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Chapter 14
Effects on the Removal of Uremic Toxins

Griet L.R.L. Glorieux and Detlef H. Krieter

Abstract From the moment kidney function declines, retention of many different 
uremic solutes starts. Many of these solutes exert pathophysiological effects play-
ing a role in cardiovascular damage, a major cause of morbidity and mortality in 
chronic kidney disease. Over the past years, middle molecules (e.g. cytokines and 
advanced glycation end-products (AGEs)) but especially protein-bound solutes 
(e.g. indoxyl sulfate and p-cresyl sulfate) have been identified as some of the main 
toxins associated with vascular disease affecting the major cell types involved 
(endothelial cells, leukocytes, platelets and/or vascular smooth muscle cells). Many 
of these solutes, however, are difficult to remove by standard dialysis strategies. The 
removal of the larger middle molecules can be obtained by increasing dialyzer pore 
size and by applying hemodiafiltration (HDF). The removal of protein-bound sol-
utes, however, remains limited with all current dialysis strategies, because only the 
free fraction of the solute is available for, mostly diffusive, removal. For the future, 
alternative measures, complementing dialysis removal, will have to be developed to 
more effectively decrease circulating levels of the difficult-to-remove uremic 
toxins.
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 Introduction

From the moment kidney function declines, retention of many different uremic sol-
utes starts. The kinetics of this process remain, however, far from clear. Over the 
years, the list of known uremic retention solutes has become progressively longer 
[1, 2], which can be attributed to improvements in analytic techniques and recent 
advances in the area of “-omics,” allowing the detection of a myriad of previously 
unknown compounds [3, 4]. In addition, the presence of an indefinite number of 
posttranslational modifications of retention solutes, with each of the structural vari-
ants possibly exerting a pathophysiologic impact that differs from the mother com-
pound, hampers the process of mapping the uremic retention solutes even more. For 
the time being, uremic solutes are preferentially classified according to the physico-
chemical characteristics affecting their clearance during dialysis which, as of today, 
is still the main therapeutic option for their removal. Traditionally, this subdivision 
focuses on three types of molecules: the small water-soluble compounds (molecular 
weight (MW <500 Da), the larger ‘middle molecules’ (MW >500 Da) and the
protein- bound compounds [2]. Recent reviews point out that removal of small
water-soluble compounds is important for ‘acute mortality’ (e.g. related to hyperka-
lemia, sodium removal), but that for the chronic problems of the uremic syndrome, 
the protein-bound solutes and the middle molecules seem to play a more essential 
role [5–7]. HDF combines the advantages of hemodialysis (HD), small solute 
removal by diffusion, with those of hemofiltration (HF), large solute removal by 
convection. Besides a wider molecular weight range of solutes removed, the combi-
nation of diffusive and convective transport provides more total clearance per unit 
of surface area than the application of each of both processes separately [8]. 
Nevertheless, the combination does not result in the simple summation of clearance 
delivered by each of the separate elements. To estimate the relative contributions of 
diffusion and filtration to the clearance, the equation below can be used [9]:

 
C C Qtotal diff UF= +[ ]( )/ / min2 mL

 

where Ctotal is the total clearance, Cdiff the diffusive clearance and QUF the ultrafiltra-
tion rate. This equation is valid for postdilution HDF and ultrafiltration rates up to 
100 mL/min.

Addition of convection reduces diffusive clearance. As diffusive clearance is 
most pronounced for small molecules, this reduction due to convection will propor-
tionately be more important for these solutes, or more exactly, the gain in clearance 
due to convection will proportionately be more important for larger “middle” mol-
ecules [8].

This chapter will focus on those compounds with convincing biological effects 
associated to adverse outcome, see Table 14.1. Beneficial effects of their removal by
HDF will be discussed.
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 Which Solutes Should Be Removed?

 Small Water-Soluble Compounds

Phosphate (95 Da) is one of the smallest solutes qualified as uremic toxin 
[2, 10]. It accumulates in chronic kidney disease (CKD) and leads to adverse effects
on biological systems. Hyperphosphatemia contributes to metabolic disturbances 
such as hyperparathyroidism, vitamin D resistance, and hypocalcemia. It leads to 
organ damage particularly of the parathyroid glands, bones, and most importantly 
the cardiovascular system. Elevated phosphorus levels are associated with arterial 
and valvular calcification, arteriosclerosis, and an increased risk of cardiovascular 
death [11, 12]. For further reading, see Chap. 11.

Table 14.1 Overview on uremic toxins relevant for removal by HDF

Uremic retention solute
Normal 
concentration

Uremic 
concentration Ratio U/N

Max. RR
(%) in HDF

Mean (SD or
range)

Mean (SD
or range)

Small water-soluble
Phosphate (mg/dL) 2.6–4.5 >5 2 <60a

Middle molecules
β2-microglobulin (mg/L) 1.9 (1.6) 43.1 (18) 22.7 80
Interleukin-6 (ng/L) 4.0 8.6 (3.7) 2.1 NA
Tumor necrosis factor- α 
(ng/L)

7.0 57.8 (10.8) 8.2 NA

Fibroblast growth factor-23
(ng/L)

26.3 (0.8) 149.6 (102.8) 5.7 NA

Complement factor D 
(mg/L)

1.9 (0.5) 20.6 (13.0) 10.8 NA

Protein-bound
p-cresyl sulfate (mg/L) 1.9 (1.3) 41 (13.3) 21.6 <50
Indoxyl sulfate (mg/L) 0.53 (0.29) 44.5 (15.3) 84.0 <50
Indole acetic acid (mg/L) 0.5 (0.3) 2.4 (2.2) 4.8 <50
Hippuric acid (mg/L) 3.0 (2.0) 87.2 (61.7) 29.1 75
Advanced glycation end-products
  N-carboxymethyl-lysine 

(mg/L)
0.35 (0.13) 18.5 (5.0) 5.3 NA

Pentosidine (μg/L) 51.6 (18.8) 579.5 (299.3) 11.2

Based on data from Duranton et al. [1]
NA not available
aReduction Ratio (RR) not appropriate because of phosphate refilling in case of falling below the
individually different threshold level
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 Middle Molecules

The group of middle molecules is mainly composed of small peptides. Many of 
these are implied in cardiovascular disease, by causing inflammation, endothelial 
damage, smooth muscle cell proliferation, activation of coagulation or by interfer-
ing with calcium/phosphorus household [13]. There is thus a pathophysiologic 
rationale for optimizing their removal. However, their effect on relevant cell mecha-
nisms at the concentrations occurring in uremia has barely been studied. Data on the 
association of middle molecule concentrations with clinical outcome parameters are 
more elaborate.

 β2-Microglobulin

The most widely-used surrogate marker for middle molecule retention and removal 
is β2-microglobulin (β2M; 11.8 kDa). It is the β-chain of the major histocompatibil-
ity complex and is expressed on most nucleated cells. Free β2M circulates in the
blood as a result of shedding from cell surfaces or intracellular release. In general, 
this molecule is, however, considered inert. Nevertheless, Wilson et al. [14] identified 
by proteomic analysis β2-microglobulin as the most adequate marker of severity of
peripheral vascular disease in a population with no or moderate CKD. In addition,
β2-microglobulin has been associated with arterial stiffness in the general population
[15] and bone remodeling in non-CKD postmenopausal women [16]. With regard to 
outcome studies, in two secondary analyses of the HEMO study conducted in HD 
patients, β2-microglobulin was related to overall and infectious mortality [17, 18]. 
Higher β2M levels correlate with various cardiovascular risk factors and inflamma-
tion markers, such as C-reactive protein (CRP), interleukin-6 (IL-6), and tumor
necrosis factor-α (TNF-α) [19], and are associated independently with cardiovascular 
mortality and cardiovascular events [20]. However, when the oxidative burst of leu-
kocytes was investigated, β2M did not show proinflammatory properties and there-
fore may not by itself be a causative factor of vascular damage [21]. The serum β2M
level is also a new predictor of diabetes-related mortality in diabetic patients irrespec-
tive of renal function [22] and is associated positively with insulin resistance [23].

 Cytokines

The concentration of cytokines gradually increases in CKD [24], which is thought 
to be mainly attributed to an increased generation in response to uremic toxins [25–
27] and reduced renal clearance [28, 29]. According to the former, cytokines can be 
considered as secondary uremic retention solutes. Among several pro-inflammatory 
cytokines, only TNFα revealed to exert pro-oxidative effects on leukocytes at high 
range uremic concentrations [30]. In a population at different stages of CKD, IL-6
(24.5 kDa) was related to mortality, whereas there was no association for TNF-α 
(26 kDa). The latter was confirmed in a selected CKD stage 4–5 group [30, 31]. 
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In contrast, in a HD population, TNF-α was a stronger predictor of mortality than 
IL-6 [32].

In view of improving removal of cytokines, also anti-inflammatory cytokines 
like interleukin 10 (IL-10, 18 kDa) of which their generation is increased in response
to low-grade inflammation in CKD, will be removed. IL-10 is capable of effective
down-regulation of proinflammatory cytokines, chemotactic factors and adhesion 
molecules [33]. A possible beneficial role of IL-10 in CKD has been proposed by
Girndt et al. [34], showing that genetic polymorphisms leading to low IL-10 con-
centration are associated with increased cardiovascular risk in dialysis patients. So,
beneficial effects are to be expected only when an equilibrium between pro- and 
anti-inflammatory factors is restored.

 Fibroblast Growth Factor-23

Elevated levels of fibroblast growth factor-23 (FGF-23, 32 kDa), a molecule essen-
tially linked to bone mineral homeostasis, has been associated with progression of 
kidney failure [35], cardiac dysfunction [36] and overall mortality [37, 38]. Although 
merely seen as a marker, a recent study in animals showed a direct hypertrophic 
effect on the heart after chronic injection [39]. These data thus suggest that middle 
molecule removal could favor outcome, see also Chap. 11.

 Complement Factor D

Complement factor D (24 kD) is involved in the regulation of the alternative com-
plement pathway. Due to accumulation in the intravascular compartment [40], 
serum concentrations are increased in CKD [41]. Elevated complement factor D 
concentrations enhance the activity of the alternative complement pathway [42] and 
inhibit neutrophil degranulation [43].

 Protein-Bound Compounds

The toxicity of retained protein-bound solutes, which are largely intestinally gener-
ated, remains a matter of debate, as in many experimental studies excessively high 
free concentrations resulted in an overestimation of their potential toxicity [44].

 Indoxyl Sulfate and p-Cresyl Sulfate

A recent systematic review unraveled 27 studies where adequate free concentrations
of two prototypic protein-bound solutes, p-cresyl sulfate (pCS; 188 Da) and indoxyl
sulfate (IS; 212 Da), had been applied [45]. Interference was shown with several key 
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metabolic processes involved in the uremic syndrome, such as inflammation, oxida-
tive stress, endothelial dysfunction, leukocyte-endothelial interaction, epithelial-to- 
mesenchymal transition, cardiac cell proliferation and renal tubular cell senescence. 
These data refer to cardio-vascular morbidity and mortality and to the progression of 
renal failure. Together with observational studies showing a highly significant asso-
ciation between concentrations of protein-bound toxins and hard endpoints, such as 
cardio-vascular events, progression of renal failure and mortality [46–51], these data 
offer strong arguments in favor of a key role of IS and pCS in the uremic syndrome.
Since then, additional reports supporting the above evidence were published, cover-
ing: increased cross-talk between leukocytes and endothelium, glycocalyx degrada-
tion and vascular leakage [52]; apoptosis of osteoblasts [53]; inhibition of drug
metabolism [54]; induction of tubular endothelial growth factor receptor leading to
tissue remodeling [55]; and inhibition of breakdown of angiotensin II [56].

 Indole Acetic Acid

Similar effects were also described for other protein-bound toxins [57]. Indole ace-
tic acid (IAA; 175 Da) was shown to inhibit endothelial progenitor cell production
opposing their beneficial effect on vessel repair and neovascularization [58]. IAA 
induces endothelial inflammation and oxidative stress and activates an inflamma-
tory AhR/p38MAPK/NF-ƙB pathway [59]. Recently, the ability of IAA to induce
tissue factor production that was associated with increased pro-coagulant activity 
was revealed [60, 61]. The induction of tissue factor occurred via the aryl hydrocar-
bon–receptor pathway [61] In addition, serum IAA is an independent predictor of 
mortality and cardiovascular events in patients with CKD [59].

 Hippurates

Metabolome studies repeatedly pointed to accumulation of hippurates. Boelaert
et al. demonstrated an increase, already from CKD stage 3 on, of the known hip-
puric acid, 2-,3-,4-hydroxyhippuric acid and the unknown aminohydroxyhippuric
acid and sulfate and glucuronide conjugates of hydroxyhippuric acid [3]. Hippuric 
acid (HA; 179 Da) was first isolated from horse urine, hence its name, and is a
microbial co-metabolite. It originates from polyphenolic compounds in the diet 
such as fruit vegetables, tea and coffee, metabolised to form benzoic acid which is 
at the site of the liver and renal cortex conjugated to glycine to form hippuric acid 
[62]. In general, literature on toxic effects of hippurate is fairly old; somewhere
along the way, interest in HA got lost. Satoh et al. demonstrated that sub-totally
nephrectomized rats given HA in their drinking water showed a decrease in inulin 
clearance, pointing to glomerular dysfunction. This was supported by the signifi-
cant increase in whole kidney sclerosis index. In addition, NAG (N acetyl glu-
coseaminidase) excretion rate, an indicator of proximal tubular injury, was higher 
in the uremic toxin overloaded rats compared to the control rats [63]. More 
recently, HA was shown to inhibit the transport of two important efflux pumps 
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expressed on human tubular cells [64]. Next to hippurate, hydroxyhippurates were 
increased in plasma from CKD patients. p-Hydroxyhippuric acid (p-OHHA)
inhibits Ca2+-ATPases, needed for restoring intracellular Ca2+ homeostasis after 
cell activation. Increased [Ca2+]i modulates various polymorphonuclear leukocyte 
functions such as oxidative burst and degranulation as well as apoptosis as demon-
strated by Cohen by the decrease in caspase activity in PMNL in the presence of
p-OHHA [65].

Advanced Glycation End Products

The link between the accumulation of AGEs and inflammation has been empha-
sized before [66]. Nutritional AGEs contribute to this effect since AGE-rich food 
administered to diabetics increased endothelial free radical production and decreased 
arterial responsiveness to vasodilatory stimuli [67]. The main representatives of the 
AGE group are N-carboxymethyl-lysine, pentosidine, and methylglyoxal. Plasma
pentosidine is associated with inflammation and malnutrition in ESRD patients
starting dialysis therapy [68]. The receptor for AGEs has been shown to exert direct 
effects on nuclear factor-κB activation in dialysis patients [69], in its turn leading to 
activation of the inflammatory cascade. The receptor for AGE ligand S100A12 (also
known as EN-RAGE) contributes to inflammation and the development of athero-
sclerosis, and has shown an association with mortality risk in HD patients [70]. As 
markers of oxidative stress, AGEs also contribute to the activity of inflammatory 
processes, and are believed to participate in atherosclerosis progression, mainly 
through modification of matrix proteins, platelet aggregation, defective vascular 
relaxation, and abnormal lipoprotein metabolism [71].

 Influence of HDF on Uremic Toxin Removal

 Removal of Small Solutes

By adding of a diffusive component, low small solute removal, the major drawback
of purely convective HF, has been overcome in HDF. Depending on the flow set-
tings, small solute clearance in online postdilution HDF is even superior compared 
to low- and high-flux HD, although this effect is rather modest [72–75]. However, 
the site of the infusion is crucial because in predilution HDF, small solute clearance 
is not improved and can be even worsened [76, 77].

The removal of phosphate by dialysis differs from a typical small solute such as urea;
it rather resembles that of a middle molecule. This is explained by the electric charge of 
the phosphate molecule, resulting in the attachment of surrounding water molecules 
and, consequently, a behaviour like a larger solute. Due to its complex transport kinetics 
deriving from a four compartmental distribution in the body, the elimination of phos-
phate during 4–5 h lasting dialysis sessions is limited [78]. Also a consequence of the 
complex kinetics, the determination of reduction ratios must be regarded as an inade-
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quate measure for phosphate removal. Despite continued elimination of phosphate, 
refilling from the third and fourth compartment to maintaining an individually different 
minimum serum phosphate level prevents results exceeding 60 % [78].

Nevertheless, a number of studies have proven a superior clearance of phosphate 
during postdilution HDF compared to standard HD [79–81]. Improvements of the 
instantaneous plasma clearance between 10 % and 15 % have been determined [73]. 
This beneficial effect from single sessions may also result in a better control of the 
phosphate level over longer terms [80]. The large Dutch CONTRAST study demon-
strated a decrease of the phosphate level from 5.18 to 4.87 mg/dL and an increase of
the proportion of patients reaching phosphate treatment targets from 64 to 74 % 
over a 6-month period in patients randomized to postdilution HDF. No such changes 
were observed in patients on low-flux HD [82]. Similar results over 12 months were
obtained by a smaller British study comparing postdilution HDF to high-flux HD
[83], but several other trials failed to show an advantage of online HDF [84, 85], 
underlining the need for a control of the dietary phosphorus intake, use of oral phos-
phate binders, and residual renal function in investigations on phosphorous homeo-
stasis [86].

 Removal of Middle Molecules

Convection is the driving force for the removal of large solutes, which pass the 
dialysis membrane almost exclusively by solute drag effectuated by the trans-
membrane ultrafiltration of plasma water [87]. Clinical studies investigating the 
treatment efficacy of convective therapy procedures mostly measured the elimi-
nation of β2M as the surrogate parameter for middle molecule removal, not least
due to historical reasons: Years before an association of the predialysis β2M
level with mortality became evident [17, 20], β2M was shown to play a major
role in dialysis-associated amyloidosis, which may be retarded by efficient β2M
removal [88].

As indicated above, β2M elimination during a single session correlates with con-
vective volume [89, 90]. Numerous studies have demonstrated a considerably 
increased β2M removal in online HDF versus HD [74, 91, 92]. At optimum settings 
of the flow rates, a reduction of the pretreatment β2M level of up to 80 % during a
4 h HDF session is achievable. Compared to high-flux HD, a recent trial investigat-
ing last generation high-flux dialysis membranes found an improvement of instan-
taneous plasma clearance and reduction ratio, established efficacy parameters for 
β2M removal, in online postdilution HDF of 60 % and 15 %, respectively [73]. This 
considerable difference was even more pronounced for larger marker molecules, 
such as cystatin C (13.3 Da) and myoglobin (17.6 kDA), although, treatment set-
tings in HD and high-efficiency HDF were kept identical, except for the substitution 
flow rate [73].

A beneficial effect of improved single session β2M removal on pretreatment
β2M levels over the long-term has been shown, when online HDF was compared to
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low-flux HD, a dialysis form not eliminating middle molecules [92]. This effect was 
particularly obvious in patients without residual renal function [93]. Compared to 
high-flux HD, lower predialysis β2M levels over longer periods of time after a
switch to online HDF were not consistently observed. Some observational studies
were able to show such a difference [83, 89], while other randomized trials did not 
[75, 85]. Again, this finding underlines the importance of the residual renal function 
for predialysis β2M because differences in the levels between high-flux HD and
HDF can be found in patients without any urine production [94].

The removal of other potentially relevant large solutes had been examined in 
only very few, mostly single center studies. Thus, their results must be interpreted 
with some caution. Together with lower pretreatment concentrations over a 12 month
period, a significant better elimination of complement factor D in postdilution HDF 
compared to high-flux HD was demonstrated by Ward et al. [75]. Serum levels of
TNF-α, a cytokine linked to the inflammatory response, were shown to increase 
during low-flux HD, while they decreased during high-flux HD and even more dur-
ing online HDF [95]. This effect may well result from more intense elimination, but 
biocompatibility effects triggering the inflammatory response to the different dialy-
sis procedures cannot be completely ruled out. However, a small scale study ran-
domizing septic patients with acute renal failure to either high-flux HD or online 
HDF demonstrated higher reduction ratios of several plasma cytokine levels, includ-
ing vascular endothelial growth factor, interleukin 6, 8, and 10 as well as TNF-α in 
HDF [96].

Compared to high-flux HD, online HDF also better removes the relatively large 
molecule FGF-23, achieving reduction ratios of 56 % versus 36 % [97]. This poten-
tially favorable effect is particularly pronounced when the treatment length is 
extended to 8 h [79].

 Removal of Protein-Bound Solutes

Protein-bound toxins are difficult to remove by extracorporeal renal replacement
therapies. The protein-bound fraction is retained and only the free, mostly low- 
molecular solute can pass the dialysis membrane without differences between low- 
and high-flux HD [98]. The high ratio of distribution volume to clearance further 
affects the elimination of these substances [99], allowing only inadequate removal 
with current dialysis strategies. Compared with diffusive measures, i.e., higher dial-
ysate flow rate and larger dialyzer surface area [100], the effect of convection on 
protein-bound solute removal is poor. Thus, increasing the ultrafiltration flow rate is 
little effective to improve the clearance [101]. Accordingly, clinical studies compar-
ing the efficacy of protein-bound solute removal during online HDF with HD have 
shown only marginal or no differences. Most of these studies focused on the removal 
of the small compounds p-cresol or its main in vivo metabolite pCS, others addi-
tionally measured the also highly protein-bound IS as surrogate markers for protein-
bound toxin removal.
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Fig. 14.1 Evolution of the inlet and outlet concentration of protein-bound compounds at different 
time points (0, 30, 60, 120 and 240 min). Post-dilution haemodiafiltration data are illustrated by
white bars, pre-dilution haemodiafiltration data by grey bars and pre-dilution haemofiltration by 
black bars. *Pre-dilution haemodiafiltration versus post-dilution haemodiafiltration, °pre-dilution
haemofiltration versus post-dilution haemodiafiltration, §pre-dilution haemofiltration versus pre- 
dilution haemodiafiltration; 1 symbol: P<0.017, 2 symbols: P<0.001 (Reprinted from Meert et al.
[103]. With permission from Oxford University Press)
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Compared with high-flux HD, an enhanced removal of p-cresol particularly in 
postdilution HDF was reported by Bammens and colleagues. In predilution HDF at
high convective volumes, this beneficial effect was offset, probably because of 
impaired diffusion due to dilution of the blood entering the dialyzer [102]. Another 
study comparing postdilution HDF with predilution HDF at equivalent convective 
volume (i.e., 1:2), was unable to find a difference between the two treatment modes
[103]. They determined reduction ratios of the protein-bound solutes pCS, IS, and
IAA not exceeding 50 %, while HA was much more decreased by about 74 %,
which must be attributed to lower protein-binding (Fig. 14.1). A more recent trial 
did also not confirm differences in protein-bound toxin removal between high-flux 
HD and postdilution HDF, demonstrating rather high reduction ratios of free and 
total pCS and IS hardly passing 50 % [73].

AGEs differ from the above mentioned small protein-bound toxins because of 
their heterogeneous molecular weight, covering a wide range. Accordingly, convec-
tive strategies seem to have a favourable effect on AGE removal, which is illustrated 
by 50 % and 300 % higher reduction ratios in online HDF (61.5 %) compared to
high-flux HD (40.4 %) and low-flux HD (20.5 %), respectively [104].

The reduction ratios of various compounds are summarized in Table 14.1.

 Influence of Modified Online HDF on Uremic Toxin Removal

Besides widely practiced predilution and postdilution HDF techniques, several
modifications of HDF exist, which have shown to even further improve middle mol-
ecule removal, to achieve excellent middle molecule removal at reduced albumin 
loss or to allow safer operation conditions.

Mid-dilution HDF using a specific single cartridge dialyzer allows removal of 
middle molecules even exceeding that of postdilution HDF [105]. In the standard 
configuration, excessive blood inlet pressures were frequently observed, which led 
to the wide use in reverse mode without significant impairment of the treatment 
efficacy [106]. With regard to protein-bound toxin removal, mid-dilution HDF has 
no further advantage compared to postdilution HDF [107].

Online mixed-dilution HDF has shown to better preserve the dialyzer integrity 
than postdilution HDF by avoiding excessive hemoconcentration and dangerous 
pressure gradients [108]. At optimized flow rates controlled via TMP-
ultrafiltration feedback, the clearance of β2M is improved, while the loss of albu-
min is reduced [109].

Other existing modifications of HDF do not qualify as online techniques because 
the substitution fluid is not infused in a controlled manner after ultrapure filtration. 
These techniques use the backfiltration of dialysate through the dialysis membrane 
as replacement fluid after excess forward-filtration of plasma water, thereby skip-
ping redundancy as a safety feature in the ultrapure filtration process. Nevertheless, 
both push/pull HDF and double high-flux HDF achieve remarkably high middle 
molecule removal [110, 111].
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 Technical Limitations of Uremic Toxin Removal 
with Online HDF

The solute removal in convective dialysis techniques is linearly proportional to the 
substitution flow rate. Or in other words, best toxin removal is achieved at the high-
est feasible substitution flow rate. For predilution HDF, this increase is less steep 
and, hence, with respect to the substitution volume applied, less effective compared 
to postdilution HDF because of dilution of the blood and, thus, the solute concentra-
tions entering the dialyzer. For equivalent clearance, the ultrafiltration rate needs to 
be at least two times greater for pre-dilution HDF compared with post-dilution 
[112]. In postdilution HDF, a critically high filtration fraction as a function of the 
convective flow rate (i.e., the sum of the substitution flow rate and the ultrafiltration 
flow rate set to achieve the patient’s dry weight) exists. This filtration fraction puts
the dialysis membrane at risk for clogging and may lead to an uncontrolled break-
through of albumin, which passes the dialysis membrane in a controlled manner at 
lower flow rates [113, 114].

Despite being an essential protein associated with malnutrition, the maximum 
leakage of albumin during dialysis procedures is currently not defined [115]. In 
Japan, a limit of 4 g per session is recommended. This issue highlights the impor-
tance of choosing an appropriate dialyzer for HDF, which should represent a trade- 
off between maximum permeability for middle molecules and low leakage for 
albumin [115].
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