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Abstract Nonlinear Model Predictive Control (NMPC) is a feedback control
technique that uses the most current state estimate of a nonlinear system to
compute an optimal plan for the future system behavior. This plan is recomputed
at every sampling time, creating feedback. Thus, NMPC needs to repeatedly solve a
nonlinear optimal control problem (OCP). Direct multiple shooting is since long
known as a reliable approach for discretization of OCPs. This is mainly due to
the fact that the approach shows good contraction properties within the NMPC
framework. Moreover, the procedure is easy to initialize and parallelize. In the
context of real-time NMPC, the multiple shooting method was tailored to the Real-
Time Iteration (RTI) scheme. This scheme uses a strategy known as Initial Value
Embedding to deal efficiently with the transition from one optimization problem to
the next. It performs two algorithmic steps in each sampling time, a long preparation
phase and a short feedback phase to minimize the feedback time to the system.
The two phases respectively prepare and solve a convex Quadratic Program (QP)
that depends parametrically on the estimated system state. The solution of this QP
delivers quickly a generalized tangential predictor to the solution of the nonlinear
problem. Recent algorithmic progress makes the solution of NMPC optimization
problems possible at sampling times in the milli- or even microsecond range on
modern computational hardware. An essential part is the simulation of the nonlinear
model together with the propagation of its derivative information. This article
describes the developments and their efficient software implementations that made it
possible to solve a classical NMPC benchmark problem within 1�s sampling time.
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1 Introduction

Model Predictive Control (MPC) needs to solve an Optimal Control Problem (OCP)
at each sampling instant using the current system state Nx0 as initial value. This
optimization task is almost exclusively executed using a direct approach which first
discretizes the continuous time system to obtain a discrete time OCP formulation.
Multiple Shooting (MS) will be motivated and shown to be such a time discretization
with nice contraction properties and extra advantages, e.g. it is more flexible both
to initialize and parallelize. One crucial dividing line in MPC is between convex
and non-convex problems. In the case that the OCP is convex, e.g. for linear MPC,
algorithms exist that find a global solution in a fast and reliable way. This paper
will focus on the problems that use a nonlinear model i.e. the resulting OCP is non-
convex and one generally has to be satisfied with approximations of locally optimal
solutions. Nonlinear MPC (NMPC) has become a popular approach for real-time
optimal control since it can explicitly handle constraints and nonlinear dynamics.
Recent algorithmic progress [1, 2] allows to consider NMPC also for systems
having rather fast dynamics. Among the available online algorithms, the Real-Time
Iteration (RTI) scheme has been proposed as a highly competitive approach [3]. It
is an SQP-type algorithm that uses a shooting discretization and a Gauss-Newton
Hessian approximation.

It is important to use the right algorithmic tools to be able to meet the hard timing
constraints of real-time applications. This paper focuses on the RTI scheme as an
online algorithm to handle nonlinear OCPs using a multiple shooting discretization.
It divides the computations at each sampling time into a preparation and a feedback
phase [4]. The preparation phase takes care of the linearization and condensing
resulting in a small scale Quadratic Program (QP). Reducing the computation time
of this phase is crucial for achieving a certain sampling frequency since it will often
dominate the total execution time. The prepared QP cannot be solved yet before the
current state estimate is available. Once it becomes available, the feedback phase
will quickly solve the subproblem to obtain an approximate solution to the original
OCP. The faster this QP is solved, the faster the next control input can be fed back
to the real process. Condensing is still a rather popular technique, because it leaves
us with a dense but small scale QP to be solved in the feedback phase [5, 6]. This
can be done by any embedded QP solver such as e.g. qpOASES [7] which uses an
online active set strategy [8]. The alternative to this condensing approach would be
to directly solve the multi-stage QP, using a structure exploiting convex solver such
as FORCES [9], qpDUNES [10] or HPMPC [11]. An important disadvantage could
be that the solution of the full QP then becomes part of the feedback phase in the
context of the RTI framework.
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Apart from using suitable algorithms, efficient implementations are needed to
run them in real-time on embedded control hardware. One way to achieve this
is by automatic code generation, i.e. by exporting a fully customized solver.
Significant improvements in the computation time can be obtained by removing
unnecessary computations, by optimizing the memory access and cache usage, and
by exploiting the structure in the problem. This idea is already rather popular for
convex optimization, examples of this are CVXGEN [12] and FORCES [9] which
both generate tailored Interior Point (IP) convex solvers. In the context of NMPC, an
important computational step is that of the integration and sensitivity generation for
the nonlinear model. The export of tailored Explicit Runge-Kutta (ERK) integrators
using the Variational Differential Equations (VDE) for sensitivity propagation has
been presented and been experimentally validated in [13, 14]. This idea has been
strongly extended in the work on automatic code generation for Implicit RK
(IRK) methods with a tailored approach for computing their sensitivities [15, 16].
Embedded, implicit solvers allow their natural extension to Differential Algebraic
Equations (DAE) and an efficient computation of continuous outputs [17]. The
ACADO code generation tool pursues to export efficient C-code for the complete
RTI scheme, assembled from the different necessary components [18]. It is part
of the open-source ACADO Toolkit [19] with interfaces to multiple convex
solvers [5, 10].

This paper is organized as follows. Section 2 presents the parametric optimization
problem that needs to be solved at each sampling time together with its shooting
discretization. This direct approach requires efficient integration and sensitivity
generation for the nonlinear model, which is the topic of interest in Sect. 3. The
optimization details are discussed in Sect. 4, focusing on Sequential Quadratic
Programming (SQP) in a RTI framework. Finally, Sect. 5 shows us that NMPC can
be done within 1�s for a benchmark problem taken from the literature and this
using the tools provided in this paper.

2 Nonlinear Model Predictive Control

NMPC is an approach of increasing popularity for real-time control due to the ability
to explicitly handle constraints and nonlinear dynamics that characterize the system
of interest. Section 2.1 presents the optimization problem that needs to be solved at
each sampling time. Section 2.2 then describes multiple shooting as a reliable way
of reformulating this as an approximate but tractable problem.
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2.1 Parametric Optimization Problem

In what follows, the OCP that needs to be solved at each time point is assumed to
be of the following form

minimize
x.�/; u.�/

Z T

0

kF.t; x.t/; u.t//k22 dt C kFN.x.T//k22 (1a)

subject to x.0/ D Nx0; (1b)

Px.t/ D f.t; x.t/; u.t//; 8t 2 Œ0;T�; (1c)

0 � h.x.t/; u.t//; 8t 2 Œ0;T�; (1d)

0 � r.x.T//; (1e)

where x.t/ 2 R
nx denotes the differential states at time t, u.t/ 2 R

nu are the
control inputs and Eq. (1a) defines the NMPC objective while Eqs. (1d) and (1e) are
respectively the path and terminal constraints. The nonlinear dynamics in Eq. (1c)
are described by an explicit system of Ordinary Differential Equations (ODE),
although this could be generalized to e.g. an implicit DAE system of index 1. Note
that Nx0 2 R

nx is a parameter on which the OCP depends through the initial value
constraint in Eq. (1b). What is mainly of interest is u�.Nx0/, which denotes a locally
optimal control trajectory to be applied as a function of the current system state Nx0.

2.2 Multiple Shooting Discretization

The continuous time OCP formulation from (1) leaves us with an infinite dimen-
sional optimization problem which is impossible to solve in a general case. This
problem is often discretized and subsequently optimized which is characteristic for
any direct approach to optimal control. An important separator here is whether such
a direct approach is either sequential or simultaneous. Variants of the latter approach
are direct discretization [20] and direct multiple shooting [21], the focus of this
paper. A shooting discretization of the problem in Eq. (1) results in the structured
Nonlinear Program (NLP)

minimize
X;U

1

2

N�1X
iD0

kFi.xi; ui/k22 C 1

2
kFN.xN/k22 (2a)

subject to 0 D x0 � Nx0; (2b)

0 D xiC1 � ˚i.xi; ui/; i D 0; : : : ;N � 1; (2c)

0 � hi.xi; ui/; i D 0; : : : ;N � 1; (2d)

0 � r.xN/; (2e)
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with state trajectory X D Œx>
0 ; : : : ; x

>
N �

> where xi 2 R
nx and control trajectory

U D Œu>
0 ; : : : ; u

>
N�1�> where ui 2 R

nu . Note that the function ˚i.xi; ui/ here denotes
the simulation of the nonlinear dynamics over one shooting interval, starting from
the states xi and using the control values ui. This component is essential for any
shooting method and will be the topic of interest in Sect. 3. When one addresses
this optimization problem directly in a Newton-type framework, the variables in X
generally represent a feasible state trajectory only at convergence. In direct multiple
shooting, simulation and optimization are therefore performed simultaneously.

On the other hand, a sequential approach carries out the simulation task
separately from solving the optimization problem. A reduced OCP formulation is
obtained after replacing the variables xi by the results Xsim.Nx0;U/ of a forward
simulation starting from the initial states Nx0 using the control trajectory U. This
technique is also known as single shooting. The equality constraints from Eq. (2c)
are now automatically satisfied and can therefore be eliminated. Since the variable
space of this problem is strongly reduced in dimension from .N C 1/nx C Nnu to
only Nnu, the task of solving this NLP appears to be simplified. But it has been
shown that the cost per Newton iteration can be made equal for both approaches
because of the sparsity structure in (2). Advantages of multiple shooting over single
shooting are also the stronger flexibility in initializing the problem and parallelizing
the algorithm, and the improved convergence properties especially in case of an
unstable system [22].

3 Auto Generated Integrators

This section presents auto generated RK methods with efficient sensitivity gen-
eration. As one-step methods, they are particularly suited for simulation over
relatively short shooting intervals such as needed in Eq. (2c). Their implementation
is discussed in Sect. 3.1, for ODE as well as DAE systems of index 1. Extending
these methods with an efficient computation of continuous outputs and first order
sensitivity information is respectively described in Sects. 3.2 and 3.3. In Sect. 3.4, a
common three stage model formulation is briefly introduced.

3.1 Runge-Kutta Methods

An integration method in general needs to solve the following Initial Value Problem
(IVP) over a certain time interval t 2 Œ0;Ts�:

0 D g.t; Px.t/; x.t/; z.t/; u.t//;
x.0/ D x0;

(3)
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with x.t/ a vector of nx differential states, Px.t/ the corresponding time derivatives
and z.t/ a vector of nz algebraic states. This covers models ranging from explicit
ODE to fully implicit DAE systems, which can be dealt with by IRK methods [15].
The only assumption is that the Jacobian matrix @g.�/

@.z;Px/ is invertible, i.e. the DAE
system is of index 1. Mainly because of their good stability properties, the focus is
often on A-stable schemes such as the Gauss methods [23].

With real-time applications in mind, a code generation tool exports a tailored
integrator with a deterministic runtime. Applying an s-stage IRK method to the
model in (3) results in a nonlinear system that can be solved using a Newton-type
method. The step size, the order of the method and the number of Newton iterations
have to be fixed such that there is no adaptivity. In the context of shooting methods,
a good initialization of the variables using the previous solution is available so that a
small amount of iterations is typically sufficient. Even a custom linear solver can be
exported to perform the iterations, e.g. based on an LU decomposition. Note that an
ERK method can be used in case of a model described by an explicit ODE system.
Its code generation implementation is relatively trivial and these methods can also
be more efficient when their use is restricted to non-stiff models [13].

3.2 Continuous Output

Some promising possibilities of auto generated integration methods with continuous
output have been illustrated in [13, 17]. The general idea is to define some output
function y D  .t; Px.t/; x.t/; z.t// that can be evaluated efficiently on an arbitrarily
fine grid, independent of the integration grid. These output functions can then be
used to define the objective function or some constraint functions in the NMPC
formulation. In case of collocation methods which are a specific family of IRK
methods, this continuous extension comes rather naturally. But it is also possible to
define continuous extensions for explicit or semi-implicit RK methods.

3.3 Sensitivity Generation

In the context of dynamic optimization, at least first order sensitivities with respect
to the variables are needed in addition to the simulated values of states and outputs.
A thorough discussion on techniques of forward sensitivity propagation for IRK
methods can be found in [24]. The conclusion from that work is that the most
efficient way is to apply the Implicit Function Theorem (IFT) to the nonlinear
system of the IRK method. This direct approach also provides very accurate
derivatives which is important for optimization. Note that for an explicit method, it
is efficient to compute the first order derivatives by simulating the system extended
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with the Variational Differential Equations (VDE):

Px.t/ D f .t; x.t/; u.t//;

PSx.t/ D @f .t; x.t/; u.t//

@x
Sx.t/;

PSu.t/ D @f .t; x.t/; u.t//

@x
Su.t/C @f .t; x.t/; u.t//

@u
;

(4)

with x.0/ D x0 and the sensitivity matrices are defined as Sx.t/ D @x.t/=@x0 and
Su.t/ D @x.t/=@u for which it holds that Œ Sx.0/ j Su.0/ � D Œ1 j 0 �. Since a fixed
step size is assumed for the auto generated integrators, this approach is equivalent
to performing algorithmic differentiation in forward mode [18].

3.4 Linear Subsystems

When modeling a system, the result is typically a set of nonlinear differential
equations with possibly some algebraic states but one would often recognize one
or more of the following three subsystems in this specific order:

C1 PxŒ1� D A1xŒ1� C B1u; (5a)

0 D f2.PxŒ1�; xŒ1�; PxŒ2�; xŒ2�; z; u/; (5b)

C3 PxŒ3� D A3xŒ3� C f3.PxŒ1�; xŒ1�; PxŒ2�; xŒ2�; z; u/; (5c)

with matrices A1, B1, A3 and invertible matrices C1 and C3 and the nonlinear
functions f2 and f3. The main assumption is that the Jacobian matrix @f2.�/

@.z;PxŒ2�/ is
invertible, i.e. the second subsystem represents a DAE of index 1. In the case that
A3 D 0 and C3 is an identity matrix, Eq. (5c) reduces to

PxŒ3� D f3.PxŒ1�; xŒ1�; PxŒ2�; xŒ2�; z; u/ (6)

which are better known as quadrature states [25]. They are typically used to
formulate objective and constraint functions, similar to how the more general linear
input and output states can be used respectively from Eqs. (5a) and (5c). The
exploitation of this three-stage model formulation in auto generated integration
methods has been presented and illustrated in [16].

4 Sequential Quadratic Programming

A Newton-type algorithm to solve the NLP in (2) is dedicated to find a locally
optimal solution by solving the nonlinear Karush-Kuhn-Tucker (KKT) conditions.
There are different options to treat the inequality constraints in this system. One way
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which is done by nonlinear IP methods is to smoothen the corresponding KKT con-
ditions, a popular software implementation of this is the code IPOPT [26]. The focus
in this article is on Sequential Quadratic Programming (SQP), which defines another
family of algorithms. The QP subproblem to be solved is described in Sect. 4.1
together with the popular Gauss-Newton Hessian approximation. Section 4.2 then
presents two alternative ways to deal with this structured, multi-stage QP. Some
important implementation details of the RTI scheme are discussed eventually in
Sect. 4.3.

4.1 Generalized Gauss-Newton

After linearizing the nonlinear functions in the KKT system, it becomes equivalent
to solving the following Quadratic Program (QP)

minimize
X;U

˚quad.X;UI XŒk�;UŒk�;Y Œk�; �Œk�/ (7a)

subject to Geq;lin.�/ D

2
66664

x0 � Nx0
x1��0.xŒk�0; uŒk�0 /�

h
AŒk�0;B

Œk�
0

i"
x0�xŒk�0
u0�uŒk�0

#

:::

3
77775 D 0; (7b)

Gineq;lin.�/ D

2
66664
h0.x

Œk�
0; u

Œk�
0 /C

h
CŒk�
0;D

Œk�
0

i"
x0�xŒk�0
u0�uŒk�0

#

:::

r.xŒk�N /C CŒk�
N .xN � xŒk�N /

3
77775 � 0; (7c)

where Y Œk� and �Œk� are the Lagrange multipliers for respectively the equality and
inequality constraints and AŒk�i ;B

Œk�
i ;C

Œk�
i ;D

Œk�
i denote the Jacobian matrices of the

corresponding functions evaluated at the current iterate k. Note that �i.�/, Ai and Bi

for i D 0; : : : ;N�1 form the information that needs to be provided by the integration
methods from Sect. 3. The result is a sequence of QPs of which the solution provides
a sequence of iterations, converging to a local solution of the original, nonlinear
optimal control problem under the assumptions as discussed in [27].

There are different variants of the SQP algorithm that use certain expressions for
the QP objective in (7a). In case of an exact Hessian variant, the sparse Hessian of
the Lagrangian r2L needs to be evaluated and used in the QP subproblem leading
to a locally quadratic convergence rate in solving the NLP. The Hessian is often
approximated resulting in a trade-off between computational complexity per step
and convergence speed. The special case of using a least squares objective such as
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in Eq. (2a) allows a popular Hessian approximation that is known as the Generalized
Gauss-Newton (GGN) method [28]. The objective function to be used in Eq. (7a)
then reads as

˚quad D 1

2

N�1X
iD0

"
xi � xŒk�i

ui � uŒk�i

#>
JŒk�i

>
JŒk�i

"
xi � xŒk�i

ui � uŒk�i

#
C

N�1X
iD0

FŒk�i

>
JŒk�i

"
xi � xŒk�i

ui � uŒk�i

#

C 1

2
.xN � xŒk�N /

> JŒk�N

>
JŒk�N .xN � xŒk�N / C FŒk�N

>
JŒk�N .xN � xŒk�N /

(8)

where FŒk�i D Fi.x
Œk�
i ; u

Œk�
i / and FŒk�N D FN.x

Œk�
N / are evaluations of the residual

functions from Eq. (2a) and JŒk�i , JŒk�N are respectively their Jacobians @Fi.x
Œk�
i ;u

Œk�
i /

@.xi;ui/

and @FN .x
Œk�
N /

@xN
. The GGN method is based on the observation that JŒk�i

>
JŒk�i for each

i D 0; : : : ;N forms a good approximation for the Hessian result r2
wi
L where

wi D .xi; ui/, as long as the residual evaluations Fi.�/ remain small [27]. The
convergence rate of the GGN method is only linear but its implementation is rather
simple and works very well in practice for such small residual problems. A special
case of this is when the original objective function ˚.X;U/ was already convex
quadratic, meaning that it can be used directly in the QP. The method can also
be further generalized to Sequential Convex Programming e.g. in case of NMPC
problems with elliptic terminal regions [29].

4.2 Sparsity Exploitation

The QP subproblem presented in the previous Subsection shows a specific sparsity
structure which should be exploited. One option is to reduce the variable space by
a procedure called condensing, and then to solve the smaller, condensed QP using
a suitable solver [5]. Another option is to directly use a tailored QP solver that can
efficiently exploit this structure.

4.2.1 The Condensed Problem

To simplify notation, let us define the trajectories�X D X�XŒk� and�U D U�UŒk�.
The constraints in (7b) can be used to eliminate �X from the QP using

�X D d C C�Nx0 C E�U with �Nx0 D Nx0 � xŒk�0 ; (9)
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and

d D

2
6664

��0
��1 C A1��0

��2 C A2��1 C A2A1��0
:::

3
7775 , C D

2
6664

A0
A1A0

A2A1A0
:::

3
7775 and

E D

2
6664

B0
A1B0 B1

A2A1B0 A2B1 B2
:::

: : :

3
7775 ;

(10)

where ��i D �i.x
Œk�
i; u

Œk�
i / � xŒk�iC1. Note that a compact notation Ai;Bi has been used

here for respectively the matrices AŒk�i ;B
Œk�
i at the current iteration. Insertion of the

expression �X D d C C�Nx0 C E�U into (7c) and (8) yields an equivalent, but
smaller scale QP of the following form:

minimize
�U

1

2
�U>Hc �U C�U>gc (11a)

subject to w C K�U � 0: (11b)

Let us omit the lengthy explicit expressions for the matrices Hc;K and the vectors gc

and w. For a simplified setting of a quadratic objective and simple bound constraints,
these expressions can be found in [5]. Although the QP subproblem can now be
solved in the reduced variable space �U 2 R

Nnu , the variables in X are still
updated using an expansion step based on Eq. (9). The fact that the iterations are
still performed in the full variable space, is the crucial difference with using a
single shooting formulation. The bottleneck in an implementation of condensing
is the computation of the condensed Hessian Hc, which has been shown to be
of complexity O.N2/ [6, 30]. It is hereby important to exploit the lower block
triangular structure of matrix E from (10), the separability of the objective function
in (8) and the symmetry of the Hessian matrix [5, 31]. Note that the small scale
QP can be solved by an efficient, dense linear algebra solver such as qpOASES.
This significantly reduces the feedback delay time between receiving the new state
estimate Nx0 and applying the next control input uŒkC1�

0 D uŒk�0 C�u?0 .

4.2.2 Solving the Sparse Problem

Using a condensing approach, the corresponding cost per iteration is of order
O.N2/ including the factorization cost as discussed in [30, 32]. Alternatively, one
would directly solve the sparse QP problem from (7) in the full variable space
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and exploiting the sparsity structure then becomes essential. Both for active set and
Interior Point (IP) algorithms to solve this multi-stage QP, the cost per iteration of
the solver can be made of order O.N/ [33]. Code generation tools exist that export
tailored convex IP solvers, popular examples are CVXGEN [34] and FORCES [9].
An efficient implementation of a structure exploiting, primal-barrier IP method
can be found in [35]. Employing the condensing technique is known to perform
very well for relatively short horizon lengths N but can be outperformed by using
a structure exploiting convex solver for longer horizons. Comparative simulation
results can be found in [5]. Classical condensing is generally a good approach in
case of many state variables nx > nu, while complementary condensing [36] was
proposed as a competitive alternative in case of many controls nu > nx. A known
issue with IP methods in a real-time framework is that it is difficult to warm-start
them efficiently. There is ongoing research on combining the beneficial properties of
both an active set method and a structure exploiting IP solver. A promising example
based on a dual Newton strategy to solve structured multi-stage QPs is the open-
source software qpDUNES, presented in [10].

4.3 Real-Time Iterations

The RTI scheme has already been mentioned multiple times in this paper, but it is
important to elaborate on some of its properties since it is the key idea that allows
nonlinear optimal control with microsecond execution times.

4.3.1 Initial Value Embedding

In NMPC, a sequence of optimal control problems with different initial values
NxŒ0�0 ; NxŒ1�0 ; : : : needs to be solved. For the transition from one problem to the next, it is
beneficial to take into account the fact that the optimal solution U�.Nx0/ depends
almost everywhere differentiably on Nx0 which is the idea behind a continuation
method. The solution manifold has smooth parts whenever the active set does not
change, but non-differentiable points occur where the active set changes. After
linearizing at such a point in the context of a nonlinear IP method, a simple
tangential predictor would lead to a rather bad approximation. One remedy would
be to increase the path parameter � , which decreases the nonlinearity but it comes
at the expense of generally less accurate solutions.

One can deal with active set changes naturally in an SQP type framework by
the following procedure proposed and analysed in [4, 29, 37]: first of all, the
parameter Nx0 needs to enter the NLP linearly, which is automatically the case for
a simultaneous OCP formulation such as in Eq. (2b). The problem needs to be
addressed using an exact Hessian SQP method. Finally, the solution trajectories
XŒk� and UŒk� for the current problem in NxŒk�0 are used as initial guess to solve the
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OCP for the new parameter value NxŒkC1�
0 . In the context of NMPC with a quadratic

cost, this continuation technique can also be used with a Gauss-Newton Hessian
approximation. This is done in the RTI algorithm and yields a multiplier free,
generalized tangential predictor i.e. one that works across active set changes [2].

4.3.2 Reducing the Computational Delay

Ideally, the solution to a new optimal control problem is obtained instantly which is
however impossible due to computational delays. Several ingredients of the RTI
scheme can help us in dealing with this issue. A first and important one is to
divide the computations at each sampling time into a preparation and a feedback
phase [4]. The typically more CPU intensive preparation phase is performed with
a predicted state, before the state estimate is even available. Once the new value Nx0
becomes available, the feedback phase quickly delivers an approximate solution to
the original problem by solving the prepared, convex subproblem. The idea is to
always work with the most current information in each iteration, i.e. not to iterate
until convergence for an MPC problem that is only getting older. It can also be seen
as a distributed-in-time optimization procedure.

Another important ingredient is to transfer solution information from one OCP
to the next one, i.e. to efficiently warm-start each solution procedure. This can be
done by using the previously optimal trajectories as an initial guess at the next time
step and this either directly or in a shifted version. A last technique concerns code
generation which has become a quite popular way to do code optimizations based
on a high-level description of the problem to be solved. Multiple tools already
exist to automatically generate custom solvers in a low-level language [34, 38].
Also for NMPC, the consecutive optimal control problems are similar and many
computations can be done offline before the controller starts. The auto generated
code then exploits problem dimensions and sparsity structures, it avoids dynamic
memory allocation and has a nearly deterministic runtime. The latter is important
to be able to satisfy the hard timing constraints in real-time applications. A tailored
RTI algorithm for nonlinear optimal control can be generated as plain C-code by the
open-source software ACADO Toolkit [18].

5 A Classical Benchmark Problem

This section presents numerical results that allow for interesting comparisons to be
made between different NMPC formulations, algorithms and their implementation.
The problem formulation is first presented in Sect. 5.1, followed by a description
in Sect. 5.2 of the three test cases that are used in simulation. Some results of
the corresponding numerical experiments are eventually shown and discussed in
Sect. 5.3. The simulations presented in this section are performed using the ACADO
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code generation tool on a modern computer equipped with Intel i7-3720QM
processor, running a 64-bit version of Ubuntu 12.04. All programs are compiled
using the Clang 3.0 compiler.

5.1 Problem Formulation

Throughout this section, the simple NMPC problem from [39] will be used as a
benchmark example. Its corresponding continuous time OCP reads

min
x.�/;u.�/

Z tCT

t
.kx.�/k2Q C ku.�/k2R/ d� C kx.t C T/k2P (12a)

s.t. x.t/ D Nxt; (12b)

Px1.�/ D x2.�/C u.�/ .�C .1 � �/ x1.�// ;

Px2.�/ D x1.�/C u.�/ .� � 4.1 � �/ x2.�// ; (12c)

� 2 � u.�/ � 2; 8� 2 Œt; t C T�; (12d)

kx.t C T/k2P � ˛; (12e)

where Eq. (12c) defines the simple but unstable ODE system with two differential
states x1 and x2, a control input u and constant value� D 0:5. The parameters P � 0

and ˛ � 0 from Eqs. (12a) and (12e) define the terminal penalty and the terminal
region ˝˛ of which the latter is preferably as large as possible, while still leading
to closed-loop stability for the resulting NMPC approach. The following parameter
values will be used in simulation:

Ts D 0:1s N D 15 T D 1:5s

Q D
�
2:0 0:0

0:0 2:0

�
R D 0:1

P D
�
10:605 �9:395
�9:395 10:605

�
˛ D 0:7

w here Ts and N respectively define the size and number of shooting intervals over
the horizon Œ0;T� i.e. they define the shooting discretization of the OCP.
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5.2 Simulation Test Cases

5.2.1 Case A: Original Formulation and QP

Starting from the formulation in (12), a first NMPC scheme is to solve this OCP
until convergence at every time point and this will be further called case A. Note
that the resulting NMPC controller is the same as case A in the paper from [39].

5.2.2 Case B: Tuned Formulation and QP

It is interesting to have a look at the tuning possibilities to achieve faster sampling
times when necessary. First of all, the RTI scheme can be used instead of iterating
the procedure until convergence. Then it is important to use a suitable integration
method with efficient sensitivity generation for the shooting discretization, as
discussed in Sect. 3. The ODE system in (12c) is rather simple and non-stiff, thus
an explicit Euler discretization with a step size of 0:1s already suffices in this
case. To further improve the computation time of one RTI iteration, the number
of optimization variables can be reduced. This means that the number of shooting
intervals N will be reduced while keeping the horizon length long enough for a
good NMPC performance. To achieve this, a non equidistant control grid is used
as depicted in Fig. 1. Eventually, the quadratic terminal constraint in (12e) is also
removed and the resulting scheme will be referred to as case B.

To obtain results that are comparable to the original scheme (case A), a few
details must be addressed. One is the terminal cost matrix P that needs to be altered
since the new horizon is shorter. By integrating the differential Riccati equation
backwards over 0:5s, a new terminal cost matrix P.1:0/ can be found:

P.1:5/ D
�
10:605 �9:395
�9:395 10:605

�
) P.1:0/ D

�
4:432 �3:558

�3:558 4:432

�
:

Because of the varying interval size in the alternative control horizon, the weighting
matrices Q and R are scaled using a factor relative to this interval size. Also standard
shifting approaches are not applicable anymore and therefore abandoned.

Fig. 1 Illustration of a non equidistant control grid of only four shooting intervals over ones
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5.2.3 Case C: Original Formulation and QCQP

It is important to note that all presented techniques can be extended further towards
Sequential Convex Programming (SCP) [29]. In Sect. 4.2.2, FORCES has been
presented as a sparsity exploiting QP solver although the most general convex
problem that it targets is a quadratically constrained QP (QCQP). For our benchmark
example, the terminal inequality constraint from (12e) can be kept in the convex
subproblem such that it becomes of this QCQP form. This will be referred to as
case C and it uses the same, original OCP formulation as case A.

5.3 Numerical Results

5.3.1 Comparison of Single and Multiple Shooting

First of all, let us illustrate multiple shooting by comparing it with a single shooting
discretization both on the OCP formulation of case A using initial value embedding.
The performance of the NMPC controller will be measured using the Karush-Kuhn-
Tucker (KKT) tolerance, computed as in [31]. Figure 2 illustrates the resulting
convergence rate for both solvers in a simulation over a time period of 5s. It
can be seen that the convergence is slightly better using the multiple shooting
discretization. In both cases, the solver starts from the exact same initial guess which
is the reference trajectory. Note that also the computational complexity is the same
for both.
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Fig. 2 Closed-loop NMPC performance using both single and multiple shooting
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Table 1 Average computation times for NMPC using the RTI scheme

NMPC Case A .�s/ Case B .�s/ Case C (�s)

Integration method 0:222 0:142 0:221

Condensing 3:370 0:088 –

QP solution 4:340 0:633 29:300

Remaining operations 1:608 0:087 0:679

One real-time iteration 9:540 0:950 30:200

5.3.2 Execution Times

The average computational times for the different components in one RTI iteration
are shown in Table 1 and this for the three different cases. Using ACADO code
generation, one iteration for case A, B and C on average takes respectively 9:54,
0:95 and 30:2 �s. Note that the formulation used in case B has been tuned precisely
to result in a total execution time that is below 1�s. The scheme which uses
FORCES to solve a QCQP subproblem (case C) appears not to be competitive
with the condensing based approach (case A) for this example. The reason is
that the used horizon is relatively small as discussed more detailed in [5]. An
important advantage of case C is that the terminal inequality becomes part of
the subproblem to be solved and it is therefore guaranteed to be satisfied for a
feasible trajectory. This is not necessarily true when linearizing that same constraint.
Exploiting convexity as much as possible can therefore be a rather powerful
tool.

5.3.3 Tracking Performance

Figure 3 compares the closed-loop tracking performance of the three NMPC
schemes for five different initial values, also used in [39]. As a reference, the closed-
loop behavior of the corresponding LQR scheme with control saturation is shown in
the same figure. The latter controller appears to be unstable for one of these initial
values while the NMPC schemes all exhibit a performance that is similar to one
another. According to the RTI scheme, only one SQP iteration is performed per
time step for cases B and C while the NMPC results for case A are iterated until
convergence using a rather strict stopping criterion. Note that the feedback delay
has not been taken into account in these closed-loop simulations.
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Fig. 3 Closed-loop performance of three different NMPC schemes and the LQR controller and
this for five different initial values. This figure is comparable to one presented originally in [39]

6 Conclusions

This paper handled a general parametric optimization problem, which arises
naturally in NMPC where one has to solve a nonlinear OCP at every sampling
instant. It gave an outline of the different algorithmic developments that made these
techniques real-time feasible today even for nonlinear systems with fast dynamics.
Auto generated integration methods have been presented as an essential part to
efficiently linearize the problem and compute derivative information. The RTI
scheme has been described as an online algorithm that allows to perform real-time
NMPC while having a fast control feedback to the real process. A simple example
taken from the literature, was used to illustrate the performance of the presented
tools. The average execution time per time step for this nonlinear problem was
eventually shown to be below 1�s.
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