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Abstract. Declarative spatial reasoning denotes the ability to (declar-
atively) specify and solve real-world problems related to geometric and
qualitative spatial representation and reasoning within standard knowl-
edge representation and reasoning (KR) based methods (e.g., logic pro-
gramming and derivatives). One approach for encoding the semantics of
spatial relations within a declarative programming framework is by sys-
tems of polynomial constraints. However, solving such constraints is com-
putationally intractable in general (i.e. the theory of real-closed fields).

We present a new algorithm, implemented within the declarative
spatial reasoning system CLP(QS), that drastically improves the perfor-
mance of deciding the consistency of spatial constraint graphs over con-
ventional polynomial encodings. We develop pruning strategies founded
on spatial symmetries that form equivalence classes (based on affine
transformations) at the qualitative spatial level. Moreover, pruning strate-
gies are themselves formalised as knowledge about the properties of space
and spatial symmetries. We evaluate our algorithm using a range of
benchmarks in the class of contact problems, and proofs in mereology
and geometry. The empirical results show that CLP(QS) with knowledge-
based spatial pruning outperforms conventional polynomial encodings by
orders of magnitude, and can thus be applied to problems that are oth-
erwise unsolvable in practice.

Keywords: Declarative spatial reasoning · Geometric reasoning · Logic
programming · Knowledge representation and reasoning

1 Introduction

Knowledge representation and reasoning (KR) about space may be formally
interpreted within diverse frameworks such as: (a) analytically founded
geometric reasoning & constructive (solid) geometry [21,27,29]; (b) relational
algebraic semantics of ‘qualitative spatial calculi’ [24]; and (c) by axiomati-
cally constructed formal systems of mereotopology and mereogeometry [1]. Inde-
pendent of formal semantics, commonsense spatio-linguistic abstractions offer a
human-centred and cognitively adequate mechanism for logic-based automated
reasoning about spatio-temporal information [5].
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� Declarative Spatial Reasoning. In the recent years, declarative spatial rea-
soning has been developed as a high-level commonsense spatial reasoning para-
digm aimed at (declaratively) specifying and solving real-world problems related
to geometric and qualitative spatial representation and reasoning [4]. A partic-
ular manifestation of this paradigm is the constraint logic programming based
CLP(QS) spatial reasoning system [4,33,34] (Sect. 2).

� Relational Algebraic Qualitative Spatial Reasoning. The state of the
art in qualitative spatial reasoning using relational algebraic methods [24] has
resulted in prototypical algorithms and black-box systems that do not integrate
with KR languages, such as those dealing with semantics and conceptual knowl-
edge necessary for handling background knowledge, action &change, relational
learning, rule-based systems etc. Furthermore, relation algebraic qualitative spa-
tial reasoning (e.g. LR [25]), while efficient, is incomplete in general [22–24].1

Alternatively, constraint logic programming based systems such as CLP(QS) [4]
and others (see [9,10,18,20,28,29]) adopt an analytic geometry approach where
spatial relations are encoded as systems of polynomial constraints;2 while these
methods are sound and complete (see Sect. 2.2), they have prohibitive computa-
tional complexity, O(cc

n
2

1 ) in the number of polynomial variables n, meaning that
even relatively simple problems are not solved within a practical amount of time
via “naive” or direct encodings as polynomial constraints, i.e. encodings that
lack common-sense knowledge about spatial objects and relations. On the other
hand, highly efficient and specialised geometric theorem provers (e.g. [12]) and
geometric constraint solvers (e.g. [17,27]) exist. However, these provers exhibit
highly specialised and restricted spatial languages3 and lack (a) the direct inte-
gration with more general AI methods and (b) the capacity for incorporating
modular common-sense rules about space in an extensible domain- and context-
specific manner.

The aims and contributions of the research presented in this paper are two-fold:

1. to further develop a KR-centered declarative spatial reasoning paradigm such
that spatial reasoning capabilities are available and accessible within AI

1 Incompleteness refers to the inability of a spatial reasoning method to determine
whether a given network of qualitative spatial constraints is consistent or inconsistent
in general. Relation-algebraic spatial reasoning (i.e. using algebraic closure based
on weak composition) has been shown to be incomplete for a number of spatial
languages and cannot guarantee consistency in general, e.g. relative directions [23]
and containment relations between linearly ordered intervals [22], Theorem 5.9.

2 We emphasise that this analytic geometry approach that we also adopt is not qual-
itative spatial reasoning in the relation algebraic sense; the foundations are similar
(i.e. employing a finite language of spatial relations that are interpreted as infinite
sets of configurations, determining consistency in the complete absence of numeric
information, and so on) but the methods for determining consistency etc. come from
different branches of spatial reasoning.

3 Standard geometric constraint languages of approaches including [12,17,27] consist
of points, lines, circles, ellipses, and coincidence, tangency, perpendicularity, paral-
lelism, and numerical dimension constraints; note the absence of e.g. mereotopology
and “common-sense” relative orientation relations [35].
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programs and applications areas, and may be seamlessly integrated with other
AI methods dealing with representation, reasoning, and learning about non-
spatial aspects

2. to demonstrate that in spite of high computational complexity in a general
and domain-independent case, the power of analytic geometric—in particular
polynomial systems for encoding the semantics of spatial relations – can be
exploited by systematically utilising commonsense knowledge about spatial
object and relationships at the qualitative level.

We present a new algorithm that drastically improves analytic spatial reason-
ing performance within KR-based declarative spatial reasoning approaches by
identifying and pruning spatial symmetries that form equivalence classes (based
on affine transformations) at the qualitative spatial level. By exploiting symme-
tries our approach utilises powerful underlying, but computationally expensive,
polynomial solvers in a significantly more effective manner. Our algorithm is
simple to implement, and enables spatial reasoners to solve problems that are
otherwise unsolvable using analytic or relation algebraic methods. We empha-
sise that our approach is independent of any particular polynomial constraint
solver; it can be similarly applied over a range of solvers such as CLP(R), SMTs,
and specialised geometric constraint solvers that have been integrated into a KR
framework.

In addition to AI/commonsense reasoning applications areas such as design,
GIS, vision, robotics [3,5–7], we also address application into automating support
for proving the validity of theorems in mereotopology, orientation, shape, etc.
(e.g. [8,36]). Building on such foundational capabilities, another outreach is in
the area of computer-aided learning systems in mathematics (e.g. at a high-
school level). For instance, consider Proposition 9, Book I of Euclid’s Elements,
where the task is to bisect an angle using only an unmarked ruler and collapsable
compass. Once a student has developed what they believe to be a constructive
proof, they can employ declarative spatial reasoners to formally verify that their
construction applies to all possible inputs (i.e. all possible angles) and manipulate
an interactive sketch that maintains the specified spatial relations (i.e. dynamic
geometry [17]). A further area of interest is verifying the entries of composition
tables that are used in relation algebraic qualitative spatial reasoning [30]: given
spatial objects a, b, c ∈ U , composition “look up” tables are indexed by pairs of
(base) relations R1ab

, R2bc and return disjunctions of possible (base) relations
R3ac

. For each entry, the task is to prove ∃a, b, c ∈ U
(
R1ab

∧ R2bc ∧ R3ac

)
for

only those base relations R3 in the entry’s disjunction.

2 Declarative Spatial Reasoning with CLP(QS)

Declarative spatial reasoning denotes the ability of declarative programming
frameworks in AI to handle spatial objects and the spatial relationships amongst
them as native entities, e.g., as is possible with concrete domains of Integers,
Reals and Inequality relationships. The objective is to enable points, oriented
points, directed line-segments, regions, and topological and orientation relation-
ships amongst them as first-class entities within declarative frameworks in AI [4].
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2.1 Examples of Declarative Spatial Reasoning with CLP(QS)

With a focus on spatial question-answering, the CLP(QS) spatial reasoning sys-
tem [4,33,34] provides a practical manifestation of certain aspects of the declar-
ative spatial reasoning paradigm in the context of constraint logic programming
(CLP).4 CLP(QS) utilises a high-level language of spatial relations and com-
monsense knowledge about how various spatial domains behave. Such relations
describe sets of object configurations, i.e. qualitative spatial relations such as
coincident, left of, or partially overlapping. Through this deep integration of
spatial reasoning with KR-based frameworks, the long-term research agenda
is to seamlessly provide spatial reasoning in other AI tasks such as planning,
non-monotonic reasoning, and ontological reasoning [4]. What follows is a brief
illustration of the spatial Q/A capability supported by CLP(QS).

EXAMPLE A. Massachusetts Comprehensive Assessment System (MCAS).

Grade 3 Mathematics (2009), Question 12. Put a square and two right-
angled triangles together to make a rectangle. (1) Put the shapes T1, T2, S illus-
trated in Fig. 1(d) together to make a rectangle. (2) Put the shapes T1, T2, S in
Fig. 1(d) together to make a quadrilateral that is not a rectangle.

CLP(QS) represents right-angle triangles as illustrated in Fig. 1(b).
Figure 1(a) and (c) present the CLP(QS) solutions.

Grade 3 Mathematics (2013), Question 17. (1) How many copies of T1

illustrated in Fig. 1(d) are needed to completely fill the region R illustrated in
Fig. 2(a) without any of them overlapping?

As presented in Fig. 2, CLP(QS) solves both the geometric definition and a
variation where the dimensions of the rectangle and triangles are not given.

EXAMPLE B. Qualitative Spatial Reasoning with Complete Unknowns.
In this example CLP(QS) reasons about spatial objects based solely on given

qualitative spatial relations, i.e. without any geometric information.
Define three cubes A,B,C. Put B inside A, and make B disconnected from C.

What spatial relations can possibly hold between A and C?
CLP(QS) determines that A must be disconnected from C and provides the

inferred corresponding geometric constraints, as illustrated in Fig. 3.

2.2 Analytical Geometry Foundations for Declarative Spatial
Reasoning

Analytic geometry methods parameterise classes of objects and encode spatial
relations as systems of polynomial equations and inequalities [12]. For example,
we can define a sphere as having a 3D centroid point (x, y, z) and a radius r,
where x, y, z, r are reals. Two spheres s1, s2 externally connect or touch if

(xs1 − xs2)
2 + (ys1 − ys2)

2 + (zs1 − zs2)
2 = (rs1 + rs2)

2 (1)

4 Spatial Reasoning (CLP(QS)). www.spatial-reasoning.com.

www.spatial-reasoning.com
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Fig. 1. Using CLP(QS) to solve MCAS Grade 3 Mathematics Test questions (2009).

Fig. 2. Using CLP(QS) to solve MCAS Grade 3 Mathematics Test questions (2013).
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Fig. 3. Spatial reasoning about cubes A, B, C with complete geometric unknowns.

If the system of polynomial constraints is satisfiable then the spatial con-
straint graph is consistent. Specifically, the system of polynomial (in)equalities
over variables X is satisfiable if there exists a real number assignment for each
x ∈ X such that the (in)equalities are true. Partial geometric information (i.e.
a combination of numerical and qualitative spatial information) is utilised by
assigning the given real numerical values to the corresponding object parameters.
Thus, we can integrate spatial reasoning and logic programming using Constraint
Logic Programming (CLP) [19]; this system is called CLP over qualitative spatial
domains. CLP(QS), provides a suitable framework for expressing and proving
first-order spatial theorems.

Cylindrical Algebraic Decomposition (CAD) [13] is a prominent sound and
complete algorithm for deciding satisfiability of a general system of polynomial
constraints over reals and has time complexity O(cc

n
2

1 ) in the number of free vari-
ables [2]. Thus, a key focus within analytic spatial reasoning has been methods for
managing this inherent intractibility.5 More efficient refinements of the original
CAD algorithm include partial CAD [14]. Symbolic methods for solving systems
of multivariate equations include the Gröbner basis method [11] and Wu’s charac-
teristic set method [40]. In the QUAD-CLP(R) system, the authors improve solv-
ing performance by using linear approximations of quadratic constraints and by

5 Important factors in determining the applicability of various analytic approaches are
the degree of the polynomials (particularly the distinction between linear and non-
linear) and whether both equality and inequalities are permitted in the constraints.
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identifying geometric equivalence classes [28]. Ratschan employs pruning meth-
ods, also at the polynomial level, in the rsolve system [31,32].

Constructive and iterative (i.e. Newton and Quasi-Newton iteration) meth-
ods solve spatial reasoning problems by “building” a solution, i.e. by finding
a configuration that satisfies the given constraints [27]. If a solution is found,
then the solution itself is the proof that the system is consistent – but what if
a solution is not found within a given time frame? In general these methods are
incomplete for spatial reasoning problems encoded as nonlinear equations and
inequalities of arbitrary degree.6

3 Spatial Symmetries

Information about objects and their spatial relations is formally expressed as a
constraint graph G = (N,E), where the nodes N of the graph are spatial objects
and the edges between nodes specify the relations between the objects. Objects
belong to a domain, e.g. points, lines, squares, and circles in 2D Euclidean space,
and cuboids, vertically-extruded polygons, spheres, and cylinders in 3D Euclid-
ean space. We denote the object domain of node i as Ui (spatial domains are
typically infinite). A node may refer to a partially ground, or completely geo-
metrically ground object, such that Ui can be a proper subset of the full domain
of that object type. Each element i′ ∈ Ui is called an instance of that object
domain. A configuration of objects is a set of instances {i′1, . . . , i

′
n} of nodes

i1, . . . , in respectively.
A binary relation Rij between nodes i, j distinguishes a set of relative config-

urations of i, j; relation R is said to hold for those configurations, Rij ⊆ Ui ×Uj .
In general, an n-ary relation for n ≥ 1 distinguishes a set of configurations
between n objects: Ri1,...,in ⊆ Ui1 × · · · × Uin .

An edge between nodes i, j is assigned a logical formula over relation sym-
bols R1, . . . , Rm and logical operators ∨,∧,¬. Given an interpretation i′, j′, the
formula for edge e is interpreted in the standard way, denoted e(i′, j′):

– R1 ≡ (i′, j′) ∈ R1ij

– (R1 ∨ R2) ≡ (i′, j′) ∈ R1ij ∪ R2ij

– (R1 ∧ R2) ≡ (i′, j′) ∈ R1ij ∩ R2ij

– (¬R1) ≡ (i′, j′) ∈ (Ui × Uj) \ R1ij .

An edge between i, j is satisfied by a configuration i′, j′ if e(i′, j′) is true (this
is generalised to n-ary relations). A spatial constraint graph G = (N,E) is
consistent or satisfiable if there exists a configuration s of N that satisfies all
edges in E, denoted G(s); this is referred to as the consistency task. Graph G′ is
a consequence of, or implied by, G if every spatial configuration that satisfies G
also satisfies G′. This is the sufficiency task (or entailment) that we commonly
apply to constructive proofs, where the task is to prove that objects and relations
in G are sufficient for ensuring that particular properties hold in G′.

6 That is, constructive methods may fail in building a consistent solution, and iterative
root finding methods may fail to converge.
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Fig. 4. Topological relations between four spheres maintained after various affine trans-
formations.

Given graph G, two key questions are (1) how to give meaning, or interpret,
the spatial relations in G, and (2) how to efficiently determine consistency and
produce instantiations of G. That is, we need to adopt a method for spatial
reasoning.

3.1 An Example of the Basic Concept

A key insight is that spatial configurations form equivalence classes over qualita-
tive relationships based on certain affine transformations. For example, consider
the spatial task of determining whether five same-sized spheres can be mutually
touching. Suppose we are given a specific numerically defined configuration of
four mutually touching spheres as illustrated in Fig. 4(a), and we prove that it is
impossible to add an additional mutually touching sphere to this configuration.
That is, let s1, . . . , s4 be unit spheres (radius 1), centred on points p1 = (0, 0, 0),

p2 = (2, 0, 0), p3 = (1,
√

3, 0), p4 = (1,
√

1
3 ,

√
8
3 ), respectively. According to

Eq. 1, s1, . . . , s4 are mutually touching. We prove that a fifth same-sized, mutu-
ally touching sphere cannot be added to this configuration by determining that
the corresponding system of polynomial constraints is unsatisfiable (the system
consists of four constraints with three free variables xs5 , ys5 , zs5 , by reapplying
Eq. 1 between s5 and each other sphere, e.g. s1 touches s5 is x2

s5 +y2
s5 +z2s5 = 4).

Now consider that we apply an affine transformation to the original configura-
tion such as rotation, translation, scaling, or reflection, as illustrated in Fig. 4(b)
and (c). After having applied the transformation, it is still impossible to add
a fifth mutually touching sphere, because the relevant qualitative (topological)
relations are preserved under these transformations. Thus, when we proved that
it was impossible to add a fifth same-sized mutually touching sphere to the
original given configuration, in fact we proved it for a class of configurations,
specifically, the class of configurations that can be reached by applying an affine
transformation to the original configuration. Now, when determining consistency
of graphs of qualitative spatial relations, we are not given any specific spatial
configurations to work with (i.e. complete absence of numerical information),
and instead need to prove consistency over all possible configurations.

The key is that, each time we ground and constrain variables, we are
eliminating a spatial symmetry from our partially defined configuration. If we
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maintain knowledge about symmetries that certain object types have (e.g. spheres
have complete rotational symmetry) then we can judiciously “trade” symme-
tries for unbound variables in our polynomial encoding at a purely symbolic
level. Importantly, rather than having to compute symmetries or undertake any
complex symmetry detection procedure, we are instead building knowledge about
space and spatial properties of objects into the spatial solver at a declarative
level. Thus, we are able to efficiently reason over an infinite set of possible con-
figurations by incrementally pruning spatial symmetries based on commonsense
knowledge about space, and this pruning is exploited by eliminating and con-
straining variables in the underlying polynomial encoding.

3.2 Theoretical Foundations for Symmetries

Due to the parameterisation of objects, spatial configurations are embedded in
n-dimensional Euclidean space R

n (1 ≤ n ≤ 3) with a fixed origin point. Let
V,W be Euclidean spaces in R

n, each with an origin. Given vectors x, y and
constant k, a linear transformation f is a mapping V → W such that

f(x + y) = f(x) + f(y) (additive)
f(kx) = kf(x) (homogeneous)

An affine transformation f ′ is a linear transformation composed with a transla-
tion. It is convenient to represent a linear transformation on vector x as a left
multiplication of a d×d real matrix Q, and translation as an addition of vector t,
f ′(x) = Qx+ t. We denote a transformation T applied to a spatial configuration
of objects s as Ts.

We distinguish particular classes of transformations with respect to the qual-
itative spatial relationships that are preserved, for example, in R

2 the following
matrices represent rotation by θ, uniform scaling by k > 0, and horizontal reflec-
tion, respectively:

(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)
,

(
k 0
0 k

)
,

(−1 0
0 1

)
.

Given transformation T we annotate it with its type c ∈ C, e.g. C =
{translate, rotate, scale, reflect} as T c. Each spatial relation R belongs to a class
of relations in Rel, such as topology, mereology, coincidence, relative orientation,
distance. Let Sym be a function Sym : Rel → 2C that represents the classes of
transformations that preserve a given class of spatial relations. The Sym function
is our mechanism for building knowledge about spatial symmetries into the spa-
tial reasoning system. Let RelG be the set of classes of the spatial relations that
are used in the spatial constraint graph G, and let SymG =

⋂
R∈RelG

Sym(R).
The following formal Condition on SymG states that transformations (applied

to the embedding space) define equivalence classes of configurations with respect
to the consistency of spatial constraint graphs. When satisfied, this condition
provides a theoretically sound foundation for symmetry pruning.

Condition 1. Given spatial constraint graph G, configuration s, and affine
transformation T c with c ∈ SymG then G(s) is true if and only if G(T cs).
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Table 1. Polynomial encodings of qualitative spatial relations.

Relation Polynomial Encoding

Left of (point p, segment sab) (xb − xa)(yp − ya) > (yb − ya)(xp − xa)

Collinear (point p, segment sab) (xb − xa)(yp − ya) = (yb − ya)(xp − xa)

Right or collinear (point p,
segment sab)

(xb − xa)(yp − ya) ≤ (yb − ya)(xp − xa)

Parallel (segments sab, scd) (yb − ya)(xd − xc) = (yd − yc)(xb − xa)

Coincident (point p, segment sab) collinear(p, sab)∧xp ∈ [xa, xb]∧yp ∈ [ya, yb]

Coincident (point p, circle c) (xc − xp)
2 + (yc − yp)

2 = r2c

Inside (point p, rectangle a) (0 < (p − p1a) · va < wa)∧
(0 < (p − p1a) · v′

a < ha)

Intersects (point p, rectangle a) (0 ≤ (p − p1a) · va ≤ wa)∧
(0 ≤ (p − p1a) · v′

a ≤ ha)

Boundary (point p, rectangle a) intersects(p, a) ∧ ¬ inside(p, a)

Outside (point p, rectangle a) ¬ intersects(p, a)

Concentric (rectangles a, b) 1
2
(p3a − p1a) + p1a = 1

2
(p3b − p1b) + p1b

Part of (rectangles a, b)
∧

i=1...4 intersects(pia , b)

Proper part (rectangles a, b) ¬ equals(a, b) ∧ part of(a, b)

Boundary part of (rectangles a, b)
∧

i=1...4 boundary(pia , b)

Discrete from (rectangles a, b)
∨

i=1...4

(
right or collinear(a, (pib , p(i+1)b))∨

right or collinear(b, (pia , p(i+1)a))
)

Partially overlaps (rectangles a, b) ∃pi ∈ R
2
(
inside(pi, a) ∧ inside(pi, b)

)∧
∃pj ∈ R

2
(
inside(pj , a) ∧ outside(pj , b)

)∧
∃pk ∈ R

2
(
outside(pk, a) ∧ inside(pk, b)

)

3.3 Polynomial Encodings for Spatial Relations

In this section we define a range of spatial domains and spatial relations with
the corresponding polynomial encodings. While our method is applicable to a
wide range of 2D and 3D spatial objects and qualitative relations, for brevity
and clarity we primarily focus on a 2D spatial domain. Our method is readily
applicable to other 2D and 3D spatial domains and qualitative relations, for
example, as defined in [4,9,10,28,29,33,34].
– a point is a pair of reals x, y
– a line segment is a pair of end points p1, p2 (p1 �= p2)
– a rectangle is a point p representing the bottom left corner, a unit direction

vector v defining the orientation of the base of the rectangle, and a real width
and height w, h (0 < w, 0 < h); we can refer to the vertices of the rectangle:
let v′ = (−yv, xv) be v rotated 90o counter-clockwise, then p1 = p = p5, p2 =
wv + p1, p3 = wv + hv′ + p1, p4 = hv′ + p1

– a circle is a centre point p and a real radius r (0 < r).
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Fig. 5. Affine transformations preserve point coincidence, parallelism, and ratios of
distances along parallel lines.

We consider the following spatial relations:

Relative Orientation. Left, right, collinear orientation relations between points
and segments, and parallel, perpendicular relations between segments [23].

Coincidence. Intersection between a point and a line, and a point and the bound-
ary of a circle. Also whether the point is in the interior, outside or on the bound-
ary of a region.

Mereology. Part-whole relations between regions [37].

Table 1 presents the corresponding polynomial encodings. Given three real vari-
ables v, i, j, let:

v ∈ [i, j] ≡ i ≤ v ≤ j ∨ j ≤ v ≤ i.

Determining whether a point is inside a rectangle is based on vector projec-
tion. Point p is projected onto vector v by taking the dot product,

(xp, yp) · (xv, yv) = xpxv + ypyv

Given point a and rectangle b, we translate the point such that the bottom
left corner of b is at the origin, project pa on the base and side vectors of b, and
check whether the projection lies within the width and height of the rectangle,

0 < (pa − p1b) · vb < wb

0 < (pa − p1b) · v′
b < hb

Convex regions a, b are disconnected iff there is a hyperplane of separation,
i.e. there exists a line l such that a and b lie on different sides of l. This is the
basis for determining the discrete from relation between rectangles.

3.4 Formalising Knowledge About Symmetries

In this section we formally determine the qualitative spatial relations that are
preserved by various affine transformations. A fundamental property of affine
transformations is that they preserve (a) point coincidence (e.g. line intersec-
tions), (b) parallelism between straight lines, and (c) proportions of distances
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between points on parallel lines [26]. For example, consider the configuration
of points pa, pb, pc, pd and lines l1, l2, l3 in Fig. 5: (a) we cannot introduce new
points of coincidence between lines by applying transformations such as transla-
tion, scaling, reflection, and rotation. Conversely, if two lines intersect, then they
will still intersect after these transformations; (b) lines l1, l2 are parallel before
and after the transformations; lines l1, l3 are always non-parallel; (c) the ratio of
distances between collinear points pa, pb, pc is maintained; formally, let sij be the
segment between points pi, pj and let |sij | be the length of the segment. Then
the ratio |sab|

|sbc| in Fig. 5 is the same before and after the transformations.
Based on these properties we can determine the transformations that preserve

various qualitative spatial relations.7

Theorem 1. The following qualitative spatial relations are preserved under
translation, scale, rotation, and reflection (applied to the embedding space): topol-
ogy, mereology, coincidence, collinearity, line parallelism.

Proof. By definition, affine transformations preserve parallelism with respect to
qualitative line orientation, and point coincidence. Due to preservation of point
coincidence and proportions of collinear distances by affine transformations,
it follows that mereological part of and topological contact relations between
regions are preserved, i.e. if a mereological or topological relation changes between
regions a, b, then by definition there exists a point p coincident with a such that
the coincidence relation between p and b has changed; but this cannot occur as
point coincidence is maintained with affine transformations by definition, there-
fore mereological and topological relations are also maintained.

The interaction between spatial relations and transformations is richer than
we have space to elaborate on here, i.e. not all qualitative spatial relations are
preserved under all affine transformations; orientation is not preserved under
reflection (e.g. Fig. 5(b) gives a counter example), distance is not preserved
under non-uniform scaling. To summarise, we formalise the following knowledge
as modular commonsense rules in CLP(QS): point-coincidence, line parallelism,
topological and mereological relations are preserved with all affine transforma-
tions. Relative orientation changes with reflection, and qualitative distances and
perpendicularity change with non-uniform scaling. Spheres, circles, and rectan-
gles are not preserved with non-uniform scaling, with the exception of axis-
aligned bounding boxes.

“Trading” Transformations. Symmetries are used to eliminate object vari-
ables. As a metaphor, unbound variables are replaced by constant values in

7 The properties of affine transformations and the geometric objects that they preserve
are well understood; further information is readily available in introductory texts
such as [26]. Our key contribution is formalising and exploiting this spatial knowledge
as modular and extensible common-sense rules in intelligent knowledge-based spatial
assistance systems.
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“exchange” for transformations. We start with a set of transformations that can
be applied to a configuration: translation, scaling, arbitrary rotation, and hori-
zontal and vertical reflection. We can then “trade” each transformation for an
elimination of variables. Each transformation can only be “spent” once. Theo-
rem 2 presents an instance of such a pruning case.

Table 2 presents a variety of different pruning cases for position variables and
the associated combination of transformations, as illustrated in Fig. 6.8 Some
cases require more than one distinct set of parameter restrictions to cover the
set of all position variables due to point coincidence being preserved by affine
transformations. For example, consider case (f): all pairs of points p1, p2 can
be transformed into any other pair of points pi, pj by translation, rotation, and
scaling, iff p1 = p2 ↔ pi = pj . Thus, to cover all pairs of possible points, we need
to consider two distinct parameter restrictions: pi = pj and pi �= pj ; we refer to
these as subcases.

Many further pruning cases are identifiable. For example, a version of case
(i) can be defined without reflection by requiring more sub-cases where c4 > c2
and c4 < c2. Case (i) can be extended so that all six coordinates of three points
are grounded if we also “exchange” the skew transformation (e.g. applicable to
object domains like triangles or points).

Theorem 2. Any pair of object position variables (x1, y1), (x2, y2) can be trans-
formed into any given position constants (c1, c2), (c3, c2) such that (c1 = c3 ↔
(x1 = x2 ∧ y1 = y2)) by applying: an xy-translation, a rotation about the origin
in the range (0, 2π), and an x-scale.

Proof. The corresponding expression has been verified using the Reduce system
(Redlog quantifier elimination) [15]; all variables are quantified over reals.

∀c1∀c2∀c3∀x1∀y1∀x2∀y2
(c1 = c3 ↔ (x1 = x2 ∧ y1 = y2)) ↔ ∃tx∃ty∃dx∃dy∃sx

(

(0 < sx) ∧ (d2x + d2y = 1)∧
letS =

(
sx 0
0 1

)
∧ let R =

(
dx − dy
dy dx

)
∧ letT =

(
tx
ty

)
∧

(
c1
c2

)
= SR

(
x1

y1

)
+ T ∧

(
c3
c2

)
= SR

(
x2

y2

)
+ T

) ≡ �

We can use this pruning case on any spatial constraint graph G where the
graph’s spatial relations are preserved by translation, rotation, and scaling.
Given graph G = (N,E), the following Algorithm applies the pruning case,
with selected constants c1 = 0, c2 = 0, and c3 = 1 or c3 = 0:

1. select object position variables p1, p2 from nodes in N
2. copy G to create G1, G2

3. in G1 set p1 = (0, 0), p2 = (1, 0) (case c1 �= c3)
4. in G2 set p1 = (0, 0), p2 = (0, 0) (case c1 = c3)
5. if the task is:
8 All cases have been verified using Reduce as presented in Theorem 2.
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Fig. 6. Cases for pruning position parameters.

(a) consistency of G then solve
∨2

i=1 ∃s Gi(s)
(b) sufficiency, G → G′, then solve∧2

i=1 ¬∃s(Gi(s) ∧ ¬G′(s))

In Step 1 any pair of objects can be selected for which their position variables
will be grounded; we also employ policies that target computationally costly
subgraphs (for example, pairs of non-equal circles that share a boundary point
are often good candidates for this pruning case). Having eliminated free variables
from the system of polynomial constraints, the constraints are significantly more
simple to solve. Due to the double exponential complexity O(cc

n
2

1 ) reducing n
has a significant impact on performance; the system may even collapse from
nonlinear constraints to linear (solvable in O(cn)) or constants.

3.5 Combining Symmetry Pruning with Graph Decomposition

In certain cases, spatial constraint graphs can be decomposed into subgraphs
that can be solved independently. For example, subgraphs G1, G2 can be inde-
pendently solved if all objects in subgraph G1 are either:

– disconnected from all objects in subgraph G2;
– a proper part of some object in G2;
– left of some segment in G2;
– only related by relative size to some object in G2, and so on.
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In such cases we can reapply spatial symmetry pruning in each independent
sub-graph; this commonsense spatial knowledge is modularly formalised within
CLP(QS). For example, consider Proposition 22 of Book I of Euclid’s Elements
(Fig. 7):

Constructing a triangle from three segments. Given three line segments lab,
lcd, lef , draw a line through four collinear points p1, . . . , p4 such that |(p1, p2)| =
|lab|, |(p2, p3)| = |lcd|, |(p3, p4)| = |lef |. Draw circle ca centred on p2, coincident
with p1. Draw circle cb centred on p3 coincident with p4. Draw p5 coincident
with ca and cb. The triangle p2, p3, p5 has side lengths such that |(p2, p3)| = |lcd|,
|(p3, p5)| = |lef |, |(p5, p2)| = |lab|.

In this example, the three segments lab, lcd, lef and the remaining objects
are only related by the distances between their end points. That is, the relative
position and orientation of lab, lcd, lef is not relevant to the consistency of the
spatial graph; we only need to explore all combinations of segment lengths. Thus
the solver decomposes the graph into four sub-graphs: (1) lab (2) lcd (3) lef , and
(4) p1, . . . , p5, ca, cb. In subgraphs (1),(2),(3) it “trades” translation and rotation
to ground pa = pc = pe = (0, 0), and yb = yd = yf = 0 and keeps x-scale to cover
all possible combinations of segment lengths, i.e. xb, xd, xf are free variables. In
subgraph (4) CLP(QS) applies the pruning case of Theorem 2 by grounding
p1, p4.

Table 2. Cases for pruning parameters for one position point (a,b), two position points
(c-f), three position points (g-i). Cases marked with ∗ require arbitrary scaling (i.e. both
uniform and non-uniform).

Case Parameter restrictions Traded transformations

a x1 = c1 x-translate

b x1 = c1, y1 = c2 xy-translate

c x1 = c1, x2 = c2, (i) c1 �= c2(ii) c1 = c2 x-translate, rotate π, x-scale

d x1 = c1, y2 = c2 xy-translate

e x1 = c1, y1 = c2, x2 = c3, xy-translate, rotate π, x-scale

(i) c1 �= c3(ii) c1 = c3

f x1 = c1, y1 = c2, x2 = c3, y2 = c2, xy-translate, rotate (0, 2π), x-scale

(i) c1 �= c3(ii) c1 = c3

g x1 = c1, x2 = c2, y3 = c3 xy-translate, rotate π, x-scale

(i) c1 �= c2(ii) c1 = c2

h ∗ x1 = c1, y1 = c2, x2 = c3, y3 = c4 xy-translate, rotate π, xy-scale,

(i) c1 �= c3 ∧ c2 �= c4(ii) c1 = c3 ∧ c2 �= c4 y-reflect

(iii) c1 �= c3 ∧ c2 = c4(iv) c1 = c3 ∧ c2 = c4

i ∗ x1 = c1, y1 = c2, x2 = c3, y2 = c2, y3 = c4 xy-translate, rotate (0, 2π), xy-scale,

(i) c1 �= c3 ∧ c2 �= c4(ii) c1 �= c3 ∧ c2 = c4 y-reflect

(iii) c1 = c3 ∧ c2 = c4
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Fig. 7. Constructing a triangle by decomposing the spatial constraint graph.

4 Application-Driven Use Cases

We present problem instances in the classes of mereology, ruler and compass, and
contact. Table 3 presents the experiment time results of CLP(QS) using symme-
try pruning compared with existing systems: z3 SMT solver, Redlog real quan-
tifier elimination (in the Reduce computer algebra system) [15], and the relation
algebraic qualitative spatial reasoners GQR [16] and SparQ [39]. CLP(QS) uses
z3 to solve polynomial constraints (after our pruning), thus z3 is the most direct
comparison. Experiments were run on a MacBookPro, OS X 10.8.5, 2.6 GHz
Intel Core i7. The empirical results show that no other spatial reasoning system
exists (to the best of our knowledge) that can solve the range of problems pre-
sented in this section, and in cases where solvers are applicable, CLP(QS) with
spatial pruning solves those problems significantly faster than other systems.

4.1 Spatial Theorem Proving: Geometry of Solids

Tarski [36] shows that a geometric point can be defined by a language of mereo-
logical relations over spheres. The idea is to distinguish when spheres are concen-
tric, and to define a geometric point as the point of convergence. Borgo [8] shows
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Table 3. Time (in seconds) to solve benchmark problems using CLP(QS) with prun-
ing compared to z3 SMT solver, Redlog (Reduce) quantifier elimination, and GQR and
SparQ relation algebraic solvers. Time out was issued after a running time of 10 min.
Failure (fail) indicates that the incorrect result was given. Not applicable (n/a) indi-
cates that the problem could not be expressed using the given system.

Problem CLP(QS) z3 Redlog GQR SparQ

Aligned Concentric 6.831 47.651 time out n/a n/a

Boundary Concentric 2.036 time out time out n/a n/a

Mereologically Concentric 0.105 0.373 time out n/a n/a

Angle Bisector 0.931 time out time out n/a n/a

Sphere Contact 0.004 time out time out fail fail

that this can be accomplished with a language of mereology over hypercubes. We
will use CLP(QS) to prove that the definitions are sound for rotatable squares.

As a preliminary we need to determine whether the intersection of two squares
is non-square (Fig. 8) [34]. Given two squares a, b, the intersection is non-square
if a partially overlaps b (Table 1) and either (a) a and b are not aligned, xva

�= xvb

or (b) the width and height of the intersection are not equal, wI �= hI , such that

wI = min(v · p2a , v · p2b) − max(v · p1a , v · p1b)

hI = min(v′ · p4a , v′ · p4b) − max(v′ · p1a , v′ · p1b)

Aligned Concentric. Two squares A,B are aligned and concentric if: A is part of
B and there does not exist a square P such that (a) P is covertex with B, and
(b) the intersection of P and A is not a square (Fig. 9).

We use CLP(QS) to prove that the definition is sufficient, by contradiction;
two squares are covertex if they are aligned and share a vertex, and the relation
concentric is the geometric definition of concentricity in Table 1 that is used to
evaluate the mereological definition of concentricity:

Boundary Concentric. Square A is boundary concentric with square B if: A is
proper part of B and there does not exist a square Z such that (a) Z is proper
part of B (b) A is part of Z, and (c) Z is not part of A (Fig. 9).
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Fig. 8. Intersection I of squares A,B is non-square.

Fig. 9. Characterising aligned (a), (b) and rotated (c), (d) concentric squares using
mereology (reproduced from [Borgo, 2013])

Mereologically Concentric. Squares A,B are mereologically concentric if: A,B
are aligned concentric or there exists Q such that (a) Q is boundary concentric
with B and Q is aligned concentric with A or (b) Q is boundary concentric with
A and Q is aligned concentric with B.

Having proved the mereological definitions of aligned and boundary concen-
tricity, we can replace these with more efficient geometric definitions from Table 1
when proving mereological concentricity.
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4.2 Didactics: Ruler–Compass and Contact Problems

Angle Bisector. Let la, lb be line segments that share an endpoint at p. Draw
circle c at p. Circle c intersects la at pa and lb at pb. Draw circles ca at pa and
circle cb at pb such that p is coincident with both ca, cb. Circles ca and cb intersect
at p and pc. The line segment from p to pc bisects the angle between la and lb
(Fig. 10).

We use CLP(QS) to prove that the definition is sufficient. The relation bisects
is used for evaluation by checking if the midpoint of (pa,pb) is collinear with lc (i.e.
idealised rulers cannot directly measure the midpoint of a line). An interactive
diagram is then automatically generated that encodes the specified program
(using the FreeCAD system); see Fig. 11.

Sphere Contact. Determine the maximum number of same-sized mutually touch-
ing spheres (Fig. 4 - note that no numeric information about the spheres is given
in this benchmark problem).
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Fig. 10. Ruler and compass method for angle bisection. Line Lc bisects the angle
between lines La, Lb.

Fig. 11. Interactive diagram encoding the student’s constructive proof of Euclid’s angle
bisector theorem; as the student manipulates figures in the diagram, the other geome-
tries are automatically updated to maintain the specified qualitative constraints.

5 Conclusions

Affine transformations provide an effective and interesting class of symmetries
that can be used for pruning across a range of qualitative spatial relations.
To summarise, we formalise the following knowledge as modular commonsense
rules in CLP(QS): point-coincidence, line parallelism, topological and mereolog-
ical relations are preserved with all affine transformations. Relative orientation
changes with reflection, and qualitative distances and perpendicularity change
with non-uniform scaling. Spheres, circles, and rectangles are not preserved with
non-uniform scaling, with the exception of axis-aligned bounding boxes. Our
algorithm is simple to implement, and is easily extended to handle more prun-
ing cases.

Theoretical and empirical results show that our method of pruning yields
an improvement in performance by orders of magnitude over standard polyno-
mial encodings without loss of soundness, thus increasing the horizon of spa-
tial problems solvable with any polynomial constraint solver. Furthermore, the
declaratively formalised knowledge about pruning strategies is available to be
utilised in a modular manner within other knowledge representation and rea-
soning frameworks that rely on specialised SMT solvers etc., e.g., in the manner
demonstrated in ASPMT(QS) [38], which is a specialised non-monotonic spatial
reasoning system built on top of answer set programming modulo theories.
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