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Abstract. Thanks to advances in non-invasive technologies such as
functional Magnetic Resonance Imaging (fMRI) and Diffusion Tensor
Imaging (DTI), highly-detailed maps of brain structure and function
can now be collected. In this context, brain connectomics have emerged
as a fast growing field that aims at understanding these comprehensive
maps of brain connectivity using sophisticated computational models. In
this paper we present BRAINtrinsic, an innovative web-based 3D visual
analytics tool that allows users to intuitively and iteratively interact with
connectome data. Moreover, BRAINtrinsic implements a novel visualiza-
tion platform that reconstructs connectomes’ intrinsic geometry, i.e., the
topological space as informed by brain connectivity, via dimensionality
reduction. BRAINtrinsic is implemented with virtual reality in mind and
is fully compatible with the Oculus Rift technology. Last, we demonstrate
its effectiveness through a series of case studies involving both structural
and resting-state MR imaging data.

Keywords: Connectomics · Connectome datasets · Intrinsic geometry ·
Neuroimaging

1 Introduction

Magnetic resonance (MR) imaging techniques such as functional Magnetic Res-
onance Imaging (fMRI) and diffusion weighted imaging (DWI) enable neuroim-
agers to collect and derive data about how different brain regions connect from
both a structural and a functional point of view [15]. Analogous to the concept
of genome for genetic data, a brain connectome is a whole-brain comprehensive
map of neural connections [20]. As neural connections exhibit complex patterns
of function and structure, the field of brain connectomics has emerged in order
to understand these imaging big data. The brain connectome is typically math-
ematically represented using connectivity matrices that describe the interaction
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among different brain regions. To date, most connectome study designs use brain
connectivity matrices to compute summary statistics on either a global or a nodal
level [21].

In the current work, we introduce an innovative visualization technology with
the ability to reconstruct and analyze the intrinsic geometry of brain data, that
is, the topological space where brain connectivity natively resides (independent of
anatomy). Understanding this intrinsic geometry could not only lead to a greater
distinction of differences in clinical cohorts, but also help track longitudinal
changes in individual brains in order to better deliver precision medicine. To the
best of our knowledge, no such tool currently exists that effectively addresses
these needs.

2 Intrinsic Geometry

The proposed intrinsic geometry represents the brain connectome after non-
linear multidimensional data reduction techniques are applied. This means that
the position of each node does not correspond to its anatomical location, as it
does in the original brain geometry. Instead, its position is based on the strength
of the interaction that each region has with the rest of the brain, whether
structural or functional. To put into context why intrinsic geometry may be
a better space to understand brain connectivity data, for decades cartographers
have mapped quantitative data onto world maps to create unique, informative
visualizations. For example, by resizing countries according the Gross Domes-
tic Product (GDP), the viewer can easily appreciate that the United States has
the largest GDP. Similarly, dimensionality reduction techniques remap the brain
according to network properties. In the intrinsic geometry we are more interested
in the shape the brain connectome assumes independent of the anatomical dis-
tances between nodes. Thus, the space in which the intrinsic geometry is plotted
in is called a topological space [4].

Linear dimensionality reduction techniques such as multidimensional scal-
ing (MDS) [2] and principal component analysis (PCA) [14] have been previ-
ously used in unrelated fields of medicine as a way to distinguish clinical cohorts
through biomarkers, although it can be argued that they are not suitable for com-
plex high-dimensional connectome data [13,22]. To the best of our knowledge,
this study represents the first comprehensive application of non-linear dimen-
sionality reduction techniques in the ever-expanding field of brain connectomics.
This intrinsic geometry concept provides a connectomic visualization that is not
obscured or constrained by the brains anatomy. Indeed, visualizing connectivity
information within an anatomical representation of the brain can potentially
limit one’s ability to clearly understand the complexity of a human brain con-
nectome; some meaningful patterns of structure or function may be much easier
to appreciate in a topological space.
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2.1 Data Acquisition and Intrinsic Geometry Reconstruction

Structural and diffusion-weighted imaging data were acquired from 46 healthy
control subjects (HC, mean age: 59.7±14.6, 20 males). Resting-state functional
MRI data were additionally acquired on a subset of healthy controls (n = 10). To
obtain DTI-informed structural brain connectome, we used a pipeline reported
previously [9]. Functional connectomes were generated using the resting state
fMRI toolbox, CONN.1 In brief, raw EPI images were realigned, co-registered,
normalized, and smoothed before analyses. Confounding effects from motion
artifact, white matter, and CSF were regressed out of the signal. Using the same
82 cortical/subcortical gray-matter labels as the structural brain networks [7],
functional brain networks were derived using pairwise fMRI signal correlations.

These 82 anatomical regions were then further upsampled using an algorithm
that continuously bisected each region across all subjects at an identical angle
until the average region size reached a certain threshold. Previous studies using
similar algorithms have shown that up-sampling regions into higher-resolution
voxels maintains network connectivity [11]. The resulting parcellation converted
82 regions into 620 sub-regions for the structural data and 739 for the functional
data. Brain networks formed by either the fiber tract counts or the functional
correlations between up-sampled gray matter regions were generated using an
in-house program in Matlab. These up-sampled regions were also re-registered to
original subcortical/cortical regions in preparation for nonlinear dimensionality
reduction. All networks were examined to ensure that all regions were directly
connected to at least one other region preventing the formation of any isolated
“islands”. To compensate for inter-subject variations, we averaged individual
subjects’ networks together to obtain a group average network.

2.2 Intrinsic Geometry Reconstruction

Representing Functional and Structural Connectomes as High-dimen-
sional Data. Before any dimensionality reduction can be applied, we need a rep-
resentation of the connectome data in a high-dimensional space where a distance
metric can be properly computed (such that a neighborhood could be defined). In
the case of fMRI BOLD signal time series correlations, we propose to first trans-
form inter-regional correlations (r) using the transformation: si,j = log( 1

|ri,j | ).
Here ri,j represents the correlation coefficient between i and j. Note this non-
negative transformation yields s = 0 if two nodes are completely coupled (i.e., r =
1 or −1), and infinity when completely decoupled (r = 0). This transformation
provides the building block for representing functional data in a high-dimensional
space. To this end, we first note that for any brain region the n-dimensional vec-
tor S∗ = (s∗,1, s∗,2, s∗,3 . . . , s∗,n) now encodes the pattern of coupling between this
region and the entire brain (n denotes the total number of brain regions or nodes;
n = 739 in our resting state imaging data). In the intrinsic geometry one would
thus want to embed two nodes i and j next to each other if they exhibit very sim-
ilar coupling patterns, i.e., the Euclidean distance |Si −Sj | =

√∑
n(si,n − sj,n)2

1 http://www.nitrc.org/projects/conn

http://www.nitrc.org/projects/conn
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is small, where Si = (si,1, si,2, si,3 . . . , si,n) and Sj = (sj,1, sj,2, sj,3, . . . , sj,n).
This intuitive example illustrates that we could simply represent functional con-
nectome data in a n = 739 dimensional Euclidean space, with node k having
the following coordinates, Sk = (sk,1, sk,2, sk,3, . . . , sk,739). In the case of struc-
tural connectome (whose connectivity matrix codes the strength of white mat-
ter tracts) we propose, with similar rationale, to represent structural connectivity
data in a n = 620 Euclidean space with node k placed at the following coordi-
nates: Sk = (GraphDistk,1, GraphDistk,2, . . . , GraphDistk,620); here GraphDist
codes the shortest path length (i.e., graph distance) connecting two nodes; graph
distances are usually computed by defining edge length as the inverse of the edge
strength (i.e., fiber counts) followed by applying Dijkstra’s algorithm [5]. Figure 1
visualizes these two different transformations for both the structural and func-
tional connectivity matrices.

Fig. 1. The figure shows the adjacency matrices for both the structural and the
functional group-averaged connectome. The (i,j) element represents the tractography-
based fiber count or the BOLD fMRI signal correlation between brain regions i and j.
The resulting n-dimensional row vectors describing the Euclidean coordinates of high-
dimensional connectome data are shown on the right. See Section 2.2 for more details.

Constructing 3-Dimensional Embedding. To promote uniformity through-
out the analyses, we used the dimensionality reduction toolbox introduced by
van der Maaten for all reductions [17]. The number of dimensions was reduced
from 620 and 739 to 3, for the structural and functional connectome respectively.
We used the compute mapping routine, with the ”Isomap” and the ”k-nearest
neighbor” options. The number of nearest neighbors (i.e., k) during local neigh-
borhood construction was increased iteratively such that all points were included
in the embedding. For structural connectome, k was determined to be 17, and
for functional 27.

3 Design Features of BRAINtrinsic

A range of interesting approaches to visualizing the human brain connectome
are available. Some recent connectome visualization tools include a 3D node-
link representation to provide meaningful spatial information relative to the real
anatomical position [10,16,24]. However, in these tools, the overall visual clutter
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tends to increase in large networks with dense interconnections between nodes.
In this context, interaction helps limit the potential visual clutter that may occur
when visualizing the human brain connectome. A possible solution is to let the
user easily choose the level of details of the exploration within a Virtual Reality
(VR) environment.

Since the advent of this technology, VR systems have been used for visualiz-
ing scientific datasets [19]. Additionally, recent VR tools have provided new ways
to interact with and explore complex datasets effectively. For example, Ware et
al. evaluates the effectiveness of 3D graph visualization when using high reso-
lution stereoscopic displays [23]. Recently, Forbes et al. presents a stereoscopic
system to visualize temporal data of the brain activity responding to external
stimuli [8], providing new insights when dealing with the temporal dimension
in a 3D environment. Broadly speaking, multi-purpose immersive VR environ-
ments, such as the CAVE2 [6], enable a more engaging and effective exploration
of complex datasets.

Although, the effectiveness of utilizing 3D for representing data has been
debated [18], recent work by Alper et al. [1] has shown that in some situations
visualizing 3D networks can outperform 2D static visualization, especially when
considering complex tasks. To the best of our knowledge, BRAINtrinsic presents
the first dynamic and interactive VR-compatible visualization platform for con-
nectome representation and exploration.

3.1 Design and Functionality

BRAINtrinsic uses an interactive 3D node-link diagram to visualize connectome
data. The individual nodes represented different brain regions and are visual-
ized using circular glyphs, while edges representing a functional or a structural
connection between these regions are displayed using lines.

A main concern with the use of node-link diagrams is the potential for visual
clutter when displaying a highly interconnected graph. Instead of showing all
the connections simultaneously, by default BRAINtrinsic only shows nodes while
hiding all links unless explicitly required. Through interaction, users are able to
display or hide connections according to their preferences and current needs. We
also allow the user to view the connections only within a particular sub-graph.
This edges-on-demand technique allows exploration tasks to be performed by
showing only the connections starting from a specific region that is currently
being interrogated. The user can pin the connections in the scene by simply click-
ing on the node itself. We use varying degrees of transparency to visually encode
the strength of edge weights; stronger connections are represented using opaque
lines while weaker edges are more transparent. Transparency is scaled relative
to only the currently displayed edges.

Colors are used to highlight the neuroanatomical membership of each node in
the brain. Here, each glyph belongs to one of the 87 neuroanatomical gray matter
regions as defined by Freesurfer [7]. However, the data structure is flexible enough
to accept any membership or affiliation definition. Additionally, we implemented
a range of user interactions to support visual analysis including the following:
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– Dynamically display the nodal strength for any node being interrogated [3];
– Dynamically create the shortest-path tree rooted in the node selected by the

user;
– Visualize the shortest path between any two nodes;
– Select or deselect any regions in any topological space (anatomy versus intrin-

sic) during visualization;

We again used Dijkstra’s algorithm [5] to create the shortest path tree. The
user can filter the shortest path tree according to two different measures: graph
distance and number of intermediate nodes or “hops”. In the first case the user
can filter the tree according to the relative distance with respect to its farthest
node. Given a threshold t, all the nodes that satisfy the following inequality
are drawn: d(r, i) ≤ maxDistance(r) · t, where r is the root node, i is the
node considered, maxDistance(r) is the distance between the root node and the
farthest node, and t is the threshold chosen by the user. If t = 0 then only
the root node is displayed, while if t = 1 the entire shortest path tree is drawn.
In the latter case, the user is able to filter out nodes that are not reachable
within a certain number of nodes from the root.

Following the computation of the shortest-path tree, the user then can pro-
ceed to select a second “destination” node and visualize the shortest route con-
necting this node to the root. In this case, we display all the nodes in the network
to provide the overall perspective of the route course.

3.2 System Details

BRAINtrinsic was developed in Javascript using the threejs library (http://
threejs.org) an open source wrapper for the hardware accelerated graphics func-
tionality provided by WebGL (http://webgl.com). BRAINtrinsic was designed
to be fully compatible within a virtual reality environment, and has been specif-
ically calibrated for use with the Oculus Rift VR headset (http://oculus.com).
Through stereographic rendering, we emulate the way human eyes perceive the
real world, creating a natural navigation for the user. The code developed is
open source and publicly available at the authors’ code repository 2.

4 Results

4.1 Visualizing the Intrinsic Geometry and Simulated Rich-club
Removal

Figure 2 visualizes the intrinsic geometry of the structural and the functional
group-averaged connectome, as well as illustrates the rich-club property of the
human connectome (second row). The basic concept behind the rich club prop-
erty is the tendency for nodes with high nodal strengths to form tightly intercon-
nected groups [12]. Mathematically speaking, given a graph N and the parameter

2 https://github.com/CreativeCodingLab/BRAINtrinsic

http://threejs.org
http://threejs.org
http://webgl.com
http://oculus.com
https://github.com/CreativeCodingLab/BRAINtrinsic
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Fig. 2. This figure visualizes the intrinsic geometry of the tractography-derived struc-
tural and the resting-state fMRI connectome (middle and right panel, respectively), as
well as the locations of rich-club regions in these spaces (second row). For comparison,
their corresponding locations in the original neuroanatomical space are also shown (left
panel).

k which defines a nodal strength cut off, the rich club property is defined as

φ(k) =
2E>k

N>k(N>k − 1)
(1)

where E>k is the number of edges in N between the nodes of nodal strength
greater than k and N>k is the number of nodes in N with nodal strength greater
than k. Visually and intuitively, it is clear that rich-club nodes form the center of
the structural connectome’s intrinsic geometry (lower middle panel). To further
appreciate the power of BRAINtrinsic, we demonstrate gross changes in the
shape of the structural connectome’s intrinsic geometry when rich-club nodes
are removed.

Figure 3 (top left) again visualizes the bowl-like shape of the complete struc-
tural connectome, while the connectome without rich club nodes (top right)
shows a ring-like structure with a “hole” in the middle. Visually, rich-club
nodes thus keep the entire network intact by forming the center. When they are
removed, remaining brain regions are now topologically dispersed and less cou-
pled. Similar simulations were further conducted by removing an equal number
of nodes with respect to the following criteria: a) nodal strength (high to low),
b) clustering (low to high), c) nodal path length (low to high), and d) random
removal. While random removal(top middle) as expected only induces subtle
changes to the intrinsic geometry, interestingly removing nodes based on clus-
tering (lower left) also minimally changes the overall shape, supporting the fun-
damental differences in what local properties such as clustering capture relative
to global properties. The immersive VR environment provided by BRAINtrin-
sic helps user better appreciate the differences mentioned above. BRAINtrinsic



74 G. Conte et al.

Fig. 3. This figure compares the intrinsic geometry of the structural connectome when
different node removal strategies are applied. Top Row (from left): the first image
depicts the connectome in its entirety, the second visualizes the intrinsic geometry
when a 20% random-removal procedure is applied, and the last when rich-club nodes
are removed (20% of all nodes). Bottom Row (from left) depicts the intrinsic geometry
after removing nodes ranked within the bottom 20% with the respect to the clustering
coefficient, bottom 20% with respect to the nodal path length and top 20% with respect
to the nodal strength.

is particularly effective when experts aim at understanding and comparing the
overall shape of the entire connectome.

4.2 Resting State Functional Connectome

The right panel of Figure 2 visualizes the intrinsic geometry of resting-state
fMRI connectome, which exhibits a very different pattern compared to its struc-
tural counterpart. Due to the strong inter-hemispheric fMRI connectivity between
homologous regions, here one does not see the left-right symmetry as in the

Fig. 4. Exploring connectome data using BRAINtrinsic within the Oculus Rift envi-
ronment.
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structural case; instead homologous regions now coalesce into a single cluster.
More interestingly, while rich-club regions are located at the center of structural
connectome’s intrinsic geometry, this is no longer the case for functional connec-
tome. BRAINtrinsic allows for such an appreciation to easily occur when explor-
ing functional datasets. The choice of using different glyphs and colors to encode
different regions-of-interests coupled with effective VR rendering provides a clear
understanding of the underlying neuroanatomy even in this topological space.

5 Discussion and Conclusion

This paper introduced BRAINtrinsic, a novel VR-compatible visualization appli-
cation that enables users to interactively explore the human brain connectome
and its intrinsic topology. Since in the intrinsic space, spatial vicinity equates
to stronger connectivity, the user is able to explore freely and easily the terrain
of brain connectivity, either functional or structural. Indeed, the real advantage
of exploring in the intrinsic space (especially when coupled with virtual-reality
technology), is the ability to understand the connectivity relationship among
a number of brain regions as neuroimagers unfold complex high-dimensional
connectivity data into easily understandable and relatable configurations in 3D
(Figure 4). By representing structural or functional connectomes using high-
dimensional data followed by dimensionality reduction, this visualization soft-
ware creates a “road map” of the human brain. While the actual connectivity
matrix can be parsed much like knowing the distance to any stop of a road
trip it is hard to comprehend these strict numerical quantities without a map
to help guide relative locations. BRAINtrinsic facilitates this appreciation and
further provides methods for interacting with individual nodes to discover highly
integrated circuits in both functional and structural connectomes.
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