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Abstract To sail quickly to a goal within a navigable area, complex control of the
rudder and sail is required. Sailors must determine the current action with con-
sideration of the time series of states; i.e., both current and future states. Rein-
forcement learning is an appropriate method for learning a complex problem, such
as sailing. In this paper, we apply the navigable area such that a robotic sailor must
avoid touching a boundary. To realise a higher layer of sailing architecture, the
action space is simplified and discretised to the degree of the sailboat direction
change. Moreover, we utilize semi-autonomous reinforcement learning, also known
as imitation learning, in which a human selects an action and a robot updates its
Q-values to evaluate pairs of states and actions until the robot’s action selection is
equivalent to the human’s. For semi-autonomous learning, as well as for normal
reinforcement learning, a representation of the state space is important. The state
representation should be defined so that the state space is discretised to specify a
desirable action, thereby removing any redundancy if possible. In this paper, we
verify and investigate the possibility of state representation.

1 Introduction

Reinforcement learning is a machine learning method proposed by Sutton and Barto
[6]. Agents of learning recognize states and select actions. They learn how each
state and action pair contributes to the rewards. The objectives of the World Robotic
Sailing Championship consist of sub-tasks to move the sailboat to the desired area.
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The robot must recognize continuous state variables, position ðx, yÞ and velocity
x ̇, y ̇ð Þ, and determine the appropriate action to the destination. However, unlike the
control of driverless cars, the acceleration of a sailboat depends on the apparent
wind. Therefore, we make the agents learn to navigate to the goal using rein-
forcement learning. In addition, we consider that state is better represented by the
directions of the apparent wind, goal areas, and obstacles in the boat coordinate
system than by the sailboat position and velocity in the global coordinate system.
The master’s dissertation of Sterne [5] realised this observation by sailing to a
desired direction through reinforcement learning. However, neither the task of
avoiding obstacles nor route finding in navigable areas was realised.

Konidaris and Barto [1] produced successful results of reinforcement learning
experiments in the pinball domain in which agents learned the route to a goal using
bounces to fixed elastic walls. In the experiment, the state vector of continuous
values ðx, y, x ̇, y ̇Þ was used. They employed agents to choose an action out of five
possible actions (x ̇←x ̇±Δ, y ̇←y ̇±Δ or no accelerations, where Δ is a small fixed
value). In our sailing task, we make sailboats circumnavigate a target area without
touching the navigable area boundary by using continuous state spaces. State spaces
should be represented in the sailboat coordinate system because the danger of
colliding with a boundary of the navigable area depends on the apparent wind, even
if the relative position and velocity moving toward the boundary of the navigable
area are the same.

The number of state variables becomes too large if all measured variables are
used when the agent is made to recognize the direction and distance to obstacles
and the target area. The number of state variables can be reduced if we use the
Fourier transform of measured distance data. Kuhl [2] showed that the original
distance signal can be restored by inverse Fourier transformation with a relatively
small number of Fourier coefficients.

In this paper, we simplify the action spaces, utilize semi-autonomous learning,
and arrange state representation to make the agent circumnavigate target areas
within the navigable area. Action space is discretized to Δθ∈ f0◦, ±1◦g, not to
continuous values, as was done in Sterne’s dissertation. We adopt semi-autonomous
reinforcement learning which is also known as imitation learning [3, 4].
Semi-autonomous reinforcement learning is the method of learning actions that are
selected by the human’s operation at the beginning stage of learning, and the robot
learns from the human’s actions. For state representation, distances to the target
area and boundaries to the navigable area at respective directions are measured in
the sailboat coordinate system. They are then Fourier-transformed to reduce the
number of state variables. The state variables consist of Fourier coefficients of
distance to the target area and to obstacles, and a two-dimensional vector of
apparent wind. We define the relative direction θ with respect to the sailboat. Then,
we calculate distances to the target area [d+ θð Þ] for all angles θ=0◦, 1◦, . . . , 359
° around the sailboat. We calculate the distances to the boundaries of the navigable
area [d− θð Þ] in the same way. If a ray to angle θ does not cross the target area,
d+ θð Þ becomes ∞. We define ℓ= exp − dð Þ so that ℓ is within the range from
0 to 1. The functions ℓ+ θð Þ and ℓ− θð Þ are naturally periodic; therefore, they are

90 H. Manabe and K. Tachibana



Fourier-transformed. In this paper, we verify whether a reduced number of Fourier
coefficients effectively represent the state space combined with the apparent wind
vector.

The remainder of this paper is organized into six sections. In Sect. 2, sailing and
our sailing simulator are explained. In Sect. 3, semi-autonomous learning and
Q-learning are described. In Sect. 4, state space is defined and the methods of
performing Fourier transformation of state representation and the dividing of state
space are respectively described. In Sect. 5, our experiment and parameters,
experimental scenario, and results are presented. In Sect. 6, we discuss our
experiment. Our research conclusions and future work are discussed in Sect. 7.

2 Sailing Simulator

The main propulsive force of the sailboat is captured by the sail. This force can be
reasonably approximated as being proportional to the sail area facing the wind and
the squared wind speed. The propulsive component of this force pushes the sailboat
forward, whereas the lateral component moves the sailboat sideways. Let W be the
apparent wind speed, ϕ be the direction of the apparent wind, and φ′ be the
direction of the sail. Then, the sail gains force such that

F∝W2 sin ϕ−φ′ð Þ,

and its propulsive and lateral components are

Fx∝W2 sin ϕ−φ′ð Þ sinφ′,
Fy∝W2 sin ϕ−φ′ð Þ cosφ′,

respectively. For a givenW and ϕ, the half angle φ′=ϕ 2̸ maximizes the propulsive
force, Fx. Therefore, Fx∝W2 1− cosϕð Þ and Fy∝W2 sinϕ

Figure 1 presents a screenshot of the sailing simulator used in this study. The
wind direction, φ, is set to East-North-East; i.e., at φ= − 22.5◦ in the world
coordinate system. The ‘dead zone’ is indicated by a striped pattern. When steering
in the dead zone, the direction of the apparent wind becomes almost ϕ≈0◦;
therefore, the propulsive force component is lost, and it is difficult for the sailboat to
gain propulsion. Accordingly, sailors heading upwind cannot move directly and
must choose a zigzag course to arrive at their goal in a shorter time. The direction
perpendicular to the wind is called the ‘abeam’, in which the sailboat can move fast
by maintaining a high apparent wind speed, W , and a good propulsive component
1− cos θð Þ. Finally, the downwind direction is called the ‘running’, in which the
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sailboat cannot go faster than the abeam because the true wind is cancelled by the
speed of the sailboat, and the apparent wind becomes approximately W≈0.
Therefore, to arrive at the goal in a shorter time, the sailboat must avoid the dead
zone and running directions and maintain an abeam direction as much as possible.

In the sailing simulator, it is assumed that the resistance force from the water is
proportional to the square of the boat velocity. The leeway effect is also simulated
with consideration of the lateral motion equation. Moreover, if the sailboat touches
a boundary of the navigable area, its velocity is immediately changed to zero. The
frame rate of the sailing simulator is set to 40 frames per second.

3 Semi-autonomous Reinforcement Learning

In Sect. 3.1, we explain reinforcement learning, especially Q-learning. We explain
the method to renew Q-values and to select the action. In Sect. 3.2, we propose the
method of semi-autonomous reinforcement learning.

3.1 Reinforcement Learning

Q-learning is a reinforcement learning method. An agent has a finite set of states S
and a finite set of actions A. At each time frame, t, an agent recognizes its state,
st ∈ S, and selection action, at ∈A. The efficacy of a pair of states and actions is

Fig. 1 Screenshot of the sailing simulator
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quantified as the ‘Q-value’, Q̂ st, atð Þ. The Q-value is renewed with obtained reward
rt and Q-values of the next state st+1 caused by action at as the following:

Q ̂ st, atð Þ← 1− αð ÞQ̂ st, atð Þ+ α rt + γmax
a

Q ̂ st+1, að Þ
n o

,

where α∈ 0, 1½ � and γ ∈ 0, 1½ � are the learning rate and discount rate, respectively.
The method to select the action with the highest Q-value for the current state is called
the greedy method. The method to select the action according to the greedy method
with the probability of 1− εð Þ∈ ð0, 1Þ, and to otherwise randomly select the action,
is called the ε-greedy method. The soft-max method is used to select action a with a
probability that is proportional to exp βQ̂ st, að Þ� �

, the exponential of its Q-value,
where β is a constant. Q-value is updated for each step. Q-values are set at 0 initially.

3.2 Semi-autonomous Reinforcement Learning

We propose a semi-autonomous reinforcement learning technique. In
semi-autonomous learning, a human operator teaches robots the best route to the
target area. Robots share human decision-making through Q-values, which are
renewed with each frame in the same way as in conventional Q-learning.

4 State Representation

To find an appropriate route to a target area within a navigable area, the robot must
recognize its state and properly select the action. Recognition of the state is
important; it depends on representation of the state space. We investigate the fol-
lowing state representation consisting of Fourier coefficients of distances to the
target area, Fourier coefficients of distances to the boundaries of the navigable area,
and the two-dimensional vector of apparent wind.

We define the relative direction, θ, with respect to the sailboat. We assume that
agents can precisely measure their Euclidean distances to the target area
d+ θð Þjθ=0◦, 1◦, . . . , 359◦½ � and the boundaries of the navigable area
d− θð Þjθ=0◦, 1◦, . . . , 359◦½ � for each degree. If a ray to angle θ does not cross the
target area, d+ θð Þ is set to ∞. The distance functions are transformed to ‘nearness’
functions, ℓ+ θð Þ= e− d+ θð Þ� �

and ℓ− θð Þ= e− d− θð Þ� �
, respectively. Then, the peri-

odic nearness functions are Fourier-transformed, respectively. The number of ori-
ginal nearness signals is 360 for each function. After Fourier transformation:

ℓ θð Þ ¼ a0 þ a1 cos θ þ b1 sin θ þ a2 cos 2θ þ b2 sin 2θ þ ⋯ þ aN cosNθ
þ bN sinNθ þ . . . ;
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a0 =
1

360
∑
359◦

θ=0◦
f θð Þ

ak =
1

720
∑
359◦

θ=0◦
ℓ θð Þ cos kθ, bk = 1

720
∑
359◦

θ=0◦
ℓ θð Þ sin kθ, k∈ 1, . . . ,Nf g,

we use 2N +1ð Þ coefficients of N lowest wave numbers, i.e.,
a0, a1, b1, . . . , aN , bN , as state variables. In addition, we assume that the sailboat
precisely measures the apparent wind. The x, y components of the apparent wind in
the sailboat coordinate system are used as other state variables. We investigate the
state space of 2N+ + 1ð Þ+ 2N− +1ð Þ+2 dimensions in total, where N+ and N−
are wave numbers for ℓ+ θð Þ and ℓ− θð Þ, respectively. We scale apparent wind and
a0 of both distances by 0.5, ak and bk , k∈ 1, . . . ,N+f g and k∈ 1, . . . ,N−f g by
2 to adjust Euclidean distance in the state space.

Figure 2 shows an example of sailboat state. The target area is from 45 degrees
left to 45 degrees right in the front direction of the sailboat. The shortest distance is
d+ 0◦ð Þ=300. Also, the shortest distance to the boundary of navigable area is
d− 270◦ð Þ=300. Figure 3 shows d+ θð Þ, d− θð Þ, ℓ+ θð Þ and ℓ− θð Þ respectively.

The continuous state space is partitioned to m regions. Before semi-autonomous
learning, a human operator makes the sailboat travel in the navigable area and stores
state data for each frame. Then, m state data are randomly picked up and used as
generators of Voronoi division. While learning, the robot must discretize its con-
tinuous state vector. For each frame, the robot calculates a state vector and rec-
ognizes it as one of the m states corresponding to the nearest generator in the
Euclidean distance.

+ (0°) = 300

− (270°) = 300

Fig. 2 An example of sailboat state
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(a)

(b)

(c)

(d)

Fig. 3 The distances to boundaries of navigable area d+ θð Þ and d− θð Þ, the nearness ℓ+ θð Þ and
ℓ− θð Þ a The distance to target area d+ θð Þ b The distance to boundaries of navigable area d− θð Þ
c The nearness ℓ+ θð Þ d The nearness ℓ− θð Þ
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5 Experiment and Results

We set the parameters of reinforcement learning as α=0.001 and γ =0.999.
A reward given to the agent is rt =1, 000 when the agent reaches the target area. In
addition, the reward is rt = − 10, 000 when the agent touches a boundary of the
navigable area; rt = − 2, 000 when the agent stops after heading to the dead zone;
and rt = − 1 for other frames. We set the wave numbers for Fourier transformation,
N+ =N− =17, so that the dimension of the state space becomes 72, which is
one-tenth of 722, the number of originally measured variables. We execute the
semi-autonomous learning procedure by changing m= jSj, the number of discret-
ized state subspaces. The learning procedure is repeated twice for each
m=10, 20, 50, 100, 200, 500. The action set is A= a∣Δθ=±1◦, 0◦f g; i.e., turning
right or left, or staying straight. The action is selected by the mixture of ε-greedy
and soft-max methods. The action with the highest Q-value is selected with the
probability of 1− εð Þ; otherwise, the soft-max method with β=0.1 is applied.

The green area on the right side of the display shown in Fig. 1—for example, the
east side—is the target area through which the sailboat must traverse. When the
sailboat enters the eastern target area, the western-most area becomes the next target
area. The task for the robotic sailboat is to navigate through both target areas.

Before semi-autonomous learning, a human operator controls a sailboat until it
finishes the first round. Then, the state space is partitioned, as described in the
previous section. The other two robot sailboats appear in the display and start
learning. Three sailboats share one set of Q-values. Therefore, the Q-values are
renewed three times per frame. The human operator continues to control the sail-
boat for the first ten rounds. The average of elapsed steps per human-operated round
is 1,424.8 (±36.1) steps. From that point in our procedure, the sailboat turns to
‘anchor mode’ for 500,000 steps. In anchor mode, the human-operated sailboat
stops updating the Q-values, and the other two sailboats continue Q-learning. Then,
the sailboat starts moving according to human operation for ten more rounds. This
loop continues for up to approximately 3,000,000 steps (Fig. 4).

Human operates a sailboat for 10 rounds 

‘Anchor mode’ for approximately 500,000 steps

End of learning

Approximately 3,000,000 steps in total

Fig. 4 Process of learning
with the sailing simulator
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Figure 5 shows the summed rewards in the cases where m=10, 20, 50, and
m=100, 200, 500. ‘Summed reward’ means the summation that rewards the three
sailboats, which are one’s own sailboat and the agents’ two sailboats 10,000
step. The X axis is the number of steps in the learning; the Y axis is the summed
reward in the learning.

Fig. 5 Steps and summed reward a Reward in the case in which m=10, 20, 50 b Reward in the
case in which m=100, 200, 500
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6 Discussion

Even after semi-autonomous learning, the robotic sailboats could not circumnavi-
gate the target areas without touching a boundary of the navigable area in any case
of m. Linear regression of summed reward y10 with step x10 was
y10 = 0.02580x10 − 435, 126 for the first experiment of m=10, and
y10 = 0.06634x10 − 514, 768 for the second experiment of m=10. In the summary
of the two experiments, the average ± standard deviations of the slope and intersect
were 0.04607±0.02027 and − 474, 947±39, 821, respectively. In the same way, the
linear regressions of summed reward ym with step xm in cases of
m=20, 50, 100, 200, 500 were:

y10 = 0.04607 ±0.02027ð Þx10 − 474, 947 ±39, 821ð Þ

y20 = 0.02899ð±0.00251Þx20 − 430, 284 ±99, 984ð Þ

y50 = 0.01975 ±0.00019ð Þx50 − 480, 563 ±83, 760ð Þ,

y100 = 0.02331ð±0.02868Þx100 − 489, 586 ±73, 007ð Þ

y200 = − 0.00047ð±0.03219Þx200 − 500, 849 ±78, 099ð Þ

y500 = − 0.06096ð±0.02676Þx500 − 440, 724 ±80, 421ð Þ

Figure 6 shows the relationship between m and slope.
The results show that the increase of summed rewards during learning was

greater with a smaller m. In the case of m=500, the summed reward decreased
during learning in both experiments. It may occur that a cluster in the state space is

Fig. 6 Graph of approximations to steps and all rewards in Fig. 5
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subdivided to too many partitions in the cases of larger m. If similar states are
discretized to different state subspace and recognized as different discrete state,
more updates of Q-values are needed than appropriate number of partitions. We
compare progress of learning by action selection entropy between the cases of
m=10 and m=500.

We calculate action selection entropy for each state. If action selection entropy is
small for a state, a robot always selects the same action in the state. The minimum
of action selection entropy is 0, where the probability of an action is selected is 1
and other actions are not selected. And if action selection entropy is large, a robot
selects actions at random. The maximum is log2 3 in our case, where each of three
possible actions is selected with the probability of one third. Action selection
entropy for a state s is:

H sð Þ= − ∑
a∈A

P ajsð Þ,

P ajsð Þ= exp βQ̂ s, að Þ� �
∑a′∈A exp βQ ̂ s, a′ð Þ� � ,

We denote the set of states chosen for the experiment of m=10 as S10. We
calculate action selection entropy for each state in S10 to find the state s* with the
minimal entropy after the learning procedure. Then, we find subset of states:

S*500 = s∈ S500∣s* = argmin
s′∈ S10

dðs, s′Þ
( )

,

here S500 is the set of states chosen in the experiment ofm=500, and dðs, s′Þ is the
Euclidean distance between states s and s′. The subset S*500 consists of states that are in
the Voronoi region of s*. Action selection entropy is calculated for each state of S*500.

Four combinations are evaluated, i.e. s* is found for each experiment of m=10,
and S*500 is detected for each experiment of m=500. Hðs*Þ was 1.200 for the first
experiment of m=10. S*500

�� �� was 64 and 76 for the first and the second experiments,
respectively. Hðs*Þ was 1.268 for the second experiment of m=10. S*500

�� �� was 76
and 76 for the first and the second experiments, respectively. Figure 7 shows
histograms of entropy in S*500 for each experiment. H s*ð Þ are shown by red arrows
for each experiment. Majority of S*500 have larger entropy than s* and action is
selected almost at random in such states.

However, the robotic sailboats learned the action of avoiding the obstacles. For
example, we showed state 39 as one of 100 states. The red dot in Fig. 8 denotes
where the sailboat recognized its state as state 39. The agent selected the action to
turn left in state 39. Figure 9 shows the distance to the goal area and to the
boundaries of the navigable area restored by inverse Fourier transformation from
the state vector of state 39. The solid and dotted lines show restored ℓ+ θð Þ and
ℓ− θð Þ, respectively. The direction of apparent wind is shown by the arrow.
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(a)

(b)

(c)

(d)

Fig. 7 Histograms of entropy a Histogram of entropy in S*500 for the first experiment and H s*ð Þ for
the first experiment b Histogram of entropy in S*500 for the second experiment and H s*ð Þ for the
first experiment c Histogram of entropy in S*500 for the first experiment and H s*ð Þ for the second
experiment d Histogram of entropy in S*500 for the second experiment and H s*ð Þ for the second
experiment
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The target area was in the forward direction of the sailboats. The nearest
boundary of the navigable area was on the right side of the sailboats. The direction
of apparent wind was forward and somewhat left in state 39. In addition, the goal
area was located ahead or somewhat to the left, and the boundaries of the navigable
area were located on the right of the sailboats. The direction of wind was forward in
state 39 of Fig. 6; the state was certainly recognized in the results. The Q-values at
state 39 were − 711.9 (turn left), − 717.9 (go straight), and − 720.0 (turn right);
therefore, the sailboats certainly learned to avoid the boundary by turning left. From
this result, we can see that the Fourier coefficients of N− =17 of the lowest wave
numbers stored sufficient information to avoid touching the boundaries.

Fig. 9 Value of ℓ+ θð Þ and ℓ− θð Þ and wind direction at state 39

Fig. 8 Screenshot in state 39 at the number of 100 state spaces
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7 Conclusion

In this paper, we described previous research of reinforcement learning for control
in continuous state space in introduction. We explained our sailing simulator, and
proposed a semi-autonomous reinforcement learning technique. We did the
experiments at each number of divisions of the state space. As the result, the sail-
boat did not navigate to the goal area in these experiments. Nevertheless, the agent
employed the action that avoided the boundaries of the navigable area when they
were approached. We calculated the value of ℓ+ θð Þ and ℓ− θð Þ to use inverse
Fourier transformation from Fourier coefficients. We confirmed that the states were
certainly recognized.

The state representations were calculated as the paths of the sailboats first
approaching the navigable area, and they were chosen at random. In this division
method, multiple divisions of state spaces were assigned to a cluster or, inversely,
the division of state spaces was assigned to multiple clusters. It likely occurred that
very similar state vectors—i.e., in the same cluster in the state space—were rec-
ognized as states that differ from each other, or, inversely, that very different state
vectors—i.e., belonging to different clusters in the state space—were recognized as
the same state. In other words, the recognized state was not a one-to-one corre-
spondence with the cluster structure in the state space. Therefore, in future work, we
will apply k-means clustering to the preparation phase for learning for the robotic
sailboats to accurately circumnavigate the target areas within the navigable area.
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