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Abstract In this paper, space-time discontinuous Galerkin finite element method
for distributed optimal control problems governed by unsteady diffusion-
convection-reaction equation without control constraints is studied. Time
discretization is performed by discontinuous Galerkin method with piecewise
constant and linear polynomials, while symmetric interior penalty Galerkin with
upwinding is used for space discretization. We present some numerical results in
order to evaluate the performance of the method.

1 Introduction

Optimal control problems (OCPs) governed by diffusion-convection-reaction equa-
tions arise in environmental control problems, optimal control of fluid flow and
in many other applications. It is well known that the standard Galerkin finite
element discretization causes non-physical oscillating solutions when convection
dominates. Stable and accurate numerical solutions can be achieved by various
effective stabilization techniques such as the streamline upwind/Petrov Galerkin
(SUPG) finite element method [10], the local projection stabilization [4], the edge
stabilization [19] for steady state OCPs. Recently, discontinuous Galerkin (dG)
methods gain importance due to their better convergence behaviour, local mass
conservation, flexibility in approximating rough solutions on complicated meshes,
mesh adaptation and weak imposition of the boundary conditions in OCPs (see, e.g.,
[21, 22, 36, 37]).

In the recent years, much effort has been spent on parabolic OCPs (see, e.g.,
[2, 24]). However, there are few publications dealing with OCPs governed by
nonstationary diffusion-convection-reaction equation. In many publications, for
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space discretization, conforming finite elements are used. In [16, 17], a priori
error estimates are derived for the characteristic finite element method, whereas
for time discretization, backward Euler method is used. Crank-Nicolson time
discretization is applied to OCP of diffusion-convection equation in [5]. In the
study of Chrysafinos [7], a priori error estimates for unconstrained parabolic OCP,
where conforming finite elements are combined with dG time discretization, are
presented by decoupling the optimality system. In [17], error analysis concerning
the characteristic finite element solution of the OCP with control constraints is
discussed. The local dG approximation of the OCP which is discretized by backward
Euler in time is derived in [38] and a priori error estimates for semi-discrete OCP are
provided in [30]. We present a priori error analysis for SIPG discretization combined
with backward Euler method in [1].

In this paper, we solve the OCP governed by diffusion-convection-reaction equa-
tion without control constraints by applying symmetric interior penalty Galerkin
(SIPG) method in space and dG discretization in time [14]. We adapt the error
analysis [7] to space-time dG discretization. For this purpose, we divide the error
analysis into three parts as in [17] and use the error estimates for dG bilinear forms.

Discontinuous Galerkin discretization schemes have the pleasant property that
discretization and dualization interchange, i.e. discretization and optimization com-
mute. There are two different approaches for solving OCPs: optimize-then-discretize
(OD) and discretize-then-optimize (DO). In OD approach, first, the infinite dimen-
sional optimality system is derived containing the state and the adjoint equation
and the variational inequality. Then, the optimality system is discretized by using
a suitable discretization method in space and time. In DO approach, the infinite
dimensional OCP is discretized and then the finite-dimensional optimality system is
derived. OD and DO approaches do not commute in general for OCPs governed by
diffusion-convection-reaction equation [10]. However, commutativity is achieved in
the case of SIPG discretization for steady state problems [21, 36]. Recently, dG time
discretization has been applied to PDE constrained optimization problems, which
is solved by the indirect multiple shooting method [18]. The multiple shooting
method was formulated in function spaces and discretized afterwards, where dG
time discretization commutes for both approaches. The spatial mesh was adapted at
each constant time step using a dual weighted residual error estimate.

The rest of the paper is organized as follows. In Sect. 2, we define the model
problem and then derive the optimality system. In Sect. 3, dG discretization and
the semi-discrete optimality system follow. In Sect. 4, the fully discrete optimality
system, which is discretized by space-time dG method and �-scheme, are presented.
Under dG time discretization, we show that OD and DO approaches commute for
time-dependent problems, too. In Sect. 5, some auxiliary results accompanied with
a priori error estimates for the fully discrete optimality system follow. In Sect. 6,
numerical results are shown in order to evaluate the performance of the suggested
method. Additionally, we give some numerical results for �-method and compare
them with the dG time discretization. The paper ends with some conclusions.
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2 The Optimal Control Problem

We consider the following distributed optimal control problem governed by the
unsteady diffusion-convection-reaction equation

minimize
u2L2.0;TIL2.˝//

J.y; u/ WD 1

2

Z T

0

� ky � ydk2L2.˝/ C ˛ kuk2L2.˝/
�

dt;

subject to @ty � ��y C ˇ � ry C ry D f C u .x; t/ 2 ˝ � .0;T�; (1)

y.x; t/ D 0 .x; t/ 2 @˝ � Œ0;T�;
y.x; 0/ D y0.x/ x 2 ˝:

We adopt the standard notations for Sobolev spaces on computational domains
and their norms. Let˝ be a bounded convex polygonal domain in R

2 with Lipschitz
boundary @˝ . The inner product in L2.˝/ is denoted by .�; �/. The source function
and the desired state are denoted by f 2 L2.0;TI L2.˝// and yd 2 L2.0;TI L2.˝//,
respectively. The initial condition is also defined as y0.x/ 2 H1

0.˝/. The diffusion
and the reaction coefficients are � > 0 and r 2 L1.˝/, respectively. The velocity
field ˇ 2 .W1;1.˝//2 satisfies the incompressibility condition, i.e. r � ˇ D 0.
Furthermore, we assume the existence of the constant C0 such that r � C0 a.e. in˝
so that the well-posedness of the OCP (1) is guaranteed. The trial and the test spaces
are Y D V D H1

0.˝/; 8t 2 .0;T�.
It is well known that the functions .y; u/ 2 H1.0;TI L2.˝// \ L2.0;TI Y/ �

L2.0;TI L2.˝// solve (1) if and only if there is an adjoint p 2 H1.0;TI L2.˝// \
L2.0;TI Y/ such that .y; u; p/ is the unique solution of the following optimality
system [23, 32],

.@ty; v/C a.y; v/ D .f C u; v/; 8v 2 V; y.x; 0/ D y0;

�.@tp;  /C a. ; p/ D �.y � yd;  /; 8 2 V; p.x;T/ D 0; (2)Z T

0

.˛u � p;w � u/ dt D 0; 8w 2 L2.0;TI L2.˝//

with the bilinear form

a.y; v/ D
Z
˝

.�ry � rv C ˇ � ryv C ryv/ dx;

where .�; �/ is the inner product in L2.˝/.
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3 Discontinuous Galerkin Semidiscretization

Let fThgh be a family of shape regular meshes such that ˝ D [K2Th K, Ki \ Kj D
; for Ki;Kj 2 Th, i 6D j. The diameters of elements K are denoted by hK . The
maximum diameter is h D max

K2Th

hK . In addition, the length of an edge E is denoted

by hE.
In this paper, we consider discontinuous piecewise finite element spaces to define

the discrete test, state and control spaces

Vh;p D Yh;p D Uh;p D ˚
y 2 L2.˝/ W y jK2 P

p.K/ 8K 2 Th
�
: (3)

Here, Pp.K/ denotes the set of all polynomials on K 2 Th of degree p.
We split the set of all edges Eh into the set E 0

h of interior edges and the set E @
h of

boundary edges so that Eh D E @
h [E 0h . Let n denote the unit outward normal to @˝ .

We define the inflow boundary

� � D fx 2 @˝ W ˇ � n.x/ < 0g

and the outflow boundary � C D @˝ n � �. The boundary edges are decomposed
into edges E �

h D ˚
E 2 E @

h W E � � �� that correspond to inflow boundary and
edges E C

h D E @
h n E �

h that correspond to outflow boundary. The inflow and outflow
boundaries of an element K 2 Th are defined by

@K� D fx 2 @K W ˇ � nK.x/ < 0g ; @KC D @K n @K�;

where nK is the unit normal vector on the boundary @K of an element K.
Let the edge E be a common edge for two elements K and Ke. For a piecewise

continuous scalar function y, there are two traces of y along E, denoted by yjE from
interior of K and yejE from interior of Ke. Then, the jump and average of y across
the edge E are defined by:

ŒŒy�� D yjEnK C yejEnKe ; ffygg D 1

2

�
yjE C yejE

�
: (4)

Similarly, for a piecewise continuous vector field ry, the jump and average
across an edge E are given by

ŒŒry�� D ryjE � nK C ryejE � nKe ; ffrygg D 1

2

�ryjE C ryejE
�
: (5)

For a boundary edge E 2 K \ � , we set ffrygg D ry and ŒŒy�� D yn where n is
the outward normal unit vector on � .

The state equation (1) in space for fixed control u is discretized by the symmetric
interior penalty method (SIPG). The convective term is discretized by the upwind
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method [3]. This leads to the following semi-discrete state equation

.@tyh; vh/C as
h.yh; vh/C bh.uh; vh/ D .f ; vh/ 8vh 2 Vh;p; t 2 .0;T�; (6)

with the (bi-)linear forms

ad.y; v/ D
X

K2Th

Z

K

�ry � rv dx

�
X
E2Eh

Z

E

� ff�rygg � ŒŒv��C ff�rvgg � ŒŒy��� �

J� .y;v/‚ …„ ƒ
�

hE
ŒŒy�� � ŒŒv�� � ds (7)

and

as
h.y; v/ D ad.y; v/C

X
K2Th

Z

K

�
ˇ � ryv C ryv

�
dx

C
X

K2Th

Z

@K�n� �

ˇ � n.ye � y/v ds �
X

K2Th

Z

@K�\��

ˇ � nyv ds; (8)

bh.u; v/ D �
X

K2Th

Z

K

uv dx: (9)

The penalty parameter � > 0 should be sufficiently large to ensure the stability of
the dG discretization [26, Sect. 2.7.1] with a lower bound depending only on the
polynomial degree.

Let fh; yd
h and y0h be approximations of the source function f , the desired state

function yd and the initial condition y0, respectively. Then, the semi-discrete
approximation of the OCP (2) can be defined as follows:

minimize
uh2L2.0;TIUh;p/

Z T

0

�1
2

X
K2Th

kyh � yd
hk2L2.K/ C ˛

2

X
K2Th

kuhk2L2.K/
�

dt;

subject to .@tyh; vh/C as
h.yh; vh/C bh.uh; vh/ D .fh; vh/; t 2 .0;T�; vh 2 Vh;p

(10)

yh.x; 0/ D y0h:

The semi-discrete optimality system is written as follows:

.@tyh; vh/C as
h.yh; vh/C b.uh; vh/ D .fh; vh/; 8vh 2 Vh;p yh.x; 0/ D y0h;

�.@tph;  h/C aa
h.ph;  h/ D �.yh � yd

h;  h/; 8 h 2 Vh;p; ph.x;T/ D 0; (11)
R T
0
.˛uh � ph;wh � uh/ dt D 0; 8wh 2 L2.0;TI Uh;p/;
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where

aa
h.p;  / D

X
K2Th

Z

K

�rp � r dx

�
X
E2Eh

Z

E

� ff�rpgg � ŒŒ ��C ff�r gg � ŒŒp�� � ��

hE
ŒŒp�� � ŒŒ �� � ds

C
X

K2Th

Z

K

�� ˇ � rp C rp 
�

dx

�
X

K2Th

Z

@KCn� C

ˇ � n.pe � p/ ds C
X

K2Th

Z

@KC\�C

ˇ � np ds:

4 Time Discretization of the Optimal Control Problem

In this section, we derive the fully-discrete optimality system using �-method and
dG time stepping method [14]. The fully discrete optimality systems are compared
for optimize-then-discretize (OD) and discretize-then-optimize (DO) approaches.

4.1 Time Discretization Using �-Method

Let 0 D t0 < t1 < � � � < tNT D T be a subdivision of I D .0;T/ with time
intervals Im D .tm�1; tm� and time steps km D tm � tm�1 for m D 1; : : : ;NT and
k D max1�m�NT km.

We start with OD approach, so we discretize the semi-discrete optimality
system (11) using �-method as follows:

.yh;mC1 � yh;m; v/C kas
h..1 � �/yh;m C �yh;mC1; v/ D

k..1 � �/fh;m C � fh;mC1/C k..1 � �/uh;m C �uh;mC1; v/; m D 0; � � � ;N � 1;

yh;0.x; 0/ D y0

.ph;m � ph;mC1; q/C kaa
h.�ph;m C .1 � �/ph;mC1; q/ D (12)

�k
�
�.yh;m � yd

h;m; q/C .1 � �/.yh;mC1 � yd
h;mC1; q/

�
; m D N � 1; � � � ; 0;

ph;N D 0;

.˛uh;m � ph;m;w � uh;m/ D 0; m D 0; 1; : : : ;N:
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In DO approach, the first and the second parts of the cost functional are
discretized by the rectangle rule and the trapezoidal rule, respectively, so that the
value of the adjoint at the final time becomes zero as in [29]. Then, we have the
following fully-discrete OCP:

minimize
k

2

N�1X
mD0

.yh;m � yd
h;m/

TM.yh;m � yd
h;m/

C˛ k

2

 
1

2
uT

h;0Muh;0 C
N�1X
mD1

uT
h;mMuh;m C 1

2
uT

h;NMuh;N

!

subject to

.yh;mC1 � yh;m; v/C kas
h..1 � �/yh;m C �yh;mC1; v/ D

k..1 � �/fh;m C � fh;mC1/C k..1 � �/uh;m C �uh;mC1; v/; m D 0; � � � ;N � 1;

.yh;0; v/ D .y0; v/;

where M is the mass matrix.
Now, we construct the discrete Lagrangian

L .yh;1; : : : ; yh;N ; ph;0; : : : ; ph;N ; uh;0; : : : ; uh;N/

D k

2

N�1X
mD0

.yh;m � yd
h;m/

TM.yh;m � yd
h;m/

C ˛
k

2

 
1

2
uT

h;0Muh;0 C
N�1X
mD1

uT
h;mMuh;m C 1

2
uT

h;NMuh;N

!
C .yh;0 � y0; ph;0/

C
N�1X
mD0

..yh;mC1 � yh;m; ph;mC1/C kas
h..1 � �/yh;m C �yh;mC1; ph;mC1/

� k..1 � �/fh;m C � fh;mC1/C k..1 � �/uh;m C �uh;mC1; ph;mC1//: (13)

By differentiating the Lagrangian (13), we derive the fully-discrete optimality
system

.yh;mC1 � yh;m; v/C kas
h..1 � �/yh;m C �yh;mC1; v/ D

k..1 � �/fh;m C � fh;mC1/C k..1 � �/uh;m C �uh;mC1; v/; m D 0; � � � ;N � 1
yh;0.x; 0/ D y0

.q; ph;N/C kas
h.q; �ph;N/ D 0;

.ph;m � ph;mC1; q/C kas
h.q; �ph;m C .1 � �/ph;mC1/ D (14)
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�k.yh;m � yd
h;m; q/; m D N � 1; : : : ; 1;

.q; ph;0 � ph;1/C kas
h.q; .1 � �/ph;1/ D �k.yh;0 � yd

h;0; q/;

.
˛

2
uh;0 � .1 � �/ph;1;w � uh;0/ D 0;

.˛uh;m � .�ph;m C .1 � �/ph;mC1/;w � uh;m/ D 0; m D 1; : : : ;N � 1;

.
˛

2
uh;N � �ph;N ;w � uh;N/ D 0:

In the case of backward Euler method (� D 1), the value uh;0 is not needed, as
we observe from (14). As we mentioned before, approximating the first integral in
the cost functional by using the rectangle rule leads to ph;N D 0, uh;N D 0, as we
see from (14). Due to SIPG, we obtain as

h. ı; pı/ D aa
h.pı;  ı/ [36]. Therefore,

variational formulations (12) and (14) are the same.
In the case of Crank-Nicolson method (� D 1=2), we observe that some

differences occur in the adjoint equation. In (12), the right-hand side of the adjoint
equation is evaluated at two successive points, while it is evaluated at just one point
in (14). Additional differences are seen in the variational inequalities (12) and (14),
too. Thus, OD and DO approaches lead to different weak forms. Several variants of
Crank-Nicolson method are used for optimal control of heat equation in [2]. For DO
approach, the cost functional is discretized by using the midpoint rule. On the other
hand, for OD approach, the semi-discrete state equation is discretized by using the
midpoint rule and a variant of the trapezoidal rule is applied to the semi-discrete
adjoint equation to obtain the fully-discrete optimality system. Then, the resulting
optimality systems commute.

4.2 Discontinuous Galerkin Time Discretization

We define the space-time finite element space of piecewise discontinuous functions
for test function, state and control as

Vk;q
h;p D Yk;q

h;p D Uk;q
h;p D ˚

v 2 L2.0;TI L2.˝// W vjIm

D
qX

sD0
ts�s; t 2 Im; �s 2 Vh;p;m D 1; : : : ;N

)
:

We define the temporal jump of v 2 Vk;q
h;p as Œv�m D vmC � vm�, where wm

˙ D
lim
"!0˙ v.tm C "/.
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Let fı and yd
ı be approximations of the source function f and the desired state

function yd on each interval Im. Then, the fully-discrete OCP is written as

minimize
uı2U

k;q
h;p

Z T

0

�1
2

X
K2Th

kyı � yd
ık2L2.K/ C ˛

2

X
K2Th

kuık2L2.K/
�

dt;

subject to
NTX

mD1

Z
Im

.@tyı; vı/ dt C
Z T

0

as
h.yı; vı/ dt C

NTX
mD1

.Œyı�m�1; vm�1
ı;C /; (15)

D
Z T

0

.fı C uı; vı/ dt; 8vı 2 Vk;q
h;p ; y0ı;� D .y0/ı:

The OCP (15) has a unique solution .yı; uı/ and that pair .yı; uı/ 2 Vk;q
h;p � Uk;q

h;p is

the solution of (15) if and only if there is an adjoint pı 2 Vk;q
h;p such that .yı; uı; pı/ 2

Vk;q
h;p � Uk;q

h;p � Vk;q
h;p is the unique solution of the fully-discrete optimality system

NTX
mD1

Z
Im

.@tyı; vı/ dt C
Z T

0

as
h.yı; vı/ dt C

NTX
mD1

.Œyı�m�1; vm�1
ı;C /

D
Z T

0

.fı C uı; vı/ dt;8vı 2 Vk;q
h;p ;

y0ı;� D .y0/ı;

NTX
mD1

Z
Im

.�@tpı;  ı/ dt C
Z T

0

aa
h.pı;  ı/ dt �

NTX
mD1

.Œpı�m;  
m
ı;�/

D �
Z T

0

.yı � yd
ı ;  ı/ dt;8 ı 2 Vk;q

h;p ;

pN
ı;C D 0; (16)

Z T

0

.˛uı � pı;wı � uı/ dt D 0 8wı 2 Uk;q
h;p:

In DO approach, firstly, we construct the discrete Lagrangian

L .yı; uı; pı/ D 1

2

Z T

0

0
@� X

K2Th

kyı � yd
ık2L2.K/ C ˛

X
K2Th

kuık2L2.K/
�
1
A dt

C
NTX

mD1

� Z
Im

�
.@tyı; pı/C as

h.yı; pı/
�

dt C .Œyı�m�1; pm�1
ı;C /

�

�
NTX

mD1

Z
Im

.fı C uı; pı/ dt
�C ..y0/ı � y0ı;�; p0ı;�/:
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Differentiating L with respect to yı and applying integration by parts, we obtain

NTX
mD1

Z

Im

�
 ı;�@tpı/ C as

h. ı; pı/
�

dt C
NT �1X
mD1

. m
ı;�;�Œpı�m/C .qNT

ı;�; p
NT
ı;�/

D �
NTX

mD1

Z
Im

.yı � yd
ı ;  ı/ dt; 8 ı 2 Vk;q

h;p : (17)

Now, we add and subtract . �
ı;NT

; pC
ı;NT

/ to (17) and obtain

NTX
mD1

Z
Im

� � .@tpı;  ı/ C as
h. ı; pı/

�
dt �

NTX
mD1

.Œpı�m;  
m
ı;�/C . 

NT
ı;�; p

NT
ı;C/

D �
NTX

mD1

Z
Im

.yı � yd
ı ;  ı/ dt; 8 ı 2 Vk;q

h;p : (18)

On each subinterval Im, the adjoint equation reads as
Z

Im

��.@tpı;  ı/C as
h. ı; pı/

�
dt � .Œpı�m;  

m
ı;�/ D �

Z
Im

.yı � yd
ı ;  ı/ dt:

However, .qNT
ı;�; p

NT
ı;C/ does not match the right-hand side of (18), so it is set

to zero, i.e. pN
ı;C D 0. Now, we use as

h. ı; pı/ D aa
h.pı;  ı/. Thus, we arrive

at (16). We note that OD and DO approaches lead to the same optimality conditions,
which can be observed by differentiating the discrete Lagrangian with respect to uı.
Therefore, both approaches commute.

5 Error Estimates

In this section, firstly, we give the norms used in the analysis and mention some
estimates in the literature. Secondly, the discrete characteristic function which
enables us to provide error estimates at arbitrary time points is explained. Then,
we prove some useful lemmas and state the main estimate of this study.

We introduce the L2 inner product on the inflow or outflow boundaries as follows

.w; v/� � D
Z
�

�

jˇ � njwv ds

with analogous definition of .�; �/�C
and associated norms k � k�� and k � k�C

.
The broken Sobolev space is defined as

Hk.˝;Th/ D ˚
v W v jK2 Hk.K/ 8K 2 Th

�
;
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with the semi-norm defined by

jvjHk.˝;Th/ D
0
@X

K2Th

jvj2Hk.K/

1
A
1=2

; v 2 Hk.˝;Th/:

The Bochner space of functions whose kth time derivative is bounded almost
everywhere on .0;T/ with values in X is denoted by Wk;1.0;TI X/. We use the dG
energy norm in [33, Sect. 4]

jjjvjjj2DG D jvj2H1.˝;Th/
C J� .v; v/: (19)

We give the multiplicative trace inequality for all K 2 Th, for all v 2 H1.K/ as
follows:

kvk2L2.@K/ � CM

�
kvkL2.K/jvjH1.K/ C h�1

K kvk2L2.K/
�
; (20)

where CM is a positive constant independent of v; h and K. We refer the reader to
the study [12, Lemma 3.1] for the proof.

In addition, the generalization of Poincaré inequality to the broken Sobolev space
H1.˝;Th/ is given as [26, Sect. 3.1.4]

kvk2L2.˝/ � CS

0
@jvj2H1.˝;Th/

C
X
E2Eh

1

hE
k ŒŒy�� k2L2.E/

1
A : (21)

We proceed with the standard estimates derived for finite element methods [9].
Consider the L2-projection˘h W L2.˝/ ! Vh;p so that

k˘hv � vkL2.K/ � C˘hpC1jvjHpC1.K/; j˘hv � vjH1.K/ � C˘hpjvjHpC1.K/; (22)

for all v 2 HpC1.K/, K 2 Th where C˘ is a positive constant and independent of v
and h. In addition, as suggested in [33, Sect. 4], using the study [13], the following
estimate holds for all v 2 HpC1.˝;Th/

jjj˘hv � vjjjDG � .2CM C 1/C˘hpjvjHpC1.˝;Th/
; (23)

where CM and C˘ are positive constants from (20) and (22), respectively. In the
following we introduce the parabolic projection for m D 0; : : : ;NT and mention the
properties given in [33]. Suppose that X � L2.˝/ is a Hilbert space. Let us denote
the space of polynomial functions depending on time as follows:

P˛.Im;X/ D
(
v 2 L2.0;TI L2.˝// W v D

X̨
sD0

ts�s;m; t 2 Im; �s;m 2 X

)
:
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A space-time projection 	 of y 2 C.0;TI H1.˝// into Vk;q
h;p is employed for the

convergence estimates. Time projection P of y 2 C.0;TI H1.˝// is defined as

Py 2 ˚v 2 L2.QT/ W vjIm 2 Pq.Im;L
2.˝//

�
;Z

Im

.Py � y; tjv/ dt D 0; 8v 2 L2.˝/; j D 0; : : : ; q � 1;

.Py/m� D y.tm/:

In addition, for m D 0; : : : ;NT , with y 2 C.0;TI H1.˝//, 	y 2 Vk;q
h;p is defined

as

	y D ˘h.Py/ ” ..	y/.t/; v/ D ..Py/.t/; v/ ; 8v 2 Vh;p;8t 2 Im;Z
Im

.	y � y; v/ dt D
Z

Im

..Py; v/ � .y; v// dt D 0; 8v 2 Vk;q�1
h;p ; (24)

..	y/m� � y.tm/; v/ D ...Py/m�; v/ � .y.tm/; v// D 0; 8v 2 Vh;p:

We note that the definition of the projection 	 is likewise in the study [28].
We give some estimates from [33, Lemmas 4.3, 4.5], which we need in the

proofs.

Lemma 1 Suppose that y 2 WqC1;1.Im;H1.˝// such that y D 0 on @˝ . Then,

ky.t/ � Py.t/k � CPkqC1
m jyjWqC1;1.Im;L2.˝// 8t 2 Im;

jy.t/ � Py.t/jH1.˝/ � CPkqC1
m jyjWqC1;1.Im;H1.˝// 8t 2 Im; (25)

jjjy.t/� Py.t/jjjDG � CPkqC1
m jyjWqC1;1.Im;H1.˝// 8t 2 Im:

Lemma 2 Suppose that y 2 WqC1;1.Im;H1.˝// \ L1.Im;HpC1.˝// such that
y D 0 on @˝ . Then,

ky.t/ � 	y.t/k � C	.h
pC1 C kqC1

m /kykR 8t 2 Im;

jjjy.t/� 	y.t/jjjDG � C	.h
p C kqC1

m /kykR 8t 2 Im; (26)

where kykR D max.jyjWqC1;1.Im;H1.˝//; jyjL1.Im;HpC1.˝/// and C	 is a positive
constant independent of h; km;m and y.

Lemma 3 There exists a positive constant CA which is independent of h; vh;wh; �

such that

ad.y.t/�˘hy.t/; vh/ � CA�h
pky.t/kHpC1.˝/jjjvhjjjDG

a.e. t 2 .0;T/; y 2 L2.0;TI HpC1.˝//; vh 2 Vh;p: (27)
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Proof The proof in [11, Lemma 3.8] is adopted to the bilinear form (7) using the
estimate (23). ut
Remark 1 A similar estimate for the bilinear form arising from the nonsymmetric
interior penalty Galerkin method can be found in [33, Lemma 4.2].

Lemma 4 The bilinear form ad.�; �/ satisfies the coercivity inequality

ad.vh; vh/ � �

2
jjjvhjjj2DG; 8vh 2 Vh;p: (28)

Proof The proof in [11, Corollary 3.10] is adopted to the bilinear form (7) using the
norm (19). ut

5.1 Discrete Characteristic Function

We use the discrete characteristic function in order to provide error estimates at
arbitrary time points as suggested in [8]. We can work on Œ0; k/ instead of Im, since
the construction of the discrete characteristic function is invariant under translation.
We consider polynomials s 2 Pq.0; k/ and the discrete approximation of 
Œ0;t/s of
s which is a polynomial

Qs 2 ˚Qs 2 Pq.0; k/ W Qs.0/ D s.0/
�

such that
Z k

0

Qsz D
Z t

0

sz; 8z 2 Pq�1.0; k/:

This definition can be extended from Pq.0; k/ to Vk;q
h;p . The discrete approxima-

tion of 
Œ0;t/v for v 2 Vk;q
h;p is written as Qv D Pq

iD0 Qsi.t/vi. On account of these
inequalities, the following estimate is given in [33]

Z
Im

jjj Qwjjj2DG dt � CD

Z
Im

jjjwjjj2DG dt; CD D CD.q/: (29)

We mention that a suitable discrete approximation 
.t;tn �vh must be constructed
for the adjoint problem, as it is noted in the proof of [7, Theorem 3.8]. The discrete
approximation of 
.t;t NT �s is a polynomial

Qs 2 fQs 2 Pq.t
NT �1; t NT / W Qs.t NT / D s.t NT /g such that

Z t NT

t NT �1

Qsz D
Z t NT

t
sz;

8z 2 Pq�1.t NT �1; t NT /. This definition can be extended from Pq.t NT �1; t NT / to
Vk;q

h;p and the estimates above can be modified for the adjoint [7, Theorem 3.8].
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5.2 A Priori Error Estimates

We proceed with the derivation of the convergence estimates for the optimality
system and its space-time dG approximation. We define the auxiliary state and
adjoint equation which are needed for a priori error analysis

NTX
mD1

Z
Im

.@ty
u
ı ; vı/ dt C

Z T

0

as
h.y

u
ı ; vı/ dt C

NTX
mD1

.Œyu
ı �m�1; vm�1

ı;C /

D
Z T

0

.fı C u; vı/ dt;

yu;0
ı;� D .y0/ı; (30)

NTX
mD1

Z
Im

.�@tp
u
ı ;  ı/ dt C

Z T

0

aa
h.p

u
ı;  ı/ dt �

NTX
mD1

.Œpu
ı �m;  

m
ı;�/

D �
Z T

0

.yu
ı � yd

ı ;  ı/ dt;

pu;N
ı;C D 0:

Following [15], we assume that the reaction term satisfies jrj � Cr a.e. in ˝; the
velocity field is bounded by a constant Cˇ a.e. in ˝ .

We prove some useful lemmas before stating the main theorem of this study.

Lemma 5 Let .yı; pı/ and .yu
ı ; p

u
ı/ be the solutions of (16) and (30), respectively.

Then, there exists a constant C independent of h and k such that

sup
t2In

kyu
ı.t/ � yı.t/k C sup

t2In

kpu
ı.t/ � pı.t/k � C

Z tn

0

ku � uık dt: (31)

Proof Firstly, we study the fully discrete state equation on each subinterval Im. We
subtract (16) from (30) to obtain

Z
Im

.@t�; vı/ dt C .Œ��m�1; vm�1
ı;C /C

Z
Im

as
h.�; vı/ dt D

Z
Im

.u � uı; vı/ dt; (32)

where � D yu
ı � yı. We substitute vı D 2� in (32). Then,

Z
Im

2.@t�; �/ dt C 2.Œ��m�1; �m�1C / D k�m�k2 � k�m�1� k2 C kŒ��m�1k2; (33)

is achieved. For the right-hand side, we employ Cauchy-Schwarz, Young in-
equalities, Poincaré inequality (21) and the definition of dG norm (19). For the
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left-hand side, we use (28) for diffusion term and follow the technique in (see [15,
Theorem 5.1]) for convection and reaction terms. Then, we derive the following
estimate in the middle of (34)

k�m�k2 � k�m�1� k2 C �

2

Z
Im

jjj� jjj2DG dt C 2C0

Z
Im

k�k2 dt

C �

2

Z
Im

0
@X

K2Th

�
k�k2@K�\��

C k ŒŒ��� k2@K�n� �

C k�k2
@KC\�C

�1A dt

� k�m�k2 � k�m�1� k2 C �

2

Z
Im

jjj� jjj2DG dt C 2C0

Z
Im

k�k2 dt

C
Z

Im

0
@X

K2Th

�
k�k2@K�\��

C k ŒŒ��� k2@K�n� �

C k�k2
@KC\�C

�1A dt

� C
Z

Im

ku � uık2 dt: (34)

We note that the lower bound on the left-hand side of (34) has been added after
deriving the estimate in the middle for the clearance of the proof and will be used
later. Now, we proceed by substituting vı D 2 Q� into (32). We employ the discrete
characteristic function as in the proof of [33, Theorem 5.2] to obtain an estimate at
arbitrary points and use the properties given there. With z D arg supNIm

k�.t/k, the
discrete characteristic function defined in Sect. 5.1 leads to

Z
Im

.@t�; Q�/ dt D
Z z

tm�1

.@t�; �/ dt; Q�m�1C D �m�1C ; Œ Q��m�1 D Œ��m�1; (35)

Z
Im

2.@t�; Q�/ dt C 2.Œ��m�1; Q�m�1C / D k�.z/k2 � k�m�1� k2 C kŒ��m�1k2:: (36)

We use (35) and (36) and the inequality k�m�1� k � supt2Im�1
k�.t/k to bound

the terms arising in the time derivative. We proceed by moving 2
R

Im
ah.�; Q�/ dt

to the right-hand side. We employ (27) for the diffusion term, the proof of [15,
Theorem 5.1] for the convection term. The reaction term and the control on the
right-hand side is bounded by using Cauchy-Schwarz and Young inequalities (21)
and (19) such that k � k2 � Cjjj � jjj2DG is satisfied for a positive constant C. We
eliminate the term jjj Q� jjj2DG on the right-hand side by using (29). Then, we obtain
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the following inequality

sup
t2Im

k�.t/k2 � sup
t2Im�1

k�.t/k2

� Cb

Z
Im

jjj� jjj2DG dt C
Z

Im

X
K2Th

�
k�k2

@KC\�C

C k ŒŒ��� k2@K�n��

�
dt

C C
Z

Im

ku � uık2 dt

� C0
b

Z
Im

0
@jjj� jjj2DG C

X
K2Th

�
k�k2

@KC\�C

C k ŒŒ��� k2@K�n� �

�1A dt

C C
Z

Im

ku � uık2 dt; (37)

where Cb D C.1CCD/.�CACCS.CrCCˇ//;C0
b D maxf1;Cbg. In order to eliminate

the terms � on the right-hand side of (37), we use (34) multiplying it by C00
b D 2

�
C0

b.
By adding these inequalities and denoting �m D supt2Im

k�.t/k2 C C00
b k�m�k2, we

arrive at

�m ��m�1 � C.1C C00
b /

Z
Im

ku � uık2 dt: (38)

We sum (38) over m D 1; : : : ; n � NT and use � D 0 at t D 0 to derive the estimate

sup
t2In

k�.t/k2 D sup
t2In

kyu
ı .t/ � yı.t/k2 � C

Z tn

0

ku � uık2 dt: (39)

Secondly, we proceed with the adjoint equation subtracting (16) from (31) and
using � D pu

ı � pı. A discrete approximation to 
.t;tm �vh specified for the adjoint
problem must be used, as we discussed in Sect. 5.1. Then, this leads to

Z
Im

2.�@t�; Q�/ dt � 2.Œ��m; Q�m�/ D k�.z/k2 � k�mk2 C kŒ��mk2; (40)

where z D arg supNIm
k�.t/k. In addition, the inequalities k�mk2 � supINT �mC2

k�.t/k2
and k�.z/k2 D supINT �mC1

k�.t/k2 are needed. Then, we follow the same idea used
to derive (39) to reach the inequality

sup
t2INT �mC1

k�.t/k2 � sup
t2INT �mC2

k�.t/k2 � Ckm

Z
t2Im

ku � uık2 dt: (41)
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We sum (41) over m D NT ; : : : ; n � 1 and use � D 0 at t D tNT . The final
result (31) follows from standard algebra, (39) and (41). ut
We proceed with the estimate between the exact and the approximate control.

Lemma 6 Let .y; p; u/ and .yı; pı; uı/ be the solutions of (2) and (16), respectively.
Then, we have

ku � uıkL2.0;TIL2.˝// � 1

˛
kp � pu

ıkL2.0;TIL2.˝//: (42)

Proof We apply the technique used for the steady-state optimal control problem
in [21, Sect. 4.2]. We start using the continuous and the fully-discrete optimality
conditions (3)–(17) to obtain the following equation

˛ku � uık2L2.0;TIL2.˝// D ˛

TZ

0

.u � uı; u � uı/ dt

D
TZ

0

.˛u � p; u � uı/ dt �
TZ

0

.˛uı � pı; u � uı/ dt C
TZ

0

.p � pı; u � uı/ dt

D
TZ

0

.p � pu
ı; u � uı/ dt C

TZ

0

.pu
ı � pı; u � uı/ dt D J1 C J2: (43)

We use Cauchy-Schwarz and Young inequalities to show that

0 � J1 � 1

2˛
kp � pu

ık2L2.0;TIL2.˝// C ˛

2
ku � uık2L2.0;TIL2.˝//: (44)

We proceed with J2 and use the auxiliary state equation (30) to obtain

J2 D
TZ

0

.pu
ı � pı; u � uı/ dt

D
NTX

mD1

Z
Im

.@t.y
u
ı � yı/; p

u
ı � pı/ dt C

TZ

0

as
h.y

u
ı � yı; p

u
ı � pı/ dt

C
NX

mD1

�
Œyu
ı � yı�m�1; .pu

ı � pı/
m�1C

�
:
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We proceed applying integration by parts in time and use the auxiliary adjoint
equation (30) to arrive at

J2 D �
NTX

mD1

Z
Im

�
pu
ı � pı; @t.y

u
ı � yı/

�
dt C

NX
mD1

�
yu
ı � yı; p

u
ı � pı

�jtm
tm�1

C
TZ

0

as
h.y

u
ı � yı; p

u
ı � pı/ dt C

NX
mD1

�
Œyu
ı � yı�m�1; .pu

ı � pı/
m�1C

�

D �
NTX

mD1

Z
Im

�
pu
ı � pı; @t.y

u
ı � yı/

�
dt C

TZ

0

as
h.y

u
ı � yı; p

u
ı � pı/ dt

�
NX

mD1

�
.yu
ı � yı/

m�; Œpu
ı � pı�m

�

D �
TZ

0

�
yu
ı � yı; y

u
ı � yı

�
dt � 0: (45)

Then, using (43)–(45), we derive the final result (42). ut
Lemma 7 Let .y; p/ and .yu

ı ; p
u
ı/ be the solutions of (2) and (30), respectively.

Assume that y; p 2 WqC1;1.0;TI H1.˝//\ L1.0;TI HpC1.˝//. Then, there exists
a constant C independent of h and k such that

sup
t2In

ky � yu
ık C sup

t2In

kp � pu
ık � O.hp C kqC1/: (46)

Proof Firstly, we integrate (2) over Im and subtract the result from (30) in order to
obtain the following equation

Z
Im

.@t; vı/ dt C .Œ�m�1; vm�1
ı;C /C

Z
Im

as
h.; vı/ dt

D �
�Z

Im

.@t�; vı/ dt C .Œ��m�1; vm�1
ı;C /

�
�
Z

Im

ah.�; vı/ dt; (47)

where y � yu
ı D .y � 	y/C .	y � yu

ı/ D �C .
Since we use the same mesh on each time interval, (24) leads to the following

identity.

Z
Im

.@t�; vı/ dt C .Œ��m�1; vm�1
ı;C / D 0; 8vı 2 Vk;q

h : (48)
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We proceed as in the proof of Lemma 5 and the proof of [15, Theorem 5.1] by
inserting the estimate (26) to obtain

Z
Im

.@t; vı/ dt C .Œ�m�1; vm�1
ı;C /C

Z
Im

as
h.; vı/ dt

� �

4

Z
Im

jjjvıjjj2DG dt C C0
2

Z
Im

kvık2 dt

C1

2

Z
Im

X
K2Th

�kvık2@KC\�C

C k ŒŒvı�� k2@K�n� �

�
dt

CkmCAC	.h
2p C k2qC2/jyj2R C km2CˇC	CM.h

2pC1 C k2qC2/jyj2R
CkmC	

CˇCr

C0
.h2pC2 C k2qC2/jyj2R; (49)

where jyjR D max.jyjWqC1;1.ImIH1.˝//; jyjL1.ImIHpC1.˝///.
Firstly, we shall substitute vı D 2 into (49) to obtain

km�k2 � km�1� k2 C �

2

Z
Im

jjjjjj2DG dt C C0

Z
Im

kk2 dt

C
Z

Im

X
K2Th

�
kk2@K�\��

C 1

2
k ŒŒ�� k2@K�n� �

C 1

2
kk2

@KC\�C

�
dt

� kmCb.h
2p C h2pC1 C h2pC2 C k2qC2/jyj2R; (50)

where Cb D maxfCAC	 ; 2CˇC	CM;C	
CˇCr

C0
g.

Secondly, we substitute vı D 2 Q into (49) to obtain

sup
t2Im

k.t/k2 � sup
t2Im�1

k.t/k2

� C0
b

Z
Im

jjjjjj2DG dt C
Z

Im

X
K2Th

�
k ŒŒ�� k2@K�n��

C kk2
@KC\�C

�
dt

C kmCb.h
2p C h2pC1 C h2pC2 C k2qC2/jyj2R

� C00
b

Z
Im

0
@jjjjjj2DG C

X
K2Th

�
k ŒŒ�� k2@K�n� �

C kk2
@KC\�C

�1A dt

C kmCb.h
2p C h2pC1 C h2pC2 C k2qC2/jyj2R; (51)

where C0
b D C.1C CD/.�CA C CS.Cˇ C Cr//;C00

b D maxf1;C0
bg. Now, we proceed

as in the proof of Lemma 5. We multiply (50) by C000
b D 2

�
C00

b in order to eliminate
the terms  on the right-hand side of (51). Then, we add it to (51) and denote�m D
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supt2Im
k.t/k2 C C000

b km�k2 in order to obtain

�m ��m�1 � km2C000
b .h

2p C h2pC1 C h2pC2 C k2qC2/jyj2R: (52)

We sum (52) over m D 1; : : : ; n � NT to obtain

sup
t2In

k.t/k2 � O.h2p C k2qC2/: (53)

Thirdly, we integrate (2) over Im and subtract it from (31) and denote p � pu
ı D

.p � 	p/C .	p � pu
ı/ D ' C �. Then, we use the idea in the proof of (53) in order

to derive

sup
t2IN�mC1

k�.t/k2� sup
t2IN�mC2

k�.t/k2 � Ckm sup
t2Im

k.t/k2 dtCO.h2pCk2qC2/; (54)

for C > 0. The resulting inequality is summed over m D NT ; : : : ; n � 1. Then, it is
combined with (53) to derive the final result (46). ut
Remark 1 For guaranteeing the assumptions on the exact solution, it is necessary to
require a higher regularity of the data of the problem.

We state the main estimate of this study by combining Lemmas 5, 6, and 7.

Theorem 1 Suppose that .y; p; u/ and .yı; pı; uı/ are the solutions of (2) and (16),
respectively. We assume that all conditions of Lemmas 5, 6 and 7 are satisfied. Then,
there exists a constant C independent of h and k such that

ky�yıkL1.0;TIL2.˝//Ckp�pıkL1.0;TIL2.˝//Cku�uıkL2.0;TIL2.˝// � C
�
hp C kqC1� :

(55)

In Theorem 1, the error in the state and control is measured with respect
to the norm L1.0;TI L2.˝// and L2.0;TI L2.˝//, respectively. The same norms
are used, for example, in the study of Fu [16], too. The former norm is due
to the discrete characteristic function which is used to provide error estimates
at arbitrary time points. The latter norm arises from the optimality condition
which is shown in Lemma 6. On the other hand, we observe that Theorem 1 is
optimal in time, suboptimal in space in the L1.0;TI L2.˝// norm for the state
and L2.0;TI L2.˝// for the control, i.e. O.hp; kqC1/, using p-degree spatial, q-
degree temporal polynomial approximation. However, for example, optimal spatial
convergence rate for SIPG discretization combined with backward Euler is achieved
using an elliptic projection in [1]. The first reason behind the order reduction in
this study is the estimate (26) for the space-time projection which is employed to
bound the continuity estimate of the bilinear form in Lemma 3. The convection
term also has an influence on the spatial order reduction since we follow the proof
of [15, Theorem 5.1]. After eliminating the effect of the space-time projection in
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the bilinear form of the diffusion term, this suboptimal estimate can be improved as
in [1].

6 Numerical Results

In this section, we present some numerical results. We measure the error in the state
and the control in terms of L1.0; 1I L2.˝// and L2.0; 1I L2.˝// norm, respectively.
We have used discontinuous piecewise linear polynomials in space. In all numerical
examples, we have taken h D k.

We note that, in the case of dG(0) method, the approximating polynomials are
piecewise constant in time and the resulting scheme is a version of the backward
Euler method with a modified right-hand side [31, Chap. 12]:

.M C kAs/yh;m D Myh;m�1 C k

2
.fh;m C fh;m�1/C k

2
M.uh;m C uh;m�1/;

.M C kAa/ph;m�1 D Mph;m � k

2
M.yh;m C yh;m�1/C k

2
.yd

h;m C yd
h;m�1/:

For dG(1) method, we use piecewise linear polynomials in time. The resulting
linear system for the state on each time interval is given as follows [31, Chap. 12]:

 
M C kAs M C k

2
As

k
2
As 1

2
M C k

3
As

! 
Y0
Y1

!
D
 

Myh;m�1 C k
2
.fh;m C fh;m�1/C k

2
M.uh;m C uh;m�1/

k
2
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!
;

(56)

where Asand M are the stiffness and the mass matrices of the state equation,
respectively. We derive the solution at the time step tm as yh;m D Y0 C Y1. For
the adjoint equation, we have the following linear system:
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(57)

where Aa is the stiffness matrix for the adjoint equation. We obtain the adjoint at
the time step tm�1 as ph;m�1 D P0 C P1.

The main drawback of dG time discretization is the solution of large coupled
linear systems in block form. Because we are using constant time steps, the coupled
matrices on the right-hand side of (56) and (57) have to be decomposed (LU block
factorization) at the beginning of the integration. Then, the state and the adjoint
equations are solved at each time step by forward elimination and back substitution
using the block factorized matrices.

Example 1 The first example is a convection dominated OCP with smooth solu-
tions. It is converted to an unconstrained optimal control problem [17, Ex. 1] by
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Table 1 Example 1 by dG(0) and backward Euler(in parenthesis) method

k ky � yık Rate ku � uık Rate
1
5

5.91e�2(4.88e�2) –(–) 3.94e�2(2.41e�2) –(–)
1
10

2.42e�2(1.40e�2) 1.29(1.80) 2.14e�2(8.81e�3) 0.88(1.45)
1
20

1.17e�2(4.01e�3) 1.04(1.80) 1.12e�2(3.68e�3) 0.92(1.26)
1
40

6.01e�3(1.60e�3) 0.96(1.33) 5.81e�3(1.74e�3) 0.95(1.08)
1
80

3.07e�3(7.58e�4) 0.97(1.07) 2.95e�3(8.62e�4) 0.98(1.01)

Table 2 Example 1 by Crank-Nicolson method OD and DO approach(in parenthesis)

k ky � yık Rate ku � uık Rate
1
5

6.79e�2(6.91e�2) –(–) 2.26e�2(2.47e�2) –(–)
1
10

1.86e�2(1.89e�2) 1.86(1.87) 6.69e�3(8.12e�3) 1.76(1.61)
1
20

4.86e�3(4.89e�3) 1.94(1.95) 1.81e�3(3.30e�3) 1.89(1.30)
1
40

1.24e�3(1.24e�3) 1.97(1.98) 4.72e�4(2.19e�3) 1.94(0.59)
1
80

3.13e�4(8.27e�4) 1.99(0.59) 1.16e�4(2.04e�3) 2.02(0.10)

adding the reaction term with

Q D .0; 1� �˝; ˝ D .0; 1/2; � D 10�5; ˇ D .1; 0/T ; r D 1; ˛ D 1:

The source function f , the desired state yd and the initial condition y0 are computed
from (2) using the following exact solutions of the state and the control, respectively,

y.x1; x2; t/ D exp.�t/ sin.2	x1/ sin.2	x2/;

u.x1; x2; t/ D exp.�t/.1 � t/ sin.2	x1/ sin.2	x2/:

In Table 1, errors and converge rates for dG(0) and backward Euler method are
shown. We observe that the first order convergence rate is achieved in time, due to
the dominance of temporal errors.

In Table 2, errors and converge rates for Crank-Nicolson method obtained
by OD and DO approaches are shown. For Crank-Nicolson method, through
OD approach, the second order convergence rate is achieved. However, for DO
approach, discretization of the right-hand side of the adjoint equation (14) by
one-step method is reflected to the numerical results and the quadratic order of
convergence is not observed.

In Table 3, We present numerical results for dG(1) time discretization. Numerical
results indicate a higher order experimental order of convergence, namely O.h2/,
than the one shown in Theorem 1, which is O.h/ with h D k. The error in the state
is smaller than for Crank-Nicolson method with OD approach, while the error in the
control is close to one for Crank-Nicolson method with OD approach.
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Table 3 Example 1 by dG(1)method

k ky � yık Rate ku � uık Rate
1
5

5.65e�2 – 2.93e�2 –
1
10

1.56e�2 1.86 8.50e�3 1.78
1
20

4.04e�3 1.95 2.28e�3 1.90
1
40

1.03e�3 1.97 5.95e�4 1.93
1
80

2.59e�4 1.99 1.46e�4 2.03

Table 4 Example 2 by Crank-Nicolson method OD and DO approach(in parenthesis)

k ky � yık Rate ku � uık Rate
1
5

1.90(1.90) –(–) 2.06e�1(2.03e�1) –(–)
1
10

1.03(1.03) 0.89(0.89) 3.63e�2(3.63e�2) 2.51(2.49)
1
20

3.62e�1(3.62e�1) 1.50(1.50) 8.23e�3(8.15e�3) 2.12(2.15)
1
40

1.06e�1(1.05e�1) 1.78(1.78) 3.01e�3(6.17e�3) 1.45(0.40)
1
80

2.77e�2(2.71e�2) 1.93(1.95) 9.07e�4(4.95e�3) 1.73(0.32)

Example 2 The second example is a convection dominated OCP adapted from [16,
Ex. 2] with

Q D .0; 1� �˝; ˝ D .0; 1/2; � D 10�5; ˇ D .0:5; 0:5/T ; r D 3; ˛ D 1:

The source function f , the desired state yd and the initial condition y0 are computed
from (2) using the following exact solutions of the control and state, respectively,

u.x1; x2; t/ D sin.	t/ sin.2	x1/ sin.2	x2/ exp

��1C cos.tx/p
"

�
;

y.x1; x2; t/ D u

�
1

2
p
"

sin.tx/C 8"	2 C
p
"

2
cos.tx/� 1

2
sin2.tx/

�

� 	 cos.	t/ sin.2	x1/ sin.2	x2/ exp

��1C cos.tx/p
"

�
;

where tx D t � 0:5.x1 C x2/: As opposed to the previous example, the exact solution
of the PDE constraint depends on the diffusion explicitly and the problem is highly
convection dominated. This example cannot be solved properly by using dG(0)
and backward Euler method. Therefore, we present numerical results for Crank-
Nicolson method in Table 4, where the differences between OD and DO can be seen
clearly. DO approach causes order reduction in the control. However, due to the
convection dominated nature of the problem, the quadratic convergence rate cannot
be achieved with OD approach in contrast to Example 1. The orders of convergence
correspond to those in [5].
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Table 5 Example 2 by dG(1)
method

k ky � yık Rate ku � uık Rate
1
5

1.70 – 2.03e�1 –
1
10

6.14e�1 1.47 4.35e�2 2.22
1
20

1.50e�1 2.03 1.23e�2 1.83
1
40

3.40e�2 2.15 2.38e�3 2.36
1
80

7.92e�3 2.10 4.77e�4 2.32
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Fig. 1 Example 2: Error at t = 0.5 with Crank-Nicolson(DO approach) h D k D 1=80

In Table 5, we present numerical results for dG(1) discretization. As opposed
to the results in Table 4, the error in the state and the control are smaller than in
the case of Crank-Nicolson. Numerical results indicate a better experimental order
of convergence, namely O.h2/, than the theoretical error estimate in Theorem 1.
Similar observations are made for nonstationary non-linear diffusion-convection
equations for the SIPG spatial discretization in [20]. In Figs. 1 and 2, we present
the error between the exact and the approximate solution at t D 0:5 obtained using
Crank-Nicolson-DO approach and dG(1) discretization. These figures also show
that dG(1) discretization solves the problem well.

7 Conclusion

For dG time discretization, the numerical results show that linear and quadratic
convergence rates are achieved using piecewise discontinuous constant and linear
polynomials in time, respectively, and DO and OD approaches commute. In a future
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Fig. 2 Example 2: Error at t = 0.5 with dG(1) method h D k D 1=80

work, we will study control constrained problem and derive the optimal convergence
rates under lower regularity assumptions.

8 Outlook: Efficient Solvers for DG Time Discretization

Discontinuous Galerkin time stepping is used for solving linear and nonlinear OCPs
by multiple shooting methods in [6, 18] because of the commutativity property of
discretization and optimization. At each subinterval of multiple shooting, a very
large system of linear or nonlinear equations has to be solved, which can be handled
by iterative methods, such as Krylov subspace method. In the references mentioned
above, the first order dG(0) method is used, where for nonlinear problems at each
Newton iteration step, a linear system of equations with the same structure of
implicit Euler method has to be solved. Higher order dG methods lead to coupled
block systems and the number of the unknowns grows linearly with increasing order.
Therefore, for OCPs constrained by linear and nonlinear parabolic PDEs in several
space dimensions, efficient solution techniques are needed. In the following, we
will give an overview of the existing approaches by narrowing our discussion to 2x2
coupled block systems arising from different dG discretizations.

In the last decade, several variational time discretization methods were de-
veloped. The test spaces always consist of piecewise discontinuous polynomials.
When the solution space consists of continuous piecewise polynomials of degree k
and the test functions are piecewise discontinuous polynomials of degree k � 1,
the resulting method is called continuous Galerkin discretization cGP(k). For
discontinuous Galerkin dG(k) method, both test and trial spaces are piecewise dis-
continuous polynomials of degree k. Advantages of variational time discretization
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are stability, convergence, space-time adaptivity. Both continuous and discontinuous
Galerkin methods are A-stable; the discontinuous Galerkin methods are even L-
stable (strongly stable). The convergence order of cGP(k) methods is of one order
higher than the dG(k) methods. Both of these methods are super-convergent at
the nodal points, namely of order 2r C 1, when the order of the method is r and
the solution of the problem is sufficiently regular [31, Chap. 12]. The time-space
adaptivity can be easily implemented, because the time is discretized as the space
with finite elements. Using a posteriori error estimates, adaptive hp time stepping
and dynamic meshes (the use of different spatial discretization for each time step)
can directly be incorporated in the discrete formulation [25]. We want to mention
that dynamic meshes (meshes changing with time) were used by combining dG(0)
time discretization with multiple shooting method for linear and nonlinear OCPs in
[18], whereas Carraro et al. [6] use fixed meshes for all discrete time levels.

As we have mentioned, the main disadvantage of variational time discretization
is the large system of coupled equations as a result of space-time discretization. To
illustrate this, we consider the semilinear parabolic initial value problem

du

du
D Au C f .u/; u.0/ D u0; (58)

where A is a linear second order elliptic differential operator and f .u/ is locally
Lipschitz continuous and monotone.

The 2�2 block system associated to dG discretization of (58) can be written in
the following form:

˛1;1MU1
n C ˛1;2MU2

n C�tˇ1;1F.U1
n/C�tˇ1;2F.U2

n/ D c1MU0 C d1F.U0/;

˛2;1MU1
n C ˛1;2MU2

n C�tˇ2;1F.U1
n/C�tˇ2;2F.U2

n/ D c2MU0 C d2F.U0/;
(59)

where M is the mass matrix and F.�/’s are dGFEM semi-discretized nonlinear terms
of the right hand side of (58).

One step of the Newton iteration for solving the coupled system in (59)
corresponds to solving the following 2 � 2 block system:

�
�t˛1;1M C�tˇ1;1 NA �t˛1;2M C�tˇ1;2 NA
�t˛1;2M C�tˇ1;2 NA �t˛2;2M C�tˇ2;2 NA

��
W1

n

W2
n

�
D
�

R1n
R2n

�
; (60)

where the vectors Wi
n and Ri

n, for i D 1; 2, denote the Newton correction and residual
for a temporal basis function, respectively [25].

In [35], the linear system of equations associated to dG(k) method, derived
from the solution of the linear parabolic equations, are decoupled into complex
valued linear systems having the same structure as the implicit Euler discretization.
Because the existing finite element codes do not support complex arithmetic,
implementation would be difficult and costly. In order to avoid the use of complex
arithmetic, Richter et al. [25] developed an inexact Newton method for solving
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nonlinear parabolic PDEs discretized by dG(k) methods. At each time step, several
linear systems of equations are solved with the same structure as for the implicit
Euler discretization. Weller and Basting [34] suggest a different solution strategy for
linear parabolic PDEs under dG(2) method approximated at Gauss-Radau points.
The essential component U2

n , which is the solution of the problem at the next
time step, can be obtained by an inexact factorization of the Schur complement,
due to the property ˇ1;2 D ˇ2;1 D 0 in (59) and (60). Because the Schur
complement is of the fourth order, the condition number will be worse than the
condition number of the original system. They apply a symmetric preconditioned
conjugate gradient method so that a number of linear systems with the same
structure arising from implicit Euler discretization must be solved at each step. The
nice property of the method is that it can be applied to linear parabolic PDEs with
non-self adjoint operators like diffusion-convection-reaction equation, because the
Schur complement is symmetric. Efficiency of the solution technique for nonlinear
parabolic problems has to be tested. Schieweck [27] introduced a continuous dG
method where the solution space consists piecewise continuous polynomials of
degree k � 1 and test space of piecewise discontinuous polynomials of degree
k � 1 approximated at Gauss-Lobatto nodes. They call this technique discontinuous
Galerkin-Petrov dGP(k) method. Because the time derivative of the discrete solution
is contained in the discrete test space, the method has energy decreasing property
so that it can be applied to gradient systems like Allen-Chan and Chan-Hilliard
equations. Again, the essential unknown is U2

n for dGP(2) method due to ˇ11 D 0

in (59) and (60), and the solution can be determined by fixed point iteration.
However, the linear system which must be solved at each time level consists of
powers of mass and stiffness matrices, which could be difficult to solve. Instead, a
defect correction algorithm was introduced [27], so that at each defect correction
step, linear systems like in the implicit Euler discretization have to be solved again.
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