the grey intensity levels constructing the tumor areas vary, depend-
ing on the analyzed lesion and its location in the patients body, the fuzzy rules and
dictionary are adaptively created for each single tumor case. The varying grey inten-
sity levels building tumor as well as background areas on both MR sequences are
described using the Gaussian Mixture Model. The generated models are then used
both in a fuzzy system dictionary and the rule base. The crisp value at the output of
the developed fuzzy inference system is the fuzzy affinity value μK(o, e).

3 Gaussian Mixture Model

Gaussian Mixture Model (GMM) is a semi-parametric technique which enables
estimating a probability density function with amixture distribution [21, 23], defined
as a weighted sum of its components.
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Let be a set of N vectors xn = [x1n, x2n, . . . , xD
n ]T , n ∈ {1, . . . , N}, where D is

the dimensionality of feature space. Consider a mixture model with K(K > 1)
components in Rn for n ≥ 1. The probability density function of vector x in the
mixture is given as

p(x) =
K∑

k=1

πkpk(x), (9)

where pk(x) is the density of kth component and πk ∈ [0, 1] are the mixing propor-
tions coefficients fulfilling

K∑
k=1

πk = 1. (10)

In the Gaussian Mixture Model each group of the data is assumed to be generated
by a normal probability distribution

pk(x) = 1

(2π)
D
2 det(�k)

1
2

exp

{
−1

2
(x − λk)

T�−1
k (x − λk)

}
, (11)

whereλk and�k are the parameters ofD-dimensional normal probability distribution
N(λk, �k), mean values vector and covariance matrix, respectively.

The maximum likelihood estimator of parameter Θ = {Θ1,Θ2, . . . , ΘK }, where
Θk = {λk, �k}, of a parametric probability distribution is foundusing theExpectation-
Maximization (EM) algorithm [23]. Since the EM procedure is dedicated to incom-
plete data sets analysis, it iteratively alternates between finding the greatest lower
bound to the likelihood function, making guesses about the complete data and then
maximizing this bound by finding the Θ that maximizes p(x|Θ)

over Θ .
The EM algorithm requires starting points and a pre-selected number of clusters.

The required parameters are estimated applying the unsupervised cascade clustering
procedure and Kernelized CS cluster validity measure, discussed in detail in [24].

In the proposed segmentation procedure the adaptively generated tumor and back-
ground model constitute the basis for fuzzy inference system. The obtained compo-
nents parameters are used in the fuzzy dictionary, which defines the membership
functions of fuzzy rules. The combination of different components which build par-
ticular image regions is the basis for fuzzy rules generation.

4 Fuzzy Inference System

Different existing fuzzy reasoning systems are described in literature [14, 15, 25] and
also applied in medical tasks. The basic structure of such systems consists of three
components: dictionary defining the membership functions, base of fuzzy IF-THEN
rules and reasoning mechanism.



Model-Based Fuzzy System for Multimodal Image Segmentation 197

Historically, the first fuzzy control system, based on Zadeh’s formulations from
1973, was introduced by Mamdani in 1974 [26]. In Mamdani’s system, the input
numbers are translated into linguistic terms, and the fuzzy rules map them onto
linguistic terms on output. Then, the output linguistic terms are translated back
into the numbers. The procedures of translations are known as fuzzification and
defuzzification, respectively. A typical fuzzy rule in such a system is constructed as
follows:

IF input1 is A1
i AND input2 is A2

i
THEN output is Bi

(12)

It tries to formulate the expert knowledge by some linguistic rules. An exemplary
rule dedicated to the task of tumor segmentation can be simply described as:

"IF the intensity level of the area
in T2 − weighted series is very high

AND the intensity level of the area
in T1 − weighted series is very low

THEN the analyzed region
might be a tumour"

(13)

There are different combinations of grey intensity levels suggestive of a tumor,
defined by the experts, and consequently different linguistic rules connected with
them. Simultaneously, a set of linguistic rules exists which defines the healthy tis-
sues. The developed fuzzy inference system attempts to describe the majority of
them.

Let the fuzzy sets in the fuzzy premises of ith rule be given as A1
i and A2

i , respec-
tively and the fuzzy set in the conclusion of ith rule is denoted as Bi. In the exemplary
radiologist reasoning rule, the fuzzy sets A1

i and A2
i are given as “high” and “low”

and Bi as “might be tumor”.
The fuzzy control algorithm, developed by Mamdani, is based on two concepts:

fuzzy implication and compositional rule of inference [27]. Assume two fuzzy sets:
A of the universe of discourse X and B of Y defined by their fuzzy membership
functions μA and μB. The membership function of a fuzzy implication S: “IF A then
B” is then defined as

μs(x, y) = min[μA(x);μB(y)], x ∈ X, y ∈ Y. (14)

For such given implication S, fuzzy set B′ of the universe of discourse Y inferred by
a given fuzzy set A′ of X, has a membership function estimated as

μB′(y) = max
x

min[μA′(x);μs(x, y)], x ∈ X, y ∈ Y. (15)

In fuzzy systems found in research applications, there are different rules which
describe one phenomenon. When the rules conditions are matched, a set of actions
will be activated. Each rule, with the antecedent non-zero matching degree,
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contributes an output with the activation value equal to it. The final system out-
put, which takes all the activated rules into consideration, is constructed using an
aggregation operation. Its most common implementation is operator max; however,
different aggregation operators are found in real applications, like algebraic sum or
the bounded product.

Coming back to the tumor analysis, the already described fuzzy system is used in
the fuzzy connectedness analysis in order to estimate the fuzzy affinity value of the
spels connection, instead of the functions given by (4) and (5).

5 Algorithm

Before the segmentation procedure begins, thanks to the positioning information
provided by theDICOMheader, the positions of voxels belonging to the two analyzed
MR series are matched.

The segmentation procedure starts on the basis of exemplary regions, which have
been selected by an expert. The automated part of analysis begins with the adaptive
3-D filtering method [28]. The there required parameters are adaptively estimated
based on the assumptions given in [29]. The goal of this analysis step is firstly the
reduction of noise and thereby an increase in the signal-to-noise or contrast-to-noise
ratios, while maintaining the edge lines. Secondly, as a result of smoothing of the
object areas, the number of groups for the clustering procedure, which is the next
step, decreases and the analysis is not sensitive to outliers.

The main part of the performed analysis constitutes of four steps, discussed in
previous sections. The combination of these four steps is shown on the block diagram
in Fig. 5.

First, based on the reference expert selections, personalized GMMs of tumor and
background areas are generated, separately. The detailed discussion of the algorithm
is given in Sect. 3. Let the estimated GMMs of tumor area be given as G1,2

t and
of the background as G1,2

b , respectively. Both GMM pairs are the sets of mixture
components parameters θ and voxels C classified into each of Kt or Kb groups

Gi
t = (θi

1t
, Ci

1t
), (θi

2t
, Ci

2t
), . . . , (θi

Kt
, Ci

Kt
),

Gi
b = (θi

1b
, Ci

1b
), (θi

2b
, Ci

2b
), . . . , (θi

Kb
, Ci

Kb
),

(16)

where index i = {1, 2} refers to two simultaneously analyzed MR sequences.
Based on them, the input membership functions are defined which describe the

intensity levels of tumor as well as background areas. An exemplary set of mem-
bership functions, obtained for a bone cyst in STIR and T1-weighted sequences
(Fig. 1), is visualized in Fig. 3. The membership functions defined for the tumor area
are marked with the black solid lines and the membership functions defined for the
background are given by the grey dashed lines.

Since the fuzzy connectedness analysis is used in the segmentation step, the system
must be able to calculate the affinity value of two adjacent spels based on the inputs.
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Fig. 2 The flow chart of 3-D tumors segmentation procedure

Fig. 3 An exemplary set of membership functions generated for a bone cyst in STIR (top) and
T1-weighted (down) sequences. The membership functions defined for the tumor area are marked
with the black solid lines and the membership functions defined for the background are given by
the grey dashed lines
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Fig. 4 An exemplary set of membership functions on the output of the fuzzy inference system.
The black solid line defines the tumour and the grey dashed line represents the background

The functions given by (4) and (5) take the mean intensity value 0.5(I(e) + I(d))

and gradient |I(e) − I(d)| into consideration. Because the attempts of modeling
gradient values characterizing tumor or healthy tissues have not provided any useful
information, the inputs to the fuzzy system are defined as xi = 0.5(I i(e) + I i(d)).

Two membership functions in the conclusions of rules are shown in Fig. 4. The
output of the system is the affinity value of two adjacent spels. The membership
function visualized using the black solid line defines the “high” affinity and the
dashed line defines the “low” affinity of spels connection. Moreover, to reduce the
computation time associated with the relative FC analysis, the meaning of “big”
affinity value is “it might be tumor”. Based on the graph of the functions in Fig. 4,
the threshold defining the tumor area can be set to 0.45.

Let the fuzzy sets in premises referring to G1,2
t and G1,2

b are given as Ai
kt
and

Ai
lb
, and the fuzzy sets in conclusions as Bh—“high” and Bl—“low”. Then, on the

basis of sets G1,2
t and G1,2

b and all the positions of voxel c the unique fuzzy rules
Rl

t, l ∈ {1, 2, . . . L} and Rp
b, p ∈ {1, 2, . . . P} defining tumor and non-tumor areas,

respectively, are generated as follows:

1: if c ∈ T and c ∈ C1
kt

and c ∈ C2
kt
, where T is the set of reference tumour voxels

then
2:

Rl
t : IF x1 is A1

kt
AND x2 is A2

lt
THEN μK(e, d) is Bh

(17)

3: end if
4: if c ∈ B and c ∈ C1

kb
and c ∈ C2

kb
, where T is the set of reference background

voxels then
5:

Rp
b : IF x1 is A1

kb
AND x2 is A2

lb
THEN μK(e, d) is Bl

(18)

6: end if
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For each pair of the adjacent voxels, the output linguistic value is then translated
into their fuzzy affinity. In the defuzzification step, the center of gravity method
is employed. Using the precomputed affinity tables, the multiseeded FC algorithm
described in [20] is implemented.

To reduce the false positive regions, in the case when the tumor is connected with
the healthy tissues having similar characteristics, a convex hull-based postprocessing
technique is applied. Starting from the reference slice, the there calculated tumor
convex hull is thenmapped into the adjacent slices. The comparison of areas of tumor
like regions, covered and uncovered by the convex hull, provides the information
concerning the final segmentation results.

6 Experiments and Results

To evaluate the ability of developed methodology, first the database consisting of 27
examinations of 18 patients studies has been used. The therein contained cases have
included 5 types of bone tumors: chondromas, Ewing’s sarcomas, osteosarcomas,
bone cysts and chondrosarcomas. In total, 413 pairs of slices have been analyzed.
An individual pair have consisted of T1-weighted, T1-weighted contrast enhanced
and fat saturated, T2-weighted or STIR sequences in different MR projections: axial,
sagittal and coronal. The FC threshold values have been set to 0.45 and 0.5.

All the achieved results have been discussed with an expert, who jugged them
on each slice in each examination. As a result, the obtained image regions have
been divided into three classes: true positive (TP)—the coherent areas containing a
correctly indicated tumor, false positive (FP)—a coherent region containing healthy
tissues incorrectly classified as tumorous, false negative (FN)—a coherent region
containing tumor areas incorrectly classified as healthy tissue.

The accuracy of presented segmentation procedure has been estimated based on
the following similarity coefficient

DV = FP + FN

TP + FN
, (19)

yielding the value equal 0 when the segmentation results are fully correct. The esti-
mated DV value for the bone tumors database has been equal to 0.12, which is
sufficient for computer assisted diagnosis systems.

Exemplary results for 3 different types of bone tumors are shown in Figs. 5, 6
and 7.

The original fuzzy connectedness algorithm (FC1), described in [10], as well as
its modification (FC2), developed in [20], have been used to compare the obtained
results. The results are categorized into two groups: the segmentation results in the
homogeneous and in-homogeneous image series. The numerical results (DV values)
are summarized in the Table1, where the last column (FIS) provides the results
achieved using the proposed methodology. The first row of Table1 shows that the
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Fig. 5 Final segmentation results of knee Enchondroma visualized on a single slices of axial MR
series: left—T2 Blade FS, right—T1 TSE

Fig. 6 Final segmentation results of spines Ewing’s sarcoma visualized on a single slices of sagittal
MR series: left—T1+C SE FS, right—STIR

segmentation results obtained for homogeneous image data are comparable with
other methods. The second row proves a superiority of the proposed method over
another approach, which is described in literature, whose results are insufficient for
computer assisted diagnosis systems and non-acceptable by a radiologist.

To prove the segmentation abilities of the presented method, the database of brain
tumors has been considered. Brain tumor image data used in this work have been
obtained from the MICCAI 2012 Challenge on Multimodal Brain Tumor Segmen-
tation organized by B. Menze, A. Jakab, S. Bauer, M. Reyes, M. Prastawa, and K.
Van Leemput. The challenge database contains fully anonymized images from the
following institutions: ETH Zurich, University of Bern, University of Debrecen, and
University of Utah.

The analysis has been performed on two MR modalities: T1-weighted contrast
enhanced and T2-weighted series. The initial segmentation procedure, performed
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Fig. 7 Final segmentation
results of tibias
Osteosarcoma visualized on
a single slices of coronal MR
series: left—T2 FRFSE FS,
right—T1 FSE

Table 1 Accuracy of
different segmentation
procedures—DV coefficient.

FC1 FC2 FIS

Homogeneous

Series (22) DV 0.16 0.13 0.13

In-homogeneous Series (5) DV 0.6 0.5 0.11

manually for bone tumors, is in this case based on ground truth data. The slice with
maximal area of active tumor, provided by the ground truth, has been used for training
step. To reduce the influence of intensity values of voxels which are located on the
borders of the tumor, the active tumor as well as edema and healthy tissues masks
have been eroded.

The obtained segmentation results have been comparedwith the expert delineation
masks. To evaluate the performance of the developedmodel based fuzzy system, three
similarity measures have been used, namely sensitivity:

S = TP

TP + FN
, (20)

specificity:

P = TN

TN + FP
, (21)
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Fig. 8 Final segmentation results of active brain tumor area visualized on a single slices of axial
MR series: left—T1+C, right—T2. The red line delineates the ground truth provided by the expert.
The green line is the segmentation result

and the Dice Similarity Coefficient (DSC) [30]:

DSC = 2 · TP

2 · TP + FP + FN
. (22)

Due to the expert delineations available in the database, the TP, TN, FN and FP
values are given voxel-wise. The calculated mean values of the similarity measures
for the brain tumor database are equal to S = 0.82, P = 0.98, and DSC = 0.71,
respectively. Form the work [30] the results with the DSC value greater than 0.7 are
considered to be very good (Fig. 8).

7 Conclusions

This paper introduces a new model-based fuzzy system for multimodal image seg-
mentation. The proposed algorithm is insensitive to tumor location and type. It com-
bines Gaussian Mixture Model and fuzzy inference system in the fuzzy connect-
edness analysis. The proposed procedure has been tested on two different medical
databases. The first one consists of 27 examinations of 18 patients with different bone
tumor types located in various parts of the body. Each single examination contains
two different MR series. The second database provided for the Challenge on Mul-
timodal Brain Tumor Segmentation contains the tumors in two different modalities
with their manual expert delineation. The obtained segmentation results encourage to
develop this method further. The presented system provides a basis for development
of an adaptive learning algorithm by training based on the currently analyzed and
verified cases. The problem still remaining to be solved is the normalization of MR
sequences so that they can be compared. The plans for future work is to expand the
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database with new tumor cases and involving the analysis of new features, like tex-
ture. The detailed radiological consultation will enable developing fuzzy IF-THEN
rules based and reasoning mechanism. In order to improve the segmentation results
a fuzzy rules interpolation technique is also planned to be introduced.
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Abstract Design for configurations is a highly collaborative and distributed process.
The use of fuzzy agents, that implement the collaborative and distributed design by
means of fuzzy logic, is highly recommended due to the fuzzy nature of the collab-
oration, distribution, interaction and design problems. In this paper, we propose a
fuzzy agent model, where fuzzy agents grouped in communities interact and perform
multiple fuzzy design roles to converge towards solutions of product configuration.
Analysis of both interactions and multiple fuzzy roles of fuzzy agents during prod-
uct configuration in a collaborative design platform is proposed. The modelling of
fuzzy agents and its illustration for a collaborative design platform are presented.
The results of analysis have shown the important influence of fuzzy solution agents
in the organization of the agent based collaborative design for configurations plat-
form. The more the fuzzy agents share their knowledge, the more their fuzzy roles
are complete in every domain of design for configurations. The degree of interac-
tions between fuzzy agents in the design for configurations process has an impact
on the emergence of increased activity of some fuzzy agents. The fuzzy function
agents, influenced by many fuzzy requirement agents, are the most active in the
design process. The simulation shows that this observation can be extended to the
fuzzy solution agents. The most active fuzzy solution agents are those which cre-
ate the best consensual solution. Simulations show that the consensus can be found
principally by increasing the degree of interactions.
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1 Introduction

Design for configurations is the process which generates a set of product
configurations based on a configuration model. A product configuration is char-
acterized by a set of solutions, which are designed to satisfy product functions,
which in their turn, are supposed to meet customer requirements. This set of solu-
tions should also satisfy the specific process domain constraints. Configuration starts
with requirements in the domain of requirements. A customization requirement is
manifested by the customer’s choice of customizable requirement. The customer
perceived value of each requirement indicates the degree of customer satisfaction in
the requirement domain. Simultaneously, in the process domain, a constraint is man-
ifested by the expert’s choice of process constraint [2]. The expert perceived value
of each process constraint indicates the degree of expert satisfaction in the process
domain. Therefore, to satisfy customer requirements and process constraints, the
mapping from requirements to the solutions as well as the mapping from process
constraints to the solutions is applied. It yields a set of consensual solutions from
both domains: requirements and process constraints. The consensual solutions prob-
lem is how to achieve the maximum consensus degree from a group of distributed
experts for the alternative solutions, satisfying customer requirements [30]. Thus the
concept of consensus is a problem of the overlapping of experts’ and customers’ per-
spectives influencing the design of configurable products simultaneously. Discerning
the consensus nucleus can create common ground for moving towards an acceptable
configuration [12]. This set of consensual solutions can be distributed in modules to
form configurations [27]. Optimal configurations can be generated using some limits
of acceptability for objective function values. It enables the early release of possible
set of configurations [28].

Following up these phases, configurable product design must be able to deal with
various unstable and imprecise requirements coming from the customers, on the
one hand, and some distinct form of uncertainty such as imprecision, randomness,
fuzziness, ambiguity, and incompleteness, on the other [2]. Uncertainty is thus an
integral part of the design for configurations [1, 2].

Fuzzy logic offers a framework for representing uncertainty [35]. In order to
capture the uncertainty aspects of design for configurations, the fuzzy sets approach
can be used [2]. Design for configurations is a highly collaborative and distributed
process. The properties of collaborative and distributed design for configurations are
discussed in [28]. It is shown that designs for configurations are fuzzy information
andknowledge-based processes. They are fuzzy interaction-based processes and their
organizations are heterogeneous, dynamic, and adaptive. Designs for configurations
are also fuzzy evolving systems [20]. Therefore, the use of agents, that implement the
collaborative and distributed design bymeans of fuzzy logic, is highly recommended
due to the fuzzy nature of the collaboration, distribution, interaction and design
problems [12, 28]. Fuzzy agents interact between themselves to adjust their actions
using their fuzzy knowledge [12]. They interpret the fuzzy information they receive
or perceive. Their evolution is fuzzy [17], when they are designed to interpret fuzzy
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information and to adopt a fuzzy behavior [12, 28]. Fuzzy agents are alsowell adapted
to model and to design the heterogeneity and the evolving of some organizations [9].

Thus, fuzzy agent modelling based design for configurations is an open-ended
question. Indeed, fuzzy agents are currently not sufficiently formalized to support
the holistic view of collaborative and distributed designs for configurations with a
certain level of uncertainty. In many models of collaborative and distributed agent-
based systems, an agent or a group of agents are modelled to perform only one
role. Some models allow agents to change their role within their community or the
defined organization. In this paper, we propose a model, where a fuzzy agent can
perform several roles at any time in their community or the defined organization. The
fuzzy agents can perform their roles with varying degrees. This hypothesis of fuzzy
agents’ model relies on the practice of collaborative and distributed design. Usually,
each actor is expert in a main discipline. Furthermore, the actors involved in product
design are experienced in solution design. Thus, solution design is a shared domain.

Therefore, this paper proposes to analyze both the evolution of agents’ fuzzy
roles and the change of their distribution in different communities of an organiza-
tion, within a collaborative and distributed design for configurations platform. These
analyses continue the work we have already done on the interactions between cog-
nitive agents [8, 10, 11], or rather reactive agents [12, 28, 29].

The remainder of the paper is organized in five sections. In the second section, a
fuzzy agent model is proposed. In the third section, the proposed fuzzy agent model
is illustrated by a design for configurations case study. In this case study, firstly, a
fuzzy product configuration model is presented. Then, secondly, an agentification of
this model is developed, and thirdly, an analysis of fuzzy interactions and fuzzy roles
agents is presented. In the fifth section, the conclusion shows some perspectives and
interest in the proposed approach.

2 Fuzzy Agent Modeling

There are at present many definitions of the agent paradigm [6, 9, 15, 19, 23, 34] and
several propositions of typologies [26, 31], but new types of agents are continuing to
emerge [32]. Thus, fuzzy agents emerged as a tool to model fuzzy behavior problems
[10],where agents can decide to act according to a fuzzy-logic rule base [5, 14]. Fuzzy
agents are also used in fuzzy reasoning situations, where agents interpret a situation,
solve a problem or decide with fuzzy knowledge [3, 4, 13, 16]. Implementations of
fuzzy agents are also proposed to solve distributed fuzzy problems [25], or to improve
the processing of the fuzziness of information, fuzziness of knowledge and fuzziness
of interactions, in collaborative design processes [12, 28]. This section presents a
model where agents are completely fuzzy: their knowledge and their behavior are
fuzzy, their interactions are fuzzy, their roles in the agent-based system are fuzzy,
and their organization in the agent-based system is also fuzzy.
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2.1 Fuzzy Agent Model

An agent-based system is fuzzy if agents that make it up are fuzzy, which means
that:

• Their Knowledge and their Behaviors are Fuzzy. Knowledge of an agent is defined
by fuzzy values. Behavior of an agent depends on the fuzzy evaluation of its fuzzy
perceptions, its fuzzy decisions, and its fuzzy actions.

• Their Interactions are fuzzy. Relationships between agents (affinities) areweighted
by a fuzzy value. Interactions provide a relative interest to fuzzy agents based on
roles that they perform at a given time.

• Their Roles are Fuzzy. At a given time, it is possible to determine what roles a
fuzzy agent performs based on fuzzy values of its roles and a threshold value
setting the minimum value an agent should invest in these roles.

• Their Organization is fuzzy. The distribution of roles performed by fuzzy agents is
continually evolving. This defines self-organizing agents which is the result both
of their fuzzy interactions and the continuing evolution of their roles.

Agents developed in our different collaborative platform could perform reflex
actions, routine actions, and actions in new situations (creative or cooperative)
[7, 8]. Recently, we integrated fuzziness characteristics in our agent model
[12, 28] (Fig. 1).

A fuzzy agent-based system is described by the following tuple (1):

M̃α =< Ã, Ĩ , P̃, Õ > (1)

where Ã, Ĩ , P̃, and Õ , are respectively a fuzzy set of agents, a fuzzy set of interactions
between fuzzy agents, a fuzzy set of roles that fuzzy agents can perform, a fuzzy set
of organizations (or communities) defined for fuzzy agents of Ã.

Fuzzy actions

goals

Fuzzy informations

Fuzzy 
Observation

Fuzzy 
Execution

Situation 
recognition

Association
state/task

Procedure / 
fuzzy rules

Fuzzy
interpretation

Planning

Level 1: Fuzzy
skill-based
behaviour

Level 2: Fuzzy
rule-based
behaviour

Level 3: Fuzzy
knowledge-based
behaviour

sign reflex

Fuzzy 
decision

Fuzzy cognitive agent

Fuzzy routine agent

Fuzzy reactive agent

Fig. 1 Behavior of fuzzy agents, based on Rasmussen’s model
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A fuzzy agent α̃i ∈ Ã is described by the following tuple (2):

α̃i =< ΦΠ̃(α̃i )
, ΦΔ̃(α̃i )

, ΦΓ̃ (α̃i )
, K̃α̃i > (2)

where ΦΠ̃(α̃i )
, ΦΔ̃(α̃i )

and ΦΓ̃ (α̃i )
are respectively functions of observation, decision

and action [9]. The set of fuzzy knowledge K̃α̃i includes decision rules, values of
domain, acquaintances, and dynamic knowledge (observed events, internal states).

2.2 Fuzzy Interaction, Fuzzy Organization, and Fuzzy Role

In agent-based systems, as in human organizations, actions, interactions and com-
munications, are closely linked and interdependent [15]. Interaction is an exchange
between agents and their environment. This exchange depends on the intrinsic prop-
erties of the world in which agents are active. Perception of agents may be passive
when receiving messages/signals, or active, when it is the result of voluntary actions.
Communication is an exchange between the agents themselves, using a language.

A fuzzy interaction ι̃s,r ∈ Ĩ between two fuzzy agents is defined by (3):

ι̃s,r =< α̃s, α̃r , P̃α̃s , γ̃i > (3)

where α̃s is the fuzzy agent source of the interaction, α̃r is the fuzzy agent destination,
P̃α̃s is the fuzzy set of roles performed by α̃s , and γ̃i is a fuzzy act of cooperation.
Interactions are fuzzy: the destination agent also always evaluates an interaction
(fuzzy value) to determine the interest this interaction can take for it.

Problems due to the partial view of agents (local goals, interleaving activities, etc.)
require the development of strong coordination mechanisms [18]. The organization
shall allow an agent-based system to behave as a coherent whole, to solve a problem
unequivocally. It controls and coordinates the interaction between agents of the sys-
tem, thus structuring their activities with the goal of convergence. Ferber et al. [7]
distinguish between “organizational structure” and “organization”, corresponding to
the process of designing the structure. Wooldridge [34] proposed a more practical
definition: “a collection of roles that stand in certain relationships to one another
and that take part in systematic institutionalized patterns of interactions with other
roles”.

From the numerous definitions of agent organization [6, 7, 15, 17, 21, 33, 34],
we extracted the following properties, before interpreting them in the fuzzy field
(Fig. 2a):

• P1. An organization is partitioned into groups or communities of agents.
• P2. A community is comprised of agents sharing a goal and characteristics.
• P3. An agent can belong to several communities.
• P4. An agent performs one or several roles within the community(ies) to which it
belongs.
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Fig. 2 Fuzzy agents: a organization model, b interactions and induced common roles

• P5. A role is an abstract representation of a function performed by agents within
one or several communities.

• P6. An agent interacts with the agents of its community or other communities to
perform its roles.

• P7. An agent that interacts with another agent then participates in the same role
as the latter (Fig. 2b).

In a collaborative structure different roles are performed by agents. Modelling the
notion of roles for the agent paradigm can take many forms (Fig. 3):

• Inmanymodels of distributed agent-based systems, agents performonly one role in
their community or the defined organization: the role for which they are designed.
Sometimes several agents can perform the same role.

Fig. 3 Distributions of agents in communities based on roles they perform at a given time
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• Some models allow agents to change their role within their community or the
defined organization. At any given time, an agent will perform one role. Agents
change roles at times determined by the context of problem solving or group
activity. In this case, the role change corresponds to a context switch.

• A more innovative model where agents can perform several roles at any time in
their community or the defined organization. In this case, the agents perform their
roles with varying degrees, which means that a role may be singled out and others
are active. In this case, fuzzy set theory is well suited to modelling and designing
such roles. This is the solution that we will develop in this paper.

During our experiments on collaborative and distributed design, we observed that
designers were more widely involved in terms of their unique area of expertise
[11, 22, 24]. This is observable in sequences of creativity, where designers perform
several roles in the same sequence with greater or lesser degrees. We model this
property with the theory of fuzzy sets. We also proposed that the roles of agents
are considered fuzzy. An agent in this organization can have several fuzzy roles at
a given time. In that case, the fuzzy set of roles performed by a fuzzy agent α̃i is
defined by (4):

P̃ (α̃i ) = {
μρ̃1(α̃i ), μρ̃2(α̃i ), . . . , μρ̃q (α̃i )

}
(4)

During cooperative activities, a fuzzy agent performs roles according to its knowl-
edge and its fuzzy interactions. A fuzzy agent interacts by sending messages within
its initial community (performing its main role), or within other communities (per-
forming other roles). A fuzzy agent α̃i by interacting with a fuzzy agent α̃ j of another
community then participates in the same role as α̃ j (5):

∀α̃i ∈ Ã ⊃ [∃x : ρ̃x ∈ P̃ ∧ α j ∈ Ãx , ΦP̃(α̃ j , ρ̃x ) ∧ λ̃i, j (α̃i , α̃ j , τ, η̃) ⊃ ΦP̃(α̃i , ρ̃x )]
(5)

3 Product Configuration Approach

To analyze roles of fuzzy agents within a collaborative design platform, a “chair
configurable product” is chosen because of both the simplicity and accessibility of
this illustration. A chair is made up of a few elements, but it can be configured in
multiple ways satisfying both customer’s requirements and different experts’ process
views.

3.1 Fuzzy Product Configuration Model

The configurable product design is a mapping process between product require-
ment view, functional view, physical solution view, process view and fuzziness of
collaborative design process. We proposed a fuzzy approach for searching configu-
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Fig. 4 a Product configuration approach, and b agent-based architecture of FAPIC platform

ration structures [2, 28, 29]. This approach is carried out into three phases (Fig. 4a):
(1) Fuzzy relationships in engineering design: the results are the different engineer-
ing design models, from requirements to solutions, necessary for the configuration
of a product (the fuzzy sets R̃, F̃, C̃, S̃); (2) Searching the fuzzy set of consensual
solutions: the result is a fuzzy set of consensual solutions (the fuzzy set S̃c); and (3)
Fuzzy optimal solution agents based product configuration: the results are optimal
solutions (the fuzzy set G̃).

3.2 Agentification of the Configuration Approach

Requirements, functions, constraints and solutions are fuzzy agents, with a degree of
membership in each community defined for configuration (R̃, F̃, C̃, S̃). Cooperative
interaction can occur between fuzzy agents in communities of functions and solutions
(intra-communities interaction), or between fuzzy agents of different communities
(inter-communities interaction). A fuzzy interaction is defined by (3) and the degree
of interest of a fuzzy interaction μα̃ j (ι̃i, j ) for a fuzzy agent α̃ j is defined by (6):

μα̃ j (ι̃i, j ) = min
(
μα̃ j (α̃i ) , μρ̃r (α̃ j ), μρ̃r (α̃i )

)
(6)

where μα̃ j (α̃i ) is the degree of affinity between α̃ j and α̃i , μρ̃r

(
α̃ j

)
and μρ̃r (α̃i ) are

the membership functions of α̃ j and α̃i in performing the role ρ̃r .
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A fuzzy agent-based platform called FAPIC (Fuzzy Agents for Product Integrated
Configuration) was developed for product configuration (Fig. 4b). In FAPIC, fuzzy
agents are organized in four communities (7):

Ãr ⊆ Ã, Ã f ⊆ Ã, Ãc ⊆ Ã, Ãs ⊆ Ã (7)

Each community has a clear objective, which determines the main role that fuzzy
agents perform in their communities [28]. This means that each fuzzy agent belongs
to a community of reference in which it plays its main role (8):

∀α̃ ∈ Ã ⊃ [∃x ∈ {r, f, c, s} , α̃ ∈ Ãx ∧ ΦP̃(α̃, ρ̃x )] (8)

4 Illustration for a Chair Configuration

4.1 Presentation of the Case Study

This section gives a detailed illustration for the three phases of the proposed approach
(Fig. 4a).

In the first phase (Fuzzy agents based systems building) communities of fuzzy
agents are built. In this case study, 11 fuzzy requirement agents, 4 fuzzy function
agents, 20 fuzzy solution agents, and 16 fuzzy constraint agents, are built (cf. Appen-
dix II). Then, interactions between fuzzy agents of all communities are built.

The second phase (Searching fuzzy set of consensual solution) comprises six steps:

• Step 1: Definition of Fuzzy Set of Requirements. The fuzzy set of requirements for
a particular customer is defined. The fuzzy requirement agents observe this fuzzy
set and take the corresponding fuzzy values.

• Step 2: Emergence of Fuzzy Product Functions. It spells out functions that the
configuration product will support. The fuzzy set of product function agents are
computed using the fuzzy relationship between requirement agents and product
function agents.

• Step 3: Emergence of Fuzzy Set of Solutions. The fuzzy set of solutions is computed
from interaction between the set of active function agents and solution agents.

• Steps 4 and 5: Definition and Integration of Fuzzy Set of Constraints. The fuzzy
constraints agents observe what the constraints of a particular process view are
and they decide to take the corresponding fuzzy values.

• Step 6: Emergence of Consensual Fuzzy set of Solutions. Fuzzy constraint agents
interact with fuzzy solution agents to converge towards a consensual fuzzy set of
solutions.

In the third phase (Fuzzy optimal solution for configuration), the consensual solution
agents are structured into modules, through their interactions, using their affinities
from the fuzzy solution agents’ structure. The fuzzy optimal solution agents represent



216 A.-J. Fougères and E. Ostrosi

Table 1 Optimal configuration: local point of view of fuzzy solution agents

Agent Optimal
configuration

Value Agent Optimal
configuration

Value

s̃1 s̃1 − s̃6 − s̃16 2.25 s̃11 – 0

s̃2 s̃2 − s̃6 − s̃16 2.1 s̃12 – 0

s̃3 s̃3 − s̃7 − s̃17 1.95 s̃13 – 0

s̃4 s̃4 − s̃6 − s̃16 1.5 s̃14 – 0

s̃5 s̃5 − s̃6 − s̃16 1.8 s̃15 – 0

s̃6 s̃1 − s̃6 − s̃16 1.4 s̃16 s̃1 − s̃9 − s̃16 1.7

s̃7 s̃1 − s̃7 − s̃19 1.2 s̃17 s̃1 − s̃9 − s̃17 1.45

s̃8 s̃2 − s̃8 − s̃17 1.15 s̃18 s̃1 − s̃7 − s̃18 1.4

s̃9 s̃1 − s̃9 − s̃19 1.0 s̃19 s̃1 − s̃9 − s̃19 1.5

s̃10 s̃1 − s̃10 − s̃16 1.2 s̃20 s̃1 − s̃6 − s̃20 1.2

Optimal configuration

<s1>
0.6

<s6>
0.6

<s16>
0.6

s1 s2 s3 s4 s5     s6 s7    s8     s9   s10 s11 s12 s13 s14 s15 s16 s17  s18  s19  s20
[s1 si] =  [ 0  0  0  0  0        0.7 0.6 0.5  0.5  0.5      0   0    0    0    0  0.7 0.7  0.6  0.7  0.6 ]

s6 - Square s1 - Square s16 – Staight_a

<s1> Agent’s local 
point of view

×

a) Configuration 4 : {s1, s6, s16 }

Fig. 5 Configuration: local point of view of agent s̃1

a network of fuzzy solution agents which maximize the objective function. Results
of this phase are given in Table1. For instance, considering the fuzzy solution agent
s̃1 as solution for the class Cl1 (Seat, Appendix II), its optimal network is formed
by the solution agents [s̃1-s̃6-s̃16], with a value of objective function equal to 2.25
(Fig. 5).

4.2 Analysis of Fuzzy Agents Roles

In FAPIC, the set of fuzzy roles P̃ = {
ρ̃r , ρ̃ f , ρ̃c, ρ̃s

}
is defined. Then, the fuzzy set

of roles an agent α̃i performs is defined by (9):
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P̃(α̃i ) = {
μρ̃r (α̃i ), μρ̃ f (α̃i ), μρ̃c(α̃i ), μρ̃s (α̃i )

}
(9)

Let us consider Phase 2 of the configuration process and the fuzzy agents r̃1, f̃1, c̃11
and s̃1 (traced agents) (Fig. 6). The fuzzy values of roles performed by an agent α̃i

are calculated by the formula (10):

(ne/na)/((ne/na) + 1) (10)

where ne is the number of exchanges between α̃i and agents of the community
corresponding to the target role and na is the number of agents in the community
corresponding to the target role.

The following steps are illustrated in Fig. 6:

• Step 1. r̃1 interacts with the 10 other members of the requirements communityR̃.
At this time r̃1 performs one role: � Definition of requirements 	.

• Step 2. r̃1 interacts with f̃1, and participates in the role of � the definition of
functions 	 ; then f̃1 interacts with the 3 other members of the fuzzy functions
communityF̃ . At this time f̃1 performs two roles: � Integration of requirements
	 and � Definition of functions 	.

• Step 3. f̃1 interacts with s̃1, and participates in the role of�Definition of solutions
	. Then s̃1 interactswith the 19othermembers of the fuzzy solutions communityS̃.
At this time, s̃1 performs two roles:� Integration of functions	 and�Definition
of solutions 	.

• Step 4. c̃11 interacts with the 15 other members of the constraints communityC̃ .
At this time, c̃11 performs one role: � Definition of constraints 	.

• Step 5. c̃11 interacts with s̃1, and participates in the role of � definition of solu-
tions 	 ; then s̃1 interacts with the 19 other members of the fuzzy solutions
communityS̃. At this time, s̃1 performs two roles: � Integration of constraints 	
and � Definition of solutions 	.

• Step 6. s̃1 interacts again with the 19 other members of the solutions community
S̃. At this time, s̃1 performs the role: � Definition of consensus solutions 	.

The six tables presented in Fig. 6 show the change step by step of the fuzzy values
of agents’ roles during Phase 2. These tables indicate for each step of the Phase

2 and each of the four tracks fuzzy agents
(

r̃1, f̃1, c̃11 and s̃1
)
: (1) the number of

exchanges between these fuzzy agents and other fuzzy agents of FAPIC (inter or
intra-community interactions: R̃/R̃, R̃/F̃, F̃/F̃, F̃/S̃, C̃/C̃, C̃/S̃, S̃/S̃), and (2) the
fuzzy values of the different fuzzy roles performed by the fuzzy agents (a vector of
fuzzy roles corresponding to P̃ = {

ρ̃r , ρ̃ f , ρ̃c, ρ̃s
}
).

Finally, after a full configuration, we obtain for fuzzy agents r̃1, f̃1, c̃11, s̃ (our
track agents), the number of inter/intra-communities exchanges and the fuzzy values
of roles given in the first table of the Fig. 7 (Fig. 7a).
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Fig. 6 a Illustration of interactions of fuzzy agents r̃1, f̃1, c̃11, s̃ during Phase 2 of configuration;
and b evolution of their fuzzy roles

The three tables presented in the figure below (Fig. 7b, c, d) show the evolving
roles for three different and frequent scenarios:

• The first scenario corresponds to the change in requirements made by the customer
when the results are not fully satisfactory. The consequences of this change are:
(a) the roles of requirements and functions are enhanced for fuzzy agents r̃1 and
f̃1, and (b) the roles of functions and solutions are reinforced for fuzzy agent s̃1.

• The second scenario is the change of constraints by one of the expert domains (here
the domain of production) after obtaining the results of the configuration and that
it does not fully comply. In this case, we find that: (a) the role of constraint is
enhanced for the fuzzy agent c̃11, and (b) the roles of constraints and solutions are
reinforced for the fuzzy agent s̃1.
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Fig. 7 Fuzzy values of roles: a at the end of the process, and b, c, d for three basic scenarios

Fig. 8 Activity of fuzzy agents during the 6 steps of Phase 2: a without change, b with change of
requirements in step 3 (cf. Fig. 7d)

• The third scenario is the change in requirements by the customer before he has
received the results of the configuration (for instance, he realizes that he has ill-
defined his need, and he does not expect the outcome of configuration to change
it). Then the results of this change are: (a) the roles of requirements and functions
are enhanced for the fuzzy agents r̃1 and f̃1 in the same way as in the first scenario,
and (b) only the role of function is enhanced for the fuzzy agent s̃1 (i.e., the step
6 of phase 2 is not duplicated in this case).

Figure8 enables the distribution and volume of activity of each community of fuzzy
agents during the 6 steps of phase 2 to be visualized. This figure presents two cases:
(a) without the intervention of customers or expert of the domains (Fig. 8a), and
(b) with the intervention of one of the actors (Fig. 8b)—here the intervention of the
customer, according to the third scenario presented above. In the latter case, the
increased activity of fuzzy agents (requirements, functions and solutions agents) and
their respective roles are clearly visible.

Let us now examine the impact of interactions on the fuzzy configuration. To do
this, we will analyze the roles of fuzzy function agents during Phase 2 of configu-
ration. The number of interactions for a fuzzy function agent with fuzzy agents of
other communities is equal to [R̃ → 11, F̃ → 6, C̃ → 0, S̃ → 20]: a total of 37
interactions per fuzzy function agent during this phase. Without weighting of fuzzy
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Table 2 Fuzzy values of fuzzy function agent roles

Agent R F C S Agent R F C S

f̃1 0.89 0.86 0 0.36 f̃3 0.36 0.53 0 0.18

f̃2 0.73 0.58 0 0.18 f̃4 0.71 0.48 0 0.18

Table 3 Values of fuzzy solution agent roles

Agent R F C S Agent R F C S

s̃1 0 0.23 0.48 0.79 s̃11 0 0.2 0.31 0.71

s̃2 0 0.23 0.52 0.66 s̃12 0 0.2 0.33 0.63

s̃3 0 0.18 0.49 0.74 s̃13 0 0.2 0.32 0.53

s̃4 0 0.13 0.44 0.68 s̃14 0 0.15 0.26 0.56

s̃5 0 0.15 0.4 0.54 s̃15 0 0.13 0.24 0.59

s̃6 0 0.18 0.29 0.79 s̃16 0 0.38 0.28 0.74

s̃7 0 0.23 0.32 0.69 s̃17 0 0.4 0.34 0.68

s̃8 0 0.23 0.29 0.58 s̃18 0 0.35 0.35 0.68

s̃9 0 0.13 0.28 0.59 s̃19 0 0.38 0.33 0.68

s̃10 0 0.15 0.25 0.51 s̃20 0 0.3 0.26 0.49

interactions, we obtain for the fuzzy function agents the following set of degrees of
membership of fuzzy roles: [0.5, 0.6, 0, 0.5]. With weighting of fuzzy interactions,
we obtain the following set of degrees of membership of fuzzy roles: [0.89, 0.86, 0,
0.36].

The following table (Table2) shows the results for each of the four fuzzy function
agents. The preponderance of the activity of the fuzzy function agent f̃1 (function:
Support the lower-body weight of a person in a sitting position) is visible in Table2.
We will now analyze the roles of fuzzy solution agents during Phase 2 of configu-
ration. The number of interactions for a fuzzy solution agent with fuzzy agents of
other communities is equal to [R̃→ 0, F̃→ 4, C̃→ 16, S̃→ 114]: a total of 134
interactions per fuzzy solution agent during this phase. Without weighting of fuzzy
interactions, we obtain for the fuzzy solution agents the following set of degrees of
membership of fuzzy roles: [0, 0.5, 0.5, 0.85]. With weighting of fuzzy interactions,
we obtain the following set of degrees of membership of fuzzy roles: [0, 0.23, 0.48,
0.79].

The following table (Table3) shows the results for each of the 20 fuzzy solution
agents. The increased activity of fuzzy solution agents s̃1, s̃6, s̃16 is visible during
Phase 2. These agents will provide the best and consensual solution to the end of
phase 3; what was seen in Table1.

This analysis shows that organizations in FAPIC platform are fuzzy evolving
systems. Indeed, dynamic adaptive organizations emerge from the fuzzy interaction
of heterogeneous fuzzy agents and their fuzzy roles. The analysis of the behavior
of fuzzy agents during design collaborations has shown that the distribution of roles
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performed by fuzzy agents is continually changing. Fuzzy agents are characterized
by fuzzy organizations. The last one is the result of the evolution of agents’ fuzzy
roles due to their fuzzy interactions.

5 Discussion and Conclusions

This paper has presented the analysis of the evolution of multiple fuzzy roles of four
communities of fuzzy agents in a collaborative design for configurations platform.
Fuzzy agents have been modeled to have fuzzy knowledge and fuzzy interactions.
Fuzzy agents are modeled to play multiple fuzzy roles. In addition, the resulting
organizations are also fuzzy.

Fuzzy agents have been developed and used for product configuration because of
their similarity to the actors’ behavior and reasoning. In the proposed agent-based
FAPIC platform (Fuzzy Agents for Product Integrated Configuration), requirements,
functions, solutions, process constraints are fuzzy agents grouped in four fuzzy com-
munities characterized by amain fuzzy role and other secondary roles. The aim of the
application described in this paper was to analyze the fuzzy behavior of fuzzy agents,
particularly the analysis of the evolution of fuzzy roles and their fuzzy interactions.

Tradeoff between actor’s interventions and fuzzy agents has been considered to
be an important issue. This has been extended to the tradeoff between customer
intervention and fuzzy agents. The results of analysis of these tradeoffs have shown
the important influence of fuzzy solution agents in the organization of the agent-based
collaborative design platform. The fuzzy role of fuzzy solution agents is strongly
influenced by the variations and changing of requirements and process constraints.

Another finding is the influence of sharing of knowledge between the communities
of agents. The more the fuzzy agents share their knowledge, the more their fuzzy
roles are complete in every domain of design for configurations. The simulation
shows that fuzzy requirement agents perform well their own main role, but they do
not play at all the role of fuzzy constraint agents. The same observation can be done
for the role played by fuzzy constraint agents in the domain of fuzzy requirement
agents. This is due to the lack of knowledge sharing between these two communities
of fuzzy agents.

The influence of the degree of interactions in the design for configurations process
should be outlined. The fuzzy function agents, influenced bymany fuzzy requirement
agents, are the most active in the design process. The simulation shows that this
observation can be extended to the fuzzy solution agents. The most active fuzzy
solution agents are those which create the best consensual solution. It shows that the
consensus can be found principally by increasing the degree of interactions.



222 A.-J. Fougères and E. Ostrosi

Appendix

I: Notation Used in the Fuzzy Agent Model

Ã = {α̃i } is the finite fuzzy set of fuzzy agents
Ĩ = {ι̃i } is the finite fuzzy set of interactions defined for all fuzzy agents

P̃ = {ρ̃i } is the finite fuzzy set of roles to be performed by all fuzzy agents
Õ = {õi } is the finite fuzzy set of organizations of all fuzzy agents into communities
Σ̃ = {σ̃i } is the finite fuzzy set of states defined in agent-based system
Σ̃α̃i ⊆ Σ̃ is the finite fuzzy set of states of fuzzy agent α̃i

Π̃ = {π̃i } is the finite fuzzy set of perceptions in agent-based system
Π̃α̃i ⊆ Π̃ is the finite fuzzy set of perceptions of fuzzy agent α̃i

Δ̃ =
{
δ̃i

}
is the finite fuzzy set of fuzzy decisions, with Δ̃α̃i =< Ẽα̃i , X̃ α̃i , Γ̃α̃i >

Γ̃ = {γ̃i } is the finite fuzzy set of actions
Γ̃α̃i ⊆ Γ̃ is the finite fuzzy set of actions that fuzzy agent α̃i can process
Λ̃α̃i ⊆ Γ̃ is the specific finite fuzzy set of communication acts that fuzzy agent α̃i

can process; λ̃s,r =< λ̃, α̃s, α̃r , P̃α̃s , τ, η̃ > is a fuzzy communication
between α̃s and α̃r

K̃ = {κ̃i } is the finite fuzzy set of fuzzy knowledge in agent-based system
K̃α̃i ⊆ K̃ is the finite fuzzy set of fuzzy knowledge of fuzzy agent α̃i , with K̃α̃i =

P̃α̃i ∪ Σ̃α̃i ∪ Σ̃M̃α̃i

Ẽ = {ε̃i } is the finite fuzzy set of fuzzy events observed in agent-based system
Ẽα̃i ⊆ Ẽ is the finite fuzzy set of fuzzy events that fuzzy agent α̃i can observe
X̃ = {χ̃i } is the finite fuzzy set of conditions in agent-based system
X̃ α̃i ∈ X̃ is the finite fuzzy set of conditions associated to internal states of fuzzy

agent α̃i

B̃ =
{
β̃i

}
is the finite fuzzy set of speech acts

H̃ = {η̃i } is the finite fuzzy set of messages
T̃ = {τ̃i } is the finite set of types of messages

M̃α =< Ã, Ĩ , P̃, Õ > is the tuple defining an agent-based system
ΦΠ̃(α̃i )

: Σ̃ × Σ̃M̃α̃i
→ Π̃α̃i is the function of observations of fuzzy agent α̃i

ΦΔ̃(α̃i )
: Π̃α̃i × Σ̃α̃i → P̃α̃i is the function of decisions of fuzzy agent α̃i

ΦΓ̃ (α̃i )
: Δ̃α̃i × Σ̃ → Γ̃α̃i is the function of actions of fuzzy agent α̃i
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II: Characteristics Defined for the Case Study

Domains 
Fuzzy
Agents

Description 
Fuzzy
Agents

Description 

Requirements 

1r
~ Size  7r

~ Classic  

2r
~ Weight  8r

~ Comfortable  

3r
~ Price  9r

~ Practical 

4r
~ Office  10r~ Durable  

5r
~ Bar 11r~ Stable  

6r
~ Classroom 

Functions 
1f

~ Support the lower-body 
weight of a person 3f

~ Support the arms of a person in a 
sitting position 

2f
~ Support the back of a person 

in a sitting position 4f
~ Offer movement space for the legs 

of a person in a sitting position 

Solutions 

1s~

Cl1:
Seat

11s~

Cl3:
Armrest

2s~ 12s~

3s~ 13s~

4s~ 14s~

5s~ 15s~

6s~

Cl2:
Back

16s~

Cl4:
Stand

7s~ 17s~

8s~ 18s~

9s~ 19s~

10s~ 20s~

Constraints: 

example for 

the view 

“Production” 

11c~ Aim at simple shapes 41c~ Provide adequate support surfaces

21c~ Avoid differences in cross-

section
51c~ Avoid unnecessary machining 

31c~ Avoid large curvatures 61c~ Avoid excessively thin sections



224 A.-J. Fougères and E. Ostrosi

References

1. Agard, B., Barajas, M.: The use of fuzzy logic in product family development: literature review
and opportunities. J. Intell. Manuf. 23(5), 1445–1462 (2012)

2. Deciu, E.R., Ostrosi, E., Ferney,M., Gheorghe,M.: Configurable product design usingmultiple
fuzzy models. J. Eng. Des. 16(2–3), 209–235 (2005)

3. Doctor, F., Hagras, H., Callaghan, V.: An intelligent fuzzy agent approach for realising ambient
intelligence in intelligent inhabited environments. IEEE Trans. SMC, Part A: Syst. Hum. 35(1),
55–65 (2005)

4. Duman, H., Hagras, H., Callaghan, V.: Intelligent association exploration and exploitation of
fuzzy agents in ambient intelligent environments. J. Uncertain Syst. 2(2), 133–143 (2008)

5. Epstein, J.-G., Möhring M., Troitzsch K.G.: Fuzzy-logical rules in a multi-agent system. In:
Proceedings of SimSocVI Workshop, Groningen, Netherlands, 19–21 September 2003

6. Ferber, J.: Multi-agent Systems. An Introduction to Distributed Artificial Intelligence. Addison
Wesley, London (1999)

7. Ferber J., Stratulat T., Tranier J.: Towards an integral approach of organizations in multi-
agent systems: the MASQ approach. In: Multi-agent Systems: Semantics and Dynamics of
Organizational Models, Virginia Dignum (Ed), IGI (2009)

8. Fougères A.-J.: Agents to cooperate in distributed design process. In: IEEE International Con-
ference on Systems, Man and Cybernetics, (SMC’04), The Hague, vol. 3, pp. 2629–2634
(2004)

9. Fougères, A.-J.: Modelling and simulation of complex systems: an approach based on multi-
level agents. Int. J. Comput. Sci. Issues 8(6), 8–17 (2011)

10. Fougères, A.-J.: A modelling approach based on fuzzy agents. Int. J. Comput. Sci. Issues 9(6),
19–28 (2012)

11. Fougères, A.-J., Choulier, D., Ostrosi, E.: ADEA–a multi agent system for design activity
analysis. In: Proceedings of the 19th ISPE International Conference onConcurrent Engineering
(CE’2012), Trier, Germany, 3–7 September 2012, vol. 1, pp. 485–496 (2012)

12. Fougères, A.-J., Ostrosi, E.: Fuzzy agent-based approach for consensual design synthesis in
product integrated configuration. Integr. Comput.-Aided Eng. 20(3), 259–274 (2013)

13. Ghasem-Aghaee, N., Ören, T.I.: Cognitive complexity and dynamic personality in agent sim-
ulation. Comput. Hum. Behav. 23, 2983–2997 (2007)

14. Skarmeta, A.F.G., Barberá, H.M., Alonso M.S.: A fuzzy agents architecture for autonomous
mobile robots. In: Proceedings of IFSA’99, Taiwan (1999)

15. Jennings, N.R.: On agent-based software engineering. AI 117, 277–296 (2000)
16. Fard, M.K., Zaeri, A., Aghaee, N.G., Bakhsh, M.A.N., Mardukhi, F.: Fuzzy emotional

COCOMO II software cost estimation (FECSCE) using multi-agent systems. Appl. Soft Com-
put. 11(2), 2260–2270 (2011)

17. Kota, R., Gibbins, N., Jennings, N.R.: Self-organising agent organisations. In: Proceedings of
the 8th International Conference on Autonomous Agents and Multiagent Systems, vol. 2, pp.
797–804 (2009)

18. Kubera, Y., Mathieu, P., Picault, S.: IODA: an interaction-oriented approach for multi-agent
based simulations. AAMAS 23(3), 303–343 (2011)

19. Leitão, P.: Agent-based distributed manufacturing control: a state-of-the-art survey. Eng. Appl.
Artif. Intell. 22(7), 979–991 (2009)

20. Lughofer, E.: Evolving Fuzzy Systems—Methodologies. Advanced Concepts and Applica-
tions. Springer, Berlin (2011)

21. Di Marzo, S.G., Gleizes, M.-P., Karageorgos, A.: Self-organization in multi-agent systems.
Knowl. Eng. Rev. 20(2), 165–189 (2005)

22. Micaëlli, J.-P., Fougères, A.-J.: L’Évaluation creative. UTBM Press, Belfort (2007)
23. Monostori, L., Vancza, J., Kumara, S.R.T.: Agent-based systems formanufacturing. Ann. CIRP

55(2), 697–720 (2006)
24. Movahed-Khah, R., Ostrosi, E., Garro, O.: Analysis of interaction dynamics in collaborative

and distributed design process. Int. J. Comput. Ind. 61(2), 2–14 (2010)



Multiple Fuzzy Roles: Analysis of Their Evolution … 225

25. Munoz-Hernandez, S., Gomez-Perez, J.M.: SolvingCollaborative FuzzyAgents Problemswith
CLP(FD). Lecture Notes in Computer Science, vol. 3350/2005, pp. 187–202 (2005)

26. Nwana, H.S.: Software agents: an overview. Knowl. Eng. Rev. 11(2), 205–244 (1996)
27. Ostrosi, E., Bi, S.T.: Generalised design for optimal product configuration. Int. J. Adv. Manuf.

Technol. 49(1–4), 13–25 (2010)
28. Ostrosi, E., Fougères, A.-J., Ferney,M.: Fuzzy agents for product configuration in collaborative

and distributed design process. Appl. Soft Comput. 8(12), 2091–2105 (2012)
29. Ostrosi, E., Fougères, A.-J., Ferney, M., Klein, D.: A fuzzy configuration multi-agent approach

for product family modelling in conceptual design. J. Intell. Manuf. 23(6), 2565–2586 (2012)
30. Ostrosi, E., Haxhiaj, L., Fukuda, S.: Fuzzy modelling of consensus during design conflict

resolution. Res. Eng. Des. 23(1), 53–70 (2012)
31. Shen, W., Norrie, D.H., Barthès, J.-P.: Multi-Agent Systems for Concurrent Intelligent Design

and Manufacturing. Taylor and Francis, London (2001)
32. Tweedale, J., Ichalkaranje, N.: Innovations in multi-agent systems. J. Netw. Comput. Appl.

30(3), 1089–1115 (2007)
33. van Aart, C.: Organizational Principles for Multiagent Architectures. Birkhauser Verlag, Basel

(2005)
34. Wooldridge, M.: Agent-based software engineering. IEE Proc. Softw. Eng. 144(1), 26–37

(1997)
35. Zadeh, L.A.: Fuzzy sets. Information and control 8, 338–353 (1965)



Multi-distance and Fuzzy Similarity Based
Fuzzy TOPSIS

Mikael Collan, Mario Fedrizzi and Pasi Luukka

Abstract This article introduces a new extension to fuzzy TOPSIS. In the extension
we have used as a basis a fuzzy similarity based fuzzy TOPSIS that uses an additional
component of multi-distance in forming a closeness coefficient. Ordered weighted
averaging is also used in the aggregation process over fuzzy similarity values. For
the ordered weighted averaging operator weight generation we use the O’Hagan’s
method, to find optimalweights. Several different, predefined orness values are tested
and an overall ranking is computed, based on the rankings resulting from multiple
different orness values. The presented method is numerically applied to a research
and development project selection problem.

Keywords Fuzzy similarity · Fuzzy TOPSIS ·Multi-distances ·OWA ·O’Hagan’s
method

1 Introduction

This paper investigates and presents a new extension of the fuzzy similarity based
fuzzy Technique for Order Performance by Similarity to Ideal Solution (fuzzy TOP-
SIS). Fuzzy TOPSIS was originally introduced by Chen in [1] and later extended
to include trapezoidal fuzzy numbers in [2]. In these contributions a vertex based
fuzzy distance method was used as a measure of distance from (“similarity to”) the
ideal solutions. A similarity measure based version of fuzzy TOPSIS was introduced
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in [3], where the similarity to the ideal solutions is calculated by using a fuzzy
similarity measure. This strain of research was continued by [4], where two different
fuzzy similarity measures were considered and by [5], where four fuzzy similar-
ity measure based fuzzy TOPSIS variants and a way of holistic overall ranking of
projects was presented.

Fuzzy TOPSIS uses fuzzy numbers as inputs and is thus able to incorporate
inaccurate and imprecise information in the analysis (not having to simplify reality
by using crisp numbers). The main difference in using the fuzzy similarity measures
and the (crisp) distance measures in the TOPSIS environment with fuzzy numbers is
that fuzzy similarity measures can take into consideration more of the information
that is stored in the fuzzy number, e.g., with regards to the perimeter and the area
of the fuzzy number. The crisp distance measures essentially defuzzify the fuzzy
number in order to calculate a distance between the resulting crisp number and the
ideal solution. Using a defuzzified crisp distance based measure may cause a loss of
relevant information. The fuzzy similarity measure used here is introduced in Hejazi
et al. [6] and can take into account the perimeter and the area of fuzzy numbers. This
similarity measure was previously studied in the context of fuzzy similarity based
TOPSIS method in [4, 5].

The new contribution of this paper concentrates on the application of multi-
distances in creating additional information for project ranking by similarity coef-
ficients, after they have been analyzed with fuzzy similarity measure based fuzzy
TOPSIS. Multi-distances are used in analyzing the “level” of similarity between
analyzed criteria. High level of similarity means a low multi-distance and can be
interpreted as homogeneity or consistency of, e.g., performance or expectations.
Such information may be valuable in the analysis and offers an additional differ-
entiator between objects. Multi-distances were examined by Martin and Mayor [7],
and presented as a generalization of the notion of distance. Martin and Mayor pro-
posed the construction of multi-distances by means of OWA functions in [8]. The
OWA based multi-distances functions [9], used here, combine the distance values
of all pairs of elements in the collection into OWA-based multi-distances. Using the
multi-distance in the aggregation will add a step of pairwise distance measurement
of similarities between criteria (values) in the procedure. Use of multi-distances with
fuzzy TOPSIS is, to the best of our knowledge a new approach.

The remainder of the paper is organized as follows. In Sect. 2 the fuzzy similar-
ity relation between fuzzy numbers, the OWA operator, multi-distances, and total
ordering of fuzzy numbers are introduced. Section3 is devoted to the description of
the new approach to fuzzy TOPSIS based on fuzzy similarity and multi-distances.
A numerical example is introduced in Sect. 4 and some conclusions in Sect. 5 close
the paper.

2 Preliminaries

In this section some preliminary mathematical concepts, used in theMCDMmethod,
are shortly introduced. They include: fuzzy similarity measures, the OWA-operator,
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and an often-used method to generate the weights for the OWA operator the
O’Hagan’s method. Multi-distances are defined following the work of Martin and
Mayor [7] and the relationship between the OWA-operator and multi-distances is
presented. Additionally, a way to find a total ordering for fuzzy numbers is shortly
introduced.

2.1 Fuzzy Similarity of Fuzzy Numbers

By focusing on uncertain objects like in fuzzy sets or fuzzy numbers, the notion of a
fuzzy subset generalizes that of the classical subset, where the concept of similarity
can be considered as a many-valued generalization of the classical notion of equiv-
alence [10]. As an equivalence relation is a familiar way to classify similar objects,
fuzzy similarity is an equivalence relation that can be used to classify multi-valued
objects [4]. The concept of a similarity measure is of high importance in this work,
and it is defined as follows:

Definition 1 For any fuzzy subset F �= ∅ of Rn , and for any elements A, B ∈ F
the function of a similarity measure is defined as [11]:

s(A, B) : F × F → [0, 1]

The defined similarity measures s satisfy the following properties for any x, y,

z ∈ F ,

• s(x, x) = s(y, y), ∀x, y ∈ F (Reflexivity)
• s(x, y) ≤ s(y, y), ∀x, y ∈ F (Minimality)
• s(x, y) = s(y, x) (Symmetry)
• If s(x, y) = s(x, z) it implies that s(x, y) = s(x, z) = s(y, z) (Transitivity)

Since fuzzy numbers can be considered to be a certain type of restricted fuzzy
sets, the similarity measures for generalized fuzzy numbers come from similarity
measures for fuzzy sets.

Represented by Chen [12], a generalized trapezoidal fuzzy number’s notation
is Ã = (a, b, c, d; w), where a,b,c and d are real values and 0 < w ≤ 1. The
membership function μÃ satisfies the following conditions [12]:

1. μÃ is a continuousmapping from the universe of discourse X to the closed interval
in [0, 1]

2. μÃ = 0, where −∞ < x ≤ a
3. μÃ is monotonically increasing in [a, b]
4. μÃ = w, where b ≤ x ≤ c
5. μÃ is monotonically decreasing in [c, d]
6. μÃ = 0, where d ≤ x < ∞
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Due to the fit and the applicability of similaritymeasures in the context of decision-
making, various similarity measures have been proposed for the calculation the
degree of similarity between fuzzy numbers of [12]. In this work, a recently intro-
duced similarity measure by Hejazi et al. in [6] is used. The similarity measure takes
into consideration the perimeter and the area of fuzzy numbers. The similarity mea-
sure is denoted s(M, N ), and involves fuzzy numbers M = (m1, m2, m3, m4;ωm)

and N = (n1, n2, n3, n4;ωn) with 0 ≤ m1 ≤ m2 ≤ m3 ≤ m4 ≤ 1, 0 ≤ n1 ≤ n2 ≤
n3 ≤ n4 ≤ 1, and M(xi ) and N (xi ) their corresponding membership functions with
i ∈ {1, 2, 3, 4} for generalized trapezoidal fuzzy numbers, whereωm andωn are their
corresponding heights. The definition is as follows:

s(M, N ) = (1 −
∑4

i=1 |mi − ni |
4

)

× min(p(m), p(n))

max(p(m), p(n))

× min(a(m), a(n)) + min(ωm, ωn)

max(a(m), a(n)) + max(ωm, ωn)
(1)

where the values p(m) and p(n) represent the perimeters of the trapezoidal fuzzy
numbers M and N , and are defined as:

p(m) =
√

(m1 − m2)2 + ω2
m +

√
(m3 − m4)2 + ω2

m

+ (m3 − m2) + (m4 − m1)

and

p(n) =
√

(n1 − n2)2 + ω2
n +

√
(n3 − n4)2 + ω2

n

+ (n3 − n2) + (n4 − n1)

The values a(m) and a(n) represent the areas of the trapezoidal fuzzy numbers
M and N , they are defined as:

a(m) = 1

2
ωm(m3 − m2 + m4 − m1),

and

a(m) = 1

2
ωn(n3 − n2 + n4 − n1).
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Notice that the result of the above similarity measure s(M, N ) belongs to the unit
interval [0, 1] and the larger the value of the similarity measure is, the stronger is the
similarity between the fuzzy numbers M and N .

2.2 The OWA Operator

In 1988Yager introduced an aggregation operator, called orderedweighted averaging
operator (OWA) [13] and formalized it as follows:

An ordered weighted averaging (OWA) operator of dimension m is a mapping
Rm → R that has associated weighting vector W = [w1, w2, . . . , wm] of dimension
m with

m∑
i=1

wi = 1, wi ∈ [0, 1] and 1 ≤ i ≤ m

such that:

OWA(a1, a2, . . . , am) =
m∑

i=1

wi bi (2)

where bi is the i th largest element of the collection of objects a1, a2, . . . , am . The
function value OW A(a1, a2, . . . , am) determines the aggregated values of arguments
a1, a2, . . . , am . One of themeasures related to theOWA is the so called “orness”mea-
sure. For a given weighting vector W = [w1, w2, . . . , wm]T the measure of orness
of the OWA aggregation operator for W is given as

orness(W ) = 1

m − 1

m∑
i=1

(m − i)wi . (3)

It can be observed that the weighting vector has an important role in the OWA
operator; theweighting vector determines how large aweight, each aggregated object
receives. The distribution of weights depends on the selected value of orness that can
be selected from between [0, 1]. If orness is 0 then the first ordered object gets all
weight and the rest of the objects get a weight of zero. If the orness value is 1, then the
weight is evenly distributed among all objects and the weighting is actually the same
as a normal non-weighted average. In 1988 O’Hagan [14] introduced a technique for
computing the weights used in OWA. The procedure assumes a predefined degree
of orness—the weights are obtained by maximizing the entropy −∑m

i=1 wi ln(wi ).
The solution is based on the constrained optimization problem
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maximize −
m∑

i=1

wiln(wi )

subject to α = 1

m − 1

m∑
i=1

(m − 1)wi

m∑
i=1

wi = 1 and wi ≥ 0.

The above constrained optimization problem can be solved by using different
methods. Here an analytical solution introduced by [15] is used. Below thisweighting
scheme is presented:

a. if m = 2, implies that w1 = α and w2 = 1 − α

b. if α = 0 or α = 1 implies that the corresponding weighting vectors are w =
(0, . . . 0, 1) or w = (1, 0, . . . , 0) respectively.

c. if m ≥ 3 and 0 ≤ α ≤ 1 then, we have,

wi = (
wm−i
1 · wi−1

m

) 1
m−1

wm = ((m−1)·α−m).w1+1
(m−1)·α+1−m·w1

w1[(m − 1) · α + 1− m · w1]m = ((m − 1) · α)m−1 · [((m − 1) · α − m) · w1 + 1]
For m ≥ 3, the weights are computed by initially obtaining the first weight, followed
by the last weight of the weighting vector, before other weights are computed.

2.3 Multi-distances

A multi-distance is a representation of the notion of multi-argument distances. The
set X is a union of all m-dimensional lists of elements of X , multi-distance is defined
as a function D : X → [0,∞) on a non empty set X provided that the following
properties are satisfied for all m and x1, x2, . . . , xm, y ∈ X

c1. D(x1, x2, . . . , xm) = 0 if and only if xi = x j for all i, j = 1, 2, . . . , m
c2. D(x1, x2, . . . , xm) = D(xσ(1), xσ(2), . . . , xσ(m)) for any permutation σ of i, j =

1, 2, . . . , m
c3. D(x1, x2, . . . , xm) ≤ D(x1, y) + D(x2, y) + · · · + D(xm, y).

We say that D is a strong multi-distance if it satisfies c1, c2, and

c3� D(x1, x2, . . . , xm) ≤ D(x1, y) + D(x2, y) + · · · + D(xm, y). for all x1, x2,

. . . , xm, y ∈ X
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In application contexts, the estimation of distances between more than two elements
of the set X can be constructed using multi-distances by means of the OWA operator
as suggested by Martin and Mayor [7].

Dw(x1, x2, . . . , xm) = OW Aw(d(x1, x2), d(x2, x3), . . . ,

d(xm−1, xm)) (4)

In this case, elements x1, x2, . . . , xm are obtained from the similarity measure (1),
and the distance applied is d(x, y) = |x − y|.

2.4 Total Ordering of Fuzzy Numbers

Set inclusion of fuzzy sets is only a partial order, where all fuzzy sets are not com-
parable. Kaufmann and Gupta [16] propose that when trying to find a total order
or linear order for fuzzy numbers, where all fuzzy numbers and fuzzy intervals are
comparable, we have to first check that it is possible to find a linear order by giving
different emphases to different properties of fuzzy sets. To reach a total order or a
linear order of fuzzy numbers, an importance order must be given to three criteria.
If the first criterion does not give a unique linear order, then the second criterion
should be used. One continues in this way as long as it is needed. The description
of the three different criteria used in the Kaufmann and Gupta ordering method is
given below:

1st The removal: Let us consider an ordinary number k ∈ R and a fuzzy number
A. The left side removal of A with respect to k, denoted by Rl(A, k), is defined
as the area bounded by k and the left side of the fuzzy number A. Similarly, the
right side removal, Rr (A, k) is defined. The removal of the fuzzy number A with
respect to k is defined as the mean of Rl(A, k) and Rr (A, k). Thus,

R(A, k) = 1

2
(Rl(A, k) + Rr (A, k)). (5)

The position of k can be located anywhere on the x-axis including k = 0.
By definition, the areas are positive quantities, but here they are evaluated by
integration taking into account the position (negative, zero, or positive) of the
variable x ; therefore, R(A, k) can be positive, negative or null.

The first criterion, used in ordering is the removal with respect to k. However,
two different fuzzy numbers can have the same removal with respect to the same
k. In fact, this criterion decomposes a set of fuzzy numbers into classes having
the same removal number. In other words, fuzzy numbers are ranked into classes
that can then be ordered according to the removal number; if there is only one
fuzzy number per each class, thenwe have a linear ordering of the fuzzy numbers.
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The removal number R(A, k) defined in this criterion, relocated to k = 0 is
equivalent to an “ordinary representative” of the fuzzy number. In the case of a
triangular fuzzy number this ordinary representative is given by:

Â = a1 + 2a2 + a3

4
, (6)

where A = (a1, a2, a3).
If after using the removal criteria there are classes with multiple fuzzy num-

bers, one has to go forward and use the second criteria for ordering the fuzzy
numbers within the “multiple number” classes.

2nd The mode: In each class of (multiple) fuzzy numbers, one should look for the
mode of each fuzzy number in the class; these modes will generate sub-classes.
If the fuzzy numbers under consideration have a non-unique mode, one takes
the mean position of the modal values. It must be noted that this is only one
way of obtaining sub-classes, and one may need the following third divergence
criterion for further sub-classification.

Mode(A) = {x ∈ U |A(x) = 1} (7)

If there are still classes (or rather sub classes) with multiple fuzzy numbers, one
will resort to the third ordering criterion.

3rd The divergence: The consideration of the divergence around the mode in each
sub-class leads to the sub-sub-classes, and this criterion may be sufficient to
obtain the final linear ordering of fuzzy numbers (Fig. 1).

Divergence(A) = sup(supp(A)) − inf(supp(A)) (8)

Fig. 1 Removal number



Multi-distance and Fuzzy Similarity Based Fuzzy TOPSIS 235

Summarizing the method: when one orders fuzzy numbers to size order, one
proceeds as follows. Apply the above presented criteria in the exact given order,
such that if the unique linear order is not obtained then move to the next criterion.

3 Fuzzy Similarity Based Fuzzy TOPSIS with
Multi-distances

A fuzzy extension to the Technique for Order Performance by Similarity to Ideal
Solution (TOPSIS) was presented by Chen [1] and it has been extended to solve
problems involving trapezoidal fuzzy numbers and applied, e.g., to solving supplier
selection problems [2]. It is a Multiple Criteria Decision Making (MCDM) method
[2, 17]useful in ranking objects, based on the similarity of the object characteristics
to the characteristics of an ideal object (ideal solution). The method is based on
the idea that objects are ranked higher, the shorter their distance is from the Fuzzy
Positive Ideal Solution (FPIS) and the further away they are from the Fuzzy Negative
Ideal Solution (FNIS). One advantage of having extended the TOPSIS method to
the fuzzy environment is that a linguistic assessment can be properly used, instead of
being constrained to using only numerical values; linguistic variables can be mapped
to corresponding fuzzy numbers [1, 2].

Solution to the project selection problem, when using the T O P SI S approach,
can be presented by considering a situation of a finite set of projects P = {Pi |
i = 1, 2, . . . , m}, which need to be evaluated by a committee of decision-makers
D = {Dl |l = 1, 2, . . . , k}, by considering a finite set of given criteria C = {C j | j =
1, 2, . . . , n}.

Let us consider a decision matrix representing a set of performance ratings of
each alternative project Pi , i = 1, 2, . . . , m with respect to each criterion C j , j =
1, 2, . . . , n, as follows [18]:

X =

⎡
⎢⎢⎣

x11 x12 . . . x1n

x21 x22 . . . x2n

. . . . . . . . . . . .

xm1 xm2 . . . xmn

⎤
⎥⎥⎦

Let us also assume the weight w j of the j th criterion C j , such that the weight vector
is represented as follows:

W = [
w1, w2, . . . , wn

]

where m rows represent m possible alternatives, n columns represent n rele-
vant criteria, and xi j represent the performance rating of the i th project Pi with
respect to the j th criterion C j . The above fuzzy ratings for each decision-maker
Dl, l = 1, 2, . . . , k are represented by positive trapezoidal fuzzy numbers
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R̂l = (al , bl , cl , dl), l = 1, 2, . . . , k with the respectivemembership functionμR̂l
(x).

As the rating R̂l = (al , bl , cl , dl) is for the lth decision-maker, the aggregated fuzzy
number that can stand for all decision-makers’ rating is:

R̂ = (a, b, c, d)

with:
a = minl{al}, b = 1

k

∑k
l=1 bl , c = 1

k

∑k
l=1 cl , d = maxl{dl}. The fuzzy rat-

ing and importance weight of the lth decision-maker can respectively be repre-
sented by xi jl = (ai jl , bi jl , ci jl , di jl) and ŵ = (w jl1, w jl2, w jl3, w jl4) with i =
1, 2, . . . , m; j = 1, 2, . . . , n. Then, the aggregated fuzzy ratings xi j of alternatives,
with respect to each criterion are:

xi j = (ai j , bi j , ci j , di j ),

calculated as: ai j = minl{ai jl}, bi j = 1
k

∑k
l=1 bi jl , ci j = 1

k

∑k
l=1 ci jl , di j =

maxl{di jl}. The aggregated fuzzy weight ŵ j of each criterion can be calculated as:

ŵ j = (w j1, w j2, w j3, w j4)

with w j1 = minl{w jl1}, w j2 = 1
k

∑k
l=1 w jl2, w j3 = 1

k

∑k
l=1 w jl3, w j4 = maxl{w jl4}.

After aggregation the decisionmatrix and the weight vector are of the following form
X = {xi j }m×n and W = {w j }1×n , where i = 1, 2, . . . , m and j = 1, 2, . . . , n.

These matrices’ elements are given by positive trapezoidal fuzzy numbers as:
xi j = (ai j , bi j , ci j , di j ) and w j = (w j1, w j2, w j3, w j4).

A linear scale transformation is used to transform the various criteria scales into
comparable scales, in order to avoid overly complex mathematical operations in a
decision process. The set of criteria can be divided into benefit criteria B, where the
larger the rating, the greater the preference and to cost criteria C , where the smaller
the rating, the greater the preference. A normalization method designed to preserve
the property, in which the elements are normalized trapezoidal fuzzy numbers, is
used. The normalized value of xi j is ri j , and the normalized fuzzy decision matrix is
then represented as:

R = [ri j ]m×n (9)

with

ri j = (
ai j

d+
j

,
bi j

d+
j

,
ci j

d+
j

,
di j

d+
j

), j ∈ B

ri j = (
a−

j

di j
,

a−
j

ci j
,

a−
j

bi j
,

a−
j

ai j
), j ∈ C
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whered+
j = maxi {di j }, j ∈ B anda−

j = mini {ai j }, j ∈ C . Theweighted normalized
value of ri j is called vi j , and by considering the importance of each criterion, the
weighted normalized fuzzy decision matrix is represented as:

V = [vi j ]m×n (10)

where vi j = ri j · w j . For all i , j , the elements vi j are now normalized positive
trapezoidal fuzzy numbers.

Next, the ideal solutions must be determined and taken from the given criteria,
which are linguistically expressed; they are commonly referred to as Fuzzy Positive
Ideal Solution (FPIS) and Fuzzy Negative Ideal Solution (FNIS). By considering
a finite set of given criteria C = {C j | j = 1, 2, . . . , n}, the ways to select the
FPIS(P+) and the FNIS(P−) come from the weighted normalized decision matrix
V = (vi j )m×n , where the obtainedweighted normalized values vi j are fuzzy numbers
expressed as:

vi j = (vi j1, vi j2, vi j3, vi j4)

The fuzzy positive-ideal solution P+ and the fuzzy negative-ideal solution P−,
respectively are:

P+ = [v+
1 , v+

2 , . . . , v+
n ] (11)

P− = [v−
1 , v−

2 , . . . , v−
n ] (12)

A way for choosing the FPIS (P+) and the FNIS (P−) has been explained in [3],
and is given as follows:

Every element of P+ is the maximum for all i weighted normalized value , and
every element of P− is the minimum for all i weighted normalized value:

v+
j = (max

i
vi j1,max

i
vi j2,max

i
vi j3,max

i
vi j4) (13)

v−
j = (min

i
vi j1,min

i
vi j2,min

i
vi j3,min

i
vi j4) (14)

This approach is also used here. The similarity measure between each project and
the ideal solutions P+ and P− will be needed later, when calculating the closeness
coefficients to determine the ranking order of all possible alternative projects.

The similarities s+
i from the positive and negative ideal solution are calculated as:

s+
i = {si1(vi1, v

+
1 ), si2(vi2, v

+
2 ), . . . , sin(vin, v

+
n )} (15)

s−
i = {si1(vi1, v

−
1 ), si2(vi2, v

−
2 ), . . . , sin(vin, v

+
n )} (16)

where for similarity we used the similarity measure from equation (1).
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These similarity vectors are then aggregated using OWA, as follows:

S+
iw = OW Aw(s+

i1, s+
i2, . . . , s+

in) (17)

S−
iw = OW Aw(s−

i1, s−
i2, . . . , s−

in) (18)

Besides this we also aggregate s+
i vector by using multi-distance as

D+
iw(s+

i1, s+
i2, . . . , s+

in) = OW Aw(d(s+
i1, s+

i2), d(s+
i2, s+

i3),

. . . , d(s+
i(n−1), s+

in)) (19)

In the closeness coefficient we nowwant to take both into account, the similarities
from the positive and the negative ideal solution, but also the multi-distance. This
is now done by modifying the closeness coefficient in form given in Eq. (20). The
closeness coefficients of the alternative project Pi with respect to the positive ideal
solution by using the distance matrix (CCi ) are defined as:

CCi = S−
iw + D+

iw

D+
iw + S+

iw + S−
iw

, i = 1, 2, . . . , m (20)

Next we rank the projects by closeness coefficients, now using an ascending order.
For all i = 1, 2, . . . , m and j = 1, 2, . . . , n. Different steps for the given

T O P SI S algorithm can be presented as follows:

Step 1: Form a decision-makers’ committee, and identify the evaluation criteria.
Step 2: Choose appropriate linguistic variables for the importance weight of the

criteria and the linguistic ratings for alternative projects.
Step 3: Aggregate the weight of criteria to get the aggregated fuzzy weight ŵ j of

the criterion C j , and join decision-makers’ ratings to get an aggregated
fuzzy rating xi j of the project Pi in consideration of the criterion C j .

Step 4: Construct a fuzzy decision matrix and a normalized fuzzy decision matrix.
Step 5: Construct a weighted normalized fuzzy decision matrix.
Step 6: Determine a fuzzy positive (and negative) ideal solution FPIS (and FNIS).
Step 7: Construct a similarity matrix by calculating the similarity measure of each

project from the FPIS (and FNIS).
Step 8: Calculate aggregated similarity values for each project with regards to the

FPIS and the FNIS by using OWA.
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Step 9: Calculate a multi-distance value for each project with regards to the FPIS.
Step 10: Calculate a closeness coefficient for each project, in order to determine

the projects’ ranking within the set of projects.
For steps 8 − 10: use multiple orness values for each alternative to get
multiple ranking results.

Step 11: Rank the set of alternatives for each orness value and calculate the min-
imum, the mean, and the maximum ranking of each alternative, to form
a triangular fuzzy ranking score for each alternative by using the three
values.

Step 12: Make an overall ranking of the alternatives using themethod byKaufmann
and Gupta [16], based on the fuzzy ranking score.

4 Numerical Example

This numerical example uses the same data that is also used in [19]. A pharmaceutical
company can select a certain number of projects to invest in from among 20 R&D
projects. Criteria that are used in the example come from costs, revenues, budget
constraints, and real option values (ROV), calculated for each project by using the

Table 1 Evaluation of R&D projects

Project C1 C2 C3 C4

P1 (53, 62, 68, 78) (43, 50, 55, 63) (115, 128, 128, 141) 0.06

P2 (83, 98, 108, 123) (85, 100, 110, 125) (126, 140, 140, 154) 0.0594

P3 (157, 185, 204, 231) (170, 200, 220, 250) (170, 189, 189, 208) 18

P4 (204, 240, 268, 300) (170, 200, 220, 250) (164, 182, 182, 200) 0.54

P5 (259, 305, 336, 381) (510, 600, 660, 750) (209, 232, 232, 255) 3.10

P6 (85, 100, 110, 125) (85, 100, 110, 125) (185, 206, 206, 227) 5

P7 (259, 305, 336, 381) (510, 600, 660, 750) (209, 232, 232, 255) 3.10

P8 (94, 110, 121, 138) (85, 100, 110, 125) (177, 197, 197, 217) 1.58

P9 (140, 165, 182, 206) (153, 180, 198, 225) (238, 264, 264, 290) 17.15

P10 (190, 223, 245, 279) (323, 380, 418, 475) (257, 285, 285, 314) 1.65

P11 (60, 70, 77, 88) (68, 80, 88, 100) (148, 164, 164, 180) 10.03

P12 (91, 107, 118, 134) (85, 100, 110, 125) (144, 160, 160, 176) 2.39

P13 (247, 290, 319, 363) (34, 40, 44, 50) (297, 330, 330, 363) 0

P14 (370, 435, 479, 544) (595, 700, 770, 875) (338, 375, 375, 413) 278.25

P15 (166, 195, 215, 244) (425, 500, 550, 625) (279, 310, 310, 341) 320.25

P16 (221, 260, 286, 325) (255, 300, 330, 375) (315, 350, 350, 385) 39.66

P17 (235, 277, 305, 346) (298, 350, 385, 438) (311, 346, 346, 381) 72.48

P18 (281, 330, 363, 413) (468, 550, 605, 688) (331, 368, 368, 405) 231

P19 (344, 405, 446, 506) (680, 800, 880, 1000) (365, 406, 406, 447) 414.75

P20 (451, 530, 583, 663) (978, 1150, 1265, 1438) (394, 438, 438, 482) 651
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Table 2 Project closeness coefficient values and rankings, for α = 0.1, 0.5, 1

Project CC(α=0.1) Rank CC(α=0.5) Rank CC(α=1) Rank

P1 0.83 19 0.710 8 0.709 8

P2 0.813 13 0.728 11 0.728 11

P3 0.79 10 0.741 15 0.741 15

P4 0.80 11 0.751 19 0.751 19

P5 0.61 2 0.614 2 0.615 2

P6 0.821 17 0.74 14 0.739 14

P7 0.819 15 0.717 10 0.716 10

P8 0.824 18 0.744 17 0.743 17

P9 0.809 12 0.751 18 0.75 18

P10 0.68 6 0.681 7 0.682 7

P11 0.81 14 0.716 9 0.715 9

P12 0.82 16 0.737 13 0.736 13

P13 0.85 20 0.798 20 0.797 20

P14 0.64 4 0.674 6 0.674 6

P15 0.58 1 0.612 1 0.613 1

P16 0.77 9 0.742 16 0.743 16

P17 0.75 8 0.729 12 0.729 12

P18 0.64 3 0.672 5 0.673 5

P19 0.68 5 0.661 4 0.662 4

P20 0.71 7 0.652 3 0.651 3

pay-off method for real option valuation [20]; the values of these four criteria are
represented by trapezoidal fuzzy numbers. The first and the third criteria are cost
criteria and the second and the fourth, benefit criteria.

In Table1 one can see evaluations of the different criteria by using trapezoidal
fuzzy numbers. The fourth (ROV) criterion is carried out in computations as a fuzzy
number of form A = (a1, a2, a3, a4), where a1 = a2 = a3 = a4.

For different α values, the Table2 shows the computed closeness coefficients and
the rankings for each of the twenty projects for three different orness valuesα. In com-
putation of basic statistics (see Table3) and in creation of fuzzy numbers (see Table 4)
a larger set of values of α was used. There α values were α = 0.1, 0.2, . . . , 0.9, 1 .
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Table 3 The minimum, mean, and the maximum rankings

Project Minimum Mean Maximum

P1 8 10.3 19

P2 11 11.9 14

P3 10 13.7 15

P4 11 17.1 19

P5 2 2 2

P6 14 15.2 18

P7 10 11 15

P8 17 17.5 19

P9 12 17.1 18

P10 6 6.8 7

P11 9 10 14

P12 13 14.1 17

P13 20 20 20

P14 4 5.4 6

P15 1 1 1

P16 9 13.6 16

P17 8 10.5 12

P18 3 4.4 5

P19 4 4.3 5

P20 3 4.1 7

In Table3, the minimum, the mean, and the maximum rankings from our exper-
imental setup are summarized. These are then used in the formation of a triangular
fuzzy number ranking for each project.

A total ordering is found for the fuzzy numbers presented in Table3 by using the
method introduced by Kaufmann and Gupta [16]. For this purpose removal num-
ber, dispersion, and modal value are calculated in a way presented above—Table4
presents the resulting overall ranking. According to the result the top five projects
are 15, 5, 18, 19, and 20.
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Table 4 Overall rankings of the R&D projects using removal number, dispersion, and modal value

Project Rank Removal no Div Mode

P15 1 1 0 1

P5 2 2 0 2

P18 3 4.2 2 4.4

P19 4 4.4 1 4.3

P20 5 4.55 4 4.1

P14 6 5.2 2 5.4

P10 7 6.65 1 6.8

P17 8 10.25 4 10.5

P11 9 10.75 5 10

P7 10 11.75 5 11

P1 11 11.9 11 10.3

P2 12 12.2 3 11.9

P16 13 13.05 7 13.6

P3 14 13.1 5 13.7

P12 15 14.55 4 14.1

P6 16 15.6 4 15.2

P9 17 16.05 6 17.1

P4 18 16.05 8 17.1

P8 19 17.75 2 17.5

P13 20 20 0 20

5 Conclusions

A new multiple-criteria decision making approach was presented; it is an extension
for the fuzzy similarity based fuzzy TOPSIS. OWAwas used for aggregating similar-
ity to fuzzy negative and positive ideal solutions for each criterion andmulti-distance
was used in collecting information about the “similarity of these similarities” that
can be understood as a measure of homogeneity or consistency of a given project.
This has allowed the inclusion of more relevant information than is possible when
using a simple defuzzification procedure. The method was applied to a R&D project
selection problem. The results are dependent on the proper selection of the orness
parameter,α, when theweights are generated for theOWAoperator. This weight gen-
eration was done by using O’Hagan’s method that finds the weights as an optimal
solution for a predefined (given) orness value (α). We examined the effect that the
pre-selection of orness has by testing the ranking with a number of orness values. We
presented a way to take in to consideration the “created” information with different
orness values by forming fuzzy numbers from ten rankings of the projects created
by using ten different orness values. A measure of homogeneity of similarity of the
different criteria of each project to the fuzzy positive ideal solution was calculated by
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using multi-distances. This was done to include information about the consistency
of the level of goodness of projects (by the selected criteria). This information was
included in the closeness coefficient that was used in the ranking of the projects. The
final ranking thus includes information about the goodness of each project (as ranked
by TOPSIS) and about the “stability” of the level of goodness of each of the criteria
of each project. The top five projects from the numerical example were found to be
15, 5, 18, 19, and 20. Notable from the results is that projects 15 and 5 were always
top 2 choices, but project 20 varied between rankings 3 to 7 so that with lower values
of orness ranking was lower and after orness value 0.6 it was always the third best
choice. Forming a fuzzy number from different rankings allows one to include differ-
ent points of view and creating an intelligent overall ranking. Using multiple orness
values in forming the final ranking is relevant in situations, where there is uncertainty
or imprecision with regards to the correct parameter selection. It is clear that if there
is absolutely no uncertainty involved in the orness parameter selection that then one
should use the certain parameter alone in creating the ranking. Furthermore, more
relevant information is carried along in the analysis, until the ranking stage, enabling
the ranking to take more things into consideration and thus being based on a more
holistic view of the problem. Interesting future research directions include research
into aggregation operators in general and into how different types of multi-distances
may be used in connection with decision-making problems in general.
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Methodology of Virtual Wood Piece
Quality Evaluation

Jeremy Jover, Vincent Bombardier and Andre Thomas

Abstract This paper presents a way to evaluate the quality of virtual wood products
according to their tomographic image. The main objective is to anticipate a sawmill
divergent process in order to enhance the production plan. From a virtual repre-
sentation of the product, singularity features are extracted and their impact on the
product virtual quality is assessed thanks to the Choquet integrals. Next, the visual
quality is evaluated by merging singularity impacts and singularity number criterion
using suitable operators. Three operators are compared to the mean operator which
is the commonly used one when there is little knowledge on the decision process.
Finally the measure is express in the Sawmill expert language using linguistic vari-
ables which give the possibility degree that the product belongs to each quality. This
degree could be understood as the risk to attribute the concerned quality. It is finally
used to determine which quality is to attribute to product in order to satisfy customer
needs and maximize sawyers benefit by a linear programming algorithm.

Keywords Virtual product · Quality · RX computed tomography · Information
fusion · Divergent bill of material

1 Introduction

Divergent processes have always presented a difficulty for the traceability imple-
mentation. The raw material cutting leads two problems:

• The link between material and production information is difficult to establish and
to maintain all along the product cycle life.
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• Foresee the finish products features, which are very useful for traceability and
production management, is full of uncertainty.

Some solutions are proposed to overcome this problemespecially in the food industry.
These solutions are based on marking and documenting batches [7]. However a part
of the root information is lost and a unique identification is not still possible (what
is ideally expected).

The wood industry is also concerned by these divergent process problems. From
a tree, products satisfying the end customer’s needs must be produced. Moreover
the product origin traces have to be conserved for traceability reasons [13]. The
wood, being a heterogeneous material, increases complexity. Structurally, the wood
is composed of aligned fibers following a longitudinal axe. It not reacts in the same
way following the different axes (longitudinal, radial, and tangential). Thewood color
is not homogeneous too: the growing rings alternation, the singularity presence or
the fungal attacks (blue stain) create heterogeneity on visual and mechanical points
of view.

In sawmills, the optimization, in order to have the right products, is an important
and complicated task. Sawyers have to saw products which have characteristics
neededby customers, froma rawmaterialwhich internal characteristics are unknown.
Dimensionally, it is easy to foresee and have the right product dimension (apply the
cutting pattern), but other features as the color or the mechanical resistance are more
complicated to estimate and to characterize before the log is sawed due to their
subjectivity character and the wood heterogeneity.

Our researches are concerned by the information loss reduction in thewood indus-
try. We have proposed a solution to mark and maintain the origin information of the
trees [11]. In this study, we propose a way to determine the wood product char-
acteristics before sawing operation in order to satisfy the customer needs and the
optimal determination of the production element (net requirement for each product
quality class). The proposed approach aims to automate the product qualification
process (quality product estimation) usually done by an operator. The global process
is described Fig. 1.

Fig. 1 Extraction and exploitation process of virtual products
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In this article, we shortly present the wood quality notion, the sawing optimization
process and the virtual sawing concept allowing to extract the virtual product. Then
we explain how we characterize singularities and calculate their impact on product
with the Choquet integral. Impact calculation is improved by using learning process
to calculate the Choquet capacities. To finish, we describe a way to estimate the wood
products quality by using the impact singularities.Wedemonstrate the feasibilitywith
distinguish wood pieces.

2 Production Foresee in Sawmill

2.1 The Visual Quality of Wood Products

Concerning the needs of the first transformation customers, there are three kinds of
quality: the dimensional quality, the mechanical quality and the visual (aesthetic)
quality. The dimensional quality is easy to characterize (dimension piece precision).
The mechanical quality is more skillful to evaluate. The clear wood has a mechanical
resistance which can be reduced by the singularities presence (knots, crack, rot . . .).
Techniques based on the vibrations give results as explained in [10].

The last one is the visual quality. It is themost complicated to evaluate because the
visual quality is a subjective decision. The visual quality is defined in the standard
NF EN 1611. This standard defines different classes (five) of qualities based on
the singularity feature measurements (size, numbers, type . . .). But the evaluation
is done by a Human Expert which has to estimate the quality within a short time
(according to sawmill high production rate). In this short time the expert cannot
evaluate singularity features as precisely as the standard defines them. So the standard
definition is not adapted to the evaluation.More over thewood is “intrinsically fuzzy”
[3]. Boundaries between clear wood and singularities are not so easy to determine
and impact the characteristic measures. A big part of the price is based on this quality,
so its determination is important for customer and sawyers.

2.2 Raw Material Optimization

Sawyers optimize wood by estimating which cutting plan allows to have the best
material yield and the customer requirement. That is why it is essential to foresee
product features which would be cut in the log.

The Expert (present at the optimization post) estimates product features (dimen-
sion, mechanical resistance, and visual quality) according to the external log features
and his experiment. He is able to determine approximately which defects are present
in the wood (according to the external log features) and decides which cutting plan is
the most appropriate to obtain the customer requirement. So final product aspect and
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Fig. 2 Example of a virtual
sawing extracted side

quality are more or less well determined. We easily understand that all singularities
are not visible on the surface and singularities which are visible give only incom-
plete information on their shapes in wood. Lot of researches have proposed solutions
taking into account the external shapes of logs [15]. But these optimizations are only
based on the log dimensional features and do not take into account the visual and
mechanical characteristics. This paper proposed a way (virtual sawing) to address
this issue.

2.3 Virtual Sawing

The use of non-destructive control techniques [4], in particular X ray computed
tomography, allows to have a 3D representation of the log (internal and external) to
be cut. [1] use volumetric information to improve part log quality determination and
their sorting. In our proposition, we investigate this step and the global process is
described in the Fig. 1.

The log representation is virtually sawed with ad-hoc software according to a
cutting plan. This leads to obtain a numerical view of all product faces which should
be obtained. The Fig. 2 shows one face for one product. The obtained image repre-
sents the face of a product according to the density data. Some information cannot
be obtained (the color) and the distinction between detected object is not so easy.
All of these add imperfection, imprecision and uncertainty and make the quality
determination harder.

2.4 Problematic

Our aim is to propose a process to estimate the wood product quality according to the
face picture extracted by the virtual sawing stage. We consider that the singularity
features are computed in a similar way as [3]. So we propose a way to determine
quality products from these measurements. As obtained information is uncertain,
incomplete and imprecise, we use methods allowing taking into account this imper-
fection especially the Choquet Integral and fuzzy fusion operators. In this paper, we
decide to estimate the singularity impact on the product and then to determine the
piece quality.
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3 Singularity Impact Evaluation on Virtual Product

3.1 Singularity Criterion Measurement

In our study, we evaluate the visual quality of the wood. So the criteria have to reflect
singularity impact on the visual quality. [1] defines forty criteria to evaluate quality.
From these forty criteria, only around twenty concern the final product and only a
dozen the visual quality. To evaluate singularity impact on density data, we only use
the four of them which are measurable on a grey scale image.

The first criterion μt , described by the Eq.1, reflects the singularity size. Bigger a
singularity is, more the visual quality is down grading.Moreover the expert judgment
stipulates a singularity higher than 50mm is considered as highly critical.

⎧⎪⎨
⎪⎩

If l ≤ 50mm, Ut = 1 − Ts/ l

If l > 50mm and Ts ≤ 50mm, Ut = 1 − Ts/50

If l > 50mm and Ts > 50mm, Ut = 0

(1)

The second criterion ux , described by the Eq.2, reflects the position of the singu-
larity on the product length. More a singularity is close to the product end, more this
singularity lost importance and the quality becomes higher.

ux = |L/2 − Xs |
L/2

(2)

The third criterion μy, given by the Eq.3, reflects the position of the singularity
on the product width. More a singularity is close to the product edge, more this
singularity lost important and the quality becomes higher.

uy = |l/2 − Ys |
l/2

(3)

The last criterion μc, (Eq. 4), reflect contrast between the singularity and the
product background. More the contrast is weak, less this singularity is visible and
more the quality increases.

uc = 1 − |Is − Ip|
I/p

(4)

In the following part, we proposed a method using Choquet integral according to
the fact that the singularity characteristic measurements are full of imperfection and
imprecision (see Sect. 2).
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3.2 Impact Calculation Using the Choquet Integrals

The Choquet integrals were proposed by Gustave Choquet in 1954 [5]. Their use
in the multi criteria decision making domain appears in the nineties in different
context (car industry, strategical placement…)and similar classificationproblems are
usually process with the Choquet integrals [8]. They allow taking into consideration
importance of each criterion and the interactions existing between each of them.

Let {X}:{x1,…,xn} be a set of normalized criteria, consider a capacity μ:P(X)→
[0,1] on this set, verifying Eq.5:

⎧⎪⎨
⎪⎩

μ(∅) = 0

μ(X) = 1

μ(A) < μ(B), ∀ A ∈ B and B ∈ X

(5)

The capacity defines all weights and interactions. Then Choquet integral is defined
by Eq.6:

Cμ(u1, . . . un) =
∑n

i=1
(uσk − uσk−1)μ(Aσk) (6)

where σ is the index permutation satisfying Eq.7:

0 = μσ0 ≤ μσ1 ≤ · · · ≤ μσn−1 ≤ μσn

μσ1 = Min(ui ) and μσn = Max(ui ) (7)

and Aσk = {gσk, . . . , gσn} the features non used in previous step.
In our case, the Cμ(u) corresponds to the measure of the singularity impact on the

product when the Choquet integral is apply on the criteria μi. More the value tends
to 1, less the singularity is important (our own standards). The Choquet integral is
useful when the knowledge and the learning batches are low. The greatest challenge
is the definition of the capacities [8]. To do so, some approaches were developed to
learn the capacities.

3.3 Learning Process of the Capacities

In order to have a better definition of the capacities used in the Choquet integral,
we decide to use a learning process. Different approaches can be used to identify
capacities [8]:

• The Least Square approach (LS): based on the expert knowledge on each element.
The expert attributes a target impact value to each element (expected value) in the
learning lot and system searches capacities values that minimize the difference
square between the computed value and the expected value (Eq.8).
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Min FL S(μ) :=
∑

x∈O
[Cμ(u(x)) − y(x)]2 (8)

• The Linear Programming approach (LP): proposed by Marichal and Roubens in
[12], it is based on the expert knowledge on the global ranking of the batch elements
(Eq.9). The approach looks for the value which satisfy as closely as possible the
ranking establish by the expert.

Max FL P(ε) := ε

subj. to

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�T ⊆Smv(T ∪ i) ≥ ∀i,∀S

�T ⊆N mv(T ) = 1

Cv(u(A)) − Cv(u(B)) ≥ δc

...

(9)

In [8], authors explain that the least square approach is appropriate when it is
possible to attribute precisely the desired value. They explain too that the linear
programming is better for cases which it is easy to give a pre-order between the
learning lot elements. This is our case for the evaluation of the singularity impact
because it is hard for the expert to give a score for each singularity (due to number
and variation of the cases). The expert decides of a pre-order between elements
composing the learning batch (with a δC corresponding to the minimum margin to
respect the ranking). This constraint, noted E, can be translate by equation (10):

Cμ(a) > Cμ(b) > · · · > Cμ(k)

with Cμ(u(i)) ≤ Cμ(u(i + 1)) + δc (10)

Some conditions can be imposed, over the element pre-order, on the criterion
importance and/or interaction. The expert can express the criterion importance
against one another. By the used of the Shapley indexes φ (which indicates the
global importance of each criterion), the expert expresses the equality between two
criteria. The value δφ is themaximal distance between two Shapley values to consider
two criteria are equal. This constraint, noted S, can express for a couple of criteria
A and B as:

− δφ ≤ φv(μA) − φv(μB) ≤ δφ (11)

More over the Expert can express constraints on the interaction between the cri-
teria. The interaction between two criteria can be easily expressed by the expert
because the phenomenon is understandable. But the interaction between more than
two criteria is harder to understand and express. The last condition (apply on the
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interaction indices) is only expressed on interaction between a pair of criteria. This
constraint, noted I, can be:

• negative (redundancy): Iv({A, B}) < 0 − δI

• positive (synergies): Iv({A, B}) > 0 + δI

• null (no interaction): Iv({A, B}) = 0 ± δI

δ I is the minimum threshold value in absolute value to consider the interaction as
significant.

Using the software R and the Kappalab R package, we compute the LP approach
in order to determine the capacities and influence of the calculated values on the
Choquet integral results.

3.4 Result of the Learning Process LP

The learning batch described in the Table1 is composed of singularities which are
commonly found in the wood.

Expert constraints are described below:

• About the elements’ batch (E): The singularities are ranked as they are stored in
the Table1 from the best to the worst with δC = 0.05.

• About the importance criterion (S): criteria [μt, μc] have the same importance,
criteria [μx, μy] too and criteria [μt , μc] are more important than [μx, μy] (δμ =
0.1):

φv(μT ) = φv(μC) > φv(μX ) = φv(μY ) (12)

• About the influence among criterion (I): criteria [μt ,μc] are in synergy and [μx,μy]
too (δI = 0.05):

Iv({T, C}) > 0 and Iv({X, Y }) > 0 (13)

The results of the Choquet value, the Shapley values and the interaction indices
are respectively presented in the Tables2, 3 and 4. In Table2, the second column

Table 1 Learning batch

Singularity a b c d e f

T 0.75 0.41 0.39 0.69 0.42 0.75

X 0.72 0.09 0.27 0.36 0.75 0.81

Y 0.2 0 0.24 0.8 0.32 0.52

C 0.93 0.98 0.9 0.37 0.3 0.09
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Table 2 Results for the LP approach for the different constraints

Singularity a b c d e f

Ø 0.65 0.37 0.45 0.55 0.46 0.49

E 0.878 0.815 0.753 0.45 0.387 0.325

E+S 0.878 0.815 0.753 0.569 0.422 0.359

E+S+I 0.873 0.799 0.738 0.593 0.532 0.471

Table 3 Shapley indices for the different constraints

Shapley value T X Y C

E 0.152 0.117 0.069 0.662

E+S 0.397 0.074 0.045 0.484

E+S+I 0.322 0.169 0.098 0.411

Table 4 Interaction indices for the different constraints (symmetric matrix)

Constraints E

Criteria T X Y C

T NA 0.006 −0.138 −0.119

X NA 0.131 0.137

Y NA 0.007

Constraints E + S Constraints E + S + I

Criteria T X Y C Criteria T X Y C

T NA −0.133 −0.090 0.113 T NA −0.219 0.032 0.050

X NA 0.179 −0.133 X NA 0.050 −0.285

Y NA −0.090 Y NA −0.226

corresponds to values obtained without any importance (singleton capacity equal to
0.25) and constraints (other capacity equal to the sum of the singleton capacities)
between criteria.

Imposed Constraints are respected at each step (E, E+ S, E+ S+ I). We can see
in the Table2 that the order of the singularity is the same as the expert ranking.

The first constraint (based on the elements ranking) accords lot of importance to
the contrast (Shapley value φν(μc = 0.762)) and few on the other criteria. Moreover
interaction between the criteria [T C] is negative (that is not corresponding to the
expert choice). The Fig. 2 shows the variation of the Choquet integrals value function
of [X Y]. The criterion Y has little influence except up to 0.75. This translates an
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Fig. 3 Influence of the X
and Y criteria modification
on the Choquet value with
the weights obtained under
the three different constrain
and no variation of the T and
C criteria (u = (0.75, �(X),
�(Y), 0.09)). a Under E
constrains, b under E + S
constrains, c under E + S + I
constrains

expert view: the singularity position on the width upgrade the singularity only when
it is very close to the side.

The addition of the constraint S (on Shapley indices) offers a positive interaction
between [T, C] but does not with [X, Y]. Moreover, the importance of the criteria
[X,Y] is so small that they have few influences on the Choquet value. The Fig. 3b
shows theChoquet value variation function ofX andYvariation for a singularity (u=
(0.75, �(X), �(Y), 0.09)). The criteria have no action when theirs values are below
0.75. This comportment means that singularity position is only important when a
singularity is close to the end and the side of the product.

The addition of the last constraint gives capacities which allow the respect of the
constraints given by the expert. Moreover all criteria have impact on the calculation
result. The Fig. 3c translates the [X, Y] impact. Thereafter we use this weight for the
product quality estimation.
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4 Virtual Product Quality Evaluation

Once singularity impacts are determined, an estimation of the quality of a virtual
product is evaluated by merging these impacts and the criterion related with the
singularity number. In this part, we describe this criterion and the fusion operation.

4.1 Singularity Number Criterion

In the quality evaluation, the number of singularities is important. A product with
a lot of singularities is more down grading because the clear wood homogeneity is
broken.

To evaluate the number, we used the criterion Rnb defined by (12). This criterion
represents the expert vision: more there are singularities, more the product is down
grading. Moreover when the number reaches towards a particular value, the criterion
reaches towards 0.We choose to use an exponential function. Following the particular
number of singularities fixed by the expert, the k coefficient can be changed. In our
case, we determine that up to 20 singularities, the value starts to become constant
(k = 1.1).

unb = k−N Bs with k = 1.1 (14)

4.2 Quality Determination by Data Fusion

In order to determine the quality product, we merge singularity impacts and the
singularity number criterion. There are three kinds of merging operators [2]: Severe,
Indulgent and compromise operators.

In the quality evaluation, Expert never evaluates products on the best singularities.
So, indulgent operators cannot be used. The two other kinds of operators translate dif-
ferent visions from the expert in quality evaluation. We propose to compare different
operators which appear to be well adapted to our use and Expert quality evaluation.

Thefirst operatorwhich can be used is the operator defined byPerez-Orama in [14]
and describe by 15. This operator (PO) is a compromise operator when the minimum
value is under 0.5; otherwise it is an indulgent operator. This characteristic can be
interesting to isolate product with few singularities and evaluate the worst product.

F(a, b) = min(1,
min(a, b)

1 − min(a, b)
) (15)

The Hamacher operator, described in 16, is a severe operator. That means this
operator gives result under theworst singularity. This can be useful to evaluate quality
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for product where visual quality is very important (joinery, cabinet . . .) because only
products with high quality are highlighted.

F(a, b) = ab

a + b − ab
(16)

The Ordered Weight Average (OWA) adapted to our situation too, described in
17, is a compromised operator. Usually the product quality is based on a part of the
worst singularities (represented by α which represent the percent of product fusion).
The OWA allows to attribute weight only on this part of the singularities impact Ci.

F(u1, . . . , un) =
∑n

i=1
wi Ci

and C1 ≥ C2 ≥ · · · ≥ Cn−1 ≥ Cn

with

{
wi = 0,∀i ∈ [1, 
αn�]
wi = 1

α∗N Bs
,∀i ∈ [
αn�, n] (17)

The results provided by these three operators will be compared to the arithmetic
mean (used as a benchmark) which is a classical operator when the aggregation
comportment is unknown.

4.3 Sample Set Presentation

We will consider the batch described in the Table5 taken into sawmill. The first
column indicates the piece number, the second the criterion Rnb (function of the
number of singularities), the third, the impact of all the singularities present on the
product and the last corresponds to the product aesthetics class given by the sawmill
Expert. The aim is to compare some fusion operators with the expert vision so as to
find the closest.

Table 5 List of the piece used to compare fusion operators

Product Rnb Cu

1 0.91 0.888

2 0.91 0.439

3 0.42 0.888 0.866 0.826 0.776 0.748 0.746 0.674 0.601 0.520

4 0.75 0.814 0.740 0.259

5 0.75 0.888 0.372 0.332

6 0.51 0.814 0.740 0.694 0.601 0.565 0.432 0.312

7 0.51 0.725 0.667 0.587 0.479 0.423 0.372 0.332
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• Piece 1: only one singularity with few impact (impact value close to 1), used for
cabinet work.

• Piece 2: only one singularity with high impact, used for joinery work.
• Piece 3: lot of singularity with little impact, function of the use, the quality can be
high or not depending on the singularities number. In our case expert classes the
product for joinery.

• Pieces 4 and 5: the same number of singularities but one with more singularities
with few impact (4) used for joinery work and the other (5) used in industrial
carpentry.

• Pieces 6 and 7: more singularities than pieces 4 and 5. Used respectively in indus-
trial carpentry and traditional carpentry.

To compare the operators, two features are studied: the products ranking (cf.
Table6) and the distance between them (cf. Fig. 4). Operators have to be compared
on the distance and the groups of products they make. If the ranking is good but
groups are totally different from the Expert choice (two products by in the same
aesthetic class on the Expert judgment have to be close one to the other) the operator
is less efficient than an operator which wrong ranks but keeps the right groups of
products.

The Hamacher operator, as it is the only pessimist operator, gives the lowest
results. This operator is very efficient to highlight product which have good features.
When there are a lot of singularities, this operator reaches towards highly downgrade
product (up to 2 singularities, maximum value is 0.5). Three groups of product are
made: (a, b) on the top as the expert, (e, d) and (c, f, g) on the low. These seconds’
two groups mix quality product express by the Expert. So this operator is useful to
evaluate high quality products.

The Perez-Orama operator gives high importance to product with all singularity
impacts up to 0.5 and downgrades the others. It assumes that products with less than
8 singularities with an impact up to 0.5, have a quality equal to 1. This operator
is particularly useful for a first ranking and extracts products previously described
(less than 8 singularities with impact up to 0.5). The operator places on opposite
ends a and d and mades two groups, (b, c) and (e, f, g). This classification is close

Table 6 Piece ranking for each fusion operator

Rang CE QE Hama PO OWA
(α = 0.2)

OWA
(α = 0.8)

Means

1 a 0 a (0.82) a (1) a (0.89) a (0.90) a (0.90)

2 b 1 b (0.42) b (0.43) c (0.47) b (0.67) c (0.71)

3 c d (0.05) c (0.43) b (0.44) c (0.66) b (0.67)

4 d e (0.04) e (0.31) g (0.37) d (0.64) d (0.64)

5 e 2 c (0.00) g (0.31) f (0.35) e (0.59) e (0.59)

6 f f (0.00) e (0.33) f (0.55) f (0.29) f (0.58)

7 g 3 g (0.00) d (0.26) g (0.48) d (0.23) g (0.51)
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Fig. 4 Result of the fusion operation for each piece

to the expert choice (except for d). This operator is efficient to classifie low quality
products.

α factor in the OWA operator may change value function of the singularity num-
bers to be evaluated. We propose to compare α = 0.2 and α = 0.8. In the α = 0.2
case, the ranking gives, as the PO operator, four classes ((a), (c, b),(e, f, g) and (d))
and the same observation as the previous operator. In α = 0.8 case, the ranking is
the same as the expert. Moreover, product groups do by this operator is the same as
the expert classification ((a), (b, c, d), (e, f), (g)). Classes are close to each other but
allowed to classify product as the Expert estimation. The Expert who chooses this
ranking should have a decision process following this view.

The last is the mean operator. It gives ranking different to the expert ranking but
the product groups are respected. This operator may be used to group products with
the same features without respecting the ranking. This behavior is interesting for
carpentry products for which the ranking is not important.

In the following sections, we use OWA (α = 0.8) results which are the closest
results to the Expert view.

5 Quality Class Determination

The aimof this section is to propose away to determine the best quality to be attributed
to virtual products in relation with the production data (storage, needs . . .). There
are two last steps in our methodology, the first to express the subjectivity and the
hesitation which are present in the quality determination and the second one which
determines the profitable quality to be attributed to virtual product so as to foresee
production and generate product BOM.
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Fig. 5 Membership functions of the visual quality classes based on OWA(α = 0.8) values

5.1 Quality Measure Expression in the Expert Vocabulary

In order to express the quality measure in the expert vocabulary, we propose to use
fuzzy linguistic variables. Its definition is based on constraints coming from the
expert definition of the aesthetic quality:

• There are five classes of quality from 0 (the best) to 4 (the worst)
• Lower qualities are included in the best qualities; this means that a product with
quality 1 can satisfy needs for the same product with lower quality (2, 3 or 4) but
not 0 quality needs.

• Each membership function has core, which means for each quality that there is at
least one singularity

• All products have a quality, which means for each quality measure, there is a
non-null quality possibility measure.

• We consider that distributions are empirically trapezoidal.

All these constraints allow to determine membership functions for quality classes as
describes in the Fig. 5. To define the membership function cores we, use the OWA
(α = 0.8) value by considering the Expert ranking.

This definition of these linguistic variables gives the possibility degree for each
virtual quality. For example, a product with an aesthetic quality value equal to 0.75
(black vertical line) has a vector of possibilities Qv = {0.5 1 1 1 1}. This measure
could be understood by different ways [6], in our case these values correspond to
the membership possibility to a quality classes or to the risk taken by the sawyer to
attribute a quality class to a product (with the example: 0.75 to quality 0 (a little part
of risk), 1 to quality 1, 2, 3, 4 (no risk).



260 J. Jover et al.

5.2 Most Profitable Quality Determination Using Linear
Programming

The previously expressed quality is very interesting for the sawyer because it main-
tains hesitation and subjectivity in the decision. However as the product sell price is
based on its quality, clients need products that match with their needs without any
hesitation. So it is essential to determine which quality must be attributed to products
in order to satisfy all customer needs while generating the best profit.

To perform this choice, we propose to use a linear program whose variables,
constraints and goal are described below, to know if sawyer has to sell product:

• In the best quality with the upper possibility degree, taking no risk of product
return

• In the best quality non-null (upgrade the product) and taking the risk of a possible
product returns but avoiding storage and maximizing sell price.

• In lower quality (downgrade product) avoiding a too longer storage period and
lost link to it.

The risk is evaluated in the goal function by taking directly the possibility degree for
a quality.

Variables et constraints
Indices
i : Sawed product index
j : Quality index (j∈ [1, 5]).

Variable
xi j : Function variable {0, 1};

Sales constants
Qij : Quality possibility (same as the risk take to attribute the quality)
Cpij: Sale cost for product i in quality j
Pi j : Matrix of the needs for each product reference (1 when needs is present ,0

then

Storage constants
Csi j : Storage cost for the product i
Ti : Storage time

Log constant
Cg : Log cost

Constraints
xi j = [0, 1]; Pi j = [0, 1]; Qi j = [0,1]; j ∈ {0,1}

∀i,
∑

i

xi j = 1

Goal function
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Table 7 Result of the optimization to determine the profitable quality

Product Section F Qi,0 Qi,1 Qi,2 Qi,3 Qi,4 Q

2 0.25/0.25 0.7033 0.03 1 1 1 1 1

7 0.25/0.25 0.6331 0 0.66 1 1 1 1

5 0.25/0.25 0.269 0 0.54 1 1 1 3

Table 8 Production data used to determine the profitable quality

Section Quality Product need Cell price Storage cost Delay (days)

0.25/0.25 0 6 100 20 12

1 4 75 20 3

2 0 60 20 90

3 10 50 20 7

Pour i = 1 . . . n, Max(
∑

i

(
(C pi j ∗ Pi j ∗ Qi j − Csi j ∗ Ti j ) ∗ xi j

) − Cg = GD

We implement this linear programing on a product batch (Table7 is an extract) whose
qualities have to be determined in relation with the production data presented in the
Table8. As we can see, there are three cases to attribute the product quality. The
first one is to attribute the best quality with a possibility degree (Qi,j) equal to 1 (see
product 2). In this case, we insure to satisfy the client need without risk of product
come back and a high cell price. The second cases is to attribute the high quality
possible with a possibility degree included in ]0,1[ (see product 7). In this case, we
take the risk that the customer can be unsatisfied and to have a product return but
to sell it with the higher price. The last case is to attribute a lower quality than the
quality used in the first case. In this case, the product is downgrading, the sawyer
takes no risk and sells it with a lower price, but avoids a too high storage imposed
by a log storage period (see product 5).

6 Conclusion

In this article, we present a way to determine the product quality in the wood industry.
We decided to base the product quality evaluation on the singularities impact. As
the information used to determine the singularity impact and the quality product are
uncertain, imprecise, imperfect, we have to use operators which take into account of
them.

The singularity impact is evaluated on criteria (size, position and contrast) which
are linked by interaction. Moreover, the poorness of the sample and the knowledge
on the process decision, lead us to use the Choquet integral to determine impact. By
the use of learning process, we have determined the capacities in order to satisfy the
Expert vision.
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The quality measure is done by merging the singularity impact and the number
of singularities. The use of different operators allows us to cover the majority of
cases concerning the product quality determination. The comparison with the expert
ranking and classification allows to conclude OWA operator with α = 0.8 reflects
as close as his choice.

Then quality measures are express in the expert vocabulary by the use of a linguis-
tic variable which transcribes expert decision subjectivity. Finally the uncertainty is
removed by determining the most profitable quality function of production data like
the storage cost and the sell price.
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Fuzzy Discretization Process from Small
Datasets

José M. Cadenas, M. Carmen Garrido and Raquel Martínez

Abstract A classification problem involves selecting a training dataset with class
labels, developing an accurate description or a model for each class using the
attributes available in the data, and then evaluating the prediction quality of the
induced model. In this paper, we focus on supervised classification and models
which have been obtained from datasets with few examples in relation with the num-
ber of attributes. Specifically, we propose a fuzzy discretization method of numer-
ical attributes from datasets with few examples. The discretization of numerical
attributes can be a crucial step since there are classifiers that cannot deal with numer-
ical attributes, and there are other classifiers that exhibit better performance when
these attributes are discretized. Also we show the benefits of the fuzzy discretiza-
tion method from dataset with few examples by means of several experiments. The
experiments have been validated by means of statistical tests.

Keywords Data mining · Fuzzy discretization · Numerical attributes · Bagging

1 Introduction

In the real world, there are many situations where organizations have to work from
datasets with few examples. The extraction of valuable information from these data
sources requires purposeful application of rigorous analysis techniques such as Data
Mining or Machine learning, [17].

Data mining methods are often employed to understand the patterns present in
the data and derive predictive models with the purpose of predicting future behavior.
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A classification method aims to induce a model with the purpose of predicting cate-
gorical class labels for new samples given a training set of samples each with a class
label. A typical implementation of the classification problem involves selecting a
training dataset with class labels, developing an accurate description or a model for
each class using the attributes available in the data, and then evaluating the prediction
quality of the induced model.

This paper focus on supervised classification and models which have been
obtained from datasets with few examples in relation with the number of attributes.
From the computational learning viewpoint, these datasets are very important in
machine learning problems, because the information contained can be more difficult
to extract.

While an exact relationship between the probability of misclassification, the num-
ber of training examples, the number of attributes and the true parameters of the
class-conditional densities is difficult to establish, some guidelines have been sug-
gested regarding the ratio of the sample size to dimensionality, [14]. As a general
rule, a minimum number of (10 · |A| · |C |) training examples is required for a |A|-
dimensionality classification problem of |C | classes, [14]. Following this rule, when
datasets have few examples (hereafter called small size datasets), we should take into
account in the learning algorithm some measure in order to build better models to get
good accuracy in classification. We focus on discretization of numerical attributes
in small size datasets. The discretization of numerical attributes is a crucial step in
machine learning problems since there are classifiers that cannot deal with numer-
ical attributes, and there are other classifiers that exhibit better performance when
these attributes are discretized, since discretization reduces the number of numerical
attribute values, enabling faster and more accurate learning [1].

More specifically we propose the introduction of a measure in the discretiza-
tion method presented in [8], OFP_CLASS, that allows it to get good accuracy in
classification when it deals with small size datasets. This measure is based on the
use of bagging in order to improve the stability and accuracy of the discretization
process. Bagging is a special case of the model averaging approach. We have called
the resulting method BAGOFP_CLASS.

This paper is organized as follows. First, in Sect. 2, we describe some of the
different methods reported in literature to discretize numerical attributes highlight-
ing the fulfilling degree of the rule. Next, in Sect. 3, the BAGOFP_CLASS is
described. Then, in Sect. 4, some experimental results illustrating the performance of
BAGOFP_CLASS method is presented. Finally, in Sect. 5 remarks and conclusions
are presented.

2 Discretization Process and Methods

The term “cut point” refers to a real value within the range of continuous values
that divides the range into two intervals, one interval is less than or equal to the cut
point and the other interval is greater than the cut point. Cut point is also known as
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split point. A typical discretization process broadly consists of four steps: (1) sorting
the continuous values of the feature to be discretized, (2) evaluating a cut point for
splitting or adjacent intervals for merging, (3) according to some criterion, splitting
or merging intervals of continuous value, and (4) finally stopping at some point.

After sorting, the next step in the discretization process is to find the best cut point
to split a range of continuous values or the best pair of adjacent intervals to merge.
There are numerous evaluation functions found in the literature such as entropy
measures and statistical measures.

Generally, the discretization methods can be categorised as: (1) Supervised or
Unsupervised; (2) Static or Dynamic; (3) Local or Global; (4) Top-down or Bottom-
up; (5) Direct or Incremental.

There are some classification algorithms which can only take nominal data as
inputs and some of them need to discretize numerical data into nominal data before
the learning process. Therefore, discretization is needed as a pre-processing step to
partition each numerical attribute into a finite set of adjacent distinct intervals/items.
A good discretization algorithm should not only characterize the original data to
produce a concise summarization, but also help the classification performance.

Discretization algorithms can be categorized from different viewpoints depending
on the measure that is being focused on. If the class label is used to build partitions,
the discretization methods can be categorized into two ways, namely unsupervised
and supervised. With the focus on the kind of logic, discretization algorithms can
be categorized into fuzzy discretization and crisp discretization. On the one hand,
when the fuzzy logic is used, we can create fuzzy partitions where a value can belong
to more than one partition. On the other hand, when the classical logic is used, we
create crisp partitions where a value can only belong to one partition. Furthermore,
discretization methods can be classified taking into account the kind of measure that
it is used or the way that the partitions are created.

In this section, we focus on how several discretization methods consider the man-
agement of small size datasets explicitly. From this viewpoint, there are methods
that build partitions taking into account the possible problems that datasets with few
examples can induce in the discretization process and later in loss of accuracy. How-
ever, there are methods which are not specific for small size datasets but get good
precision for this kind of datasets.

• For instance, in [2] a method, called ε-procedure, that constructs crisp partitions
on the range of an attribute taking numerical values is proposed. These partitions
can be seen as refinements of the ones given by the expert or the ones given by
a standard discretization method. Moreover, the method can be seen as “similar”
to the fuzzy discretization methods since the ε-procedure takes into account the
neighborhood of the thresholds given by the crisp discretization methods.

Another method that does not specify anything about managing small size
datasets is proposed in [18]. The discretization quality is improved by increas-
ing the certainty degree of a decision table in terms of deterministic attribute
relationship, which is revealed by the positive domain ratio in rough set theory.
Furthermore, they take into account both the decrement of uncertainty level and
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increment of certainty degree to induce a Coupled Discretization algorithm. This
algorithm selects the best cut point according to the importance function composed
of the information entropy and positive domain ratio in each run. The algorithm
builds crisp partitions because it is focused on classical logic.

• In [16] a novel soft decision tree method that uses soft of fuzzy discretization
instead of traditional crisp cuts is proposed. They take into account the dataset
size and use a resampling based technique to generate soft discretization points.
They use a fuzzy decision tree and an ordinary bootstrap as a method for resam-
pling. Bootstrap allows them to get global partitions and a better estimation toward
the entire population.

Typical datasets which have few examples are the microarrays datasets. In
[15] this kind of data is used. That paper presents a novel classification approach
that integrates fuzzy class association rules and support vector machines. Also,
a fuzzy discretization technique based on fuzzy c-means clustering algorithm is
employed to transform the training set, particularly quantitative attributes, to a for-
mat appropriate for association rule mining. A hill-climbing procedure is adapted
for automatic thresholds adjustment and fuzzy class association rules are mined
accordingly.

It is notable that some of the above methods use some kind of repetitions to
manage small size datasets. This approach is also used in other types of machine
learning algorithms to manage small size datasets.

Bagging was proposed by Breiman in [5], and is based on bootstrapping and
aggregating concepts, so it incorporates the benefits of both approaches. Bagging
uses the same training set multiple times, and has been shown to outperform a sin-
gle classifier trained from the training set. In bagging, the training set is randomly
sampled k times with replacement, producing k training sets with sizes equal to the
original training set. Since the original set is sampled with replacement, some train-
ing instances are repeated in the new training sets, and some are not present at all.
Bagging has several advantages. First, because different classifiers make different
errors, combining multiple classifiers generally leads to superior performance when
compared to a single classifier, and thus it is more noise tolerant. Second, bagging can
be computationally efficient in training because it can be implemented in a parallel
or distributed way. Finally, bagging is able to maintain the class distribution of the
training set.

In the next section, we describe the BAGOFP_CLASS method which also obtains
good results when discretizing numerical attributes of small size datasets.

3 BAGOFP_CLASS Method

The proposed BAGOFP_CLASS method can be classified a supervised, dynamic,
local, top-down and incremental. Following the methodology of OFP_CLASS [8],
BAGOFP_CLASS is composed of two phases. The former uses a fuzzy decision tree
in order to find possible cut points to create the partitions. The latter takes as input
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the cut points of the first phase to optimize and to build the final fuzzy partitions by
means of a genetic algorithm. It should be noted that if the second phase is not carry
out, with the cut points it could be possible to construct intervals and crisp partitions
would be obtained for the attributes instead of fuzzy partitions.

For the design of these two phases,we use bagging. The use of bagging is motivated
by the fact that bagging can give substantial gains in accuracy when the classification
method used is unstable. If perturbing the learning set can cause significant changes
in the classifier constructed, the bagging can improve accuracy [5]. Instability was
studied in [6] where it was pointed out that neural nets, classification and regression
trees, and subset selection in linear regression were unstable. The result, both exper-
imental and theoretical, is that bagging can push a good but unstable procedure a
significant step towards optimality.

In addition, instability of decision trees can be increased by using small size
datasets because in a decision tree when a node is split, the attribute with higher
information gain is selected. When the number of examples is small relative to the
number of the attributes, the probability that redundant attributes exist is increased.
In this way, there will be several attributes that have the same information gain and
the selection of one of them is random. With a certain probability, the unselected
attributes are not partitioned and, therefore, these attributes might not be part of the
final partition generated by the decision tree. When a bagging process is introduced,
the probability that these attributes can be part of the final partition is increased.
In this situation, the method will work with different bagging of the dataset. By
repeating the process, the selection of other attributes is allowed.

Therefore, since the first phase of the algorithm is based on decision trees, can
be improved with the use of bagging obtaining a better partitioning from the set
of decision trees generated and enabling that a greater number of attributes to be
part of the partition when the information gain of various attributes is the same.
The second phase of the algorithm is responsible for selecting the most relevant
attributes for classification. On the other hand, the genetic algorithm in the second
phase of the OFP_CLASS method, uses a fitness function which tries to find the
best set of partitions to divide the examples with respect to the class attribute. Again,
the second phase of OFP_CLASS method can be improved with a bagging process
with the motivation of reducing variability in the partitioning results via averaging.
The fitness function is modified in order to obtain a better value for those partitions
(individuals) with better average performance when we using a bagging of the dataset.
Also with bagging the genetic algorithm studies different region of the searching
space and it can get more global fuzzy partitions.

Therefore, we will introduce bagging into the two phases of BAGOFP_CLASS
method: (1) in the construction of the decision tree which generates the cut points of
the first phase, and (2) in the fitness function that will be used in the genetic algorithm
of the second phase.

The fuzzy partitions created with BAGOFP_CLASS have the same characteristics
as the fuzzy partitions created with the OFP_CLASS method. This means that the
domain of each numerical attribute is partitioned in trapezoidal fuzzy sets and the
partitions are:
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Fig. 1 BAGOFP_CLASS method

• Completeness (no point in the domain is outside the fuzzy partition), and
• Strong (it verifies that ∀x ∈ Ωi ,

∑Fi
f =1 μB f (x) = 1 where B1, .., BFi are the Fi

fuzzy sets for the partition of the i numerical attribute with Ωi domain and μB f (x)

are its functions membership).

The domain of each i numerical attribute is partitioned in trapezoidal fuzzy sets
and the membership functions B1, B2, . . . , BFi are calculated as following:

μB1(x) =
⎧⎨
⎩

1 b11 ≤ x ≤ b12
(b13−x)

(b13−b12)
b12 ≤ x ≤ b13

0 b13 ≤ x
; μB2(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 x ≤ b12
(x−b12)

(b13−b12)
b12 ≤ x ≤ b13

1 b13 ≤ x ≤ b23
(b24−x)

(b24−b23)
b23 ≤ x ≤ b24

0 b24 ≤ x

;

· · · ; μBFi
(x) =

⎧⎪⎨
⎪⎩

0 x ≤ b(Fi −1)3
(x−b(Fi −1)3)

(b(Fi −1)4−b(Fi −1)3)
b(Fi −1)3 ≤ x ≤ b(Fi −1)4

1 bFi 3 ≤ x
In the next subsection, we detail the two phases of the BAGOFP_CLASS method.

Figure 1 shows, in an illustrative way, the process of BAGOFP_CLASS method.

3.1 Searching the Cut Points

The first phase of BAGOFP_CLASS uses a fuzzy decision tree as base method to
search the possible cut points to build the fuzzy partitions, but the input dataset to
this fuzzy decision tree is each dataset obtained by performing a bagging process
over the original dataset.
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The kind of values, with which this fuzzy decision tree can work, are nominal
attributes, numerical discretized attributes by means of a fuzzy partition,
non-discretized numerical attributes described with crisp values, interval and fuzzy
values and furthermore it allows the existence of missing values in all of them.
The fuzzy decision tree behavior changes depending on the kind of attribute that is
analyzed by the tree in order to find the best of them to divide a node.

On the one hand, when the attribute is numerical and does not have partitions
available, the process to follow is similar to the decision tree C4.5 process. The
thresholds selected in each node of the tree for these attributes will be the cut points
that delimit the intervals. On the other hand, for the other kind of attributes, the
methodology followed is the same as the fuzzy decision tree presented in [8]. During
the rest of the process the method behavior is the same for both discretize attributes
and non-discretized attributes. The procedure of building the fuzzy decision tree
has a priority tail which is used to arrange tree nodes depending on the number
of examples each one has. The reason for incorporating the priority tail is that the
nodes with more examples are analized first because these nodes will have more
information than those with less examples.

Comparing the new method with the OFP_CLASS method, the main difference
between them is that for datasets which do not have 10 · |A| · |C | training examples,
the cut points obtained by OFP_CLASS are not rich enough in information to provide
a good partition, because these cut points are too specific and partitions obtained are
not global. In order to prevent getting cut points so specific and more attributed can
be discretized, the input to the fuzzy decision tree in BAGOFP_CLASS is a bagging
obtained from the whole dataset.

It must be remembered that in the bagging process, it is possible that a cut point
may appear several times. In this case the cut point will be included once.

Algorithm 1 describes all the process to get all possible cut points.
All the cut points obtained after the first phase are introduced as input in the

second phase in order to build optimal fuzzy partitions.

3.2 Building Fuzzy Partitions

In the second phase of the method, we are going to use a genetic algorithm to get
the fuzzy sets that make up the partitioning of non-discretized attributes. We have
decided to use a genetic algorithm, because these algorithms are very powerful and
robust, as in most cases they can successfully deal with an infinity of problems from
very diverse areas and specifically in Data Mining. These algorithms are normally
used in problems without specialized techniques or even in those problems where
a technique does exist, but is combined with a genetic algorithm to obtain hybrid
algorithms that improve results [9].

In this section we briefly describe the several elements which compose the algo-
rithm. We focus on those that characterizing the BAGOFP_CLASS method. For
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Algorithm 1. Getting Cut points.

FindingCutPoints(in : E; out : Cut points)
begin

1. Initialize the set of cut points to each numerical attribute k to empty: C P Sk = ∅
2. Initialize bagging size δ.
3. For j=1 to δ

3.1 Obtain the dataset B A j consisting of |E | examples selected from E randomly and with
replacement.

3.2 Obtain a fuzzy decision tree from B A j :
i. Start at the root node, which is placed in the initially empty priority tail. Initially, in

the root node the set of examples B A j with an initial weight are found.
ii. Extract the first node from the priority tail.

iii. Select the best attribute to split this node using information gain, which is explained
in detail in [8], as the criterion.

iv. Having selected the attribute to expand node, all the descendants generated are
introduced in the tail. If the selected attribute is nominal, a descendant is generated
to each possible value of that attribute. If the selected attribute (SA) is numerical it is
necessary to obtain the corresponding cut point and two descendants are generated.
In this case, C P SS A is updated as follows: C P SS A = C P SS A

⋃{cut point}
v. Go back to step two to continue constructing the tree until no nodes remain in the

priority tail or until another stopping condition occurs, such as reaching nodes with
a minimum number of examples allowed by the algorithm.

4. Return C P Sk sets for each numerical attribute k.
end

remaining elements originating from the OFP_CLASS method a more detailed
description can be found in [8].

The genetic algorithm takes as input the cut points which have been obtained in the
first phase, but it is important to mention that the genetic algorithm will decide what
cut points are more important to construct the fuzzy partitions, so it is possible that
many cut points are not used to obtain the optimal fuzzy partitions. If the first phase
gets F cut points for the attribute i , the genetic algorithm can make up Fi + 1 fuzzy
partitions for the attribute i at the most. However, if the genetic algorithm considers
that the attribute i will not have a lot of relevance in the dataset, this attribute will
not be partitioned.

The different elements which compose this genetic algorithm are as follows:

Encoding. An individual has a real coding and its size will be the sum of the number
of cut points that the fuzzy decision tree will have provided for each attribute in the
first phase. Each gene represents the quantity to be added to and subtracted from
each attribute’s split point to form the fuzzy partition. Also, each gene is associated
with a boolean value which indicates whether this gene or cut point has to be taken
into account or not, in other words, if this gene or cut point is active or not. We must
consider that if a gene is not active the domain of the adjacent gene can change. The
domain of each gene is an interval defined by [0, min(

pr −pr−1

2 ,
pr+1−pr

2 )] where pr is
the r -th cut point of attribute i represented by this gene except in the first (p1) and last
(pu) cut point of each attribute whose domains are, respectively: [0, min(p1,

p2−p1

2 ]
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and [0, min(
pu−pu−1

2 , 1 − pu]. When Fi = 2, the domain of the single cut point is
defined by [0, min(p1, 1 − p1].
Initialization. Firstly, it is determined if each gene is active or not. We must consider
that at least one gene from each individual must be active because if all genes were
inactive, any attribute would be discretized. Once the boolean value of each gene of
the individual has been initialized, the domain of each gene is calculated, considering
which cut points are active and which are not. After calculating the domain of each
gene, each gene is randomly initialized generating a value within its domain.

Fitness Function. The fitness function of each individual is defined according to the
information gain defined in [3]. In this case, in the same way as in the first phase of
the method BAGOFP_CLASS, to calculate the fitness for each individual a bagging
process is applied. In this case, the fitness of the individual is an average fitness using
different bagging of the input dataset. In this way, the algorithm obtains a more robust
fitness for each individual because the average fitness gives a more general vision
over different data subsets and is a more reliable measure. Algorithm 2 implements
the fitness function.

In the algorithm μi f (·) is the membership function corresponding to fuzzy set f of
attribute i . This fitness function, based on the information gain, indicates how depen-
dent the attributes are with regard to class, i.e., how discriminatory each attribute’s
partitions are. If the fitness obtained for each individual is close to zero, it indicates
that the attributes are totally independent of the classes, which means that the fuzzy
sets obtained do not discriminate classes. On the other hand, as the fitness value
moves further away from zero, it indicates that the partitions obtained are more than
acceptable and may discriminate classes with good accuracy.

Selection. Individual selection is by means of tournament, taking subsets with size
2. It must be taken into account that the best individual is always selected due to the
elitism that the method carries out.

Crossover. The crossover operator is applied with a certain probability, crossing
two individuals through a single point, which may be any one of the positions on
the vector. Not all crossings are valid, since one of the restrictions imposed on an
individual is that the individual must not have all its genes inactive. When crossing
two individuals and this situation occurs, the crossing is invalid, and individuals
remain in the population without interbreeding. If the crossing is valid, the domain
for each gene is updated in the individuals generated. As in selection, the method
applies elitism in this operator, so the best individual is not crossed.

Mutation. Mutation is carried out according to a certain probability at interval
[0.01, 0.2].

Since each gene has a boolean associated value which indicates whether the gene
is active or not and the gene value represents the amount to add and subtract the cut
point, the mutation operator is hybrid. In BAGOFP_CLASS method when a gene
has to mutate by chance, there are two options:
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Algorithm 2. Fitness Function.

Fitness(in : E, out : Final Fitness)
begin

1. Initialize bagging size β

2. Initialize V alueFitness = 0
3. For j=1 to β

3.1 Obtain the dataset B A j consisting of |E | examples selected from E randomly and with
replacement.

3.2 For each attribute i = 1, . . . , |A|:
i. For each set f = 1, . . . , Fi of attribute i

For each class k = 1, . . . , |C | calculate Pi f k =
∑

e∈B A jk
μi f (e)∑

e∈B A j
μi f (e)

ii. For each class k = 1, . . . , |C | calculate Pik = ∑Fi
f =1 Pi f k

iii. For each f = 1, . . . , Fi calculate Pi f = ∑|C |
k=1 Pi f k

iv. For each f = 1, . . . , Fi calculate the information gain of attribute i and set f

Ii f = ∑|C |
k=1 Pi f k · log2

Pi f k
Pik ·Pi f

v. For each f = 1, . . . , Fi calculate the entropy Hi f = − ∑|C |
k=1 Pi f k · log2 Pi f k

vi. Calculate I and H of attribute i : Ii = ∑Fi
f =1 Ii f , Hi = ∑Fi

f =1 Hi f

3.3 Calculate the fitness as : V alueFitness = V alueFitness +
∑|A|

i=1 Ii∑|A|
i=1 Hi

4. Final Fitness = V alueFitness/β
5. Return Final Fitness

end

1. to activate or deactivate the gene and
2. to modify the amount to add and subtract to the cut point.

The first option allows us to explore new search spaces. When the second option is
applied the slopes of the partition are modified. This last option is included in the
method in order to adjust the slopes as much as possible and in this way to get better
accuracy.

The method applies the first option 50 % of the time and the second option 50 %
of the time.

When a gene is activated or deactivated, first, the boolean value associated to the
gene is modified and then a check is made to make sure there are still active genes.
If there are still active genes, their domains and the domains of adjacent genes must
be updated. If all the individual genes are deactivated, the mutation process is not
performed.

When the mutation have to modify the value to add and subtract, a randomly
calculated value within its domain is generated.

Stopping. The stopping condition is determined by the number of generations.
The genetic algorithm should find the best possible solution in order to achieve a

more efficient classification.
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In the next section we show some computational experiments where we are going
to compare using several datasets the accuracy in classification of discretizing with
OFP_CLASS method and with BAGOFP_CLASS method. In these experiments, we
can see that the behavior of the BAGOFP_CLASS method with datasets with a few
examples is better than the previous method.

4 Experimental Study

The aim of this experimental study is to analyse the performance of using the
BAGOFP_CLASS method with datasets with a few examples. In this section, we
show the details of the experimental framework. We present the datasets employed
and we describe the experimental setup, the performance measure and the statisti-
cal test employed to analyze the results. Finally, we present and analyze the results
obtained.

4.1 The Datasets and the Experimental Setup

The proposed approach is going to evaluate by means of experiments on various
datasets selected from UCI machine learning repository [11]. In addition, three high
dimensional datasets (ADE, PRO, SRB) available in [10] have been added. These
datasets used to test the proposed approach are summarized in Table 1.

Table 1 shows the number of examples (|E |), the number of attributes (|A|) and
the number of classes (|C |) for each dataset. All the various dataset attributes are
numerical except AUS dataset having six numerical attributes and eight nominal
attributes. In addition, the last column “rule” of the Table 1 shows whether the dataset
verifies the condition |E | ≥ 10 · |A| · |C |. “Abbr” indicates the abbreviation of the
dataset used in the experiments.

In order to evaluate the partitions obtained both in the OFP_CLASS method and
the BAGOFP_CLASS method, we use an ensemble classifier called Fuzzy Random
Forest (FRF) [7]. This ensemble needs as input data a fuzzy partition for the numerical
attributes. FRF ensemble was originally presented in [4], and then extended in [7]
to handle imprecise and uncertain data. The ensemble is composed of a set of fuzzy
decision trees (FDTs).

The experimental parameters are as follows:

• Parameters of the FRF ensemble.

– Ensemble Size: 500 FDTs
– Random selection of attributes from the set of available attributes:

√|A|
• Parameters for GA in both methods (OFP_CLASS and BAGOFP_CLASS).
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◦ Individual Number: 100
◦ Generation Number: 250
◦ Crossover probability: 0.8
◦ Mutation probability: 0.1

• Parameters for BAGOFP_CLASS method.

◦ In first phase—δ bagging size: 20
◦ In second phase—β bagging size: 30

As we have commented in Sects. 2 and 3, the use of bagging is justified by the fact
that bagging can give substantial gains in accuracy when the classification method
used is unstable (in our case, fuzzy decision trees). If perturbing the learning set
can cause significant changes in the classifier constructed, the bagging can improve
accuracy.

For the different experiments, we have used the values of bagging (both for the
first phase to the second ) than indicated above. To obtain these values, we made
some tests. In them, we change the values of δ and β of the following way: we set
the value of β = 1, and we vary δ from 1 to 20; next, we set δ = 20, we vary β

from 2 to 30. In the first changes of δ, the accuracy (of the FRF classifier) presents
the biggest changes. Next, the behavior is stabilizing. Values of δ = 20 and β = 30
have an acceptable performance with the datasets used in this work.

4.2 Estimation of the Classification Performance and
Validating the Experimental Results

To analyze the results obtained in the study, the following performance measure
has been employed: to compare the results in the experiments the accuracy (num-
ber of successful hits relative to the total number of classifications) is used. More
specifically, the accuracy medium obtained as the average accuracy of a 3 × 5-fold
cross-validation is used.

To complete the experimental study, we perform an analysis of them in each sub-
section using statistical techniques. Following the methodology proposed by García
et al. in [12] we use a non-parametric test. We use the Wilcoxon signed-rank test to
compare two methods. This test is a non-parametric statistical procedure for perform-
ing pairwise comparison between two methods. This is analogous with the paired
t-test in non-parametric statistical procedures; therefore, it is a pairwise test that aims
to detect significant differences between two sample means, that is, the behavior of
two methods. In order to carry out the statistical analysis R packet [13] has been
used.
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Table 2 Results obtained by FRF after classifying the datasets that verify |E | ≥ 10 · |A| · |C | using
the discretization obtained by OFP_CLASS and BAGOFP_CLASS

OFP_CLASS BAGOFP_CLASS

Training Test Training Test p-value

AUS 99.850.15 86.422.94 1000.00 86.813.12 0.1768

BCW 99.740.10 96.131.27 98.190.22 95.901.55 0.7772

HEA 97.840.54 79.015.34 98.920.41 79.266.56 0.5092

IRP 97.780.92 96.673.26 98.980.62 96.223.16 0.6578

VEH 93.600.47 71.163.48 99.990.02 71.554.80 0.4325

Aver. 97.760.44 85.883.26 99.210.26 85.953.84 0.5805

4.3 Evaluation of the Classification Performance

The experiments are designed to evaluate the performance of the proposed approach.
We compare the OFP_CLASS method [8] with the proposed method
BAGOFP_CLASS using several datasets.

Using Small Size Dataset

First, we compare the two methods using datasets which verify the condition |E | ≥
10 · |A| · |C |. The accuracy results are shown in Table 2.

In Table 2, training and test are the percentages of classification average accuracy
(mean and standard deviation) for training and test datasets, respectively. Moreover,
the obtained p-values, when comparing the results of the test phase using a Wilcoxon
signed-rank test are shown.

In Table 2 it is observed that the results obtained by the new method seem to be
similar to the results obtained by OFP_CLASS. Analyzing the different p-values
with α = 0.05, we can conclude:

• There are no significant differences between the datasets.
• Globally, analyzing all the results obtained for different datasets, we can conclude

that there are no significant differences between evaluating with the discretization
of the method OFP_CLASS and evaluating with the discretization of the new
method BAGOFP_CLASS.

Using Non-small Size Dataset

Second, we compare the two methods using datasets that do not verify the condition.
The accuracy results are shown in Table 3.

In Table 3, training and test are the percentages of classification average accuracy
(mean and standard deviation) for training and test datasets, respectively. Moreover,
the obtained p-values, when comparing the results of the test phase using a Wilcoxon
signed-rank test are shown.
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Table 3 Results obtained by FRF after classifying the datasets that do not verify |E | ≥ 10 · |A| · |C |
using the discretization obtained by OFP_CLASS and BAGOFP_CLASS

OFP_CLASS BAGOFP_CLASS

Training Test Training Test p-value

ADE 84.322.05 81.949.96 1000.00 85.069.83 0.01102

APP 90.331.80 88.337.95 94.020.86 90.255.72 0.00529

GLA 85.821.03 69.805.60 1000.00 73.386.68 0.01199

ION 95.890.41 93.072.38 1000.00 94.112.05 0.00424

PRO 94.931.36 89.846.98 1000.00 93.785.36 0.00464

SON 93.591.59 80.315.11 1000.00 83.684.72 0.00105

SPE 79.810.97 79.414.12 1000.00 81.784.58 0.00108

SRB 94.581.72 78.4613.54 1000.00 96.793.77 0.00109

WDB 93.990.41 93.792.23 1000.00 95.491.66 0.00692

WIN 94.331.28 93.823.54 1000.00 97.571.76 0.00253

Aver. 90.761.26 84.886.14 99.400.09 89.194.61 2.2e-16

In Table 3 it is observed that the results obtained by the new method seem to be
better than the results obtained by OFP_CLASS. Analyzing the different p-values
with α = 0.05, we can conclude:

• For all datasets, the analysis indicates that there are significant differences between
the two methods, where BAGOFP_CLASS is the best method.

• Globally, analyzing all the results obtained for different datasets, we can conclude
that there are significant differences between evaluating with the discretization of
the method OFP_CLASS and evaluating with the discretization of the new method.
The method which gets the best average accuracy is BAGOFP_CLASS.

4.3.1 Comparing Results

Figure 2 shows, in an illustrative way, the results obtained using OFP_CLASS and
BAGOFP_CLASS methods with datasets containing enough and few examples.

In general, with the datasets used (which either verify or do not verify |E | ≥ 10 ·
|A|·|C |) we can conclude that the proposed method is useful. When the datasets do not
verify the condition, the fundamental difference of the new method of discretization
is the partitioning of the attributes. The most important attributes in the classification
are partitioned possibly into more parts and more precisely.

From the computational viewpoint, the introduction of bagging and therefore
an iterative process in both phases increases the runtime of the method. However,
as discussed in Sect. 2, bagging can be computationally efficient because it can be
implemented in a parallel or distributed way.
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Fig. 2 Comparing results of datasets verifying and do not verifying |E | ≥ 10 · |A| · |C |

5 Conclusions

In this study we have presented an improvement on a discretization method, in order
to get better partitions and better accuracy in the classification task with small size
datasets.

The discretization method is divided into two phases. On the one hand, in the first
phase the method uses a fuzzy decision tree to search possible cut points to create
partitions. On the other hand, in the second phase a genetic algorithm is used to
construct the fuzzy partitions taking as input data, the cut points obtained in the first
phase.

The way to improve the discretization method is using a bagging process into the
two phases. The capacity of bagging to improve the accuracy of unstable classifiers
is exploited in the first phase of the method based on fuzzy decision trees. In addition,
the use of the bagging procedure allows the discretization of more attributes when
datasets have a few training examples compared with the number of attributes, in
other word, when the rule |E | ≥ 10 · |A| · |C | is not verified.

Also we have presented several experiments where the new proposed method
using bagging gets better accuracy in classification with this kind of datasets. These
conclusions have been validated by applying statistical techniques to analyze the
behavior of different methods in the experiments.

Improve the discretization of numerical attributes in small size datasets is impor-
tant like previous step to carry out feature selection in microarrays data which is a
topic of current interest and we want to carry out the feature selection using a fuzzy
ensemble which needs a partition of the numerical attributes.

Acknowledgments Supported by the project TIN2011-27696-C02-02 of the Ministry of Economy
and Competitiveness of Spain. Thanks also to “Fundación Séneca - Agencia de Ciencia y Tecnología
de la Región de Murcia” (Spain) for the support given to Raquel Martínez by the scholarship program
FPI.



Fuzzy Discretization Process from Small Datasets 279

References

1. Antonelli, M., Ducange, P., Lazzerini, B., Marcelloni, F.: Learning knowledge bases of multi-
objective evolutionary fuzzy systems by simultaneously optimizing accuracy, complexity and
partition integrity. Soft Comput. 15, 2335–2354 (2011)

2. Armengol, E. García-Cerdana, A.: Refining discretizations of continuous-valued attributes.
In: The 9th International Conference on Modeling Decisions for Artificial Intelligence, pp.
258–269 (2012)

3. Au, W.H., Chan, K.C., Wong, A.: A fuzzy approach to partitioning continuous attributes for
classification. IEEE Trans. Knowl. Data Eng. 18(5), 715–719 (2006)

4. Bonissone, P.P., Cadenas, J.M., Garrido, M.C., Díaz-Valladares, R.A.: A fuzzy random forest.
Int. J. Approx. Reason. 51(7), 729–747 (2010)

5. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996a)
6. Breiman, L.: Heuristics of instability and stabilization in model selection. Ann. Stat. 24(6),

2350–2383 (1996b)
7. Cadenas, J.M., Garrido, M.C., Martínez, R., Bonissone, P.P.: Extending information processing

in a fuzzy random forest ensemble. Soft Comput. 16(5), 845–861 (2012a)
8. Cadenas, J.M., Garrido, M.C., Martínez, R., Bonissone, P.P.: Ofp_class: a hybrid method to

generate optimized fuzzy partitions for classification. Soft Comput. 16, 667–682 (2012b)
9. Cox, E.: Fuzzy Modeling and Genetic Algorithms for Data Mining and Exploration. Morgan

Kaufmann Publishers, New York (2005)
10. Diaz-Uriarte, R., de Andrés, S.A.: Gene selection and classification of microarray data using

random forest. BMC Bioinform. 7(3) (2006)
11. Frank, A., Asuncion, A.: UCI Machine Learning Repository. School of Information and Com-

puter Sciences, University of California, Irvine (2010)
12. García, S., Fernández, A., Luengo, J., Herrera, F.: A study statistical techniques and per-

formance measures for genetics-based machine learning: accuracy and interpretability. Soft
Comput. 13(10), 959–977 (2009)

13. Ihaka, R., Gentleman, R.R.: A language for data analysis and graphics. J. Comput. Graph. Stat.
5(3), 299–314 (1996)

14. Jain, A.K.: Statistical pattern recognition: a review. IEEE Transa. Pattern Anal. Mach. Intell.
22, 4–37 (2000)

15. Kianmehr, K., Alshalalfa, M., Alhajj, R.: Fuzzy clustering-based discretization for gene expres-
sion classification. Knowl. Inf. Syst. 24, 441–465 (2010)

16. Qureshi, T., Zighed, D.A.: A soft discretization technique for fuzzy decision trees using resam-
pling. Intelligent Data Engineering and Automated Learning—IDEAL 2009. Lecture Notes in
Computer Science, vol. 5788, pp. 586–593 (2009)

17. Unler, A., Murat, A.: A discrete particle swarm optimization method for feature selection in
binary classification problems. Eur. J. Oper. Res. 206, 528–539 (2010)

18. Wang, C., Wang, M., She, Z., Cao, L.: CD: a coupled discretization algorithm. Advances in
Knowledge Discovery and Data Mining. Lecture Notes in Computer Science, vol. 7302, pp.
407–418 (2012)



A Framework for Modelling Real-World
Knowledge Capable of Obtaining Answers
to Fuzzy and Flexible Searches

Víctor Pablos-Ceruelo and Susana Munoz-Hernandez

Abstract The Internet has become a place where massive amounts of informa-
tion and data are being generated every day. This information is most of the times
stored in a non-structured way, but the times it is structured in databases it cannot be
retrieved by using easy fuzzy queries: we need human intervention to determine how
the non-fuzzy information stored needs to be combined and processed to answer a
fuzzy query. We present a web interface for posing fuzzy and flexible queries and a
framework. Our framework allows to represent non-fuzzy concepts, fuzzy concepts
and relations between them, giving the programmer the capability to model any real-
world knowledge. It is this representation in the framework’s language what it uses
to (1) determine how to answer the query without any human intervention and (2)
provide the search engine with the information it needs to present the user a friendly
and easy to use query form. We expect this work contributes to the development of
more human-oriented fuzzy search engines.
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1 Introduction

Most of the real-world information is stored in non-fuzzy databases, but most of
the queries that we (human beings) wanna pose to a search engine are fuzzy. One
example of this is the databases containing the distance of some houses to the center
and the user query “I want a house close to the center”. Assuming that it is nonsense
to teach every search engine user how to translate the (almost always) fuzzy query the
user has in mind into a query that a machine can understand and answer, the problem
to be solved has two very different parts: recognition of the query and execution of
the recognized query.

The recognition of the query has basically two parts: syntactic and semantic
recognition. The first one has to be with the lexicographic form of the set of words
that compose the query and tries to find a query similar to the user’s one but more
commonly used. The objective with this operation is to pre-cache the answers for
the most common queries and return them in less time, although sometimes it serves
to remove typos in the user queries. An example of this is replacing “cars”, “racs”,
“arcs” or “casr” by “car”. The detection of words similar to one in the query is called
fuzzy matching and the decision to propose one of them as the “good one” is based
on statistics of usage of words and groups of words. The search engines usually ask
the user if he/she wants to change the typed word(s) by this one(s).

The semantic recognition is work still in progress and it is sometimes called
“natural language processing”. In the past search engines were tools used to retrieve
the web pages containing the words typed in the query, but today they tend to include
capabilities to understand the user query. An example is computing 4 plus 5 when
the query is “4+5” or presenting a currency converter when we write “euro dollar”.
This is still far away from our proposal: retrieving web pages containing “fast red
cars” instead of the ones containing the words “fast”, “red” and “car”.

The execution of the recognized query is the second part. Suppose a query like
“I want a restaurant close to the center”. If we assume that the computer is able to
“understand” the query then it will look for a set of restaurants in the database satis-
fying it and return them as answer, but the database does not contain any information
about “close to the center”, just the “distance of a restaurant to the center”. It needs
a mapping between the “distance” and the meaning of “close”, and this knowledge
must be stored somewhere.

One of the most successful programming languages for representing knowledge
in computer science is Prolog, whose main advantage with respect to the other ones is
being a more declarative programming language.1 Prolog is based on logic. It is usual
to identify logic with bi-valued logic and assume that the only available values are
“yes” and “no” (or “true” and “false”), but logic is much more than bi-valued logic.
In fact we use fuzzy logic (FL), a subset of logic that allow us to represent not only if

1We say that it is a more declarative programming language because it removes the necessity to
specify the flow control in most cases, but the programmer still needs to know if the interpreter
or compiler implements depth or breadth-first search strategy and left-to-right or any other literal
selection rule.
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Fig. 1 Restaurants database
and close fuzzification
function

0

1

close

100 1000 distance

an individual belongs or not to a set, but the grade in which it belongs. Supposing the
database contents, the definition for “close” in Fig. 1 and the question “Is restaurant X
close to the center?” with FL we can deduce that Il tempietto is “definitely” close
to the center, Tapasbar is “almost” close, Ni Hao is “hardly” close and Kenzo is
“not” close to the center. We highlight the words “definitely”, “almost”, “hardly”
and “not” because the usual answers for the query are “1”, “0.9”, “0.1” and “0” for
the individuals Il tempietto, Tapasbar, Ni Hao and Kenzo and the humanization of
the crisp values is done in a subsequent step by defuzzification.

Name Distance Price avg. Food type
Il_tempietto 100 30 Italian
Tapasbar 300 20 Spanish
Ni Hao 900 10 Chinese
Kenzo 1200 40 Japanese

The simplicity of the previous example introduces a question that the curious
reader might have in mind: “Does adding a column “close” of type float to the
database and computing its value for each row solves the problem?”. The answer is
yes, but only if our query is not modifiable: It does not help if we can change our
question to “I want a very close to the center restaurant” or to “I want a not very
close to the center restaurant”. Adding a column for each possible question results
into a storage problem, and in some sense it is unnecessary: all this values can be
computed from the distance value.

Getting fuzzy answers for fuzzy queries from non-fuzzy information stored in
non-fuzzy databases has been studied in some works, for example in [4], the SQLf
language. The Ph.D. thesis of Leonid Tineo [20] and the work of Dubois and Prade [6]
are good revisions, although maybe a little bit outdated. Most of the works mentioned
in this papers focus in improving the efficiency of the existing procedures, in including
new syntactic constructions or in allowing to introduce the conversion between the
non-fuzzy values needed to execute the query and the fuzzy values in the query,
for which they use a syntax rather similar to SQL (reflected into the name of the
one mentioned before). The advantages of using a syntax similar to SQL are many
(removal of the necessity to retrieve all the entries in the database, SQL programmers
can learn the new syntax easily, …) but there is an important disadvantage: the user
needs to teach the search engine how to obtain the fuzzy results from the non-fuzzy
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values stored in the database to get answers to his/her queries and this includes
that he/she must know the syntax and semantics of the language and the structure
of the database tables. This task is the one we try to remove by including in the
representation of the problem the knowledge needed to link the fuzzy knowledge
with the non-fuzzy one.

To include the links between fuzzy and non-fuzzy concepts we could use any
of the existing frameworks for representing fuzzy knowledge. Leaving apart the
theoretical frameworks, as [22], we know about the Prolog-Elf system [8], the FRIL
Prolog system [1], the F-Prolog language [9], the FuzzyDL reasoner [2], the Fuzzy
Logic Programming Environment for Research (FLOPER) [15], the Fuzzy Prolog
system [7, 21], or Rfuzzy [17]. All of them implement in some way the fuzzy set
theory introduced by Lotfi Zadeh in 1965 [23], and all of them let you implement
the connectors needed to retrieve the non-fuzzy information stored in databases, but
we needed more meta-information than the one they provide.

Retrieving the information needed to ask the query is part of the problem but,
as introduced before, it is needed to determine what the query is asking for before
answering it. Instead of providing a free-text search field and recognize the query we
do it in the other way: we did an in-depth study on which are all the questions that
we can answer from the knowledge stored in our system and we created a general
query form that allows to introduce any of this questions. This is why in Sect. 3 we
do not only present the semantics of our syntactic constructions, but the information
that helps us to instantiate the general query form for each domain.

To our knowledge, the works similar to ours are [3, 5, 19]. While the last two seem
to be theoretical descriptions with no implementation associated the first one does not
appear to be a search engine project. They provide a natural language interface that
answers queries of the types (1) does X (some individual) have some fuzzy property,
for example “Is it true that IBM is productive?”, and (2) do an amount of elements
have some fuzzy property, for example “Do most companies in central Portugal have
sales_profitability?”.

The paper is structured as follows: the syntax needed to understand it goes first
(Sect. 2), the description of our framework after (Sect. 3) and conclusions and current
work in last place (Sect. 4), as usual.

2 Syntax

We will use a signature Σ of function symbols and a set of variables V to “build”
the term universe TUΣ,V (whose elements are the terms). It is the minimal set such
that each variable is a term and terms are closed under Σ-operations. In particular,
constant symbols are terms. Similarly, we use a signature Π of predicate symbols to
define the term base TBΠ,Σ,V (whose elements are called atoms). Atoms are predi-
cates whose arguments are elements of TUΣ,V . Atoms and terms are called ground
if they do not contain variables. As usual, the Herbrand universe HU is the set of all
ground terms, and the Herbrand base HB is the set of all atoms with arguments from
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the Herbrand universe. A substitution σ or ξ is (as usual) a mapping from variables
from V to terms from TUΣ,V and can be represented in suffix ((Term)σ ) or in prefix
notation (σ(Term)).

To capture different interdependencies between predicates, we will make use of
a signature Ω of many-valued connectives formed by conjunctions &1, &2, . . . , &k ,
disjunctions ∨1,∨2, . . . ,∨l , implications ←1,←2, . . . ,←m , aggregations @1, @2,

. . . , @n and tuples of real numbers in the interval [0, 1] represented by (p, v).
While Ω denotes the set of connective symbols, Ω̂ denotes the set of their respec-

tive associated truth functions. Instances of connective symbols and truth functions
are denoted by &i and &̂i for conjunctors, ∨i and ∨̂i for disjunctors, ←i and ←̂i for
implicators, @i and @̂i for aggregators and (p, v) and ˆ(p, v) for the tuples.

Truth functions for the connectives are then defined as &̂ : [0, 1]2 → [0, 1]
monotone2 and non-decreasing in both coordinates, ∨̂ : [0, 1]2 → [0, 1] monotone
in both coordinates, ←̂ : [0, 1]2 → [0, 1] non-increasing in the first and non-
decreasing in the second coordinate, @̂ : [0, 1]n → [0, 1] as a function that verifies
@̂(0, . . . , 0) = 0 and @̂(1, . . . , 1) = 1 and (p, v) ∈ Ω(0) are functions of arity 0
(constants) that coincide with the connectives.

Immediate examples for connectives that come to mind for conjunctors are: in
Łukasiewicz logic (F̂(x, y) = max(0, x + y − 1)), in Gödel logic (F̂(x, y) =
min(x, y)), in product logic (F̂(x, y) = x · y), for disjunctors: in Łukasiewicz logic
(F̂(x, y) = min(1, x + y)), in Gödel logic (F̂(x, y) = max(x, y)), in product logic
(F̂(x, y) = x · y), for implicators: in Łukasiewicz logic (F̂(x, y) = min(1, 1 − x +
y)), in Gödel logic (F̂(x, y) = yifx > yelse1), in product logic (F̂(x, y) = x ·y) and
for aggregation operators3: arithmetic mean, weighted sum or a monotone function
learned from data.

3 The Framework in Detail

As stated in the introduction, the framework we present provides (1) the syntax
needed to model any knowledge domain and (2) an enough expressive syntactical
structure for representing any query we can answer with the information stored
in the system. We can view it as the sum of three parts: (1) a configuration file
(CF) that defines the fuzzy and non-fuzzy concepts of our domain and the relations
between them, (2) a framework that understands the CF and provides (2.1) the search
capabilities and (2.2) the metainformation that the web application needs to present
the user the tools he/she needs to pose the query and (3) a web application that
(3.1) reads the metainformation, (3.2) determines the framework capabilities, (3.3)

2As usually, a n-ary function F̂ is called monotonic in the idefine-th argument (i ≤ n), if x ≤ x ′
implies F̂(x1, . . . , xi−1, x, xi+1, . . . , xn) ≤ F̂(x1, . . . , xi−1, x ′, xi+1, . . . , xn) and a function is
called monotonic if it is monotonic in all arguments.
3Note that the above definition of aggregation operators subsumes all kinds of minimum, maximum
or mean operators.
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generates an easy to use human-oriented interface for posing queries to the search
engine and (3.4) shows the answers found by the framework to the user.

The syntactical structure we use to query the search engine has been defined
after studying multiple user queries. It comprises all of them (sometimes with small
modifications) while trying to be as expressive as possible and has the form

I ′m looking f or a/an individual{
not quantifier fuzzy-pred

whose non-fuzzy-pred comp-op value

}
AND

(1)

where individual is the element we are looking for (car, skirt, restaurant, …),
quantifier is a quantifier (quite, rather, very, …), fuzzy-pred is a fuzzy predicate
(cheap, large, close to the center, …), non-fuzzy-pred is a non-fuzzy predicate (price,
size, distance to the center, …) and comp-op is a comparison operand (is equal to, is
different from, is bigger than, is lower than, is bigger than or equal to, is lower than
or equal to and is similar to). The elements in boxes can be modified and the brackets
symbolize choosing between a fuzzy predicate query or a comparison between non-
fuzzy values (which can be a fuzzy comparison). The “AND” serves to add more
lines to the query, to combine multiple conditions. Some examples of use are “I’m
looking for a restaurant not very near the city center” (Eq. 2), “I’m looking for a
restaurant whose food type is mediterranean” (Eq. 3) and “I’m looking for a restau-
rant whose food type is similar to mediterranean and near the city center” (Eq. 4).
In the examples the empty boxes mean that we do not choose any of the available
elements.

I ′m looking f or a/an restaurant

not very near the city center (2)

I ′m looking f or a/an restaurant

whose food type is mediterranean (3)

I ′m looking f or a/an restaurant

whose food type is similar to

mediterranean
near the city center

AND (4)

The syntax that we provide to model any knowledge domain is highly coupled
to the information that we need to retrieve for providing the values for “individual”,
“not”, “quantifier”, “fuzzy-pred”, “non-fuzzy-pred”, “comp-op” and “value”, and
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to present the answers in a human-readable way. This is why when we provide its
semantics we do it in two ways: by providing the formal ones and by providing
what the web interface understands from them. We present first a brief but, for our
purposes, complete introduction to the multi-adjoint semantics with priorities that we
use to give formal semantics to our syntactical constructions. For a more complete
description we recommend reading the papers cited below.

The structure used to give semantics to our programs is the multi-adjoint algebra,
presented in [10–14, 16]. The interest in using this structure is that we can obtain the
credibility for the rules that we write from real-world data, although this time we do
not focus in that advantage. We simply highlight this fact so the reader knows why
this structure and not some other one.

This structure provides us with the basis, but for our purposes we need that the max-
imum operator used to decide between multiple rules results the valid one chooses
the value of the less generic rule instead of just the higher value. This is why we
take as point of departure the work [18]. Definitions needed to understand the formal
semantics are given in advance, as usually.

In [18] the meaning of a fuzzy logic program gets conditioned by the combination
of a truth value and a priority value. So, the usual truth value v ∈ [0, 1] is converted
into (p, v) ∈ Ω(0), a tuple of real numbers between 0 and 1 where p ∈ [0, 1] denotes
the (accumulated) priority. The usual representation (p, v) is sometimes changed
into (pv) to highlight that the variable is only one and it can take the value ⊥. The
set of all possible values is symbolized by KT and the ordering between its elements
is defined as follows:

Definition 1 (� KT)

⊥ � KT ⊥ � KT (p, v)

(p1, v1) � KT (p2, v2) ↔ (p1 < p2) or (p1 = p2 and v1 ≤ v2) (5)

where < is defined as usually (vi and p j are just real numbers between 0 and 1).

Definition 2 (Multi-Adjoint Logic Program) A multi-adjoint logic program is a set
of clauses of the form

A
(p, v), &i←−−−−− @ j (B1, . . . , Bn) if COND (6)

where (p, v) ∈ KT, &i is a conjunctor, @ j an aggregator (unnecessary if k ∈ [1..1]),
A and Bk , k ∈ [1..n], are atoms and C O N D is a first-order formula (basically a bi-
valued condition) formed by the predicates in TBΠ,Σ,V , the predicates =, 
=, ≥, ≤,
> and < restricted to terms from TUΣ,V , the symbol true and the conjunction ∧ and
disjunction ∨ in their usual meaning.

Definition 3 (Valuation, Interpretation) A valuation or instantiation σ : V → HU
is an assignment of ground terms to variables and uniquely constitutes a mapping
σ̂ : TBΠ,Σ,V → HB that is defined in the obvious way.
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A fuzzy Herbrand interpretation (or short, interpretation) of a fuzzy logic program
is a mapping I : HB → KT that assigns an element in our lattice to ground atoms.4

It is possible to extend uniquely the mapping I defined on HB to the set of all
ground formulas of the language by using the unique homomorphic extension. This
extension is denoted Î and the set of all interpretations of the formulas in a program
P is denoted IP.

Definition 4 (The operator ◦) The application of some conjunctor &̄ (resp. implica-
tor ←̄, aggregator @̄) to elements (p, v) ∈ KT\{⊥} refers to the application of the
truth function &̂ (resp. ←̂, @̂) to the second elements of the tuples while ◦& (resp.
◦←, ◦&) is the one applied to the first ones. The operator ◦ is defined by

x ◦& y = x + y

2
and z ◦← y = 2 ∗ z − y.

Definition 5 (Satisfaction, Model) Let P be a multi-adjoint logic program, I ∈ IP

an interpretation and A ∈ HB a ground atom. We say that a clause Cli ∈ P of the
form shown in Eq. 6 is satisfied by I or I is a model of the clause Cli (I � Cli ) if
and only if (iff) for all ground atoms A ∈ HB and for all instantiations σ for which
Bσ ∈ HB (note that σ can be the empty substitution) it is true that

Î (A) � KT (p, v) &̄i @̄i ( Î (B1σ), . . . , Î (Bnσ) ) (7)

whenever COND is satisfied (true). Finally, we say that I is a model of the program P
and write I � P iff I � Cli for all clauses in our multi-adjoint logic program P.

Now that we have introduced the basics of our formal semantics we introduce the
syntax, semantics and what the web interface interprets from them.

The first and most important syntactic structure is the one used to define the
individuals we can play with, as “restaurants” or “houses” in the previous examples.
Since the database tables storing the information of an individual can be more than
one we decided to allow the programmer to use the Prolog facilities for mixing all
the information into a predicate and we depart from this predicate. This means that
if we have two tables for storing the information of a restaurant, one for the “food
type” (ft) and another for the “distance to the city center” (dttcc) we can write the
lines in Eqs. 8–12 to obtain all the information about a restaurant. If instead of that
we have all the information of a restaurant in just one table we can make use of the
code in Eqs. 13 and 14.

4The domain of an interpretation is the set of all atoms in the Herbrand Base (interpretations are total
functions), although for readability reasons we present interpretations as sets of pairs (A, (p, v))

where A ∈ HB and (p, v) ∈ KT\{⊥} (we omit those atoms whose interpretation is the truth
value ⊥).
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sql_persistent_location(r f t, db(′SQL ′, user, pass, ′host ′ : port)). (8)

: −sql_persistent (r f t (integer, string), r f t (id, f t), r f t). (9)

sql_persistent_location(rdttcc, db(′SQL ′, user, pass, ′host ′ : port)).
(10)

: −sql_persistent (rdttcc(integer, integer), rdttcc(id, dttcc), rdttcc).
(11)

restaurant (id, f t, dttcc) : −r f t (id, f t), rdttcc(id, dttcc). (12)

sql_persistent_location(restaurant, db(′SQL ′, user, pass, ′host ′ : port)).
(13)

: −sql_persistent (restaurant (integer, string, integer, integer),

restaurant (id, f t, yso, dttcc), restaurant). (14)

Once we have all the information accessible we use the syntactical structure in
Eq. 15 to define our virtual database table (vdbt), where pT is the name of the vdbt
(the individual or subject of our searches), pA is the arity of the predicate or the
vdbt, pN is the name assigned to a column of the vdbt pT and pT′ is a basic type,5

one of {boolean_t ype, enum_t ype, integer_t ype, f loat_t ype, string_t ype}. We
provide an example in Eq. 16 to clarify, in which the restaurant vdbt has five columns
(or the predicate has five arguments), the first for the unique identifier given to each
restaurant (its name), the second for the food type served there, the third for the
number of years since its opening, the fourth for the restaurant’s price average and
the last one for the distance to the city center from that restaurant.

de f ine_database(pT/p A, [(pN , pT ′)]) (15)

de f ine_database((id, string_t ype), ( f ood_t ype, enum_t ype),

(years_since_opening, integer_t ype),

(price_average, integer_t ype),

(distance_to_the_ci ty_center, integer_t ype)]). (16)

This syntactical construction has no formal semantics because it is just for defin-
ing the input data, but it provides a lot of information to the web interface and
setters/getters that can be used in the programs. We go first for the setters/getters.
For each column defined for a vdbt the framework builds for us a setter/getter to
store/access the information in/of each cell in the database. The cell selected gets
fully determined by the predicate name (the one given to the column) and its first
argument. For example, by writing the line in Eq. 16 the framework defines for us the

5Please note that the types in our framework are not the same as the types used in Eqs. 8–14.
Nevertheless, our types are subsets of this ones. We justify in the paragraph below this one why we
need this fine-grained type control.
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predicates id(R, I d), f ood_t ype(R, FoodT ype), years_since_opening(R, Y ears),
price_average(R, Price) and distance_to_the_ci ty_center(R, Dttcc). Each one
serves to set/obtain the value in/from the database cell corresponding to the row
of restaurant R and the column with the same name as the predicate used (id,
f ood_t ype, years_since_opening, price_average and distance_to_the
_ci ty_center ). With respect to the web interface, the framework notifies to it that we
have a new value for the field “individual” (the value in pT, restaurant in the example),
a list of values for non-fuzzy-pred (id, food type, years since opening, price average
and distance to the city center) and their types (string_type, enum_type, integer_type,
integer_type, integer_type). In addition to this explicit information the web interface
itself is capable of deriving from the type of each column the values that it can show
in comp-op. We show them in the table below. It is even able to detect in some cases
that it must ask the framework for the values of some field, as in the case of the
selection for the field comp-op the value “is similar to”.

Type Values for comp-op
string_t ype “is equal to” and “is different

from”
enum_t ype “is equal to”, “is different

from” and “is similar to”
interger_t ype “is equal to”, “is different

from”, “is bigger than”, “is
lower than”, “is bigger than
or equal to” and “is lower
than or equal to”

The second syntactical construction is the one used to define similarity between
the individuals of enum_t ype. It is shown in Eq. 17, where pT and pN mean the
same as in Eq. 15, V 1 and V 2 are possible values for the column pN of the vdbt pT,
column that must be of type enum_t ype, and TV is the truth value (a float number
between 0 and 1) we assign to the similarity between V 1 and V 2. We show an
example in Eq. 20, in which we say that the food type mediterranean is 0.7 similar
to the spanish food.6 The syntactical constructions in Eqs. 18 and 19 are optional
tails for the syntactical construction in Eq. 17. Since they can appear too as tails of
the constructions in Eqs. 17, 23, 27, 31, 32 and 36, we dedicate some paragraphs
(just after this one) to explain how the semantics of the constructions change when
they are used. With respect to the semantics of Eq. 17, we show them in Eq. 21. For
the variables in common we take the values written using the new syntax, while for
p, v, &i and COND we have by default7 the values 0.8, 1, product and true. We
show in Eq. 22 the translation of the example in Eq. 20 for the reader to see how the

6Be careful, we are not saying that the spanish food is 0.7 similar to the mediterranean one. You
need to add another clause with that information if you wanna say that too.
7The meaning of this “by default” is explained too in the paragraphs after this one.
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translation is done in practice. This construction does not provide any information
to the web interface.

similari t y_between(pT, pN (V 1), pN (V 2), T V ) (17)

wi th_credibili t y(cred Op, credV al) (18)

only_ f or_user ′User Name′ (19)

similari t y_between(restaurant, f ood_t ype(mediterranean),

f ood_t ype(spanish), 0.7) (20)

similari t y(pT (pN (V 1, V 2)))
(p, v), &i←−−−−− T V if C O N D (21)

similari t y(restaurant ( f ood_t ype(mediterranean, spanish)))
(0.8, 1), prod←−−−−−−−

0.7 if true
(22)

As outlined in the previous paragraph, the constructions in Eqs. 18 and 19 can be
used as tails for the constructions in Eqs. 17, 23, 27, 31, 32 and 36. There is another
construction that can be used as tail, the one in Eq. 24, but only for the constructions
in Eqs. 23, 27, 31, 32 and 36. This three constructions are meant to change slightly
the semantics of the original constructions when they appear as their tails, which is
done by modifying at least one of the values given “by default” to the variables p, v,
&i and COND. We explain each case separately.

The tail in Eq. 18 serves to (re)define the credibility of a clause, together with
the operator needed to combine it with its truth value. In its syntactic definition in
Eq. 18 credVal is the credibility, a number of float type, and credOp is the operator,
any conjunctor having the properties defined in Sect. 2. When we use it the values
for v and &i (usually 1 and product) are changed by the values given to the variables
credVal and credOp.

The tail in Eq. 19 is aimed at defining personalized rules, rules that only apply
when the name of the user logged in and the user name in the rule are the same one. In
the construction Username is the name of any user, a string. When we use it the value
of COND is replaced8 by COND ∧ currentUser(Me) ∧ Me = ′User Name′9
and the value for p gets increased by 0.1. While the first change is to ensure that
the rule is only used when the logged user is the selected user, the second one is
to ensure that, when the logged user is the selected user, this rule (considered to be
more specialized for the selected user) is chosen before another rule not having this
specialization.

The tail in Eq. 24 (not applicable to the construction in Eq. 17) serves to limit
the individuals for which we wanna use the fuzzy clause or rule. In the construc-
tion pN and pT mean the same as in Eq. 15, cond can take the values is_equal_to,

8Please note that we not remove the original condition, so we can combine conditions introduced
by the semantics of a clause with the conditions introduced by one or more tails.
9We use indistinctively ’,’ and ∧ because the first one is the Prolog symbol for conjunction.
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is_di f f erent_ f rom, is_bigger_than, is_lower_than, is_bigger_than_
or_equal_to and is_lower_than_or_equal_to and value can be of type integer_
t ype, enum_t ype or string_t ype. The only restrictions are that the type of value
must be the same as the one given to to the column pN of pT and that if they are of
type enum_t ype or string_t ype the only available values for cond are is_equal_to
and is_di f f erent_ f rom. When we use this tail construction the value of COND is
changed by COND∧(pN (I ndividual) condvalue), where I ndividual is basically
a vdbt row (of type pT ), and the value for p gets increased by 0.05.

The first tail construction, the one in Eq. 18, is aimed at changing the clause credi-
bility. This is why it only changes the credibility value and the credibility operator in
the “by default” semantics (of the clause in which it appears as tail). On the contrary
the tails constructions in Eqs. 19 and 24 have as purpose increasing the specialization
of the clause. The first one defines that the user prefers the results of this clause to the
results of any other clause and the second one defines that, for the subset of individ-
uals of our clause domain delimited by the condition, we prefer the results provided
by this clause to the results provided by any other clause. This justifies in part the
increasing of the value of p by 0.1 when the clause contains the tail in Eq. 19 and by
0.05 when it is the one in Eq. 24. The missing part, the cause of defining different
values for each, comes from a design decision: when choosing between the results
of a personalized clause and the ones of a clause defined for a subset of individuals
we prefer the first ones. Furthermore, the use of one of the tails’ constructions does
not disallow the use of the other ones, so we can have personalized rules for a subset
of individuals of the clause’s domain. And with a defined credibility.

The third construction (shown in Eq. 23) is the one used to define the result of a
fuzzy predicate (fPredName) when this one is applied to an individual in the selected
vdbt (pT). It serves to define the rare situation in which for all the individuals in
the vdbt we have the same result and, when the construction in Eq. 24 appears as its
tail, for subsets of the set of individuals in the vdbt. In Eq. 23 the variables pT and
TV mean the same as in Eqs. 15 and 17 and fPredName is the fuzzy predicate we
are defining. Equation 25 is an example of use in which we say that the restaurant
with id Zalacain is cheap with a truth value of 0.1. The formal semantics for this
construction are shown in Eq. 26, where Individual is a variable representing the vdbt
individual for which the clause will be computed (a restaurant in the example). The
default values for p, v, &i and COND are the values 0.8, 1, product and true. From
the point of view of the interface, the inclusion of a new fuzzy predicate is taken
into account and a new predicate appears in the list of predicates from which we can
choose one for the field fuzzy-pred (see Eq. 1).

f Pred Name(pT ) :∼ value(T V ) (23)

i f (pN (pT ) cond value). (24)

cheap(restaurant) :∼ value(0.1)

i f (id(restaurant) is_equal_to zalacain). (25)

f Pred Name(I ndividual)
(p, v), &i←−−−−− T V if C O N D (26)
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The fourth construction serves to define fuzzifications, the computation of fuzzy
values for fuzzy predicates from the non-fuzzy value that the individual has in some
column in the database. The syntax is presented in Eq. 27, where pN and pT mean
the same as in Eq. 15, fPredName is the name of the fuzzy predicate that we are
defining (the fuzzification), [(val I n, val Out)] is a list of pairs of values such that
val I n belongs to the domain of the fuzzification and val Out to its image.10 An
example in which we compute how much traditional is a restaurant from the number
of years since its opening is presented in Eq. 28. The formal semantics for this con-
struction are shown in Eq. 29, but only for one sequence of two contiguous points11

(val I n1, val Out1)(val I n2, val Out2) in Eq. 27. The default values for p, v, &i

and COND are the values 0.6, 1, product and the COND′ in Eq. 30. This value for
COND, COND′, serves to limit the domain of the generated clause. Since we generate
one clause for each piece of the piecewise function we use COND′ to ensure that we
use the clause designated for the piece our input value belongs to. The web interface
assumes that fuzzification functions are fuzzy predicates, so it includes them in the
list of available predicates for the field fp (see Eq. 1) when they are not there yet.

f Pred Name(pT ) :∼ f unction(pN (pT ), [(val I n, val Out)]) (27)

traditional(restaurant) :∼ f unction(years_since_opening(restaurant),

[(0, 0), (5, 0.1), (10, 0.4), (15, 1), (100, 1)]). (28)

f Pred Name(I ndividual)
(p, v), &i←−−−−−− pN (I ndividual) ∗ (val Out_2 − val Out_1)

(val I n_2 − val I n_1)

if COND (29)

COND′ = (val I n_1 < pN (I ndividual) ≤ val I n_2) (30)

The fifth syntactical construction is for defining rules and has two forms, one
used when the body depends on more than one subgoal, shown in Eq. 31, and one
used when it depends in just one subgoal, shown in Eq. 32. In Eq. 31 aggr is the
aggregator used to combine the truth values of the subgoals in complexBody, which
is just a conjunction of names of fuzzy predicates (and the vdbt they are associated to,
represented by pT), while in Eq. 32 simplexBody is just the name of a fuzzy predicate.
In both of them pT means the same as in Eq. 15 and fPredName the same as in
Eq. 27. We show an example in Eq. 35. The formal semantics for this constructions
are respectively shown in Eqs. 33 and 34 and the default values for p, v, &i and
COND are the values 0.4, 1, product and true. With respect to what the web interface
receives from this syntactic structure, it considers fuzzy rules as fuzzy predicates,
and it always includes fuzzy predicates in the list of available predicates for the field
fp (see Eq. 1) when they are not there yet.

10[(val I n, val Out)] is basically a piecewise function definition, where each two contiguous points
represent a piece.
11This “only for one sequence of two contiguous points” means that we generate one clause of the
form in Eq. 29 for each piece defined by two contiguous points.
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f Pred Name(pT ) :∼ rule(aggr, complex Body) (31)

f Pred Name(pT ) :∼ rule(simpleBody) (32)

f Pred Name(I ndividual)
(p, v), &i←−−−−− aggr(complex Body) if COND (33)

f Pred Name(I ndividual)
(p, v), &i←−−−−− simplex Body if COND (34)

tempting_restaurant (restaurant) :∼ rule(min, (near_the_ci ty_center(restaurant),

cheap(restaurant))) (35)

The sixth syntactical construction is the one used to define default values for
fuzzy computations. Its main goal is to avoid that the inference process stops when a
needed value is missing and it is really useful when a database can have null values.
The syntactic form is presented in Eq. 36, where pT means the same as in Eq. 15 and
f Pred Name the same as in Eq. 27. We provide two examples in Eqs. 37 and 38 in
which we say that, in absence of information, we consider that a restaurant will not
be close to the city center (this is what the zero value means) and that, in absence of
information, a restaurant is considered to be medium cheap.12 The formal semantics
for this constructions are shown in Eq. 39 and the default values for p, v, &i and
COND are the values 0, 1, product and true. With respect to what the web interface
receives from this syntactic structure, the syntactic construction for defining default
values is translated as a fuzzy predicate and the web interface always includes fuzzy
predicates in the list of available predicates for the field f p (see Eq. 1) when they are
not there yet.

f Pred Name(pT ) :∼ de f aults_to(T V ) (36)

near_the_ci ty_center(restaurant) :∼ de f aults_to(0). (37)

cheap(restaurant) :∼ de f aults_to(0.5). (38)

f Pred Name(I ndividual)
(p, v), &i←−−−−− T V if COND (39)

The six constructions defined before and their semantics orchestrate the intended
meaning we wanna give to our programs. We summarize in the table below the
values given to the variables p, v, &i and COND when no tail is attached to the
no-tail constructions and explain now the reasons for choosing the values that appear
there. For the variables v and &i we assign by default the values 1 and product. We
have chosen this values due to the fact that multiplying by one a number (the rule’s
truth value) results always in the same number: it does not affect the clause’s result.
Their value is only changed when the construction in Eq. 18 is used as tail, which
means that the programmer wants to change the default credibility of the clause.
The variable COND has as goal avoiding the clause from obtaining results when the

12We include two examples here so if one builds a program by taking all the examples in the
contribution the rule in Eq. 35 does not fail to obtain answers because it has not enough information
to infer results.
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condition is not satisfied. The only construction that needs by default this behaviour
is the fuzzification, as explained before. For the other constructions we assign by
default the value true and modify it when any of the constructions in Eqs. 19 and 24
appears as tails, which affects too to the value of the variable p. The value given to
the variable p is used to decide when more than one rule returns results which ones
are the valid ones. The only restriction in the selection of its default value is that its
range of values is [0, 1]. Since the tails’ constructions in Eqs. 19 and 24 can add to
it a maximum of 0.15 our default value for p must be always below or equal to 0.85
to ensure that we satisfy the restriction.

Construction p v &i COND
Similarity between
individuals

0.8 1 Product True

Fuzzy value 0.8 1 Product True
Fuzzification
function

0.6 1 Product COND′

Fuzzy rule 0.4 1 Product True
Default fuzzy
value

0 1 Product True

4 Conclusions

We present a framework for modelling the real world knowledge and a web inter-
face for posing fuzzy and flexible queries. As introduced before, the first one has
a syntax (and its semantics) with which we can capture the relations between the
fuzzy and non-fuzzy knowledge of any domain (inclusive the linking of information
from databases with real-world fuzzy concepts) and feed the search engine with the
information it needs to provide a friendly and easy to use user interface. The search
engine main advantage over the existing ones just derives from this: we avoid the
necessity to learn a complex syntax to just pose (fuzzy) queries. This, joint with
the possibility to include Prolog code (for complex tasks) makes our framework a
very powerful tool for representing the real world and answering questions about it.
A link to a beta version of our flexible search engine (with example programs, the
possibility to upload new ones, etc.) is available at our web page.

Our current research focus on deriving similarity relations from the modelization
of a problem in our framework’s language. In this way we could, for example, derive
from the RGB composition of two colors their similarity relation.
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On the Deduction Problem in Gödel
and Product Logics

Dušan Guller

Abstract We investigate the deduction problem in Gödel and Product logics, both
equipped with Gödel negation, in the countable case. Our approach is based on trans-
lation of a formula to an equivalent satisfiable finite order clausal theory, consisting
of order clauses. An order clause is a finite set of order literals of the form ε1 � ε2
where � is a connective either � or ≺. � and ≺ are interpreted by th xe equality
and standard strict linear order on [0, 1], respectively. We generalise the well-known
hyperresolution principle to the standard first-order Gödel logic and devise a calcu-
lus operating over order clausal theories. A variant of the DPLL procedure in the
propositional Product logic exploiting trichotomy and operating over order clausal
theories, will be proposed. Both the calculi are refutation sound and complete for the
countable case.

Keywords Gödel logic · Product logic · Resolution · DPLL procedure · Many-
valued logics · Automated deduction

1 Introduction

Exploration of the deduction problems (satisfiability, SAT, validity, VAL, logical
entailment) belongs to all important aims in research on many-valued logics. In
addition to investigation of the “classical” many-valued deduction calculi, a perspec-
tive from automated deduction has received attractivity during the last two decades.
Concerning the three fundamental first-order fuzzy logics, the set of logically valid
formulae is Π2-complete for Łukasiewicz logic, Π2-hard for Product logic, and Σ1-
complete for Gödel logic, as with classical first-order logic. Among these fuzzy
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logics, only Gödel logic is recursively axiomatisable. Hence, it is necessary to pro-
vide a proof method suitable for automated deduction, as one has done for classical
logic. In contrast to classical logic, we cannot make shifts of quantifiers arbitrarily
and translate a formula to an equivalent (satisfiable) prenex form. In Sect. 2, we solve
the deduction problemof a formula froma countable theory inGödel logic.We gener-
alise thewell-knownhyperresolution principle to the standard first-orderGödel logic.
Our approach is based on the translation of a formula of Gödel logic to an equivalent
satisfiable finite order clausal theory, consisting of order clauses. We introduce a
notion of quantified atom: a formula a is a quantified atom iff a = Qx p(t0, . . . , tτ )
where Q is a quantifier (∀, ∃); p(t0, . . . , tτ ) is an atom; x is a variable occurring in
p(t0, . . . , tτ ); for all i ≤ τ , either ti = x or x does not occur in ti . Then an order
clause is a finite set of order literals of the form ε1 � ε2 where εi is either an atom
or a quantified atom, and � is a connective either � or ≺. � and ≺ are interpreted
by the equality and strict linear order on [0, 1], respectively. For an input theory of
Gödel logic, the proposed translation produces a so-called admissible order clausal
theory. On the basis of the hyperresolution principle, a calculus operating over order
clausal theories, is devised. The calculus is proved to be refutation sound and com-
plete for the countable case. Product logic [1, 2] is one of the fundamental fuzzy
logics, based on the product t-norm. It has been discovered much later than Gödel
and Łukasiewicz logics, known before the beginning of research on fuzzy theory. In
Sect. 3, we investigate the deduction problem of a formula from a countable theory
in the propositional Product logic. Our approach is based on translation of a formula
to an equivalent satisfiable finite order clausal theory, consisting of order clauses.
An order clause is a finite set of order literals of the form ε1 � ε2 where εi is either a
conjunction of propositional atoms or the propositional constant 0 (false) or 1 (true),
and � is a connective either � or ≺. Trichotomy over order literals, either ε1 ≺ ε2
or ε1 � ε2 or ε2 ≺ ε1, naturally invokes proposing a variant of the DPLL procedure
with a trichotomy branching rule, as an algorithm for deciding the satisfiability of a
finite order clausal theory. The DPLL procedure with its basic rules is proved to be
refutation sound and complete in the countable case.

2 An Order Hyperresolution Calculus

2.1 First-Order Gödel Logic

We shall use the standard notions and notation of the first-order Gödel logic and
set theory.1 By L we denote a first-order language. We assume nullary predicate
symbols 0, 1 ∈ PredL, arL(0) = arL(1) = 0; 0 denotes the false and 1 the true
in L. By FormL we designate the set of all formulae of L built up from AtomL
and VarL using the connectives: ¬, negation, ∧, conjunction, ∨, disjunction, →,
implication, and the quantifiers: ∀, the universal quantifier, ∃, the existential one.

1cf. http://ii.fmph.uniba.sk/~guller/sci14.pdf, Sect. 2.1.

http://ii.fmph.uniba.sk/~guller/sci14.pdf


On the Deduction Problem in Gödel and Product Logics 301

In addition, we introduce new binary connectives �, equality, and ≺, strict order.
We denote Con = {¬,∧,∨,→,�,≺}. By OrdFormL we designate the set of all
so-called order formulae of L built up from AtomL and VarL using the connectives
in Con and the quantifiers: ∀, ∃.2 In the paper, we shall assume that L is a countable
first-order language; hence, all the above mentioned sets of symbols and expressions
are countable. By varseq(φ), vars(varseq(φ)) ⊆ VarL, we denote the sequence of
all variables of L occurring in φ which is built up via the left-right preorder traversal
of φ.

Gödel logic is interpreted by the standard G-algebra augmented by binary oper-
ators��� and≺≺≺ for � and ≺, respectively.

G = ([0, 1],≤,∨∨∨,∧∧∧,⇒⇒⇒, ,���,≺≺≺, 0, 1)

where∨∨∨ | ∧∧∧ denotes the supremum | infimum operator on [0, 1];

a ⇒⇒⇒ b =
{
1 if a ≤ b,

b else; a =
{
1 if a = 0,
0 else;

a ��� b =
{
1 if a = b,

0 else; a ≺≺≺ b =
{
1 if a < b,

0 else.

We recall that G is a complete linearly ordered lattice algebra;∨∨∨ |∧∧∧ is commutative,
associative, idempotent, monotone; 0 | 1 is its neutral element;the residuum operator
⇒⇒⇒ of∧∧∧ satisfies the condition of residuation:

for all a, b, c ∈ G, a ∧∧∧ b ≤ c ⇐⇒ a ≤ b⇒⇒⇒ c; (1)

Gödel negation satisfies the condition:

for all a ∈ G, a = a ⇒⇒⇒ 0; (2)

the following properties, which will be exploited later, hold3:
for all a, b, c ∈ G,

a ∨∨∨ b ∧∧∧ c = (a ∨∨∨ b) ∧∧∧ (a ∨∨∨ c), (distributivity of ∨∨∨ over∧∧∧) (3)

a ∧∧∧ (b∨∨∨ c) = a ∧∧∧ b∨∨∨ a ∧∧∧ c, (distributivity of ∧∧∧ over∨∨∨) (4)

a ⇒⇒⇒(b∨∨∨ c) = a ⇒⇒⇒ b∨∨∨ a ⇒⇒⇒ c, (5)

a ⇒⇒⇒ b ∧∧∧ c = (a ⇒⇒⇒ b) ∧∧∧ (a ⇒⇒⇒ c), (6)

(a ∨∨∨ b)⇒⇒⇒ c = (a ⇒⇒⇒ c) ∧∧∧ (b⇒⇒⇒ c), (7)

a ∧∧∧ b⇒⇒⇒ c = a ⇒⇒⇒ c∨∨∨ b⇒⇒⇒ c, (8)

2We assume a decreasing connective and quantifier precedence: ∀, ∃, ¬, ∧, →, �, ≺, ∨.
3We assume a decreasing operator precedence: ,∧∧∧,⇒⇒⇒, ���,≺≺≺,∨∨∨.
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a ⇒⇒⇒(b⇒⇒⇒ c) = a ∧∧∧ b⇒⇒⇒ c, (9)

((a ⇒⇒⇒ b)⇒⇒⇒ b)⇒⇒⇒ b = a ⇒⇒⇒ b, (10)

(a ⇒⇒⇒ b)⇒⇒⇒ c = ((a ⇒⇒⇒ b)⇒⇒⇒ b) ∧∧∧ (b⇒⇒⇒ c)∨∨∨ c, (11)

(a ⇒⇒⇒ b)⇒⇒⇒ 0 = ((a ⇒⇒⇒ 0)⇒⇒⇒ 0) ∧∧∧ (b⇒⇒⇒ 0). (12)

2.2 Translation to Clausal Form

At first, we introduce a notion of quantified atom. Let a ∈ FormL. a is a quan-
tified atom of L iff a = Qx p(t0, . . . , tτ ) where p(t0, . . . , tτ ) ∈ AtomL, x ∈
vars(p(t0, . . . , tτ )), either ti = x or x /∈ vars(ti ). QAtomL ⊆ FormL denotes the set
of all quantified atoms of L. Let Qx p(t0, . . . , tτ ) ∈ QAtomL and p(t ′

0, . . . , t ′
τ ) ∈

AtomL. Let I = {i | i ≤ τ , x /∈ vars(ti )} and r1, . . . , rk , ri ≤ τ , k ≤ τ , for all
1 ≤ i < i ′ ≤ k, ri < ri ′ , be a sequence such that {ri | 1 ≤ i ≤ k} = I . We denote

freetermseq(Qx p(t0, . . . , tτ )) = tr1 , . . . , trk ,

freetermseq(p(t ′
0, . . . , t ′

τ )) = t ′
0, . . . , t ′

τ .

We further introduce conjunctive normal form (CNF) in Gödel logic. Let l,φ ∈
FormL. l is a literal of L iff either l = a or l = a → b or l = (a → b) → b or
l = a → c or l = c → a, a ∈ AtomL − {0, 1}, b ∈ AtomL − {1}, c ∈ QAtomL.
The set of all literals of L is designated as LitL ⊆ FormL. φ is a conjunctive |
disjunctive normal form of L, in symbols CNF | DNF, iff either φ = 0 or φ = 1 or
φ = ∧

i≤n

∨
j≤mi

li
j | φ = ∨

i≤n

∧
j≤mi

li
j , li

j ∈ LitL.
We finally introduce order clauses in Gödel logic. Let l ∈ OrdFormL. l is an

order literal of L iff l = ε1 � ε2, εi ∈ AtomL ∪ QAtomL, � ∈ {�,≺}. The set of all
order literals of L is designated as OrdLitL ⊆ OrdFormL. An order clause of L is
a finite set of order literals of L. An order clause {l1, . . . , ln} is written in the form
l1∨· · ·∨ln . The order clause ∅ is called the empty order clause and denoted as�. An
order clause {l} is called a unit order clause and denoted as l. We designate the set of
all order clauses of L as OrdClL. Let l, l0, . . . , ln ∈ OrdLitL and C, C ′ ∈ OrdClL.
We define the size of C as |C | = ∑

l∈C |l|. By l ∨ C we denote {l} ∪ C where l /∈ C .
Analogously, by l0 ∨ · · · ∨ ln ∨ C we denote {l0} ∪ · · · ∪ {ln} ∪ C where, for all
i, i ′ ≤ n, i �= i ′, li /∈ C and li �= li ′ . By C ∨ C ′ we denote C ∪ C ′. C is a subclause
of C ′, in symbols C � C ′, iff C ⊆ C ′. An order clausal theory of L is a set of order
clauses of L. A unit order clausal theory is a set of unit order clauses.

Let φ,φ′ ∈ OrdFormL, T, T ′ ⊆ OrdFormL, S, S′ ⊆ OrdClL, I be an interpreta-
tion for L, e ∈ SI . C is true in I with respect to e, written as I |=e C , iff there exists
l∗ ∈ C such that I |=e l∗. I is a model of C , in symbols I |= C , iff, for all e ∈ SI ,
I |=e C . I is a model of S, in symbols I |= S, iff, for all C ∈ S, I |= C . φ′ | T ′ | C ′ |
S′ is a logical consequence of φ | T | C | S, in symbols φ | T | C | S |= φ′ | T ′ | C ′ | S′,
iff, for every model I of φ | T | C | S for L, I |= φ′ | T ′ | C ′ | S′. φ | T | C | S is
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satisfiable iff there exists a model of φ | T | C | S forL. φ | T | C | S is equisatisfiable
to φ′ | T ′ | C ′ | S′ iff φ | T | C | S is satisfiable if and only if φ′ | T ′ | C ′ | S′
is satisfiable. Let S ⊆F OrdClL. We define the size of S as |S| = ∑

C∈S |C |. l is
a simplified order literal of L iff l = ε1 � ε2, {ε1, ε2} � QAtomL. The set of all
simplified order literals of L is designated as SimOrdLitL ⊆ OrdLitL. We denote
SimOrdClL = {C | C ∈ OrdClL, C ⊆ SimOrdLitL} ⊆ OrdClL. Let f̃0 /∈ FuncL;
f̃0 is a new function symbol. Let I = N × N; I is an infinite countable set of indices.
Let P̃ = { p̃i | i ∈ I} such that P̃ ∩ PredL = ∅; P̃ is an infinite countable set of
new predicate symbols. From a computational point of view, the worst case time
and space complexity will be estimated using the logarithmic cost measurement. Let
A be an algorithm. #OA(.) ≥ 1 denotes the number of all elementary operations
executed by A.

2.3 Substitutions

We assume the reader to be familiar with the standard notions and notation of
substitutions. We introduce a few definitions and denotations; some of them are
slightly different from the standard ones, but found to be more convenient.4 Let
X = {xi | 1 ≤ i ≤ n} ⊆ VarL. A substitution ϑ ofL is a mapping ϑ : X −→ TermL.
ϑ may be written in the form x1/ϑ(x1), . . . , xn/ϑ(xn). We denote dom(ϑ) = X ⊆
VarL and range(ϑ) = ⋃

x∈X vars(ϑ(x)) ⊆F VarL. The set of all substitutions
of L is designated as SubstL. Let Qx a ∈ QAtomL. ϑ is applicable to Qx a iff
dom(ϑ) ⊇ freevars(Qx a) and x /∈ range(ϑ|freevars(Qx a)). We define the application
of ϑ to Qx a as (Qx a)ϑ = Qx a(ϑ|freevars(Qx a) ∪ x/x) ∈ QAtomL. Let ε and ε′
be expressions. ε′ is an instance of ε of L iff there exists ϑ∗ ∈ SubstL such that
ε′ = εϑ∗. ε′ is a variant of ε of L iff there exists a variable renaming ρ∗ ∈ SubstL
such that ε′ = ερ∗. Let C ∈ OrdClL and S ⊆ OrdClL. C is an instance | a vari-
ant of S of L iff there exists C∗ ∈ S such that C is an instance | a variant of
C∗ of L. We denote InstL(S) = {C | C is an instance of S of L} ⊆ OrdClL and
VrntL(S) = {C | C is a variant of S of L} ⊆ OrdClL.

ϑ is a unifier ofL for E iff Eϑ is a singleton set. Let θ ∈ SubstL. θ is amost general
unifier ofL for E iff θ is a unifier ofL for E , and for every unifier ϑ ofL for E , there
exists γ∗ ∈ SubstL such that ϑ|freevars(E) = θ|freevars(E) ◦ γ∗. By mguL(E) ⊆ SubstL
we denote the set of all most general unifiers of L for E . Let E = E0, . . . , En ,
Ei ⊆ Ai , either Ai = TermL or Ai = AtomL or Ai = QAtomL or Ai = OrdLitL. ϑ
is a unifier of L for E iff, for all i ≤ n, ϑ is a unifier of L for Ei . θ is a most general
unifier ofL for E iff θ is a unifier ofL for E , and for every unifier ϑ ofL for E , there
exists γ∗ ∈ SubstL such that ϑ|freevars(E) = θ|freevars(E) ◦ γ∗. By mguL(E) ⊆ SubstL
we denote the set of all most general unifiers of L for E .

4cf. http://ii.fmph.uniba.sk/~guller/sci14.pdf, Sect. 2.3.

http://ii.fmph.uniba.sk/~guller/sci14.pdf
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Theorem 1 (Unification Theorem) Let E = E0, . . . , En, either Ei ⊆F TermL or
Ei ⊆F AtomL. If there exists a unifier of L for E, then there exists θ∗ ∈ mguL(E)

such that range(θ∗|vars(E)) ⊆ vars(E).

Proof By induction on ‖vars(E)‖. �
Theorem 2 (Extended Unification Theorem) Let E = E0, . . . , En, either Ei ⊆F
TermL or Ei ⊆F AtomL or Ei ⊆F QAtomL or Ei ⊆F OrdLitL, and
boundvars(E) ⊆ V ⊆F VarL. If there exists a unifier of L for E, then there exists
θ∗ ∈ mguL(E) such that range(θ∗|freevars(E)) ∩ V = ∅.

Proof A straightforward consequence of Theorem 1. �

2.4 A Formal Treatment

Translation of a formula or a theory toCNF and clausal form, is based on the following
lemma:

Lemma 1 Let nφ, n0 ∈ N, φ ∈ FormL, T ⊆ FormL.

(I) There exist either Jφ = ∅ or Jφ = {(nφ, j) | j ≤ n Jφ
}, Jφ ⊆ {(nφ, j) | j ∈ N};

a CNF ψ ∈ FormL∪{ p̃j | j∈Jφ}, Sφ ⊆F SimOrdClL∪{ p̃j | j∈Jφ} such that

(a) ‖Jφ‖ ≤ 2 · |φ|;
(b) there exists an interpretation A for L and A |= φ if and only if there exists

an interpretation A′ for L∪ { p̃j | j ∈ Jφ} and A′ |= ψ, satisfying A = A′|L;
(c) there exists an interpretation A for L and A |= φ if and only if there exists

an interpretation A′ for L∪{ p̃j | j ∈ Jφ} and A′ |= Sφ, satisfying A = A′|L;
(d) |ψ| ∈ O(|φ|2); the number of all elementary operations of the translation

of φ to ψ, is in O(|φ|2); the time and space complexity of the translation of
φ to ψ, is in O(|φ|2 · (log(1 + nφ) + log |φ|));

(e) |Sφ| ∈ O(|φ|2); the number of all elementary operations of the translation
of φ to Sφ, is in O(|φ|2); the time and space complexity of the translation of
φ to Sφ, is in O(|φ|2 · (log(1 + nφ) + log |φ|));

(f) for all a ∈ qatoms(ψ), there exists j∗ ∈ Jφ and preds(a) = { p̃j∗ };
(g) for all j ∈ Jφ, there exist a sequence x̄ of variables of L and p̃j(x̄) ∈

atoms(ψ) satisfying, for all a ∈ atoms(ψ) and preds(a) = { p̃j}, a =
p̃j(x̄); if there exists a∗ ∈ qatoms(ψ) and preds(a∗) = { p̃j}, then there
exists Qx p̃j(x̄) ∈ qatoms(ψ) satisfying, for all a ∈ qatoms(ψ) and
preds(a) = { p̃j}, a = Qx p̃j(x̄);

(h) for all a ∈ qatoms(Sφ), there exists j∗ ∈ Jφ and preds(a) = { p̃j∗ };
(i) for all j ∈ Jφ, there exist a sequence x̄ of variables of L and p̃j(x̄) ∈

atoms(Sφ) satisfying, for all a ∈ atoms(Sφ) and preds(a) = { p̃j}, a =
p̃j(x̄); if there exists a∗ ∈ qatoms(Sφ) and preds(a∗) = { p̃j}, then there
exists Qx p̃j(x̄) ∈ qatoms(Sφ) satisfying, for all a ∈ qatoms(Sφ) and
preds(a) = { p̃j}, a = Qx p̃j(x̄).
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(II) There exist JT ⊆ {(i, j) | i ≥ n0} and ST ⊆ SimOrdClL∪{ p̃j | j∈JT } such that

(a) there exists an interpretation A for L and A |= T if and only if there exists
an interpretationA′ forL∪{ p̃j | j ∈ JT } andA′ |= ST , satisfyingA = A′|L;

(b) if T ⊆F FormL, then JT ⊆F {(i, j) | i ≥ n0}, ‖JT ‖ ≤ 2 · |T |;
ST ⊆F SimOrdClL∪{ p̃j | j∈JT }, |ST | ∈ O(|T |2); the number of all elementary
operations of the translation of T to ST , is in O(|T |2); the time and space
complexity of the translation of T to ST , is in O(|T |2 · log(1 + n0 + |T |));

(c) for all a ∈ qatoms(ST ), there exists j∗ ∈ JT and preds(a) = { p̃j∗ };
(d) for all j ∈ JT , there exist a sequence x̄ of variables of L and p̃j(x̄) ∈

atoms(ST ) satisfying, for all a ∈ atoms(ST ) and preds(a) = { p̃j}, a =
p̃j(x̄); if there exists a∗ ∈ qatoms(ST ) and preds(a∗) = { p̃j}, then there
exists Qx p̃j(x̄) ∈ qatoms(ST ) satisfying, for all a ∈ qatoms(ST ) and
preds(a) = { p̃j}, a = Qx p̃j(x̄).

Proof Technical, using the interpolation rules in Tables2, 3, 4 and 5.

Let nθ ∈ N and θ ∈ FormL. There exists θ′ ∈ FormL such that (13)

(a) θ′ ≡ θ;
(b) |θ′| ≤ 2 · |θ|; θ′ can be built up via a postorder traversal of θ with #O(θ) ∈ O(|θ|)

and the time, space complexity in O(|θ| · (log(1 + nθ) + log |θ|));
(c) θ′ does not contain ¬;
(d) either θ′ = 0, or 0 is a subformula of θ′ if and only if 0 is a subformula of a

subformula of θ′ of the form ϑ → 0, ϑ �= 0;
(e) either θ′ = 1 or 1 is not a subformula of θ′.

The proof is by induction on the structure of θ.

Let l ∈ LitL. There exists C ∈ SimOrdClL such that (14)

(a) for every interpretation A for L, for all e ∈ SA, A |=e l if and only if A |=e C ;
(b) |C | ≤ 3 · |l|, C can be built up from l with #O(l) ∈ O(|l|).
In Table1, for every form of l, C is assigned so that for every interpretation A for L,
for all e ∈ SA, A |=e l if and only if A |=e C .
cf. http://ii.fmph.uniba.sk/~guller/sci14.pdf, Sect. 2.4. �

The described translation produces order clausal theories in some restrictive form,
which will be utilised in inference using our order hyperresolution calculus. Let
P ⊆ P̃ and S ⊆ OrdClL∪P . S is admissible iff

(a) for all a ∈ qatoms(S), preds(a) ⊆ P;
(b) for all p̃ ∈ P , there exist a sequence x̄ of variables of L and p̃(x̄) ∈ atoms(S)

satisfying, for all a ∈ atoms(S) and preds(a) = { p̃}, a is an instance of p̃(x̄) of
L ∪ P; if there exists a∗ ∈ qatoms(S) and preds(a∗) = { p̃}, then there exists
Qx p̃(x̄) ∈ qatoms(S) satisfying, for all a ∈ qatoms(S) and preds(a) = { p̃}, a
is an instance of Qx p̃(x̄) of L ∪ P .

http://ii.fmph.uniba.sk/~guller/sci14.pdf
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Table 1 Translation of l to C , a, b ∈ AtomL − {0, 1}, c ∈ QAtomL
Case l C |l| |C |
1 a a � 1 |a| |a| + 2 ≤ 3 · |l|
2 a → 0 a � 0 |a| + 2 |a| + 2 ≤ 3 · |l|
3 a → b a ≺ b ∨ a � b |a| + |b| + 1 2 · |a| + 2 · |b| + 2 ≤

3 · |l|
4 (a → 0) → 0 0 ≺ a |a| + 4 |a| + 2 ≤ 3 · |l|
5 (a → b) → b b ≺ a ∨ b � 1 |a| + 2 · |b| + 2 |a| + 2 · |b| + 3 ≤

3 · |l|
6 c → a c ≺ a ∨ c � a |a| + |c| + 1 2 · |a| + 2 · |c| + 2 ≤

3 · |l|
7 a → c a ≺ c ∨ a � c |a| + |c| + 1 2 · |a| + 2 · |c| + 2 ≤

3 · |l|

Table 2 Binary interpolation rules for ∧ and ∨
Case Laws

θ = θ1 ∧ θ2

Positive interpolation
p̃i(x̄) → θ1 ∧ θ2

( p̃i(x̄) → p̃i1 (x̄)) ∧ ( p̃i(x̄) → p̃i2 (x̄)) ∧ ( p̃i1 (x̄) → θ1) ∧ ( p̃i2 (x̄) → θ2)
(6) (15)

|Consequent|=9 + 4 · |x̄ | + | p̃i1 (x̄) → θ1| + | p̃i2 (x̄) → θ2| ≤ 13 · (1 + |x̄ |) + | p̃i1 (x̄) → θ1| + | p̃i2 (x̄) → θ2|

Positive interpolation
p̃i(x̄) → θ1 ∧ θ2{

p̃i(x̄) ≺ p̃i1 (x̄) ∨ p̃i(x̄) � p̃i1 (x̄), p̃i(x̄) ≺ p̃i2 (x̄) ∨ p̃i(x̄) � p̃i2 (x̄),

p̃i1 (x̄) → θ1, p̃i2 (x̄) → θ2

} (16)

|Consequent|=12 + 8 · |x̄ | + | p̃i1 (x̄) → θ1| + | p̃i2 (x̄) → θ2| ≤ 15 · (1 + |x̄ |) + | p̃i1 (x̄) → θ1| + | p̃i2 (x̄) → θ2|

Negative interpolation
θ1 ∧ θ2 → p̃i(x̄)

( p̃i1 (x̄) → p̃i(x̄) ∨ p̃i2 (x̄) → p̃i(x̄)) ∧ (θ1 → p̃i1 (x̄)) ∧ (θ2 → p̃i2 (x̄))
(8) (17)

|Consequent|=9 + 4 · |x̄ | + |θ1 → p̃i1 (x̄)| + |θ2 → p̃i2 (x̄)| ≤ 13 · (1 + |x̄ |) + |θ1 → p̃i1 (x̄)| + |θ2 → p̃i2 (x̄)|

Negative interpolation
θ1 ∧ θ2 → p̃i(x̄){

p̃i1 (x̄) ≺ p̃i(x̄) ∨ p̃i1 (x̄) � p̃i(x̄) ∨ p̃i2 (x̄) ≺ p̃i(x̄) ∨ p̃i2 (x̄) � p̃i(x̄),

θ1 → p̃i1 (x̄), θ2 → p̃i2 (x̄)

} (18)

|Consequent|=12 + 8 · |x̄ | + |θ1 → p̃i1 (x̄)| + |θ2 → p̃i2 (x̄)| ≤ 15 · (1 + |x̄ |) + |θ1 → p̃i1 (x̄)| + |θ2 → p̃i2 (x̄)|
θ = θ1 ∨ θ2

Positive interpolation
p̃i(x̄) → (θ1 ∨ θ2)

( p̃i(x̄) → p̃i1 (x̄) ∨ p̃i(x̄) → p̃i2 (x̄)) ∧ ( p̃i1 (x̄) → θ1) ∧ ( p̃i2 (x̄) → θ2)
(5) (19)

|Consequent|=9 + 4 · |x̄ | + | p̃i1 (x̄) → θ1| + | p̃i2 (x̄) → θ2| ≤ 13 · (1 + |x̄ |) + | p̃i1 (x̄) → θ1| + | p̃i2 (x̄) → θ2|

Positive interpolation
p̃i(x̄) → (θ1 ∨ θ2){

p̃i(x̄) ≺ p̃i1 (x̄) ∨ p̃i(x̄) � p̃i1 (x̄), p̃i(x̄) ≺ p̃i2 (x̄) ∨ p̃i(x̄) � p̃i2 (x̄),

p̃i1 (x̄) → θ1, p̃i2 (x̄) → θ2

} (20)

|Consequent|=12 + 8 · |x̄ | + | p̃i1 (x̄) → θ1| + | p̃i2 (x̄) → θ2| ≤ 15 · (1 + |x̄ |) + | p̃i1 (x̄) → θ1| + | p̃i2 (x̄) → θ2|

Negative interpolation
(θ1 ∨ θ2) → p̃i(x̄)

( p̃i1 (x̄) → p̃i(x̄)) ∧ ( p̃i2 (x̄) → p̃i(x̄)) ∧ (θ1 → p̃i1 (x̄)) ∧ (θ2 → p̃i2 (x̄))
(7) (21)

|Consequent|=9 + 4 · |x̄ | + |θ1 → p̃i1 (x̄)| + |θ2 → p̃i2 (x̄)| ≤ 13 · (1 + |x̄ |) + |θ1 → p̃i1 (x̄)| + |θ2 → p̃i2 (x̄)|

Negative interpolation
(θ1 ∨ θ2) → p̃i(x̄){

p̃i1 (x̄) ≺ p̃i(x̄) ∨ p̃i1 (x̄) � p̃i(x̄) ∨ p̃i2 (x̄) ≺ p̃i(x̄) ∨ p̃i2 (x̄) � p̃i(x̄),

θ1 → p̃i1 (x̄), θ2 → p̃i2 (x̄)

} (22)

|Consequent|=12 + 8 · |x̄ | + |θ1 → p̃i1 (x̄)| + |θ2 → p̃i2 (x̄)| ≤ 15 · (1 + |x̄ |) + |θ1 → p̃i1 (x̄)| + |θ2 → p̃i2 (x̄)|
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Table 3 Binary interpolation rules for →
Case Laws

θ = θ1 → θ2, θ2 �= 0

Positive interpolation
p̃i(x̄) → (θ1 → θ2)

( p̃i(x̄) → p̃i2
(x̄) ∨ p̃i1

(x̄) → p̃i2
(x̄)) ∧

(θ1 → p̃i1
(x̄)) ∧ ( p̃i2

(x̄) → θ2)

(8), (9) (23)

|Consequent|=9 + 4 · |x̄ | + |θ1 → p̃i1
(x̄)| + | p̃i2

(x̄) → θ2 | ≤ 13 · (1 + |x̄ |) + |θ1 → p̃i1
(x̄)| + | p̃i2

(x̄) → θ2 |

Positive interpolation
p̃i(x̄) → (θ1 → θ2)⎧⎨

⎩
p̃i(x̄) ≺ p̃i2

(x̄) ∨ p̃i(x̄) � p̃i2
(x̄) ∨ p̃i1

(x̄) ≺ p̃i2
(x̄) ∨ p̃i1

(x̄) � p̃i2
(x̄),

θ1 → p̃i1
(x̄), p̃i2

(x̄) → θ2

⎫⎬
⎭

(24)

|Consequent|=12 + 8 · |x̄ | + |θ1 → p̃i1
(x̄)| + | p̃i2

(x̄) → θ2 | ≤ 15 · (1 + |x̄ |) + |θ1 → p̃i1
(x̄)| + | p̃i2

(x̄) → θ2 |

Negative interpolation
(θ1 → θ2) → p̃i(x̄)

(( p̃i1
(x̄) → p̃i2

(x̄)) → p̃i2
(x̄) ∨ p̃i(x̄)) ∧ ( p̃i2

(x̄) → p̃i(x̄)) ∧
( p̃i1

(x̄) → θ1) ∧ (θ2 → p̃i2
(x̄))

(1),
(3),
(11)

(25)

|Consequent|=13 + 6 · |x̄ | + | p̃i1
(x̄) → θ1| + |θ2 → p̃i2

(x̄)| ≤ 13 · (1 + |x̄ |) + | p̃i1
(x̄) → θ1| + |θ2 → p̃i2

(x̄)|

Negative interpolation
(θ1 → θ2) → p̃i(x̄)⎧⎨

⎩
p̃i2

(x̄) ≺ p̃i1
(x̄) ∨ p̃i2

(x̄) � 1 ∨ p̃i(x̄) � 1,

p̃i2
(x̄) ≺ p̃i(x̄) ∨ p̃i2

(x̄) � p̃i(x̄), p̃i1
(x̄) → θ1, θ2 → p̃i2

(x̄)

⎫⎬
⎭

(26)

|Consequent|=15 + 8 · |x̄ | + | p̃i1
(x̄) → θ1| + |θ2 → p̃i2

(x̄)| ≤ 15 · (1 + |x̄ |) + | p̃i1
(x̄) → θ1| + |θ2 → p̃i2

(x̄)|

Table 4 Unary interpolation rules for →
Case Laws

θ = θ1 → 0

Positive interpolation
p̃i(x̄) → (θ1 → 0)

( p̃i(x̄) → 0 ∨ p̃i1 (x̄) → 0) ∧ (θ1 → p̃i1 (x̄))
(8), (9) (27)

|Consequent|=8 + 2 · |x̄ | + |θ1 → p̃i1 (x̄)| ≤ 13 · (1 + |x̄ |) + |θ1 → p̃i1 (x̄)|

Positive interpolation
p̃i(x̄) → (θ1 → 0)

{ p̃i(x̄) � 0 ∨ p̃i1 (x̄) � 0, θ1 → p̃i1 (x̄)} (28)

|Consequent|=6 + 2 · |x̄ | + |θ1 → p̃i1 (x̄)| ≤ 15 · (1 + |x̄ |) + |θ1 → p̃i1 (x̄)|

Negative interpolation
(θ1 → 0) → p̃i(x̄)

(( p̃i1 (x̄) → 0) → 0 ∨ p̃i(x̄)) ∧ ( p̃i1 (x̄) → θ1)
(11) (29)

|Consequent|=8 + 2 · |x̄ | + | p̃i1 (x̄) → θ1| ≤ 13 · (1 + |x̄ |) + | p̃i1 (x̄) → θ1|

Negative interpolation
(θ1 → 0) → p̃i(x̄)

{0 ≺ p̃i1 (x̄) ∨ p̃i(x̄) � 1, p̃i1 (x̄) → θ1} (30)

|Consequent|=6 + 2 · |x̄ | + | p̃i1 (x̄) → θ1| ≤ 15 · (1 + |x̄ |) + | p̃i1 (x̄) → θ1|

Theorem 3 Let n0 ∈ N, φ ∈ FormL, T ⊆ FormL. There exist Jφ
T ⊆ {(i, j) | i ≥ n0}

and Sφ
T ⊆ SimOrdClL∪{ p̃j | j∈Jφ

T } such that

(i) there exists an interpretation A for L and A |= T , A �|= φ if and only if
there exists an interpretation A′ for L ∪ { p̃j | j ∈ Jφ

T } and A′ |= Sφ
T , satisfying

A = A′|L;
(ii) if T ⊆F FormL, then Jφ

T ⊆F {(i, j) | i ≥ n0}, ‖Jφ
T ‖ ∈ O(|T | + |φ|); Sφ

T ⊆F
SimOrdClL∪{ p̃j | j∈Jφ

T }, |Sφ
T | ∈ O(|T |2 + |φ|2); the number of all elementary

operations of the translation of T and φ to Sφ
T , is in O(|T |2 + |φ|2); the time
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Table 5 Unary interpolation rules for ∀ and ∃
Case

∀x θ1

Positive interpolation
p̃i(x̄) → ∀x θ1

( p̃i(x̄) → ∀x p̃i1 (x̄)) ∧ ( p̃i1 (x̄) → θ1)
(31)

|Consequent|=6 + 2 · |x̄ | + | p̃i1 (x̄) → θ1| ≤ 13 · (1 + |x̄ |) + | p̃i1 (x̄) → θ1|

Positive interpolation
p̃i(x̄) → ∀x θ1

{ p̃i(x̄) ≺ ∀x p̃i1 (x̄) ∨ p̃i(x̄) � ∀x p̃i1 (x̄), p̃i1 (x̄) → θ1} (32)

|Consequent|=10 + 4 · |x̄ | + | p̃i1 (x̄) → θ1| ≤ 15 · (1 + |x̄ |) + | p̃i1 (x̄) → θ1|

Negative interpolation
∀x θ1 → p̃i(x̄)

(∀x p̃i1 (x̄) → p̃i(x̄)) ∧ (θ1 → p̃i1 (x̄))
(33)

|Consequent|=6 + 2 · |x̄ | + |θ1 → p̃i1 (x̄)| ≤ 13 · (1 + |x̄ |) + |θ1 → p̃i1 (x̄)|

Negative interpolation
∀x θ1 → p̃i(x̄)

{∀x p̃i1 (x̄) ≺ p̃i(x̄) ∨ ∀x p̃i1 (x̄) � p̃i(x̄), θ1 → p̃i1 (x̄)} (34)

|Consequent|=10 + 4 · |x̄ | + |θ1 → p̃i1 (x̄)| ≤ 15 · (1 + |x̄ |) + |θ1 → p̃i1 (x̄)|
∃x θ1

Positive interpolation
p̃i(x̄) → ∃x θ1

( p̃i(x̄) → ∃x p̃i1 (x̄)) ∧ ( p̃i1 (x̄) → θ1)
(35)

|Consequent|=6 + 2 · |x̄ | + | p̃i1 (x̄) → θ1| ≤ 13 · (1 + |x̄ |) + | p̃i1 (x̄) → θ1|

Positive interpolation
p̃i(x̄) → ∃x θ1

{ p̃i(x̄) ≺ ∃x p̃i1 (x̄) ∨ p̃i(x̄) � ∃x p̃i1 (x̄), p̃i1 (x̄) → θ1} (36)

|Consequent|=10 + 4 · |x̄ | + | p̃i1 (x̄) → θ1| ≤ 15 · (1 + |x̄ |) + | p̃i1 (x̄) → θ1|

Negative interpolation
∃x θ1 → p̃i(x̄)

(∃x p̃i1 (x̄) → p̃i(x̄)) ∧ (θ1 → p̃i1 (x̄))
(37)

|Consequent|=6 + 2 · |x̄ | + |θ1 → p̃i1 (x̄)| ≤ 13 · (1 + |x̄ |) + |θ1 → p̃i1 (x̄)|

Negative interpolation
∃x θ1 → p̃i(x̄)

{∃x p̃i1 (x̄) ≺ p̃i(x̄) ∨ ∃x p̃i1 (x̄) � p̃i(x̄), θ1 → p̃i1 (x̄)} (38)

|Consequent|=10 + 4 · |x̄ | + |θ1 → p̃i1 (x̄)| ≤ 15 · (1 + |x̄ |) + |θ1 → p̃i1 (x̄)|

and space complexity of the translation of T and φ to Sφ
T , is in O(|T |2 · log(1+

n0 + |T |) + |φ|2 · (log(1 + n0) + log |φ|));
(iii) Sφ

T is admissible.

Proof cf. http://ii.fmph.uniba.sk/~guller/sci14.pdf, Sect. 2.4. �

Corollary 1 Let n0 ∈ N, φ ∈ FormL, T ⊆ FormL. There exist Jφ
T ⊆ {(i, j) | i ≥ n0}

and Sφ
T ⊆ SimOrdClL∪{ p̃j | j∈Jφ

T } such that

(i) T |= φ if and only if Sφ
T is unsatisfiable;

(ii) if T ⊆F FormL, then Jφ
T ⊆F {(i, j) | i ≥ n0}, ‖Jφ

T ‖ ∈ O(|T | + |φ|); Sφ
T ⊆F

SimOrdClL∪{ p̃j | j∈Jφ
T }, |Sφ

T | ∈ O(|T |2 + |φ|2); the number of all elementary

operations of the translation of T and φ to Sφ
T , is in O(|T |2 + |φ|2); the time

http://ii.fmph.uniba.sk/~guller/sci14.pdf
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and space complexity of the translation of T and φ to Sφ
T , is in O(|T |2 · log(1+

n0 + |T |) + |φ|2 · (log(1 + n0) + log |φ|));
(iii) Sφ

T is admissible.

Proof An immediate consequence of Theorem 3. �

2.5 Order Hyperresolution Rules

At first, we introduce some basic notions and notation concerning chains of order
literals. A chainΞ ofL is a sequenceΞ = ε0�0 υ0, . . . , εn �n υn , εi �i υi ∈ OrdLitL,
such that for all i < n, υi = εi+1. ε0 is the beginning element ofΞ and υn the ending
element of Ξ . ε0 Ξ υn denotes Ξ together with its respective beginning and ending
element. Let Ξ = ε0 �0 υ0, . . . , εn �n υn be a chain of L. Ξ is an equality chain of
L iff, for all i ≤ n, �i =�. Ξ is an increasing chain of L iff there exists i∗ ≤ n such
that �i∗ =≺. Ξ is a contradiction of L iff Ξ is an increasing chain of L of the form
ε0 Ξ 0 or 1 Ξ υn or ε0 Ξ ε0. Let S ⊆ OrdClL be unit andΞ = ε0 �0 υ0, . . . , εn �n υn

be a chain | an equality chain | an increasing chain | a contradiction of L. Ξ is a
chain | an equality chain | an increasing chain | a contradiction of S iff, for all i ≤ n,
εi �i υi ∈ S.

Let W̃ = {w̃i | i ∈ I} such that W̃∩(FuncL∪{ f̃0}) = ∅; W̃ is an infinite countable
set of new function symbols. LetL contain a constant (nullary function) symbol. Let
P ⊆ P̃ and S ⊆ OrdClL∪P . We denote GOrdClL = {C | C ∈ OrdClL is closed} ⊆
OrdClL and GInstL(S) = {C | C ∈ GOrdClL is an instance of S of L} ⊆
GOrdClL. A basic order hyperresolution calculus is defined as follows:

(Basic order hyperresolution rule) (39)

l0 ∨ C0, . . . , ln ∨ Cn ∈ Sκ−1
n∨

i=0

Ci ∈ Sκ

;

l0, . . . , ln is a contradiction of Lκ−1.

(Basic order trichotomy rule) (40)

a, b ∈ atoms(Sκ−1) − {0, 1}, qatoms(Sκ−1) �= ∅
a ≺ b ∨ a � b ∨ b ≺ a ∈ Sκ

.

(Basic order ∀ − quantification rule) (41)

∀x a ∈ qatoms∀(Sκ−1)

∀x a ≺ aγ ∨ ∀x a � aγ ∈ Sκ
;

t ∈ GTermLκ−1 , γ = x/t, dom(γ) = {x} = vars(a).
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(Basic order ∃ − quantification rule) (42)

∃x a ∈ qatoms∃(Sκ−1)

aγ ≺ ∃x a ∨ aγ � ∃x a ∈ Sκ
;

t ∈ GTermLκ−1 , γ = x/t, dom(γ) = {x} = vars(a).

(Basic order ∀ − witnessing rule) (43)

∀x a ∈ qatoms∀(Sκ−1), b ∈ atoms(Sκ−1) ∪ qatoms(Sκ−1)

aγ ≺ b ∨ b � ∀x a ∨ b ≺ ∀x a ∈ Sκ
;

w̃ ∈ W̃, w̃ /∈ FuncLκ−1 , ar(w̃) = |freetermseq(∀x a), freetermseq(b)|,
γ = x/w̃(freetermseq(∀x a), freetermseq(b)), dom(γ) = {x} = freevars(a).

(Basic order ∃ − witnessing rule) (44)

∃x a ∈ qatoms∃(Sκ−1), b ∈ atoms(Sκ−1) ∪ qatoms(Sκ−1)

b ≺ aγ ∨ ∃x a � b ∨ ∃x a ≺ b ∈ Sκ
;

w̃ ∈ W̃, w̃ /∈ FuncLκ−1 , ar(w̃) = |freetermseq(∃x a), freetermseq(b)|,
γ = x/w̃(freetermseq(∃x a), freetermseq(b)), dom(γ) = {x} = freevars(a).

The basic order hyperresolution calculus can be generalised to an order hyperres-
olution one.

(Order hyperresolution rule) (45)
k0∨

j=0

ε0j �0
j υ0

j ∨
m0∨
j=1

l0j , . . . ,
kn∨

j=0

εn
j �n

j υn
j ∨

mn∨
j=1

ln
j ∈ SVr

κ−1

( n∨
i=0

mi∨
j=1

li
j

)
θ ∈ Sκ

;

for all i < i ′ ≤ n,

freevars
( ki∨

j=0

εi
j �i

j υi
j ∨

mi∨
j=1

li
j

)
∩ freevars

( ki ′∨
j=0

εi ′
j �i ′

j υi ′
j ∨

mi ′∨
j=1

li ′
j

)
= ∅,

θ ∈ mguLκ−1

( k0∨
j=0

ε0j �0
j υ0

j , l01 , . . . , l0m0
, . . . ,

kn∨
j=0

εn
j �n

j υn
j , ln

1 , . . . , ln
mn

,

{υ0
0, ε

1
0}, . . . , {υn−1

0 , εn
0}, {a, b}

)
,

dom(θ) = freevars
({εi

j �i
j υi

j | j ≤ ki , i ≤ n}, {li
j | 1 ≤ j ≤ mi , i ≤ n}),

a = ε00, b = 1 or a = υn
0 , b = 0 or a = υn

0 , b = ε00,
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there exists i∗ ≤ n such that �i∗
0 =≺ .

(Order trichotomy rule) (46)

a, b ∈ atoms(Sκ−1)
Vr − {0, 1}, qatoms(Sκ−1) �= ∅

a ≺ b ∨ a � b ∨ b ≺ a ∈ Sκ
;

vars(a) ∩ vars(b) = ∅.

(Order ∀ − quantification rule) (47)

∀x a ∈ qatoms∀(Sκ−1)

∀x a ≺ a ∨ ∀x a � a ∈ Sκ
.

(Order ∃ − quantification rule) (48)

∃x a ∈ qatoms∃(Sκ−1)

a ≺ ∃x a ∨ a � ∃x a ∈ Sκ
.

(Order ∀ − witnessing rule) (49)

∀x a ∈ qatoms∀(SVr
κ−1), b ∈ atoms(SVr

κ−1) ∪ qatoms(SVr
κ−1)

aγ ≺ b ∨ b � ∀x a ∨ b ≺ ∀x a ∈ Sκ
;

freevars(∀x a) ∩ freevars(b) = ∅,

w̃ ∈ W̃, w̃ /∈ FuncLκ−1 , ar(w̃) = |freetermseq(∀x a), freetermseq(b)|,
γ = x/w̃(freetermseq(∀x a), freetermseq(b)) ∪ id|vars(a)−{x},
dom(γ) = {x} ∪ (vars(a) − {x}) = vars(a).

(Order ∃ − witnessing rule) (50)

∃x a ∈ qatoms∃(SVr
κ−1), b ∈ atoms(SVr

κ−1) ∪ qatoms(SVr
κ−1)

b ≺ aγ ∨ ∃x a � b ∨ ∃x a ≺ b ∈ Sκ
;

freevars(∃x a) ∩ freevars(b) = ∅,

w̃ ∈ W̃, w̃ /∈ FuncLκ−1 , ar(w̃) = |freetermseq(∃x a), freetermseq(b)|,
γ = x/w̃(freetermseq(∃x a), freetermseq(b)) ∪ id|vars(a)−{x},
dom(γ) = {x} ∪ (vars(a) − {x}) = vars(a).

Let L0 = L ∪ P and S0 = ∅ ⊆ GOrdClL0 | OrdClL0 . Let D = C1, . . . , Cn ,
Cκ ∈ GOrdClL∪W̃∪P | OrdClL∪W̃∪P , n ≥ 1. D is a deduction of Cn from S by
basic order hyperresolution iff, for all 1 ≤ κ ≤ n, Cκ ∈ {0 ≺ 1} ∪ GInstLκ−1(S), or
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there exist 1 ≤ j∗
k ≤ κ − 1, k = 1, . . . , m, such that Cκ is a basic order resolvent

of C j∗
1
, . . . , C j∗

m
using Rules (39)–(44); D is a deduction of Cn from S by order

hyperresolution iff, for all 1 ≤ κ ≤ n,Cκ ∈ {0 ≺ 1}∪S, or there exist 1 ≤ j∗
k ≤ κ−1,

k = 1, . . . , m, such that Cκ is an order resolvent of C ′
j∗
1
, . . . , C ′

j∗
m
using Rules (45)–

(50) where C ′
j∗
k
is a variant of C j∗

k
of Lκ−1; Lκ and Sκ are defined by recursion on

1 ≤ κ ≤ n as follows:

Lκ =
{Lκ−1 ∪ {w̃} in case of Rule (43), (44) | (49), (50),
Lκ−1 else;

Sκ = Sκ−1 ∪ {Cκ} ⊆ GOrdClLκ
| OrdClLκ

,

SVr
κ = VrntLκ

(Sκ) ⊆ OrdClLκ
.

D is a refutation of S iff Cn = �. We denote

cloBH(S) = {C | there exists a deduction of C from S

by basic order hyperresolution} ⊆ GOrdClL∪W̃∪P ,

cloH(S) = {C | there exists a deduction of C from S

by order hyperresolution} ⊆ OrdClL∪W̃∪P .

Lemma 2 (Lifting Lemma) Let L contain a constant symbol. Let P ⊆ P̃ and S ⊆
OrdClL∪P . Let C ∈ cloBH(S). There exists C∗ ∈ cloH(S) such that C is an instance
of C∗ of L ∪ W̃ ∪ P.

Proof Straightforward. �

Lemma 3 (Reduction Lemma) Let L contain a constant symbol. Let P ⊆ P̃ and
S ⊆ OrdClL∪P . Let {∨ki

j=0 εi
j �i

j υi
j ∨ Ci | i ≤ n} ⊆ cloBH(S) such that for all S ∈

Sel({{ j | j ≤ ki }i | i ≤ n}), there exists a contradiction of {εi
S(i) �i

S(i) υi
S(i) | i ≤ n}.

There exists ∅ �= I ∗ ⊆ {i | i ≤ n} such that
∨

i∈I ∗ Ci ∈ cloBH(S).

Proof Straightforward. �

Lemma 4 (Unit Lemma) Let L contain a constant symbol. Let P ⊆ P̃ and S ⊆
OrdClL∪P . Let � /∈ cloBH(S) = {∨kι

j=0 ει
j �ι

j υι
j | ι < γ}, γ ≤ ω. There exists

S∗ ∈ Sel({{ j | j ≤ kι}ι | ι < γ}) such that there does not exist a contradiction of
{ει

S∗(ι) �ι
S∗(ι) υι

S∗(ι) | ι < γ}.
Proof An immediate consequence of König’s Lemma and Lemma 3. �

We are in position to prove the refutational soundness and completeness of the
order hyperresolution calculus.

Theorem 4 (Refutational Soundness and Completeness) Let L contain a constant
symbol. Let P ⊆ P̃ and S ⊆ OrdClL∪P . � ∈ cloH(S) if and only if S is unsatisfiable.

Proof cf. http://ii.fmph.uniba.sk/~guller/sci14.pdf, Sect. 2.5. �

http://ii.fmph.uniba.sk/~guller/sci14.pdf
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3 A DPLL Procedure

3.1 Propositional Product Logic

We shall use the standard notions and notation of the propositional Product logic.5

The set of propositional atoms of Product logic will be denoted as PropAtom. By
PropForm we designate the set of all propositional formulae of Product logic built up
fromPropAtom using the propositional constants 0, false,1, true, and the connectives:
¬, negation, ∧, conjunction, ∨, disjunction, &, strong conjunction, →, implication.
In addition, we introduce new binary connectives �, equality, and ≺, strict order. By
OrdPropForm we designate the set of all so-called order propositional formulae of
Product logic built up from PropAtom using the propositional constants 0, 1, and the
connectives: ¬, ∧, ∨, &, →, �, ≺.6 We shall assume that PropAtom is countable;
hence, PropForm and OrdPropForm are countable.

Product logic is interpreted by the standardΠ-algebra augmented by binary oper-
ators��� and≺≺≺ for � and ≺, respectively.

Π = ([0, 1],≤,∨∨∨,∧∧∧, ·,⇒⇒⇒, ,���,≺≺≺, 0, 1)

where∨∨∨ | ∧∧∧ denotes the supremum | infimum operator on [0, 1];

a ⇒⇒⇒ b =
{
1 if a ≤ b,
b
a else; a =

{
1 if a = 0,
0 else;

a ��� b =
{
1 if a = b,

0 else; a ≺≺≺ b =
{
1 if a < b,

0 else.

We recall thatΠ is a complete linearly ordered lattice algebra;∨∨∨ |∧∧∧ is commutative,
associative, idempotent, monotone; 0 | 1 is its neutral element; · is commutative,
associative, monotone; 1 is its neutral element; the residuum operator⇒⇒⇒ of · satisfies
the condition of residuation:

for all a, b, c ∈ Π, a · b ≤ c ⇐⇒ a ≤ b⇒⇒⇒ c; (51)

Product (Gödel) negation satisfies the condition:

for all a ∈ Π, a = a ⇒⇒⇒ 0; (52)

the following properties, which will be exploited later, hold7:
for all a, b, c ∈ Π,

5cf. http://ii.fmph.uniba.sk/~guller/sci14.pdf, Sect. 3.1.
6We assume a decreasing connective precedence: ¬, &, ∧, →, �, ≺, ∨.
7We assume a decreasing operator precedence: , ·,∧∧∧,⇒⇒⇒, ���,≺≺≺,∨∨∨.

http://ii.fmph.uniba.sk/~guller/sci14.pdf
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a ∨∨∨ b ∧∧∧ c = (a ∨∨∨ b) ∧∧∧ (a ∨∨∨ c), (distributivity of∨∨∨ over∧∧∧) (53)

a ∧∧∧ (b∨∨∨ c) = a ∧∧∧ b∨∨∨ a ∧∧∧ c, (distributivity of∧∧∧ over∨∨∨) (54)

a · (b∨∨∨ c) = a · b∨∨∨ a · c, (distributivity of · over∨∨∨) (55)

a ⇒⇒⇒(b∨∨∨ c) = a ⇒⇒⇒ b∨∨∨ a ⇒⇒⇒ c, (56)

a ⇒⇒⇒ b ∧∧∧ c = (a ⇒⇒⇒ b) ∧∧∧ (a ⇒⇒⇒ c), (57)

(a ∨∨∨ b)⇒⇒⇒ c = (a ⇒⇒⇒ c) ∧∧∧ (b⇒⇒⇒ c), (58)

a ∧∧∧ b⇒⇒⇒ c = a ⇒⇒⇒ c∨∨∨ b⇒⇒⇒ c, (59)

a ⇒⇒⇒(b⇒⇒⇒ c) = a · b⇒⇒⇒ c, (60)

((a ⇒⇒⇒ b)⇒⇒⇒ b)⇒⇒⇒ b = a ⇒⇒⇒ b. (61)

3.2 Translation to Order Clausal Form

We now describe some translation of a formula to a finite order clausal theory.
To have the output theory of polynomial size, our translation exploits interpolation
using new atoms. The output theory will be of linearithmic size at the cost of being
only equivalent satisfiable to the input formula. A similar approach exploiting the
renaming subformulae technique can be found in [3–7]. At first, we introduce notions
of a to the power of n and of conjunction of propositional atoms. Let a ∈ PropAtom
and n > 0. a to the power of n is the pair (a, n), written as an . The power a1 is
denoted as a; if it does not cause the ambiguity with the denotation of the single
propositional atom a in given context. We define the size of an as |an| = n > 0.
A conjunction Cn of propositional atoms is a non-empty finite set of powers such
that for all am �= bn ∈ Cn, a �= b. A conjunction {am0

0 , . . . , amn
n } of propositional

atoms is written in the form am0
0 & · · ·& amn

n . A conjunction {p} of propositional
atoms is called a unit conjunction of propositional atoms and denoted as p. The
set of all conjunctions of propositional atoms is designated as PropConj. Let V be
a (partial) valuation; p be a power, Cn ∈ PropConj, Cn1, Cn2 ∈ PropConj ∪ {∅}.
Let atoms(Cn) ⊆ dom(V) in case of V being a partial valuation. The truth value of
Cn = am0

0 & · · ·& amn
n in V is defined by

‖Cn‖V = ‖a0‖V · · · · ·‖a0‖V︸ ︷︷ ︸
m0

· · · · · ‖an‖V · · · · ·‖an‖V︸ ︷︷ ︸
mn

.

We define the size of Cn as |Cn| = ∑
p∈Cn |p| > 0. By p& Cn we denote {p} ∪ Cn

where p /∈ Cn. Cn1 is a subconjunction of Cn2, in symbols Cn1 � Cn2, iff, for
all am ∈ Cn1, there exists an ∈ Cn2 such that m ≤ n. We define Cn1 � Cn2 =
{amin(m,n) | am ∈ Cn1, an ∈ Cn2} ∈ PropConj ∪ {∅}. Cn1 and Cn2 are disjoint iff
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Cn1 � Cn2 = ∅. We finally introduce order clauses in Product logic. l is an order
literal of Product logic iff l = ε1 � ε2 where ε1 ∈ PropAtom ∪ {0, 1}, ε2 ∈ {0, 1},
or ε1 ∈ {0, 1}, ε2 ∈ PropAtom ∪ {0, 1}, or εi ∈ PropConj, ε1 � ε2 = ∅, � ∈
{�,≺}. The set of all order literals of Product logic is designated as OrdLit. Let
l = ε1 � ε2 ∈ OrdLit. We define the size of l as |l| = 1 + |ε1| + |ε2| > 0. An
order clause of Product logic is a finite set of order literals of Product logic. An order
clause {l1, . . . , ln} is written in the form l1 ∨ · · · ∨ ln . The order clause ∅ is called
the empty order clause and denoted as �. An order clause {l} is called a unit order
clause and denoted as l. We designate the set of all order clauses of Product logic
as OrdCl. Let l, l0, . . . , ln ∈ OrdLit and C, C ′ ∈ OrdClL. We define the size of
C as |C | = ∑

l∈C |l|. By l ∨ C we denote {l} ∪ C where l /∈ C . Analogously, by
l0 ∨ · · · ∨ ln ∨ C we denote {l0} ∪ · · · ∪ {ln} ∪ C where, for all i, i ′ ≤ n, i �= i ′,
li /∈ C and li �= li ′ . By C ∨ C ′ we denote C ∪ C ′. C is a subclause of C ′, in symbols
C � C ′, iff C ⊆ C ′. An order clausal theory is a set of order clauses. A unit order
clausal theory is a set of unit order clauses.

Letφ,φ′ ∈ PropOrdForm,T, T ′ ⊆ PropOrdForm, S, S′ ⊆ OrdCl,V be a (partial)
valuation. Let atoms(C), atoms(S) ⊆ dom(V) in case of V being a partial valuation.
V is a (partial) propositional model of C , in symbols V |= C , iff there exists l∗ ∈ C
such that V |= l∗. V is a (partial) propositional model of S, in symbols V |= S, iff, for
all C ∈ S, V |= C . φ′ | T ′ | C ′ | S′ is a propositional consequence of φ | T | C | S, in
symbols φ | T | C | S |=P φ′ | T ′ | C ′ | S′, iff, for every propositional model V of φ | T
| C | S, V |= φ′ | T ′ | C ′ | S′. φ | T | C | S is satisfiable iff there exists a propositional
model of φ | T | C | S. φ | T | C | S is equisatisfiable to φ′ | T ′ | C ′ | S′ iff φ | T |
C | S is satisfiable if and only if φ′ | T ′ | C ′ | S′ is satisfiable. Let S ⊆F OrdCl. We
define the size of S as |S| = ∑

C∈S |C |. Let l ∈ OrdLit. l is a simplified order literal
of Product logic iff l = ε1 � ε2 where ε1 ∈ PropAtom, ε2 ∈ {0, 1}, or ε1 ∈ {0, 1},
ε2 ∈ PropAtom, or εi ∈ PropAtom, or ε1 ∈ PropAtom, ε2 = a& b ∈ PropConj, or
ε1 = a& b ∈ PropConj, ε2 ∈ PropAtom, a, b ∈ PropAtom. The set of all simplified
order literals of Product logic is designated as SimOrdLit. We denote SimOrdCl =
{C | C ∈ OrdCl, C ⊆ SimOrdLit}. Let Ã = {ãi | i ∈ I} ⊆ PropAtom such that
PropAtom−Ã is infinite; Ã is an infinite countable set of newpropositional atoms. Let
E be a set of expressions and A ⊆ Ã.We denoteEA = {ε | ε ∈ E, atoms(ε)∩Ã ⊆ A}.
The translation to order clausal form is based on the following lemma.

Lemma 5 Let nφ, n0 ∈ N, φ ∈ PropForm∅, T ⊆ PropForm∅.

(I) There exist either Jφ = ∅ or Jφ = {(nφ, j) | j ≤ n Jφ
}, Jφ ⊆ {(nφ, j) | j ∈ N},

and Sφ ⊆F SimOrdCl{ãj | j∈Jφ} such that

(a) ‖Jφ‖ ≤ 2 · |φ|;
(b) there exists a partial valuation V , dom(V) = atoms(φ), and V |= φ if and only

if there exists a partial valuation V ′, dom(V ′) = atoms(φ) ∪ {ãj | j ∈ Jφ}, and
V ′ |= Sφ, satisfying V = V ′|atoms(φ);
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(c) |Sφ| ∈ O(|φ|); the number of all elementary operations of the translation of φ
to Sφ, is in O(|φ|); the time and space complexity of the translation of φ to Sφ,
is in O(|φ| · (log(1 + nφ) + log |φ|)).

(II) There exist JT ⊆ {(i, j) | i ≥ n0} and ST ⊆ SimOrdCl{ãj | j∈JT } such that

(a) there exists a partial valuation V , dom(V) = atoms(T ), and V |= T if and only
if there exists a partial valuation V ′, dom(V ′) = atoms(T ) ∪ {ãj | j ∈ JT }, and
V ′ |= ST , satisfying V = V ′|atoms(T );

(b) if T ⊆F FormL, then JT ⊆F {(i, j) | i ≥ n0}, ‖JT ‖ ≤ 2 · |T |; ST ⊆F
SimOrdCl{ãj | j∈JT }, |ST | ∈ O(|T |); the number of all elementary operations
of the translation of T to ST , is in O(|T |); the time and space complexity of the
translation of T to ST , is in O(|T | · log(1 + n0 + |T |)).

Proof Technical, using the interpolation rules in Table6.

cf. http://ii.fmph.uniba.sk/~guller/sci14.pdf, Sect. 3.2. �
We conclude this section by the following theorem.

Theorem 5 Let n0 ∈ N, φ ∈ PropForm∅, T ⊆ PropForm∅. There exist Jφ
T ⊆

{(i, j) | i ≥ n0} and Sφ
T ⊆ SimOrdCl{ãj | j∈Jφ

T } such that

(i) T |=P φ if and only if Sφ
T is unsatisfiable;

(ii) if T ⊆F PropForm∅, then Jφ
T ⊆F {(i, j) | i ≥ n0}, ‖Jφ

T ‖ ∈ O(|T | + |φ|);
Sφ

T ⊆F SimOrdCl{ãj | j∈Jφ
T }, |Sφ

T | ∈ O(|T | + |φ|); the number of all elementary

operations of the translation of T and φ to Sφ
T , is in O(|T | + |φ|); the time and

space complexity of the translation of T and φ to Sφ
T , is in O(|T | · log(1+ n0 +

|T |) + |φ| · (log(1 + n0) + log |φ|)).
Proof cf. http://ii.fmph.uniba.sk/~guller/sci14.pdf, Sect. 3.2. �

3.3 DPLL Procedure Rules

We devise a basic variant of the DPLL procedure over order clausal theories.
Let a, . . . , f ∈ PropAtom, Cn, Cn1, . . . , Cn4 ∈ PropConj, �1,�2 ∈ {�,≺},
l, l1, l2, l3 ∈ OrdLit, C ∈ OrdCl, S ⊆ OrdCl. l is a contradiction iff either l = 0 � 1
or l = 0 ≺ 0 or l = 1 ≺ 0 or l = 1 ≺ 1 or l = a ≺ 0 or l = 1 ≺ a or
l = Cn ≺ Cn. l is a tautology iff either l = 0 � 0 or l = 1 � 1 or l = 0 ≺ 1 or
l = Cn � Cn. 0 � a ∨ 0 ≺ a is a 0-dichotomy. a ≺ 1 ∨ a � 1 is a 1-dichotomy.
Cn1 ≺ Cn2 ∨ Cn1 � Cn2 ∨ Cn2 ≺ Cn1 is a trichotomy. Some auxiliary operations
are defined in Tables7, 8 and 9.

http://ii.fmph.uniba.sk/~guller/sci14.pdf
http://ii.fmph.uniba.sk/~guller/sci14.pdf
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Table 6 Interpolation rules for ∧, ∨, &, →
Case Laws

θ = θ1 ∧ θ2

Positive interpolation
ãi → θ1 ∧ θ2{

ãi ≺ ãi1 ∨ ãi � ãi1 , ãi ≺ ãi2 ∨ ãi � ãi2 , ãi1 → θ1, ãi2 → θ2

} (57) (62)

|Consequent|=12 + |ãi1 → θ1| + |ãi2 → θ2| ≤ 20 + |ãi1 → θ1| + |ãi2 → θ2|

Negative interpolation
θ1 ∧ θ2 → ãi{

ãi1 ≺ ãi ∨ ãi1 � ãi ∨ ãi2 ≺ ãi ∨ ãi2 � ãi, θ1 → ãi1 , θ2 → ãi2

} (59) (63)

|Consequent|=12 + |θ1 → ãi1 | + |θ2 → ãi2 | ≤ 20 + |θ1 → ãi1 | + |θ2 → ãi2 |
θ = θ1 ∨ θ2

Positive interpolation
ãi → (θ1 ∨ θ2){

ãi ≺ ãi1 ∨ ãi � ãi1 ∨ ãi ≺ ãi2 ∨ ãi � ãi2 , ãi1 → θ1, ãi2 → θ2

} (56) (64)

|Consequent|=12 + |ãi1 → θ1| + | p̃i2 → θ2| ≤ 20 + |ãi1 → θ1| + | p̃i2 → θ2|

Negative interpolation
(θ1 ∨ θ2) → ãi{

ãi1 ≺ ãi ∨ ãi1 � ãi, ãi2 ≺ ãi ∨ ãi2 � ãi, θ1 → ãi1 , θ2 → ãi2

} (58) (65)

|Consequent|=12 + |θ1 → ãi1 | + |θ2 → ãi2 | ≤ 20 + |θ1 → ãi1 | + |θ2 → ãi2 |
θ = θ1 & θ2

Positive interpolation
ãi → θ1 & θ2{

ãi ≺ ãi1 & ãi2 ∨ ãi � ãi1 & ãi2 , ãi1 → θ1, ãi2 → θ2

} (66)

|Consequent|=8 + |ãi1 → θ1| + |ãi2 → θ2| ≤ 20 + |ãi1 → θ1| + |ãi2 → θ2|

Negative interpolation
θ1 & θ2 → ãi{

ãi1 & ãi2 ≺ ãi ∨ ãi1 & ãi2 � ãi, θ1 → ãi1 , θ2 → ãi2

} (67)

|Consequent|=8 + |θ1 → ãi1 | + |θ2 → ãi2 | ≤ 20 + |θ1 → ãi1 | + |θ2 → ãi2 |
θ = θ1 → 0

Positive interpolation
ãi → (θ1 → 0){

ãi � 0 ∨ ãi1 � 0, θ1 → ãi1

} (60) (68)

|Consequent|=6 + |θ1 → ãi1 | ≤ 20 + |θ1 → ãi1 |

Negative interpolation
(θ1 → 0) → ãi{

0 ≺ ãi1 ∨ ãi = 1, ãi1 → θ1

} (69)

|Consequent|=6 + |ãi1 → θ1| ≤ 20 + |ãi1 → θ1|
θ = θ1 → θ2, θ2 �= 0

Positive interpolation
ãi → (θ1 → θ2){

ãi & ãi1 ≺ ãi2 ∨ ãi & ãi1 � ãi2 , θ1 → ãi1 , ãi2 → θ2

} (60) (70)

|Consequent|=8 + |θ1 → ãi1 | + |ãi2 → θ2| ≤ 20 + |θ1 → ãi1 | + |ãi2 → θ2|

Negative interpolation
(θ1 → θ2) → ãi{

ãi1 ≺ ãi2 ∨ ãi1 � ãi2 ∨ ãi2 ≺ ãi1 & ãi ∨ ãi2 � ãi1 & ãi,

ãi2 ≺ ãi1 ∨ ãi = 1, ãi1 → θ1, θ2 → ãi2

} (71)

|Consequent|=20 + |ãi1 → θ1| + |θ2 → ãi2 | ≤ 20 + |ãi1 → θ1| + |θ2 → ãi2 |
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Table 7 Auxiliary operations, Cn1, Cn2 ∈ PropConj ∪ {∅}
Cn1 � Cn2 = {am+n | am ∈ Cn1, an ∈ Cn2} ∪ {am | am ∈ Cn1, a /∈ atoms(Cn2)} ∪

{an | an ∈ Cn2, a /∈ atoms(Cn1)} ∈ PropConj ∪ {∅},
Cn1 ⇓ Cn2 = {am−n | am ∈ Cn1, an ∈ Cn2, m > n} ∪ {am | am ∈ Cn1, a /∈ atoms(Cn2)} ∈
PropConj ∪ {∅}

if Cn2 � Cn1,

Cn1 � Cn2 = {an−m | am ∈ Cn1, an ∈ Cn2, n > m} ∪ {an | an ∈ Cn2, a /∈ atoms(Cn1)} ∈
PropConj ∪ {∅}

Table 8 Transitivity operation, Cn1, . . . , Cn4 ∈ PropConj, �1,�2 ∈ {�,≺}

(Cn1 �1 Cn2) � (Cn3 �2 Cn4) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 � 1 if Cn7 = Cn8 = ∅,

� if Cn7 = ∅, Cn8 �= ∅,

� if Cn7 �= ∅, Cn8 = ∅,� =�,

1 � 1 if Cn7 �= ∅, Cn8 = ∅,� =≺,

Cn7 � Cn8 if Cn7 �= ∅, Cn8 �= ∅,

Cn5 = (Cn1 � (Cn2 � Cn3)),

Cn6 = (((Cn2 � (Cn2 � Cn3))⇓Cn3) � Cn4),

Cn7 = (Cn5 ⇓ (Cn5 � Cn6)),

Cn8 = (Cn6 ⇓ (Cn5 � Cn6)),

� =
{

� if �1 = �2 =�,

≺ else,

(Cn1 �1 Cn2) � (Cn3 �2 Cn4) ∈ OrdCl

Basic rules are defined as follows:

(Contradiction simplification rule) (72)

S

S − {l ∨ C} ∪ {C}
l ∨ C ∈ S, l is a contradiction.

(One literal 0-simplification rule) (73)

S

S − {l ∨ C} ∪ simpl(a � 0, l ∨ C)

a � 0, l ∨ C ∈ S, a ∈ atoms(l).

(One literal 1-simplification rule) (74)

S

S − {l ∨ C} ∪ simpl(a � 1, l ∨ C)

a � 1, l ∨ C ∈ S, a ∈ atoms(l).
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Table 9 Auxiliary simplification function, a ∈ PropAtom, ε ∈ {0, 1}, Cn1, Cn2 ∈ PropConj,
l ∈ {a � 0, a � 1}, C ∈ OrdCl

simpl(a � 0, a � ε ∨ C) = {0 � ε ∨ C} if a � 0 �= a � ε ∨ C,

simpl(a � 0, ε � a ∨ C) = {ε � 0 ∨ C} if a � 0 �= ε � a ∨ C,

simpl(a � 0, Cn1 � Cn2 ∨ C) =
{∨

b∈atoms(Cn2) b � 0 ∨ C
}

if a ∈ atoms(Cn1),

simpl(a � 0, Cn1 ≺ Cn2 ∨ C) = {0 ≺ b ∨ C | b ∈ atoms(Cn2)} if a ∈ atoms(Cn1),

simpl(a � 0, Cn1 ≺ Cn2 ∨ C) = {C} if a ∈ atoms(Cn2);
simpl(a � 1, a � ε ∨ C) = {1 � ε ∨ C} if a � 1 �= a � ε ∨ C,

simpl(a � 1, ε � a ∨ C) = {ε � 1 ∨ C} if a � 1 �= ε � a ∨ C,

simpl(a � 1, Cn1 � Cn2 ∨ C) = {(Cn1 − {an}) � Cn2 ∨ C} if {a} ⊂ atoms(Cn1), an ∈ Cn1,

simpl(a � 1, Cn1 � Cn2 ∨ C) = {b � 1 ∨ C | b ∈ atoms(Cn2)} if {a} = atoms(Cn1),

simpl(a � 1, Cn1 ≺ Cn2 ∨ C) = {(Cn1 − {an}) ≺ Cn2 ∨ C} if {a} ⊂ atoms(Cn1), an ∈ Cn1,

simpl(a � 1, Cn1 ≺ Cn2 ∨ C) = {C} if {a} = atoms(Cn1),

simpl(a � 1, Cn1 ≺ Cn2 ∨ C) = {Cn1 ≺ (Cn2 − {an}) ∨ C} if {a} ⊂ atoms(Cn2), an ∈ Cn2,

simpl(a � 1, Cn1 ≺ Cn2 ∨ C) =
{ ∨

b∈atoms(Cn1) b ≺ 1 ∨ C
}

if {a} = atoms(Cn2);
simpl(l, C) ⊆F OrdCl

(0-dichotomy branching rule) (75)

S

S ∪ {l1}
∣∣ S ∪ {l2}

l1 ∨ l2 is a 0-dichotomy, atoms(l1 ∨ l2) ⊆ atoms(S).

(1 − dichotomy branching rule) (76)

S

S ∪ {l1}
∣∣ S ∪ {l2}

l1 ∨ l2 is a 1 − dichotomy, atoms(l1 ∨ l2) ⊆ atoms(S).

(One literal transitivity rule) (77)

S

S ∪ {(Cn1 �1 Cn2) � (Cn3 �2 Cn4)}
S is a unit order clausal theory, Cn1 �1 Cn2, Cn3 �2 Cn4 ∈ S,

f or all a ∈ atoms(Cn1, . . . , Cn4), 0 ≺ a, a ≺ 1 ∈ S.
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(Trichotomy branching rule) (78)

S

S − {l1 ∨ C} ∪ {l1}
∣∣ S − {l1 ∨ C} ∪ {C} ∪ {l2}

∣∣ S − {l1 ∨ C} ∪ {C} ∪ {l3}
l1 ∨ C ∈ S, C �= �, l1 ∨ l2 ∨ l3 is a trichotomy,

f or all a ∈ atoms(l1, l2, l3), 0 ≺ a, a ≺ 1 ∈ S.

Rules (72)–(78) are sound in view of satisfiability. Using the basic rules, one can
construct a finitely generated treewith the input theory as the root in the usualmanner,
so as the classical DPLL procedure does.8 The DPLL procedure is refutation sound,
and complete in the case of finite order clausal theory.

Theorem 6 (Refutational Soundness and Completeness of the DPLL Procedure)
Let S ⊆ OrdCl.

(i) If there exists a closed tree Tree with the root S constructed using Rules (72)–(78),
then S is unsatisfiable.

(ii) If S ⊆F OrdCl, then there exists a finite tree Tree with the root S constructed
using Rules (72)–(78) with the following properties:

i f S is unsatis f iable, then Tree is closed; (79)

i f S is satis f iable, then Tree is open and there exists a partial model A
(80)

of S, dom(A) = atoms(S), related to Tree.

Proof cf. http://ii.fmph.uniba.sk/~guller/sci14.pdf, Sect. 3.3 �

The refutational completeness of the DPLL procedure can be generalised to the
countable case. Let S ⊆ OrdCl and A ⊆ PropAtom. We denote S|A = {C | C ∈
S, atoms(C) ⊆ A} ⊆ S, atoms(S|A) ⊆ atoms(S) ∩ A.

Theorem 7 (Compactness Theorem) Let S ⊆ OrdCl, γ ≤ ω, δ : γ −→ atoms(S)

be a sequence of atoms(S). If, for all α < γ, there exists a partial model Aα of
S|δ[α] ⊆F S, dom(Aα) = δ[α] ⊆F atoms(S), then there exists a partial model A of
S, dom(A) = atoms(S).

Proof cf. http://ii.fmph.uniba.sk/~guller/sci14.pdf, Sect. 3.3. �

Corollary 2 (Refutational Completeness of the DPLL Procedure (The Countable
Case)) Let S ⊆ OrdCl. If S is unsatisfiable, then there exists a closed tree Tree with
the root S constructed using Rules (72)–(78).

Proof An immediate consequence of Theorems 6 and 7. �

We conclude the treatment with the following corollary.

8cf. http://ii.fmph.uniba.sk/~guller/sci14.pdf, Sect. 3.3.

http://ii.fmph.uniba.sk/~guller/sci14.pdf
http://ii.fmph.uniba.sk/~guller/sci14.pdf
http://ii.fmph.uniba.sk/~guller/sci14.pdf
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Corollary 3 Let φ ∈ PropForm∅ and T ⊆ PropForm∅. There exist Aφ
T ⊆ Ã, Sφ

T ⊆
SimOrdClAφ

T
, a finite tree Tree with the root Sφ

T constructed using Rules (72)–(78)
with the following properties:

i f T |=P φ, then Tree is closed; (81)

i f T �|= φ, then Tree is open and there exists a partial model A of T, (82)

dom(A) = atoms(T,φ), related to Tree such that A �|= φ.

Proof An immediate consequence of Theorems 5, 6 and Corollary 2. �

4 Conclusions

We have investigated the deduction problem in Gödel and Product logics, both
equipped with Gödel negation, in the countable case. Our approach is based on
translation of a formula to an equivalent satisfiable finite order clausal theory, con-
sisting of order clauses. An order clause is a finite set of order literals of the form
ε1 � ε2 where � is a connective either � or ≺. � and ≺ are interpreted by the
equality and standard strict linear order on [0, 1], respectively. We have proposed a
hyperresolution calculus in the first-order Gödel logic and a DPLL procedure in the
propositional Product logic, operating over order clausal theories. Both the calculi
have been proved to be refutation sound and complete for the countable case.
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Abstract The service time of container vessels is the main indicator of the com-
petitiveness of a maritime container terminal. Vessels have to be berthed along the
quay, a subset of quay cranes must be assigned to them and work schedules have to
be planned for unloading the import containers and loading the export containers.
This work addresses the Tactical Berth Allocation Problem, in which the vessels
are assigned to a given berth, and the Quay Crane Scheduling Problem, for which
the work schedules of the quay cranes are determined. The nature of this environ-
ment gives rise to inaccurate knowledge about the information related to the incom-
ing vessels. Therefore, the aforementioned optimization problems can be tackled
by considering fuzzy arrival times for the vessels and fuzzy processing times for
the loading/unloading operations. Two fuzzy mathematical models are provided to
solve the problems at hand. The computational experiments carried out in this work
corroborate the effectiveness of the proposed methodologies.
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1 Introduction

The global container trade has grown over the decades.1 The maritime container
terminals are highlighted infrastructures built with the goal of facing the technical
requirements arising from the increasing volume of containers in the international sea
freight trade. They are aimed at transferring and storing containerswithinmultimodal
transportation networks. The main transport modes found at a maritime container
terminal are container vessels, trucks and trains. In this regard, a maritime container
terminal can be considered as an open system that brings together different container
flows, those stemming from freight sources to destinations [1].

The layout of a maritime container terminal is usually split into three different
functional areas: seaside, yard, and landside [2]. The seaside is the area of the termi-
nal where the container vessels arriving at port are berthed in order to be loaded or
unloaded. An exhaustive analysis concerning the seaside operations planning prob-
lems is provided in the book [3]. The yard is the part of the terminal in which the
containers are temporarily stored until their later retrieval [4]. Finally, the landside
is the area which connects the container terminal with the land transport modes [5].

The main goal of a maritime container terminal is to serve appropriately those
container vessels that arrive at port. In this regard, the service of a container vessel can
be modeled through a well-defined sequence of steps. Firstly, it is required to provide
a specific berthing position along the quay and berthing time for each container vessel
according to its particular characteristics (dimensions, expected service time, draft,
arrival time, etc.) and contractual agreements [6].Afterwards, a subset of the available
quay cranes at the terminal is allocated to each container vessel to perform the loading
and unloading tasks established by its stowage plan [7]. Finally, the work schedules
associated with the allocated quay cranes are determined [8].

The aforementioned planning decisions can be modeled by means of several opti-
mization problems in maritime container terminals. The Tactical Berth Allocation
Problem (TBAP) seeks to define the berthing position, berthing time and quay cranes
allocated to each container vessel over a given planning horizon. On the other hand,
theQuayCrane Scheduling Problem (QCSP) is aimed at determining thework sched-
ules for the quay cranes allocated to a container vessel. It is worth mentioning that
solving the TBAP and the QCSP for each container vessel provides an overall service
planning for a container terminal.

Algorithms and model formulations to solve the TBAP and QCSP have usually
assumed that the data is known accurately. However, this is not true in real-world
applications and it is particularly problematic for data representing the arrival times
of vessels and processing times that cannot be precisely estimated, but that need to
be taken into account in order to provide the decision makers with real solutions.

1United Nations Conference on Trade and Development, http://unctad.org

http://unctad.org
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The inherent imprecision that appears in the data involved in real-world problems
can have different natures: randomness, subjectivity, vagueness, etc. If the goal is to
tackle the problems at hand without altering their nature, what seems more desirable
is to consider the approach that fits the best to the origin of the imprecision, either
stochastic, interval-based, or fuzzy. Among these possibilities, the imprecision con-
sidered in this work is not random but linguistical and therefore vague (for instance,
“the processing time will be large”). Although vague information appears in these
real-world applications, to the best of our knowledge, this is the first work that con-
siders this nature of imprecision in maritime container terminals when solving the
TBAP and QCSP. Other imprecision natures are out of the scope of this paper.

In those scenarios in which subjectivity in the interpretation of the data is related
to randomness, the fuzzy sets provide us a theoretical framework to solve a wide
range of problems in different research areas [9, 10] with a high degree of efficacy
and efficiency. In this paper, we are particularly interested in solving the TBAP with
fuzzy arrival times of the vessels and the QCSP with fuzzy processing times for
the loading/unloading operations. With the purpose of solving these problems, we
propose mathematical models in which some coefficients in the constraints are not
known accurately. In both cases, in order to solve the optimization problems derived
from these situations, we make use of models which are well known in the area of
Fuzzy Mathematical Programming [11–13].

The remainder of this paper is structured as follows. Section2 describes the main
logistic problems arising in the seaside. Section3 presents the fuzzy coefficients
used in the mathematical formulation of the TBAP. Section4 describes the fuzzy
constraints that appear in the mathematical model of the QCSP. Section5 proposes
two Variable Neighbourhood Search algorithms for the TBAP and QCSP. Section6
shows the computational experiments performed in this work. Finally, Sect. 7 draws
forth the main conclusions extracted from the work and indicates several directions
for further research.

2 Seaside Operations

The seaside operations are those related to the service of container vessels that arrive
at port. The turnaround time of container vessels constitutes the main indicator of
the competitiveness of maritime container terminals. With this fact in mind, terminal
managers are particularly interested in reducing the service times and maximizing
the usage of the available resources: berths and quay cranes.

2.1 Tactical Berth Allocation Problem

The Tactical Berth Allocation Problem (TBAP) seeks to determine the berthing posi-
tion, berthing time, and allocation of quay cranes for the container vessels arriving
at port over a well-defined time horizon.
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In the TBAP, we are given a set of incoming vessels N , berths M, and quay
crane profiles p ∈ Pi per each vessel i ∈ N . Each container vessel i ∈ N must be
assigned to an available berth k ∈ M within the vessel and berth time window [ai , bi ]
and [ak, bk], respectively. The berthing position of a vessel should be close to the
departure position of its containers. In this regard, the housekeeping cost represents
the cost derived frommoving a given container among different berthing positions of
the quay. Moreover, for each vessel i ∈ N , a quay crane profile, p ∈ Pi , determines
the distribution of quay cranes used for serving it. Q denotes the number of quay
cranes at the terminal. The service time of a vessel depends on the quay crane profile
associated with it. Each profile, p ∈ Pi , has an associated value v

p
i , which reflects

the usage of quay cranes.
The goal of the TBAP is to maximize the value of the quay crane profiles used to

serve the vessels and minimize the housekeeping costs derived from the transship-
ment of containers among vessels.

An example of the TBAP is depicted in Fig. 1. The example shows 3 container
vessels, 3 berths and a maximum number of 8 quay cranes. For each container vessel
i ∈ N , the number of QC hours required to perform its loading and unloading opera-
tions is termed as mi . The profiles assigned to the vessels determine the distribution
of quay cranes and their service time. For instance, the vessel 3 is served by 2, 3, 3,
and 2 quay cranes and its service time is 4h. It is worth pointing out that, despite
vessels 1 and 3 require the same number of quay crane hours, their service times are
different because they have assigned different profiles. In this regard, the quay crane
profile assigned to vessel 1 is more expensive than that assigned to vessel 3.

In order to make this work self-contained, this subsection describes the mixed
integer linear program formulation for the TBAP proposed in [14].

The following notations are used in the model:

• N , Set of container vessels
• M, Set of berths
• H , Set of time steps
• Pi , Set of feasible quay crane profiles for the container vessel i ∈ N
• t p

i , Service time of container vessel i ∈ N under QC profile p ∈ Pi

• v
p
i , The value of serving the container vessel i ∈ N with the QC profile p ∈ Pi

Fig. 1 Example of TBAP
with 3 vessels and 3 berths
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• Qh , Maximum number of quay cranes available at the time step h ∈ H
• q pu

i , Number of quay cranes assigned to the container vessel i ∈ N in profile
p ∈ Pi at the time step u ∈ H

• fi j , Flow of containers exchanged between container vessels i, j ∈ N
• dkw, Housekeeping cost per unit of container between yard slots in berths k, w ∈ M
• [ai , bi ], [earliest, latest] arrival time of container vessel i ∈ N
• [ak, bk], [start, end] of the availability time of the berth k ∈ M
• [ah, bh], [start, end] of the time step h ∈ H

A graph Gk = (V k, Ak) ∀ k ∈ M, where V k = N ∪ {o(k), d(k)}, with o(k) and
d(k) additional vertices representing berth k and Ak ⊆ V k × V k is generated. The
decision variables are shown below.

• xk
i j ∈ {0, 1}, ∀ k ∈ M, ∀ (i, j) ∈ Ak , set to 1 if container vessel j is scheduled after
container vessel i in berth k, and 0 otherwise.

• yk
i ∈ {0, 1}, ∀ k ∈ M, ∀ i ∈ N , set to 1 if container vessel i is assigned to berth k,
and 0 otherwise.

• zkw
i j ∈ {0, 1}, ∀ k, w ∈ M, ∀ i, j ∈ N , set to 1 if yk

i = yw
j , and 0 otherwise.

• γh
i ∈ {0, 1}, ∀ h ∈ H, ∀ i∈ N , set to 1 if the container vessel i arrives in time step

h, and 0 otherwise.
• λi

p ∈ {0, 1}, ∀ p ∈ Pi , ∀ i∈ N , set to 1 if container vessel i is served under profile
p, and 0 otherwise.

• ρ
ph
i ∈ {0, 1}, ∀ p ∈ Pi , ∀ h ∈ H, ∀ i∈ N , set to 1 if container vessel i is served

under profile p and arrives at time step h, and 0 otherwise.
• T k

i ≥0, ∀ k ∈ M, ∀ i∈ N , berthing time of container vessel i at berth k.
• T k

o(k) ≥0, ∀ k ∈ M, ∀ i∈ N , starting operation time of berth k.
• T k

d(k) ≥0, ∀ k ∈ M, ∀ i∈ N , ending operation time of berth k.

The corresponding MILP formulation for the TBAP is stated as follows:

max
∑

i∈N

∑

p∈Pi

λ
p
i ν

p
i − 1

2

∑

i∈N

∑

j∈N

∑

k∈M

∑

w∈M

fi j dkwzkw
i j (1)

∑

k∈M

yk
i = 1, ∀i ∈ N (2)

∑

j∈N∪{d(k)}
xk

o(k) j = 1, ∀k ∈ M (3)

∑

i∈N∪{o(k)}
xk

id(k) = 1, ∀k ∈ M (4)

∑

j∈N∪{d(k)}
xk

i j −
∑

j∈N∪{o(k)}
xk

ji = 0, ∀k ∈ M, ∀i ∈ N (5)
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∑

j∈N∪{d(k)}
xk

i j = yk
i , ∀k ∈ M, ∀i ∈ N (6)

T k
i +

∑

p∈Pi

t p
i λ

p
i − Tk

j ≤ (1 − xk
i j )M1,∀k ∈ M∀i ∈ N,∀ j ∈ N ∪ {d(k)} (7)

Tk
o(k) − Tk

j ≤ (1 − xk
o(k) j )M2, ∀k ∈ M, ∀ j ∈ N (8)

ai yk
i ≤ Tk

i , ∀k ∈ M,∀i ∈ N (9)

T k
i ≤ bi yk

i , ∀k ∈ M,∀i ∈ N (10)

ak ≤ Tk
o(k), ∀k ∈ M (11)

T k
d(k) ≤ bk, ∀k ∈ M (12)

∑

p∈Pi

λ
p
i = 1, ∀i ∈ N (13)

∑

h∈Hs

γi
h =

∑

p∈Ps
i

λ
p
i , ∀i ∈ N, ∀s ∈ S (14)

∑

k∈M

Tk
i − bh ≤ (1 − γh

i )M3, ∀h ∈ H, ∀i ∈ N (15)

ah −
∑

k∈M

Tk
i ≤ (1 − γh

i )M4, ∀h ∈ H, ∀i ∈ N (16)

ρ
ph
i ≥ λ

p
i + γh

i − 1, ∀h ∈ H, ∀i ∈ N, ∀p ∈ Pi (17)

∑

i∈N

∑

p∈Pi

h∑

u=max(h−t p
i +1;1)

ρ
pu
i q p(h−u+1)

i ≤ Qh, ∀h ∈ Hs̄ (18)

∑

k∈M

∑

w∈M

zkw
i j = gi j , ∀i, j ∈ N (19)

zkw
i j ≤ yk

i ∀i, j ∈ N, ∀k, w ∈ M (20)

zkw
i j ≤ yw

j ∀i, j ∈ N, ∀k, w ∈ M (21)

In this model, M1, M2, M3, and M4 represent sufficiently large constants. The
objective function (1) maximizes the sum of the values of the chosen quay crane
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assignment profiles over all the container vessels and, at the same time, minimizes
the housekeeping costs generated by the flows of containers exchanged between con-
tainer vessels. Constraints (2) establish that every container vessel must be assigned
to one and only one berth. Constraints (3) and (4) define the outcoming and incoming
flows to the berths, whereas flow conservation for the remaining vertices is ensured
by constraints (5). Constraints (6) establish the link between variables xk

i j , whereas
precedences in every sequence are ensured by constraints (7) and (8). The time win-
dows of the container vessels are defined by the constraints (9) and (10), whereas
berths timewindows are defined by constraints (11) and (12). Constraints (13) ensure
that one and only one QC profile is assigned to every container vessel. Constraints
(14) define the link between variables γh

i and λ
p
i , whereas constraints (15) and (16)

link binary variables γh
i and Tk

i . Variables ρ
ph
i are linked to variables λ

p
i and γh

i by
constraints (17). Finally, constraints (18) ensure that, at every time step, the total
number of assigned QCs does not exceed the number of maximum QCs available in
the terminal. Constraints (19), (20), and (21) are included to linearize the quadratic
objective function.

2.2 Quay Crane Scheduling Problem

The QCSP seeks to define the sequences of transshipment operations performed by a
set of quay cranes in order to load and unload the containers associated with a given
vessel berthed at the container terminal.

The input data for the QCSP are composed of the set of tasks Ω = {1, . . . , n}
and the set of quay cranes Q = {1, . . . , m} allocated to the vessel. Each task t ∈
Ω represents a set of containers with similar characteristics (weight, dimensions,
destination port, etc.) located adjacent to each other in the samebay, lt . The processing
time of the task t ∈ Ω is denoted by pt . Two dummy tasks 0 and T with p0 = pT = 0
are consideredwith the goal of representing the beginning and the ending of the vessel
service, respectively. In addition, we define the set Ω̄ = Ω ∪ {0, T}. The structure
of the vessel imposes limitations in the transshipment operations order [15]. For
instance, unloading operations have to be performed before loading operations. The
precedence relationships among tasks located in the same bay are defined by the set
Φ, in such a way that, (i, j) ∈ Φ if and only if task i has to be finished before the
starting of task j . On the other hand, each quay crane q ∈ Q is located in the bay lq

0
and it is available after time rq . The time required by the quay crane q ∈ Q to move
between the bays in which the tasks i, j ∈ Ω are currently located is denoted by tq

i j .
For safety reasons, the quay cranes must keep a minimum distance between them, δ,
and measured in bay units. The safety distance gives rise to that same pairs of tasks
cannot be performed simultaneously due to the fact that they are close. These pairs
of tasks are gathered into the set Ψ .
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The optimization criterion of the QCSP is to minimize the makespan of the sched-
ule, that is, the finishing time of the last task performed by the quay cranes, cT . The
QCSP is already known to be an NP-hard problem [16].

An example of the QCSP is depicted in Fig. 2. The example represents a vessel
berthed at the quay with 10 bays, ranged from the bay 0 up to the bay 9, for which
the bays 1, 3, 4, 6 and 8 have at least one task to perform by a quay crane. For each
bay, the tasks are sorted according to their precedence relationships. For instance, the
task 1 has to be performed before the starting of task 2 in the bay 1. The location and
processing time of each task are reported in the associated table. A schedule with 2
quay cranes for this example is shown in Fig. 3. The quay crane 1 performs the tasks
1, 2, 3, 5, 6, and 7, whereas the quay crane 2 performs the tasks 4 and 8. As can be
seen, the quay cranes keep a safety distance of at least 2 bays and move with a speed
of one bay per time unit. In this case, the makespan is 52 time units.

In the following, we present the mathematical formulation proposed in [8] for the
QCSP. The following notation is used by the formulation:

• Δvw
i j , Minimum temporal span to elapse between the processing of the tasks i and

j if they are processed by the quay cranes v and w, respectively.
• Θ , Set of all combinations of tasks and quay cranes that potentially lead to quay
crane interference.

Fig. 2 Example of a QCSP
instance composed of 8 tasks

0 1 2 3 4 5 6 7 8 9

1

2

3 4 5

6

7

8

QC1 QC2

Task, t
Position, lt
Processing Time, pt

1 2 3 4 7 8
1 1 3 4 6 8
10 8 10 15

5 6
6 6
7 6 5 10

Fig. 3 Schedule with 2 quay
cranes for the example
depicted in Fig. 2
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5 (7) 6 (6) 7 (5)

8 (10)



Fuzzy Optimization Models for Seaside Port Logistics… 331

The decision variables of the model are:

• xk
i j ∈ {0, 1}, set to 1 if tasks i and j are processed consecutively by quay crane k,
0 otherwise.

• zi j ∈ {0, 1}, set to 1 if task j starts after the completion of task i , 0 otherwise.

The mathematical formulation is as follows:

min cT (22)

∑

j∈ΩT

xk
0 j = 1,∀k ∈ Q (23)

∑

j∈Ω0

xk
jT = 1,∀k ∈ Q (24)

∑

k∈Q

∑

j∈ΩT

xk
i j = 1,∀i ∈ Ω (25)

∑

j∈Ω0

xk
ji −

∑

i∈ΩT

xk
i j = 0,∀i ∈ Ω,∀ ∈ Q (26)

ci + ti j + p j − c j ≤ M(1 − xk
i j ),∀i, j ∈ Ω̄,∀k ∈ Q (27)

ci + p j − c j ≤ 0,∀(i, j) ∈ Φ (28)

ci + p j − c j ≤ M(1 − zi j ),∀i, j ∈ Ω (29)

c j − p j − ci ≤ Mzi j ,∀i, j ∈ Ω (30)

zi j + z ji = 1,∀(i, j) ∈ Ψ (31)

∑

u∈Ω0

xv
ui +

∑

u∈Ω0

xw
u j ≤ 1 + zi j + z ji ,∀(i, j, v, w) ∈ Θ (32)

ci + Δv
i jw + p j − c j ≤ M(3 − zi j −

∑

u∈Ω0

xv
ui −

∑

u∈Ω0

xw
u j ),∀(i, j, v, w) ∈ Θ (33)

c j + Δv
i jw + pi − ci ≤ M(3 − z ji −

∑

u∈Ω0

xv
ui −

∑

u∈Ω0

xw
u j ),∀(i, j, v, w) ∈ Θ (34)

r + t k
0 j + p j − c j ≤ M(1 − xk

0 j ),∀ j ∈ Ω,∀k ∈ Q (35)
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ci ≥ 0,∀i ∈ Ω̄ (36)

The minimization of the makespan is modeled by (22). Each quay crane starts
performing the task 0 and finishes performing the task T . This is modeled by con-
straints (23) and (24). All the non-dummy tasks have to be performed exactly once
as set by constraints (25) and have a previous task and a succeeding task, constraint
(26). Constraints (27) set the finishing time of each task. Constraints (28) ensure the
precedence relationships among tasks. The values of variables zi j are established by
constraints (29) and (30). Constraints (31) ensure the non-simultaneity of tasks. The
interference between quay cranes are avoided by constraints (32)–(34). The ready
times of the quay cranes are handled by constraints (35). Finally, the domain of the
finishing times of each task is defined by constraints (36).

3 Fuzzy Coefficients in the Constraints for the TBAP

In the TBAP, the arrival times of the vessels are considered to be uncertain values.
Modeling theuncertainty in thevalues of the parameters canbe tackledbyconsidering
that they are fuzzy numbers. In this sense, independently of thewide range of different
models that may be used, the problems above can be addressed by the following
model.

max{cx/A f x ≤I b f , x ≥ 0},

where A f and b f refer to the fact that we are considering fuzzy numbers in the
coefficients that define the restrictions (thereby allowing, as a trivial case, them to
also be real numbers when there are no ambiguities), and the symbol ≤I means that
the way of comparing both members in the inequality, due to formal coherence, must
be done by using a relationship for ordering the fuzzy numbers. This comparison
relation≤I may be any one from the extensive list available [17], which in turn would
also allow the decision-maker to have a greater degree of freedom when it comes
to establish preferences. In more specific terms, in order to provide that theoretical
model with a way for operating, let us briefly refer back to the different indices for
comparing fuzzy numbers that have been described in the literature [17]. Amongst
the different approaches described for comparing them, for the sake of simplicity, in
this paper we shall only deal with the one that is derived from the use of indices for
comparison. Hence, by denoting as F(R) the set of fuzzy numbers, if

I : F(R) → [0, 1]
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is a comparison index for this kind of numbers, then

∀P f , Q f ∈ F(R), P f ≤I Q f ⇔ I(P f ) ≤ I(Q f )

whereby, according to the index I that is used, different auxiliary models may be
obtained for effectively solving the problems described above from the practical
point of view. Therefore, in general, the auxiliary models used to solve the problems
described above from the practical viewpoint, would be approached as follows.

max{cx/I(A f x) ≤ I(b f ), x ≥ 0}

Using an index I or another depends on the decision-maker, and hence what index
I to choose to be used is not thematter here. In order to illustrate the approach, and as a
trivial example, let us consider two triangular fuzzy numbersP f , Q f ∈ F(R), usually
denoted as P f = (P, Pi , Pd) and Q f = (Q, Qi , Qd), and as form of comparison, the
one given by Yager’s First Index [17],

P f ≤I Q f ⇔ (1/3)(P + Pi + Pd) ≤ (1/3)(Q + Qi + Qd)

The membership function corresponding to a triangular fuzzy number A f =
(A, Ai , Ad) is stated as follows:

μA f (x) =

⎧
⎪⎪⎨

⎪⎪⎩

0, x ≤ Ai
x−Ai
A−Ai

, Ai < x ≤ A
Ad−x
Ad−A , A < x ≤ Ad

0, x ≥ Ad

Then, the previous model takes the following operating form,

max{cx/(A + Ai + Ad)x ≤ (b + bi + bd), x ≥ 0}

from which we can obtain a solution for the previous models in a straightforward
way.

Since in the TBAP model described above, the arrival times of the vessels, ai , i ∈
N , which cannot be estimated accurately, appear as coefficients in the constraints, the
methodology explained in this section can be used to provide the decision makers
with adequate solutions. When applying this methodology with the Yager’s First
Index as a simple example, the original fuzzy model can be converted into a mixed
integer linear model that can be solved using any effective optimization technique
from the literature.
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4 Fuzzy Constraints for the QCSP

In the QCSP, the processing times of the loading/unloading operations, pt , of the
different tasks t ∈ Ω are also considered to be uncertain values. Even though the
number of quay cranes assigned to carry out the loading and unloading operations
of a container vessel is fixed, the real service time, will depend on several factors,
such as interferences or breaks of the quay cranes assigned to that container vessel.
In this case, we consider that the constraints are fuzzy, so that it is possible to state
the problem as follows:

min z = cx
s.t. :

(Ax)i ≤ f bi , i ∈ I
x j ≥ 0, x j ∈ N, j ∈ J

(37)

where the symbol “≤ f ” means that the decision maker allows violations in compli-
ance with the constraints and considers fuzzy constraints defined by the following
membership functions:

μi : Rn → (0, 1], i ∈ I.

Each membership function provides the satisfaction degree with which any x ∈
Rn satisfies the corresponding fuzzy constraint on which it is defined. This degree
is equal to 1 when the constraint is satisfied without any violation, and decreases
to zero as violations are larger. In the linear case, the membership functions can be
formulated as follows:

μi (x, bi ) =
⎧
⎨

⎩

1 (Ax)i ≤ bi

1 − ((Ax)i − bi )/di )bi ≤ (Ax)i ≤ bi + di

0 (Ax)i > bi + di

If we apply the methodology proposed by Herrera and Verdegay [12], the origi-
nal model with fuzzy constraints can be solved by means of the following auxiliar
parametric mixed integer linear model:

min z = cx
s.t. :

(Ax)i ≤ bi + di (1 − α), i ∈ I
x j ≥ 0, x j ∈ N, j ∈ J,α ∈ (0, 1]

(38)

In the particular application to the QCSP, bi corresponds to the processing times
of the cranes and we consider di = 25% × bi to be the greatest deviation in the
processing times.
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5 Optimization Techniques

In order to generate suitable solutions for the fuzzy considerations of the TBAP and
QCSP, the solution approaches proposed by [18] are considered. These approaches
are basedon theVariableNeighbourhoodSearch (VNS)whichhas demonstrated to be
a high competitivemetaheuristicwhen solving combinatorial and global optimization
problems [19]. In general terms, the foundation of a VNS is to perform a systematic
change of neighbourhood structures within a local search algorithm.

With the goal of providing a self-contained paper, in the following subsections
we present the VNS approaches used for solving the TBAP and QCSP, respectively.
For further details the interested reader is referred to [18].

5.1 VNS for Solving the TBAP

Algorithm 1 depicts the pseudocode of the VNS used for solving the TBAP. Given
a solution ω, it considers two neighbourhood structures based upon the reinsertion
movement, Na(ω,λ), in which λ vessels and their assigned profiles are removed
from the berth b ∈ B and reinserted into another berth b′, where b �= b′, and the
interchangemovement,Nb(ω), which consists of exchanging a vessel v ∈ V assigned
to berth b ∈ B with another vessel v′ assigned to berth b′, where b �= b′.

The starting solution of the VNS, ω, is generated by assigning the profile p ∈ P
with the highest usage cost to each container vessel. The berthing position of each
vessel is selected at random, whereas the starting of its service time is selected as the
earliest possible within its time window (line 1). The value of the parameter k is set to
1 (line 2). The shaking process (line 4) allows to escape from those local optima found
along the search by using the neighbourhood structure Na . The solution exploitation
phase of the VNS is based on a Variable Neighbourhood Descent Search (VND)
(lines 6–14). Given a solution ω′, it explores one neighbourhood at a time until a
local optimum with respect to the neighbourhood structures Na and Nb is found. The
application of the neighbourhoods structures in the VND is carried out according
to the value of the parameter k1, initially set to 1 (line 5). The first neighbourhood
structure explored isNa and laterNb. The best solution found bymeans of the VND is
denoted by ω′. The objective function value of ω′ allows to update the best solution
found along the search (denoted by ω) and restart the value of k (lines 15 − 17).
Otherwise, the value of k is increased (line 19). These steps are carried out until
k = kmax (line 21).
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Algorithm 1. VNS for the TBAP.

1: ω ← Generate initial solution
2: k ← 1
3: repeat
4: ω′ ← Shake(ω, k)

5: k1 ← 1
6: repeat
7: ω′′ ← Local Search(ω′, k1)
8: if f (ω′′) > f (ω′) then
9: ω′ ← ω′′
10: k1 ← 1
11: else
12: k1 ← k1 + 1
13: end if
14: until k1 = k1max
15: if f (ω′) > f (ω) then
16: ω ← ω′
17: k ← 1
18: else
19: k ← k + 1
20: end if
21: until k = kmax

5.2 VNS for Solving the QCSP

The pseudocode of the proposed VNS for solving the QCSP is depicted in Algorithm
2. It is based upon two neighbourhood structures, the reassignment (N1) and inter-
change of tasks (N2). The search starts generating an initial schedule, σ, by assigning
each task t ∈ Ω to its nearest quay crane (line 1). The value of the parameter k is also
set to 1 (line 4). A shaking procedure allows to reach unexplored regions of the search
space by means of the reassignment of k tasks to another quay crane. The reassigned
tasks are selected on the basis of a frequency memory. In this way, at each step, a
neighbour schedule, σ′, is generated at random from σ within the neighbourhood
structure Nk (line 6). A local optimum, σ′′, is reached through a local search based
on the proposed neighbourhood structures (line 7). An improvement in the value of
σ′′ allows to update σ and restart k (lines 9, 10 and 11). Otherwise, the value of k is
increased (line 13). These steps are carried out until k = kmax (line 15).

An elite set,ES, is included into the VNSwith the goal of collecting the promising
schedules found during the search process. It is composed of those schedules with the
lowest objective function value and those local optimawith the highest diversity in the
ES. The diversity of two schedules is measured as the number of tasks performed by
different quay cranes. At each step, ES provides a pair of schedules σ and σ′ selected
at random (line 16) in order to be combined (line 17) and restart the search. The
combination process keeps those tasks performed by the same quay crane, whereas
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the remaining ones are randomly assigned to one quay crane on the basis of the
objective function values of σ and σ′.

Algorithm 2. VNS for the QCSP.

1: σ ← Generate initial solution
2: ES ← ∅
3: repeat
4: k ← 1
5: repeat
6: σ′ ← Shake(σ, k)

7: σ′′ ← Local Search(σ′)
8: Update ES
9: if f (σ′′) < f (σ) then
10: σ ← σ′′
11: k ← 1
12: else
13: k ← k + 1
14: end if
15: until k = kmax
16: σ′,σ′′ ← Select schedules from ES
17: σ ← Combine(σ′,σ′′)
18: until Stopping Criteria

6 Computational Experiments

This section is devoted to assess and analyze the performance of the VNSs described
in Sect. 5 for solving the TBAP and the QCSP under imprecise scenarios. All the
computational experiments have been carried out on a computer equipped with a
CPU Intel 3.16 GHz and 4 GB of RAM.

6.1 Computational Experiments for the TBAP

The computational tests aimed at evaluating the behaviour of the VNS introduced in
Sect. 5.1 for the TBAP were conducted by using the problem instances proposed in
thework by [14]. These instances are based upon real data provided by theMedcenter
Container Terminal of Gioia Tauro (Italy). In this case, only a subset of 9 of these
instances are used during this computational experiment. The size of the problem
instances ranges from 20 up to 40 container vessels that must be located in 5 berths
over a time horizon of one week.

The Table1 reports the computational results obtained by means of the VNS over
the group of instances taken up from the benchmark suite described above. The first
column (Instance) shows the instances to solve. For each instance, the name (Name),
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the number of container vessels (N), the number of berths (M) and the maximum
number of quay crane profiles per each vessel (P) are presented. The second column
(CPLEX) shows the upper bound (UB) obtained by the CPLEX Optimizer with a
maximum computational time of 2h. The column VNS shows the results obtained
when the arrival time of the vessels is deterministic. Under this heading, it is reported
the objective value of the best solution found by the VNS ( fV NS), the execution time
(t. (s.)) and the relative error (Gap(%)) regarding the upper bound. Lastly, the next
columns (V NSS−I and V NSS−II ) show the results by considering scenarioswith fuzzy
numbers to model the arrival times of the container vessels. In this context, we have
evaluated the performance of the VNS concerning the following fuzzy numbers:

• S-I = (ai , ai − 1, ai + 4)
• S-II = (ai , ai − 2, ai + 8)

These fuzzy scenarios (S-I and S-II) model, on one hand, the anticipation or delay
of the arrival time of the container vessel arrived at port regarding their expected
times. These scenarios represent a common problem inmaritime container terminals,
since the vessels are subject to tidal, traffic or contractual changes. In this regard,
these issues are frequently translated into a delay of the expected arrival time of
the container vessel, due to that, the fuzzy numbers of both scenarios S-I and S-II
consider a higher delay than anticipation of their arrival time. For each scenario, the
best solution value found by the VNS ( fV NS) and its required computational time (t.
(s.)), measured in seconds, are reported.

In spite of the change of scenario there is not a clear trend in the target values,
as reported in Table1. It is expected that the uncertainty in the arrival times of
the container vessels has a direct impact on the feasibility of the solutions due to
the reduction in the time window constraints and the availability of quay cranes.
Moreover, it may implicitly affect to the objective function value if the late arrival
of the container vessel forces to allocate it in another berth than the expected one.
The reason is found in that this fact would increase the housekeeping cost derived
from the transshipment operations. In this regard, the anticipation or delay of the
arrival time of the vessels may also impact on the assignment of quay crane profiles,
namely, early arrival timeswould allow to assign longer quay cranes profiles,whereas
late arrival times would require shorter quay crane profiles if one is willing to keep
the vessels assigned to their initial assigned berth. These facts and further analysis
of the structure of the final solutions would be a topic of future work. It is worth
mentioning that for the instances from the literature are obtained feasible solutions
for fuzzy arrival times considered in this computational experiment.

6.2 Computational Experiments for the QCSP

In order to check the suitability of the VNS for solving the QCSP, we have considered
a representative subset of the problem instances proposed by [8]. The original set of
instances is composed of 90 instances grouped into 9 groups with 10 instances each
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one. Each group has a different number of tasks (from 10 up to 50) and quay cranes
(from 2 up to 6) which allows to cover real-world scenarios. In this case, we have
selected one instance from each original group in such a way that our benchmark
suite is composed of 9 instances. It is worth mentioning that, as done in previous
works, we have established in this experiment that the quay cranes are available from
the starting of the service time (rq ,∀q ∈ Q) and they have to keep a safety distance
of one bay (δ = 1) among them.

Table2 shows the computational results we have obtained by means of the pro-
posed VNS when solving the aforementioned instances. The first column (Instance)
reports the characteristics of the instances used during the experiment: name (Name),
number of tasks (n) and number of quay cranes (m). The second column (Optimal)
shows the objective function value of the optima schedules for the instances at hand
reported in [8]. The third column (VNS) shows the computational results obtained by
means of the VNS under deterministic scenarios. In this case the objective function
value of the best schedule found during the search ( f under the heading V NSα=1)
and the computational time (t. (m.)), measured in minutes, are reported. Finally, as
described in Sect. 4, the original fuzzy model for this problem can be converted into
a parametric model that depends on α. In this context, we have evaluated the perfor-
mance of the VNS using the values α ∈ 1, 0.8, 0.6, 0.4, 0.2. This parametric model
let us take into account the fact that delays in the processing time of the tasks are the
most common inmaritime container terminals. The case in whichα = 1 corresponds
to the original processing times for which there are not delays. The case in which
α = 0.2 corresponds to the largest delays allowed for the processing times.

In spite of the fact that analyzing the performance of the VNS under deterministic
scenarios is not a major goal of this work, with the aim of providing an overall study,
we firstly focus on this issue. In this regard, the computational results reported in
Table2 indicate that the proposed VNS is highly effective at finding optimal or near-
optimal schedules for the QCSP under deterministic scenarios (column V NSα=1).
As can be seen, it provides the optimal schedules for 7 instances from the benchmark
suite at hand, whereas the gap is below 1.2% in the worst case (k94). Moreover, a
time below 4.5min has been required for finishing the search process in all the cases.
An exhaustive analysis of the performance of the VNS under deterministic scenarios
is described in [18]. Additionally, the efficiency of our optimization technique has
been successfully applied to integrated approaches as described in the same work.

On the other hand, as might be expected, the uncertainty on the processing times
of the tasks defined by the stowage plan of a given container vessel has a direct impact
on its service time (makespan). This is evidenced by the increment in the objective
function value of the schedules obtained by the VNS for the different values of the
parameter α. The makespan of the schedules reported by the V NSα are larger than
those of the schedules found under the deterministic scenario.
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7 Conclusions

The maritime container terminals are large infrastructures aimed at serving the con-
tainer vessels arrived at port. In this regard, a berthing time and berthing position
along the quay is assigned to each vessel. For loading and unloading its contain-
ers, a subset of quay cranes is allocated to it. These quay cranes perform the loading
and unloading operations associated with the containers of the vessel. In this context,
two relevant logistical problems have to be highlighted: the Tactical Berth Allocation
Problem (TBAP) and the Quay Crane Scheduling Problem (QCSP). Unfortunately,
due to the inherent imprecision that appears in the data involved in this environ-
ment, terminal managers are particularly interested in solving these problems by
considering the uncertainty arising in the terminals.

In this paper, the TBAP and the QCSP are tackled under imprecise scenarios.
For this purpose, two fuzzy models that consider the uncertainty of the arrival time
of the vessels and the processing time of the quay cranes are proposed. Moreover,
in order to effectively solve these models, two solutions approaches based on the
Variable Neighbourhood Searchmetaheuristic are introduced. Bothmethods are able
to provide high-quality solutions by means of reasonable computational times.
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a Decision Support System
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Abstract In projects regarding renewable energy facilities, decision making is an
essential activity that provides greater consistency and viability to the project. The
first step that any promoter of such facilities should face is to select an optimal
location. To do so, it is necessary to consider all the criteria that influence the decision.
However, not all the criteria are equally important, which means that determining
their weights is extremely important. The objective of this chapter is to obtain the
weights of the decision criteria that influence the location problems of wind farms
and solar photovoltaic and thermoelectric plants. For this, a Decision Support System
(DSS) has been designed that allows to carry out the extraction of knowledge from an
expert group by Fuzzy AHPmethodology. Finally, DSS will sort the viable locations
based on the importance of the criteria that influence the decision.
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1 Introduction

Renewable energy is the energyobtained fromvirtually inexhaustible natural sources,
either due to the vast amount of energy they contain, or because they are able to
regenerate by natural media. One of the great problems of humanity’s dependence
on fossil fuels is their depletion and the environmental impact they cause [1, 2].

When implementing renewable energy facilities, the promotermust find and select
the best location in order to obtain a better use of energy and reduce the risks that,
in facilities of this size, can cause serious economic and environmental damage [3].
It is, however, not unusual that in choosing the right site among various sites, there
is a degree of uncertainty. If the knowledge and experience of the decision group
are combined with methodologies and tools to assist in decision making [4], this
uncertainty could be avoided.

Decision Support SystemsDSS [5] appeared in the 1970s as solutionswhich could
be used to help with complex decision-making and problem solving in a structured
manner. The DSS are particularly suitable for solving the same complex problem
several times. In location problems in industrial plants and specifically in the prob-
lems of locating renewable energy facilities a set of decision criteria exist which
affect the decision on the location of these facilities. These criteria will depend on
the type of technology (solar, wind ...) to be installed on the facilities. Therefore it is
of great interest to have a DSS to help obtain the weights of criteria when deciding
on the optimal locations for renewable energy installations [6].

Thus, this chapter focuses on the design of a DSS that facilitates the decision
maker to obtain the weights of the criteria in a location problem of renewable energy
facilities.

The chapter will be structured as follows: Sect. 2 will focus on the hierarchical
structure of decision criteria for the case of wind facilities and solar photovoltaic and
thermoelectric plants. Section3 will focus on the design of the DSS algorithms to
work with and the data entry into the system and the results of the DSS output for
different renewable technologies. Section4 presents an example of how it is possible
to obtain a classification of suitable locations through the DSS and finally in Sect. 5
we present the main conclusions of the work.

2 Decision Criteria for the Optimal Location
of Renewable Energy Facilities

It is necessary to know which criteria influence (and to what extent), the decision-
making problem proposed. Although previous studies have been conducted indicat-
ing the features that these criteria should meet [7, 8], the fact of using one or another
will depend mainly on the study area. However, it is possible to establish common
generic criteria that subsequently may be decomposed into specific criteria, which
will depend on the characteristics and nature of the area to be analyzed.
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Therefore, following the guidelines established in [9], four groups of main criteria
will be established (environment, location, orography and climatology criterion).

Through the environment criterion it is not intended to assess the impact that these
renewable energy plants cause in certain sites, the description of this criterion is based
on the suitability of installing renewable energy plants depending on the capacity that
the land presents to host them. Location criteria will be composed on the one hand
by those criteria that allow to evaluate the distances that the future renewable plants
would have regarding infrastructures or areas in which they cannot be implemented
(cities, airports, masts, etc.) and, on the other hand by those criteria that will not only
allow to reduce the installation costs but will also favour its performance (distance
to main roads, power lines, etc.). Orography criteria are based on both the extension
and the orographic features that the land presents to implement this type of facilities
in order to minimize the installation costs and increase efficiency, for example, to
implement solar facilities it will not only be appropriate that the land has sufficient
area but it must also have low slopes and a correct orientation. Finally climatology
criteria will allow evaluating the production capacity of the renewable energy plants.
Sites should be chosen where these criteria present appropriate values because these
criteria are essential not only for the correct operation of the plant but also to optimize
the production.

These criteria are common to the main renewable energy facilities, and especially
to those which this paper is focused on: wind farms, solar photovoltaic plants and
thermoelectric plants.

The difference between the different technologies exists in the definition of the
criteria to be considered in the location, based on the type of technology used. So
for wind farms the hierarchy of criteria is that shown in Fig. 1 [10]:

• C1: Agrological capacity (Classes): Suitability of land for agricultural develop-
ment, if the land presents excellent agrological capacity it will not be suitable to
implement the renewable facility and vice versa.

• C2: Slope (%): Inclination of the land, the higher the percentage of surface incli-
nation, the worse fitness it will have to implement a wind farm.

• C3: Area (m2): Surface contained within a perimeter of land that can accommodate
a renewable energy facility.

• C4: Distance to main airports (m): Space of interval between the nearest airport
and the different possible sites.

• C5: Distance to main roads (m): Space of interval between the nearest main road
and the different possible sites.

• C6: Distance to power lines (m): Space of interval between the nearest power line
and the different possible sites.

• C7: Distance to cities (m): Space of interval between the population centers (cities
and towns) and the different possible sites.

• C8: Distance to electricity transformer substations (m): Space of interval between
the nearest electricity transformer substation and the different possible sites.
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Fig. 1 Criteria tree for optimizing the location of wind farms

• C9: Distance to mast (m): Space of interval between the nearest mast and the
different possible sites.

• C10: Wind speed (m/s): It corresponds to the wind speed at an elevation of 80
meters in the different possible sites.

In the case of solar photovoltaic and thermoelectric plants the criteria tree is as in
Fig. 2 where we have some similar criteria (C1, C2, C3, C5, C6, C7, and C8) but others
which are different, due to the technology used [11]:

• C4: Field Orientation (Cardinal points): Position or direction of the ground to a
cardinal point.

• C9: Potential solar radiation (kJ m2/day): It corresponds to the amount of solar
energy a ground surface receives over a period of time (day).

• C10: Average temperature (C): Average temperatures measured on ground in the
course of one year.
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Fig. 2 Criteria tree for optimizing the location of solar photovoltaic and thermoelectric plants

3 Decision Support System for the Location of Renewable
Energy Facilities

We have developed a Decision Support System DSS for the location of renewable
energy facilities with the structure shown in Fig. 5 and called Optimal Location v1.0.
Optimal Location v1.0 is formed by three sub-systems [5]:

• Data handling sub-system: Contains information about the problem. In this case,
the Data Base is obtained by means of a Geographical Information System (GIS).

• Models’ handling sub-system: Mathematical models that are used to solve the
problem.Optimal Location v1.0 usesAHPand theTOPSISmethodwith orwithout
fuzzy logic. By means of AHP we obtain the weights of the criteria.

• AHP estimates the impact of each one of the alternatives on the overall objective
of the hierarchy. In this method the quantified judgments provided by experts in
the field on pairs of criteria (Ci,Cj) are represented in an n × n matrix expressed
by the following expression (1).
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.

.
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⎡
⎢⎢⎢⎢⎣

c11 c12 ... c1n

c21 c22 ... c2n

. . ... .

. . ... .

cn1 cn2 ... cn3

⎤
⎥⎥⎥⎥⎦ (1)

The c12 value is supposed to be an approximation of the relative importance of
C1 to C2, i.e., c12 ≈ (w1/w2). The statements below can be concluded:

• cij ≈ (wi/wj) i, j = 1, 2, …, n
• cii = 1, i=1, 2, …, n
• If cij = α, α �=0, then cji =1/α , i=1,2,…, n
• If Ci is more important than Cj then cij ∼= (wi/wj) > 1

Matrix C should be a positive and reciprocal matrix with 1’s in the main diagonal; so
the expert needs only to provide value judgments in the upper triangle of the matrix.
The TOPSISmethod is applied to obtain the ranking of the alternatives. Nevertheless,
this chapter has been focused on the aim of obtaining the weight of the criteria.

Fig. 3 Insertion of the criteria and categories in Optimal Location v1.0
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Fig. 4 Insertion of the order of importance for each criterion in Optimal Location v1.0

Fig. 5 Group decision making with Optimal Location v1.0

• User Interface Sub-system: It is the environment in which the user controls the
DSS. By means of this interface, the input data can be introduced in order to apply
the AHP method (see Figs. 3 and 4) and additionally the results (output of the
DSS) can be shown, these results are shown in Figs. 7, 8 and 9.
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Fig. 6 Bottom to Top AHP method

Fig. 7 Weights of the
criteria for wind farms

3.1 Data Input to the DSS

The DSS starts with a file format ESRI Shape file (.Shp.) to perform its functions.
This file must have been previously published and analyzed on professional GIS
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Fig. 8 Weights of the
criteria for photovoltaic
plants

Fig. 9 Weights of the
criteria for thermoelectric
plants
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software. In this particular case, the gvSIG tool has been used because it is free
software.

For optimization calculations it is necessary to establish the relative importance
of each decision criterion. To do so, the DSS uses the AHP method [12, 13].

This seeks to establish the pairwise comparisons required by this method by
conducting surveys to different experts in the field. It is a pseudo-Delphi technique,
in which different independent experts without mutual interaction value judgments
made for pairwise comparison. In this way, the aim is to obtain a vector of weights of
the criteria from each expert and then to produce a singleweight vector by performing
an arithmetic mean between them, see Fig. 6.
The information provided by the experts is qualitative in character or is very vague
since it has been obtained through linguistic terms; because of this the data obtained
should be set modeled so that further handling is feasible and easy.

Among the various options for representing information and because the data is
grouped perfectly, and that handling it is simple and effective, fuzzy numbers will
be chosen to represent information [14, 15].

In the case studied, the data provided shall be represented by triangular fuzzy
numbers [16–18].

3.2 Treatment of the Data

For that purpose, a questionnaire similar to that made by [19] was developed, which
was given to experts with the aim of reducing uncertainty and imprecision of the
proposed problem. The linguistic labels used in the Fuzzy AHP model are shown in
Table1.
In AHP problems, where the values are fuzzy, the geometric normalized average will
be used, expressed by the following expression (2):

Table 1 Linguistic labels used in fuzzy AHP

Verbal judgments of preferences between
criterion i and criterion j

Triangular fuzzy scale and reciprocals

Ci and Cj are equally important (II) (1, 1, 1)/(1,1,1)

Ci is slightly more/less important than Cj
(S+I/S-I)

(2, 3, 4)/(1/4,1/3,1/2)

Ci is strongly more/less important than Cj
(+I/-I)

(4, 5, 6)/(1/6,1/5,1/4)

Ci is very strongly more/less important than Cj
(VS+I/VS-I)

(6, 7, 8)/(1/8,1/7,1/6)

Ci is extremely more/less important than Cj
(Ex+I/Ex-I)

(8, 9, 9)/(1/9,1/9,1/8)
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Wi =

n∏
j=1

(
ai j , bi j , ci j

)

m∑
i=1

n∏
j=1

(
ai j , bi j , ci j

) (2)

where
(
ai j , bi j , ci j

)
is a fuzzy number

The group of experts involved in the decision process answer a survey based in
the Fuzzy AHP model. In this case the way to obtain the weighted criteria is bottom
to top type (see Fig. 6), this is to calculate all the weights of the criteria at the second
level by comparing all the criteria with each other.

The survey is divided into two parts:

1. The decision problem is explained indicating what the goal to achieve is (optimal
location of sites for renewable energy facilities), the methodology used, and the
criteria that influence the decision making process. Thus, the basic elements of
the decision problem are described through a hierarchical structure, as shown in
the criteria trees (Figs. 1 and 2).

2. It is based on the hierarchical structure described and its purpose is to gather data
to obtain the weight or coefficient of importance of criteria. The survey consists
of a block of three questions:

• Q1: Do you believe that all the criteria have the same weight?
– If the answer is yes, it will not be necessary to apply any MCDM to obtain
the weights of the criteria, as these will have the same value. Otherwise,
i.e., if experts consider that not all the criteria have equal importance, the
second question in the survey will be posed:

• Q2: List the criteria in descending importance.
• Q3:Compare the approach to be considered firstwith respect to that considered
secondly and successively, using the linguistic labels in Table1.

In the particular case of wind farms, the answers for each of the criteria indicated in
Fig. 2 were the following.

Answer Q1: NO
Answer Q2: The orders of importance for each of the experts are shown in Table2.
Answer Q3: The pairwise comparisons among criteria by the experts are shown

in Table3
So, the weights of the criteria will be determined by pairwise comparison among

criteria. As a result of the data collection used, a total of (n− 1) comparisons will be
required against the complete AHP method n(n − 1)/2 comparisons.
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3.3 Weights of the Criteria in Wind, Solar Photovoltaic
and Thermoelectric Plants

The results of the DSS output are discussed for the three types of technologies and
with the hierarchical structure criteria according to Figs. 1 and 2 for the criteria.

DSS provides the results for the criteria as seen in Fig. 7, in the case of the decision
criteria for the location of wind farms; Fig. 8 for the case of the decision criteria for
the location of solar photovoltaic plants; and Fig. 9 in the case of decision criteria for
locating thermoelectric plants.

In the case of wind farms the criterion (Fig. 7) which clearly stands out above
the other criteria is the wind speed (C10) with almost 40% of the total weight. This
result is logical since to implement a wind farm the wind speed plays a crucial role,
and if this is not enough in a given area, that area is removed by any promoter of
these facilities. The remainder of these criteria are further apart and grouped around
weights between 5 and 10% of the total.
In the case of solar technologies the situation is different since there is no single
criterion whose weight or importance coefficient is so high that it allows to discard
the rest. Analyzing Fig. 8, the criteria for photovoltaic plants, it is shown that the three
best criteria for the location problem for solar plants are the distance to power lines
(C6); distance to electricity transformer substations (C8); and distance to cities (C7),
with the latter being the highest rated. By contrast, the criteria that less influence the
decision, that is to say, those with the lowest values, correspond to the criterion of
agrological capacity (C1) and to the criterion of distance to main roads (C5).

The results are consistent since in the implementation of a photovoltaic solar
plant, the fact of having a pour point to the nearest grid greatly reduces the initial
investment costs, thus reducing the payback period of the facility. However, it should
also be highlighted that the most important criterion presented corresponds to the
distance to centers of population, the justification for this high weight can be found
in both the potential environmental impact that this type of facility can generate and

Table 2 Order of importance
of the criteria for each of the
experts for the case of
location of wind farms

Criteria Expert 1 Expert 2 Expert 3

C1 9 10 10

C2 6 3 5

C3 3 8 6

C4 10 7 9

C5 8 5 3

C6 2 2 7

C7 4 6 2

C8 5 4 4

C9 7 9 8

C10 1 1 1
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Table 3 Pairwise
comparisons among criteria
for the case of location of
wind farms by linguistic
labels

Expert 1 Expert 2 Expert 3

1◦ → 2◦ S + I VS+I S + I

1◦ → 8◦ VS+I Ex+I Ex+I

1◦ → 5◦ S + I VS+I +I

1◦ → 3◦ S + I VS+I +I

1◦ → 9◦ Ex+I Ex+I Ex+I

1◦ → 7◦ +I Ex+I VS+I

1◦ → 4◦ S + I VS+I +I

1◦ → 6◦ +I VS+I VS+I

1◦ → 10◦ Ex+I Ex+I Ex+I

in growth and expansion of cities because, given the useful life of photovoltaic solar
plants, implementing these facilities in close proximity to centers of population can
condition their expansion.
Analyzing Fig. 9, the criteria for thermoelectric plants, it is shown that the three best
criteria for the location problem for solar thermoelectric plants are potential solar
radiation (C9); distance to electricity transformer substations (C8); and area (C3),
with the latter being the highest rated. By contrast the criteria that have less influence
in the decision in this case are distance to cities (C7) and distance to roads (C5).

The results are consistent as solar thermoelectric plants are facilities that not
only require a territory covering a large area, but also, the installed capacity of
them is usually very high (with the aim of reducing the payback period) therefore
there is a need to have nearby transformer substations that allow to directly pour the
electricity generated because, if not, the promoter himself should meet the additional

Fig. 10 Position and suitable locations in the municipality of Águilas
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Fig. 11 Mapof the capacity to accommodate solar photovoltaic farms in themunicipality ofÁguilas

cost of building a transformer substation to discharge the energy generated in the
thermoelectric plant.

Fig. 12 Map of the capacity to accommodate solar thermoelectric farms in the municipality of
Águilas
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Fig. 13 Map of the capacity to accommodate wind farms in the municipality of Águilas

4 Obtaining Optimal Locations. Case Study:
Municipality in Southeast of Spain

Once the weights of the criteria that influence in the decision have been obtained, the
available locations to implement renewable energy facilities will be evaluated with
DSS. To do so, the thematic layer obtained in [20] will be used, which will provide
the suitable locations to implementwind farms, solar photovoltaic and thermoelectric
plants in 13 municipalities in the Region of Murcia, in south-eastern Spain. As an
example the thematic layers of one of the municipalities that compose the coast of
this Region, specifically the town of Águilas, will be used (Fig. 10).

Introducing these thematic layers in the DSS, the software will be able to evaluate
the plots of the municipality of Águilas according to the weights of the criteria. Once
that evaluation has been made, the DSS will provide a map showing the ability of
each plot to host renewable energy facilities, these capacities will be linked to a
colour code (excellent: blue; very good: yellow; and regular: red). The evaluations
obtained are shown in Figs. 11, 12 and 13.

Analyzing Figs. 11 and 12 it is observed that there is some similarity in the best
rated locations for solar photovoltaic and thermoelectric facilities, since the cate-
gories of the available locations are very similar. Regarding wind farms it is observed
that most of the locations have very good or excellent capacity for this type of facil-
ities.
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5 Conclusions

This study has shown that we must take into account a number of criteria to select
which is the best location for renewable energy facilities (wind farms, solar photo-
voltaic plants and solar thermoelectric plants). Moreover, such criteria do not equally
influence in decision making so it is very important to know beforehand the weights
of these criteria for each technology when implementing such facilities.

Moreover, it is interesting to show that there are important differences among
Wind and Solar technologies, while between the two solar technologies there is a
greater similarity.

Carrying out the assessment of the facilities available in a case study, it is observed
that the DSS is able to provide a classification of the locations according to their
ability to host such facilities: it is observed that the optimal locations to host solar
photovoltaic and thermoelectric farms coincide. It should also be noted that in the
case of wind farms, the number of locations that have very good capacity for this
type of facility increases.

It is of great interest for the promoters of renewable energy facilities to have a tool
such as this, a DSS to model the importance of the decision criteria when locating
renewable energy installations that aggregates all the information by different experts
to be involved in decision making.

This DSS is simple and intuitive to manage for any expert in the field of renewable
energy without any knowledge of soft computing, when experts only have to answer
three simple questions to obtain the weights of the criteria involved in the decision
making of the optimal location for renewable energy facilities.
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Gene Priorization for Tumor Classification
Using an Embedded Method
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Abstract The application of microarray technology to the diagnosis of cancer has
been a challenge for computational techniques because the datasets obtained have
high dimension and a few examples. In this paper two computational techniques
are applied to tumor datasets in order to carry out the task of diagnosis of cancer
(classification task) and identifying the most promising candidates among large list
of genes (gene prioritization). Both techniques obtain good classification results
but only one provides a ranking of genes as additional information and thus, more
interpretable models, being more suitable for jointly addressing both tasks.

Keywords Fuzzy random forest ·Gene priorization ·Gene expression data ·Tumor
datasets

1 Tumor Classification from Gene Expression Data

The challenge of cancer treatment has been to target specific therapies to pathogeneti-
cally distinct tumor types, tomaximize efficacy andminimize toxicity. Improvements
in cancer classification have thus been central to advances in cancer treatment. Can-
cer classification is divided into two challenges: class discovery and class predic-
tion. Class discovery refers to defining previously unrecognized tumor subtypes.
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Class prediction refers to the assignment of particular tumor examples to already-
defined classes. In the early days, cancer classification has been relying on subjective
judgment from experienced pathologists. When microarray technology was discov-
ered began to be applied to cancer diagnosis. The most important application of
the microarray technique is to discriminate the normal and cancerous tissue sam-
ples according to their expression levels, identify a small subset of genes that are
responsible for the disease and to discover potential drugs [15].

Experimental techniques based on oligonucleotide or cDNA arrays now allow the
expression level of thousands of genes to be monitored in parallel [1]. To use the full
potential of such experiments, it is important to develop the ability to process and
extract useful information from large gene expression datasets.

Constantly improving gene expression profiling technologies are expected to pro-
vide understanding and insight into cancer related cellular processes. Gene expres-
sion data is also expected to significantly aid in the development of efficient cancer
diagnosis and classification platforms. Gene expression data can help in better under-
standing of cancer. Normal cells can evolve into malignant cancer cells through
a series of mutations in genes that control the cell cycle, apoptosis, and genome
integrity, to name only a few. As determination of cancer type and stage is often
crucial to the assignment of appropriate treatment [16], a central goal of the analy-
sis of gene expression data is the identification of sets of genes that can serve, via
expression profiling assays, as classification or diagnosis platforms.

Another important purpose of gene expression studies is to improve understanding
of cellular responses to drug treatment. Expression profiling assays performed before,
during and after treatment, are aimed at identifying drug responsive genes, indications
of treatment outcomes, and at identifying potential drug targets [9]. More generally,
complete profiles can be considered as a potential basis for classification of treatment
progression or other trends in the evolution of the treated cells.

Data obtained from cancer related gene expression studies typically consists of
expression level measurements of thousands of genes. This complexity calls for data
analysismethodologies that will efficiently aid in extracting relevant biological infor-
mation. Previous gene expression analysis work emphasizes clustering techniques
(nonsupervised classification), which aim at partitioning the set of genes into subsets
that are expressed similarly across different conditions. On the other hand, super-
vised classification techniques (also called class prediction or class discrimination)
with the aim to assign examples to predefined categories [12, 16, 19].

The objectives of supervised classification techniques are: (1) to build accurate
classifiers that enable the reliable discrimination between different cancer classes,
(2) to identify biomarkers of diseases, i.e. a small set of genes that leads to the correct
discrimination between different cancer states. This second purpose of supervised
classification can be achieved by classifiers that provide understandable results and
indicate which genes contribute to the discrimination.
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Following this line, in this paper the goal is to apply two techniqueswith embedded
capacity to discard input features and thus propose a subset of discriminative genes
(embedded methods [20]). We apply them to classify and select features to tumor
datasets in order to carry out an analysis of these datasets and to obtain the information
that provide understandable results. These techniques are the Fuzzy Random Forest
method (FRF) proposed in [3, 7] and the Feature Selection Fuzzy Random Forest
method (FRF-fs) proposed in [6].

This paper is organized as follows. First, in Sect. 2 some techniques applied to
gene expression data reported in literature are briefly described. Next, in Sect. 3,
the applied methods are described. Then, in Sect. 4 we perform an analysis of two
tumor datasets using these methods. Finally, in Sect. 5 remarks and conclusions are
presented.

2 Machine Learning and Gene Expression Data

In this section, we describe some of the machine learning techniques used for the
management of gene expression data.

2.1 Cluster Analysis Based Techniques

Clustering is one of the primary approaches to analyze such large amount of data
to discover the groups of co-expressed genes. In [18] an attempt to improve a fuzzy
clustering solution by using SVM classifier is presented. In this regard, two fuzzy
clustering algorithm, VGA and IFCM have been used.

In [1] a clustering algorithm to organize the data in a binary tree is used. The
algorithm was applied to both the genes and the tissues, revealing broad coherent
patterns that suggest a high degree of organization underlying gene expression in
these tissues. Coregulated families of genes clustered together. Clustering also sep-
arated cancerous from noncancerous tissue.

In [16] a SOM to divide the leukemia examples into cluster is used. First, they
applied a two-cluster SOM to automatically discovering the two types of leukemia.
Next, they applied a four-cluster SOM. They subsequently obtained immunopheno-
type data on the examples and found that the four classes largely corresponded to
AML, T-lineage ALL, B-lineage ALL, and B-lineage ALL, respectively. The four-
cluster SOM thus divided the examples along another key biological distinction.

In [2] a clustering based classifier is built. The clustering algorithm on which
the classifier is constructed is the CAST algorithm that takes as input a threshold
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parameter t, which controls the granularity of the resulting cluster structure, and a
similaritymeasure between the tissues. To classify a example they cluster the training
data and example, maximizing compatibility to the labeling of the training data. Then
they examine the labels of all elements of the cluster the example belongs to and use
a simple majority rule to determine the unknown label.

2.2 Techniques for Feature Selection and Supervised
Classification

Discovering novel disease genes is still challenging for constitutional genetic diseases
(a disease involving the entire body or having a widespread array of symptoms) for
which no prior knowledge is available. Performing genetic studies frequently result
in large lists of candidate genes of which only few can be followed up for further
investigation. Gene prioritization establishes the ranking of candidate genes based
on their relevance with respect to a biological process of interest, from which the
most promising genes can be selected for further analysis [19]. This is a special case
of feature selection, a well-known problem in machine learning.

In [16] a procedure that uses a fixed subset of “informative genes” is developed.
These “informative genes” are chosen based on their correlation with the class dis-
tinction.

In [12], aRandomForest ensemble is used to carry out the feature selection process
for classification from gene expression data. The technique calculates a measure of
importance for each feature based on how the permutation of the values of that
feature in the dataset affects to the classification of the out-of-bag (OOB) dataset of
each decision tree of ensemble [5]. Following this study, in [14], a Random forest
ensemble which solves the problems existing in [12] is proposed.

In [13] a study of classification of gene expression data using metaheuristics is
presented. The authors show that gene selection can be casted as a combinatorial
search problem, and consequently be handled by these optimization techniques.

In [19], four different strategies to prioritize candidate genes are proposed. These
strategies are based on network analysis of differential expression using distinct
machine learning approaches to determine whether a gene is surrounded by highly
differentially expressed genes in a functional association or protein-protein interac-
tion network.

Another work to select genes is proposed in [10]. This paper shows that a sys-
tematic and efficient algorithm, mixed integer linear programming based hyper-box
enclosure (HBE) approach, can be applied to classification of different cancer types
efficiently.
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3 Classification and Feature Selection by Fuzzy Random
Forest

In this section, we describe the methods that we will use in this paper.

3.1 Fuzzy Random Forest for Classification

We briefly describe the Fuzzy Random Forest (FRF) ensemble proposed in [3, 7].
FRF ensemble was originally presented in [3], and then extended in [7], to handle
imprecise and uncertain data. We describe the basic elements of the FRF ensem-
ble and the types of data that are supported by this ensemble in both learning and
classification phases.

Fuzzy Random Forest Learning

Let E be adataset. FRF learningphaseusesAlgorithm1 togenerate theFRFensemble
whose base classifier is a Fuzzy Decision Tree (FDT). Algorithm 2 shows the FDT
learning algorithm [8].

Algorithm 1: FRFlearning.
1: Input: E , Fuzzy Parti tion; Output: F RF
2: begin
3: repeat
4: Take a random sample of |E | examples with replacement from the dataset E
5: Apply Algorithm 2 to the examples obtained in the previous step to construct a FDT
6: until all FDTs are built to constitute the FRF ensemble
7: end

Algorithm 2 has been designed so that the FDTs can be constructed without
considering all the features to split the nodes. Algorithm 2 is an algorithm to construct
FDTs where the numerical features have been discretized by a fuzzy partition. The
domain of each numerical feature is represented by trapezoidal fuzzy sets, F1, . . . , Ff

so each internal node of the FDTs, whose division is based on a numerical feature,
generates a child node for each fuzzy set of the partition.Moreover, Algorithm 2 uses
a function, denoted by χt,N (e), that indicates the degree with which the example e
satisfies the conditions that lead to node N of FDT t . Each example e is composed
of features which can be crisp, missing, interval, fuzzy values belonging (or not) to
the fuzzy partition of the feature. Furthermore, we allow the class feature to be set-
valued. These examples (according to the value of their features) have the following
treatment:
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Algorithm 2: FDecisionTree.
1: Input: E , Fuzzy Parti tion; Output: F DT
2: begin
3: Start with the examples in E with values χFuzzy_T ree,root (e) = 1 to all examples with a single class and replicate

the examples with set-valued class and initialize their weight according to the available knowledge about their class
4: Let A be the feature set (numerical features are partitioned according to Fuzzy Partition)
5: repeat
6: Choose a feature to the split at the node N
7: loop
8: Make a random selection of features from the set A
9: Compute the information gain for each selected feature using the values χFuzzy_T ree,N (e) of each e in node N

taking into account the function μsimil(e) for the cases required
10: Choose the feature such that information gain is maximal
11: end loop
12: Divide N in children nodes according to possible selected feature outputs in the previous step and remove it from

the set A. Let En be the dataset of each child node
13: until the stopping criteria is satisfied
14: end

• Each example e used in the training of the FDT t has assigned an initial value
χt,root (e). If an example has a single class this value is 1. If an example has a set-
valued class, it is replicated with a weight according to the available knowledge
about the classes.

• According to the membership degree of the example e to different fuzzy sets of
partition of a split based on a numerical feature:

– If the value of e is crisp, the example e may belong to one or two children
nodes, i.e., μ f uzzy_set_parti tion(e) > 0. In this case χt,childnode(e) = χt,node(e) ·
μ f uzzy_set_parti tion(e).

– If the value of e is a fuzzy value matching with one of the sets of the fuzzy
partition of the feature, e will descend to the child node associated. In this case,
χt,childnode(e) = χt,node(e).

– If the value of e is a fuzzy value different from the sets of the fuzzy partition of
the feature, or the value of e is an interval value, we use a similarity measure,
μsimil(·), that, given the feature “Attr” to be used to split a node, measures the
similarity between the values of the fuzzy partition of the feature and fuzzy
values or intervals of the example in that feature. In this case, χt,childnode(e) =
χt,node · μsimil(e).

– When the example e has a missing value, the example descends to each child
node nodeh , h = 1, . . . , Hi with a modified value proportionately to the weight
of each child node. Themodified value for each nodeh is calculate asχnodeh (e) =
χnode(e) · T χnodeh

T χnode
where T χnode is the sum of the weights of the examples with

known value in the feature i at node and T χnodeh is the sum of the weights of
the examples with known value in the feature i that descend to the node nodeh .

Fuzzy Random Forest Classification

The fuzzy classifiermodule operates on FDTs of the FRF ensemble using one of these
two possible strategies: Strategy 1—Combining the information from the different
leaves reached in each FDT to obtain the decision of each individual FDT and then
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Fig. 1 Framework of FRF-fs
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applying the same or another combination method to generate the global decision
of the FRF ensemble; and Strategy 2—Combining the information from all leaves
reached from all FDTs to generate the global decision of the FRF ensemble.

3.2 Fuzzy Random Forest for Feature Selection

The FRF-fs method [6] is classified as a hybrid method that combines the filter and
wrapper methods. The framework (Fig. 1) consists of main steps: (1) Scaling and dis-
cretization process of the feature set; and feature pre-selection using the discretization
process; (2) The feature pre-selection ranking process using information given by
Fuzzy Random Forest ensemble; and (3) Wrapper feature selection using a classifi-
cation technique. Starting from the ordered features, this wrapper method constructs
an ascending sequence of sets of candidate features, by invoking and testing the fea-
tures stepwise. The different feature subsets obtained by this process are evaluated
by a machine learning method. In each step, the method obtains information useful
to the user: pre-selected feature subset, feature subsets ranking and optimal feature
subset.

In the filter method, we use the method proposed in [8]. From the feature subset
and the dataset obtained with the filter method, we apply FRF method. Once FRF
ensemble has been obtained, we have all the information about each FDT. Algorithm
3 describes how information provided for each FDT of the ensemble is compiled and
used to measure the importance of each feature.

More specifically, the information we get from each FDT t for each feature a is
the following:

• Information gain of node N for the feature a (I G Na) where the feature a has been
selected as the best candidate to split it.
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• Depth level of node N (PNa)where feature a has been selected as the best candidate
to split it.

• Classification accuracy Acct of FDT t when classifying the dataset O O Bt .

Algorithm 3: INFFRF Information of the FRF.
1: Input: E , Fuzzy Parti tion, T N ; Output: I N F
2: begin
3: Building a Fuzzy Random Forest (Algorithm 1 - 3.1)
4: for each FDT t=1 to T N of the FRF ensemble do
5: Save the feature a chosen to split each node N , information gain of node, I G Na , and the depth of that node PNa ,

in I N Fa .
6: Obtain the classification accuracy Acct of the FDT t with its corresponding O O Bt dataset.
7: end for
8: end

Algorithm 4 details how the information I N F obtained from the FRF ensemble
is combined to obtain an importance measure of the features where pi is the weight
we assign to feature a depending on the place where it appears in the FDT t . After
the information is combined, the output of this algorithm is a matrix (I M P) where
for each FDT t and for each feature a, the importance value obtained in the FDT t
for the feature a is stored.

Algorithm 4: IMPFRF Combining information INF.

1: Input: I N F , T N ; Output: I M P
2: begin
3: for each FDT t=1 to T N do
4: for each feature a=1 to |Attr | do
5: for all nodes N where feature a appears do
6: if PNa = i then
7: I M Pta = I M Pta + pi · I G Na with i ≥ 0 and Prootnode = 0
8: end if
9: end for
10: for each feature a=1 to |Attr | do

11: I M Pta =
(

I M Pta−min(I M Pt )
max(I M Pt )−min(I M Pt )

)
· O O Bt

12: end for
13: The vector I M Pt is ordered in descending order, I M Ptσt , where σt is the permutation obtained when ordering

I M Pt
14: end for
15: end for
16: end

The idea behind the measure of importance of each feature is that it uses the
features of the FDTs obtained and the decision nodes built with them in the following
way. The importance of a feature is determined by its depth in a FDT. Therefore a
feature that appears on the top of a FDT is more important in that FDT than another
feature that appears in the lower nodes. And, a FDT that has a classification accuracy
greater than another to classify the corresponding OOB (dataset independent of the
training dataset) is a better FDT. The final decision is agreed by the information
obtained for all FDTs.
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As a result ofAlgorithm4,weobtain for eachFDTofFRFensemble an importance
ranking of features. Specifically, we will have T N importance rankings for each
feature a. Applying an operator OWA, we add them into one ranking. This final
ranking indicates the definitive importance of the features.

OWA operators (OrderedWeighted Averaging) were introduced by Yager in 1988
[22]. OWA operators are known as compensation operators. They are aggregation
operators of numerical information that consider the order of the assessments that
will be added. In our case, we have T N ordered sets. Given a weight vector W ,
the vector R AN K represents the ranking of the pre-selected feature subset and is
obtained as follows (the vector R AN K is ordered in descending order: R AN Kσ):

OW AI M Pt = W · I M Ptσt
, for t = 1, . . . , T N

R AN Ka =
T N∑
t=1

OW AI M Ptσt (a), for a = 1, . . . , |A|

3.3 Wrapper for Feature Final Selection

Once the ranking of the pre-selected feature subset, R AN Kσ , is obtained, we have
to find an optimal subset of features. One option to search the optimal subset is
by adding a single feature at a time following a process that uses R AN Kσ . The
several feature subsets obtained by this process are evaluated by a machine learning
method that supports low quality data (called Classi f ierL Q D) with a process of
cross-validation. The detailed process of the proposed wrapper method is shown in
Algorithm 5.

Starting from the ordered feature pre-selected, construct an ascending sequence of
FRF models, by invoking and testing the features stepwise. We perform a sequential
feature introduction in two phases:

• In the first phase two feature subsets are built: the feature subsets C Fbase and
C Fcomp. A feature fi is added to the C Fbase subset only if the decrease of the error
rate using the features of C Fbase ∪ { fi } subset exceeds a threshold δ1. The idea is
that the error decrease by adding fi must be significant for that feature to belong
to the C Fbase subset. If when we classify using the subset C Fbase ∪ { fi }, an error
decrease smaller than a threshold δ1 or an error increase smaller than a threshold
δ2 is obtained, fi becomes part of the subset C Fcomp.

• The second phase starts with both C Fbase and C Fcomp sets. We fix C Fbase and
add feature subgroups from C Fcomp to build several FRF models. This phase
determines the final feature set with minimum error according to the conditions
reflected on line 22 of Algorithm 5. These conditions are interpreted as “select the
subset that decrements the error in an amount over threshold δ3 or decrements the
error in an amount below δ3 but using a smaller number of features.”
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4 FRF and Tumor Classification

In this section we examine the performance of the FRF ensemble for classification
and feature selection from gene expression data.

4.1 Gene Expression Data

In this section, we describe the three datasets that we will analyze. The first dataset
involves comparing tumor and normal examples of the same tissue, the second one
involves examples from two variants of the same disease and the third one contains
measurements of the gene expression of cancer patients and healty men.

Algorithm 5: Wrapper method.
Input: E , candidate feature set C F and information system R AN Kσ ; Output: C Fopt selected feature set
begin
C Fcomp = {} and C Fbase = { f1} where f1 is the first feature of R AN Kσ
E R R1 = Classi f ier(E,C Fbase) using cross-validation, B E = E R R1
for each fi ∈ C F , with i = 2, . . . , |C F | in the order determined by R AN Kσ do

E R RB = Classi f ierL Q D (E,C Fbase ∪ { fi }) using cross-validation
if (B E − E R RB ) > δ1 then

C Fbase = C Fbase ∪ { fi }
else

if (E R RB − B E) < δ2 then
C Fcomp = C Fcomp ∪ { fi }

end if
end if

end for
C Faux = C Fbase
for each fi ∈ C Fcomp , with i = 1, . . . , |C Fcomp | in the order determined by R AN Kσ do

B = C Fbase , ST O P = 0, j = i
while (ST O P < δ2) and ( j ≤ |C Fcomp |) do

B = B ∪ { f j }
E R RB = Classi f ierL Q D (D, B) using cross-validation
if ((B E − E R RB ) ≥ δ3) or (0 ≤ (B E − E R RB ) < δ3 and |C Faux | > |B|) then

C Faux = B, B E = E R RB
else

if (E R RB − B E) > δ2 then
ST O P = (E R RB − B E)

end if
end if
j = j + 1

end while
end for
Return: C Fopt = C Faux
end

Colon Cancer, Leukemia and Prostate Datasets. Colon tumor is a disease in which
cancerous growths are found in the tissues of the colon epithelial cells. The Colon
dataset contains 62 examples. Among them, 40 tumor biopsies are from tumors
(labeled as “negative”) and 22 normal (labeled as “positive”) biopsies are from
healthy parts of the colons of the same patients. The final assignments of the status
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of biopsy examples were made by pathological examination. The total number of
genes to be tested is 2000 [1].

In the 1960s was provided the first basis for classification of acute leukemias
into those arising from lymphoid precursors (acute lymphoblastic leukemia, ALL)
or from myeloid precursors (acute myeloid leukemia, AML). The Leukemia dataset
is a collection of expression measurements reported by [16]. The dataset contains 72
examples. These examples are divided to two variants of leukemia: 25 examples of
acute myeloid leukemia (AML) and 47 examples of acute lymphoblastic leukemia
(ALL). The source of the gene expression measurements was taken from 63 bone
marrow examples and 9 peripheral blood examples. Gene expression levels in these
72 examples were measured using high density oligonucleotide microarrays. The
expression levels of 7129 genes are reported.

Prostate dataset contains gene expression data (6033 genes for 102 examples)
from the microarray study reported by [21]. The obtained results support the notion
that the clinical behavior of prostate cancer is linked to underlying gene expres-
sion differences that are detectable at the time of diagnosis. This dataset contains
measurements of gene expression of 52 prostate patients and 50 healty men.

4.2 Estimating Prediction Errors

We apply the cross-validation method to evaluate the prediction accuracy of the
classification method. To apply this method, we partition the dataset E into k sets
of examples, C1, . . . ,Ck . Then, we construct a data set Di = E − Ci , and test
the accuracy of a model obtained from Di on the examples in Ci . We estimate the
accuracy of the method by averaging the accuracy over the k cross-validation trials.

There are several possible choices of k. A common approach is to set k =number
of examples. This method is known as leave one out cross validation (LOOCV). We
will use the LOOCV method.

Althoughour purpose is not to compare the resultswith othermethods, as a sample,
in Table1 we show the accuracy estimates for the different methods applied to the
three datasets. The results obtained in [12, 14] are calculatedwith the0.632+bootstrap
method, and the Leukemia dataset has 38 examples and 3051 features.

Estimates of classification accuracy give only a partial insight on the performance
of a method. Also, we treat all errors as having equal penalty. In the problems we
handle, however, errors have asymmetricweights.We distinguish false positive error-
normal tissues classified as tumor, and false negative errors - tumor tissues classified
as normal. In diagnostic applications, false negative errors can be detrimental, while
false positives may be tolerated.

ROC curves are used to evaluate the “power” of a classification method for dif-
ferent asymmetric weights [4, 17]. Since the area under the ROC curve (denoted by
AUC) is a portion of the area of the unit square, its value will always be between 0.0
and 1.0.A realistic classifier should not have an AUC less than 0.5 (area under the
diagonal line between (0,0) and (1,1)). The AUC has an important statistical prop-
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Table 1 Accuracy of different methods on datasets

Colon Leukemia Prostate

Correct Unclassified Correct Unclassified Correct Unclassified

ClusteringA 88.70 0.00 – – – –

Nearest
neighborA

80.60 0.00 91.60 0.00 – –

SVM, linear
kernelA

77.40 9.70 93.00 5.60 – –

SVM, quad.
kernelA

74.20 11.30 94.40 4.20 – –

Boosting,
100 iter.A

72.60 9.70 95.80 1.40 – –

NN.vsB 84.20 0.00 94.40 0.00 91.9 0.00

RF.du
(s.e.=0)B

84.10 0.00 91.30 0.00 93.9 0.00

RF.geC 91.70 0.00 99.00 0.00 96.07 0.00

FRF 91.94 0.00 98.61 0.00 96.08 0.00

The results marked with A, B and C are obtained from [2, 12, 14], respectively

Table 2 Confusion matrixes obtained with FRF

Colon Leukemia Prostate

Actual value Actual value Actual value

1 0 ALL AML 1 0

Prediction 1 37 2 ALL 46 0 1 49 1

Outcome 0 3 20 AML 1 25 0 3 49

erty: the AUC of a classifier is equivalent to the probability that the classifier will
rank a randomly chosen positive instance higher than a randomly chosen negative
instance. This is equivalent to the Wilcoxon test of ranks [17].

The confusion matrixes obtained by applying FRF to the three datasets are shown
in Table2.

Confusion matrix of Colon dataset shows five errors, and a Specificity of 0.9091
and Sensibility of 0.9250. Confusion matrix of Leukemia dataset shows one error,
and a Specificity of 1.0 and Sensibility of 0.9787. Confusion matrix of Prostate
dataset shows four errors, and a Specificity of 0.98 and Sensibility of 0.9423.

ROC curves with all features are shown in Fig. 2 and AUC values for (a) Colon,
(b) Leukemia and (c) Prostate datasets are 0.9761, 0.9991 and 0.9983 respectively.
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(a) (b) (c)

Fig. 2 ROC curves with all/selected features

Table 3 Accuracy with/without selected features with FRF method

Dataset All features Sel. features

Correct Unclassified Correct Unclassified

Colon 91.40 0.00 93.55 0.00

Leukemia 98.61 0.00 98.61 0.00

Prostate 96.08 0.00 97.06 0.00

Table 4 Confusion matrixes obtained with FRF using selected features

Colon Leukemia Prostate

Actual value Actual value Actual value

1 0 ALL AML 1 0

Prediction 1 38 2 ALL 46 1 1 50 1

Outcome 0 2 20 AML 0 25 0 2 49

4.3 Gene Selection

It is clear that the expression levels of many of the genes in our datasets are irrelevant
to the distinction between tumors. Taking such genes into account during classifi-
cation increases the dimensionality of the classification problem, presents compu-
tational difficulties, and introduces noise to the process. Another issue with a large
number of genes is the interpretability of the results. If our methods to distinguish
tumor from normal tissues is encoded in the expression levels of few genes, then we
might be able to understand the biological significance of these genes.

Thus, it is crucial to recognize whether a small number of genes can suffice
for good classification. The gene expression datasets are problematic in that they
contain a large number of genes (features) and thus methods that search over subsets
of features can be expensive.Moreover, these datasets contain only a small number of
examples, so the detection of irrelevant genes can suffer from statistical instabilities.
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Table 5 Features ranking in datasets

Colon Leukemia Prostate

Ranking Fe. n. Ranking Fe. n. Ranking Fe. n.

1 35.6266 419 1 31.2849 3252 1 72.6306 2619

2 17.0359 765 2 30.1804 1882 2 12.9096 5016

3 15.6419 1635 3 30.1763 1834 3 8.1136 1881

4 13.5216 824 4 26.5833 4847 4 7.9227 1359

5 13.4986 1168 5 23.9430 2288 5 7.7503 4335

6 13.4898 513 6 13.5707 2354 6 6.3471 4183

7 9.6363 1772 7 13.1465 6041 7 5.1158 4087

8 7.2361 571 8 9.8707 6376 8 5.0216 4287

9 7.0409 1546 9 4.8665 4644 9 4.2499 3616

10 6.8134 1423 10 1.4004 3623 10 4.2361 4136

11 6.7085 1761 .. ..... ... 11 4.2223 3946

12 6.6085 1939 – – – 12 4.1510 3606

13 6.4989 1990 – – – .. ..... ...

14 5.9908 377 – – – – – –

15 4.6654 1668 – – – – – –

16 4.0917 1346 – – – – – –

17 3.1929 1586 – – – – – –

18 2.3743 548 – – – – – –

19 2.0175 474 – – – – – –

20 1.8373 802 – – – – – –

21 1.7315 1867 – – – – – –

.. ..... ... – – – – – –

Significance of a Gene and Ranking. The FRF-fs method [6] to feature selection
obtains a feature ranking based on an importance measurement of each feature,
and from that ranking, an optimal feature subset. The vector R AN K (see Sect. 3.2)
contains the importance measure of the features. In Table5 a portion of that ranking
of features and their importance values is shown.

Gene Prioritization in Cancer Data. In the final phase of the FRF-fs method [6]
an optimal feature subset is obtained.

In the Colon dataset the optimal feature subset is {419, 765, 824, 1168, 513, 1772,
571, 1546, 1423, 1761, 1939, 1990, 377, 1668, 1346, 1586, 548, 474, 802, 1867}.
In addition, to give more interpretability, FRF-fs method obtains a feature partition.
In Table6 the partition obtained for this optimal features subset is shown. The first
column shows the gene number while the second one shows the different partitions
for this gene.
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Table 6 Features partition in colon dataset

Fe.n. Partitions – –

377 (0,0,0.4046,0.5246) (0.4046,0.5246,1,1) –

419 (0,0,0.6981,0.7140) (0.6981,0.7140,0.7241,0.7256) (0.7241,0.7256,1,1)

474 (0,0,0.8360,0.9194) (0.8360,0.9194,1,1) –

513 (0,0,0.5625,0.5657) (0.5625,0.5657,1,1) –

548 (0,0,0.7852,0.9132) (0.7852,0.9132,1,1) –

571 (0,0,0.3579,0.4168) (0.3579,0.4168,1,1) 7 –

765 (0,0,0.4869,0.5655) (0.4869,0.5655,0.6270,0.6286) (0.6270,0.6286,0.63,0.63)

– (0.63,0.63,0.6543,0.6769) (0.6543,0.6769,0.7320,0.7667) (0.7320,0.7677,1,1)

802 (0,0,0.4227,0.7499) (0.4227,0.7499,1,1) –

824 (0,0,0.6009,0.6017) (0.6009,0.6017,0.6026,0.6033) (0.6026,0.6033,1,1)

1168 (0,0,0.5665,0.5793) (0.5665,0.5793,1,1) –

1346 (0,0,0.4839,0.5456) (0.4839,0.5456,1,1) –

1423 (0,0,0.8269,0.8730) (0.8269,0.8730,1,1) –

1546 (0,0,0.0792,0.3206) (0.0792,0.3206,0.4904,0.5156) (0.4904,0.5156,1,1)

1586 (0,0,0.9168,0.9753) (0.9168,0.9753,1,1) –

1668 (0,0,0.2804,0.6472) (0.2804,0.6472,1,1) –

1761 (0,0,0.5641,0.5764) (0.5641,0.5764,0.5784,0.5902) (0.5784,0.5902,1,1)

1772 (0,0,0.5156,0.5172) (0.5156,0.5172,1,1 –

1867 (0,0,0.5292,0.6251) (0.5292,0.6251,1,1) –

1939 (0,0,0.8908,0.8934) (0.8908,0.8934,1,1) –

1990 (0,0,0.1022,0.3066) (0.1022,0.3066,0.4484,0.5811) (0.4484,0.5811,1,1)

In the Leukemia dataset the optimal feature subset is {3252, 4847, 2288, 2354,
6041, 6376, 4644}. In Table7 the partition obtained for this optimal features subset
is shown.

In the Prostate dataset the optimal feature subset is {2619, 5016, 1881, 1359, 4335,
4183, 4087, 4287, 3616, 4136, 3946, 3606}. In Table8 the partition obtained for this
optimal features subset is shown.

Classifying with Selected Subsets. Now, the classification procedure is applied
using the training data restricted to the subset of selected genes.

In Table3 we show the accuracy estimates for FRF method applied to the three
datasets with/without the selected features.

The confusion matrixes obtained by applying FRF to the three datasets with the
selected features are shown in Table4.

Confusion matrix of Colon dataset shows four errors, and a Specificity of 0.9091
and Sensibility of 0.9500. Confusion matrix of Leukemia dataset shows one error,
and a Specificity of 0.9600 and Sensibility of 1.0. Confusion matrix of Prostate
dataset shows three errors, and a Specificity of 0.98 and Sensibility of 0.9615. ROC
curves are shown in Fig. 2. AUC values for Colon, Leukemia and Prostate are 0.9710,
0.9987 and 0.9954 respectively.
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Table 7 Features partition in Leukemia dataset

Fe.n. Partitions – –

2288 (0,0,0.0733,0.0835) (0.0733,0.0835,1,1) –

2354 (0,0,0.1451,0.1931) (0.1451,0.1931,1,1) –

3252 (0,0,0.0681,0.0706) (0.0681,0.0706,0.0738,0.0747) (0.0738,0.0747,1,1)

4644 (0,0,0.2425,0.2427) (0.2425,0.2427,1,1) –

4847 (0,0,0.2116,0.2157) (0.2116,0.2157,0.3479,0.3531) (0.3479,0.3531,1,1)

6041 (0,0,0.1937,0.1963) (0.1937,0.1963,0.2001,0.2037) (0.2001,0.2037,1,1)

6376 (0,0,0.1408,0.1422) (0.1408,0.1422,1,1) –

Table 8 Features partition in prostate dataset
Fe.n. Partitions – –

1359 (0,0,0.0662,0.0741) (0.0662,0.0741,1,1) –

1881 (0,0,0.4734,0.4959) (0.4734,0.4959,1,1) –

2619 (0,0,0.3212,0.3870) (0.3212,0.3870,0.4740,0.4818) (0.4740,0.4818,0.4873,0.4874)

(0.4873,0.4874,0.5001,0.5062) (0.5001,0.5062,0.5134,0.5139) (0.5134,0.5139,0.5192,0.5199)

(0.5192,0.5199,0.5801,0.5866) (0.5801,0.5866,1,1) –

3606 (0,0,0.1498,0.1540) (0.1498,0.1540,0.1558,0.1614) (0.1558,0.1614,1,1)

3616 (0,0,0.6545,0.6571) (0.6545,0.6571,0.6810,0.6830) (0.6810,0.6830,1,1)

3946 (0,0,0.9506,0.9573) (0.9506,0.9573,1,1) –

4087 (0,0,0.8361,0.8783) (0.8361,0.8783,1,1) –

4136 (0,0,0.4793,0.6177) (0.4793,0.6177,1,1) –

4183 (0,0,0.0173,0.0190) (0.0173,0.0190,1,1) –

4287 (0,0,0.0099,0.0100) (0.0099,0.0100,0.0101,0.0103) (0.0101,0.0103,1,1)

4335 (0,0,0.6304,0.6436) (0.6304,0.6436,0.7509,0.7889) (0.7509,0.7889,1,1)

5016 (0,0,0.3068,0.3075) (0.3068,0.3075,0.3098,0.3098) (0.3098,0.3098,0.3121,0.3134)

(0.3121,0.3134,0.3249,0.3376) (0.3249,0.3376,1,1) –

Following the methods proposed in [11, 17], we conclude that there are no signif-
icant differences between the results obtained when using all features or the selected
ones.

We can therefore conclude that the selection of features does not cause loss of
accuracy but significantly decreases the number of features.

5 Conclusions

In this paper we have applied a fuzzy decision tree ensemble to tumor datasets with
gene expression data.

On the one hand, we have applied the ensemble to the classification of examples
described by the set of all features.On the other hand,we have applied the ensemble to
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select a gene subset and to classify examples only described with the selected genes.
The classification accuracies, in both cases, are high. These results are validated
statistically by the ROC curve and AUC area.

When we work with a fuzzy decision tree ensemble, in addition to achieve good
results, these one are provided in a highly interpretable way.

As part of the solution, the method provides a partition of numerical features
of the problem and a ranking of importance of these features which permits the
identification of sets of genes that can serve as classification or diagnosis platforms.
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Generalizing and Formalizing Precisiation
Language to Facilitate Human-Robot
Interaction

Takehiko Nakama, Enrique Muñoz, Kevin LeBlanc
and Enrique Ruspini

Abstract We develop a formal logic as a generalized precisiation language. This
formal logic can serve as a middle ground between the natural-language-based mode
of human communication and the low-level mode of machine communication. Syn-
tactic structures in natural language are incorporated in the syntax of the formal logic.
As regards the semantics, we establish the formal logic as a many-valued logic. We
present examples that illustrate how our formal logic can facilitate human-robot
interaction.
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1 Introduction

Zadeh (e.g., [21–23]) introduced the concept of precisiated natural language (PNL),
which is an integral part of his computational theory of perceptions. PNL refers to
a set of natural-language propositions that can be linked to objects of computation
and deduction. The propositions in PNL are assumed to describe human perceptions,
and they allow artificial intelligence to operate on and reason with perception-based
information, which is intrinsically imprecise, uncertain, or vague.
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Precisiation language plays an essential role in performing computations on PNL
propositions (e.g., [21–23]). It is used to express each PNL proposition as a set or
a sequence of computational objects that can be effectively processed by machines.
Zadeh proposed a precisiation language in which each proposition is a generalized
constraint on a variable. This precisation language is called a generalized-constraint
language.

Since Zadeh considered the primary function of natural language as describing
human perceptions, his PNL and precisiation language only deal with perceptual
propositions ([21–23]). However, the importance of natural language is not limited
to describing human perceptions. For instance, using a natural language, we describe
not only perceptions but also actions. Therefore, it is important, both theoretically
and practically, to extend PNL and precisiaton language to other types of proposition.
Generalized constraints in Zadeh’s precisiation language are suitable for precisiat-
ing perceptual propositions but not for precisiating action-related propositions (see
Sect. 3).

Robotics is one of the major fields that require the precisiation of action-related
propositions in natural language. Many studies (e.g., [2, 3, 9, 10, 13]) have been
conducted to develop robotic systems in which humans and robots work as true
team members, requiring peer-to-peer human-robot interaction. Such systems can
be highly effective and efficient in performing a wide range of sophisticated and
practical tasks—assistance to people with disabilities (e.g., [12]), search and rescue
(e.g., [15]), and space exploration (e.g., [4]), for instance.One of themajor challenges
of developing these robotic systems is the increased complexity of the human-robot
interactions (e.g., [7]). Although humans prefer natural language as a communication
medium, it presents several major problems when used for human-robot communi-
cations; natural-language expressions tend to be notoriously underspecified, diverse,
vague, or ambiguous, so they often lead to errors that are hard to overcome (e.g.,
[5, 6, 17, 18, 20]). Low-level sensory and motor signals and executable code are
easy for machines to interpret, but they are cumbersome for humans and thus cannot,
on their own, create an effective human-robot interface. Task descriptions or spec-
ifications for robotic systems typically involve action-related propositions, such as
bring the box to the room and keep the robot in the building if it rains, so Zadeh’s
precisiation language (generalized-constraint language), which is designed to deal
with perceptual propositions, is not suitable for processing them.

Recently, we [14] have taken a first step toward generalizing precisiation lan-
guage by establishing a formal logic as a generalized precisiation language. The
resulting precisiation language can serve as a middle ground between the natural-
language-based mode of human communication and the low-level mode of machine
communication, so it can effectively mediate human-robot interaction in robotic
systems that employ a peer-to-peer communication mode. In this paper, we further
develop and elaborate on the framework proposed in [14].

The remainder of this paper is organized as follows. In Sect. 2, we examine the
properties of formal logic that are desirable for precisiating natural-language expres-
sions. The syntax of our formal logic is explained in Sect. 3. In Sect. 4, we discuss the
generality of our framework. In Sect. 5, we examine how to add a deductive appara-
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tus to our formal logic so that we can infer and reason in it. In Sect. 6, we develop
a hierarchy of propositions that enhances the expressive power and the interactivity
of our formal logic. The semantics of the formal logic is explained in Sect. 7.

2 Suitability of Formal Logic as Precisiation Language

Formal logic has been applied to analyze the syntax and semantics of natural lan-
guage; this paradigm is called logical analysis (e.g., [18]). Formal logic provides
genuine insight into the syntactic structures of natural-language sentences and the
consequential characters of their assertions. Thus the framework of logical analysis
is quite useful for precisiating natural-language sentences.

Infinitely many sentences can be generated in natural language, and clearly this
high expressive power is desirable for precisiation language. Using the recursive def-
inition of the syntax of formal logic, we can ensure that our precisiation language can
generate infinitely many precisiated propositions while ensuring that every proposi-
tion in it is precisiated.

As in other formal logics, we can reason logically in our formal logic by adding a
deductive apparatus to it; the resulting analytical machinery allows us to determine
when one sentence in the formal language follows logically from other sentences.
Thus our formal logic is capable of precisiating the inference and the reasoning in
which humans engage using a natural language. See Sect. 5.

Our scheme also reflects the theory of descriptions in formal logic, which was
introduced by Russell [16]. He claimed that the reality consists of logical atoms,
which can be considered indecomposable, self-contained building blocks of all
propositions in formal logic, and that logical analysis ends when we arrive at logi-
cal atoms. In our precisiation language, precisiation ends when we arrive at logical
atoms, which will be represented by atomic propositions at the lowest level of a
hierarchy of propositions. See Sect. 6.

3 Syntax of the Formal Logic

First, we describe how to form propositions in our precisiation language. To generate
examples of ordinary practice, we consider establishing task descriptions for human-
robot interaction, but keep in mind that our scheme is not limited to precisiating task
descriptions.Wewill discuss the generality of our formal logic in Sect. 4. Our precisi-
ation language generalizes Zadeh’s generalized-constraint language by incorporating
multiple syntactic forms that can be observed in many natural languages so that it
can deal with not only perceptual propositions but also action-related propositions.

In Sect. 3.1, we describe the components of such propositions. In Sect. 3.2, we
describe how to form an atomic proposition. In Sect. 3.3, we describe how to form
a compound proposition. In Sect. 3.4, we provide a recursive definition of well-



384 T. Nakama et al.

Table 1 Examples of component sets

Set Elements

S Agents that can perform tasks

e.g., S = {robot1, robot2, user}
V Verbs that characterize actions required by tasks

e.g., V = { f ind, deliver, go,move, press}
O Objects that may receive an action in V or compose an adverbial phrase

e.g., O = {box, button, table, room1, room2, robot1, robot2, user, null}
A Adverbial phrases that can be included in task descriptions

e.g., A = {in γ, f rom γ, f rom γ1 to γ2, to γ, null | γ, γ1, γ2 ∈ O}
C Connectives that can be used to combine multiple propositions in forming compound

propositions

e.g., C = {and, i f, or, then}

formed formulas that allows our formal logic to generate infinitelymanywell-formed
formulas while ensuring that every formula in it is well-formed.

3.1 Component Sets

We generate propositions using elements in component sets. To provide concrete
examples, we consider the sets S, V , O , A and C in Table1 as component sets. The
element labeled as “null,” called the null element, is included in O and A. In Sect. 3.2,
we will explain how the null element is used in forming atomic propositions. In
Sect. 3.3, we will explain how to form compound propositions using the connectives
in C .

3.2 Atomic Propositions

In our formal logic, an atomic proposition is defined to be a tuple in the Carte-
sian product of component sets, and the Cartesian product specifies each admissible
tuple structure. To develop formal propositions that can be easily identified with
natural-language sentences, we employ tuple structures that reflect syntactic struc-
tures observed in natural languages. For instance, using the component sets described
in Sect. 3.1, we can define each atomic proposition in our formal logic to be an SVOA
clause (The S, V, O, and A in SVOA stand for subject, verb, object, and adverbial
phrase, respectively) by setting the admissible tuple structure to S × V × O × A.
Using the null element in O and A, we can also generate SVO, SVA, and SV clauses.
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See the following examples of atomic propositions resulting from the component
sets in Table1:

• robot1
S

move
V . (The actual form of this proposition is robot1

S
move

V
null

O
null

A ,

but we will omit instances of the null element to simplify the resulting

expressions.)

• robot2
S

f ind
V

ball
O .

• robot1
S

deliver
V

box
O

f rom room1 to room2
A .

The SVOA structure is used in many languages, including English, Russian, and
Mandarin. For humans, these propositions (task descriptions) are easy to specify and
understand. Meanwhile, the structural and lexical constraints noticeably limit the
diversity and flexibility of everyday language to ensure that robots can unambigu-
ously interpret the resulting propositions (i.e., the specified tasks can be precisely
interpreted and executed by robots).

Atomic propositions can be considered building blocks of all propositions. As
will be explained in Sect. 6, we establish a hierarchy of propositions. At the lowest
level of the hierarchy, each atomic proposition is directly associated with an inde-
composable, self-contained executable code, and atomic propositions at each level
compose propositions at higher levels.

There are several ways to deal with the undesirable or nonsensical atomic propo-
sitions that can be formed in S × V × O × A. (Note that in formal logics, there can
be well-formed formulas that are self-contradictory.) We can remove all such propo-
sitions from the cartesian product to ensure that each resulting atomic proposition is
a precisiated proposition. (In this case, we abuse the notation and let S × V × O × A
denote the “cleaned” cartesian product.) Also, we can consider them as always false
so that they will never be executed in practice (see Sect. 7).

In our formal logic, the atomic propositions need not be expressed as generalized
constraints on variables. By incorporating the SV, SVO, SVA, and SVOA structures
in the syntax, we can precisiate action-related propositions rather naturally and effec-
tively. Clearly, other syntactic structures can be incorporated in our formal logic; see
Sect. 4.

3.3 Compound Propositions

In our formal logic, we generate each compound proposition by combining multiple
atomic propositions using one or more connectives in the component set C . For
instance, using the component sets in Table1, we can form the following compound
proposition:
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•
robot1

S
go
V

to room1
A

atomic proposition

i f

C

(
user

S
call
V

robot1
O

atomic proposition

or

C

user
S

press
V

button
O

atomic proposition

)
. (1)

In formal logic, parentheses are used to indicate the scope of each connective. In our
examples, parentheses disambiguate themanner inwhich atomic tasks are performed.

3.4 Recursive Definition of Well-Formed Formulas

As described in Sect. 2, we can attain high expressive power in our precisiation
language by recursively defining its syntax; formally, our formal logic can generate
infinitely many well-formed formulas while ensuring that every formula in it is well-
formed.

The syntax of the formal logic described in Sects. 3.1–3.3 can be recursively
defined as follows:

1. Any x ∈ S × V × O × A is an atomic well-formed formula.
2. If α and β are well-formed formulas, then α c β, where c ∈ C , is also a well-

formed formula.
3. Nothing else is a well-formed formula.

This recursive definition allows our precisiation language to generate infinitely many
precisiated propositions while ensuring that every proposition in it is precisiated.

4 Generality of the Formal Logic

Our scheme is quite general. Each component set can be made as large as necessary,
and a variety of component sets or clause structures can be incorporated in our
formal logic. For instance, in addition to the SV, SVO, SVA, and SVOA structures
described and used in Sect. 3 (and in Sect. 6),we can also incorporate other commonly
observed clause structures (see, for instance, [1]), such as theSVC,SVOC, andSVOO
structures, in the syntax of atomic propositions. Furthermore, we can extend the
clause structures so that a phrase can be used as the subject or the object in an atomic
proposition. Negation, a unary logical connective, can certainly be incorporated in
the formal logic. We can also include Zadeh’s generalized constraints, which are
suitable for expressing perceptual propositions, in our formal logic; each generalized
constraint can be considered an atomic proposition that has the SVC structure, and
it can be combined with other propositions by connectives.

In our scheme, we can establish not only a propositional logic but also a quan-
tificational logic, which fully incorporates quantifiers and predicates in well-formed
formulas. Since propositions that describe perceptions often include quantifiers (see,
for instance, [21, 22]), it is desirable to develop a quantificational logic as a precisi-
ation language that covers both actions and perceptions.
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5 Inference and Reasoning in the Formal Logic

We can infer and reason in our formal logic by adding a deductive apparatus to it.
Typical introduction- and elimination-rules in formal logics, such as modus ponens
and modus tollens, and axioms can be easily incorporated in our formal logic. (The
hierarchy described in Sect. 6 represents non-logical, domain-dependent axioms.)
Consequently, we can form a sequent, which consists of a finite set of well-formed
formulas (the premises) and a single well-formed formula (the conclusion), and we
can examine its provability (derivability) using proof theory; we can determine if a
conclusion follows logically from a set of premises by examining whether there is a
proof of that conclusion from just those premises in the formal logic.

As will be described in Sect. 7, we can employ fuzzy relations to establish the
semantics of our formal logic. This semantics allows us to investigate the truth
conditions and the semantic validity of each proposition or sequent. As in other
formal logics, comparative truth tables can be used to determine semantic validity.

6 Hierarchy of Propositions

The importance of the hierarchy of propositions described in this section is three-
fold. First, it enhances the expressive power of the formal logic by building up its
vocabulary while ensuring the precisiability of each resulting proposition. Second,
it augments the interactivity of our formal logic by allowing human-robot commu-
nications to take place at various levels of detail. Third, it strengthens the deductive
apparatus of the formal logic by establishing domain-dependent axioms that can be
used for inference and reasoning.

We will explain the hierarchy intuitively using the task description scheme
described in Sect. 3. Consider the following task description:

robot1
S

examine
V

patient1
O

in room1
A . (2)

This atomic proposition can be reexpressed as a compound proposition that con-
sists of three atomic propositions representing subtasks that must be performed to
accomplish the task:

robot1
S

f ind
V

patient1
O

in room1
A

atomic proposition 1

then

C

robot1
S

check
V

patient1
O

atomic proposition 2

then

C

robot1
S

send
V

data
O

atomic proposition 3
. (3)
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Atomic propositions 1 and 2 in (3) can also be reexpressed as compound propositions
that clarify how they are performed; atomic proposition 1 in (3) can be defined as

robot1
S

go
V

to room1
A

atomic proposition

then

C

robot1
S

search
V

patient1
O

atomic proposition
, (4)

and atomic proposition 2 in (3) can be defined as

robot1
S

go
V

to patient1
A

atomic proposition

then

C

(
robot1

S
measure

V
heart rate

O

atomic proposition

and

C

robot1
S

measure
V

blood pressure
O

atomic proposition

)
. (5)

Therefore, using (4)–(5) and atomic proposition 3 in (3), we can reexpress (2) as

robot1
S

go
V

to room1
A

atomic proposition

then

C

robot1
S

search
V

patient1
O

atomic proposition

then

C

robot1
S

go
V

to patient1
A

atomic proposition

then

C

(
robot1

S
measure

V
heart rate

O

atomic proposition

and

C

robot1
S

measure
V

blood pressure
O

atomic proposition

)

then

C

robot1
S

send
V

data
O

atomic proposition
. (6)

Figure1 visualizes the underlying hierarchy, which consists of three levels (levels
0, 1, and 2). For simplicity, each atomic proposition is represented by its verb; for
instance, the atomic proposition at the highest level (level 2), “Robot1 examine
patient1 in room1,” is represented by “examine.” The task expressed by the atomic
proposition at level 2 is described in more detail at the intermediate level (level 1),
where the atomic propositions that involve the verbs “find,” “check,” and “send”
describe the subtasks that constitute the task. These subtasks are described in more
detail at the lowest level (level 0),where they are expressed by the atomic propositions
that involve the verbs “go,” “search,” “measure,” and “send.”

The hierarchy clearly shows how atomic proposition (2) at level 2 is precisiated.
At level 0, we have atomic propositions that are not decomposable; each of them is
directly associated with a self-contained executable code that is run to perform the
corresponding task. Thus, atomic propositions at level 0 can be considered logical
atoms described in Sect. 2, and they precisiate each proposition at higher levels.
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Fig. 1 Hierarchical task description. At the highest level (level 2), the task is expressed as atomic
proposition (2), represented by “examine.” At the intermediate level (level 1), the task is expressed
as compound proposition (3), which consists of atomic propositions represented by “find,” “check,”
and “send.” At the lowest level (level 0), the task is expressed as compound proposition (6), which
consists of atomic propositions represented by “go,” “search,” “measure,” and “send”

The suitability of a given proposition depends on the level of granularity required
for it. As regards the task description scheme, naive users will most likely prefer
describing tasks at level 2, thus preferring (2). For expert users, theremaybe situations
where they prefer specifying a given task step by step or reconfiguring its subtasks
according to various circumstances; in such cases, interacting with robots at level 1
using (3) or at level 0 using (6) will be desirable. Thus, the hierarchy allows a variety
of users to interact with robots at various levels of detail.

Formally, the hierarchy clearly shows the definition of each proposition by
expressing it in terms of precisiated propositions at lower levels. Thus, non-logical,
domain-dependent axioms result from the hierarchy, and they can be used for infer-
ence and reasoning in the formal logic (see Sect. 5).

Different levels of granularity may require different component sets, but the same
syntactic structure is enforced at all levels. Using the hierarchy, we can ensure that
all the resulting propositions remain precisiated at each level, and we can attain
flexibility in the level of detail.

7 Semantics of the Formal Logic

The semantics of formal logic specifies how to determine the truth value of each
proposition. In two-valued logics, for instance, the truth value is either 1 (true) or
0 (false). As described by Zadeh (e.g., [22, 23]), this bivalence is not suitable for
PNL, so we develop a many-valued semantics for our formal logic. The meaning of
the truth value depends on the context. For the task description scheme described
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in Sects. 3–6, for instance, one can evaluate each proposition and let its truth value
reflect the feasibility of the corresponding task specification; 1 indicates that the task
certainly can be carried out whereas 0 indicates that it certainly cannot be. In this
case, it is more realistic and practical to let the degree of feasibility take on not only
the values 0 and 1 but also other values between 0 and 1. In real-world problems,
it can be highly practical to evaluate the feasibility of a task description before any
serious attempt is made to execute it.

To determine the truth value of each proposition in our formal logic systemati-
cally and effectively, we use fuzzy relations. A fuzzy relation is a generalization of
a classical (“crisp”) relation (see, for instance, [11]). While a classical relation only
expresses the presence or absence of some form of association between the elements
of factors in a Cartesian product, a fuzzy relation can express various degrees or
strengths of association between them. In our formal logic, each proposition con-
sists of pre-specified components, so a function that assigns a truth value to each
proposition can be represented by a fuzzy relation on the Cartesian product of the
components. Using some of the operations defined on fuzzy relations, we can sys-
tematically and economically determine the truth value of each proposition.

We will explain the semantics of our formal logic using concrete examples of task
descriptions so that the reader can understand it intuitively. To facilitate our exposi-
tion, we consider very simple task descriptions resulting from atomic propositions
in S × V × O . Notice that even in this case, we need an efficient scheme for deter-
mining the truth value of each proposition. For instance, if each of the component
sets S, V , and O contains ten elements, then there are 103 atomic propositions in
S × V × O , and it may be impractical to determine the truth values of all the atomic
propositions individually. Moreover, if the component set C consists of three con-
nectives, then we can generate a total of 3 · 106 compound propositions that consist
of two atomic propositions. In practice, it may be necessary to promptly evaluate
and compare the truth values of a large number of task descriptions represented by
such compound propositions in order to determine which option to execute, so even
this simple case requires an efficient, systematic scheme for examining the truth
conditions of propositions.

In Sect. 7.1, we explain how to determine the truth values of atomic propositions.
In Sect. 7.2, we explain how to determine the truth values of compound propositions.

7.1 Truth Conditions of Atomic Propositions

We consider establishing a fuzzy relation on S×V × O , which is a mapping from the
Cartesian product to a totally ordered set called a valuation set. In our formulation
of many-valued logic, the valuation set is the unit interval [0, 1]. To facilitate the
exposition of our scheme, we consider the following simple component sets: S =
{robot1, robot2}, V = {recognize, hold}, O = {ball, pen}. Thus the Cartesian
product S×V × O consists of eight atomic propositions, which are shown in Table2.
We will use three operations on fuzzy relations: projection, cylindric extension,
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Table 2 Atomic propositions resulting from S = {robot1, robot2}, V = {recognize, hold}, and
O = {ball, pen}
s ∈ S v ∈ V o ∈ O

robot1 recognize ball

robot1 recognize pen

robot1 hold ball

robot1 hold pen

robot2 recognize ball

robot2 recognize pen

robot2 hold ball

robot2 hold pen

and cylindric closure (see, for instance, [11]). These operations are explained in
Appendix.

Suppose that the truth conditions (for concreteness, we assume that they represent
degrees of feasibility) of these atomic propositions are determined for a robotic
system under the following conditions:

(a) Robot1 is equipped with a high-resolution camera that enables it to recognize
various objects, including a ball and a pen. However, it does not have any arm,
so it cannot hold any object.

(b) Robot2 has an arm that enables it to hold various objects, including a ball and a
pen. However, it is not equipped with a high-resolution camera, so it is not fully
capable of identifying objects.

(c) With the high-resolution camera, a ball is easier to recognize compared to a pen.
(d) With the arm, a pen is easier to hold compared to a ball.

Our strategy is to derive a fuzzy relation on S × V × O from fuzzy relations on
S × V and V × O . Hence, we first establish fuzzy relations on S × V and V × O .
Let RS×V : S × V → [0, 1] denote a fuzzy relation on S × V . Based on conditions
(a) and (b), we set the values of RS×V as shown in Table3. Recall that a fuzzy
relation expresses various degrees or strengths of association between elements in
component sets. The value assigned to (robot1, recognize) is relatively large (0.9)
because robot1 is equipped with a high-resolution camera and is thus suitable for

Table 3 Fuzzy relation RS×V on S × V based on conditions (a) and (b)

s ∈ S v ∈ V RS×V (s, v)

robot1 recognize 0.9

robot1 hold 0

robot2 recognize 0.2

robot2 hold 0.8



392 T. Nakama et al.

Table 4 Fuzzy relation RV ×O on V × O based on conditions (c) and (d)

v ∈ V o ∈ O RV ×O (v, o)

recognize ball 0.9

recognize pen 0.8

hold ball 0.7

hold pen 0.8

recognizing objects, whereas the value assigned to (robot1, hold) is zero because
robot1 is not equippedwith an armand is thus incapable of holding objects. Similarly,
the value assigned to (robot2, recognize) is relatively small (0.2) because robot2
is not equipped with a high-resolution camera and is thus unsuitable for recognizing
objects, whereas the value assigned to (robot2, hold) is relatively large (0.8) because
robot2 is equipped with an arm and is thus suitable for holding objects. Technically,
the fuzzy relation RS×V is considered the underlying fuzzy relation on S × V × O
projected onto S × V . (See Appendix for the operation of projection.)

Analogously, based on conditions (c) and (d), we set the values of a fuzzy relation
RV ×O : V ×O → [0, 1] as shown inTable4. Thevalue assigned to (recognize, ball)
is larger than that assigned to (recognize, pen) because with a high-resolution cam-
era, a ball is easier to recognize compared to a pen. Similarly, the value assigned to
(hold, pen) is larger than that assigned to (hold, ball) because with an arm, a pen is
easier to hold compared to a ball. Technically, the fuzzy relation RV ×O is considered
the underlying fuzzy relation on S × V × O projected onto V × O .

We establish a fuzzy relation RS×V ×O : S × V × O → [0, 1] by combining
the fuzzy relations RS×V and RV ×O . Formally, we obtain RS×V ×O by first obtaining
the cylindric extensions of RS×V and RV ×O to S × V × O and then computing
their cylindric closure. (see Appendix for cylindric extension and cylindric closure).
First, we obtain the cylindric extension of RS×V to S × V × O , which we denote
by RS×V ↑S×V ×O , and the cylindric extension of RV ×O to S × V × O , which we
denote by RV ×O↑S×V ×O . See Table5. The cylindric extensions can be characterized
as maximizing nonspecificity in deriving a fuzzy relation on S × V × O from fuzzy
relations on S × V and V × O .

Finally, we set RS×V ×O to the cylindric closure of RS×V ↑S×V ×O and
RV ×O↑S×V ×O on S × V × O , which is shown in Table6. Notice that the resulting
truth values (degrees of feasibility) assigned to the eight atomic propositions reflect
the conditions (a)–(d). For example, the truth values clearly indicate that robot1 is
highly capable of recognizing objects (because it is equipped with a high-resolution
camera) but is incapable of holding objects (because it does not have any arm). Simi-
larly, the truth values clearly indicate that robot2 is highly capable of holding objects
(because it is equipped with an arm) but is rather incapable of recognizing objects
(because it is not equipped with a high-resolution camera).

It is efficient to derive a fuzzy relation on S × V × O from fuzzy relations on
S × V and V × O . Again, suppose that each of these component sets consists of
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Table 5 Cylindric extensions RS×V ↑S×V ×O and RV ×O↑S×V ×O (s, v, o)

s ∈ S v ∈ V o ∈ O RS×V ↑S×V ×O (s, v, o) RV ×O↑S×V ×O (s, v, o)

robot1 recognize ball 0.9 0.9

robot1 recognize pen 0.9 0.8

robot1 hold ball 0 0.7

robot1 hold pen 0 0.8

robot2 recognize ball 0.2 0.9

robot2 recognize pen 0.2 0.8

robot2 hold ball 0.8 0.7

robot2 hold pen 0.8 0.8

Table 6 Cylindric closure RS×V ×O of RS×V ↑S×V ×O and RV ×O↑S×V ×O on S × V × O

s ∈ S v ∈ V o ∈ O RS×V ×O (s, v, o)

robot1 recognize ball 0.9

robot1 recognize pen 0.8

robot1 hold ball 0

robot1 hold pen 0

robot2 recognize ball 0.2

robot2 recognize pen 0.2

robot2 hold ball 0.7

robot2 hold pen 0.8

ten elements. Then a total of 103 atomic propositions result from them, and it may
be time-consuming to determine 103 truth values individually. With our scheme, we
can derive the 103 truth values by determining 2 · 102 values of the fuzzy relations
RS×V and RV ×O . This efficiency of the scheme becomes more notable as the size of
each component set or the number of component sets increases.

Another important strength of our scheme lies in updating the truth values of the
atomic propositions. In practice, the values shown inTables3 and4will be determined
dynamically based on the conditions of the robots. For instance, if the high-resolution
camera of robot1 becomes dysfunctional, then we will use the fuzzy relation R′

S×V
shown in Table7 instead of the fuzzy relation RS×V in Table3 in computing the truth
values of the atomic propositions. Notice that the value of R′(robot1, recognize)
is 0.2, reflecting the fact that robot1 can no longer use its high-resolution camera to
recognize objects (compare R′

S×V and RS×V inTable3). It is easy to verify that Table8
shows the cylindric closure R′

S×V ×O of the cylindric extensions R′
S×V ↑S×V ×O and

RV ×O↑S×V ×O . Comparing Tables6 and 8, we can see that the updated truth values
(shown in Table8) reflect the condition that the high-resolution camera of robot1 has
become dysfunctional. Notice that we have efficiently updated the fuzzy relation on
S × V × O by just updating the fuzzy relation on S × V . With our scheme, it is
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Table 7 Fuzzy relation R′
S×V on S × V (reflecting a damage to robot1’s high-resolution camera;

see RS×V in Table3)

s ∈ S v ∈ V R′
S×V (s, v)

robot1 recognize 0.2

robot1 hold 0

robot2 recognize 0.2

robot2 hold 0.8

Table 8 Cylindric closure R′
S×V ×O of R′

S×V ↑S×V ×O and RV ×O↑S×V ×O on S ×V × O (reflecting
a damage to robot1’s high-resolution camera)

s ∈ S v ∈ V o ∈ O R′
S×V ×O (s, v, o)

robot1 recognize ball 0.2

robot1 recognize pen 0.2

robot1 hold ball 0

robot1 hold pen 0

robot2 recognize ball 0.2

robot2 recognize pen 0.2

robot2 hold ball 0.7

robot2 hold pen 0.8

possible to keep the truth values of a large number of atomic propositions updated
continually.

7.2 Truth Conditions of Compound Propositions

Our formal logic is many-valued, so we treat the connectives in C as logic primitives
ofmany-valued logic or fuzzy logic. Here we examine thee typical logical primitives:
conjunction (represented by “and” in C), disjunction (represented by “or” in C), and
implication (also called conditional, represented by “if” in C).

In evaluating the truth value of a compound proposition, conjunction is often
implemented as a t-norm, whereas disjunction is often implemented as a t-conorm
(e.g., [8, 11]). Various forms of t-norm and t-conorm have been proposed. Some
of the frequently used t-norms are the minimum t-norm, the product t-norm, and
the Łukasiewicz t-norm, and some of the frequently used t-conorms are the maxi-
mum t-conorm, the probabilistic sum, and the Łukasiewicz t-conorm. In practice, the
suitability of each of these t-norms or t-conorms depends on what the truth value rep-
resents. Also, there are various ways to implement implication in evaluating the truth
value of a compound proposition (e.g., [19]). Some of the main forms of implication
are the material implication, the conjunctive conditional, the residuated conditional,
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the Sasaki hook, the Dishkant hook, and the Mamdani-Larsen conditional. Again, in
practice, the suitability of each conditional depends on what the truth value repre-
sents.

8 Conclusions

We have taken a first step toward establishing a formal logic as a generalized precisi-
ation language, which is essential for generalizing PNL. Various syntactic structures
in natural language can be incorporated in our formal logic so that it precisiates
not only perceptual propositions but also action-related propositions. The syntax of
the formal logic allows us to create infinitely many precisiated propositions while
ensuring that every proposition in it is precisiated. As in other formal logics, we can
infer and reason in our formal logic. The resulting generalized precisiation language
serves as a middle ground between the natural-language-based mode of human com-
munication and the low-levelmode ofmachine communication and thus significantly
facilitates human-machine interaction.

Acknowledgments This research is supported by the Spanish Ministry of Economy and Compet-
itiveness through the project TIN2011-29824-C02-02 (ABSYNTHE).

Appendix

We describe three operations on fuzzy relations that are used in determining the truth
conditions of atomic propositions in our formal logic: projection, cylindric extension,
and cylindric closure. First, we establish notation. Let X1, X2, . . . , Xn be sets, and
let X1 × X2 × · · · × Xn denote their Cartesian product. We will also denote the
Cartesian product by ×i∈Nn Xi , where Nn denotes the set of integers 1 through n.
A fuzzy relation on ×i∈Nn Xi is a function from the Cartesian product to a totally
ordered set, which is called a valuation set. In our formulation, the unit interval [0,
1] is used as a valuation set. Each n-tuple (x1, x2, . . . , xn) in X1 × X2 × · · · × Xn

(thus xi ∈ Xi for each i ∈ Nn) will also be denoted by (xi | i ∈ Nn). Let I ⊂ Nn . A
tuple y := (yi | i ∈ I ) in Y := ×i∈I Xi is said to be a sub-tuple of x := (xi | i ∈ Nn)

in ×i∈Nn Xi if yi = xi for each i ∈ I , and we write y ≺ x to indicate that y is a
sub-tuple of x .

Let X := ×i∈Nn Xi and Y := ×i∈I Xi for some I ⊂ Nn . Suppose that R : X →
[0, 1] is a fuzzy relation on X . Then a fuzzy relation R′ : Y → [0, 1] is called the
projection of R on Y if for each y ∈ Y , we have R′(y) = maxx∈X : y≺x R(x).We let
R↓Y denote the projection of R on Y .

We continuewith X := ×i∈Nn Xi and Y := ×i∈I Xi (I ⊂ Nn). Let F : Y → [0, 1]
be a fuzzy relation on Y . A fuzzy relation F ′ : X → [0, 1] is said to be the cylindric
extension of F to X if for all x ∈ X , we have F ′(x) = F(y), where y is the tuple
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in Y such that y ≺ x . We let F↑X denote the cylindric extension of F to X . The
cylindric extension F↑X of a fuzzy relation F : Y → [0, 1] is the “largest” fuzzy
relation on X such that its projection on Y equals F ; if we let R denote the set of
all fuzzy relations R′ : X → [0, 1] such that R′

↓Y = F , then for all x ∈ X , we have
F↑X (x) = max{R′(x) | R′ ∈ R}.

For each j , let Y j := ×i∈I j Xi , where I j ⊂ Nn . Let R( j) : Y j → [0, 1] denote a
fuzzy relation on Y j . Then a fuzzy relation F : X → [0, 1] is called the cylindric
closure of R(1), R(2), . . . , R(m) on X if for each x ∈ X , F(x) = min1≤ j≤m R( j)

↑X (x).
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Growing Surface Structures: A Topology
Focused Learning Scheme

Hendrik Annuth and Christian-A. Bohn

Abstract Iterative refinement approaches derived from unsupervised artificial
neural network (ANN)methods, such asGrowing Cell Structures (GCS), haveproven
very efficient for the application of surface reconstruction from scattered 3D points.
The Growing Surface Structures (GSS) algorithm is a major conceptual change in
the GCS approach. Instead of “adjusting” the learning behavior, the central learning
scheme is shifted from optimizing the distribution of vertices to the creation of a
valid surface model. Where in former GCS approaches the created topology is only
implicitly represented in the process, it is explicitly integrated and represented in the
refinement process of the GSS approach. Here the closest surface structure, such as a
vertex, an edge or a triangle is found for a given sample and the actual sample-
to-surface distance is measured. With this additional information the adaptation
process can be focused on the created topology. We demonstrate the performance of
the novel concept in the area of surface reconstruction.

Keywords Unsupervised learning ·Competitive learning ·Growing cell structures ·
Surface reconstruction · Surface fitting

1 Introduction

Due to the rapid development in 3D scanning technology, real world objects can be
scanned faster, more accurately and at a higher resolution. This allows creating high
quality virtual representations of these objects that can be utilized for many different
purposes in digital data processing (see Fig. 1).

Laser scanning devices take samples of present surfaces as three dimensional data
points. These points accumulate as an unorganized cloud of points. Such a point set
typically includes noise, outliers, non-uniform sample densities, and holes. Since the
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Fig. 1 A photography of
Michealangelo’s David
(left), a point cloud of the
David statue (middle), and a
surface fitted into that point
cloud (right)

combination of these problems is often inherently ambiguous, a vast number of dif-
ferent reconstruction approaches, and pre- as well as post-processing methods exist.

Due to the remaining challenges in the field of reconstruction there is a strong
tendency to focus on ANN based solutions since they are strong with incomplete
and noisy data while being flexibly adaptable. Thus, there is hope that by a more
intuitive, “ad-hoc” manner, ANN training can be modified to match the problems
under consideration without the need of a deterministic mathematical model.

2 Previous Work

2.1 Classical Surface Reconstruction

Many surface reconstruction approaches have been suggested over the last decades.
Range image methods can achieve very high resolutions and accuracy, while neces-
sitating a very controlled scanning setup with a limited sensing area [8]. Region
growing approaches like [12] or [5] extended an initial surface incrementally at its
boundaries. Some methods reduce a 3D Delaunay triangulation of the samples to a
final surface [9], some derive it from the Voronoi diagram of the points [1, 21]. Com-
bined concepts use region-growing approaches for the triangulation and an additional
global graph like a 3DDelaunay triangulation as a guidance [19] or a medial scaffold
(MS) [7]. Balloon models construct a volumetric object surface by the “inflation” of
a small surface, as if it would be a balloon, inside a point cloud [24]. Another huge
class of reconstruction methods demands points that are augmented by its normals to
define an incomplete distance function. This function is completed and the subspace
in R3 for which it returns zero—the zero-level-set—is the surface. The function can
be composed of a multitude of linear functions [13], quadratic functions [17, 22]
or radial base functions [6]. Model based reconstruction approaches compose a sur-
face of a multitude of predefined models or components, which are recognized and
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fitted into the point cloud [11, 23]. Warping algorithms approximate the surface by
deforming an initial surface to match the given points [4, 27].

2.2 Artificial Neural Network Based Reconstruction

Many neural computation techniques have been applied to the problem of surface
reconstruction and are based on unsupervised learning concepts. Algorithms such
as the k-means clustering approach [20] use reference vectors to accomplish classi-
fication and clustering tasks on huge and challenging data sets (“hard competitive
learning”). Kohonen presented the Self-Organizing-Map (SOM) [18]—additionally
reference vectors are connected adding a topology (“soft competitive learning”)
which enables the construction of a surface over the sample set. Kohonen’s approach
has the disadvantage of a fixed resolution, which strongly relates the results to the
initial setting and size of the network. Fritzke presented the Growing-Cells-Structure
(GCS) approach [10] where the network grows over time by dynamically adding ref-
erence vectors. The growing process can be determined by the approximation error
toward a likelihood distribution or a quantization error, both of which are measured
in relation to the reference vectors. Based on this, many convincing reconstruction
methods have been presented [3, 14, 15, 26]. The main disadvantage of the methods
above is the fact that 2D subspaces or surfaces are approximated by point distrib-
utions instead of surface models. This becomes most apparent when modeling flat
surface areas where the granularity of the ANN surface depends on the distribution
of samples and not on the complexity of the underlying surface.

In this work we present an approach which solves this problem. Basic ANN
learning is changed to a surface oriented learning saving the advantages of neural
networks but concurrently implementing a reasonable “surface learning”. The dif-
ference to former approaches which modify ANNs by adding additional constraints
to the learning rules our approach introduces an actual novel learning scheme.

3 Surface Reconstruction

Surface reconstruction creates a 2D subspace S in a 3D space R
3 that represents

a real world physical surface Sphy . The information given about Sphy is a finite
collection of surface samplesP = {p1...pn} ⊂ R

3. If closest neighbors inP always
indicate a connection on Sphy , surface neighborhood relations can be investigated
by accessing P in a 3D search pattern. Real world scenarios however, involving
noise, non-uniform sample densities and incompletely sampled areas. This makes
a 3D search unreliable (see Fig. 2), which is the basic problem to overcome in a
reconstruction approach. Note that many of the following illustrations are in 2D and
are therefore curve reconstructions, but to avoid confusions by swapping terminology,
we proceed in using the terms of 3D surface reconstruction.
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Fig. 2 The topology of a surface has to be derived from 3D samples. But searching in 3D for
sample neighbors might produce misleading results. First, a highly sampled surface, where the two
surface neighbors to a certain sample can be easily found (left). Then the same surface with a lower
sampling, the search space for the two closest neighbors has grown (middle). And at last, a low
sampling where the two closest neighbors are not the correct topological (on surface) neighbors
(right)

4 Growing Cell Structures

A GCS network is composed of simplices of an initially chosen dimension. In case
of surface reconstruction, a 2D surfaceS built of triangles as simplices. The initial
surface is a very simple network of triangles such as a tetrahedron. It is positioned
roughly at the center ofP . Since the GCS algorithm is inspired by growing organic
tissue, the reference vectors are termed cells. GCS use an iterative refinement process
to fit the current surface into the point data P (see Fig. 3). The refinement process
randomly selects a sample ofP and deforms the current surface in order to progres-
sively minimize its distance. This basic step is repeated and in each iteration the local
approximation error is measured. These errors are used to determine surface areas
which need to be refined by local subdivision processes. Subdivision and further iter-
ations lead to a better match of the surface to the sample distribution and the process
is stopped when the chosen average approximation error reaches a threshold or a
certain number of reference vectors is reached. In the following section we analyze
the algorithm in detail for the application of surface reconstruction and show differ-
ent kinds of handling the error such as likelihood distribution, error minimization
and topology optimization which each lead to different results. Since the algorithm

Fig. 3 Different successive surface stages in a GCS surface reconstruction
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represents S as a triangular mesh, we will use the term vertex instead of reference
vector, since it is more common in this context.

4.1 Likelihood Distribution

The approximation error (Algorithm 1 line 8) can be altered toward a likelihood
distribution or a quantization error (see Sect. 4.2). The vertices create a likelihood
distribution if for every given vertex v ∈ S the likelihood to be the closest neighbor
to a randomly chosen sample p ∈ P is equal. If we see vertices being closest
neighbors as the result of a probability experiment this approximation resembles
entropy maximization. This means that the information carried by any given sample
is of the same importance. These representations are especially important in pattern
recognition and statistical analysis.

To achieve this every vertex carries a signal counter. To approximate the likelihood
distribution (algorithm line 8) these counters are simply incremented when a vertex
is closest to an input sample. If a new vertex is added (algorithm line 10) the highest
error term refers to the space where most samples share the same vertex.

Since older signals tend to be less representative, all signal counters are decreased
at every iteration cycle by a certain factor (algorithm line 8). By using a likelihood
distribution signal counters can also be used to determinemisplaced vertices in spaces
that contain few or even no samples, since their signal counters are very low due to
constant decreasing. This concept has therefore been used in most implementations
for surface reconstruction.

These algorithms however determine the area for which the likelihood of the
vertices is highest and not the surface. If a flat surface is approximated, the algorithm
will create lots of vertices in relation to the amount of samples, although the area
could be accurately approximated with a few triangles only.

Algorithm 1. An overview of the GCS algorithm. Conditions 1 and 2 can be defined
as simple counters.
1: Given a point cloudP = {p1...pn} and an initial surfaceS in form of a tetrahedron represented

as an interconnected network of vertices S = {v1...vn}.
2: repeat
3: repeat
4: repeat
5: Select random sample px of P and search the winning vertex vx with smallest Euclidian

distance to px .
6: Move vx towards px .
7: Move all direct neighbors of vx with a lesser factor towards px .
8: Adapt the approximation error of vx .
9: until condition 1 holds.
10: Add new vertex in the area of highest approximation error through a vertex split operation.
11: until condition 2 holds.
12: Search the least winning vertex in the network and delete it by an edge collapse operation.
13: until accuracy exceeds a certain threshold.
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4.2 Distance Minimization

When the approximation error (algorithm line 8) is changed to account for a quantiza-
tion error, vertices are placed exposing the smallest Euclidian distance to the samples
inP . If the samplesP are equally distributed the goals of a likelihood distribution
compared to an error minimization are nearly the same. If however some regions are
represented by a denser sampling than others, these regions will be represented by
less vertices in the error minimization scenario, since the error which is measured as
the Euclidian distance can be lowered more significantly in regions where samples
lay farther apart, hence vertices are more likely to be added there. This approxima-
tion is typically used for vector quantization in data compression. To implement this
behavior every vertex carries an error value which is increased (algorithm line 8)
by the distance or the squared distance between the winning vertex and the given
sample. The highest approximation error refers to the space where the samples lay
farthest away from a vertex, thus a new vertex will be added there (algorithm line 10).
In contrast to a likelihood value, removing a vertex with low distance errors would
make no sense, since these vertices indicate that they are well placed. However in
case the created topology matters, as in surface reconstruction, it is reasonable to
remove such vertices for memory efficiency reasons, since they might be redundant
geometry wise.

The basic problem is the difference between the approximation of the right topol-
ogy and achieving a lowest distance error.Wewill discuss this problem inmore detail
in section Sect. 4.3. When this approximation error is used, the deletion process of
misplaced vertices need to be handled separately. Despite this disadvantage mini-
mizing the distance error might be more convenient for surface reconstruction. But
this is not the case if the approximation minimizes the distance to the vertices instead
of the surface (see Fig. 4), since a surface approximation aims to fit S as close a
possible toP .

Many implementations have tackled this problem indirectly. Hoppe et al. [3]
presents a roughness adaptation where the average surface curvature is compared
to the one of a winning vertex and curved areas lead to higher signals leading to
more subdivisions in such areas. In [16] vertices additionally have normals and the
algorithm counts how much these normals are moved to increase subdivisions in
such areas.

Fig. 4 Samples and an approximated surface (top), distance between vertices and samples (middle),
distance between surface and samples (bottom). In case of surface approximation the distance to
the surface is obviously more worthy
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These changes lead to an implicit representation of the approximation error within
the algorithm, since curved surface regions need more subdivisions to be correctly
approximated. But the surface approximation error itself is not explicitly represented.

4.3 Topology Optimization

The SOM [18] introduced an unsupervised learning concept with an additional topol-
ogy. In the given networkS vertices are not allowed to move independently. When a
vertex is moved toward a sample its neighbors are also moved to decrease the created
surface tension (algorithm line 7). This principal adds elasticity to the network—the
behavior of a continuous surface is manifested implicitly by creating dependencies
between the vertices. A topology can increase the performance in placing reference
vectors since the dependencies between themmake their movements more stable and
thereby make smoother distributions more likely. But the created topology itself can
be used inmany different ways as well. Data of a high dimensional input space can be
mapped into a space of lower dimension and can then be visualized or analyzed with
less computational effort (dimensionality reduction). The topology can also be used
for regression analysis whereP is known to originate from an unknown continuous
function to be reconstructed from the data (function approximation). The SOM uses
a static topology, which usually resembles a square shaped grid. The standard GCS
algorithm also uses a static surface topology while the connectivity of the network
can change (note that the network connectivity is often also referred to as topology,
perceiving the network as a graph). This means a network area can be increased in
resolution and thereby gather new vertices and connections, but the surface topology
of a sphere, inherited from the initial tetrahedron shape, cannot be changed.

So functions that have a different topology can not be correctly resembled. GCS
however has better surface approximation capabilities than the SOM, since it builds
newly created surfaces by refining a former version of that surface. This adapts the
vertex resolutions in different surface areas toward the target function and gives a
surface a certain inertia when being modified, which avoids local failures if a surface
is fitted into a challenging point constellation.

If the information of a sample placed in a 3D space is processed by the algorithm,
this information is always set considering a pre-existing current surface S . This is
the strategy of the GCS algorithm to overcome the 3D search problem (see Sect. 3).
But still the GCS can get stuck in local minima and the initial topology can mismatch
the target surface.

In the standard algorithm a destructivemethod is presentedwhich uses the average
edge length as an indicator to cut out triangles [10]. In [14] triangles which are larger
than the average size are cut out, boundaries that fall below a certain Hausdorff
distance are joint, and in [3] high valences are used as an indicator to cut the surface
and lowdistances in comparison to edge length to join boundaries.With these changes
complex topologies can be created. The main problem of all presented GCS based
algorithms concerning topology issues is the missing representation of the actual



408 H. Annuth and C.-A. Bohn

surface within the adaptation process, which makes many insufficient approximation
states simply not measurable (see Fig. 5).

Although the given 3D information of samples is set in relation to the existing
2D surface, the surface is still represented as a collection of Voronoi regions of the
vertices, since vertex-sample and not surface-sample distances are considered. This
concept implicitly includes the assumption that the Voronoi regions of two connected
vertices will not be interruptedwithin their attached surface. But for close or complex
shaped surfaces, this is not the case (see Fig. 6). Here the actual representation ofS
becomes apparent being a permeable space of independent Voronoi volumes.

Topology optimization and error minimization are two different things. Error
minimization tries to create the smallest possible distance to the samples in P .
Topology optimization however is concerned with reaching a topology withS that
lies as close as possible to the topology of Sphy (see Fig. 7).

Fig. 5 Two surfaces with
the same vertices, the same
samples, and with the same
approximation error, that
expose an undesired (left)
and a desired (right)
solution. A triangle placed in
an empty space (top) and an
incorrect dent in the surface
(bottom)

Fig. 6 Samples that
originate from a curved
surface (top, left), a fitting
approximation of this surface
and a magnification that
shows the vertex-sample
distance and the
surface-sample distance (top,
right), the vertex Voronoi
regions which assign a
sample at the wrong surface
(bottom, left), the surface
Voronoi regions which
assign the same sample
correctly (bottom, right)
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Fig. 7 Surface and samples (left), an approximation of that surface and the distance error between
the surface and the samples (middle), another approximation of that surface with a topological error,
but having a similar distance error (right)

In order to be topologically correct every point on one surface needs to have
a unique equivalent on the other surface and vice versa, while neighbor relations
are preserved, meaning the shortest on-surface path between any two given points
projected onto S should always correspond to the one on Sphy .

5 Approach

The GCS algorithm has proven to be a high quality surface reconstruction tool. How-
ever, in our analysis of the algorithm we saw that topology is only created implicitly
and only accounted for through the additional adjustment of neighboring vertices.
In the following section we will present our changes to the general approximation
concept of the basic algorithm and then the improvements that can be made based
on these changes.

5.1 Topology Focused Approximation

Thebasic algorithmconcept focuses on placing vertices in positions likely to decrease
the chosen approximation error. To put the actually created surface topology into
focus, the approximation error needs to be set in relation to the surface-sample
distance. The most important change is to search for the closest surface element
(algorithm line 5) instead of the closest vertex. The adaptation process (algorithm
line 6 and 7) can now also be set in relation to a sample being closest to a triangle
or being closest to an edge, which gives rise to more different local surface modifi-
cations (see Sect. 5.2). In the basic GCS implementation the signal counter or error
value is carried by the vertices. The surface structure element that most distance
errors are measured towards and that is also the building block of the discretization
of Sphy is the triangle and is therefore the structure that carries the local approx-
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imation error values in our implementation. The most sensible place for the error
value of any topology focused function approximation is always the simplex of the
highest dimension in the GCS algorithm. The distance between a sample and its
closest structure represents the actual distance error to the approximated surface and
gives this approximation error way more validity (algorithm line 8). This allows for
better judgments about a current local approximation state and the choice of location
for subdivision (algorithm line 10). The new approximation error also allows and
demands for distinguishing between topology changing deletions to correct topolog-
ically misplaced surface structures and non-topology changing deletions that remove
geometrically redundant structures from the surface (algorithm line 12). Topology
changing deletions are realized by adding an “age” to every triangle and cutting them
out when they reach a certain age.

5.2 Implementation of Growing Surface Structures

With the changes described in Sect. 5.1 additional and more accurate information
about the current approximation state is available within the GCS process. This
information can be used to create a better approximation result in accuracy and
topology. In the following we will present our implementation details.

Search for Closest Element. Due to run time efficiency reasons we did not uses an
actual triangle based spatial subdivision data structure, but still uses a vertex based
octree. By searching for a number nv of vertices and checking their surrounding
triangles, we heuristically find the closest structure to a given sample. We used
nv = 3 which fails when the degree of curved and flat surface areas diverge too
much and are close to each other, but we consider this case to be rare (see Fig. 8).
The new search process has three possible outcomes: a vertex, an edge, or a triangle
(algorithm line 5).

Surface Movement. Instead of having only a vertex as a closest element, we now
can access additionally an edge and a triangle in our implementation. We modeled
three different main movements (algorithm line 6). Since we now know the distance
of a given sample p to the surface we can compare this distance dp to the average
sample-to-surface distance dP .When dp is only a fraction limskip of dP we entirely
discard the adaptation since the sample already lies more or less close to the surface.
When dp is about the degree limsingle lower than dP we only move the closest
vertex, since we consider the surface to be generally correct, but the “joints” of the
divisions can be optimized.

Note that distance error distribution within the process is not Gaussian, thus we
cannot describe the process in terms of standard deviations. For larger distances we
move all vertices of the given structure towards the sample. Due to this, surface
widening is less likely to cause spikes and the surface is moved more unified, which
produces a smoother surface. The neighborhood movement (algorithm line 7) is kept
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Fig. 8 The presented approach searches for the closest surface structure, such as a vertex, an edge
or a triangle. However this process is emulated on a search investigating the surrounding elements
of a number of vertices nv , instead of having a search tree actually comprising edges and triangles.
The figure shows a sampled curve and a flat surface (top, left), next to it its approximated surface
(top, right). The search heuristic works correctly for nv = 3, where three vertices are investigated
(bottom, left). The search heuristic fails for nv = 2 (bottom, right), where the vertex connected to
the closest triangle is not investigated

unchanged and accomplished with the Laplace smoothing mechanism [25] for all
first neighbors of the given structure.

Distance Error. A sample can be closest to a vertex, an edge, or a triangle. When
it is closest to a triangle its distance error is changed. In case of an edge this is done
for both triangles connected alongside that edge. In case of a vertex this is done for
all triangles connected to this vertex.

If the error value was directly set to the given distance, all previous distance errors
would be lost. If all distance errors are accumulated, old distance errors, exposing
huge distances, would totally determine the subdivision process. If all error values
are constantly decreased, as signal counters in a likelihood distribution, it would
falsely imply a constant distance error improvement over the entire surface.

The formula proposed in this implementation creates a local half-life λ for a
distance error update. Its influence on the error value halves after k additional updates
(see Eq.1).

( k−1
k )

λ = 0.5
k = −1

λ√0.5−1

er rnew = dx +er rold (k−1)
k

(1)

Refinement. Instead of the vertex we search the triangle with the highest approxi-
mation error. Subdivision is done by splitting the triangle’s surface from one of its
three vertices to the opposite edge and then also split the other triangle in the mesh
with this edge. The edge with the additional triangle with the largest error term is
taken. Four new triangles are added, four new edges, and one new vertex. The error
value of each new triangle is set to the half of the error value of its predecessor.
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Deletion. The deletion process is one of the most important changes in the new
algorithm. When using a sample-to-surface distance error, the error values can be
used to determine triangles that are geometrically redundant. In order to have amodel
representation that is as memory efficient as possible, these triangles can be deleted
by an edge collapse operation of one of its three edges.

The best triangle edge for the collapse operation is the one which is surrounded
by triangles with normals exposing the least differences to one another. A collapse
of this edge changes the surface geometry the least. This edge can be determined as
the one with the highest dot product of the normals of its two vertices, since these
normals are calculated based on their surrounding triangles. It is reasonable to set
a threshold to avoid decreasing the surface approximation quality when collapsing
vertices actually exposing curvature.

In addition to the distance error value a triangle age is needed that indicates if a
triangle reached a maximum age maxa. This should happen when the triangle has
not been winning for a certain number of times γ. Those triangles are considered to
bemisplaced and topologically wrong. Amisplaced triangle is detached from the rest
of the mesh and then deleted. After the deletion process the mesh has to be cleaned
with applied filters.

Since the likelihood for a triangle to win is proportional to its size, the aging
process needs to be more differentiated. For every iteration the age of all triangles is
increased by a tiny factor β, which has a relation to the overall number of triangles
|T | (see Eq.2). Instead of increasing the age of the triangles by a constant increment,
it is done bymultiplication, allowing the use of a tumble-tree [2]. The process reaches
an upper bound, which resembles aging.

β = (γ · |T |)√maxa − 1 (2)

For all triangles in the basic step, whose error values are updated (see above), the
age is renewed. Since small triangles are less likely to be winners, the initial age of
a triangle is its si ze(t) divided by the average triangle size sT . Thus, the average
triangle starts with an age of one, while small triangles start “younger” and big
triangles “older”.

The deletion process now explicitly distinguishes distance driven and topologi-
cally driven deletions.

Finalization. One of the assets of the GCS algorithm is the fact thatS is an approx-
imation ofSphy at any time during the running loop—the algorithm can be stopped
and resumed at any given time. With the novel surface distance approximation error
a potential stopping point for the algorithm can be chosen more sensibly.

6 Results

We accomplished different tests with the Stanford Dragon model as a good example
for a point cloud that is relatively challenging by its shape and sample distribution,
the hand model exposes sharp features, the Asian Dragon and the Thai Statue expose
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Table 1 Parameter settings for GSS algorithm

Symbol Setting Meaning

λ 9 Half-life of a distance error

γ 7 Allowed misses before deletion theshold

maxa 10 Maximum age for triangle

max∇n 0.9 Threshold before edge collapse

limskip 0.9 Distance threshold before mesh change

limsingle 1.2 Distance threshold before multiple vertex change

nv 3 Number of investigated vertices in structure search

Fig. 9 A progression series of the dragon model from left to right with 2500, 5000 and 10000
triangles with the standard algorithm (top) and with the new algorithm (bottom). With the new
algorithm the surface diverges faster toward the final topology

a lot of curved areas, the Heating Pipes model includes some extremely noisy areas,
non-uniform sample densities and open surface areas, the Happy Buddha has regions
of surfaces lying close together. From the basic algorithmwe used [3] but deactivated
roughness adaptation and sharp feature detection (for the parameter settings see [3]).
For the GSS algorithm the parameter settings are listed in Table1.

A reasonable aspect to judge efficiency is the time to reach a certain accuracy.
In our experiments with the new approach, for instance the topology of the dragon
model was approximated much faster, shown in Fig. 9.

Close surfaces can be handled correctly with our presented method and a vast
number of additional iterations to avoid permeating Voronoi regions is not required
any longer as we show in Fig. 10.

Although the standard algorithm is already quite robust when dealing with noise,
we could show that spikes and rough surface gradients could be greatly reduced with
our presentedmethod. Themoving of entire substructures seems to have a smoothing
effect on the surface (see Fig. 11).
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Fig. 10 Some thin areas of the Happy Buddha model, reconstructed with 200K triangles with the
old (top) and the new (bottom) algorithm. The new algorithm is able to build a correct topology in
thin areas in an earlier algorithm stage

Fig. 11 Very noisy section of theHeating Pipesmodel (left); pointy vertices or spikes on the surface
of the standard algorithm (middle) and a smoother surface with our approach (right)

InTable2 the newand the old algorithmare compared.Generally the old algorithm
creates a lower average point sample-to-surface distance, since it evenly distributes
its subdivisions overS , whereas the new algorithm focuses its subdivisions on areas
of high approximation error rates. This is visible through a 25% decrease of themean
squared error. Especially for curved models such as the Asian Dragon and the Thai
Statue this effect is very salient.

Although the search process is more complex, the extra time costs are nearly lev-
eled by the discarded operations which are for the Dragonmodel 43.3% of discarded
adaptations and a rate of 26.3% inside the surface movements of vertices only with
our setting for limskip and limsingle.

When the square distance was used as approximation error, the results for both
the average distance error as well as the square distance error were worse than the
results of the GCS algorithm. The reason is that most triangles are used up to model
tiny but steep curvature. In addition, triangles tended to clump even for low error
half-lifes λ. For the Happy Buddha model this led to many clump-like artifacts. Due
to this results using the square distance error can be generally considered impractical.
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Table 2 Our results for different models

GCS GCS error = dp GCS error = d2
p

Model
(# triangles)

Time(s) Dist Dist2 Time(s) Dist Dist2 Time Dist Dist2

Hand (20 K) 6 3.19 4.38 7 4.29 4.11 6 4.70 5.00

Dragon
(100 K)

61 2.29 3.42 65 2.55 2.97 66 3.05 4.34

Asian
Dragon
(100 K)

55 2.36 3.62 61 2.71 2.53 61 2.83 2.78

Thai Statue
(200 K)

146 3.21 15.4 147 3.00 4.02 148 4.05 7.17

Happy Bud-
dha (200 K)

150 1.48 14.1 158 1.89 11.7 160 4.02 63.0

nv = 1 nv = 5 nv = 10

Model
(# triangles)

Time(s) Dist Dist2 Time(s) Dist Dist2 Time Dist Dist2

Dragon
(100 K)

62 2.35 3.01 71 2.55 3.05 121 2.57 2.95

We expose the time for the reconstruction process (time), the average distance to P (dist) times
104 and the square distance toP (dist2) times 107. We also tested different values for nv . Note that
models are normalized by setting the cubic diagonal of their bounding box to one

Test Hardware. ADell®PrecisionM6400with Intel®QX9300 (2.53GHz) processor
with 8GB 1066 MHz DDR3 Dual Channel RAM.

7 Conclusions and Future Work

In this paper we focused on the behavior of the growing cell structures approach as a
function approximation algorithm. We analyzed the GCS with the classical adaption
algorithm for matching requirements of surface reconstruction. Derived from these
observations we presented our new GCS learning model and proved theoretically
and by examples that it outperforms the classical GCS approach. The basic idea
of the presented approach is to incorporate the constructed topology into the GCS
learning scheme. GCS creates ideal distribution matching, clustering, or classical
dimensionality reduction by an implicit representation of a topology. In our work,
we introduced an explicit topology to model the approximation behavior according
to it, while saving the valuable ANN capabilities mentioned above. As result, we
got a new ANN learning strategy, which showed several advantages compared to
classical models. We see this paper as proof of our conceptual change of the GCS
algorithm, giving rise to many improvements for the algorithm in future work.

The differentiation of approximation errors in the form of sample-to-surface dis-
tances and topological misconstructions is the single most important ability and at
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the same time the most important task, when implementing a GSS based reconstruc-
tion algorithm. The separate deletion processes for geometric redundancy and for
topological misconstructions are examples of considering this dichotomy.

Although the presented GSS implementation works well, the concept by itself
does not solve this general differentiation problem, but rather offers the necessary
information to enable a differentiated handling.
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Selective Image Compression Using MSIC
Algorithm

Enrique Pelayo, David Buldain and Carlos Orrite

Abstract This paper presents a new algorithm, Magnitude Sensitive Image Com-
pression (MSIC), as a reliable and efficient approach for selective image compression.
The algorithm uses MSCL neural networks (in direct and masked versions). These
kind of neural networks tend to focus the learning process in data space zones with
high values of a user-defined magnitude function. This property can be used for
image compression to divide the image in irregular blocks, with higher resolution in
areas of interest. These blocks are compressed by Vector Quantization in a later step,
giving as a result that different areas of the image receive distinct compression ratios.
Results in several examples demonstrate the better performance of MSIC compared
to JPEG or other SOM based image compression algorithms.

Keywords Image compression ·Competitive learning ·Neural networks ·Saliency ·
Self organizing maps · JPEG · DCT · MSCL

1 Introduction

In the human vision system the attention is attracted to visually salient stimuli,
and therefore only scene locations sufficiently different from their surroundings are
processed in detail. This provides the necessary motivation to devise a novel image
compression method capable of applying distinct compression ratios to different
zones of the image according to their saliency.

In this paper we make use of the Magnitude Sensitive Competitive Learning
Algorithm (MSCL) [1]. MSCL is a Vector Quantization method based on compet-
itive learning, where units compete not only by distance but also by a user defined
magnitude. Using saliency as the magnitude, units tends to model more accurately
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the salient areas of the images, and therefore the neural network behaviour imitates
the human vision system.

Vector quantization (VQ) is a classical quantization method. In the context of
image processing, basic vector quantization consists in dividing the input image into
regular blocks of pixels of a pre-defined size, where each block is considered as a
D-dimensional vector. Each of these input vectors from the original image is replaced
by the index of its nearest codeword, so only this index is transmitted through the
media. The whole codebook serve as a database known on the reconstruction site.
This scheme reduces the transmission rate while maintaining a good visual quality.
Figure1a shows this scheme.

In VQ, compression level depends on two factors, the number of blocks and the
level of compression of each block. Both factors are related in an inverse way. Lower
number of blocks means that they are higher in size, and therefore higher is the bit
depth necessary to codify each block for a similar quality.

Some authors [2–5] have already used some VQ variants, such as Kohonen neural
network [6] for image compression. These algorithms use a fixed block size and
concentrate in several ways to get a smaller codification of each block or to improve
the quality of the codification. Laha [2] uses surface fitting of data assigned to each
codeword instead of the codeword itself, which improves the visual quality of the
results. [3–5] apply DCT filtering [7] to each block previous to the quantization step
to lower the dimension of the input data. On the other hand, [3] takes advantage of
the topological ordering property of the SOM neural network to codify indexes with
a few bytes.

In this paper blocks may have different size, chosen according to its relevance
(which is selected following the image saliency). Blocks located in areas of high
image saliency are smaller than those assignedwith low saliency. As bit depth used in
the quantization step is the same for all blocks, quantization error increases directly
with the block size in areas of low image saliency. Therefore, a lower number of
blocks are used to represent the whole image increasing the overall image compres-
sion and preserving at the same time the quality of most relevant areas.

Another important difference with the above mentioned methods is that, in our
approach, block shapes are, in general, irregular, i.e., neither rectangular nor squared.
Therefore, quantization has to take into account samples that may have invalid com-
ponents. Figure1b shows the basic idea of the proposed algorithm for grayscale
images. It requires to transmit the block centers and index. At the receiver, it is pos-
sible to regenerate the shape and mask of each block and locate it with it center and
magnitude. Then, with its index, the block image is regenerated and summed up to
form the whole image. In Sect. 4 we present the complete algorithm, more complex
to reduce the amount of data to be transmitted.

The remainder of this paper is organized as follows. Section2 describes theMSCL
algorithm. Section4 shows its use to achieve selective image compression focused
on the most salient regions of an image with the method that we call Magnitude
Sensitive Image Compression (MSIC). A comparative between MSCL and classical
JPEG and SOM based VQ algorithms for a high compression ratio task is carried
out in Sect. 5. Finally, Sect. 6 concludes with a discussion and ideas for future work.
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Fig. 1 Basic idea of Competitive Learning algorithms in the task of image compression for
grayscale images. Top Common CL algorithm. Bottom MSIC algorithm. Differences with other
CL algortihms are the use of a MSCL to get block centers (centers are trained weights of MSCL
units), the use of irregular blocks and the masked quantization/deprocessing
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2 The MSCL Algorithm

MSCL is a type of artificial neural network that is trained using unsupervised learning
to produce a representation of the input space of the training samples depending on a
magnitude. CodebookM is formed by M weight vectors. Prototype of unit m ∈ M
is described by a vector of weights wm(t) ∈ R

D and the magnitude value mum .
This value is calculated with the function M F(i, t), that is a measure of any feature
or property of the data inside the Voronoi region of unit m, or a function of its
parameters.

The idea behind the use of thismagnitude term is that, during competition between
two units situated at similar distance from the input sample, the winner will be the
unit with the lowest magnitude value. As a result of the training process units will
be forced to move from the data regions with low M F(i, t) values to regions where
this magnitude function is higher. MSCL follows next steps, that are repeated until
a termination condition is achieved:

Global Unit Competition. At this point, we form the local winner set S, (S ⊂ M)

with the Mlocal units closest to the input sample as: S = {s1, s2, ..., sMlocal }.

‖x(t) − ws(t)‖ ≤ ‖x(t) − wm(t)‖ ∀m /∈ S ∧ s ∈ S (1)

Local Unit Competition. Winner unit j is selected from units belonging to S, as
the one that minimizes the product of its magnitude value with the distance of its
weights to the input data vector, following this equation:

j = argmin
s∈S

(mus(t)
γ · ‖x(t) − ws(t)‖) (2)

Winner and Magnitude Updating. For all units in the map, weights and magnitude
are adjusted iteratively for each training sample, following:

w j (t + 1) = w j (t) + α(t)
(
x(t) − w j (t)

)
(3)

mu j (t + 1) = M F( j, t) (4)

In the above equations, γ defines the strength of the magnitude during the com-
petition. α(t) is the learning factor, calculated as α(t) = (1/h j (t))β , where h j (t)
stands for the number of input signals for which unit j has been winner so far, and
β is a scalar value between 0 and 1. The winner j is also called the best matching
unit (BMU).
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3 The Masked MSCL Algorithm

The newproposed image compression algorithmwill require the capability of dealing
with incomplete data, as blocks to be compressed are irregular (in shape and size).
Here we present a masked version of MSCL that is able to deal with data samples
of different size (we speak of ‘masked’ data). To use this algorithm we will consider
that each data sample consists in two vectors, x = (x1, . . . , xD) ∈ R

D the data
vector itself (with the maximal possible dimension of a data sample D), and its
corresponding mask msk = (msk1, . . . , mskD) ∈ R

D . The mask is a vector with
ones in the the valid components of x and zeros in the other components.

The algorithm follows the same steps than MSCL, but both competition and
updates are slightly more complex as it has to be considered the mask. Changes are
the following:

1. Only valid components (corresponding mask is one) are considered for global
and local competition:

‖msk(t) ◦ (x(t) − ws(t))‖ ≤ ‖msk(t) ◦ (x(t) − wm(t))‖ ∀m /∈ S, s ∈ S (5)

j = argmin
s∈S

(mus(t)
γ · ‖msk(t) ◦ (x(t) − ws(t))‖) (6)

2. Instead of scalar α, algorithm uses vector alpha = (α1, . . . , αD) ∈ R
D as the

learning factor, where αd is:

αd =
{
1/h jd if mskd = 1

0 otherwise.
(7)

Here h jd is the number of times up to the moment that component d has taken a
valid value when unit j was a winner.

3. Only valid components (those with mskd = 1) of winner weights are updated:

w jd(t + 1) = w jd(t) + αd
(
xd(t) − w jd(t)

)
(8)

4 Magnitude Sensitive Image Compression

Figure2 shows the wholeMSIC algorithm applied to grayscale images, where image
compression, in the transmitter, is represented on the top and the image restoration
process at the receiver is depicted on the bottom. Image is compressed with different
quality according to a selected user magnitude. Section4.6 explain how to extent this
methodology to color images.
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Fig. 2 Global algorithm for grayscale images. Marked with #n the corresponding subsection with
the detailed explanation and, also showing the order of processing steps in the transmitter and
receiver

In this work we use as magnitude the saliency map, with the same size as the
processed image, provided by a user function. Section5 explain these functions.

The results of the compression are a group of image blocks encoded by indexes.
Unlike other image compression methods, our algorithm uses blocks of different
sizes, which are located at any position of the image. Therefore, this implies that
block centers and sizes has to be sent to the receiver, apart from the corresponding
index.As this approachwouldmean the transmission of huge quantity of information,
we have adopted an alternative solution.

We use the saliency map to train aMSCL network, using as inputs the coordinates
(x1, x2) of each pixel and the saliency as magnitude. After training, the weights of
its units (codewords) are the block centers (bc(k), k = 1...Nbc). The surrounding
assigned to the Voronoi region of each block-center configure the corresponding
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blocks. The image is so fragmented in so many blocks as units in this network (Nbc).
In Sect. 4.1 we will show how to determine the block sizes (and block limits) for
each codeword or unit. This process encodes the saliency map with low quality, and
both the encoded image and the encoded map are transmitted.

At the receiver first the saliency map is regenerated, and with it, the image block
limits and centers can be calculated. They are used with the image indexes to restore
the image.

It is worth noting that it is necessary an additional step at the transmitter. Instead
of using directly the saliency map to extract the image blocks, we first decode a
saliency map from the encoded map that has to be transmitted. Then we calculate
the image centers and limits of image blocks using this Regenerated Saliency Map
that will be also regenerated by the receiver.

Summarizing the MSIC algorithm steps are:

1. Map quantization (at transmitter).
2. Map restoration (at transmitter).
3. Image quantization (at transmitter).
4. Map restoration (at receiver).
5. Image restoration (at receiver).

MSIC algorithm uses several MSCL networks: M SC L MC (map center) to extract
map blocks, M SC L I C (image center) to extract image blocks, and a pool of MSCLs
that he call MSCL picture library (M SC L P I C ) to generate indexes that encode each
block pixels, and act as Look-Up-Table to decode the block shapeswith these indexes.
This library is calculated using the masked version of MSCL (see Sect. 3) as blocks
may have irregular shapes. The first and second neural networks are trained online
during map and image quantization. Their codewords are the block centers. However
M SC L P I CT form a codebook database that is trained offline. It is known by the
transmitter and the receiver as a library of the method. Finally receiver uses another
MSCL (M SC L I C2), that becomes identical to M SC L I C when trained at receiver.
Following sections explain the process in detail.

4.1 Saliency Map Quantization

The idea is to consider the saliency map as an image and apply the same compression
steps that will be applied to the image.

First step corresponds to the block extraction from the saliency map according to
the saliency values.We train aMSCL network (M SC L MC ) using the 2D coordinates
of each pixel(x) as inputs and the following magnitude function:

M F(i, t) =
∑

V i saliency(xV i )

Vi (t)
(9)
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Fig. 3 Neural networks used in the MSIC algorithm: Top B MUMC and B MUI C . It is important
to mention that this last MSCL is used also in receiver (B MUI C2). Bottom Block extraction phase.
Each block delivers the block limits, the image and a binary mask. M SC L P I CT (l) neural network,
where a input sample (vectorized block from the extraction phase) has several masked components

wherexV i are the data samples belonging to theVoronoi region of unit i at time t ,Vi (t)
is the number of samples in the Voronoi region, and saliency(x) is the pixel saliency
of the corresponding sample. Trained unit weights correspond to the coordinates of
the unit in the image, and the magnitude value is the mean of the saliency inside its
Voronoi region. Once trained, it is possible to find the best matching unit (B MUMC )
assigned to every pixel (using magnitude during competition). The block assigned
to each unit is the rectangle wrapping its Voronoi region. A block mask of equal size
than the block is also provided in order to mark the pixels belonging to that irregular
Voronoi region, see Fig. 3. We used 40 units for M SC L MC in our experiment. With
this small number of units a coarse saliencymap is obtained, but it is enough to define
areas with high saliency.

To codify each of the blocks by VQ, we first resize the block to a squared shape
with side value as the maximum between its horizontal and vertical block sizes.
The block and the mask are inserted in the squared image filling with zeros the void
rows or columns. After that, both are resized to a vector form.We use mean-removed
vectors to have a better quantification.Mean value of saliency in each block of pixels,
that we call mean block-saliency (mb(x, y)), is sent encoded by 7 bits.

The resulting vector is separated according to its size and dispatched for training
or testing to the MSCL picture library (M SC L P I CT (l)). This pool of codebooks are
trained separately only once and become a lookup table in the algorithm. In order to
avoid the transmission of thewhole codebook pool it is known by both the transmitter
and the receiver.

Each codebook of the pool, with 256 codewords, is dedicated to a precise input-
vector length. This election of the same number of codewords for different block
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sizes forces that larger blocks present less detail in pictorial content than smaller
blocks. We have chosen a limited group of sizes that model several size possibilities
(the value of l is the length of the square edge to which we have resized the block):
l = [4, 6, 7, 8, 10, 15, 29].

This pool of codebooks can be specialized in the type of images considered in the
transmission task, or can be generated using an universal library of training images.
The images for training are processed following previous described steps, but the
magnitude function chosen for these M SC L P I CT (l) networks is the hit frequency
of each unit, that is:

M F(i, t) = hits(i, t) (10)

During competition the B MUP I CT is calculated using the masked version of
MSCL in order to avoid the zero-padding mentioned before. Each time a sample
is presented to each neural network of the pool, the corresponding mask is also
presented, and only masked weight components are used to compete (see Fig. 3,
Right). Each sample might have different masked components. In this way, only
pixels corresponding to the Voronoi region of a block are used to find its B MUP I CT .

At the end of this step, the magnitude map has been divided in 40 blocks. We
have to send to the receiver the following information of each block: Map indexes
(B MUP I CT ) (1 byte), Map mean (7 bits) and Map Centers (2 bytes). Size of each
block is not necessary because it is calculated with the block centers.

4.2 Map Restoration at Transmitter

Map representing the saliency of the image is also restored at transmitter with the
information generated at the previous step. This is because the restored map will
be used at both transmitter and receiver to define the block centers of the image,
so results are the same in both sides. Map restoration is accomplished following
the previous step in inverse order. First we calculate Voronoi regions assigned to
each of the Map Centers by searching the B MUMC of each pixel in M SC L MC . The
codewords of this neural network are the Map Centers. Additionally, we calculate
block limits and mask wrapping by a rectangle the area corresponding to the Voronoi
region of each center.

With the i index of the new block, it is converted again into an image block
by the look-up table created with M SC L P I CT (l). The codeword of the B MUP I CT

consists of the pictorical content of the block image, but needs to be displacedwith the
mean block-saliency value of the corresponding block. After summing the mean, it is
masked by the binarymask and added to the regenerated saliencymap. Repeating the
process for all the blocks we obtain the regenerated saliency map, that will represent
the saliency values of pixels for the reconstructed image.
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4.3 Image Quantization

Asimilar strategy to the previously described step is followed for image quantization.
Blocks are extracted training the M SC L I C (with the coordinates at each pixel) to get
the image block centers according to theRegenerated SaliencyMap at the transmitter.
Then the Voronoi regions of each of these centers are calculated. Blocks are extracted
and vectorized. After removing the mean, each image block is processed using the
masked version of MSCL with the M SC L P I CT (l) (once again using the masked
version of MSCL) that corresponds its size, in order to use the most similar pictorial
content of the library that will be included in the reconstructed image. It is only
necessary to send the corresponding block mean and index from the M SC L P I CT (l)
for each block.

4.4 Map Restoration at Receiver

Map restoration at receiver is accomplished following exactly the same process
than map restoration at transmitter. To do it, the receiver uses for each block its
Map index, mean block-saliency, block-center and the same offline M SC L P I CT (l)
picture library. As operations are the same and they are applied to the same data,
the Regenerated Saliency Map at receiver is exactly the same than the one at the
transmitter.

4.5 Image Restoration

Last step in thewhole process is image restoration, using the receivedmeans of block-
saliency, the pixel indexes and the regenerated saliency map. This step is similar to
the previous described Map restoration with small changes.

The main difference is that the image block centers are not available (they have
not been transmitted). They are calculated training a new MSCL (M SC L I C2), with
the coordinates of each pixel, and the magnitude values in the Regenerated Saliency
Map (magnitude that was calculated with (9) at the emitter). This neural network
becomes identical to M SC L I C . The weights of M SC L I C2 are the centers of the
image blocks, and their Voronoi regions define the masks and limits.

Once again, image indexes are presented to the look-up table created with
M SC L P I CT (l) (according to the block size) that returns the block shape. Final
image is regenerated by adding means of block-saliency, masking each block and
positioning it in the image (adding it to the regenerated image as we had done before
with the saliency map).
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4.6 Extension to Color Images

Figure4 defines the flowchart to use MSCL in the case of color images. The process
is similar to the used in the case of grayscale images, but applied to each of the color
components of the image.

First, we calculate the saliency map from the color image. With this saliency map
we extract and quantify blocks as described in Sect. 4.1, blocks which are restored at
transmitter as mentioned in Sect. 4.2. As a result of this step we get the map block-
centers, block-means and indexes. Encoding is made with the previously trained
M SC L P I CT (l) picture library.

Then, original RGB image is transformed to the L-a-b color space. The reason
of selecting this color codification is that it has been demonstrated its suitability for
interpreting the real world [8].

Fig. 4 Global algorithm for color images. Each color component is processed separately as in the
grayscale method. However this process is exemplified with a different magnitude definition for
the saliency map, oriented to preserve the detail of the image for certain colors selected by the user
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Now with these L-a-b color components of the image, we follow the process
indicated in Sect. 4.3. Each of them will be trained with a MSCL neural net-
work (M SC L I C−L , M SC L I C−a, M SC L I C−b,) and it will return the block sizes
and indexes for each component. The indexes of the blocks are also encoded with
M SC L P I CT (l).

Once at receiver saliency map is restored (see Sect. 4.4). Then, we follow the
image restoration step, applied to each L-a-b component. Its centers are calculated
training three MSCL networks (M SC L I C2−L , M SC L I C2−a, M SC L I C2−b,), with
the coordinates of each pixel, and the regenerated saliency map. These neural net-
works becomes identical to those at the transmitter.

To get the final image, we transform the restored L-a-b image to RGB.

5 Experimental Results

5.1 Grayscale Images

Simulations were conducted on four 256× 256 gray scaled images (65536 bytes),
all of them are typical in image compression benchmarking tasks.

We applied the MSIC algorithm, with the following MSCL training parameters:
15 cycles and learning factor varying along the training process from 0.9 to 0.05.
We used Graph-Based Visual Saliency G BV S(x) ([9]) as the pixel saliency of the
corresponding sample. However, it is possible to use other kind of magnitudes to
define which areas of the image are compressed more or less deeply.

JPEG was applied with the standard Matlab implementation and a compression
Quality of Q = 3 or Q = 5 (i.e., with a high compression ratio).

We also compare with the algorithm described in [5], whose main steps are fol-
lowed for all the mentioned SOM based algorithms: The original image is divided
into small blocks (we select a size of 8× 8 to achieve a similar compression ratio
to JPEG or MSCL). Then, 2-D DCT is first performed on each block. The DC term
is directly send for reconstruction, and the AC terms after low-pass filtering (we
only consider 8 AC coefficients) is fed to a SOM network for training or testing. All
experiments were carried out with the following parameters: 256 units, 5 training
cycles and β calculated so the learning factor decreases from 0.9 to 0.05.

The number of bytes used to compress each image was the same for MSCL and
JPEG (see Table1) and fixed to 2048 for SOM.

For evaluation purpose, we use the mean squared error (MSE) as an objective
measurement for the performance. Table1 shows the resulting mean of the MSE in
10 tests using our algorithm compared to JPEG and SOM applied to 4 test images.
We present a second column showing the value of MSE but only calculated in those
pixels which saliency is over 50%. Standard deviation is also shown (in brackets).

To obtain the generic pictorial library M SC L P I CT (l) we used three additional
images different to the images used in testing from [10] with the same training
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Table 1 Mean MSE for the whole image as well as for areas with saliency over 50% (grayscale
example)

Image Q/Bytes JPEG(Tot/50%) SOM(Tot/50%) MSIC(Tot/50%)

Lena Q5/2010 212.3/340.4 205.4/374.0 501.1(18.2)/211.0(6.1)

Street Q5/2127 302.3/369.0 322.1/465.3 466.2(7.8)/210.6(4.2)

Boat Q5/1988 263.9/383.7 280.4/486.6 436.4(12.3)/282.0(5.6)

Fish Q3/2090 485.7/597.7 466.3/904.3 895.8(15.8)/254.2(9.6)

Standard deviation is also shown (in brackets)

parameters. This number is quite low, but enough to show the good performance
of our proposal. However, in a real scenario it would be necessary to use a higher
number of images to get a suitable pictorial library. Moreover, we have not used any
entropic coding applied to indexes which would have result in a further compression.

As expected, the MSE value calculated for the whole image area given by JPEG
is lower than the one provided by MSIC, because prototypes tend to focus on zones
with high saliency while other areas in the image are under-represented.

However, when MSE was calculated taking into account only those pixels with
high saliency, MSIC obtained better results than JPEG or SOM. This effect can be
clearly appreciated by visual inspection of the images represented in Fig. 5. They
show howMSIC achieves a higher detail level at image areas of high saliency. In the
case of JPEG, it tends to fill up big portions of the image with plain blocks, being
unable to obtain a good detail at any part of the image. On the other hand, SOM
produces slightly blurred images due to the low frequency filtering.

The new algorithm could also be used in compression applications with other
magnitude functions instead of saliency. Figure6 shows the compressed results of
applying MSIC using different Magnitude Functions to the street image. From left
to right, first image is the original one, second image is MSIC using the same Mag-
nitude Functions than the one used in (9). The Magnitude function in third image
is the same of equation (9), but using 1 − G BV S(x) instead of the pixel saliency
of the corresponding sample. The fourth image uses the value of the vertical coor-
dinate (normalized to one) and finally the fifth one uses the value of the vertical
coordinate (normalized to one) minus one. It can be clearly seen that depending
on the defined Magnitude Function, certain areas are compressed in with quality
(foreground, background, top or bottom of the image).

This toy example was only presented to show the possibilities of achieving selec-
tive compression in different areas of the image just by varying the Magnitude Func-
tion.

MSIC algorithm is much more slower than JPEG. In a serial execution on single
core computer, JPEG processing takes only 0.11% of the total processing time of
MSIC (that in our tests it take 6.8 s for compressing each of the grayscale test images).
Most of the time (91.6%) is spent on block extraction (34% of which is used in
extracting blocks from the saliency map and 66% in extracting blocks from the
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Fig. 5 Top in columns Original image, saliency map, MSIC, JPEG and SOM compression for the
test images. Bottom Lena detail in the three methods. It can be clearly seen that the Lena face,
compressed with MSIC shows a more natural view (almost like painted with Pointillism technique)
than the other methods that have square block borders

Fig. 6 Original ‘Street’ image and the compressed images using MSIC with four different magni-
tude functions
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image). Block encoding and decoding takes 6.7% of the time, and 1.7% the rest of
the algorithm.

However processing time can be reduced using parallel processing and compiled
libraries (now simulated inMatlab). The slowest task is finding the bestmatching unit
for both, defining the Voronoi region to extract a block, and for encoding-decoding.
This task represents the 68% of the block extraction time, and the 51% of the
encoding-decoding time. It is a slow process because in our sequential implemen-
tation we must, for each sample, calculate the distances from sample to each of the
units. In a parallel implementation, this processing could be applied simultaneously
for all units. Then using for instance 1000 units, block extraction time could be only
29.3% of initial total time. Using similar approach for encoding-decoding the final
processing time can be reduced to be 2.3 s (34.3% of the original processing time).

5.2 Color Images

In the color experiments, it is applied the same method explained in Sect. 4.6, with
the same parameters used in the grayscale case.

We use a different saliency definition focused in those image zones with colors
selected by the user. This type of compression, preserving with more detail image
zones with certain color selection, may have different applications. For instance, in
medical images, the specialist may define the colors of those areas that has to be well
preserved. Other application is in video transmission limited by narrow bandwidths,
as in underwater image transmission. In that case it is possible to work with a highly
compressedglobal image, and if the userwants a higher definition in areas of a specific
color,MSIC could get to a better definition of those areas, obviously degrading others
to keep the limited bandwidth.

To calculate the saliency map with the magnitude values for the pixels, we first
calculate the saliency map for each color in the set of colors. The saliency map of a
selected color is obtained by binarizing the image, based on thresholding the distance
of the pixel color and the selected color. Then we apply a border detection algorithm
to get the edges of the image zones painted in that color.

The saliency map of the image is obtained as the maximum of the filtered edge
images for all the set of colors. Using this value of magnitude, we get more units
in the interesting regions whose colors are similar to the defined set. JPEG was
implemented using Matlab and different compression qualities.

The experiments use the four test images depicted in the first column of Fig. 7.
The second column shows the resulting saliency maps for the images. To maintain
the details of the fish in the first image, it is used as color set: orange and white.
The flower image uses dark and clear pink, the boat image uses only brown and the
parachute image uses pink and black from the parachutist.

Table2 shows in the first column the resulting mean of the MSE in 10 tests
using MSCL compared to JPEG. Second column shows the value MSE calculated in
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Fig. 7 Top in columnsOriginal color image, saliencymap generated for a one or two-color selection
(fish with orange and white; flower with dark and clear pink; boat with brown; parachute with pink
and black), MSIC and JPEG compression for the test images. Bottom Fish image detail in both
compression methods

those pixels with saliency over 50%. Standard deviation is also shown (in brackets).
Number of bytes and quality are also shown.

As expected, the MSE value calculated for the whole image area is lower using
JPEG than the one provided by MSIC. However, when MSE was calculated taking
into account only those pixels exhibiting a high saliency, MSIC obtained the best
results.
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Table 2 Mean MSE for the whole image as well as for areas with saliency over 50% (color
example)

Image Q/Bytes JPEG(Tot/50%) MSIC(Tot/50%)

Fish Q3/1702 1328/2695 2193(20.7)/1789(40.3)

Flower Q5/1722 862/1299 3540(227.1) /1167(49.4)

Boat Q6/1720 1303/1570 2366(87.4)/1190(25.3)

Sky Q5/1706 967/2312 240(58.2) /468(19.7)

Standard deviation is also shown (in brackets)

6 Conclusions

In this paper we have shown how grayscale and color images compressed with
MSIC exhibit a higher quality in relevant areas of the image when compared to other
compression methods such as JPEG or SOM based algorithms.

MSIC has been proved to be a reliable and efficient approach to achieve selective
Vector Quantization. This selectivity can be used in image compression to set the
block centers focused on certain areas of the image to be compressed in a further step
by Vector Quantization. The novelty of the algorithm is that areas of interest, which
can be defined by a magnitude function, would receive lower compression than the
rest of the image. Another novelty of the algorithm is that the image composition
uses irregular blocks of pixels that tend to be smaller in zones of high interest and
broader in zones of low interest.

These properties of the algorithm may be modulated for different applications by
choosing the adequatemagnitude function according to the desired task. For instance,
it could be a good choice to use the Viola-Jones algorithm instead of GBSV to
highlight some particular areas when dealing with facial areas in images with people.
Another potential application is the compression of satellite and aerial imagery of the
Earth. In that case, Automatic Building Extraction from Satellite Imagery algorithms
may be used to define the areas of interest. Then, MSIC may compress the images
keeping higher detail in the built areas. In a similar way, medical image storage tools
might use MSIC to save images compressed with higher detail in certain biological
tissues or anatomical structures.

Several applications that require image transmission with low bandwidth may use
the algorithm, as in underwater image transmission, where there are low data rates
compared to terrestrial communication. Another example of magnitude would be
simply the predicted position of the user’s fovea on the image in the next frame. This
magnitude is useful for application in virtual reality glasses, where the image zone,
that is predicted the user is going to focus his fovea, will present the highest detail,
while surrounding zones can be more compressed.

Future work comprises several research lines such as the use of entropy coding for
the information of each compressed image block, filtering each image with DCTs,
and comparison against other compression algorithms. Another point to be analysed
is the kind of images used to generate the generic pictorial codebooks used for
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compression and restoration, as the library of training images can be selected for the
chosen task. The test of the algorithm in different tasks as mentioned in the previous
paragraph is another research line left for future.
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Abstract Physiological Computing augments the information bandwidth between a
computer and its user by continuous, real-timemonitoring of the user’s physiological
traits and responses. This is especially interesting in a context of emotional assess-
ment during human-computer interaction. The electroencephalogram (EEG) signal,
acquired on the scalp, has been extensively used to understand cognitive function,
and in particular emotion. However, this type of signal has several drawbacks, being
susceptible to noise and requiring the use of impractical head-mounted apparatuses.
For these reasons, the electrocardiogram (ECG) has been proposed as an alterna-
tive source to assess emotion, which is continuously available, and related with the
psychophysiological state of the subject. In this paper we analyzemorphological fea-
tures of the ECG signal acquired from subjects performing an attention-demanding
task. The analysis is based on various unsupervised learning techniques, which are
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1 Introduction

Physiological Computing, as a research area, integrates psychophysiological infor-
mation into computer systems by continuous, real-time monitoring of the user [1].
These systems augment the information bandwidth between the user and the com-
puter, enabling abetter interpretations of the user’s psychophysiological state. Indeed,
in natural human communication, the speaker’s attitude, posture, tone, and facial
expressions, among others, strongly influence the semantic interpretation done by
the receiver [2].

Straightforward approaches to physiological computing, requiring no extra hard-
ware, are, for example, keystroke dynamics [3], speech analysis [4], and automatic
facial expression recognition [5]. However, all these examples exhibit serious prob-
lems to their usefulness. Keystroke dynamics and speech analysis both require con-
tinuous voluntary activity, while the usefulness of facial expression analysis for
behavioral science has been recently questioned in [6]. One possible alternative
to these modalities, although requiring extra hardware, is the use of the subject’s
biosignals (e.g. electrodermal activity, peripheral temperature, blood volume pulse,
electrocardiogram, electroencephalogram signals), acquiring them during normal
human-computer interaction tasks [7, 8]. These signals have the twofold advantage
of being always available, and measuring the natural physiological responses of the
body to a given affective state, which cannot be voluntarily masked.

The electroencephalogram (EEG) signal, acquired on the scalp, has been exten-
sively used to understand cognitive function, and in particular emotion [9, 10], being
a noninvasive, cost-effective technique, with good temporal resolution [11]. How-
ever, it has various drawbacks, such as susceptibility to noise (in particular motion
artifacts and eye blinks) and, most importantly, requires the use of some kind of
head-mounted equipment to support the (typically wet) electrodes, which becomes
impractical for continued use. In this context, the electrocardiogram (ECG) signal
has been suggested as a possible option [12, 13]. Nevertheless, the usefulness of the
EEG as source of ground-truth information has not been discarded [14].

In this paper, we make a morphological analysis, using unsupervised learning
techniques, of the ECG acquired from subjects performing a task that demands high
levels of attention over a long period of time. This experiment simulates what may
happen, for instance, during an interactive educational game, extended work hours,
repetitive daily tasks, or sleep deprivation,where attention levels fluctuate throughout
the execution of the task. This is particularly important in various professions, such
as doctors, pilots, drivers or industrial equipment operators, for which momentary
or prolonged lapses of attention may be catastrophic [14]. In addition, we compare
the results obtained with the ECG signal to our previous work using the EEG, which
provided evidence that the subjects indeed exhibit distinct affective states throughout
the completion of the task [15].

The remainder of the paper is organized as follows: Sect. 2 describes the experi-
mental setup. Section3 details the proposed methodology, including the description
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of the clustering methods used, as well as several clustering validation metrics.
Section4 presents the obtained results, which are discussed in Sect. 5. Finally, Sect. 6
concludes the paper.

2 Affective Elicitation and Data Acquisition

The ECG signal presents several attributes that make it especially interesting in a
physiological computing framework. Specifically, it is continuously available, pro-
viding a rich wellbeing indicator, is related with the psychophysiological state of the
subject, and is easy to acquire unobtrusively with wearable devices. This is further
enhanced by following an off-the-person approach, where the sensors are seamlessly
integrated into objects with which subjects regularly interact, such as a keyboard,
a video game controller, or a mobile device, without the need to change normal
interaction patterns [16].

It is widely known that the basic function of the heart is to pump blood through-
out the body, demanding a highly synchronized sequence of muscular contractions.
These contractions are initiated by small electrical currents that propagate through
the heart’s muscle cells, generating an electrical signal that can be recorded at the
body surface (the ECG). In healthy individuals, the electrical activity of the heart is
guided by the self-excitatory nature of the sinus node on the left atrium (see Fig. 1),
which naturally produces electrical depolarizations at a rate of about 100 beats per
minute. However, the sinus node is under systemic control by the endocrine system
and the Autonomic Nervous System (ANS). The ANS is composed by two comple-
menting, self-balancing subsystems, the Sympathetic and Parasympathetic Nervous
Systems (SNS and PSNS, respectively). While the SNS is typically responsible for
the promotion of fight-or-flight responses in the organism (e.g. by increasing the
heart rate), the PSNS is responsible for the promotion of rest-and-digest responses,
which induce relaxation and a return to normal function. As a whole, the ANS

Fig. 1 Schematic
representation of the heart
compartments and its electric
system, showing the
contribution of each
component to the
prototypical heartbeat signal
recorded at the body surface
(used with permission from
[18])
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Fig. 2 Example matrix of
the concentration test; the
user selects, line by line, the
pairs of consecutive numbers
that add to 10

provides an access route to the affective state of a person [17], by analyzing the
patterns of physiological activity initiated by both the SNS and PSNS. In particular
for the ECG, the amplitude and latency of the P-QRS-T complexes is influenced by
multiple psychophysiological factors, and some changes in the user’s behavior result
in slight variations in the heart rate and waveform morphology.

TheECGandEEGsignals analyzedherewere acquired in the context of theHiMo-
tion project [19], an experiment to acquire information related to human-computer
interaction and physiological signals on different cognitive activities. During the
experimental session, the subjects were asked to execute various interactive cogni-
tive tasks. Particularly, a concentration task was performed, adapted from a similar
test from the MENSA set [20]. In this test, the subject is presented with a matrix of
800 integers (20 lines by 40 columns), as shown in Fig. 2. The goal of the game is to
identify, line by line, all the pairs of consecutive numbers that add to 10. This task
requires high levels of attention, as the pairs may overlap (i.e. the same number may
belong to two pairs), measuring the capacity of the subject to maintain an attentive
state over a long period of time.

Biosignal data was obtained from 24 subjects (17 males and 7 females) with ages
in the range 23.3 ± 2.4 years, using a Thought Technology ProComp2 acquisition
system, with a sampling rate of 256Hz. The ECG was acquired with Ag/AgCl elec-
trodes placed on the chest (4th intercostal space in the mid clavicular line), while the
EEG was acquired at four scalp locations according to the 10–20 system (Fp1, Fz ,
Fp2, and Oz), as shown in Fig. 3.

Fig. 3 Locations of the
acquired EEG electrodes on
the scalp (red)
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3 Proposed Methodology

It should be noted that each person has different characteristics in terms of attention
span and, as such, aside from the temporal information regarding the start and the
end of each line of the attention game, no more information is available for this data
set. Particularly, there is no ground-truth information regarding the time instants in
which the affective state of each test subject has in fact changed. For this reason, we
propose the use of unsupervised learning techniques to analyze the ECG data.

The proposed methodology is presented in Fig. 4 and it is divided in three main
stages: feature extraction, clustering, and validation of the clustering results.We start
by filtering and segmenting the raw ECG, and then we apply clustering techniques to
analyze the data. Subsequently, the results of those clustering algorithms are validated
using several metrics, exploiting our previous analysis of the same data set with the
EEG signal [15]. This somewhat follows the methodology proposed in [14], where
the EEG signal is used as a benchmark against which the performance of attention
recognition via the ECG is compared. All these stages are explained in the following
subsections.

3.1 ECG Feature Extraction

Raw ECG signals are typically affected by various noise sources such as motion arti-
facts, power line interference, and electromyographic noise. To enhance the signal-
to-noise ratio (SNR), and to reduce the influence of the cited noise sources, we used a

Fig. 4 The proposed methodology
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Fig. 5 ECG templates
obtained for subject 11

band-pass Finite Impulse Response (FIR) filter with a Hamming window of 300ms,
and cutoff frequencies of 5–20Hz. The filtered signal was then fed to a segmen-
tation algorithm, with the purpose of identifying the locations of the R peaks. For
that we used the algorithm by Engelse and Zeelenberg [21], with the modifications
proposed in [22]. Individual heartbeat segments of 600ms were extracted from the
filtered signal, between 200ms before and 400ms after the R peak. Finally, in order
to further improve the SNR, heartbeat templates were formed using sequences of
5 consecutive heartbeats, computing their element-wise mean (an example of these
templates can be seen in Fig. 5). These templates form the feature space used by the
clustering algorithms, described in Sect. 3.3.

3.2 EEG Feature Extraction

Our previous work, focusing on the EEG signal, is based on two distinct feature
extraction techniques. The first follows the traditional approach of analyzing the var-
ious EEG frequency bands, the Band Power Features (BPF). Specifically, we used
the theta (from 4 to 8Hz), lower alpha (from 8 to 10Hz), upper alpha (from 10 to
13Hz), beta (from 13 to 25Hz), and gamma (from 25 to 40Hz) bands. The sec-
ond approach uses a method of synchronization quantification, the Phase-Locking
Factor (PLF), which leverages the fact that EEG signals exhibit an oscillatory behav-
ior whose phase dynamics are modulated by the neurological tasks [23]. The PLF
between two signals is defined as [24]:

�ik =
∣∣∣∣∣
1

T

T∑
n=1

e j (φi [n]−φk [n])
∣∣∣∣∣ , (1)

where φi [n] and φk[n], n = 1, ..., T are the phases of the signals, T is the number of
discrete time samples, and j = √−1 is the imaginary unit. Thismeasure ranges from
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0 to 1, with a value of �ik = 1 corresponding to perfect synchronization between
the two signals (constant phase lag), while the value �ik = 0 corresponds to no
synchronization. These two feature extraction methods form distinct feature spaces,
upon which clustering methods were applied.

3.3 Unsupervised Learning

Clustering is one of the central problems in Pattern Recognition andMachine Learn-
ing. Hundreds of clustering algorithms exist, differently handling issues such as
cluster shape, density, and noise, among other aspects. These techniques require the
definition of a similarity measure between patterns, be it geometrical or probabilis-
tic, which is not easy to specify in the absence of any prior knowledge about cluster
shapes and structure.

One of the classical approaches for clustering is the use of hierarchical agglomer-
ative algorithms [25], which produce a tree of nested objects (the dendrogram) that
establishes the hierarchy between the clusters. These methods only require a mea-
sure of (dis)similarity and a linkage criterion between instances, while partitional
methods (e.g. k-means or k-medoids) also require a priori the number of clusters,
and an initial assignment of data to clusters. The linkage criterion specifies how
intergroup similarity is defined. In particular, we apply the Average Link (AL) and
Ward’s Linkage (WL) criteria [26]. Furthermore, to obtain a partition of the data
from a dendrogram, we use the largest lifetime criterion [27].

Moreover, we use a new high order dissimilarity measure, called dissimilarity
increments, proposed in [28]. This measure is computed over triplets of nearest
neighbor patterns and is defined as:

dinc(xi , x j , xk) = |D∗(xi , x j ) − D∗(x j , xk)|, (2)

where x j is the nearest neighbor of xi , and xk is the nearest neighbor of x j , differ-
ent from xi . In equation (2), D∗(·, ·) can be any dissimilarity measure, such as the
Euclidean distance. The dissimilarity increments measure can give more informa-
tion about patterns belonging to the same cluster, since it changes smoothly if the
patterns are in the same cluster. In [29], an agglomerative hierarchical algorithm,
called SLDID, was proposed. This algorithm is a variant of the Single Link (SL)
criterion using the dissimilarity increments distribution (DID), which was derived
undermild approximations in [30], tomodify the way that clusters aremerged. In this
paper we used a family of DID algorithms: ALDID and WLDID. They are variants
of the traditional hierarchical clustering algorithms AL and WL, respectively. The
main difference between AL and ALDID is that in AL, in each iteration the pair of
clusters with the highest cohesion is always merged; in ALDID some tests are made
using the minimum description length (MDL) criterion between two possibilities.
These two possibilities consist in the DID of the two clusters combined, and the DID
of the two clusters separated. One advantage in using an algorithm from this family is
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that it stops merging clusters before all the data is merged into one cluster, revealing
intrinsic cluster structure in the data when the true number of clusters is unknown.

Consensus Clustering Consensus clustering, also known as Clustering combina-
tion, is a powerful technique that combines the information of multiple clustering
partitions, forming a clustering ensemble (P), and creating a consensus partition
that leverages the results of individual clustering algorithms. Recent surveys present
an overview on this research topic [31, 32]. One of the significant approaches is
the Evidence Accumulation Clustering (EAC) [33]. This framework is based on
the aggregation of object co-occurences, and the consensus partition is obtained
through a voting process among the objects. Specifically, the consensus clustering
problem is addressed by summarizing the information of the ensemble into a pair-
wise co-association matrix, where each entry holds the fraction of clusterings in the
ensemble in which a given pair of objects is placed in the same cluster:

C(i, j) = ni j

N
, i, j ∈ 1, . . . , N . (3)

For the construction of the ensemble, we use the k-means algorithm [25] with
different parameters and initializations. We created a set of N = 100 partitions1 by
randomly choosing the number of clusters, following the work in [34] where the
minimum and maximum number of clusters per partition depends on the number of
objects n, and is bound to the interval [

√
n
2 ,

√
n].

The extraction of the consensus partition can be performed using several
approaches based on the induced co-association matrix: (i) as a new (dis)similarity-
based representation of objects, where the intrinsic structure of the data is enhanced
through the evidence accumulation process, enabling the determination of the con-
sensus partition using algorithms that explicitly use similarities as input, such as
hierarchical linkage methods (as classically performed in [33]); (ii) as a new vector-
based object description, considering each line of the matrix a new feature vector
representation, and using it as input to a clustering algorithm such as the k-means
[35]; (iii) as a new probabilistic distribution characterized by the probability of pairs
of objects being in the same cluster [36].

Application to EEG and ECGThe focus of this workwas the unsupervised analysis
of the ECG signals, and for that we applied all the described techniques: (i) hier-
archical agglomerative algorithms; (ii) hierarchical agglomerative algorithms with
dissimilarity increments; (iii) consensus clustering based on evidence accumulation
clustering, using as extraction criterion the average linkage method with the number
of clusters automatically determined by the life-time criterion.

The clustering of the ECG heartbeats was performed over the means of 5 con-
secutive heartbeats. Since we are willing to compare these partitions with the ones
obtained on the context ofEEG,where for each line of the test there is only one cluster,

1This is the number typically proposed in the reference literature.
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it was necessary to post-process the obtained partitions, choosing as representative
cluster for each line the one with highest cardinality (largest time span).

In the context of EEG clustering, we applied the hierarchical agglomerative meth-
ods with and without dissimilarity increments.

3.4 Cluster Validation

Cluster validation techniques have been developed to guide the design of clustering
experiments and to assess the quality of the outcome. There are three types of cluster
validity measures [37–41]: (i) External: used to measure the goodness of a clus-
tering structure with respect to external information; (ii) Internal: used to measure
the goodness of a clustering structure without supplying any class labels; and (iii)
Relative: used to compare different clusterings.

We adopt an external clustering validation perspective, using as external source
of information the clusterings obtained with the EEG. There is a long list of external
validation indices proposed in the literature [39, 40, 42, 43],which can be categorized
as follows: (i) Counting Pairs Methods: a class of criteria based on counting the
pairs of points on which two clusterings agree/disagree, Wallace [44], Fowlkes and
Mallows [42], and Rand’s [45] are the most representatives of this class; (ii) Set
Matching: based on set matching cardinality,H criterion [39], and consistency index
(Ci) [46, 47] are representative of this class; (iii) Information Theoretic: based on
information theoretic concepts (entropy and mutual information); representatives of
this class of criteria are the Variation of Information (VI) index [39] and Dom’s index
[43].

In this work, we compare the partitions obtained with the ECG with the ones
obtained with the EEG (taken as ground-truth), and following the idea proposed in
[14]. We use indices of the three categories, to verify the consistency of the results
in several perspectives, namely: Rand [45], a modified version of the Consistency
Index entitled Average Cluster Consistency (ACC) [47], and VI [39]. All the three
indices take values between 0 and 1. Rand’s index and the ACC take the value 1 for
a perfect match between partitions, and for the VI index, 0 corresponds to a perfect
match.

4 Experimental Results

Figure6 exemplifies the clustering of the ECG templates obtained for one of the
subjects, using the clustering combination (CC) method. It shows, for each line of
the concentration task, the clusters to which the templates in that line belong to. The
first observation to note is that the lines are not characterized by a single cluster, but
rather by two or three clusters that alternate between them. However, it is possible to
perceive the existence of different groups of lines. In this particular case, lines 0–2 are



446 C. Carreiras et al.

Fig. 6 Clustering obtained
for subject 11, using the
clustering combination
method, where each color
represents a cluster, with a
total of 8 clusters; Bck
denotes the background
color of the matrix

mainly composed by clusters 1, 2, and 3, lines 4–7 are composed by clusters 7 and 8,
and the remaining lines are composed by clusters 4, 5, and 6. Another interesting note
is the fact that the number of templates per line decreases throughout the completion
of the task, implying that the first few lines of the task take longer to complete than
the last lines. These observations are valid for the majority of the subjects, although
the number of clusters and their distribution differs from subject to subject, forming
different groups of lines.

Inter-subject variability is evidenced in Fig. 7, where the clustering obtained,
across all subjects, with the EEG (using PLF features and ALDID clustering—
Fig. 7a) is compared to the clustering obtained with the ECG (using CC clustering—
Fig. 7b). Remember that, in the case of the ECG, each line is represented by the
most frequent cluster in that line. It is possible to observe that the ECG produces a
higher number of clusters than the EEG, where each cluster tends to form groups

(a) (b)

Fig. 7 Comparison of the clustering obtained with the EEG to the one obtained with the ECG,
across all subjects; each color represents one cluster
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of contiguous lines. Contrastingly, in the ECG it is frequent to have transitions to
clusters seen in previous lines.

The results of the cluster validation are shown in Tables1, 2, and 3 for the Aver-
age Cluster Consistency (ACC), Variation of Information (VI), and Rand’s index,
respectively. For the ACC criterion, the highest agreement is obtained between the
ECG clustering with CC and both the EEG clustering using AL (BPF) and ALDID
(PLF), with a value of 0.79. Regarding the VI measure, the strongest agreements are
seen for the ECG clustering using the AL algorithm, in particular with the ALDID
method applied to the PLF features from the EEG, with a value of 0.20. Concern-
ing Rand’s index, the highest value, 0.63, is obtained between the ECG clustering
through CC with the EEG clustering using WLDID (BPF).

5 Discussion

Our work addresses the following questions: (i) “Is ECG morphological analy-
sis capable of identifying affective states throughout the realization of a task that
demands a high attention span?”; (ii) “Are the obtained states related to the ones
found while analyzing EEG data?”; and (iii) “What techniques can be considered to
be more suitable for the analysis of the ECG?”

The validation of the partitions found using ECG, when considering the EEG
partitions as ground-truth, shows that there is evidence of correlation between them,
revealing that ECG can be used to infer affective states. The ECG partitions have a
much higher number of partitions than the EEG ones, leading to distinct results over
the various validation criteria (considering the different perspectives), associatedwith
moderate to high matching. This was mainly due to small variations over time of the
ECG heartbeats, that lead to slow time transitions between the different clusters.

The clustering technique that presents the best results varies depending on the vali-
dation index.When considering the average cluster consistency (ACC), the consensus
clustering (CC) obtains partitions that lead to a best match; when using variation of
information (VI) criterion, the Average Link (AL) method is the one that leads to
best match; and when using the Rand’s index there is not a method which can be
considered a clear winner. The situations with best results are partitions with high
number of clusters, which correspond to Average linkage and Consensus Clustering.

6 Conclusions

In this work we present a methodology for attention detection based on the mor-
phological analysis of ECG signals, using data collected during the course of a task
requiring a high level of attention span. We compare the ECG morphology results
with the analysis performed using the EEG. This comparison was accomplished
using clustering validation indices.
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The ECG analysis was divided into several steps. For the feature extraction step,
the signal was first digitally filtered, segmented based on the peaks found by a mod-
ification of the Engelse and Zeelenberg algorithm, and templates were formed using
means of 5 consecutive heart beats. For the clustering step, several state of the art
techniques were used, since the ECG heartbeats have very small variations over time,
leading to touching clusters.

Several clustering validation indices were used, trying to compare the partitions
using different perspectives. Each of the validation indices showed that there is a high
evidence of correlation between the partitions obtained by the ECG and the EEG.
There is not a clear winner method, but Average Linkage and Consensus Clustering
can be considered suitable methods for this kind of analysis.
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Autonomous Learning Needs a Second
Environmental Feedback Loop

Hazem Toutounji and Frank Pasemann

Abstract Deriving a successful neural control of behavior of autonomous and
embodied systems poses a great challenge. The difficulty lies in finding suitable
learning mechanisms, and in specifying under what conditions learning becomes
necessary. Here, we provide a solution to the second issue in the form of an additional
feedback loop that augments the sensorimotor loop in which autonomous systems
live. The second feedback loop provides proprioceptive signals, allowing the assess-
ment of behavior through self-monitoring, and accordingly, the control of learning.
We show how the behaviors can be defined with the aid of this framework, and we
show that, in combination with simple stochastic plasticity mechanisms, behaviors
are successfully learned.

Keywords Neuromodulation · Learning · Plasticity · Sensorimotor loop ·
Auton-omous systems

1 Introduction

Only autonomous systems can learn autonomously. We use animats [1–3] as par-
adigmatic examples of autonomous systems. They are represented by simulated or
physical robots. The animat approach is focusing on emergent behaviors and self-
organizing processes which generate the life-sustaining interactions of an animat
with its dynamically changing environment. It places emphasis on key features of
autonomy to which learning is one of the basic properties. In addition, it takes into
account the embodied and situated nature of relevant cognitive processes [4].
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An animat is equipped with sensors to perceive the properties of its environment,
with proprioceptors to perceive its body’s internal (metabolic, physiological) states,
with actuators to act in its environment, as well as with a behavioral control that
relates its sensory signals and internal states to its actions such that it is able to
satisfy its needs for survival.

Survival of a system depends upon some essential internal variables that are
monitored andmaintainedwithin a givenviability zone, i.e. on homeostatic properties
[5]. The assumptionhere is that the primary role of autonomous learning is to establish
and to enhance the homeostatic properties of the body. In other words, there will be
a close interplay between learning mechanisms and proprioception. In the context of
embodied cognition and neuronal plasticity, homeostasis has been examined by e.g.,
[6–8]. Regulating homeostatic properties is often applied for exploring the system’s
behavior space, and usually results in a behavior that is not goal-directed [9]. Here,
however, goal-directed behavior is considered to be the essential starting point for
any kind of learning.

With respect to autonomous learning one is then left with three basic questions:
What to learn? When to learn? How to learn? The last question refers to internal
mechanisms, such as synaptic plasticity rules [10, 11] and regulatory mechanisms
of neuronal excitability [12], which will change dynamical properties of the neural
control. But by now, there is no definite general answer or optimalmethod to generate
such a faculty in the neural control of animats. Known learning rules like backprop-
agation [13] and variants of Hebbian rules [10] refer to specific network structures
like feedforward networks or Hopfield networks [14], and to specific problems like
pattern recognition or reconstruction. Thus, and since these methods are inadequate
for learning a life-sustaining behavior in animats, in this paper, two simple stochastic
plasticity mechanisms are deployed for testing the proposed framework.

On the other hand, the first of our questions seems easy to answer:A life-sustaining
behavior has to be learned. But again, since environmental conditions and situations
are changing frequently, the second of our questions can be rephrased as follows:
What signals drive internal mechanisms and corresponding interactions towards a
life-sustaining behavior?

A possible answer is to suggest a second environmental feedback loop. This idea
can be traced back as far as the work of H. S. Jennings and his studies of lower-order
animals [15], and was reformulated by W. R. Ashby in the early days of cybernetics
[5]. The second environmental feedback loop is associated with our second question,
namely, when an autonomous system has to learn a new behavior. This is assumed
to be the case, for instance, when, during the interaction with the environment, there
is a situation where “it hurts”, or a situation which produces pleasant or unpleasant
“feelings”. These metabolic or physiological states stimulate the signals from the
proprioceptors. For instance, those signalsmaybe generated if joint angles of a legged
animat exceed their limits, a motor gets hot, the system bumps into an obstacle, or the
“low” state of an energy neuron signals “hunger”. In all such cases, proprioceptors
mediate corresponding internal, non-neural processes.

To systematically examine these problems, we implemented similar scenar-
ios where proprioceptors are combined with artificial neuromodulators to form
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modulator subnetworks. These networks monitor the behavior of the animat, and
stimulate the artificial neuromodulator cells in response to undesired or beneficial
behavior. Stimulated neuromodulator cells then produce neuromodulators to trigger
or inhibit plastic changes in the control subnetworks of the animat.

The paper is organized as follows. Section2 describes the modulator network
model with a simple random plasticity method, and an alternative Gaussian walk
plasticity method. Section3 introduces the two simulated robots that are used to
test the method, followed by a description of the experiments by which we test the
neuromodulation framework in Sect. 4. Finally, the results are presented, and the
finding are discussed in Sect. 5, followed by final conclusions on the advantages and
limitations of this learning approach.

2 Methods

2.1 Modulated Neural Networks (MNN)

AMNN can be any kind of standard artificial neural networks extended by a neuro-
modulator layer. Some related approaches, though more specialized, are e.g., Gas-
Nets [16], Artificial Endocrine Systems [17], and Artificial Hormone Systems [18].

Our variant of a neuromodulator layer provides neuromodulator cells (NMCs)
that maintain spatial distributions of neuromodulator (NM) concentrations as part of
the network. NM produced by a NMC usually diffuses into the surrounding tissue
and influences nearby network structures. Due to this spatial nature of NMs, a MNN
must provide a spatial representation, i.e. neurons and other network elements (e.g.
NMCs) must have a location in space. Each NMC represents a single source for a
specific NM type and maintains its own concentration level and distribution within
the network. The NM concentration c(t, x, y) at each point in the network at time t
is the sum of all locally maintained concentration levels ci (t, x, y) at that position.

c(t, x, y) =
n∑

i=1

ci (t, x, y), x, y ∈ R (1)

NMCs are always in one of two modes: In production mode the cell may increase
its modulator concentration, in reduction mode it may decrease it. To enter the pro-
duction mode, a NMC must be stimulated for some time, whereas it falls back into
reduction mode when it is not stimulated for a while. The actual model that deter-
mines when and how the stimulation happens can be chosen freely for each NMC.
The same holds for the production, distribution, diffusion and decay ofNMs.Usually,
the concentration of the NM and its area of influence increase and decrease depend-
ing on the current stimulation and mode. But the characteristics of the diffusion area
and gradient are specifics of the chosen models and depend on the MNN variant that
is used for an experiment.
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The effect of NM exposure on network elements can be various, such as affecting
the synaptic plasticity or the function of neurons. Therefore, the actual choice of these
effects strongly depends on the experiments and the planned interactionbetweenNMs
and network components.

2.2 Linearly-Modulated Neural Networks (LMNN)

The specific variant of the MNN used for the first presented experiments is based on
the standard discrete-time neuron model given by

oi (t + 1) = τi (θi +
n∑

j=1

wi j o j (t)) with i, j = 1, . . . , n, (2)

where oi (t) is the output of the neuron i at a discrete time step t , wi j is the weight of
the synapse from neuron j to neuron i , θi is a bias term of neuron i and τi a transfer
function, for instance tanh.

In LMNNs, the stimulation of NMCs follows a simple linear model. The mecha-
nism by which the presented framework guides plasticity is demonstrated schemati-
cally in Fig. 1. Each neuromodulator cell (NMC) is attached to a carrier neuronwithin
a modulatory subnetwork (MSN), and is stimulated when the output of this neuron
is within a specified range [Smin, Smax ]. At each time step t in which the NMC is

Fig. 1 Schematic representation of Linearly-Modulated Neural Networks. Each neuromodulator
cell (NMC) is attached to a carrier neuron within a modulatory subnetwork, and is stimulated
when the output of this neuron is within a specified range. At each time step in which the NMC is
stimulated, its stimulation level increases, and it decreases If not stimulated. If the stimulation level
exceeds a given threshold, theNMCenters theproduction mode. If the level decreases belowa second
threshold, the NMC re-enters the reduction mode. When in production mode, the neuromodulator
defuses in time to the surrounding area of a control subnetwork, and initiates plasticity in rates that
depend on its concentration at the locale of the synapse
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stimulated, its stimulation level si increases by a small amount given by parameter
Sgain . If not stimulated, it decreases by Sdrop:

si (t + 1) =
{

min(1, si (t) + Sgain
i ) if Smin

i ≤ oi (t) ≤ Smax
i

max(0, si (t) − Sdrop
i ) otherwise.

(3)

If the stimulation level exceeds a given threshold T prod , the NMC enters the
production mode. If the level decreases below a second threshold T red , the NMC
re-enters the reduction mode.

In production mode, the modulator concentration c and the radius r of a circular
diffusion area are increased from 0 to Cmax and Rmax respectively. During reduc-
tion mode both decrease again. The rate of change of the concentration is given by
parameters Cgain and Cdrop, that of the radius similarly by Rgain and Rdrop. The fol-
lowing formula shows this for the concentration level ci ; the area radius ri is defined
analogously.

ci (t + 1) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min(Cmax
i , ci (t) + Cgain

i )
if in production mode

and still stimulated

max(0, ci (t) − Cdrop
i )

if in reduction mode

and not stimulated

ci (t) otherwise.

(4)

Due to NM diffusion, learning is triggered in control subnetworks (CSN), accord-
ing to a particular learning rule whose dynamics depends on the NM concentration.
The diffusion mode of each NMC can be chosen, so that the NM concentration is
either constant across the diffusion area, or decays according to a linear or nonlinear
function of the distance to the NMC. The inhomogeneous distributions are inter-
esting for scenarios with local learning. However, in the shown examples, we will
restrict the experiments to a homogeneous, global modulation to demonstrate that
successful controllers can develop even in this simple case.

2.3 Plasticity via Modulated Random Search

The synapses of the network react to NM exposure with plastic changes. To demon-
strate the viability of using neuromodulation to control the learning process, we
choose one of the most simple plasticity methods available:Random weight changes.
We chose this stochastic plasticity method because it is vastly unbiased and is capa-
ble of finding all kinds of network topologies and weight distributions within a given
network substrate. Furthermore, the method does not require any heuristics for the
choice of the network topology, except that solutions are possible with the given
structure.
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Table 1 Parameters of a
modulated random search
synapse

Parameter Description

T ype The NM type the synapse is sensitive to

W Weight change probability

D Disable/enable probability

W min, W max Min. and max. weight of the synapse

M Max. NM sensitivity limit of the synapse

The parameters governing the modulated random search are summarized in
Table1. For a synapse i , the probability of a weight change pw

i at time t is the
product of an intrinsic weight change probability Wi and the current NM concen-
tration c(t, x, y) at the position (xi , yi ) of the synapse. Hereby, each synapse may
limit its sensitivity to NM to a maximal concentration level Mi to prevent too rapid
changes when large amounts of overlapping NMs are present.

pw
i (t) = min(Mi , c(t, xi , yi )) Wi , 0 < Wi ≪ 1 (5)

Stochastic weight changes may occur at any time step, therefore Wi must be very
small. If a weight change is triggered, a new weight wi is randomly chosen from the
interval [W min

i , W max
i ], given as parameters of the synapse.

In addition toweight changes, synapses can also disable and re-enable themselves
following a similar stochastic process. The probability pd

i for a transition between
the two states during each time step is the product of the modulator concentration
c(t, x, y) and the disable probability Di .

pd
i (t) = min(Mi , c(t, xi , yi )) Di , 0 ≤ Di < Wi (6)

If a transition is triggered, an enabled synapse becomes disabled and vice versa.
A disabled synapse is treated as a synapse with weight wi = 0, but its actual weight
is preserved until it is enabled again. This mechanism allows for a simple topology
search within a given neural substrate.

2.4 Plasticity via Modulated Gaussian Walk

Analternative to using randomsearch as a learningmechanism,wepropose a learning
mechanism that depends on small changes of synaptic efficacies when neuromodu-
lation is released. We term this learning mechanism the Modulated Gaussian Walk
(MGW), where, similarly to MRS, the probability of a weight change is the prod-
uct of an intrinsic weight change probability and the neuromodulator concentration.
However, unlike the MRS, no maximal concentration sensitivity is present.
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Instead of randomly assigning a value to the synaptic weight in the interval
[W min

i , W max
i ], the amount of weight change is drawn from a normal distribution

with zero-mean and σ 2-variance. As such, the weight changes according to

w(t + 1) = w(t) + �w where �w ∼ N (0, σ 2). (7)

To assure that the weight remains within its bound (since the term�w can be infi-
nitely large), sampling the normal distribution is repeated until the resulting weight
is within the range.

Amechanism for disabling synapses in also implemented within theMGW learn-
ing rule. However, we do not elaborate on this feature here, since later experiments
do not make use of it.

3 Robots

Later experiments on linearly-modulated neural networks use robot systems typical
for classical neurorobotics problems: a simple pendulum (Fig. 2c) and a differential
drive robot (Fig. 2f). In all cases, motor neurons with an activation range (−1,+1)

Fig. 2 a, b, d, e Environments for learning behavior of a differential drive robot. a, b, d The white
spheres denote possible light source positions. Each light source is bright enough to cover the whole
environment. a Light-tropism to one of four fixed light sources (E1). b Obstacle-avoidance with
exploration (E2). c A simple pendulum simulator for learning oscillation to a target angle (E5).
d Light-tropism to one of four fixed light sources, and avoiding nearby obstacles (E3). e Light-
tropism to one of five randomly shifted light sources, and avoiding nearby obstacles, large obstacles,
and a narrow corner (E4). f The differential drive robot with wheels and sensors shown
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control the desired velocity of the motors. Negative activations are interpreted as
backwards rotation.

The pendulum is equipped with an angular sensor for the current angle of the
pendulum. The differential drive robot is equipped with distance sensors (DS) at
the front, eight touch sensors (TS), three ambient light sensors (ALS) to measure
brightness at three equally distributed positions on the robot, and three directed light
sensors (DLS) in the front of the robot to sense the direction towards light sources
(with a maximal viewing angle of ±90 degrees). For simplicity, light can penetrate
obstacles freely. All experiments have been simulated with the NERD Toolkit [19]
and can be replicated with material from our supplementary page.

4 Experiments

4.1 Experiments with MRS

To demonstrate the method, five experiments with different complexities have been
performed under modulated random search. The experiments are typical for early
evolutionary robotics experiments and are still used in many learning scenarios. In
all experiments, a robot has to learn a simple task from scratch, starting with a plain,
specifically designed LMNN. The predefined MSN of the network produces global
neuromodulators for undesired behaviors, while the given CSN defines the topology
in which solutions can develop. Neuromodulation is global since all synapses of
the CSN are sensitive to NM concentration, and they start out disabled, so that the
network connectivity develops together with the synaptic weights, while all synapses
of the MSN are insensitive to neuromodulation and are therefore static. As such,
each experiment can be defined by a robot, a task, an environment and a control and
modulatory subnetworks (MSN and CSN, respectively).

Tasks and Environments. The first experiment (E1) is a positive light-tropism task
(Fig. 2a). Four light sources are distributed in some distance from the corners of a
quadratic arena. At any time, only one light source is switched on. Each light source
is bright enough to cover the entire arena. When the robot arrives at that light source,
it is switched off and a randomly chosen source is switched on.

The second experiment (E2) focuses on an obstacle-avoidance task (Fig. 2b),
where the robot has to navigate in a quadratic environment riddled with round objects
and narrow corners. The robot also needs to explore its whole environment. Thus, the
arena also comprises a number of light sources each emitting a different, homoge-
neous light that allow the robot to recognize different locations and hence to monitor
its own exploration behavior.

As a combination of the previous experiments, E3 extends the first experiment
with four small obstacles placed with a small asymmetric shift near the four light
sources (Fig. 2d). Here, the robot has to approach the lights and simultaneously avoid
the obstacles next to the light sources.
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Table 2 Experimental setups for global neuromodulation

Exp. τexp τtemp Sensors NMC modules

E1 120 0.5 2 DLS Light

E2 240 5 3 DS Obst, Drive, Explore

E3 720 0.75 2 DS, 2 DLS Light, Obst

E4 720 0.75 2 DS, 2 DLS Light, Obst

E5 240 5 1 AS 2 × TurningAngle

τexp is the experiment time in simulated minutes, τtemp is the duration in minutes without neuro-
modulation production to consider a behavior a successful temporary solution

A more difficult variant is experiment E4. While the task remains the same, there
are now larger obstacles in the middle of the arena and one of the corners is more
narrow (Fig. 2e). Furthermore, a fifth light sourcewas added in the center of the arena.
All lights are now also randomly moved away from their initial positions every time
they get switched on. In contrast to E3 the robot now gets confronted with many
more different light-obstacle combinations, which makes the task quite difficult.

The pendulum experiment (E5, Fig. 2c) requires the controller to learn to swing
with a specific amplitude between the two target angles ±65◦ with a tolerance of
±5◦. The difficulty is that the motors are too weak to get to the target angles without
swinging the pendulum up first.

Control Sub-Networks (CSN). Each CSN includes the necessary sensory and
motor neurons, a number of intermediate processing neurons and a bias neuron.
The latter allows the bias of neurons to be changed using the same technique as used
for other synapses. The network substrates vary over the different experiments, rang-
ing from trivial feedforward networks over a layered network with 4 hidden neurons,
to fully connected, recurrent networks with 2, 4 and 6 intermediate neurons. The
network configurations for the experiments are summarized in Table2.

Modulatory Sub-Networks (MSN). Each MSN uses experiment-specific network
structures to detect undesired behavior based on (sensor) activations to produce neu-
romodulators when needed. As a reaction to the neuromodulators, synapses of the
CSN randomly change and explore different topologies and weight distributions.
This has an effect on the behavior and, accordingly, on the NM production in the
MSN. Similar to the work by Ashby [5], the system is destabilized when an unde-
sired behavior is detected, leading to continuous changes until the system stabilizes
again in a new, valid configuration. In this spirit, six different NMCs are used in the
experiments (see Table2).

The Obst cell reacts on the activation of any of the eight force sensors to detect
undesired contact with objects. The stimulation is quite rapid so that obstacle contact
immediately leads to neuromodulation production to alter the behavior.

The Drive cell gets stimulated when the two motor signals are too low, the robot
is moving backwards, or the difference of the motors becomes too large, i.e. the
robot is moving in narrow circles. Because the desired behavior also may include
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moving backwards and especially moving in circles, the stimulation is less rapid and
tolerates such movements as long as they do not dominate the behavior.

The Explore cell is stimulated when the robot is not entering the detectable
locations frequently (the task E2). Its associated modulating network classifies the
signal of one of the ambient light sensors into the nine detectable locations and
integrates these signals to determine the duration of each location not being visited.
Explore is stimulated if some locations have not been visited for a long time. If a
location is entered that has not been visited for a long time, then all integrator neurons
for all locations are inhibited, so this potential behavior improvement already leads
to a fast decrease in neuromodulator concentration to allow the new configuration to
be tested.

The Light cell also uses an auxiliary network that interprets the ambient light
sensors to detect whether the robot is getting closer to the light. If not, the NMC
is stimulated. This achieved by utilizing neural differentiators of the ambient light
sensors activity.

The TurningAngle cell gets persistently, but slowly stimulated over time.
However, if the pendulum changes its swinging direction within the desired angle
range, then the NMC stimulation decreases rapidly. The desired angular range can
be adjusted independently for each of the two NMCs in the pendulum networks.

Table2 shows which NMCs, with their corresponding auxiliary networks, are
used in each experiment. Figure3 shows the structure of both the CSN and the MSN
for experiments E2 and E3, giving also the neural structures for the six auxiliary
sub-networks. The experiments here are restricted to a global modulator release with
a uniform concentration levels. Table3 summarizes the parameter choices for the
NMCs used across the experiments.

Experiments Setup. Each experiment has been run with five different network sub-
strates for the CSN: a layered network with 4 intermediate neurons (L4) and four
fully, recurrently connected networks with 0, 2, 4 and 6 intermediate processing neu-
rons (N0-N6). Due to the differing number of motors and sensors, the total number
of synapses varies. An overview can be found in Table4. All additional settings of
the network, specifically the settings for the plastic synapses and the NMC settings,
have been fixed at the values given in Table3.

Each such learning scenario (experiment + network substrate) has been repeated
50 times with identical settings, each starting with a new CSN composed of disabled
synapses with zero weights. Thus, the entire network topology and the synaptic
weights had to be learned from scratch within the given network substrate.

4.2 Comparative Experiment with MRS and MGW

We compare the two plasticity mechanism on a task that combines light tropism and
obstacle-avoidancewith no exploration, i.e. theMSNcontainsNMCsObst,Drive,
and Light. The chosen CSN of this task is similar to the layered architecture L4, but
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Fig. 3 Two exemplary
control subnetworks that
result from learning, with
their associated modulator
subnetworks

Table 4 Number of plastic synapses in each of the experiments. All configurations include a bias
neuron. L4 provides a layered network with 4 neurons, all others are fully connected

Number of processing neurons

N0 N2 N4 N6 L4

E1 14 32 60 96 46

E2 10 28 54 88 42

E3 14 32 60 96 42

E4 14 32 60 96 42

E5 4 15 35 63 32

with few simplifications that decrease the number of plastic synapses considerably.
First, the hidden layer is split into two pairs of neurons. One pair is connected to the
two distance sensors only, while the other pair is connected to the two directed light
sensors. This results in a modular structure that enforces a kind of specialization to
each pair. The twomodules are also fully-connected to each other, adding eight plastic
synapses that are responsible for the fusion of behavior. Furthermore, a symmetry
constraint is added to each module. This means that a change of some synapse at
the left side of the module would be copied to corresponding synapse at the right
side. This constraint is meant to reflect the symmetry in the body morphology of the
robot, which would result in a symmetric behavior. No constraints are imposed on
the connections between the two modules. As such, the number of plastic synapses
in this CSN, including those coming from a bias neuron, are only 22.

The parameters of MRS are chosen as before but with the probability of enabling
or disabling a synapse set to zero. The range of weights is restricted to ±1.5 for both
MRS and MGW. For the latter, the variance σ 2 is set to 0.2. Each learning rule was
tested on 64 runs, with 8 hours simulation time.
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5 Results and Discussion

5.1 Results on Modulated Random Search

For all experiments and with all but one of the different network substrates, solutions
have been foundwithin the given timewindows. All behaviors discovered in this way
have been sufficiently effective and comply with the desired and expected behaviors.
However, as can be seen in Fig. 4, by far not all runs did finally end up with a proper
behavior network during the limited learning time. Consistent with intuition, the
easier the task is, the larger the percentage of successful learning trials.

Therefore, The simple light-tropism task E1 led to successful behaviors in almost
all cases, despite its comparably short learning time of up to only two hours. Also,
the final solutions have been found very fast (Fig. 5a-E1) without many intermediate
temporal solutions (Fig. 5c-E1).

In contrast, the almost similarly short duration of the obstacle-avoidance task E2
with four hours seems to be much too low to consistently find solutions, contrary
to our expectation. Therefore, only about half of the experiments were successful.
A reason for this may be the relatively slow detection of insufficient exploration
behavior with the Explore NMC. This modulator has to react with a larger delay
to give the networks a chance to actually do exploration.

So, behaviors violating the exploration condition –while still doing afine obstacle-
avoidance – are detected only after a significant delay. Also, such intermediate solu-
tions get destroyed quite easily when a bad exploration behavior is detected, leading
to the destruction – not to a refinement – of the temporary solution. This, obviously, is
one of the major limitations of the stochastic search: due to the missing directedness
of the learning, temporary solutions are usually not improved, but rather destroyed
and replaced by very different networks.

The results for combining light tropism and obstacle avoidance (E3) reflect the
increasing difficulty of the task. Even though the experiment was simulated 12 hours

Fig. 4 Percentage of successful experimentswith stable solutions. The gray tips indicate the number
of temporary solutions with a continuous modulator-free behavior during at least 30min, which
would be interpreted as solutions in intermediate-term evaluations
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(a)

(b)

(c)

(d)

Fig. 5 a Time to final solution. b Time to first (temporary) solution. c Number of (temporary)
solutions. d Minutes spent in learning mode

per try, only ≈ 20% of the runs lead to a fully stable behavior. First temporary
solutions have been found quite fast (Fig. 5b-E3), but most light tropism behaviors
with only a partial obstacle-avoidance behavior are easily destroyed due to hitting
one of the small obstacles close to the light sources. Because the light sources are
approached with slightly different angles, at some point a situation is encountered
where the obstacle-avoidance behavior briefly fails and the obstacle is hit. This leads
to a strong production of NM and the behavior is usually destroyed. This alternation
betweenmany temporary solutions (Fig. 5c-E3) and the subsequent network destruc-
tion, and thus long phases with enabled plasticity (Fig. 5d-E3), describes the typical
way how network configurations are explored with the stochastic search: only if all
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requirements of the behavior are fully met with a single mutation burst, the behav-
ior remains stable in the long run. This all or nothing approach is another limiting
characteristics of the simple stochastic search.

This becomes even more severe in the aggravated variant of this experiment (E4),
in which large and more various obstacles enforce the robot to do significant detours
against the desired direction towards the light. Here, a proper behavior requires a
fine tuning of weights, which makes it much more difficult to accidentally stumble
upon a working network. The percentage of final solutions, therefore, is even lower
with only about 10%. However, the number of long-term temporary solutions with
a continuous runtime of more than 30min exceeds the number of stable solutions
by a factor of ≈ 2 (Fig. 4-E4). These behaviors would in many evaluations with a
short test (e.g. evolutionary algorithms) already be considered solutions, but it shows
that even slight weaknesses due to an unfortunate sequence of target light sources
can lead to a destruction of such almost stable networks in the long run. As in E3,
temporary solutions are found quite fast (Fig. 5b-E4), but are destroyed later, so that
most of the time is spent trying new network configurations (Fig. 5d-E4).

The pendulum behavior again is an example of a simpler single-goal task. The
number of successful runs is, with almost 50%, quite high and the networks are also
found fast within the first 2 hours (of a total of 4 hours). Due to the characteristics of
the experiment, there are almost no temporary solutions: if a solution is found, then
this solution tends to be stable in the long run, because there are no disturbances in
the simple pendulum motion (compare Fig. 5a-E5, 5b-E5, and 5c-E5).

An interesting observation can be made concerning the network complexity. It
was expected, that the performance of the experiments primarily depends on the size
of the neural substrate, because with an increasing search space the probability of
finding a stable solution should drop down significantly. However, at least for the
network sizes used in these experiments, there is only a small influence of the net-
work substrate on the performance (Fig. 4). Only in E2 the largest network showed
a significant drop in the number of solutions compared to the other substrates in the
same experiment. And in E5 it seems that the layered network has an advantage over
the fully recurrent neural networks. This may indicate, that – as long as the topology
can vary within the substrate – there are similar or equivalent network configurations
contained in all substrates and that with an increasing number of synapses, the frac-
tion between feasible and improper network configurations may remain in the same
order of magnitude. In forthcoming experiments, larger networks have to be tested
to find the actual limiting size for this simple class of robot experiments. In these
experiments, anyway, the impact of the chosen experiment complexity has a much
higher impact on the performance than the chosen network substrate, so the major
effort in designing such experiments should probably be focused on defining a well
suited experiment, not on choosing a particularly suited network substrate.

To examine the learning process in more detail, Fig. 6 shows the weight changes
and the related neuromodulator concentrations for one of the learning runs in exper-
iment E2. As expected, the weight changes in learning phases are random and undi-
rected. However, from time to time, the system stabilizes in a network configuration,
because no neuromodulator is produced as a response to the (partially) working
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Fig. 6 Example run for the light tropism-behavior, showing the alternation between stable and
plastic states during the behavior learning. The upper graph shows the individual weights over
time, the lower graph the stimulation and concentration level of the two NMCs

behavior. It can also be seen in the lower part of Fig. 6 that even during these stable
states, the stimulation of the NMCs is not just zero, but that their stimulation level
remains active, though not high enough to enter their production mode. So, slight vio-
lations of the behavior restrictions still take place, but these violations are not strong
enough to be interpreted as a failing behavior. But if the stimulation level exceeds the
limit to production mode, then often one of the first random changes destabilizes the
system so much, that other neuromodulators are triggered as side-effect. This leads
to a strong relearning, usually destroying the previous temporary solution, until the
modulation stops when a new potentially working configuration has been found.

5.2 Comparing MRS and MGW

As the previous section demonstrated, due to its uncontrolled random changes to net-
work structure, MRS leads to the destruction of solutions. In comparison, limiting
random changes to small values, as is the case in MGW, results in the preservation of
found solutions. In the modular light-tropism/obstacle-avoidance experiment, out-
lined in Sect. 4.2, MRS has shown 34 temporary solutions that lasted longer than
5min in simulation time, with an average of 5.7min per solution. On the other hand,
MGW found almost double the number of temporary solutions, with an average of
12.5min per solution. Also, underMGW, the agent spendsmore of its time exploiting
the found solutions. While temporary solutions that lasted longer than 5min occu-
pied more than 11.4% of the experiment time of robots trained by MGW, only 8.2%
of the experiment time is covered by the temporary solutions found by MRS. This
means that learning with Gaussian walk is more stable since the learning rule does
not result in the sudden destruction of behavior when neuromodulation is released
due to minor lapses in behavioral fitness. Further results suggest that MGW refine
network structures that are on the verge of becoming a solution by inducing small
changes to the networks’ synaptic weights. This is demonstrated by the fact that only
40% of controllers trained by MRS found a temporary solution at all, while MGW
lead to 70% of the runs leading to a temporary solution at some stage of learning.
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6 Conclusions

We demonstrated with five typical experiments from the field of robot learning and
early evolutionary robotics, that a simple random search on a given network topology
is sufficient to findmany suitable solutions, as long as the network changes are started
and stoppedbya reasonable feedback signal. In our case, this feedback is realizedwith
neuromodulators that are triggered as a reaction to the sensed behavior. Because of
this, and the simplicity of the implementation, the learning should also work directly
on physical robots without external supervision. The tasks show that the feasibility
of the method strongly depends on the experiment complexity, not so much on the
chosen network substrate. Also, temporary solutions appear and get relearned when
the behavior proves ineffective in some situations. These aspects – already available
in such a simple approach – are highly desired in the field of robot learning to allow
adaptive, self-contained robots with life-long learning capabilities.

Simple random search, however, is not meant to be used as a competitive learning
paradigm for real robots. Our results show that by simply replacing the fully-random
search with a more confined randomwalk of synaptic weights lead to a huge increase
in the number of solutions and of their stability. This points to the possible benefits
of incorporating more directed learning rules and synaptic dynamics to the neuro-
modulation framework. Our intention of this study is to provide the mechanism that
signals to an autonomous system the need to start learning, i.e. when to learn. The
suggested learning mechanism itself, i.e. how to learn, needs to prove superior to the
simple random search, as was demonstrated by the Gaussian walk, in order to justify
its increased complexity.
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Prediction Capabilities of Evolino
RNN Ensembles

Nijolė Maknickienė and Algirdas Maknickas

Abstract Modern portfolio theory of investment-based financial market forecasting
use probability distributions. This investigation used an ensemble of genetic algo-
rithm based recurrent neural networks (RNN), which allows to obtain multi-modal
distribution for predictions. Comparison of the two different models—scatted points
based prediction and distributions based prediction—opens new opportunities to
create profitable investment tool, which was tested in real time demomarket. Depen-
dence of forecasting accuracy on the number of Evolino recurrent neural networks
ensemble was obtained for five forecasting points ahead. This study allows to opti-
mize the cluster based computational time and resources required for sufficiently
accurate prediction.

Keywords Distribution of expected returns · Ensembles · Evolino · Financial
markets · Prediction · Recurrent neural networks
1 Introduction

Neural networks and their systems are successfully used in forecasting. There are
several factors that determine the predictive accuracy of the prediction—input selec-
tion, neural network architecture and the quantity of training data.

The paper [1] is to provide a practical introductory guide in the design of a neural
network for forecasting economic time series data. An eight-step procedure to design
a neural network forecastingmodel is explained including a discussion of trade offs in
parameter selection, prediction dependence on number of iterations. In paper [2], the
effects of different sizes of training sample sets on forecasting currency exchange
rates are examined. It is shown that those neural networks-given an appropriate
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amount of historical knowledge—can forecast future currency exchange rates with
60 percent accuracy, while those neural networks trained on a larger training set have
aworse forecasting performance.More over, the higher-quality forecasts, the reduced
training set sizes reduced development cost and time. In the paper [3], the relationship
between the ensemble and its component neural networks is analysed, which reveals
that it may be a better choice to ensemble many instead of all the available neural
networks. This theory may be useful in designing powerful ensemble approaches. In
order to show the feasibility of the theory, an ensemble of twelve neural networks
(NN) approach named GASEN is presented.

The methodology in paper [4] proposes an architecture-altering technique, which
enables the production of highly antagonistic solutions while preserving any weight-
related information. The implementation involves genetic programming using a
grammar-guided training approach, in order to provide arbitrarily large and con-
nected neural logic network. The ensemble of 1–5 neural networks was researched
by [5], resumed that “incorporating more neural networks into the model does not
guarantee that the error would be lowered”. As it can be seen in the application case
study, the model with two neural networks did not perform more satisfactorily than
the single neural network.

In paper [6], was proposed a general framework for designing neural network
ensembles by means of cooperative coevolution. The proposed model has two
main objectives: first, the improvement of the combination of the trained individ-
ual networks; second, the cooperative evolution of such networks, encouraging col-
laboration among them, instead of a separate training of each network. Authors
[7] made ensemble of neural predictors is composed of three individual neural
networks.The experimental results have shown that the performance of individ-
ual predictors was improved significantly by the integration of their results. The
improvement is observed even during the application of different quality. In paper
[8] a prediction technique was proposed which was called “an ensemble of simple
regression models” to improve the prediction accuracy of cross-project prediction.
To evaluate the performance of the proposed method, was conducted 132 combina-
tions of cross-project prediction were conducted using datasets of 12 projects from
NASA IVV Facility Metrics Data Program. Brezak et al. [9] made a comparison of
feed-forward and recurrent neural networks in time series forecasting.The obtained
results indicate satisfactory forecasting characteristics of both networks. However,
recurrent NN was more accurate in practically all tests using less number of hidden
layer neurons than the feed-forward NN. This study once again confirmed a great
effectiveness and potential of dynamic neural networks in modelling and predicting
highly nonliner processes.

Recurrent Neural networks (RNN) ensembles acts as expert systems, and for its
results are using expert methods. One of them, the fuzzy Delphi, was used for sales
forecasting by [10] and integrated with artificial NN for stock market forecasting by
[11]. New forecastingmechanismwas proposed by [12]. It wasmodelled by integrat-
ing Fuzzy Delhi Method (FDM) with Artificial Neural Network (ANN) techniques
to manage the demand with incomplete information.
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In order to form the investment strategies in financial markets, there is a need for
a proper forecasting technique, which can forecast the future profitabilities of assets
(stock prices or currency exchange rates) not as particular values but as probability
distributions of values. Such approach is analytically meaningful because future is
always uncertain and we cannot make any unambiguous conclusion about it. For
this reason the adequate portfolio model is used, developed by [13], which is an
amplification of Markowitz portfolio model. The adequate portfolio conception is
based on the adequate perception of reality that portfolio return possibilities should be
expressed as a probability distribution with its parameters. The analysis of the whole
probability distribution is especially important taking into account that portfolio
return possibilities usually do not conform to Normal probability distribution form
and therefore it is not enough to know their mean value and standard deviation. The
initial concept of adequate portfolio over time was also applied to the analysis of
other complex processes in the scientificworks ofA.V.Rutkauskas and his co-authors
[14–17].

Decision maker is soliciting opinions as data for statistic inference, with the addi-
tional complication of strategic manipulation from interested experts [18]. Authors
investigated proportion of correct decisions made by different number of agents—
a ∈ [1, 1000].

The aim of the paper is to investigate the influence of the number of neural nets
on accuracy of financial markets prediction, to find new conditions of constructing
investment portfolios. Knowing how much RNN is enough that the ensemble makes
sufficiently accurate forecasting, to allow the saving of time and power resources.

2 Prediction Using Artificial Intelligence

2.1 Prediction

The forecasting we understand the ability to correctly guess a certain amount of
unknown data in time with some precision. After all, the predicted data set is com-
pared with a set of known data to evaluate the correlation between these.

Suppose it is known that p is an element of some set of distributions P . Choose a
fixedweightwq for each q in P such that thewq add up to 1 (for simplicity, suppose P
is countable). Then construct the Bayesmix M(x) = ∑

q wqq(x), and predict using
M instead of the optimal but unknown p. Howwrong could this be? The recent work
of Hutter provides general and sharp loss bounds [19]: Let L M(n) and Lp(n) be the
total expected unit losses of the M-predictor and the p-predictor, respectively, for
the first n events. Then L M(n) − Lp(n) is at most of the order of

√
Lp(n). That is,

M is not much worse than p. And in general, no other predictor can do better than
that. In particular, if p is deterministic, then the M-predictor won’t make any more
errors. If P contains all recursively computable distributions, then M becomes the
celebrated enumerable universal prior. The aim of this paper is to construct a model
that can make predictions with a small enough difference M(t)− p(t) for some fixed
time t .
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2.2 Evolino RNN

Autors [20, 21] propose a new class of learning algorithms for supervised recurrent
neural networks—EVOLINO RNN. EVolution of recurrent systems with Optimal
LINear Output. EVOLINO-based Long Short-TermMemory (LSTM) recurrent net-
works learn to solve several previously unlearnable tasks. “EVOLINO-based LSTM
was able to learn up to 5 sins, certain context-sensitive grammars, and the Mackey-
Glass time series, which is not a very good RNN benchmark though, since even
feedforward nets can learn it well” [22].

In Evolino RNN Enforced SubPopulations (ESP) evolves neurons instead of full
networks. Neurons are segregated into subpopulations, and networks are formed
by randomly selecting one neuron from each subpopulation. A neuron accumulates
a fitness score by adding the fitness of each network in which it has participated.
The best neurons within each subpopulation are mated to form new neurons. The
network shown here is an LSTM network with four memory cells. In Evolino, only
the connection weights in the recurrent part of the network are evolved. The weights
to the output units are computed analytically during each evaluation.

2.3 Ensembles of NN

Modularity is a feature often found in nature. It can be of two types-(1) when the
modules are connected to each other in parallel or sequentially, (2) when the modules
are connected by another module inside. We constructed a modular Evolino RNN
system connecting them in parallel.

Ensembles acts as expert systems, like group with different opinions. One of
experts methods is delphy method that gives a certain priority evaluation for results
of the group.

The Delphi method is based on the assumption that group judgements are more
valid than individual judgements. Our observations on the Evolino recurrent neural
network prediction [23] made clear that some of the predictions are very accurate,
but some others are contradictory, unstable, andmust be rejected. The Delphi method
makes it possible to achieve a certain consensus or clustering of forecasts. The steps
of classical Delphi method are:

(1) The group of experts receives a questionnaire and assesses their prognoses using
numeric values, argues their assessments, and completes the questionnaire.

(2) The answers are arranged in ascending order and the media μ and quartiles
Q1, Q3 are calculated. After determining the upper and lower quartiles, the
range between the two averages Q1μ and Q3μ is considered the most desirable
interval. The compatibility of the predictions is calculated, such as whether there
is a consensus of the experts. The experts are then acquainted with the results
and the arguments and prognoses are made again.



Prediction Capabilities of Evolino RNN Ensembles 477

(3) The second step is then repeated. Theoretically, the Delphi process can be con-
tinuously iterated until a consensus is determined to have been achieved. In
practice, the number of iterations is limited by the time available for decision
making.

Consensus in expert system based on RNN ensembles is calculating in each step
of delphy method. Therefore it is necessary to assess the compatibility of the expert
assessments and calculate the interquartile coefficient. The variation of the responses
is taken to be the difference between the first and third quartiles, Q3 − Q1. The
interquartile coefficient is the quotient of the variation response by the median:

q = Q3 − Q1

μ
, (1)

The interquartile coefficient ranges from 0 to +1 and is close to zero when the
distribution has very little variation.

Forecast getting by RNN ensemble for the one point in the future may be: (1)
a single point; (2) the most likely forecast interval; (3) the distribution of expected
values.

2.4 Distributions of Expected Values

The formof the distribution can be described usingSharpe characterization plane [24]
and main indicators: skewness and kurtosis.

Skewness is indicator used in distribution analysis as a sign of asymmetry and
deviation from a normal distribution:

γ1 =
∑N

i=1(yi − ȳ)3

(N − 1)σ3
, (2)

where ȳ is the mean, σ is the standard deviation, and N is the number of data points.
Skewness > 0—Right skewed distribution—most values are concentrated on

left of the mean, with extreme values to the right. Skewness < 0—Left skewed
distribution—most values are concentrated on the right of the mean, with extreme
values to the left. Skewness = 0—mean = median, the distribution is symmetrical
around the mean.

Kurtosis is indicator used in distribution analysis as a sign of flattening or “peaked-
ness” of a distribution:

β2 =
∑N

i=1(yi − ȳ)4

(N − 1)σ4
, (3)

and excess kurtosis:

γ2 =
∑N

i=1(yi − ȳ)4

(N − 1)σ4
− 3. (4)
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K urtosis > 3—Leptokurtic distribution, sharper than a normal distribution, with
values concentrated around themeanand thicker tails. Thismeans highprobability for
extreme values. K urtosis < 3—Platykurtic distribution, flatter than a normal distri-
bution with a wider peak. The probability for extreme values is less than for a normal
distribution, and the values are wider spread around the mean. K urtosis = 3—
Mesokurtic distribution—normal distribution for example. The investment decisions
in financial markets are always taken under uncertainty. Therefore, distributions are
more informative and reliable than scattered projections.

Our artificial intelligence system is ensembled from EVOLINO RNN. We are
solving a problem: How many elements must be in ensemble for accurate prediction
and rational decision making.

3 Description of Models Based on Ensembles of Recurrent
Neural Networks

Two different models have been developed and tested. Technical feasibility has been
a major factor in determining both the creation of models.

3.1 Scattered Points Based Prediction Model

Evolino RNN-based prediction model, which is applied to the average for PC. This
model, which uses eight predictors, was investigated with the phython program by
the following steps:
Data step. Getting historical financial markets data from Meta Trader—Alpari. We
choose for prediction EURUSD (Euro and American Dollar), GBPUSD (Great
Britain Pound and American Dollar), exchange rates and their historical data for
the first input, and for the second input, two years historical data for XAUUSD (gold
prise in USA dollars), XAGUSD (Silver price of USA dollars), QM (Oil price in
USA dollars), and QG (Gass price in USD dollars). At the end of this step we have
a basis of historical data.
Input Step. The python script calculates the ranges of orthogonality of the last 80–140
points of the exchange rate historical data chosen for prediction, and an adequate
interval from the two years historical data of XAUUSD, XAGUSD, QM, and QG. A
value closer to zero indicates higher orthogonality of the input base pairs. Eight pairs
of data intervals with the best orthogonality were used for the inputs to the Evolino
recurrent neural network. Influence of data orthogonality to accuracy and stability
of financial market predictions was described in paper [25].
Prediction Sstep. Eight Evolino recurrent neural networks made predictions for a
selected point in the future. At the end of this step, we have eight different predictions
for one point of time in the future.
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Fig. 1 Scheme of the points based model

Consensus Step. The resulting eight predictions are arranged in ascending order, and
then the median, quartiles, and compatibility are calculated. If the compatibility is
within the range [0; 0.024], the prediction is right. If not, then step 3 is repeated,
sometimes with another “teacher” if the orthogonality is similar. At the end of this
step, we have one most probable prediction for the chosen exchange rate.

Decision of trading are making by constructing portfolio of exchange rates with
taking into account of predictions—medians, got by described model I (Fig. 1).

Fig. 2 Scheme of the distribution based model
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3.2 Distribution Based Predictions Model

Second—Evolino RNN-based prediction model (Fig. 2).
For calculation of big amount of ensembles software and hardware acceleration

were employed. Every predicting neural network from ensemble could be calculated
separately. So, calculations could be done in parallel. MPI wrapper mpi4py [26]
were used for this purpose. Cycle of each predicting neural network was divided
into equal intervals and every interval were calculated on separate processor node.
There are not needs for communication between mpi threads, so obtained equal to
one efficiency of parallelism, where efficiency is described as folow [27, 28]:

S = 1

P
× Tseq

T (P)
(5)

where P is number of processors, T (P) is the runtime of the parallel algorithm,
and Tseq is the runtime of the sequential algorithm. Hardware acceleration were
achieved using six nodes of Intel(R) Xeon(R) CPU E5645 @ 2.40 GHz on the cloud
www.time4vps.eu. So calculations of ensemble of 300 predicting neural networks
are 6.25h time long.

Fig. 3 Examples of distributions: a tight; b scattered; c multimodal; d right skewed

www.time4vps.eu
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Fig. 4 Exess kurtosis versus
skew2

The first two steps—Data step and Input step—remain the same as in the first
model. This is followed by other steps:
Prediction Step. We can choose n neural network forecasting. Neural networks can
lead to the number of hours required for a decision. Therefore, it is necessary to select
the optimum number of ensemble. When n > 60, the forecast assumes the shape of
the distribution. At the end of this step, we have a distribution with all parameters of
it—mean, median, mode, skewness, kurtosis and et. Decision of trading are making
by composed portfolio of exchange rates by analysing the distribution parameters.

The result of prediction is probability distribution, which has form and para-
meters. In Fig. 3 are shown examples of different distributions: (a) tight—shows
clear direction of predicting exchange rate; (b) scattered—shows big riskiness; (c)
multimodal—shows some different forces in the financialmarket; (d) right skewed—
shows that most probable values are concentrated on the left of the mean.

Distributions are not normal. Shape Characterization Plane [24] was used for
testing. Dependency of excess kurtosis from skewness2 was investigated and we
got that, when number of NN in our ensemble is from 60–300 its are multimodal
distributions (Fig. 4).

It is very important to investigate an accuracy of prediction when new models are
testing. The comparison of the performance of the forecasting models was made in
terms of the accuracy of the forecasts on the test case domain.

3.3 Comparison of Predictions Accuracy

The test of the accuracy of models on 1–5 steps ahead forecasts was investigated by
MAPE. An interval forecast is considered to be correct if the actual value falls in
side the predicted 95% confidence interval. Point estimation accuracy was measured
using the Mean Absolute Percentage Error (MAPE) of forecasts:



482 N. Maknickienė and A. Maknickas

Fig. 5 Dependency forecasting accuracy of the number of RNN EVOLINO: a in 1 and 2days
ahead; b 3, 4 and 5days ahead

Pea = 100 − 100

n

∑ |Yi − Ŷi |
Yi

(6)

where n—number of observations in the test set, Yi—actual output and Ŷi—
forecasted output. Test from 5 observations was made in 20/01/2012—15/03/2012
(Fig. 5). Accuracy of predictions obtained in the interval 94–99,6%. Increase of
accuracy depends on number of networks and forecasting becomes more stable.
This investigation shows that in some cases more is not always better—with a lot of
predictions EVOLINO RNN require more calculating processes time and resources.
An interval of number of EVOLINO RNN N [1; 120] has hight accuracy, but is not
stable. Distribution of predictions has not form of clear shape and parameters are
not informative. An interval [120; 200] is accurate and stable, so it not require too
many time and resources. Distribution of predictions is sufficiently informative. An
interval of N [200; 300] is good for investigation, but require to many calculation
time—the investment decision in finance market so could be too late.

First and second points ahead forecasts are accurate and stable, and 3, 4 and 5
points ahead forecasts stability is reached only when the ensemble consists of over
64 RNN. In time series forecasting, the magnitude of the forecasting error increases
over time, since the uncertainty increases with the horizon of the forecast.

And what happens if the N will be much bigger? The ensemble of 1008 Evolino
RNN elements require more resources or more time. After 3, 5days we got such dis-
tributions (Fig. 6). The shape of distributions are clear, accuracy is hight but notmore,
then with 200–300 elements. The application of this distributions of probabilities in
the investment portfolio needs further investigation.
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Fig. 6 Distributions, when N=1008, 02/09/2013

Fig. 7 Trading in demo Forex results: gray-single point prediction; white-distribution prediction

The best experimental validation of predictive models is testing in a Forex market
in real time. Daily trading in exchange market, using EURUSD, USDJPY, GBPUSD
and EURJPY exchange rates from 02/01/2013 to 01/03/2013 by single predictions
and from 01/03/2012 to 29/10/2013 by distribution forecasting model is shown in
Fig. 7. For first inputwas used historical data of exchange rates and for second input—
historical data of gold, silver or oil prices. Number of Evolino RNN in ensemble is
equal 176, invested funds are distributed equally to each currency pair.

Investment by using 1008 Evolino RNN or using optimised investment portfolio
needs further investigation.
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4 Conclusions

Neural network architecture is very important in the forecasting process. The sin-
gle neural network system provides a point forecast that accuracy is very unstable.
Ensemble from eight neural networks provides more accurate forecasting point in
the expected range. The decision to invest in the financial markets are always taken
under uncertainty. Therefore, distributions are more informative and more reliable
than the scatter projections. When number of neural networks exceeds 120, obtained
multi-modal distribution of predictions, which opens up opportunities to use it as
profitable investment portfolio tool. However, more is not always better. The ensem-
ble for prediction requiresmore calculating time and resources. Stable and not feather
growing prediction accuracy, gotten by increasing the number of RNN in ensemble,
when n > 120, allows to optimize the investment decision-making process. Those
ensembles makes it possible to expect prediction accuracy of up to 5 days into the
future. Several attempts was made using ensemble with n > 1000 RNN. At this
stage application of distributions of probabilities in the investment portfolio needs
further investigation.
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Gene Ontology Analysis on Behalf
of Improved Classification of Different
Colorectal Cancer Stages

Monika Simjanoska, Ana Madevska Bogdanova and Sasho Panov

Abstract The colorectal cancer is a serious cause of death worldwide. Diagnosing
the current colorectal cancer stage is crucial for early prognosis and adequate treat-
ment of the patients. Even though the scientists have developed various techniques,
determining the real colorectal cancer stage is still critical. In this paper we uti-
lize Gene Ontology analysis information to address this issue. We compose a set
of special genes that are used to obtain two main results—we show the distinction
between the carcinogenic and healthy tissue by difference in the range of their DNA
gene expressions, and we propose a novel methodology that improves the colorectal
cancer stages classification.

Keywords Gene ontology · Colorectal cancer stages · Gene expression · Bayes’
theorem

1 Introduction

In 2008, theWorld Health Organization (WHO) conducted a research on the cancer’s
incidence, mortality and prevalence. The results showed that the colorectal cancer
(CRC) deserves serious attention since it causes approximately 608,000, which is
8% of total cancer deaths [1]. The incidence and prevalence results showed that 60%
of the 1,234,000 new cases occur in the developed regions, from which 663,000 at
man and 571,000 at women.
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Recently, the scientists provide intensive gene expression profiling experiments in
order to compare the malignant to the healthy cells in a particular tissue. The advan-
tage of the microarray technologies enables simultaneous observation of thousands
of genes and allows the researchers to derive conclusions whether the disorder is a
result of the abnormal expression of a subset of genes.

In our previous work we used gene expression experiments from Affymetrix
Human Genome U133 Plus 2.0 Array to perform analysis of colorectal carcinogenic
and healthy tissues [2]. During the research we developed methodology for bio-
markers detection based on the two types of tissues, carcinogenic and healthy. The
obtained set of biomarkers was then used to build a machine learning based classi-
fier capable of distinguishing between carcinogenic and healthy patients. Since the
classification analysis resulted in very high accuracy when classifying both CRC and
healthy patients, we proceeded to inspect whether the biomarkers we discovered play
important biological role in the colorectal cancer development [3]. For that purpose,
we provided gene ontology (GO) analysis and inspected the molecular functions and
the biological processes of a particular set of genes that showed to be overrepre-
sented among all biomarkers. Considering the colorectal cancer significance of the
biomarker genes, we confirmed few biomarkers to be tightly related to the disease:
C H G A, GUC A2B, M M P7, C DH3 and PY Y .

Consequently, since gene expression profiling by microarrays is expected to
advance the progress of personalized cancer treatment based on the molecular clas-
sification of subtypes [4], we used the same set of biomarkers to model the different
CRC stages (I–IV) [5]. The modelling resulted in an accurate Bayesian classifier
that showed satisfying results when diagnosing tissues in the critical stages, I and
IV, and, II and III, which, as presented in Sect. 2, are often found to be problematic
for prognosis.

Even though, we exceeded the problems of distinguishing between CRC stage I
and IV, and, II and III, that remained common problem in the literature, we decided
to go deeper in the problem in order to improve our classification results. In this
paper we conduct a research that follows two threads of our previous work, the GO
analysis of the biomarkers [3] and the classification of the different CRC stages [5].
In this research we preform GO analysis for each of the different CRC stages probed
with the same Affymetrix platform. Our aim is to compare the stages that are critical
for diagnosing and also the neighbouring stages, in order to derive conclusions on
their common biological and molecular functions (enriched genes). Obtaining the
enriched genes involved in the common GO functions and inspecting their range
of DNA expression is very important for determining the distinguishing functions
between the CRC stages. Once we discovered the enriched genes, we were able to
remodel the prior probabilities of the different CRC stages and we got significantly
improved classification results.

The rest of the paper is organized as follows. In Sect. 2 we briefly present the
latest work related to our point of interest of this paper. In Sect. 3 we describe the
methods for biomarkers selection and GO analysis. The results from the analysis are
presented in Sect. 4 and eventually, we derive our conclusions and present our plans
for future work in the final Sect. 5.
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2 Related Work

In this section we present a work related to CRC stages analysis and GO appliance
in the research of various diseases.

Recently, the classification of different CRC stages has been in the focus of many
researches. Even though, the authors developed many procedures for diagnosis and
survival prediction [6, 7], the analysis showed that an accurate classification of
intermediate-stage cases, II and III, as well as stage I and stage IV, is problematic
[8, 9].

The microarray data used in this paper, has also been used for distinguishing
patterns in different CRC stages.

Laibe et al. [10] profiled both stage II and stage III carcinomas. They realized that
expression profile of stage II colon carcinomas distinguishes two patterns, one pattern
very similar to that of stage III tumors, based on a 7-gene signature. The function
of the discriminating genes suggests that tumors have been classified according to
their putative response to adjuvant targeted or classic therapies. Tsukamoto et al.
[11] performed gene expression profiling and found that the over expression of OPG
gene may be a predictive biomarker of CRC recurrence and a target for treatment
of this disease. Hong et al. [12] aimed to find a metastasis-prone signature for early
stage mismatch-repair proficient sporadic CRC patients for better prognosis. Their
best classification model yielded a 54 gene-set with an estimated prediction accuracy
of 71%. Another problem of limited discrimination for Dukes stage B and C disease
is presented by Jorissen et al. [13]. They conclude that metastasis-associated gene
expression changes can be used to refine traditional outcome prediction, providing
a rational approach for tailoring treatments to subsets of patients. Finally, three of
the five microarray data sets used in this paper, have also been used by Schlicker
et al. [14]. They model the heterogeneity of CRC by defining subtypes of patients
with homogeneous biological and clinical characteristics andmatch these subtypes to
cell lines for which extensive pharmacological data is available, thus linking targeted
therapies to patients most likely to respond to treatment.

Regardingontology and classification analysis related to colorectal cancer, authors
in [15] sum up the biomarkers results from 23 different researches. Even thoughmost
of them show diversity in the significant genes revealed, the authors in their research
take into account the unique biomarkers, which are nearly 1000, and perform ontol-
ogy analysis using various tools. Similarly, in [16] the researchers use Affymetrix
microarray data from 20 patients to reveal significant gene expression, which resulted
in 1469 biomarkers. From the ontology analysis they ranked top 10 most important
pathways. Since the non overlapping between the biomarkers sets discovered in dif-
ferent scientific papers is very common, a new meta-analysis model of colorectal
cancer gene expression profiling studies is proposed in [17]. As the authors ranked
the biomarker genes according to various parameters, the gene CDH3 which we
found to play role in the colorectal cancer [3], is also found by their meta-analysis
model. Another interesting approach maintained with classification analysis is pre-
sented in [18], where the authors constructed disease-specific gene networks and
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used them to identify significantly expressed genes. A particular attention is given to
five biomarkers, fromwhich one of them, IL8, was also detected by our methodology
[3], but it was not considered important in our research since no specific connection
to the colorectal cancer was found in the literature.

3 Methods and Methodology

In this sectionwedefine themethodology thatwe developed to detect the geneswhose
expression is statistically and biologically markable among the different CRC stages
and the healthy tissues. We also present the GO procedure that we used to obtain
the genes involved in the common biological and molecular functions of the all four
CRC stages. Eventually, we present the modified classification procedure that was
used for obtaining the new improved results.

3.1 The CRC Stages

Colorectal stages systems are designed to enable physicians to stratify patients in
terms of expected predicted survival, to help select the most effective treatments,
to determine prognoses, and to evaluate cancer control measures [19]. All data is
organized into four CRC stages [20]:

1. Stage I—In this stage cancer has grown through the superficial lining, i.e., mucosa
of the colon or rectum, but has not spread beyond the colon wall or rectum.

2. Stage II—In this stage cancer has grown into or through the wall of the colon or
rectum, but has not spread to nearby lymph nodes.

3. Stage III—In this stage cancer has invaded nearby lymph nodes, but is not affect-
ing other parts of the body yet.

4. Stage IV—In this stage cancer has spread to distant organs.

3.2 Choosing the Biomarkers

In the process of CRC stages biomarkers selection, instead of using the whole
genome data, we use the same set of biomarkers which ability to distinguish carcino-
genic and healthy patients is previously confirmed by classification and GO analysis
[2, 3].

Once we obtained the initial set of biomarkers, B, we repeated the procedure
for biomarkers selection for each stage Si , where i is the current CRC stage, versus
Healthy tissues, in order to produce subsets of biomarkers, Bi . The process for
revealing the biomarkers consists of the following steps:
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1. Quantile normalization. Since our aim is to unveil the difference in gene expres-
sion levels between the carcinogenic andhealthy tissues,weproposed theQuantile
normalization (QN) as a suitable normalization method [21].

2. Low entropy filter. We used low entropy filter to remove the genes with almost
ordered expression levels [22], since they lead to wrong conclusions about the
genes behaviour.

3. Paired-sample t-test.Knowing the facts that both carcinogenic and healthy tissues
are taken from the same patients, and that the whole-genome gene expression
follows normal distribution [23], we used a paired-sample t-test.

4. FDR method. False Discovery Rate (FDR) is a reduction method that usually
follows the t-test. FDR solves the problem of false positives, i.e., the genes which
are considered statistically significant when in reality there is not any difference
in their expression levels.

5. Volcano plot. Both the t-test and the FDR method identify different expressions
in accordance with statistical significance values, and do not consider biological
significance. In order to display both statistically and biologically significant
genes we used volcano plot visual tool.

3.3 Gene Ontology Analysis

The analyses of singlemarkers have been in the focus of the genome-wide association
studies. However, it often lacks the power to uncover the relatively small effect sizes
conferred by most genetic variants. Therefore, using prior biological knowledge
on gene function, pathway-based approaches have been developed with the aim to
examine whether a group of related genes in the same functional pathway are jointly
associated with a trait of interest [24].

The goal of the Gene Ontology Consortium is to produce a dynamic, controlled
vocabulary that can be applied to all eukaryotes even as knowledge of gene and
protein roles in cells is accumulating and changing [25]. The GO project provides
ontologies to describe attributes of gene products in three non-overlapping domains
of molecular biology [26]:

1. Molecular Function describes activities, such as catalytic or binding activities, at
the molecular level. GO molecular function terms represent activities rather than
the entities that perform the actions, and do not specify where, when or in what
context the action takes place.

2. Biological Process describes biological goals accomplished by one or more
ordered assemblies of molecular functions.

3. Cellular Component describes locations, at the levels of subcellular structures
and macromolecular complexes.

There are many tools based on Gene Ontology resource; however, in this research
we use the freely accessible Gene Ontology Enrichment Analysis Software Toolkit,
GOEAST. It is a web based tool which applies appropriate statistical methods to
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identify significantly enrichedGO terms among a given list of genes. Beside the other
functions, GOEAST supports analysis of probe set IDs fromAffymetrixmicroarrays.
It provides graphical outputs of enriched GO terms to demonstrate their relationships
in the three ontology categories. In order to compareGOenrichment status ofmultiple
experiments, GOEAST supports cross comparisons to identify the correlations and
differences among them [27].

In this paper we define few test cases to compare the ontologies of the critical and
the neighbouring stages:

1. Test case 1—Compare Stage I and Stage II
2. Test case 2—Compare Stage II and Stage III
3. Test case 3—Compare Stage III and Stage IV
4. Test case 4—Compare Stage I and Stage IV

3.4 Remodelling the Prior Distributions

Previously revealed biomarkers showed high precision while diagnosing both car-
cinogenic and healthy patients [2]. In order to produce improved CRC stage clas-
sification, we used the developed procedure [5], and introduced a powerful key
subprocedure that enables reshaping the probability distributions of the training and
test set:

1. Round-up threshold method
2. Normalization
3. Smoothing method
4. Boosting the enriched biomarkers: as we have analysed the common biological

andmolecular functions of all fourCRCstages from theGOanalysis,we introduce
an additional method which as presented in Sect. 4, produced an improved prior
distributionsmodelling of the CRC stages.We chose special biomarker genes that
play role in the common biological functions among the CRC stages. In order to
increase the importance of the special genes, we multiplied the set in ratio 3 : 1,
so that the new set is now a leading factor in the distributions shape.

5. Hypothesis testing.

3.5 Multiclass Bayesian Classification

As we remodelled the prior distributions of all four CRC stages, we are now able to
use them in the Bayes’ theorem and to calculate the posterior probability for each
patient to belong to each of the four classes. Given the prior distributions we can
calculate the class conditional densities, p(x|Ci ), as the product of the continuous
probability distributions of each gene from x distinctively:

p(x|Ci ) =
∏

f1 f2... fn (1)
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Since we have unequal number of patients in all four classes, considering the total
number of 657 tissues, we defined the prior probabilities P(Ci ), to be P(C1) =
0.2085, P(C2) = 0.3912, P(C3) = 0.2770 and P(C4) = 0.1233. Therefore, we
calculate the posterior probability P(Ci |x), as:

p(Ci |x) = p(x|Ci ) ∗ P(Ci )

4∑
1

p(x|Ci ) ∗ P(Ci )

(2)

The tissue x is classified according to the rule of maximizing the a posteriori proba-
bility (MAP):

Ci = max p(Ci |x) (3)

4 Experiments and Results

4.1 Gene Expression Data

In order to unveil the biomarker genes in the initial biomarkers set B, discussed
in Sect. 3.2, we used the microarray experiment retrieved from Gene Expression
Omnibus database [28] with GEO accession ID GSE8671, where 32 carcinogenic
and 32 adjacent normal tissues were probed with the A f f ymetri x Human Genome
U133 Plus 2.0 Array.

The microarray experiments used for CRC stages biomarkers detection are
retrieved by using the following GEO accession IDs: GSE37892, GSE21510,
GSE9348,GSE14333 andGSE35896.The experiments have been performedusing
the same A f f ymetri x platform. All data is organized into four CRC stages:

• Stage I contains gene expression from 137 patients.
• Stage II contains gene expression from 257 patients.
• Stage III contains gene expression from 182 patients.
• Stage IV contains gene expression from 81 patients.

4.2 Gene Ontology Results

According to themethodologywe defined in Sect. 3.2, for eachCRC stagewe created
new subset of biomarkers, Bi , for each stage i = 1, .., 4:

• B1 = 70
• B2 = 72
• B3 = 73
• B4 = 66
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Fig. 1 Biological processes: stage I versus stage II

Thus, instead of analysis all the 138 initial biomarkers as we did in our previous
work [3], we analyse the subsets of biomarkers that represent the current CRC stage.

For each subset Bi we performed GO-stage analysis using the GOEAST online
tool previously discussed in Sect. 3.3. In order to compare multiple GO results, we
used the Multi-GOEAST tool and produced three types of ontologies to describe:
Biological processes, Molecular function and Cellular component. The different
colour saturation degrees in the graphs present the enrichment significance of each
GO term, defined by the p-value. In the graphical output of Multi-GOEAST results,
each set is representedwith different colour. Therefore, red and green boxes represent
enriched GO terms only found in one of the biomarkers set, whereas yellow boxes
represent commonly enriched GO terms in both experiments.

Since all ontologies refer to the same problem, in this paper we present only the
Biological processes view.

Figure1 presents the comparison of the ontology analysis between the neighbour-
ing stage I and stage II. As we can see, those stages have 7 biological processes in
common. Considering the critical stages II and III, Fig. 2 depicts their common bio-
logical processes, most of them overlapping with the common processes between
stage I and stage II. Figure3 presents the common biological processes in the neigh-
bouring stages III and IV. They have nearly the same common biological processes
as in the previous test cases.

Finally, we compared the critical stages I and IV (Fig. 4). As a result of these
comparisons, we choose the following processes for further analysis, since they are
common in the all four cases:
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Fig. 2 Biological processes: stage II versus stage III

Fig. 3 Biological processes: stage III versus stage IV



496 M. Simjanoska et al.

Fig. 4 Biological processes: stage I versus stage IV

• Single organism process;
• Ion transport;
• Metal ion transport;
• Primary alcohol metabolic process;
• Ethanol metabolic process and
• Ethanol oxidation.

Considering the common biological processes, we extracted 50 gene probes,
which we refer to as special genes, that are directly involved in these processes. In
Table1 we present the gene symbols that are equal to the gene probes. An important
fact is that four (C H G A, GUC A2B, C DH3 and PY Y ) of the five biomarkers we
found to be highly correlated with the CRC phenomena, are found in the common
biological processes.

Table 1 Biomarkers from common biological processes

Biomarker genes

UNC5C TRPM6 TPH1 SST SLC6A19

SLC30A10 SLC26A3 SLC25A34 SCNN1B SCN9A

SCN7A RSPO2 PYY PRKAA2 PLP1

NRXN1 NEUROD1 LGI1 INSM1 INSL5

GUCA2B GREM2 GCNT2 GCG FCRLA

FAM5C CXCL13 CP CLDN8 CHGB

CHGA CHAD CDH3 CDH19 CCL23

BEST4 BCHE ASCL2 ANGPTL1 AFF3

ADH1B
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4.3 Classification Results

As we finished the GO-stage analysis and obtained the enriched set of genes (the
special genes), we inspected the ranges of the gene expression of the special genes
at both carcinogenic and healthy tissues from the data in our disposition. Figure5
presents the ranges of expression at test patients which were not involved in the
biomarkers selection process and we can conclude that the special genes clearly
distinguish the carcinogenic and the healthy patients. Following this first result, we
proceeded with further experiments in order to improve the classification results in
CRC stages classification.

Hereupon, we applied the methodology in Sect. 3.4 to remodel the gene expres-
sion distributions of each CRC stage. A key point in remodelling the probability
distributions was to boost the enriched set of genes 3 times, thus the special genes
are now a leading factor in the distributions shape. Using the boosting method, we
additionally avoid the overlap between the probability distributions of the critical
CRC stages. Therefore, as a results we got a set of 238 biomarkers which produced
the distributions of the training sets depicted in Fig. 6.

As we remodelled the probability distributions, we used them in the Multiclass
Bayesian classifier developed in Sect. 3.5 and achieved the improvements presented
in Table2. The improvement of recognition in the first three stages is significant, so
we can decide to use this procedure, even the fourth-stage classification has decreased
for few points. The Old results refer to the results published in [5].

Fig. 5 Gene expression ranges of the special genes in carcinogenic and healthy testing tissues
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Fig. 6 Probability distributions of the training sets

Table 2 Classification results Class Old results (%) New results (%)

Stage I 73.72 80.29

Stage II 53.69 63.42

Stage III 72.52 92.30

Stage IV 64.19 58.02

5 Conclusions and Future Work

The paper follows two threads of our previous work on CRCDNA chip gene expres-
sions: the developed classificator of the four CRC stages [5] andGOCRCbiomarkers
analysis [3]. In this paper we developed GO-stages analysis (Biological processes)
for each of the cancer stages (I–IV) using the 138 biomarkers. We have compared the
neighbouring GO-stages as they are more difficult to distinguish one from another
(G O1–G O2, G O2–G O3, G O3–G O4, G O1–G O4) and extracted several conclusions
from this analysis. In this process we have differentiated 6 functions, common for
the all 4 stages. We deducted the 50 gene probes directly included in the 6 common
functions. The experiments has shown that the DNA chip expressions of the 50 spe-
cial genes, clearly distinguish the carcinogenic versus healthy patients. Following
this important result, we upgraded the existing methodology for preprocessing the
multiclass Bayesian classification by adding the boosting method which multiplied
the existing enriched biomarkers. As a result we achieved new probability distrib-
utions applicable for Bayesian modelling. The novel preprocessing procedure was
confirmed by the experiments.
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This result of distinguishing the genes responsible for the common functions for
all 4 CRC stages, is very important for the further analysis of the colorectal cancer
stages. In the future work, GO stages will help us to determine the distinguishing
functions between the CRC stages, that will enable us to further improve the stages
classification process and pinpoint the biomarkers that are responsible for the differ-
ent CRC stages.
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Artificial Curiosity Emerging Human-Like
Behavior: Toward Fully Autonomous
Cognitive Robots

Kurosh Madani, Christophe Sabourin and Dominik M. Ramík

Abstract This chapter is devoted to autonomous cognitive machines by mean of the
design of an artificial curiosity based cognitive system for autonomous high-level
knowledge acquisition from visual information. Playing a chief role as well in visual
attention as in interactive high-level knowledge construction, the artificial curiosity
is realized through combining visual saliency detection andMachine-Learning based
approaches. Experimental results validating the deployment of the investigated sys-
tem have been obtained using as well simulation facilities as a real humanoid robot
acquiring visually knowledge about its surrounding environment interacting with a
human tutor. As show the reported results and experiments, the proposed cognitive
system allows themachine to discover autonomously the surroundingworld in which
it may evolve, to learn new knowledge about it and to describe it using human-like
natural utterances.

1 Introduction and Problem Stating

If nowadays machines and robotic bodies are fully automated outperforming human
capacities, nonetheless, none of them can be called truly intelligent or pretend defeat-
ing human’s cognitive skills. The fact that human-like machine-cognition is still
beyond the reach of contemporary science only proves how difficult the problem is.
Somewhat, it is due to the fact that the science is still far from fully understanding
the human cognitive system. On the other hand, it is so because if contemporary
machines are often fully automatic, they linger rarely fully autonomous in their
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knowledge acquisition. Nevertheless, the concepts of bio-inspired or human-like
machine-cognition remain foremost sources of inspiration for achieving intelligent
systems (intelligent machines, intelligent robots, etc…).

Emergence of cognitive phenomena in machines has been and remains active part
of research efforts since the rise of Artificial Intelligence (AI) in the middle of the
last century. Among others, [1] provides a survey on cognitive systems. It accounts
on different paradigms of cognition in artificial agents markedly on the contrast of
emergent versus cognitivist paradigms and on their hybrid combinations. It is also
worth of mentioning the work of [2] which brings an in-depth review on a number
of existing cognitive architectures such those which adheres to the symbolic theory
and reposes on the assumption that human knowledge can be divided to two kinds:
declarative and procedural. Another discussed architecture belongs to class of those
using “If-Then” deductive rules dividing knowledge again on two kinds: concepts
and skills. In contrast to above-mentioned works, the work of [3] focuses the area of
research on cognition and cognitive robots discussing purposes linking knowledge
representation, sensing and reasoning in cognitive robots. However, there is no cog-
nition without perception (a cognitive system without the capacity to perceive would
miss the link to the real world and so it would be impaired) and thus autonomous
acquisition of knowledge from perception is a problem that should not be skipped
when dealing with cognitive systems.

Prominently to the machine-cognition’s issue is the question: “what is the compel
or the motivation for a cognitive system to acquire new knowledge?” For human
cognitive system Berlyne states, that it is the curiosity that is the motor of seeking
for new knowledge [4]. Consequently a few works have been since there dedicated
to incorporation of curiosity into a number of artificial systems including embod-
ied agents or robots. However the number of works using some kind of curiosity
motivated knowledge acquisition with implementation to real agents (robots) is still
relatively small. Often authors view curiosity only as an auxiliary mechanism in
robot’s exploration behavior. One of early implementations of artificial curiosity
may be found in [5]. Accordingly to the author, the introduction of curiosity further
helps the system to actively seek similar situations in order to learn more. On the
field of developmental and cognitive robotics a similar approach may be found in
[6] where authors present an approach including a mechanism called “Intelligent
Adaptive Curiosity”. Two experiments with AIBO robot are presented showing that
the curiosity mechanism successfully stimulates the learning progress. In a recent
publication, authors of [7] implement the psychological notion of surprise-curiosity
into the decision making process of an agent exploring an unknown environment.
Authors conclude that the surprise-curiosity driven strategy outperformed classical
exploration strategy regarding the time-energy consumed in exploring the delved
environment. On the other hand, the concept of surprise, relating closely the notion
of curiosity, has been exploited in [8] by a robot using the surprise in order to discover
new objects and acquire their visual representations. Finally, the concept of curios-
ity has been successfully used in [9] for learning affordances of a mobile robot in
navigation task. The mentioned works are attempting to respond the question: “how
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an autonomous cognitive system should be designed in order to exhibit the behavior
and functionality close to its human users”.

That is why even though curiosity killed a cat,1 taking into consideration the
enticing benefits of curiosity, we have made it our principle foundation in investi-
gated concept. The present paper is devoted to the description of a cognitive system
based on artificial curiosity for high-level human-like knowledge acquisition from
visual information. The goal of the investigated system is to allow the machine (such
as a humanoid robot) to observe, to learn and to interpret the world in which it
evolves, using appropriate terms from human language, while not making use of
a priori knowledge. This is done by word-meaning anchoring based on learning
by observation stimulated (steered) by artificial curiosity and by interaction with the
human. Our model is closely inspired by juvenile learning behavior of human infants
[10, 11].

In Sect. 2, we detail our approach by outlining its architecture and principles. We
explain how the machine generates its beliefs about the world from observing the
surrounding environment and the role of human-robot interaction in the learning
process. Section3 focuses the validation of the proposed approach using as well
simulation facilities as a real robot evolving in real environment. Finally Sect. 4
discusses the achieved results and outlines the future work.

2 Brief Overview of Multi-level Cognitive Concept

Accordingly to Berlyne’s theory of human curiosity [4], two cognitive levels con-
tribute to human’s desire of acquiring new knowledge. The first is so-called “per-
ceptual curiosity”, which leads to increased perception of stimuli. It is a lower level
cognitive function, more related to perception of new, surprising or unusual sensory
input. It contrasts to repetitive or monotonous perceptual experience. The other one
is called “epistemic curiosity”, which is more related to the “desire for knowledge
that motivates individuals to learn new ideas, eliminate information-gaps, and solve
intellectual problems” [12]. It also seems that it acts to stimulate long-term memory
in remembering newor surprising (e.g.whatmay be contrastingwith already learned)
information [13]. By observing the state of the art (including the referenced ones),
it may be concluded that the curiosity is usually used as an auxiliary mechanism
instead of being the fundamental basis of the knowledge acquisition. To our best
knowledge there is no work to date which considers curiosity in context of machine
cognition as a drive for knowledge acquisition on both low (perceptual) level and high
(“semantic”) level of the system. Without striving for biological plausibility whilst
by analogy with natural curiosity, we founded our system on two cognitive levels
([14, 15]). Depicted in Fig. 1, the first ahead of reflexive visual attention plays the role

1In ‘Different’, Eugene O’Neill, 1920: BENNY—(with a wink): “Curiosity killed a cat! Ask me no
questions and I’ll tell you no lies.”
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Fig. 1 General bloc-diagram of the proposed curiosity driven architecture (left) and principle of
curiosity-based Stimulation-Satisfaction mechanism for knowledge acquisition (right)

of perceptual curiosity and the second copingwith intentional learning-by-interaction
undertakes the role of epistemic curiosity.

2.1 From Observation to Interpretation

The problem of autonomous learning conveys the inbuilt problem of distinguishing
the pertinent sensory information from the impertinent one. The solution to this task
is natural for human, it remain very far from being obvious for a robot. In fact,
when a human points to one object among many others giving a description of that
pointed object using his human natural language, the robot still has to distinguish,
which of the detected features and perceived characteristics of the object the human
is referring to. To achieve correct anchoring, the proposed architecture adopts the
following strategy. By using its perceptual curiosity, realized thanks to artificial
salient vision and adaptive visual attention (described in [16–18]), the robot extracts
features from important objects found in the scene along with the words the human
used to describe the objects. Then, the robot generates its beliefs about which words
could describe which features. Using the generated beliefs as organisms in a genetic
algorithm, the robot determines its “most coherent belief”. To calculate the fitness,
a classifier is trained and used to interpret the objects the robot has already seen.
The utterances pronounced by the human for each object are compared with those
the robot would use to describe it based on its current belief. The closer the robot’s
description is to that given by the human, the higher the fitness is. Once the evolution
has been finished, the belief with the highest fitness is adopted by the robot and is
used to interpret occurrences of new (unseen) objects. Figure2 depicts through an
example important parts and operations of the proposed system.

Let us suppose a robot equipped by a sensor observing the surrounding world
and interacting with the human. The world is represented as a set of features I =
{i1, i2, . . . , ik}, which can be acquired by robot’s sensor. Each time the robot makes
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Fig. 2 Example showing main parts of the system’s operation in the case of autonomous learning
of colors

an observation o, its epistemic curiosity stimulates it to interact with the human
asking him to gives a set of utterances UH describing the found salient objects. Let
us denote the set of all utterances ever given about the world as U . The observation
o is defined as an ordered pair o = {Il , UH }, where Il ⊆ I , expressed by (1),
stands for the set of features obtained from observation and UH ⊆ U is the set
of utterances (describingO) given by human in the context of that observation. i p

denotes the pertinent information for a given u (i.e. features that can be described
semantically as u in the language used for communication between the human and
the robot), ii the impertinent information (i.e. features that are not described by
the given u, but might be described by another ui ∈ U ) and sensor noiseε. The
goal is to distinguish the pertinent information from the impertinent one and to
correctly map the utterances to appropriate perceived stimuli (features). Let us define
an interpretation X (u) = {

u, I j
}
of an utterance u as an ordered pair where I j ⊆ I

is a set of features from I . So, the belief B is defined accordingly to (2) as an ordered
set of interpreting utterances u from U .

Il =
⋃
UH

i p (u) +
⋃
UH

ii (u) + ε (1)

B = {X (u1) , . . . , X (un)} with n = |U | (2)
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Accordingly to the criterion expressed by (3), one can calculate the belief B which
interprets coherently the observations made so far: in other words, by looking for
such a belief, which minimizes across all the observations oq ∈ O the difference
between the utterances UHq made by human, and those utterances UBq , made by the
system by using the belief B. Thus, B is a mapping from the set U to I : all members
of U map to one or more members of I and no two members of U map to the same
member of I .

argmin
B

⎛
⎝ |O|∑

q=1

∣∣UHq − UBq

∣∣
⎞
⎠ (3)

2.2 The Most Coherent Interpretation Search

Although the interpretation’s coherence is worked out by computing the belief B
accordingly to Eq. (3), the system has to look for a belief B, which would make
the robot describing a particular scene with utterances as close and as coherent as
possible to those that a human would made on the same (or similar) scene. For
this purpose, instead performing the exhaustive search over all possible beliefs, we
propose to search for a suboptimal belief by means of a Genetic Algorithm (GA).
For doing that, we assume that each organism within it has its genome constituted
by a belief, which, results into genomes of equal size |U | containing interpretations
X (u) of all utterances from U .

In our genetic algorithm, the genomes’ generation is a belief generation process
generating genomes (e.g. beliefs) as follows. For each interpretation X (u) the process
explores whole the set O . For each observation oq ∈ O , if u ∈ UHq then features
iq ∈ Iq (with Iq ⊆ I ) are extracted. As described in (1), the extracted set of features
contains as well pertinent as impertinent features. The coherent belief generation is
done by deciding, which features iq ∈ Iq may possibly be the pertinent ones. The
decision is driven by two principles. The first one is the principle of “proximity”,
stating that any feature i is more likely to be selected as pertinent in the context of u,
if its distance to other already selected features is comparatively small. The second
principle is the “coherence” with all the observations in O . This means, that any
observation oq ∈ O , corresponding to u ∈ UHq , has to have at least one feature
assigned into Iq of the current X(u) = {

u, Iq
}
.

To evaluate a given organism, a classifier is trained, whose classes are the utter-
ances from U and the training data for each class u ∈ Uare those corresponding
toX (u) = {

u, Iq
}
, i.e. the features associated with the given u in the genome. This

classifier is used through whole set O of observations, classifying utterances u ∈ U
describing each oq ∈ O accordingly to its extracted features. Such a classification
results in the set of utterances UBq (meaning that a belief B is tested regarding the
qth observation). The fitness function evaluating the fitness of each above-mentioned
organism is defined as “disparity” between UBq and UHq (defined in previous
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subsection) which is computed accordingly to the Eq. (4), where ν is the number
of utterances that are not present in both sets UBq and UHq (e.g. either missed or
are superfluous utterances interpreting the given features). The globally best fitting
organism is chosen as the belief that best explains observations O made (by robot).

D (ν) = 1

1 + ν
withν = ∣∣UHq ∪ UBq

∣∣ − ∣∣UHq ∩ UBq

∣∣ (4)

Figure3 gives the bloc diagram of the designed evolutionary process. It is important
to note that here the above-describedGAbased evolutionary process doesn’t operates
as only an optimizer but it generate the machines (e.g. robot’s) most coherent belief
about the observation accomplished by this robot and about the way that the same
robot will autonomously construct a human-like description of the observed reality.
In other words, it is the GA based evolutionary process that drives the robot’s most
coherent semantic understanding of the observed reality. It plays also a key role in
implementation of the epistemic curiosity because the drop of the search for the most
coherent belief, due to leakage of knowledge about the observed reality, makes the
robot interacting with its human counterpart and thus drives its epistemic curiosity.

Fig. 3 Bloc diagram of described genetic algorithm’s workflow. The left part describes the genetic
algorithm itself, while the right part focuses on the fitness evaluation workflow
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2.3 Role of Human-Robot Interaction

Human beings learn both by observation and by interaction with the world and with
other human beings. The former is captured in our system in the “best interpretation
search” outlined previous subsections. The latter type of learning requires that the
robot be able to communicate with its environment and is facilitated by learning
by observation, which may serve as its bootstrap. In our approach, the learning by
interaction is carried out in two kinds of interactions: human-to-robot and robot-
to-human. The human-to-robot interaction is activated anytime the robot interprets
wrongly the world. When the human receives a wrong response (from robot), he
provides the robot a new observation by uttering the desired interpretation. The robot
takes this new corrective knowledge about the world into account and searches for a
new interpretation of the world conformably to this new observation. The robot-to-
human interaction may be activated when the robot attempts to interpret a particular
feature classified with a very low confidence: a sign that this feature is a borderline
example. In this case, it may be beneficial to clarify its true nature. Thus, led by
the epistemic curiosity, the robot asks its human counterpart to make an utterance
about the uncertain observation. If the robot’s interpretation is not conforming to the
utterance given by the human (robot’s interpretation was wrong), this observation is
recorded as a new knowledge and a search for the new interpretation is started.

3 Implementation and Validation Results

The validation of the proposed system has been performed on the basis of both
simulation of the designed system as by an implementation on a real humanoid
robot. A video capturing different parts of the experiment may be found online on:
http://youtu.be/W5FD6 zXihOo. As real robot we have considered NAO robot (a
small humanoid robot from Aldebaran Robotics) which provides a number of facil-
ities such as onboard camera (vision), communication devices and onboard speech
generator. The fact that the above-mentioned facilities been already available offers
a huge save of time, even if those faculties remain quite basic in that kind of robots.

Although the usage of the presented system is not specifically bound to humanoid
robots, it is pertinent to state two main reasons why a humanoid robot is used for the
system’s validation. The first reason for this is that from the definition of the term
“humanoid”, a humanoid robot is aspired to make its perception close to the human’s
one, entailing amore human-like experience of the world. This is an important aspect
to be considered in context of sharing knowledge between a human and a robot. The
second reason is that humanoid robots are specifically designed to interact with
humans in a “natural” way by using e.g. a loudspeaker and microphone set in order
to allow for a bi-directional communication with human by speech synthesis and
speech analysis and recognition. This is of importance when speaking about a natural
human-robot interaction during learning.
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3.1 Simulation Based Validation and Results

The simulation based validation finds its pertinence in assessment of the investigated
cognitive-system’s performances. In fact, due to difficulties inherent to organization
of strictly same experimental protocols on different real robots and within various
realistic contexts, the simulated validation becomes an appealing way to ensure that
the protocol remains the same. For simulation based evaluation of the behavior of
the above-described system, we have considered color names learning problem. In
everyday dialogs, people tend to describe objects, which they see, with only a few
color terms (usually only one or two), although the objects in itself contains many
more colors. Also different people can have slightly different preferences on what
names to use for which color. Due to this, learning color names is a difficult task and
it is a relevant sample problem to test our system.

In the simulated environment, images of real-world objects were presented to the
system alongside with textual tags describing colors present on each object. The
images were taken from the Columbia Object Image Library (COIL) contains 1000
color images of different views of 100 objects database. Five fluent English speakers
were asked to describe each object in terms of colors. We restricted the choice of
colors to “Black”, “Gray”, “White”, “Red”, “Green”, “Blue” and “Yellow”, based on
the color opponent process theory [19] (Schindler 1964). The tagging of the entire
set of images was highly coherent across the subjects. In each run of the experiment,
we have randomly chosen a tagged set.

The utterances were given in the form of text extracted from the descriptions.
The object was accepted as correctly interpreted if the system’s and the human’s
interpretations were equal. The rate of correctly described objects from the test set
was approximately 91%. Figure4 gives the result of interpretation by the system of
the colors of the WCS table. Figure5 shows the learning rate versus the increasing
number of exposures of each color.

Fig. 4 Original WCS table (upper image), its system’s made interpretation (lower image)
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Fig. 5 The rate of correct
learning versus the number
of presented examples (of the
same object) to the system

3.2 Implementation on Real Robot

The designed system has been implemented on NAO robot (from Aldebaran
Robotics). It is a small humanoid robot which provides a number of facilities such
as onboard camera (vision), communication devices and onboard speech generator.
The fact that the above-mentioned facilities are already available offers a huge save
of time, even if those faculties remain quite basic in that kind of robots. If NAO
robot integrates an onboard speech-recognition algorithm (e.g. some kind of speech-
to-text converter) which is sufficient for “hearing” the tutor, however its onboard
speech generator is a basic text-to-speech converter. It is not sufficient to allow the
tutor and the robot conversing in natural speech. To overcome NAO’s limitations
relating this purpose, the TreeTagger tool2 was used in combination with robot’s
speech-recognition system to obtain the part-of-speech information from situated
dialogs. Standard English grammar rules were used to determine whether the sen-
tence is demonstrative (e.g. for example: “This is an apple.”), descriptive (e.g. for
example: “The apple is red.”) or an order (e.g. for example: “Describe this thing!”).
To communicate with the tutor, the robot used its text-to-speech engine.

The core of the implementation’s architecture is split into fivemain units: Commu-
nication Unit (CU), Navigation Unit (NU), Low-level Knowledge Acquisition Unit
(LKAU), High-level Knowledge Acquisition Unit (HLAU) and Behavior Control
Unit (BCU). Figure6 illustrates the bloc-diagram of the implementation’s architec-
ture. The aforementioned units control NAO robot (symbolized by its sensors, its
actuators and its interfaces in Fig. 6) through its already available hardware and soft-
ware facilities. In other words, the above-mentioned architecture controls the whole
robot’s behavior.

The purpose of NU is to allow the robot to position itself in space with respect
to objects around it and to use this knowledge to navigate within the surround-
ing environment. Capacities needed in this context are obstacle avoidance and

2 Developed by the ICL at University of Stuttgart, available online at: http://www.ims.uni-stuttgart.
de/projekte/corplex/TreeTagger.

http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger
http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger
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Fig. 6 Block diagram of the implementation’s architecture

determination of distance to objects. Its sub-unit handling spatial orientation receives
its inputs from the camera and from the LKAU. To get to the bottom of the obstacle
avoidance problem, we have adopted a technique based on ground color modeling.
Inspired by the work presented in [20], color model of the ground helps the robot to
distinguish free-space from obstacles.

The LKAU ensures gathering of visual knowledge, such as detection of salient
objects and their learning (by the sub-unit in charge of salient object detection)
and sub-recognition (see [18, 21]). Those activities are carried out mostly in an
“unconscious” manner, i.e. they are run as an automatism in “background” while
collecting salient objects and learning them. The learned knowledge is stored in
Long-term Memory for further use.

TheHKAU is the centerwhere the intellectual behavior of the robot is constructed.
Receiving its features from the LKAU (visual features) and from the CU (linguis-
tic features), this unit processes the beliefs’ generation, the most coherent belief’s
emergence and constructs the high-level semantic representation of acquired visual
knowledge. Unlike the LKAU, this unit represents conscious and intentional cog-
nitive activity. In some way, it operates as a baby who learns from observation and
from verbal interaction with adults about what he observes developing in this way
his own representation and his own opinion about the observed world [22].

The CU is in charge of robots communication. It includes an output communica-
tion channel and an input communication channel. The output channel is composed
of a Text-To-Speech engine which generates human voice through loud-speakers. It
receives the text from the BCU. The input channel takes its input from a microphone
and through an Automated Speech Recognition engine (available in NAO) the syn-
tax and semantic analysis (designed and incorporated in BCU) it provides the BCU
labeled chain of strings representing the heard speech.

The BCU plays the role of a coordinator of robot’s behavior. It handles data flows
and issues command signals for other units, controlling the behavior of the robot and
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Fig. 7 Robot and the subset of collected objects used for learning (left-side picture) and the recog-
nition by robot of two objects among those learned by the robot in different posture and in different
location (right-side picture)

its suitable reactions to external events (including its interaction with humans). BCU
received its inputs from all other units and returns its outputs to each concerned unit
including robot’s devices (e.g. sensors, actuators and interfaces) [22]. The human-
robot interaction is performed by this unit in cooperationwithHLAU. In other words,
driven by HLAU, a part of the robot’s epistemic curiosity based behavior is handled
by BCU.

3.3 Experimental Validation

The total of 25 every-day objects was collected for purposes of the experiment. The
collected set has been randomly divided into two sets for training and for testing
(Fig. 7). The learning set objects were placed around the robot and then a human
tutor pointed to each of them calling it by its name. Using its 640 × 480 monocular
color camera, the robot discovered and learned the objects around it by the salient
object detection approach we have described in [18]. Here, this approach has been
extended by detecting the movement of the human’s hand to achieve joint attention.
In this way, the robot was able to determine what object the tutor is referring to and
to learn its name. The right-side picture in Fig. 7 shows the recognition by robot of
two objects among those learned by the robot in different posture and in different
location.

During the experiment, the robot has been asked to learn a subset among the
25 considered objects: in term of associating the name of each detected object to
that object. At the same time, a second learning has been performed involving the
interaction with the tutor who has successively pointed the above-learned objects
describing (e.g. telling) to the robot the color of each object. Extracted from the
video of the experimental validation, Fig. 8 shows the robot observing and learning
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Fig. 8 Experimental setup showing tutor pointing different objects from learning set and robot
learning those objects

different objects chosen by the human tutor. Here-bellow an example of the Human-
Robot interactive learning is reported:

• Human [pointing a red aid-kit]: “This is a first-aid-kit!”
• Robot: “I will remember that this is a first-aid-kit.”
• Human: “It is red and white”.
• Robot: “OK, the first-aid-kit is red and the white.”

After learning the names and colors of the discovered objects, the robot is asked
to describe a number of objects including as well some of already learned objects but
in different posture (for example the yellow box presented in reverse posture) as a
number of still unseen objects (as for example a red apple or a white teddy-bear). The
robot has successfully described, in a coherent linguistics, the presented seen and
unseen objects. Extracted from the video of the experimental validation, Fig. 9 shows
the human tutor asking the robot to describe the pointed object (which is a red apple)
in term of colors (left-side picture of Fig. 9) and the ground truth detected objects as
the robot perceives them. Finally, Fig. 10 shows two examples of observed objects’
interpretation by the robot. Here-bellow is the Human-Robot interaction during the
experiment:

• Human [pointing the unseen white teddy-bear]: “Describe this!”
• Robot: “It is white!”
• Human: [pointing the already seen, but reversed, yellow box]: “Describe this!”
• Robot: “It is yellow!”
• Human: [pointing the unseen apple]: “Describe this!”
• Robot: “It is red!”
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Fig. 9 Experimental setup showing tutor pointing a red apple which has not been seen before, (by
the robot) asking the robot to describe that object in term of colors (left-side picture) and the ground
truth detected objects as the robot perceives them (right-side picture)

Fig. 10 Two objects observed and interpreted by the robot: the original image provided by robot’s
camera (left-side pictures) and the interpretation of those objects by the robot (right-side pictures).
For the “apple”, the robot’s given description was “the object is red”. For the box, the description
was “the object is blue and white”

4 Conclusion and Perspectives

This chapter has presented, discussed and validated a cognitive system for high-level
knowledge acquisition based on the notion of artificial curiosity. Driving as well the
lower as the higher levels of the presented cognitive system, the emergent artificial
curiosity allow such a system to learn in an autonomous manner new knowledge
about unknown surrounding world and to complete (enrich or correct) its knowledge
by interacting with a human. Experimental results, performed as well on a simulation
platform as using the NAO robot show the pertinence of the investigated concepts as
well as the efsfectiveness of the designed system. Although it is difficult to make a
precise comparison due to different experimental protocols, the results we obtained



Artificial Curiosity Emerging Human-Like Behavior … 515

show that our system is able to learn faster and from significantly fewer examples,
than the most of more-or-less similar implementations.

Based on obtained results, it is thus justified to say, that a robot endowedwith such
artificial curiosity based intelligence will necessarily include autonomous cognitive
capabilities. With respect to this, several appealing perspectives are pursuing to push
further the presentedwork. The current implemented version allows the robot towork
with a single category or property at a time (e.g. for example the color in utterances
like “it is red”). We are working on extending its ability to allow the learning of
multiple categories at the same time and to distinguish which of the used words are
related to which category. While, concerning the middle-term perspectives of this
work, they will focus aspects reinforcing the autonomy of such cognitive robots. The
ambition here is integration of the designed system to a system of larger capabilities
realizing multi-sensor artificial machine-intelligence. There, it will play the role of
an underlying part for machine cognition and knowledge acquisition.
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