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Abstract The force/moment capability of cable driven parallel mechanisms is
characterized by force/moment polytopes resulting from a linear transformation
between the space of cable tension and the space of the force/moment of the
moving platform. Conventional method developed in computational geometry has
been used to identify the vertices and faces of the polytopes. In this paper, we
explored the relationship between the polytopes and the structure of a cable driven
parallel mechanism and proposed a new method to identify the vertices and the
faces of the polytopes. We analyzed the characteristics of the hyper cuboid defined
by the minimum and maximum cable tensions and took into account inherent
relationships between all vertices and faces of the polytopes. By utilizing the
inherent relationships, we were able to show the relationships between the
force/moment polytopes and the cable directions. These relationships are potentially
useful for the design of cable driven parallel mechanisms. As an example, the
polytopes of a 9-cable driven 6-DOF parallel mechanism are presented.
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1 Introduction

The force/moment capability of a parallel mechanism is defined as the maximum
force/moment that can be generated at its moving platform. Such capability varies
significantly with the pose of the moving platform and the direction it moves.
Kokkinis and Paden [1] first proposed the concept of force polytope to analyze the
force capability of manipulators. The boundary of the polytope defined the maxi-
mum force that a manipulator can apply. As the force/moment polytope charac-
terizes the force/moment capability, researchers proposed different methods to
generate the polytope for analyzing the force/moment capability. There were two
classes of methods for generating the polytope. One is based on calculating the
maximum force/moment in any given directions. The other is based on linear
transformation.

Nokleby et al. [2] proposed an optimization-based method to find the maximum
force in a given direction using scaling factors. The force polytope was generated
by the maximum force in any given directions. Zibil et al. [3] pointed out that the
optimization-based method was not efficient in the case that the mechanisms have
more cables than the minimum. They presented an explicit method to improve
efficiency and accuracy. Garg et al. [4] extended both the optimization-based and
the explicit methods to 6-DOF mechanisms. For both the methods, the accuracy and
efficiency depend on the resolution of direction discretization.

In the linear transformation based methods, the force/moment polytope can be
considered as the projection of a linear transformation from cable tension space to
wrench space. A hyper cuboid defines the boundary of the cable tension space.
When the dimension of the force/moment polytope is equal to the dimension of the
hyper cuboid, the projections of the vertices, edges and faces of the hyper cuboid by
linear transformation are also the vertices, edges and faces of the force/moment
polytope [5]. However, when the dimension of the force/moment polytope is
smaller than that of the hyper cuboid, there is no such simple relation. Some
vertices of the hyper cuboid are projected into the force/moment polytope, no
longer the vertices, as are some edges and faces of the hyper cuboid. Hwang et al.
[6] proposed a recursive dimension-growing method to eliminate the vertices inside
the polytope. Firmani et al. [7, 8] analyzed which actuator torques should be set to
their limits in order to define a vertex, edge and face of the polytope. They used
conventional method developed in computational geometry to identify the vertices
and faces of the polytope. Carretero et al. [9] extended Firmani’s method to
computing the vertices of a 6-DOF wrench polytope. Bouchard et al. [10] used the
quick hull method [12] to get the V-presentation of the polytope, and proposed a
hyper plane shifting method to get the H-presentation of the polytope which can be
used to verify if an available wrench set includes the task wrench set required for a
given task. The advantage of using the algorithms well developed in computational
geometry is that one can generate the polytope in a very accurate and efficient way.
These algorithms take a set of points as an input to generate a polytope. Physical
relationships between the points are not considered.
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In this paper we intend to explore the relationship between the polytope and the
structure of cable driven parallel mechanisms. To this end, we proposed a new
method to identify vertices and faces of the force/moment polytope. The method
first calculates all possible vertices of the polytope, and then identifies vertices and
faces step by step utilizing the inherent relationships between all possible vertices.
The method reveals the relationship between the polytope and the structure of cable
driven parallel mechanisms.

The remainder of the paper is organized as follows: Sect. 2 define sun-prescribed
force/moment polytope. Section 3 proposes a new method to identify the vertices,
edges and faces of the un-prescribed force/moment polytope by using the inherent
relationships between all possible vertices. Relationships between the un-prescribed
force/moment polytope and cable direction are revealed in Sect. 4. Conclusions are
made in Sect. 5.

2 Definition of Un-Prescribed Force/Moment Polytope

Figure 1 shows a general cable driven parallel mechanism [11]. Define w ¼
½f T ;mT �T as the wrench consisting of the external force f 2 <3 and moment m 2
<3 applied on the moving platform. Let t ¼ t1; t2; . . .; tm½ � denoting the cable ten-
sion vector, where m is the number of cables. The static equilibrium equation is

At ¼ w
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Fig. 1 A cable driven parallel
mechanism
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where

A1 ¼ u1; u2; . . .um½ � 2 <3�m

A2 ¼ r1 � u1; r2 � u2; . . .rm � um½ � 2 <3�m

ui ¼ PiBi
��!.

PiBij j; ri ¼ PPi
�!

The pose of the moving platform with respect to the fixed coordinate system O is
described as X ¼ x; y; z; a; b; c½ �T , where x; y; z are the coordinates of the point P,
and a; b; c are the ZYX Euler angles.

The tension vector t satisfies the following nonnegative constraint due to the fact
that cables can only pull and not push:

0� t� t� t ð2Þ

where t and �t are vectors whose components are the minimum and maximum
tensions in each cable, i.e. 0� ti � ti � ti ði ¼ 1; 2; . . .;mÞ. ti is determined by the
torque limit of the corresponding actuator. In practice, a minimum tension larger
than zero is often required to ensure the stiffness of the mechanism. Therefore, the
bounded region of cable tension vector is a hyper cuboid defined as

CT ¼ t t ¼ t1; t2; . . .; tm½ �T2 <m:s:t: ti; ti;�ti½ �; i ¼ 1; 2. . .m
��� � ð3Þ

Define

Xf ¼ f f ¼ A1t; f 2 <3; s:t: t 2 CT
��� �

Xm ¼ m m ¼ A2t;m 2 <3; s:t: t 2 CT
��� �

(
ð4Þ

Xf and Xm are noted as un-prescribed force and moment polytopes respectively.
They are all convex and bounded due to the property of linear transformation and
the convex bounded hyper cuboid CT.

3 Determination of Un-Prescribed Force/Moment
Polytope

In this section we discuss how to generate the un-prescribed force polytope Xf .
The same method applies to the un-prescribed moment polytope Xm.

The hyper cuboid CT has 2m vertices which are noted as Tj, j = 1, 2, …, 2m.
The corresponding cable tension vector tj of each vertex Tj is defined as
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tj ¼ tj1; tj2; . . .; tjm
� �T

; tjk ¼ ð1� ejkÞti þ ejk�ti; k ¼ 1; 2; . . .;m ð5Þ

where ejk ¼ 0 or 1 and j ¼ 0bejmejðm�1Þ. . .ej1 in binary code. The projection of
vertex Tj by linear transformation A1 defined by matrix A1 is Wj.

Wj ¼ A1ðTjÞ ð6Þ

The convex hull that fully contains all these points Wj, j = 1, 2, …, 2m is the
un-prescribed force polytope Xf . The points Wj, j = 1, 2, …, 2m are noted as
characteristic points of Xf . Quick hull algorithm [12] can be used to identify the
vertices and faces of the polytope that fully contains all the characteristic points.
This method takes all characteristic points as a set of points without considering the
relationship between them. In the following, we analyze the inherent relationships
between all the characteristic points to identify the vertices and faces, and reveal the
relationships between the polytope and the mechanism structure.

Because the dimension of Xf is smaller than that of CT, some vertices of CT
would be projected inside Xf . Consequently, some characteristic points of Xf are
not the vertices. There are four possibilities that a characteristic point locates on the
polytope: (1) it is a vertex; (2) it is on an edge; (3) it is in a face; (4) it is inside the
polytope. But for any vertice Vj of Xf , there must be a corresponding vertice Tj of
CT satisfying A1ðTjÞ ¼ Vj. Similarly, the projection of a 1-dimensional edge of
hyper cuboid CT may not be the edge of Xf , it may be on an edge, on a face or
inside the polytope. However, for any edge LXf of polytope Xf , there must be one
corresponding 1-dimensional edge LCT of CT satisfying

A1ðLCTÞ ¼ LXf orA1ðLCTÞ � LXf ð7Þ

In Eq. (7), A1ðLCTÞ � LXf means the projections of some 1-dimensional edges
of CT are collinear and overlap somehow in special cases. This leads to more than
two characteristic points being on one edge ofXf . And also, for any face SXf ofXf ,
there must be one corresponding 2-dimensional face SCT of CT that satisfy

A1ðSCTÞ ¼ SXf orA1ðSCTÞ � SXf ð8Þ

In Eq. (8), A1ðSCTÞ � SXf means projections of some 2-dimensional faces of CT
are coplanar and overlap somehow. This causes some characteristic points being in
the faces of Xf and those coplanar projections form one face of Xf .

For any vertex of the hyper cuboid CT, cable tensions are at the maximum or
minimum. For any edge ThTl of CT, only one cable tension varies between the
minimum and the maximum. Therefore, only one component of the corresponding
cable tension vectors th, tl of these two endpoints Th, Tl is different (e.g. only the ith
cable tensions are different and other cable tensions are the same). The endpoints Th
and Tl of an edge of the hyper cuboid CT satisfies
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XOR ðh; lÞ ¼ 2i; i 2 0;m� 1½ � ð9Þ

where XOR denotes the bitwise exclusive OR operation. Each vertex of CT is
directly connected with other m vertices to form the m edges of CT. Therefore, each
characteristic point of Xf can be connected with other m characteristic points to
generate possible edges of Xf , which is the projection from an edge of CT. So any
two characteristic points Wh and Wl satisfying Eq. (9) can generate a possible edge.
For any characteristic point Wr, the m characteristic points satisfying Eq. (9) are
noted as its directly connectable characteristic points.

Each vertex of the polytope is a characteristic point and each edge of the
polytope is the projection of an edge of CT . So, each vertex can only be connected
with some of its m directly connectable characteristic points to generate the edges of
Xf and it cannot form an edge with any other characteristic points. Therefore, for
any vertex of Xf , it should be unenclosed by its m directly connectable charac-
teristic points due to the convexity of the polytope. Therefore, it is feasible to
determine whether a characteristic point Wr is inside Xf by checking if it is
enclosed by its m directly connectable characteristic points. Conversely, if it is
unenclosed, it is a vertex of Xf . The term “enclosed” here means that there is no
plane, which passes through the characteristic point Wr and divides the
3-dimensional space into two subspaces that would make the all m directly con-
nectable characteristic points be in one subspace or on that plane. In other words,
for any plane passing through the characteristic point Wr, there is at least one
directly connectable characteristic point in any subspace. The term “unenclosed”
means there is a plane passing through Wr that would make its m directly con-
nectable characteristic points be in one subspace or on that plane, in other words,
there is no directly connectable characteristic point in one of the two subspaces at
least. Assuming the m directly connectable characteristic points ofWr are pointsWr

1,
Wr

2,…, Wr
m, then the algorithm to determine whether a characteristic point Wr is

enclosed by its m directly connectable characteristic points is:

if 9a; b; c; d
s:t: a2 þ b2 þ c2 ¼ 1

aWrx þ bWry þ cWrz þ d ¼ 0

aWh
rx þ bWh

ry þ cWh
rz þ d� 0; h ¼ 1; 2; . . .;m

) Wr is not enclosed and it is a vertex ofXf

ð10Þ

So the plane with equation axþ byþ czþ d ¼ 0 is the corresponding dividing
plane, and its directly connectable characteristic points are located in one subspace
of this plane. An enumeration method can be used to solve this problem. Randomly
picking up 2 directly connectable characteristic points of Wr to generate a plane
with Wr, and check whether this plane satisfy Eq. (10). If so, Wr is a vertex; if not,
then pick up other 2 directly connectable characteristic points and check again. For
each characteristic point, if it is enclosed by its m directly connectable characteristic
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points, it is inside Xf ; otherwise, it is a vertex of polytope Xf . Figure 2a shows that
a characteristic point is enclosed by its m directly connectable characteristic points.
Figure 2b shows that a characteristic point is unenclosed by its m directly con-
nectable characteristic points. The black dot is the judged characteristic point, the
black circles are the m directly connectable characteristic points, and the lines are
possible edges.

The next step is to identify the edges and facets of Xf . If and only if the two
endpoints of a line are vertices of Xf , this line is an edge of Xf . Based on Eq. (9)
and all determined true vertices of Xf , all edges of Xf are easily determined.

Assume the four vertices of a facet SCT of CT are TV1, TV2, TV3, TV4, and the
projections of these four vertices by linear transformation A1 are WV1, WV2, WV3,
WV4. Obviously, if those four characteristic points are not in one line, they are
coplanar because they are projected from the vertices of a facet and form a paral-
lelogram. If WV1, WV2, WV3, WV4 are all vertices of Xf , then this parallelogram can
be a face or part of a face of Xf . We call such parallelograms characteristic par-
allelograms of Xf . Based on Eq. (9), the index V1, V2, V3, V4 of these four
characteristic points should satisfy

V4 ¼ V2þ V3� V1 ð11Þ

If WV1WV2, WV1WV3 are the edge of this parallelograms.
In summary, there are four steps to generate the un-prescribed force polytope:

1. Calculate all characteristic points Wj,j = 1, 2, …, 2m by Eq. (6)
2. Generate all possible edges by Eq. (9)
3. Identify whether each characteristic point is a vertex by Eq. (10)
4. Generate the faces of the un-prescribed force polytope by Eq. (11)

The method to determine the un-prescribed moment polytope Xm is similar to
the above. The only difference is that the linear transformation is A2 defined by
matrix A2.

(a) (b)

Fig. 2 Relationship between a characteristic point and its m directly connectable characteristic
points. a Enclosed characteristic point. b Unenclosed characteristic point

Structural Characteristics … 381



4 Relationship Between Un-prescribed Force/Moment
Polytope and Cable Directions

In terms of the Eq. (9), assume WV1, WV2 are the endpoints of an edge of Xf , where
V1 ¼ 0bem. . .ei. . .ej. . .e1,V2 ¼ 0bem. . .ei. . .ej. . .e1, and ei is the complement of ei,
then

WV2 ¼ WV1 þ uiDti;Dti ¼ 	 �ti � tið Þ ð12Þ

Therefore, edge WV1WV2 is parallel to the force unit vector ui, which represents the
direction of the ith cable. In general, each edge of the polytope is parallel to one of
the cable directions.

Generally, each face of Xf is a characteristic parallelogram. However, there are
two special cases: (1) The characteristic parallelogram degenerates to a line segment
to be part of an edge; (2) There is more than one characteristic parallelogram
coplanar to forma face of Xf together. These two special cases are shown in Fig. 3.
Figure 3a is the diagram of a 5-cable driven 3-DOF mechanism. Assume the
maximum and minimum tensions of each cable are the same. The cables connecting
points at the frame B2, B4, B5 are at the middle of the corresponding edges. When
the endpoint P is in the center of the baseframe, cables PB1, PB3, PB5 are coplanar
and cables PB2, PB4 are collinear. In this case, the line segments WV1WV2, WV1WV3

are collinear, and the corresponding characteristic parallelogram degenerates to a
line. Due to the same tension limits of all cables, the vertex WV1 overlaps with WV4.
Cables PB1, PB3, PB5 are coplanar resulting in the two dark black hexagons which
are composed of several coplanar characteristic parallelograms and four charac-
teristic points shown in black asterisks are located in the hexagons. Also, two
circles which are the characteristic points of force polytope locate inside of it.

P

B1 B3

b

h

Y

X

Z

O

B2

B4

B5

a

WV1 (WV4

WV2

WV3

)

(a) (b)

Fig. 3 The 5-cable driven mechanism and its force polytope at X ¼ 0; 0; 0½ �T . a Mechanism
diagram. b Force polytope
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In summary, characteristic points locate on the edges of the polytope when two
cables are parallel and the related characteristic parallelograms degenerate to line
segments; Characteristic points locate in the faces of the polytope when at least
three cables are coplanar, and the related characteristic parallelograms turn to be
coplanar to generate a polygon as one face of the polytope. If two cables are not
collinear, then no characteristic points locate on the edge and no characteristic
parallelograms degenerate to line segments. If three or more cables are not coplanar,
then no characteristic points are in the face, and all the faces are parallelograms.

5 Conclusions

This paper proposes a new algorithm to determine the un-prescribed force/moment
polytope for a general m-cable driven mechanism, which depends on the mecha-
nism structure, the pose of the moving platform and the limits of cables tensions.
The algorithm involves two steps: (1) To calculates all characteristic points, which
are the projections of vertices of the hyper cuboid. (2) To determine the vertices of
the polytope by checking whether each characteristic point is unenclosed by all its
m connectable characteristic points. The relationships between un-prescribed
force/moment polytope and the directions of driven cables are revealed. These
relationships are potentially useful for the design of cable driven parallel mecha-
nisms. The proposed method is applicable to general parallel mechanisms, both
redundant and non-redundant.

Future work will focus on analyzing the relationships between the prescribed
force/moment polytope and the structures of parallel mechanisms. In addition, how
to design cable driven mechanisms to optimize the output force/moment capability
in global workspace will be further studied.
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