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Abstract. The ability to perform spatial tasks is crucial for everyday life and of
great importance to cognitive agents such as humans, animals, and autonomous
robots. Natural embodied and situated agents often solve spatial tasks without
detailed knowledge about geometric, topological, or mechanical laws; they
directly relate actions to effects enabled by spatio-temporal affordances in their
bodies and their environments. Accordingly, we propose a cognitive processing
paradigm that makes the spatio-temporal substrate an integral part of the
problem-solving engine. We show how spatial and temporal structures in body
and environment can support and replace reasoning effort in computational
processes: physical manipulation and perception in spatial environments sub-
stitute formal computation, in this approach. The strong spatial cognition par-
adigm employs affordance-based object-level problem solving to complement
knowledge-level computation. The paper presents proofs of concept by pro-
viding physical spatial solutions to familiar spatial problems for which no
equivalent computational solutions are known.
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1 Introduction

The philosopher John Searle distinguishes “strong” AI from “weak” or “cautious” AI
(Artificial Intelligence): “According to weak AI, the principal value of the computer in
the study of the mind is that it gives us a very powerful tool.… But according to strong
AI, the computer is not merely a tool in the study of the mind; rather, the appropriately
programmed computer really is a mind, in the sense that computers given the right
programs can be literally said to understand and have other cognitive states. In strong
AI, because the programmed computer has cognitive states, the programs are not
merely tools that enable us to test psychological explanations; rather, the programs are
themselves the explanations.” (Searle 1980, p. 417).

Research in spatial cognition and the formalization of commonsense reasoning by
means of logic has made substantial progress in reasoning about space and time in the
past 25 years (Egenhofer and Franzosa 1991; Freksa 1991b; Cohn and Hazarika 2001;
Renz and Nebel 2007; Ligozat 2011; Wolter and Wallgrün 2012; Dylla et al. 2013).
For example, approaches of qualitative spatial reasoning permit the computation of
spatial relations that correspond to real or potential configurations in the physical
environment. These approaches employ AI tools (weak AI) to describe states of affairs
in physical environments and to manipulate these descriptions in such a way that the
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resulting descriptions correspond to new states of affairs as obtained by physical
operations in the spatial environment.

While weak AI models may achieve the same final configurations as the systems
they model (weak generative capacity, result equivalence, informational equivalence),
only in certain cases they achieve these configurations in the same way (strong gen-
erative capacity, strong equivalence (Chomsky 1963), computational equivalence
(Simon 1978)) as the corresponding operations in physical space. The reason is that
only some spatial structures can be faithfully replicated in formal representations such
as lists, trees, or arrays; other spatial structures and operations must be simulated in
terms of the structures available in formal systems. As a consequence, computational
operation sequences may be quite different from the sequences of mental and spatial
operations modeled.

Whereas purely formal approaches employ sophisticated knowledge about a
domain in order to infer new knowledge about spatial configurations, they may be only
partially useful when it comes to modeling cognitive processes, their dynamics, their
complexity, and their scalability (cf. Dreyfus 1979). Here we require models that
operate on the restricted domain knowledge of a cognitive agent and preserve the
relevant structures of the system to be modeled; in spatial problem solving these are in
particular spatial and temporal structures.

As spatial cognition does not exclusively take place in the mind – it also involves
severe interactions between mind, body, and the spatial environment – a full model of
spatial cognition must take the roles of the body and the spatial environment for spatial
problem solving into account (see Chandrasekaran 2006). In analogy to Searle’s notion
of strong AI we call embodied and situated models of spatial cognition that maintain
the structural and functional properties of physical space strong spatial cognition. This
paper expands on the work presented in (Freksa 2014; Freksa and Schultheis 2014;
Freksa 2015).

2 Real-World Spatial Problem Solving

We focus on a special class of real-world problems that are of particular significance for
cognitive agents such as humans, animals, and autonomous robots: spatial and tem-
poral problems in physical environments. These problems share basic structural
properties that have been intensively studied in spatial cognition research (Freksa 1997)
and are quite well understood today on the information processing level, i.e. the level
that is directly accessible to computers and computer science. One outcome of this
research is the insight that the best solutions to different types of spatio-temporal
problems require a considerable variety of approaches and tools (Descartes 1637;
Sloman 1985). Some of the best approaches for human spatial problem solving make
heavy use of the physical object level, i.e. they manipulate and perceptually inspect
physical spatial configurations rather than solving problems entirely on the abstract
information level.

In the following sections we will present a number of examples that illustrate
different types of approaches to spatial problem solving.
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Example 1. When a cognitive agent instantiates the route instruction turn left at the
next intersection, he, she, or it does not require a detailed mental representation of the
intersection or the environment; it also does not need to know and specify a precise
turning angle before being able to follow the instruction.

The instruction provides a coarse guideline that permits the agent to move in an
unfamiliar environment by perception-based route following and to select a left route
from several alternatives that it may perceive in the vicinity of the intersection. The
information about the turning angle is implicitly present in the spatial configuration that
consists of the pose of the agent in relation to the route. The route instruction can be
followed by means of a short perception-action loop. This does not require that the
turning angle ever be made explicit in a cognitive representation.

In other situations cognitive agents may prefer to have detailed spatial knowledge
before starting a spatial action as it may be easier to solve the problem by reasoning
than by spatial interaction, as the following example illustrates:

Example 2. When I lost my keys that I last used during a trip some while ago, it may
be worthwhile to reconstruct the preceding sequence of events on the trip mentally on
the basis of remembered information about my preceding actions. Exploring the
environment perceptually also might work to find my keys, but it could be more
difficult or laborious, in the particular situation.

Embodied and situated cognitive agents are capable to operate on both the infor-
mation processing and the physical object level. Perception and action operations serve
as interfaces between the two levels; a memory serves to make information about the
environment available to information processing in the absence of perceptual infor-
mation and to store results of information processing for carrying out actions.

The classical cognitive science view treats cognition as a pure information pro-
cessing activity (Simon 1978) that takes place entirely in the brain of a cognitive agent
(respectively in a computer). But it was pointed out early on that the bodies of cognitive
agents and the environments in which they perceive and act have significant effects on
the types of solutions they pursue (Norman 1993; Clancey 1997; Wilson 2002;
Wintermute and Laird 2008).

Furthermore, the information processing approach presupposes that a real-world
problem has been comprehensively abstracted into an information processing task
before cognitive processing can start. This assumption may be reasonable for routine
tasks for which all necessary information is provided and which can be performed
according to pre-existing standard patterns; however for novel problems, where a
considerable part of the problem solving effort goes into identifying the information
needed and finding appropriate representations, approaches, and tools, physical spatial
configurations as in diagrams, maps, or other perceivable and/or manipulable spatial
configurations typically play an important role for solving problems (cf. Polya 1945).
In many cases, problem-specific approaches may be more appropriate and more effi-
cient than general approaches. Specific approaches can take into account particular
features of the problem domain to a larger extent than general approaches that abstract
from specific characteristics.
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In general, cognitive agents have a considerable variety of approaches and tools they
can use to attempt solving a given spatial problem. In real-world cognitive problem
solving we are confronted with problems where the identification of a suitable approach
is more difficult than the computation of a solution on the basis of a given approach;
once an appropriate approach has been selected, the problem solving procedure itself
may be straightforward. This is illustrated in the following example:

Example 3. Suppose an agent’s task is to determine visually (without a depth sensor)
whether a tree is on this or on the other side of a fence (Fig. 1a).

A classical image analysis approach could use depth clues in the 2D projection of
the 3D configuration to infer whether fence or tree is closer to the agent. Problem: the
essential depth dimension is only poorly represented in the 2D projection. Spatial
approach: Select a spatial reference frame that highlights the essential dimension; this
can be achieved by relocating the agent such that the essential dimension is projected
prominently onto the image of the configuration (Fig. 1b); now the task can be solved
by considering only one image dimension, as the previous depth dimension has been
mapped to the perceptually better accessible width dimension by spatial transformation
in the problem domain.

This specific example employs physical action only to modify perceptual acquisition
of information from the environment without changing the 3-dimensional scene of
interest. Note, however, that the 2-dimensional projection of the scene (that is typically
the only information available for visual scene analysis) has considerably changed.
Other kinds of manipulations would actually change the physical scene of interest in
order to simplify or solve the spatial problem at hand.

The discussion shows that we need to address the question of how to find a suitable
approach to solve a given spatial problem. Finding a suitable approach to solve a novel
problem is one of the most interesting and challenging problems for cognitive agents.
For the specific domain of spatio-temporal problems, we have good reasons to believe
that the time is ripe to tackle this challenge; our belief is rooted in the fact that today we

(a) (b)

Fig. 1. a. Hard visuo-spatial decision problem b. Same problem in a more suitable spatial
reference frame
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have a much better understanding of the properties of spatial and temporal relations and
structures than twenty years ago.

There even is hope that once the challenges of identifying suitable spatio-temporal
reasoning approaches to a given problem are tackled, we will be able to make use of the
resulting approaches for addressing non-spatial problems, as well. This hope is rooted
in the insight that human cognitive agents understand many problems through analo-
gies (Gentner 1983) and metaphors (Lakoff and Johnson 1980). Non-spatial problems
may be solved by mapping them onto spatially constrained structures; here they may be
solved more easily before mapping the solution back to the problem domain. This
procedure would be in contrast to generalizing spatial approaches to unconstrained
domains where we would employ highly general approaches.

The spatial (and to a lesser extent the temporal) domain is particularly accessible to
autonomous mobile agents with visual, haptic, and auditory perception and memory, as
well as with moving, turning, and grasping capabilities. These capabilities enable
agents to flexibly interact with their environments. Specifically, agents can actively
influence which parts and aspects of their environment they perceive and they can
modify spatial configurations in the environment through their actions. So far, these
capabilities have not been systematically investigated and exploited for cognitive
systems architectures. We therefore propose to develop proof of concept implemen-
tations and demonstrations for solving spatio-temporal problems strategically by
making use of spatio-temporal affordances.

A main motivation for studying physical operations and processes in spatial and
temporal form in comparison to formal or computational structures is that spatial and
temporal structures in the body and the environment can substantially support (and
even replace) reasoning effort in computational processes (Dewdney 1988). When we
compare the use of different forms of representation (see Marr 1982), we observe that
the processing structures of problem solving processes differ and facilitate different
processing mechanisms (Sloman 1985). Spatial structures that resemble the problem
domain may result in a lower complexity than structurally deviating abstract repre-
sentations, as they can make direct use of the inherent structural properties without a
need for describing them (Nebel and Bürckert 1995).

A main objective of our work is to explore the scope of application of this principle.
This will involve a representation-theoretic assessment of representational equivalence
and similarity, on the level of both result equivalence and strong equivalence. We
develop a framework to relate physical actions and perception activities (Bajcsy 1988;
Lungarella et al. 2002) to information processing activities, in order to assess the
trade-off between physical and mental operations. Such a framework has long been
missing in the debate surrounding diagrammatic vs. analytic reasoning (Glasgow et al.
1995).

Our approach builds on well-established paradigms from cognitive science (e.g.
knowledge representation theory (Palmer 1978), affordances (Gibson 1979), knowl-
edge in the world (Norman 1980), conceptual neighborhood (Freksa 1991a)) and on
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research carried out in the collaborative research center SFB/TR 8 Spatial Cognition at
the University of Bremen over the past twelve years.

3 Background and Motivation

AI research initially was concerned exclusively with mental aspects of cognitive sys-
tems, specifically with operations and processes that take place in the brain (respec-
tively computer) (Feigenbaum and Feldman 1963). Advances in robotics and
knowledge representation have extended the scope of AI research to model perception
and action processes, the (physical) bodies of agents, and the agents’ spatial envi-
ronments (e.g. Davis 1990). The rather general structures of abstract formalisms used
for knowledge representation in computers allow describing arbitrary aspects of bodies
and environments in detail and to reason about them, including spatial and temporal
aspects.

While abstract reasoning about the world can be considered the most advanced
level of cognitive ability (see Freksa and Schultheis 2014), this ability requires a
comprehensive understanding of mechanisms responsible for the behavior of bodies
and environments. But many natural cognitive agents (including adults, children, and
animals) lack a detailed understanding of their environments (Piaget 1929) and still are
able to interact with them rather intelligently.

Example 4. Children and dogs may be able to open and close doors in a goal-directed
fashion without understanding the mechanisms of doors or locks on a functional level.

This suggests that knowledge-based reasoning is not the only way to implement
problem solving in cognitive systems. Other systems of perceiving and moving
goal-oriented autonomous agents have been proposed in biocybernetics and AI
research to model aspects of cognitive agents (e.g. Braitenberg 1984; Brooks 1991;
Pfeifer and Scheier 2001). These models implement perceptual and cognitive mecha-
nisms that follow physical laws rather than formal representations that follow the laws
of logics. Such systems are capable of reacting to their environments intelligently
without encoding knowledge about the mechanisms behind the actions and without the
associated computational cost.

In our spatial cognition research we have investigated the potential of qualitative
spatial relations, of structure-preserving schematic maps, and of the role of intrinsically
spatial structures for spatial reasoning and spatial problem solving (Freksa 1991b,
2013; Schultheis et al. 2014). A main result of this work is that structure-preserving
representations can make direct use of spatial relations (e.g. spatial neighborhood,
conceptual neighborhood, spatial order, and spatial orientation). Without structure-
preservation, these relations would have to be derived through knowledge-based pro-
cesses in more abstract formal representations of space. Thus, spatial calculi that
exploit structure-preserving representations can avoid the necessity of performing
certain computational derivations, as they represent crucial relations intrinsically rather
than extrinsically (Palmer 1978; Dirlich et al. 1983).

Spatial cognition research also has been concerned with issues of resolution and
granularity, both on a physical and on a conceptual level (Hobbs 1985; Freksa and
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Barkowsky 1996; Mossakowski and Moratz 2012; Schultheis and Barkowsky 2011).
In knowledge representation, we must deal with the issue of level of detail on which we
represent objects and configurations in order to solve certain problems. The finer the
level of representation, the more problems we will be able to solve, in principle. But
this comes at a cost: the more details we have to deal with, the more computation we
have to invest. Cognitive processes frequently process information from coarse to fine
rather than from fine to coarse. These processes are directly supported by physical and
spatial properties of their environments. An illustration is given in the following
example:

Example 5. In vision, coarse corresponds to distant and fine corresponds to close. The
same sensor adapts its ‘representation’ of the world simply by physically moving
towards an object or away from it.

The field of diagrammatic reasoning (Glasgow et al. 1995; Chandrasekaran 2006;
Goel et al. 2010) is concerned with problem solving by means of diagrams, a special
form of spatial representations. A key issue here is the comparison between formal and
diagrammatic representations and reasoning processes. Of particular interest is the
equivalence between the reasoning procedure operating on the corresponding formal
structure and the problem solving procedure operating on the spatial structure. Strong
equivalence has been mainly studied in comparing different formal systems. Com-
paring processes operating on physical spatial structures with processes operating on
formal structures poses an interesting challenge, as we will require a reference
framework that includes information processing and re-configuration of spatial
configurations.

Our research builds on work in the areas of spatial and temporal reasoning and
simulation, data structures, diagrammatic reasoning, mental representations, theories of
knowledge representation and computation, and related areas. In the following I will
sketch some of the issues that have been particularly relevant for our work.

In 1983, James Allen published a widely referenced paper on Maintaining knowl-
edge about temporal intervals (Allen 1983). In this paper the author developed a
calculus for temporal relations based on the set of 13 jointly exhaustive and pairwise
disjoint (JEPD) relations that can hold between two temporal intervals. Allen’s
approach became the role model for numerous calculi for qualitative spatial reasoning
(QSR) (e.g. Guesgen 1989; Egenhofer and Franzosa 1991; Randell et al. 1992; Freksa
1992; Ligozat 1993; Zimmermann 1995; Moratz et al. 2000; Van de Weghe et al.
2005). Whereas a single calculus is sufficient for reasoning about temporal relations, a
multitude of calculi are required to cover all relevant aspects of spatial relations. In
particular, calculi for topological relations, for orientation relations, and for distance
relations have been developed (Freksa and Röhrig 1993; Cohn and Hazarika 2001).

Attempts to integrate the different aspects of spatial calculi in a single calculus
failed. The reason for this is rooted in the fact that the different aspects of space are
strongly intertwined as indicated by the following example:

Example 6. A topological relation between two objects constrains the distance
between them; a set of distance relations between several objects constrains their
relative orientations, etc.
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An integrated calculus would have to compute and update all relations that are
affected by a single change in order to maintain consistency among the relations. This
would be computationally expensive and not useful if only a single aspect of the spatial
configuration is of interest.

This computational dilemma points to a property of space that makes spatial
structures particularly interesting: properties of spatial objects and configurations are
intrinsically highly interdependent. If we modify one spatial aspect (e.g. distance,
orientation, or topological relation) in a spatial structure, other spatial aspects will
change ‘automatically’, as well. We call such a structure a spatial substrate (Freksa
2013). If we move an object in space, the spatial locations of all its parts as well as their
relations to other objects will change. If we change a single spatial aspect in a spatial
substrate, all these changes take place (‘for free’); no computing (or otherwise) effort is
required.

In other words: The computational dilemma described above mutates into a special
feature of spatial substrates: If suitable operations for spatial simulations in spatial
substrates are available, we may be able to avoid an enormous amount of computation,
whereby consistency is intrinsically guaranteed.

The use and exploitation of structural properties of representations makes up the
core idea of data structures: a data structure supports a particular way of organizing
information such that it can be used efficiently (Knuth 1997). Depending on the
problem structure and on the tasks to be performed on a representation, certain data
structures may be better suited than others. Some data structures share structural
properties with spatial substrates, in particular lists, trees, and arrays.

Example 7. Binary trees are particularly useful data structures for sorting and
searching linearly ordered information, as the linear order can be mapped to the leaves
of the tree while the branching structure of the tree corresponds to decisions to be taken
in the sorting/searching process.

For other data, in which no order is implied in their appearance, an ordered data
structure may be detrimental to the task as the structure may impose an unintended
bias; therefore we employ structures that avoid such a bias, in these cases.

Example 8. Hash tables avoid a correspondence with spatial substrates and processes
and thus permit data access independent of an ordering.

Unfortunately, we do not have suitable data and access structures for all operations
that we would like to perform on computational representations of space, as the fol-
lowing example suggests:

Example 9. Zooming and perspective transformation operations involve computation
on all elements of the domain and tend to be computationally expensive.

In spatial substrates, in contrast, we have more flexibility in accessing data. We can
perform zooming and perspective transformation by manipulating the data access
(perception) apparatus while leaving the data itself untouched. In the performance
assessment of computer algorithms, data access operations usually are considered
cheap in comparison to computational transformations.

Efficient use of information also depends on the operations we permit on data and
knowledge structures. Unrestricted relations and operations may result in high
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complexity and in unfavorable scaling behavior while having no particular advantages,
in many cases.

Example 10. In qualitative reasoning, we can relate each spatial (or temporal) relation
to each other in the set of JEPD relations. When reasoning about a given domain, this
leads to exponential complexity in the number of objects related to one another.

On the other hand, we know that in the spatial (respectively temporal) domain most
transitions between relations cannot occur due to substrate-inherent reasons. This
insight allows us to restrict a calculus to take into account only transitions between
conceptually neighboring relations (Freksa 1991a). This restriction on the representa-
tional level has no negative implications on the object level, as other transitions cannot
occur in the represented domain. But it has great advantages: the calculus becomes
tractable, as it results in only polynomial complexity (Nebel and Bürckert 1995).

Although spatial calculi have been applied with considerable success to a number of
spatial problems (e.g. Wolter et al. 2008; Kreutzmann et al. 2013; Falomir et al. 2013;
Dubba et al. 2015), there are at least two aspects of such calculi that seem in need of
improvement. First, calculi mainly represent information about an abstract spatial
problem, i.e., they largely fail to systematically exploit the constraints and affordances
provided by the physical structure of the domain. As a result, spatial problems as
represented by calculi may easily become computationally too complex to be solved
efficiently, if spatial constraints (or subsets thereof) are not introduced on top of the
spatial calculi – for example in the form of conceptual neighborhood (Freksa 1991a;
Nebel and Bürckert 1995; Balbiani et al. 2000). Second, there is currently only a poor
understanding concerning which calculi are best suited for solving a given spatial
problem: When faced with a specific problem it is not clear how to select among the
many available formalisms for solving the problem.

In AI, early attempts to exploit spatial structures for reasoning purposes are found in
the subfield of diagrammatic reasoning (Larkin and Simon 1987; Glasgow et al. 1995).
The idea was to make use of the spatial arrangement of objects on a (simulated)
two-dimensional medium to optimize search and decision processes in reasoning. This
idea was inspired by the way humans utilize diagrams employing their visual per-
ceptual capabilities. Consequently, applications are found in geometric reasoning, in
(physical) problem solving, and in the simulation of physical motion.

From a basic research perspective in cognitive science, spatial substrates play an
important role in mental spatial reasoning using visual mental images (Kosslyn 1980,
1994) and spatial mental models (Johnson-Laird 1983, 1995). In these mental repre-
sentation formats, entities under consideration are dealt with in a similar way as they
would be perceived and interacted with in the real world. The properties of these types
of mental representations in mental spatial reasoning have been investigated and
modeled from a computer science perspective by Schultheis and Barkowsky (2011)
and Schultheis et al. (2014), among others.

In general, when a cognitive information processing system is analyzed from an
informatics perspective, this can be addressed on three distinct levels (Marr 1982): as a
computational theory; from the perspective of knowledge representations and the
processes operating on them; and with respect to a specific hardware implementation. It
is an essential feature of our approach that we operate on all three levels: we are
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interested in spatial substrates that are physically realized and utilized by specific
hardware; we operate on those substrates employing suitable representation structures
and cognitive processes; and we aim at establishing a new paradigm of theoretically
investigating cognitive systems from an information processing point of view.

In summary, we can identify numerous results which indicate that adaptations to
specific task requirements may be cognitively and computationally more adequate
(Sloman 1985) than the previously pursued goal of a ‘General Problem Solver’ (Newell
et al. 1959). In particular, exploiting the restrictions of spatial and temporal substrates
may have considerable advantages over employing general abstract approaches. This
insight also leads us to question the appropriateness of employing highly expressive
representation languages for reasoning about the severely constrained spatial and
temporal domains.

4 Objectives of this Work

Cognitive agents such as humans, animals, and autonomous robots comprise brains
(respectively computers) connected by powerful interfaces to the environment: sensors
and actuators. The sensors and actuators are arranged in their (species-specific) bodies
to interact with their (species-typical) environments. All of these components need to
be well tuned to one another to function in a fully effective manner. For this reason, we
view the entire aggregate (cognitive agent including body and environment (Wilson
2002)) as a full cognitive system (see Fig. 2). This is in contrast to classical AI systems,
which have focused on the structures and processes within the confinements of the
computer.

Our research is concerned with the investigation of cognitive principles that govern
the interaction between these high-level cognitive system components. Although the
research is motivated by the capabilities we observe in natural cognitive systems, our
goal is not to replicate or characterize a particular natural system. The project aims at
investigating and analyzing the distribution, coordination, and execution of tasks
among the components of embodied and situated spatial cognitive agents on the system
level from a systems engineering/system analysis perspective (Pylyshyn 1988).

Fig. 2. Structure of a full cognitive system
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In a classical information processing/artificial intelligence approach, we would
describe the relevant components outside the brain or computer formally in some
knowledge representation language or scheme in order to allow the computer to per-
form formal reasoning or other computational processing (Russell and Norvig 2010).
Physical, topological, and geometric relations would be transformed into abstract
information about these relations and the tasks would be performed entirely on the
information processing level, where physical, topological, and geometric relations are
replaced by descriptions of their properties.

As we are dealing with spatial problems that originate from a spatial substrate and
whose solutions eventually are relevant in a spatial substrate (e.g. we solve wayfinding
tasks in order to apply the identified route in physical space), we will investigate under
which conditions and to which extent we will be able to take advantage of the specific
spatial properties and the structure of the problem domain. The goal is to use
abstraction only in as far as it is useful for the given problem and to maintain the spatial
structure when we can profit from its intrinsic spatial properties (Palmer 1978). In this
way we may be able to avoid effort, difficulties, and losses due to the problem
abstraction process, the reasoning process (in a possibly not optimally adapted for-
malism), and the concretion process that maps the abstract problem solution back into
the spatial problem domain.

When we talk of spatial structures and spatial reasoning in the context of spatial
cognition, we implicitly include temporal structures and temporal reasoning, as we are
concerned with cognitive processes and the dynamics of space which must take into
account the structure and constraints of time.

Spatial and temporal structures are not as expressive as general abstract languages.
Abstract languages can transcend the limitations of the physical realm. In comparison,
spatial and temporal structures have the advantage of representing precisely those
configurations that we deal with in space and time. Limitations of spatial representation
media have been explored in art (e.g. by Pablo Picasso and Maurits Cornelis Escher);
their advantages come to bear when representing concrete spatial entities, events, or
concepts that we imagine in terms of spatial relations or structures (e.g. abstract
hierarchies). Here, the limitations of spatial structures are useful (e.g. when repre-
senting spatial configurations or abstract hierarchies on a spatial substrate like a piece
of paper) as we do not have to make relations explicit that are implicitly provided by
the spatial structure.

Thus, the question is not whether more general abstract representations or more
specific concrete representations are better; rather, we need to consider in which form
the problem is given and exactly which operations we want to perform. In the end, the
question is how we can combine the advantages of a general abstract language with the
advantages of a specific representation structure (Freksa and Barkowsky 1999).

As an example, consider geographic maps: they employ a spatial medium – paper
or a 2D display of some sort. The spatial structure by itself is rather useless; a map
requires symbols that add semantics and establish an abstract correspondence to entities
in the real world. In principle, of course, everything that can be represented on a map
could be described in terms of an expressive abstract language: all spatial relations that
are implicitly expressed through the spatial medium could be made explicit in terms of
linguistic or other descriptions.
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For perceiving and acting cognitive agents who heavily rely on spatial interde-
pendencies, such descriptions of maps would be difficult to use. Thus, we need to find
the right balance between implicitly and explicitly available knowledge – or equiva-
lently: between specific and general representation structures. In maps, this balance
varies depending on the purpose of use: some features are expressed spatially (con-
figurations, relative distances, and shapes) while others are expressed symbolically
(type of road, type of land use) (Freksa 1999). As both types of representation share the
same spatial medium, they compete for kinds of interpretation, as the following
example shows:

Example 11. In interpreting a road map, can I multiply the width of a road symbol on
the map with the scaling factor of the map to determine the width of the corresponding
road in the environment or is the width of the road symbol a constant related to that
symbol?

The answer to this question depends on the design decision for the particular map
type, namely which aspects of the environment are to be represented pictorially and
which symbolically. In our research, we investigate distributions between implicit and
explicit knowledge in intrinsic vs. extrinsic representations from a cognitive processing
perspective: when we employ cognitive offloading of information processing from the
mind (respectively computer) to the environment (Wilson 2002), we will have to add
new information processing structures (on a more abstract level) to control the cog-
nitive agent’s use of the externalized knowledge. This creates interesting trade-offs that
we will investigate in the framework of the spatial substrate processing paradigm.

Just as the logic programming paradigm is designed to generate inferences about
truth values by employing the laws of logics, we develop a spatial processing paradigm
to generate inferences about spatial relations by employing the laws of space and time
(Freksa and Schultheis 2014). Logics is an excellent language on the meta-level, for
describing states of affairs and for reasoning about them; our objective for developing
the spatial processing paradigm is to produce an object level representation for pro-
cesses of spatial cognition.

Against this background, our objective is to initiate a paradigm shift in represen-
tation and problem solving by placing emphasis on representational approaches and
solutions that exploit knowledge in the world (Norman 1993) (and the affordances
(Gibson 1979) and constraints (Freuder and Mackworth 1994) that come with it) as
well as systematically investigating how to best distribute problem solving effort
between abstract (knowledge about – meta-level) and concretely embodied (knowledge
in the world – object level) modes of representation and processing. More specifically,
our objectives comprise:

• Characterizing the division of labor between abstract knowledge representation and
knowledge in the world.

• Devising representation and processing structures that facilitate the exploitation of
knowledge in the world.

• Devising selection and control structures to identify a promising problem solving
approach from a set of alternatives.

• Determining how (a) the effort required for building up an abstract representation;
(b) the accessibility of knowledge in the world; (c) the frequency with which certain
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information is reused; and (d) the availability of computational and memory
resources influence the division of labor.

• Developing measures that allow comparing effectiveness and efficiency of different
combinations.

• Realizing the proposed approach in a simulation environment and on a robotics
platform.

5 Approach

We focus on spatial and spatio-temporal tasks that are directly accessible by perception
and allow for manipulation by physical action. This is the domain we understand best
in terms of computational structures; we have well established and universally accepted
reference systems to describe and compute spatial and temporal relations. The limi-
tation to spatial tasks may turn out less severe than it may appear initially: numerous
non-spatial problems can be transformed into equivalent spatial problems where the
spatial structure helps to support the problem solving process. Human problem solvers
make use of problem spatialization, for example, when visualizing a linguistically
specified problem in the form of a diagram in order to better grasp the problem and/or
to be better able to formalize it for formal problem solving. Depending on the spatial
representation chosen for the diagram, it may be easier or harder to grasp or formalize
the problem.

The main hypothesis of the strong spatial cognition paradigm is that the ‘intelli-
gence’ of cognitive systems is grounded not only in specific abstract problem solving
approaches, but also – and perhaps more importantly – in the capability of recognizing
characteristic problem structures and of selecting particularly promising problem
solving approaches for given tasks. Formal representations generally do not facilitate
the recognition of such structures due to a bias inherent in the abstraction. This is where
mild abstraction can help as it abstracts only from few aspects while preserving
important structural properties.

The insight that spatial relations and physical operations are strongly connected to
cognitive processing will lead to a different division of labor between the perceptual,
the representational, the computational, and the locomotive parts of cognitive inter-
action than the one we have been pursuing with AI systems: rather than putting all the
‘intelligence’ of the system into the computer, the proposed approach aims at putting
more intelligence into the interactions between components and structures of a cog-
nitive system as well as into the structure of the problem representation. More spe-
cifically, we aim at exploiting intrinsic structures of space and time to reduce the
complexity of computation.

We argue that a flexible assignment of physical and computational resources for
cognitive problem solving is closer to natural cognitive systems than the almost
exclusively computational approach. For example, when we as cognitive agents search
for certain objects in our environment, we have at least two different strategies at our
disposal: we can represent the object in our mind and try to imagine and mentally
reconstruct where it could or should be – this would correspond to the classical AI

Strong Spatial Cognition 77



approach; or we can visually search for the object in our spatial environment. Which
approach is better (or more promising) depends on a variety of factors including
memory and physical effort required. Frequently a clever combination of both
approaches will be best.

We develop and implement a proof of concept for the proposed approach to spatial
problem solving through simulations of the perception and manipulation processes as
well as through physical agent models, e.g. as generated by a 3D printer (Freksa 2013).
The research is primarily conceived as basic research in cognitive systems engineering:
we identify and relate an inventory of cognitive principles and ways of combining them
to obtain cognitive performance in spatio-temporal domains.

For this project, we can build on extensive research on spatial and temporal rela-
tions, their representation in memory, and with qualitative spatial reasoning in the
framework of international interdisciplinary spatial cognition research. Naturally, the
proposed approach will not be as broadly applicable as some of the approaches we have
pursued in classical AI research, as it is intentionally restricted to spatio-temporal
structures; but the approach promises to discover broadly applicable cognitive engi-
neering principles for the design of tomorrow’s intelligent agents.

Our philosophy is to understand and exploit pertinent features of space and time as
modality-specific properties of cognitive systems that enable powerful specialized
approaches in the specific domain of space and time. Since space and time are most
basic for perception and action and ubiquitous in cognitive processing, we believe that
understanding and utilizing their specific structures will be particularly beneficial.

There are at least two general approaches towards studying cognitive systems:
(1) by analysis or (2) by synthesis. A standard empirical approach would be to analyze
an existing system in order to understand its functionality. When we are dealing with
complex systems whose components interact in multiple ways, it becomes difficult to
derive a single theory that explains the functionality of the underlying system.

In our research, we investigate cognitive systems by synthesizing components
whose functions we understand. The objective is to provide a proof of concept in order
to discuss and compare various system architectures. Our method follows the approach
that Braitenberg called ‘experiments in synthetic psychology’. As Braitenberg (1984)
argues in his book Vehicles, this approach may lead in a straightforward way to a
well-understood model that can be scrutinized by empirical methods.

Further, we can distinguish at least two types of models of systems that may or may
not pursue different objectives: (1) models that aim at reconstructing the functional
components, relationships, and performance of a system on a given level of abstraction
and granularity (Zadeh 1979; Hobbs 1985) as closely as possible through replicating
properties and functionality of their components (object-level models); and (2) models
that make the scientists’ knowledge about properties, relations, and functions of the
modeled system explicit through descriptions or prescriptions (knowledge-level mod-
els). Both types of models are suited to enhance our understanding of cognitive systems
and both have advantages and disadvantages.

Example 12. Well-known examples of the two types of models from a non-cognitive
domain are wind channel models of automobiles or airplane wings (object level) and
finite-element algorithms to power virtual wind tunnel simulations (knowledge level).
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Before the theory of aerodynamics was mature enough to convey all relevant
parameters that influence aerodynamic properties and computers powerful enough to
simulate the aerodynamic interactions, engineers placed physical models (full sized or
spatially scaled) that maintained crucial features such as shape and surface finish into
the air flow generated by physical wind channels. In these wind channels, the engineers
could measure physical forces to evaluate their designs under varying environmental
conditions. As the theory of aerodynamics advanced (partly due to empirical testing of
various aerodynamic shapes), the physical interactions between design and surrounding
airflow were better understood; they could be characterized by finite element models, a
numerical approximation approach to describing physical field behavior. Supercom-
puters were employed to calculate aerodynamic properties of cars and airplane wings,
and other objects, as the computation of the interactions between all the parameters
involves massive computation.

While the finite-element simulation has clear advantages over the wind tunnel
simulation, it also has decisive disadvantages. Advantages are: the finite-element model
reflects scientific understanding of aerodynamic interactions; furthermore wind tunnel
experiments required huge labs with special equipment that required personnel and
consumed considerable amounts of energy. Disadvantages are: the mathematical
simulation of the aerodynamic processes computes the effects of physical interaction by
iterative numerical approximation processes; these processes have no direct corre-
spondence to the physical interaction processes they represent and are not performed in
real time. Considerable computation is required to integrate the results from a multitude
of interactions.

For building cars and airplane wings the disadvantages of computational simulation
are not significant; the simulations can run ‘off-line’ to compute the required charac-
teristics of the design. In cognitive modeling, however, we are not only interested in the
result of applying the model; we are interested in the dynamics of the cognitive pro-
cesses themselves. Thus we may benefit from an object-level model that intrinsically
guarantees certain domain properties – until we understand their significance suffi-
ciently well to simulate them in a cognitive process model in real time.

In modeling computational problem solving in spatial substrates, we are confronted
with the spatial substrate (object level) and at least two levels of abstraction: the
knowledge level and a meta-knowledge level (Fig. 3).

Fig. 3. Levels of cognition in spatial problem solving
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The knowledge level makes aspects of the spatial structure on the object level
explicit in the form of spatial relations and calculi. The meta-knowledge level makes
knowledge about the relations and calculi on the knowledge level explicit in the form
of knowledge about their use.

A fundamental contribution of computer science and artificial intelligence is to
enable algorithmic interpretation of formally described knowledge such that formal
representations of knowledge can be executed and thus perform as a model. In this
way, the knowledge-level model can turn into a performance model whose behavior
resembles that of the object-level system. To what extent it will be possible to
reproduce the behavior of the object level system will depend on the structures of the
representation and of the interpretation processes. It is not necessarily the most general
or most powerful interpretation mechanism that will yield the best correspondence;
rather, the best adapted knowledge structures and interpreters will win.

Object-level models do not make knowledge explicit; they maintain system prop-
erties and relations implicitly in their system structure. If the system structure and the
process structure of the model closely match the corresponding structures of the
cognitive system on the object level, its behavior can be expected to closely resemble
that of the modeled system. Typically, the structures and processes of the modeled
system are only partially known; the model designer fills in other parts on the basis of
‘informed speculation’. Matching behavior provides no proof but may provide strongly
suggestive evidence for the appropriateness of the model. Running and testing such
object-level models and observing their global and detailed behavior can provide very
useful information for further theoretical and/or empirical exploration of the cognitive
system of interest.

Knowledge-level modeling can be considered the more sophisticated of the two
methods, as it starts with knowledge that can be used for formal reasoning about
scientific findings along established routes. A weakness of the knowledge-based
approach, however, is that it forces the structure of the formalism and the reasoning
procedures onto the system under investigation. This may not be a problem as long as
we are only interested in the (static) initial and final states of problem solving processes
of the cognitive system under investigation; however, if we are interested in modeling
the dynamics of a cognitive system, a good match of module and process structures
between model and target system become essential. This is where object-level models
may score; they start with an engineering approach that initially focuses on system
architecture and behavior. From here, valuable scientific knowledge on principles of
cognitive processing can be derived. Braitenberg (1984) refers to this as the “law of
uphill analysis and downhill synthesis”.

In Sect. 2 I presented an example where spatial problem solving is supported by a
suitable reference frame for a problem given in a spatial substrate (Example 3). In this
example, the objects in the spatial substrate were not manipulated; only the reference
frame was changed. In the following, I will present an example of how intrinsic
properties of a spatial substrate can be exploited for spatial problem solving by
manipulating spatial configurations. Manipulation for spatial problem solving consti-
tutes a more severe interaction with the environment. In Example 13, the spatial
problem configuration itself is modified in order to obtain a configuration that is
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equivalent with respect to the problem to be solved, but easier to analyze by spatial
procedures.

Example 13. Suppose an agent’s task is to identify the shortest route that connects a
location A with a location B given several possible paths that can be chosen.

A classical knowledge-level approach would represent the lengths of the route
sections, compute various alternatives of configuring these sections to connect A and B
and determine the option with the smallest overall length. Observation: the lengths of
the route sections need to be known and several alternatives have to be computed and
compared before the one route of interest is identified.

Spatial approach (Dewdney 1988): Here we use a mildly abstracted version of the
street network: a paper map in which all paper regions which do not correspond to
routes are missing. We obtain a deformable map consisting only of route representa-
tions which preserve the relative lengths of the route sections (Fig. 4a).

The map permits certain spatial reconfigurations of the network through deformation
while preserving topology and important geometric constraints; in particular, an agent
can (carefully) pull apart the positions A’ and B’ on the map (Fig. 4b) that correspond

(a)

(b)

(c)

Fig. 4. Determining the shortest route from point A to point B by physical manipulation of a
mildly abstracted representation of a route network. (a) The (non-elastic) strings corresponding to
route segments preserve the relative distance relations of the original route segments; the distance
relations are invariant wrt. physical manipulations (pulling apart strings at A’ and B’) which
distort angles and shapes of the route network (b) and (c). The shortest route is identified as the
route corresponding to the straight connection between A’ and B’ in (c).
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to locations A and B until a string of route sections forms a straight line between these
positions (Fig. 4c); due to the geometric properties of the representation, the route
sections corresponding to the sections on the straight line manifest the shortest route
between A and B.

This approach avoids computation by reducing the problem to the relevant single
dimension of length on which a basic geometric principle straight line is shortest
connection can be directly applied. In both, Examples 3 and 13, computational problem
solving operations are augmented by spatial operations.

6 Conclusions and Outlook

Our project sets out to investigate a new architecture of artificial cognitive systems that
more closely resembles natural cognitive systems than purely knowledge-based AI
approaches to cognitive processing. This is to be achieved by involving interaction with
space through perception and action.

With today’s availability of 3D printers, Example 13 can be implemented in the
framework of a robotic system that interacts with and manipulates configurations in a
spatial substrate: a route network can be extracted from an aerial photograph or from a
map database and be printed (without the regions between the routes) on a 3D printer
using a non-elastic and non-rigid printing substrate (comparable to paper). On the
printer output, the robot’s perception system identifies the start and end points on the
route and grasps both points. The robot then cautiously pulls apart the two points until
it can identify an almost straight connection between the start and end points of the
route network; this connection will correspond to the shortest connecting route in the
network. The example serves as a proof-of-concept for our project from which further
explorations will follow.

The project brings together perspectives from a variety of disciplines: (1) the
cognitive systems perspective, which addresses the cognitive architecture and trade-offs
between properties of physical structures and properties of their descriptions; (2) the
formal perspective, which characterizes and analyzes the resulting structures and
operations; (3) the engineering perspective, which constructs and explores varieties of
cognitive system configurations; and (4) the psychological-empirical perspective,
which relates the effects of different system behaviors to those of natural agents. In the
long term, we see potential technical applications of physically supported cognitive
configurations, for example, in the development of future intelligent materials (e.g.
‘smart skin’ where spatially distributed computation is required that needs to be
minimized with respect to computation cycles and energy consumption, and more
robust and adaptable artificial agents, which can deal with unknown environments).
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