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    Chapter 12   
 Effects of Haemodiafi ltration 
of Anemia Control                     

       Lucia     Del     Vecchio     ,     Neelke     C.     van der     Weerd     , and     Francesco     Locatelli     

    Abstract     Anaemia secondary to chronic kidney disease is a complex syndrome. 
Adequate dialysis can contribute to its correction by removing small, and possi-
bly medium/large toxins that inhibit erythropoiesis. Accordingly, a positive rela-
tionship between anaemia improvement and dialysis dose has already been 
observed in the 1980s. Dialysate contamination and low-compatible treatments 
may also increase cytokine production and consequently inhibit erythropoiesis. 
Convective treatments and, particularly, on-line haemodiafi ltration, could theo-
retically improve anaemia correction by two mechanisms: higher removal of 
medium and large solutes (possibly containing bone marrow inhibitors) and 
reduced microbiological and pyrogenic contamination of the dialysate. 
Unfortunately, available results are confl icting, mainly because of differences in 
treatment modalities or membranes, and lack of control groups. Patient selection 
and higher achieved dialysis dose with online hemodiafi ltration may also have 
complicated interpretation. Increasing treatment time (nocturnal dialysis) and/or 
frequency (daily dialysis) may diminish rebound from the extravascular space of 
middle- large molecules and thus possibly improve anaemia. Again, available 
studies are confl icting.  
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     Introduction 

 Anaemia is a common complication of chronic kidney disease (CKD), affecting the 
majority of patients on dialysis. Traditionally, renal anaemia is treated by the admin-
istration of erythropoiesis stimulating agents (ESA), iron administration and blood 
transfusions in selected cases. Despite the fact that these strategies are available for 
decades, there are still many “grey areas”, such as the optimal haemoglobin (Hb) 
target concentration and concerns about the general safety of ESA and iron supple-
mentation. In particular, clinical trials investigating the role of complete anaemia 
correction with ESA have shown an increased risk of thromboembolic events (in 
particular stroke) and cancer-related death in the higher Hb target groups [ 1 ]. 
Currently, however, it is still unclear whether patient characteristics, such as co- 
morbidities and infl ammatory status, or treatment-related factors, including high 
ESA doses, expose patients to a higher risk of adverse events [ 2 ]. ESA hypo- 
responsiveness appears important, since for every range of achieved Hb levels, a 
higher ESA dose [erythropoiesis resistance index (ERI)] was associated with an 
unfavourable outcome [ 3 ,  4 ]. Moreover, irrespective of the achieved Hb concentra-
tion, those treated with the highest ESA doses had a signifi cantly higher relative risk 
for the primary end point [ 5 ], indicating that the ESA dose and not the achieved Hb 
was the principal determinant of clinical outcome. However, ESA dose may be a 
marker of a higher comorbidity burden as well. Overall, any effort to reduce ESA 
requirements for a given Hb target could be of potential benefi t.  

    Why Do Patients with Chronic Kidney Disease Develop 
Anaemia? 

 In CKD patients, the main factor causing anaemia is a reduced renal production of 
erythropoietin (EPO) by the failing kidneys, together with a resistance of the bone 
marrow cells to this hormone. The balance between the two conditions determines 
the severity of anaemia in the individual patient. Accordingly, some CKD patients 
may have near-to normal erythropoietin levels, which, however, are inadequate for 
the severity of anaemia. The presence of relative high endogenous EPO levels 
despite persisting anaemia is a marker of poor outcome [ 6 ], underlying the relative 
importance of factors that depress erythropoiesis. 

 The reduced erythropoiesis of CKD patients has several causes, including iron 
defi ciency, chronic infl ammation and oxidative stress. Causes of anaemia in CKD 
patients are summarised in Table  12.1 .

   Research from the 1960s already showed that toxic substances inhibiting eryth-
ropoiesis could be found in the serum of nephrectomised rabbits [ 7 ]. A number of 
metabolites or substances are potential uremic toxins, including various poly-
amines, such as spermine, spermidine, putrescine [ 8 ], cadaverine. High levels of 
parathyroid hormone can also worsen anaemia, although it may not specifi cally 
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suppress  erythropoiesis, but rather cause a fi brotic transformation of the bone 
marrow [ 9 ]. Polymeric polyamine-protein conjugates are more selective and accu-
mulate during dialysis, suggesting a possible causative role of dialysis treatment 
per se [ 10 ]. 

 Infl ammatory cytokines can also inhibit erythropoiesis. Although available data 
are not unequivocal, interleukin-6 (IL-6) has been found to antagonize the effect of 
EPO on bone marrow proliferation [ 11 ]. Actually, IL-6 levels were directly related 
to the ESA dose [ 12 ] and signifi cantly higher in patients treated with less compat-
ible membranes [ 13 ]. Together with C-reactive protein (CRP), IL-6 appeared to be 
a strong and independent predictor of ERI in HD patients [ 14 ]. An inverse correla-
tion between IL-6 and anaemia was observed also in CKD patients not yet on dialy-
sis [ 15 ]. Other pro-infl ammatory cytokines, including Interleukin-1 (IL-1), tumor 
necrosis factor-α (TNF-α) and interferon-ϒ (IFN-ϒ) have been related as well to 
EPO resistance [ 16 ,  17 ]. The latter substances, however, act by different mecha-
nisms, such as inducing a shortened red blood cell survival, abnormal mobilization 
of reticulo endothelial iron stores, blunted EPO response and impaired erythroid 
colony formation in response to EPO. 

 Uremic toxins originating from the gut may also negatively infl uence EPO syn-
thesis. Quinolinic acid, which is the product of tryptophan oxidation by intestinal 
bacteria, can both suppress erythroid colony formation [ 18 ] and inhibit EPO pro-
duction [ 19 ]. Indoxylsulfate, which accumulates early in CKD and exerts detrimen-
tal effects on the cardiovascular system, increases oxygen consumption in tubules 
and aggravates hypoxia in the kidney. Several data showed that indoxylsulfate sup-
presses EPO expression, which is partially mediated by a reduced induction of 
hypoxia-inducible factor (HIF)-1 target genes in the presence of hypoxia [ 20 ]. 

 A concomitant shortened red blood cell survival may also play a role. 
Infl ammation, increased oxidative stress and uremic toxins induce premature 
changes in the erythrocyte membrane and cytoskeleton, leading to exposition of 
phosphatidylserine at the cell surface and accelerated phagocytosis by macrophages. 
This phenomenon, called programmed cell death or eryptosis, is enhanced in 
CKD. Other uremic toxins, such as vanadate [ 21 ], acrolein [ 22 ], methylglyoxal 
[ 22 ], and indoxylsulphate [ 23 ] have been shown to trigger eryptosis as well.  

  Table 12.1    Factors 
contributing to anaemia in 
patients with chronic kidney 
disease  

 Low erythropoietin production (relative) 
 Absolute or functional iron defi ciency 
 Vitamin B12/folate defi ency 
 Shorter erythrocyte survival 
 Severe secondary hyperparathyroidism 
 Infections/chronic infl ammation 
 Bleeding 
 Inadequate dialysis 
 Malnutrition 
 Frequent blood sampling 
 Blood loss during dialysis 
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    Anaemia and Dialysis Dose 

 In 1980 it was already found that anaemia improved after the start of HD [ 24 ], 
which was then attributed to the removal of small molecules, which may inhibit 
erythropoiesis. If so, a higher dialysis dose, as indicated by Kt/V urea , would improve 
anaemia. In the 1990s, Ifudu et al. [ 25 ] found a direct relationship between haema-
tocrit and dialysis dose, which, however, could have been infl uenced by the con-
comitant shift from modifi ed cellulose to high permeable and more biocompatible 
membranes in the patients previously receiving inadequate dialysis [ 26 ]. Later, in 
large cohort studies, a clear relationship between the degree of anaemia and dialysis 
dose was found [ 26 ,  27 ], although it was not completely clear whether anaemia 
control improved by the application of a different dialysis modality and/or by an 
improved dialysis dose. More recently, Movilli et al. [ 28 ] found an inverse relation-
ship between ESA dose and Kt/V urea  in 68 patients on conventional HD, independent 
of membrane permeability and biocompatibility. In a larger cohort, this correlation 
was signifi cant only in patients with Kt/V urea  below 1.33 [ 29 ]. Gaweda et al. [ 30 ] 
confi rmed the observation that the relationship between dialysis dose and anaemia 
is not linear and vanishes when “adequate dialysis” (i.e. Kt/V urea  >1.4) is obtained.  

    Convective Treatments 

 Convective treatments combine large pore membranes with a high trans-membrane 
fl ux. Thanks to these properties, theoretically, middle molecular weight (MMW) 
inhibitors of erythropoiesis are more easily removed. However, due to obligate back 
fi ltration in high-fl ux HD the amount of convective transport is unpredictable, 
immeasurable and fl uctuates per treatment. Nevertheless, anaemia improvement 
had been observed after switching from standard HD to HD with high permeable 
and biocompatible membranes in several small and uncontrolled studies from the 
1990s [ 31 – 34 ], and more recently in a small randomised study as well [ 35 ]. The 
Italian Cooperative Dialysis Study compared biocompatible and traditional dialyz-
ers as well as convective and diffuse treatment modalities in 380 patients [ 36 ]. A 
secondary analysis showed a signifi cant increase in haematocrit levels in patients on 
high-fl ux polysulphone (PS) HD and high-fl ux PS haemodiafi ltration (HDF) com-
pared to those on low-fl ux treatments (cuprophane HD, low-fl ux PS HD), but did 
not fi nd any difference when all four groups were analysed separately. Hence, it is 
highly doubtful whether an increase in convective transport in the HDF group has 
infl uenced these fi ndings [ 37 ]. Finally, one large, observational, cohort study from 
the Japanese phase II DOPPS [ 38 ], as well as two randomised, controlled trials [ 39 , 
 40 ] failed to demonstrate an effect of high-fl ux HD on anaemia. Unfortunately, 
neither the Hemo-dialysis (HEMO) Study [ 41 ] nor the Membrane Permeability 
Outcome Study (MPO) study [ 42 ], which are the largest randomized clinical trials 
(RCT) that examined the effect of membrane fl ux and dialysis dose on clinical 
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outcomes, published data on anaemia control (although unpublished data of the 
MPO study do not suggest that high-fl ux was superior to low-fl ux in this respect).  

    Online Haemodiafi ltration 

 Online HDF is probably the most effi cient technique of removing solutes up to 
50 kD. Since the dialysis fl uid in this modality is obligatory ultrapure (bacterial 
contamination <0.1 CFU/ml, LAL <0.025 IU/ml), both high convection coupled 
with purity may constitute the rationale for an improvement of anaemia. 
Unfortunately, studies investigating the effects of HDF on anaemia and iron param-
eters, as well as on ESA dosing and iron supplementation differ considerably in 
design, patient numbers, control group and endpoints (Table  12.2 ). In most publica-
tions, anaemia management was a secondary endpoint, without providing informa-
tion on iron parameters and iron supplementation. Lin et al. [ 43 ] switched 92 
patients from conventional HD to on-line HDF and found a signifi cant decrease of 
the median ESA/haematocrit ratio (from 504.6 ± 310.1 to 307.6 ± 334.4), which 
might, however, be also the result of a marked increase in Kt/V in this group. 
Bonforte et al. [ 44 ] studied 32 patients treated by on-line HDF for at least 9 months 
in whom the dialysis dose was kept constant. Despite the small sample size and the 
lack of a control group, a signifi cant increase in Hb levels was found in patients 
without ESA therapy and stable Hb values and lower ESA doses in those patients 
who already received ESA therapy. Vaslaki et al. [ 45 ] performed a randomised, 
cross-over study in 70 patients receiving either HDF or conventional HD for 
6 months. Overall, a higher haematocrit at a lower ESA dose was found during the 
HDF period, although these data were less distinct when considering separately the 
two groups undergoing HDF. Finally, two small, RCTs [ 46 ,  47 ] failed to demon-
strate an effect of HDF on anaemia control, which may be due to an inadequate 
statistical power (a relative small sample size to test the difference between two 
effi cient dialysis techniques).

   To overcome the issue of small sample size, in 2013 a meta-analysis of 65 studies 
was performed (12,182 patients, only studies published before December 2012 
included) comparing convective therapies (including high-fl ux HD, hemofi ltration 
[HF] and HDF) with low-fl ux HD, which did not show an improved anaemia control 
nor a decreased ESA dose or improved iron parameters in patients treated with con-
vective therapies [ 48 ]. After publication of this meta-analysis, several larger ran-
domised studies have been published on this topic. 

 In 2012 a pre-specifi ed secondary analysis of a multicentre, open-label, RCT of 
146 CKD patients, who were randomized to standard HD (70 patients) or convective 
treatments (online pre-dilution hemofi ltration [n = 36] and online pre-dilution HDF 
[n = 40]) was published by Locatelli et al. [ 49 ]. In comparison with low-fl ux HD, 
neither HF nor HDF signifi cantly improved Hb levels or ESA requirements. The 
randomised CONvective TRAnsport STudy (CONTRAST) [ 50 ] compared low-fl ux 
HD with online HDF on survival in 714 participants. The effect of online HDF on 
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ESA resistance and iron parameters was a pre-specifi ed secondary endpoint of this 
RCT [ 51 ]. After 12 months, ERI was not different between patients treated with 
HDF or HD. Even in the highest third of convection volume (>22 L), which was 
associated with a benefi cial effect of HDF on mortality, there was no effect on ESA 
resistance. In these individuals only a trend towards a lower transferrin saturation 
ratio and lower ferritin levels was found, despite slightly more iron supplementa-
tion. The Turkish Online Haemodiafi ltration Study [ 52 ] randomised 782 HD patients 
to either post-dilution online HDF (mean convection volume 19.6 L/session) or 
high-fl ux HD. Despite a similar clinical outcome in the two groups, the mean ESA 
dosage was signifi cantly lower in the HDF group than in the HD patients (2282 ± 2121 
versus 2852 ± 2702 U/week, respectively, P = 0.001). The On-Line Hemodiafi ltration 
Survival Study (ESHOL) was a large, multicenter, open- label, RCT in which 906 
chronic HD patients were randomised to continue standard HD (n = 450) or to switch 
to high-effi ciency post-dilution online HDF (n = 456) [ 53 ]. Despite a signifi cant 
reduction in all-cause and cardiovascular mortality, which were the primary end-
points, Hb levels and ESA dose did not differ between groups. Finally, it should be 
mentioned that increased ESA requirements in patients treated with HDF were 
reported as well in some studies [ 54 ,  61 ]. Apart from an inadequate study design, 
repeated blood loss due to recurring clotting in the extracorporeal circuit as a result 
of increased pro-coagulatory activity during HDF and increased post fi lter Ht levels 
in post-dilution HDF may play a role in this respect (see also Chap.   15    ). 

 Stimulated by the favourable results of ESHOL on clinical outcome, the REDERT 
study was designed to test the effect of high-volume (>20 L/session) HDF on ERI 
and hepcidin levels. In this two-arm, multicentre, crossover study, 40 stable HD 
patients were randomised to either online HDF or standard low-fl ux HD [ 55 ]. 
Interestingly, ERI was signifi cantly reduced during the HDF period, while it 
increased during standard HD. Actually, Hb levels remained stable, while the total 
amount of ESAs administered during HD was considerably higher (HD 
192,444 ± 131,341 versus HDF 135,955 ± 96,070 UI/6 months, respectively; p 
< 0.001). Hepcidin levels were also lower in HDF compared to standard HD. 

 Several factors could well explain the different results of the various trials. First, 
patient selection might play an important role, as stable patients without co- 
morbidity or intercurrent illness, such as infections, may profi t less from the benefi -
cial effects of HDF on clinical outcome. Second, anaemia management is target 
driven and treating physicians may not necessarily adhere to the same guidelines 
because of cultural, geographical or economical reasons. Indeed, in multivariate 
analysis Locatelli et al. [ 49 ] found that the participating centre was the most signifi -
cant predictor of Hb levels and ESA resistance, suggesting a large degree of hetero-
geneity among individual centres in treating anaemia. Third, the improved anaemia 
control in patients treated with HDF may not be caused by the effect of convective 
transport, but by the use of ultra pure dialysate. Many studies have shown that the 
use of ultrapure dialysis fl uid results in increased Hb levels and diminished ESA 
requirements [ 56 – 58 ]. In this respect it should be mentioned that occasionally a 
benefi cial effect of HDF on anaemia control was found when ultrapure dialysis fl uid 
was not used in the control group (or at least dialysis fl uid of inferior quality com-
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pared to the fl uid used for HDF) [ 52 ,  53 ,  56 ,  59 ]. Another factor that may contribute 
to the confl icting fi ndings of HDF on anaemia control is the magnitude of the con-
vection volume, which, as aforementioned, has been related to survival [ 60 ]. At 
present it is unclear whether there is also a dose-response effect on anaemia control. 
Finally, HDF may increase the clearance of erythropoiesis inhibiting toxins, 
although the concomitant removal of essential substances needed for erythropoiesis 
may occur as well. Examples of the fi rst category are infl ammatory toxins and hep-
cidin. Two studies showed a decrease in hepcidin levels in patients treated with 
HDF [ 55 ,  61 ], but only one of them showed improved ESA responsiveness [ 55 ]. In 
this respect, however, the treatment period of only 2 months may have been too 
short to obtain signifi cant and reliable fi ndings. Others showed an increased clear-
ance of hepcidin with HDF as well [ 62 ], but also a substantial rebound of hepcidin 
levels already 1 h after a conventional HD session [ 63 ]. Since hepcidin is highly 
protein bound, its removal may differ according to dialysis the modality or mem-
branes used [ 64 ]. Nevertheless, the reduced ferritin levels in patients treated with 
HDF in two studies may indicate an improved iron utilization, which may be medi-
ated by reduced hepcidin levels because of a decrease in infl ammation [ 44 ,  61 ]. No 
data are available on loss of substances, which are essential for erythropoiesis by 
HDF, except for vitamin C, which enhances iron availability [ 65 ].  

    Intensifi ed Extracorporeal Dialysis Strategies 

 The clearance of MMW toxins by dialysis techniques is limited by their high intra- 
corporeal mass transfer resistance [ 66 ]. As a result, optimal removal of these solutes 
by dialysis requires both enhanced convective clearance, such as with HDF, and 
increasing treatment time and/or frequency, which may diminish rebound from the 
extravascular space [ 67 ]. In this respect, increasing treatment frequency (short daily 
dialysis) or time (nocturnal dialysis or long dialysis), or both (daily nocturnal dialy-
sis), may be interesting treatment options to improve ESA response, given their 
capacity of better removing MMW toxins [ 68 ]. The experience of the Tassin Centre 
in France showed good anaemia control in patients treated with low-fl ux HD three 
times per week for 8 h [ 69 ]. This effect is most likely mediated by the removal of 
small molecules, but also to a certain extent of MMW toxins, thanks to the very long 
dialysis time. Unfortunately, in this study no control group was included. 

 In 2008 a systematic review of small studies on the effects of short daily HD on 
various clinical parameters was published [ 70 ]. In six studies, the ESA dose was 
reduced, whereas in two studies no difference with standard HD was observed. The 
Frequent Hemodialysis Network (FHN) performed a trial on 245 patients who were 
randomized to either short daily or conventional HD [ 71 ]. The ESA dose was not 
different between both treatment arms, as were Hb levels [ 72 ]. Similarly, studies on 
the effect of increasing both treatment frequency  and  time, as in nocturnal HD, have 
shown mixed results [ 73 ,  74 ]. In a retrospective Canadian study, 63 patients treated 
with nocturnal HD had a rise in Hb levels and a fall in ESA requirements, whereas 
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iron saturation was lower compared to conventional dialysis [ 75 ]. In the FHN 
Nocturnal Trial, 87 patients were randomized to receive either nocturnal HD (six 
times/week for more than 6 h) or conventional HD [ 76 ]. In this study, ESA dose was 
not different between groups, despite lower doses of IV iron in those treated with 
nocturnal HD [ 72 ]. Finally, in a cross-over study 26 patients were switched from 4 
to 5 h thrice-weekly HDF to 7–8 h nocturnal every-other-day HDF with the same 
(20–30 L) or higher (35–50 L) convective volume [ 77 ]. While nutritional status, 
phosphate and hypertension control improved and left ventricular mass (LVM) 
decreased over 12 months’ of follow-up, in the higher convective volume group 
neither Hb levels, nor ESA index or iron parameters changed. In this respect it 
should be noted that more frequent and/or longer exposure to blood tubes, dialyzers 
and dialysis fl uid, as well as repeated cannulations, may result in an enhanced 
infl ammatory state and increased blood loss [ 67 ,  68 ], although in the FHN trial 
patients on nocturnal dialysis needed less iron supplementation than those treated 
with conventional HD [ 72 ].  

    Conclusion 

 Improving anaemia control in dialysis patients by removing erythropoiesis inhibiting 
toxins or substances involved in ESA responsiveness seems a logical and desired 
treatment option, since treatment with high ESA doses, especially in patients with a 
marked ERI, may be associated with detrimental effects. Over the past decades, 
many toxins that inhibit erythropoiesis and decrease red blood cell lifespan have been 
identifi ed. Removal of these substances might have a benefi cial effect on anaemia 
control. Treatment with HDF not only enhances the clearance of small and MMW 
uremic toxins, but also induces less infl ammation than standard HD because of the 
ultrapure dialysis fl uid applied. Therefore, HDF may, at least theoretically, have a 
benefi cial effect on anaemia control and ESA resistance. However, results of clinical 
studies on this topic are confl icting and differ substantially with respect to the treat-
ment protocol (including dialyzers and use of ultrapure dialysis fl uid), control group 
and the treatment dose (i.e. applied convection volume). As for the effect of HDF on 
iron supplementation, data are even more limited. Considering alternative extracor-
poreal dialysis modalities, such as short daily HD or long/nocturnal HD, results of 
available studies are confl icting as well. Hence, when looking exclusively at anaemia 
control, no single treatment modality seems to be really preferable over the other. 

 Teaching Points 
•     Renal anemia is multifactorial and results from a decreased EPO produc-

tion and responsiness, a shortened red blood cell survival (eryptosis) and/
or shortage of essential nutritients  

•   ESA hypo-responsiness plays an important role in the risk of adverse 
effects  
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