Direct Multiple Shooting for Parabolic PDE
Constrained Optimization

Andreas Potschka

Abstract Direct Multiple Shooting is a flexible and efficient method to solve
difficult optimal control problems constrained by ordinary differential equations or
differential-algebraic equations. The aim of this article is to concisely summarize
the main conceptual and methodological approaches to solve also optimal control
problems with parabolic partial differential equations constraints via a Direct
Multiple Shooting method. The main obstacle is the sheer size of the discretized op-
timization problems. We explain a typical direct discretization approach and discuss
an inexact SQP method based on two-grid Newton-Picard preconditioning. Special
attention is given to a-posteriori k-estimators that monitor contraction and to the
structure-exploiting treatment of the resulting large-scale quadratic programming
subproblems, including an extended condensing technique that exploits Multiple
Shooting and two-grid Newton-Picard structures. Finally, we present numerical
results for an advection-diffusion and a bacterial chemotaxis example.

1 Introduction

The early approaches for optimal control for ordinary differential equations (ODEs)
were mostly based on Dynamic Programming [3] or Pontryagin’s Maximum
Principle [16]. Due to the curse of dimensionality, Dynamic Programming is
not applicable to problems with more than a few state variables. The Maximum
Principle is an indirect method in the sense that the controls are given as a closed
form representation of adjoint states, the so-called co-states, which satisfy an adjoint
differential equation and suitable boundary constraints. The resulting boundary
value problems in the states and co-states can then be discretized by numerical
methods for boundary value problems like Multiple Shooting [15] or Collocation
[21]. The Maximum Principle is a typical example for an optimize-then-discretize
approach. It was found out later that ideas from numerical methods for boundary
value problems can also be used on the optimal control problem itself instead of
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its optimality conditions, thus disposing of the need to formulate adjoint equations,
which can be a time-consuming affair (discretize-then-optimize). Furthermore, this
approach lends itself quite naturally to a direct formulation, in which the discretized
controls are not eliminated in favor of adjoint variables. For Direct Collocation,
we refer the reader to [4, 25] and for Direct Multiple Shooting to [6]. Direct
formulations have been found to reflect the real conditioning of the optimal control
problem better, in particular when the mapping of the adjoint to the control has
a large Lipschitz constant. We want to remark that there are also direct optimize-
then-discretize methods for which the control is kept in the system of optimality
conditions and its discretization.

In optimal control for partial differential equations (PDEs), indirect optimize-
then-discretize methods prevail (see, e.g., [24]). This is mostly due to the fact that
indirect methods usually yield more accurate representations of the control (see also
[11, Chap. 3]).

The contribution of this article is to summarize a Direct Multiple Shooting
method for parabolic PDE constrained problems from Potschka [17, 18] in a concise
form and to present numerical results for problems that could also be treated well
with indirect methods. The main challenge in this approach is to tame the large-scale
nature of the discretized Nonlinear Programming problems (NLPs), which can be
mastered by the use of inexact Sequential Quadratic Programming (SQP) with two-
grid Newton-Picard preconditioning.

The main strengths of the Direct Multiple Shooting approach can unfold in par-
ticular for practitioners who want to solve parabolic PDE constrained optimization
problems and need an accurate representation of the system dynamics, but can live
with lower resolution of the optimal control. This situation is not unusual due to
physical restrictions of manipulator hardware. These practitioners can then benefit
from time savings in the problem setup, because no adjoint equations need to
be derived, but also in the problem solution, because the method can be easily
parallelized on the basis of the Multiple Shooting structures. Furthermore, the
solutions delivered by Direct Multiple Shooting can serve as initial guesses for other
methods with higher accuracy.

2 Problem Formulation

Let 2 C RY be a bounded d-dimensional spatial domain with sufficiently regular
boundary 9£2. Regarding time, we only consider the fixed interval (0, 1) here for
simplicity. We assume that the control satisfies

q € L*((0.1);0), where Q C L2(2)"i x L*(382)",
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with ng distributed and "2 boundary controls. We would already like to point out
that the pure boundary control case ng = 0 is especially advantageous in a Multiple
Shooting approach, as we describe in Sect. 3.

We consider two kinds of coupled state variables: ODE states v € C'([0, 1]; R™),
which are not spatially distributed, and PDE states u € W(0, 1)"«, for which we use
the standard Hilbert space for parabolic PDEs

W(0,1) = {u € L*((0,1); V) | d,u € L*((0,1); V*)},

where (V, L?*(£2), V*) is a Gelfand triple and d,u denotes the time derivative of u
in the sense of vectorial distributions (see, e.g., [29, Chap.IV]). We assume that the
spatial regularity of u is V. C H'(£2). According to [7, Chap. XVIII, Theorem 1],
we can trade some spatial regularity for higher temporal regularity, because W(0, 1)
is continuously embedded in C°([0, 1]; L?(£2)). Thus, we have existence of the trace
u(t) € L>(£2)™ for all t € [0, 1], which is important for the formulation of boundary
constraints in time.

We assume that the time derivative v equals a sufficiently regular nonlinear
function fOPE : O x L2(2)™ x R — R™ and —du equals a possibly
nonlinear elliptic differential operator A : Q x V x R™ — V*. Furthermore, we
allow for generalized temporal boundary constraints, mixed control-ODE-state path
constraints and final ODE state constraints via the functions

P L(2) xR > L2(2)" xR™, rF£:QxRY > R% °:RY - R".

The objective function @ : L?(£2)" x R™ — R depends on the final values of the
ODE and PDE states. Finally, we can state the problem of interest of this article as

minimize @(u(1), v(1)) (la)

q€L*((0,1);:0)
ueW(0,1)m

veC! ([0,1];R™)

s.t. duu = —A(q(®), u(t), v(r)), te(0,1), (1b)

v =g u®). v(). 1€(0,1), (lc)

((0),v(0)) = r*(u(1), v(1)), (1d)

r(g(1),v(1) > 0, t€(0,1), (le)

r(v(1)) = 0. (1f)

More general problems with free initial and final time or integral-type objectives
can be equivalently reformulated using extra v variables to fit problem class (1).
Further assumptions concerning regularity requirements on the occurring functions
above is a delicate issue. From a practical point of view, we require that (1) is well-
posed and that there exists an appropriate discretization for the involved variables
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and functions such that the solution of the resulting finite dimensional optimization
problem is consistent with (1).

3 Discretization

In Potschka [17], problem (1) is discretized in space first and then in time. We
explain here a different route, where time is discretized before space. In both cases,
though, the resulting discretized problem (3) exhibits the same structure.

3.1 Time Discretization

We start out by discretizing the controls in time. To this end, let 0 = * < ... <
f™s = 1 denote a partition of the interval [0, 1]. On the shooting intervals I’ :=
(#,fT1),i=0,...,nus—1, we perform a piecewise discretization of the controls in

time. The piecewise nature is important for decoupling properties to be exploited in
the numerics. We restrict ourselves here to the simplest case of a piecewise constant
discretization in time such that

nms—1

G0 =Y gy, withg' €Q.i=0.. . nus—1.
j=0

where y; denotes the characteristic function of I'.

In the next step, we parametrize the state variables by local initial values
u,vi,i = 0,...,nys: We assume that the local initial value problems of the
form (1b)—~(1c) on I with initial values u’, v’ admit a unique solution denoted by

i (e i i )
w(tq,u,v) € L2(2)" xR™, foralltel',i=0,... ,nys—l.
Ul(t; ql, Ml’ vl)

Continuity of the states on the full time horizon (0, 1) must then be enforced with
matching conditions of the form
ﬁi(t; qi,ui, vi) =t W(t; qi,ui, vi) =Tl i=o0,.. . ams — 1. 2)
At this stage of the discretization procedure, we have arrived at a problem
depending only on variables that are either real vectors or functions distributed in
space only, namely ¢',u’, v',i = 0,...,nys. Note, that we have en passant added
an additional control variable ¢"™s to lend a common structure to the optimization

variables corresponding to each shooting node 7. We have to eliminate these
additional degrees of freedom later via (3f).
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3.2 Space Discretization

Now, we can discretize ¢' and ' in space, e.g., by Finite Differences, Finite
Elements, or Finite Volumes. We denote the corresponding vectors by ¢’ and u'.
The quantities %' and v' can then be discretized by an appropriate time stepping
method. We denote the result by @'(£1; ¢',u’, v') and v(£+'; q',u’, v'). It is not
mandatory to use the same grids for the controls or states on all shooting intervals,
or even within one shooting interval for the time steps of states in case of a Rothe-
type time stepping scheme. According to [10], a good compromise for balancing
good mesh adaptivity with few Finite Element matrix assembly calls is to fix the
state mesh on each shooting interval and discretize the matching conditions (2) in a
variational manner. In this case, a Method of Lines discretization in time seems to
be a flexible and efficient approach, because existing ODE solvers can be used. For
a more detailed discussion of discretization issues of parabolic PDEs, we refer the
reader to [23].

For simplicity, we assume here that ¢’ and u’ are based on the same spatial
discretization in each shooting node. However, we assume that there is a hierarchy of
nested discretizations V! C Vf C .-+ C V for the states, which in turn yields on each
level £ = 1,2,... discretized states and shooting solutions. The path constraint is
discretized on the shooting grid only. For more sophisticated methods, see Potschka
[19].

All remaining functions of problem (1) need to be appropriately discretized
as well. Finally, we arrive at a highly structured, finite dimensional optimization
problem on each spatial discretization level £

minimize @ (™S, v"™S) (3a)
(gl )25

s. t. rg(u"Ms, v™S) — u’ =0, (3b)

(g L um v~ =0, i=1,...,nus (3c)

P @™s, p™s) — 0 =0, (3d)

V(g um vy -0 =0, i=1,..., nus, (3e)

g™ — g™ =0, (30)

rig v >0, i=1,..., nyus. (32)

re(v™s) > 0. (3h)

The numerical evaluation of (3c) and (3e) is expensive, because it comprises the
solution of an initial value problem for the spatially discretized PDE. To this end,
we use an adaptive backward differentiation formula with monitoring strategy [1, 2],
which is implemented in the C++ code DAESOL-II. It also supplies efficient first
and second order forward and backward directional derivatives of the solutions of
the initial value problems on the basis of Internal Numerical Differentiation [5] and
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Algorithmic Differentiation [9, 28], for which the backwards mode of Algorithmic
Differentiation delivers an automated and efficient way to compute gradients in the
style of adjoint equations.

We want to remark that special attention has to be paid to the question of
consistency of the discretized problem (3) with the original problem (1) for fine
discretizations. For instance, it is necessary to use correct weighting matrices for
the discrete approximations of Hilbert space inner products and their corresponding
norms. Their inverses must also be used for correct discrete Riesz representations
of discrete variables that really live in the dual space, for example the Lagrange
multipliers of (3b) and (3c). Then, it is typically possible to prove consistency of (3)
and (1) for the particular problem at hand.

4 Newton-Picard Inexact SQP

When disregarding its special structure for a moment, we see that problem (3) is a
Nonlinear Programming (NLP) problem of the form

minimize f(x) (4a)
xeR”

s.t. gilx)=0, ieg, (4b)

gi(x) =0, i€l (4c)

with f : R" — R and g : R” — R™. We assume throughout that f and g are twice
continuously differentiable functions and that the sets £ and Z form a partition of
{1,...,m} = E UZ. Forz = (x,y) € R"™ we can then define the Lagrangian
function

L@ =f@) =) yigix).
i=1

For the theory of NLP we refer the reader to [14].

4.1 The Equality Constrained Case

We first consider the equality constrained case Z = {}. If x* € R” satisfies a
constraint qualification and is a local minimizer of (3), then there exists a Lagrange
multiplier y* € R” such that with z* = (x*, y*)

o (B (VLE
F&) = (Fz(Z*)) = ( o) ) =0 ©)
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In practice, a Newton-type method is used to solve the necessary optimality
condition (5) in order to obtain a critical point z*. In general we must then check
(second order) sufficient conditions to ensure that x* is really a minimizer and not a
maximizer or saddle-point.

Because of the large-scale nature of (3), it is a good idea to employ iterative
methods for the solution of the linearized subproblems within the Newton-type
method. We recede to a rather simple iterative method here, namely a Linear
Iterative Splitting Approach (LISA), because we can generalize it from linear
systems to Quadratic Programming (QP) problems in Sect. 4.4.

Let N = n+mJGz) = $(). and M : RY — RM pe given such that
M(z)J (z) ~ Ly. Then, the LISA-Newton iterates are defined via

=K oA, 2° given, (6)

where o € (0, 1] is an appropriately chosen damping factor to ensure global
convergence and Az* is computed via the inner LISA iteration

Azfﬂ = Az~ M) [J(zk)Azf + F(zk)] , Az =0. @)

The iteration (7) converges for all values of F(x*) and Az’é if and only if the spectral
radius ki, of Ay := Iy — M(zk)J(Zk) is less than 1, see [22, Theorem 4.1].

The choice of the damping factors oy exceeds the scope of this article. The
interested reader is referred to the discussion in [8] and its specialization for the
LISA-Newton method [17].

4.2 A-Posteriori k-Estimators

Based on [17, Lemma 4.28], we observe that there is a representation of Az;‘ for
[ > 1 in terms of a truncated Neumann series

A= [Z:@ (v - M(Zw(zk))’} MEFE) = —ME)F),

where M(zF) depends on I. On the basis of this M, we can observe the connection
Ke € [(kin)'s (kiin)' + €] foralle > 0

between the linear convergence rate kj, of the LISA iteration (7) and the linear
convergence rate k, (which depends on an e-dependent norm) of the nonlinear
LISA-Newton iteration (6), if each AZF is computed from / LISA iterations [17,
Theorem 4.29]. This implies that under the assumption «j, < 1,/ = 1 is already
enough for local convergence and, moreover, if we perform / > 1 LISA iterations
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per outer step, then this extra effort is compensated for by fewer outer LISA-Newton
iterations, at least asymptotically for k — oo.

Furthermore, this result is the basis for a-posteriori k-estimators [17]. To explain
the different estimators, we fix k and define {; := Azf,, — Az}. We immediately
observe that {;+; = Ax{;. The Rayleigh k-estimator is based on the Rayleigh
quotient

KRayleigh _ ngAkgl _ nggl+l

: g o

Rayleigh . L .
The sequence (x; WYY converges to ki, for I — oo if A¥ is diagonalizable, has

a single eigenvalue of largest modulus, and {; has a nonzero component in the
corresponding eigenspace. For non-diagonalizable A, the Root «x-estimator

KR = (18l / 16!

can be used. It converges if kj;, > 0 and ¢; has a nonzero component in the dominant
invariant subspace of A;. However, convergence to kjj, can be quite slow. In contrast,
the Ritz k-estimator converges in a finite number of iterations. It is based on the
largest Ritz value /cZRi‘Z of Ay on the order-I Krylov subspace generated by A; and
;. The disadvantage is that an orthonormal basis of the Krylov subspace needs to
be maintained, which can be prohibitive due to excessive memory consumption. In
our numerical experience, this is not a problem because the Newton-Picard based
preconditioners M described in Sect. 4.3 require only few LISA iterations.

The k-estimators can also be used to asses the error of the LISA iteration (7)
in the following sense: For all & € (0, 1 — «ji), there exists a vector-norm |||, .
with corresponding matrix-norm ||Ag|,; < kin + & < 1 such that (compare [17,
Lemma 4.30])

( in + )l
||Azf - AzkH*’k < l_Kl(ij_S) HAZII - AZI(;H*J('

In our implementation, we have / > 2 and terminate the LISA iterations as soon
as either the k-estimate is lower than kp.x = m or a maximum number of
LISA iterations, in our case /,,x = 7, is reached. In the latter case, we ameliorate
the preconditioner M in order to reduce the contraction rate Kiin as discussed in the
following section. In most outer iterations only / = 2 LISA iterations are required.
We used the Ritz k-estimator for the computations in Sect. 6.

4.3 Two-Grid Newton-Picard Preconditioning

The requirement kj;, < 1 for convergence of the LISA iteration (7) is a strong
requirement, which calls for specially tailored preconditioners. In our case, Newton-
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Picard preconditioning is the method of choice for computing M, see [20]. Although
grid-independent convergence has so far only been proven for a linear quadratic
model problem with single shooting, our numerical experience on nonlinear prob-
lems with Multiple Shooting is completely satisfying.

The general paradigm of Newton-Picard preconditioners is the following: Under
reasonable assumptions, #' has a compact Fréchet derivative with respect to ¢' and
u'. Thus, even though the discretized Jacobian matrices G}, = du'/dq' and G|, =
Ou'/du' are in general large dense matrices, their eigenvalues and singular values
cluster at 0 and they can thus be approximated well by low-rank matrices.

From a geometrical point of view, the compactness is a result of a smoothing
property of ', which can alternatively be exploited to form a low-rank approxima-
tion by a two-grid approach. To this end, we approximate the Jacobian matrices G;
and G', on coarse grids with suitable projection and restriction matrices P and R.
This is the preferred way because no large eigenvalue and singular value problems
have to be solved. Furthermore, this approach can be extended in a straight-forward
fashion to Multiple Shooting approaches.

4.4 The Inequality Constrained Case

We now consider the inequality constrained case when Z # {}. The Jacobian

(1) BT (VALE) V)
J(Z)_(Jz(z) 0 )_(Vg(x)T 0 )

is a saddle-point matrix in unsymmetric form. It is singular in general, e.g., due to
rank deficiency of J,(z) if lower and upper variable bounds are present. Thus, we
need to recede to a pseudo-inverse approach. Let us first consider the case of exact
derivatives in the SQP method. In this case, we can define a suitable pseudo-inverse

AZ = J®(, —F () instead of AZX = —M(Z)F ().

by computing the primal-dual solution 7 = (X, y) € R"™" of the QP

minimize % FTI(E+ (FIE) = W@+ H(HTY) (8a)
s. t. (2% + (F2(2) — 1 (2)x")), = 0, i€k, (8b)
(2(@)E + (F2() — (), > 0, iel, (8¢)

and then the step AZF = 7— 7. One can show that if QP (8) has a unique solution at
7% and if some Z = (£,¥) € RY satisfies y; > —y; for all i € Z, then J® acts linearly
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on the second argument like a pseudo-inverse in the sense that J® (%, J()%) = 2
[17, Lemma 4.36].

Furthermore, if the active set of QP (8) does not change from iteration k — 1 to k
and the second order sufficient condition and strong complementarity hold, then we
can construct a matrix M* such that for a neighborhood U of F(z¥) it holds that

—M*F =J®(zk,—ﬁ) forall F € U.

In words, the pseudo-inverse JO® acts locally like a matrix [17, Theorem 4.37].
In addition, if the SQP method with J® converges to z*, then z* is a critical
point of NLP (4). Moreover, the second order sufficiency condition and strong
complementarity transfer from QP (8) at z* to NLP (4) at z* [17, Theorem 4.41].

In the case of inexact derivatives on the basis of the Newton-Picard approxima-
tion from Sect. 4.3 we use a structured approximation of the Jacobian

_ (VALEH —Veeh) _ (B —@T\ _
1= (Voo T8 ) = (675 )=

In analogy to the construction of J®(Z*,.) from J(z), we can construct a QP
preconditioner M(z*) for a QP-LISA iteration. We first compute the primal-dual
solution 7 = (X, y) of the QP

1= - s
minimize 3 VB + (Fi(xh) — CF* + AX)) + (CHTOF + Ayf_l))T;z

XER™
(9a)
s. t. (C'5+ (Fa(¥) — C(F + AX))))), =0, i€k, (9b)
(C'5+ (Fa() — C*(F + Ax))))), =0, ieT, (9c)

and then Az} =7 — 78 — Azt .

In order to have valid k-estimators, the working set of QP (9) should be fixed
for [ > 1, effectively deferring further changes of the active set to the next outer
iteration.

5 Numerical Solution of the Large-Scale QPs

In order to solve the large-scale QP (9) efficiently, we need to exploit the specific
block-sparse and low-rank structures generated in the Multiple Shooting and
Newton-Picard approaches. To this end, we first regroup the n; PDE variables and
ny non-PDE variables of NLP (3) in the order

@O, u™s (00, v g0 ™) = (x| xn) € R,
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Then we observe that we can also divide the constraints of NLP (3) to obtain the
structured NLP form

(xrlnlzl)lélﬂgllZf . fx1,x2) (102)
s.t. gilx;,x) =0, ieé, (10b)
gilx1,x) =0, ieé&,, (10c)

gi(x1,x) >0, €T, (10d)

where |£;| = n;. The constraints (10b) comprise the PDE boundary constraints (3b)
and PDE matching conditions (3c).

5.1 Multiple Shooting Structure Exploitation

The QP constraint matrix C has the form

Cn C2
C=1CyCx
C31 Cn
b b
Hﬂu Ruu Ruv
G,i L, Gll, G!
GZMS _]In GﬁMS GZMS
RBM _H"v RBU
H! H! -1, H!
HZMS HSMS _]Inv HZMS
_ _ H”q _H”q
R;l Rzl
Riv.,nMs Riqs”MS
R%"Ms
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with the derivative abbreviations

R ard R - ard R ar® R ar® R — re
uu ounms’ uv dv™s’ vu ounms’ vy dv™s’ Juims’
G — ou' G — ou' G — ou' Rii — art
q qu—l’ w1y VT il q — qu—l’
i — v’ Hi— o’ H - v’ R — ort
q qu—l’ w1 VT gyl v il

at the current iterate z*. We want to stress that contrary to the appearance the block
Cy is several orders of magnitude larger than the blocks C;; and Cs; on fine spatial
discretization levels.

Let Mg = I,, — ([T G')R® . Tt is easy to see that if Mp is invertible, then Cy;
is also invertible and its inverse is given by Cj;' =

-1 _(nz—l uu I I
[T G I
= vy )\ ey - T, 61

This decomposition into block-triangular matrices yields a procedural recipe for
evaluating matrix-vector products with Cl_l1 that does not require to explicitly form
either Cy; or any part of C 1_11, except for the My block. In the following, we shall
see that a two-grid Newton-Picard approximation of C;; also enables us to use a
simple procedural form for matrix-vector products with the approximation of M.

5.2 Two-Grid Newton-Picard Structure Exploitation

To this end, we need to establish grid transfer operators between a coarse and a fine
grid. For two grid levels £, < {;, we denote the PDE-state degrees of freedom by
ne = n' and ny = n't. Typically, n. &~ 100, while n; > 10,000. We then assume
that the prolongation operator P € R"™>" and the restriction operator R € R
satisfy

RP =1, (11)

On nested grids, it is rather simple to construct P via interpolation. The restriction
of vy € R™ can then be computed as the unique coarse grid vector v, € R whose
prolongation minimizes the L,-distance to v¢ on the fine grid. In case of a variational
spatial discretization, we can use the coarse and fine grid mass matrices M, € R
and M; € R in order to obtain the form

R = M;'P"Mm;,
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which satisfies (11) due to PTM:P = M. Again, the matrix R should not be formed
explicitly if M !is a dense matrix.

We then approximate the blocks of C via a two-grid approach. To this end, we
denote all matrices on the coarse grid with hats (*) and approximate C by a matrix
C of the same block pattern, but consisting of the approximated blocks

R, =PR,R. R, =PR,. R, =RR R, =k, (2
G = PG, G, =PG.R, G =PG, (12b)
H, = H,, H = H'R, H =H, (12¢)
Ri=Ri  RI=R.  R=F (124

Along the same lines, we use the approximations

nMms
Gs (]‘[ G;) R, Mg =1, — Gs,
i=1

nMms

GB = (1_[ élu) ng MB = ]Inf — GB.
i=1

We can then observe that if M g is invertible, then M g 1s also invertible and we obtain
the procedural recipe [17, Lemma 7.2]

~ ~ -1 ~
My = (11,,{ —PGBR) =1, —P(]Inc —Mgl)R.

Thus, we do not need to explicitly form any matrix but M3 on the coarse grid in order
to evaluate m~atrix-vector products with M g and thus also with C‘I_JI. Furthermore,
this form of My allows for an even more concise representation of Cl_ll. To this end,
we define the projectors

Hslow — HV!MS ® (PR), Hfast =1 _ Hslow’

nMSnf
where ® denotes the Kronecker product of matrices. Thus IT5°% is a block-diagonal
matrix of nys blocks PR. Then, we can show [17, Theorem 7.3] that

él—llnslow — (HnMs ® P)él—ll (]InMs ® R), él—llnfast — _Hfast‘

This equation illustrates the name Newton-Picard: On the slowly converging modes,
we approximate the inverse of Cj; by its coarse grid counterpart and perform a
Newton iteration on this subspace, while we only use a Picard (or fixed point)
iteration on the anyway fast converging modes through approximating the Jacobian
with a negative identity. Moreover, we can now easily derive [17, Corollary 7.4] that
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if it exists, the Newton-Picard approximation of block Cj; has the inverse

él_ll = (Lys ® P) ((El_l1 + H”MS"C) (Liys ® R) — Lyysn-

5.3 QP Condensing

We now consider again QPs with a structure inherited from NLP (10)

T T
1
minimize = (xl) (B” Blz) (xl) + (bl) (xl) (13a)
(x1.02) ERM 12 2 \x B> By X2 b, X2

s.t. Cpnxi + Cpx =cy, (13b)
Corxy + Coxo = o3, (13¢)
Ciix1 + Caxo > c3. (13d)

We show that we can employ a partial null-space approach called condensing in
order to efficiently solve the large-scale, structured QP (13b). Condensing is the key
linear algebra ingredient for an efficient Direct Multiple Shooting method (see, e.g.,
[6]), but must be extended to also exploit the two-grid Newton-Picard structures.
For this purpose, we prefer the following presentation of the concept of condensing.

Theorem 1 (Condensing) Assume that Cyy in QP (13) is invertible and define

Z= (_Cl_ll C“) : B =7"Bz,
I,
¢ = Cylel, b = Baic) + by — CLC T (Biic) + by),
¢y = — Gyl C) = Cy — C31Cy' Ca,
¢y = c3 — Caicl, C, = Cy — C3C ' Cra.

Let furthermore (x3,yg,,y7) € Retmtms be q primal-dual solution of the QP

e 1 T/ /T / 7 / ’
minimize Esz X2+b"x st Cxy=c, Cyx>cj. (14)
x,€ER™

If we choose
xf = Crl(e1 — Cix3), (152)
i = Cr' (Bi2 — BuCy'Cio)xs + Biic) + by — Cayi, — Chys)  (15b)

then (x*,y*) 1= (X{, X3, Vg . Vg, 1) is a primal-dual solution of QP (13).
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Proof See, e.g., [17, Theorem 7.6].

Theorem 1 shows how the solution of the structured, large-scale QP (13) can be
boiled down to a medium-scale QP (14), which only contains non-PDE variables
x;. The pre- and post-processing steps only require matrix-vector products with the
large-scale blocks, e.g., n, matrix-vector products for the computation of Cl_l1 Cia.

5.4 Two-Grid Hessian Approximation

If we now use the approximated version of QP (13), we see that based on Sects. 5.1
and 5.2, the partial null-space basis can be evaluated purely on the coarse grid due
to

5_ (—él—llélz) _ (—(H R P)C IR (& P)élz) _ (—(11 ® P)é;féu)
I I I '

This observation suggests a projected Newton-Picard approximation of the Hessian
matrix via

Bfasl _ (nfasl)TBllnfasl 0
0 0/)°

leow — ((HnMs ®i R)Téll (]InMs ® R) (HnMs ®i R)TEIZ)
By (Iys ® R) By

3'5 — B’Sfasl + B’Eslow'
Consequently, we have
ZT Bfastz =0

and thus we can also compute the condensed two-grid Newton-Picard Hessian
matrix purely on the coarse grid according to

~ ~ ~ o~ A A A A — A_l A
B =7"BZ=7"BZ withZ = ( Cﬁl C”) )

e

Thus, it is possible to set up QP (14) efficiently with only a few fine-grid operations.
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6 Numerical Examples

We now report on the numerical results for Direct Multiple Shooting applied
to tracking problems for an advection-diffusion equation in 2D and a bacterial
chemotaxis example in 1D. Further examples can be found in [17], including a
real-world separation process from chemical engineering with economic objective
and constraint functions. All computational results were computed on a Linux
workstation with four 2.67 GHz Intel Core i7 cores and 24 GB of RAM.

6.1 Advection-Diffusion Equation

We consider an advection-diffusion equation on £2 C (-1, 1)2, whose boundary
a2 is partitioned into disjoint sets I;,i = 0,1,2,3. Let v denote the outwards
pointing normal on 352 and let U € L?(£2)? be a divergence-free velocity field. For
y.&,T > 0, inflow profiles u € L*(I7),i = 1,2, and a desired profile i € L*(£2),
we apply the proposed method to the following periodic tracking-type boundary-
control problem with control gradient constraints

minimize ST ) = il + 2l B + 192000 (162)

q€H'(0,T)?

s. t. ou=¢eV-Vu—U-Vu, in £2, (16b)
u(0,.) = u(T,.), in £2, (16¢)
v-(eVu—-Uu) =0, on Iy, (164d)
v-(eVu—Uu) = ulg; —u, onl,i=1,2, (16e)
v-(eVu—Uu) = —u, on I3, (16f)
4i(0) = 4i(T), fori = 1,2, (16g)
qi(t) > 0, fort€[0,7T],i = 1,2, (16h)
dgi : .
E(t) € [-20,20], foraa.r€[0,7],i =1,2. (161)

The setting ¢; € H'(0, T) can be reformulated with L?(0, T) controls by introduction
of ODE states v;, whose time-derivative we control, and adequate adaption of all
occurrences of ¢; in (16).
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Fig. 1 Divergence-free
velocity field obtained from
the solution of a Stokes
problem on an
inverted-T-shaped domain
with inflow from the left on 13 |
Iy, inflow from the right on ,
I, and outflow on top on I '
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We obtain a suitable velocity field U as the solution of a Stokes problem with
parabolic inflow velocitieson ] = {—1} x (—1,—1/3)and I, = {1} x(—1,—1/3)
and free outflow velocity on I'; = (—1/3,1/3) x {1} (compare Fig. 1)

~V-VU+ Vp =0, in 2,
V.-U=0, in 2,
Ux) =0, forx € I,
Ux) = 902 +1/3)(x2 + 1),0), forx € I,
U(x) = (—9(x2 + 1/3)(x2 + 1), 0), for x € I.

We use Finite Differences on equidistant, staggered grids for the discretization of
the Stokes problem. This discretization is compatible with an upwind-flux Finite
Volume method for the advection-diffusion equation, because the velocity degrees
of freedom align with the center of the volume interfaces.

We compute optimal controls for 7 = 10, ii(x) = 1 +x;, u"(x) = exp(—10(x2 +
2/3)%),i = 1,2, and for varying values of ¢ = 10°,107!,1072,5- 102 and y =
1072,1073 on nys = 20 shooting intervals. We use a 5-level hierarchy of grids with
mesh sizes h = 2/15,1/15,1/30, 1/60, 1/120, giving rise to 125, 500, 2000, 8000,
and 32,000 degrees of freedom on the respective level. As initial values, we chose
u' =0,v' =(0.1,0.1)T,¢' = (0.01,0.01)T fori = 0,...,20.

One purpose of treating an advection-diffusion problem here is to fathom the
limits of the Newton-Picard approach, which exploits dispersion numerically. We
can expect the problem to become more difficult to solve as we approach the
hyperbolic limit ¢ — 0. Because the upwind discretization achieves numerical
stability by introduction of spurious numerical dispersion, the discretized problem
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Table 1 The number of inexact SQP iterations and the computation times depend on the diffusion
coefficient ¢ and the regularization parameter y

y=10""! y =103
&= 10° 107! 1072 5-1073 10° 107! 1072 5.1073
Overall iterations | 12 15 19 16 12 21 17 28
Iterations f =5 |5 7 7 7 5 6 6 8
Final coarse level | 1 1 2 2 1 2 2 2
Time steps 657 760 884 903 655 741 859 935

Sim. time (min:s) | 1:48 2:09 2:10 2:13 1:48 1:54 2:17 2:12
Time (h:min:s) 0:49:04 | 1:21:53 | 2:34:15 | 3:30:21 | 0:48:58 | 1:23:36 | 2:49:57 | 3:22:31

The overall computation time is given as the wall-clock time on four processors, while the
simulation time is the CPU time on a single processor

exhibits more diffusion on coarser grid levels where the effect of numerical
dispersion is more pronounced. Thus, the efficiency of the diffusion-exploiting
Newton-Picard preconditioners is slightly better for coarser fine grids. We also
want to remark that problem (16) is a linear-quadratic problem. We tackle it with
a nonlinear solver and thus the reader should keep in mind that numerical linear
algebra approaches (e.g., along the lines of Potschka et al. [20]) are more efficient,
because they exploit linearity explicitly.

From the computational results in Table 1, we can observe the expected trend in
the number of overall inexact SQP iterations that is growing for decreasing values of
the diffusion coefficient . The increase is higher for lower regularization parameters
y. The number of inexact SQP iterations with the fine grid on the finest level grows
only slightly. For high diffusion & = 10°, level £, = 1 for the coarse grid is already
enough for sufficient local contraction on all fine grid levels £¢ < 5. For ¢ = 1071,
L. = 1 is still sufficiently fine for a high regularization parameter y = 107!, but
not for y = 1073, For ¢ = 1072,5 - 1073, the k-estimators trigger a refinement of
the coarse level to £, = 2 in order to obtain local contraction of the method on all
fine grid levels ¢; < 5. For ¢ = 1073, the coarse grid needs to be refined to £, = 3.
In this case, the memory consumption of DAESOL-II on the coarse and fine grids
exceeds the available RAM space. This problem, however, is a momentary technical
restriction of the software implementation and not a fundamental restriction of the
method.

We can also observe in Table 1 that the number of adaptive time-steps for the
initial value problem solver increases with decreasing diffusion coefficient y. From
the number of required time-steps we see that the time discretization has a higher
resolution than the spatial discretization. The reason for this imbalance in accuracy
are stability requirements for the solution of the initial value problems in (3c) and
its first and second order derivatives as discussed in [17, Chap.9, Sect. 3]. If we
take into account the intermediate time steps, we obtain on the finest level between
2.1-107 and 3.0 - 107 state variables, although NLP (3) really only has 6.7 - 10°
degrees of freedom in the PDE state variables u,i=0,... nys, (independently of

g).
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Fig. 2 The optimal controls for problem (16) with ¢ = 1072,y = 10~ work with different
magnitudes. The control gradient constraint is active for ¢, at the slopes of the initial peak

If we compare the serial simulation time for the numerical solution of the initial
value problems for fixed initial values and fixed controls with the wall-clock time
for the inexact SQP method parallelized on four cores, we obtain a ratio of 27-95.
This is quite remarkable, because already for the forward problem of finding a time-
periodic solution for fixed controls, several Newton-Picard iterations (in the sense
of Lust et al. [13]) would be required.

For completeness, we depict the optimal control and the corresponding optimal
final state for the case ¢ = 1072 and y = 1073 in Figs. 2 and 3. We can observe that
most of the control action happens at I, where high values of u are to be tracked.
The control gradient constraint (161) is active at the slopes of the initial peak of g».
Furthermore, the optimal state at the end of the period matches the desired profile &
well except for the area around the inflow boundary I.

6.2 Bacterial Chemotaxis

On the basis of a chemotaxis model by Tyson et al. [26, 27], we consider on §2 =
(0,1) with 082 = I U I, = {0} U {1} the nonlinear tracking-type boundary control
problem (compare also [12])

e 1 Ye R Y 1
— 1,. 22 rc 1,. 2 _61/ 2 2 17
minimize 2/Q(z( ) =97+ /Q(C( )—o+ g | (g1 + @) (172)
a1.92€L70,1)

Z .
s.t. dz=V- (Dsz— ach) , in (0, 1) x £2, (17b)
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Fig. 3 For ¢ = 1072,y = 1073, the black isolines of the optimal final state u(T,.) match the

gray isolines of the target well except for the south-east part of the domain. A boundary layer is
visible at the northern outflow I3
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ZZ

dic = V-Vc+wm — pc in (0, 1) x £2, (17¢)
_opl(qi—o)z _ . .
0vz = DZ(1+C)2’ avC—/g(CII C)v n (07 I)XF,,l— L2,
(17d)
2(0,.) = z0, ¢(0,.) = co, (17e)
gi(t) € [0, 1], fora.a.r€ (0,1), (17f)

where 0, denotes the derivative in direction of the outwards pointing normal on £2.
The parameters considered hereare D, = 03,0 =4, =1,w=0.1,u = 10,p =
0.1,y7. = 1072, y, = 107°. The targets to be tracked are Z(x) = 2x,(x) = 0 and
the initial states are given as zo(x) = 1, co(x) = 0.

On the basis of a Finite Difference discretization on a six-level hierarchy of
nested grids with 322, 642, 1282, 2562, 5122, 10,242 degrees of freedom for the
PDE states, we can use the proposed Direct Multiple Shooting method to obtain the
optimal controls and states depicted in Fig. 4. Level £. = 1 for the coarse level is
sufficient to yield good local contraction for the inexact SQP method. In the solution,
DAESOL-II uses 889 integration adaptive steps for the solution of the initial value
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Fig. 4 Left: the desired cell distribution Z (dotted line) can be reached well with the optimal final
cell distribution z(1, .) (solid line). The final chemoattractor concentration ¢(1,.) is almost affine-
linear (dashed line). Right: the control bound constraints are active most of the time for ¢,. Not
shown: the optimal control g, is always 0

Table 2 Cumulative CPU time in seconds for the chemotaxis example on each spatial discretiza-
tion level for computations concerning the dynamic system, including system integration, forward
and adjoint derivatives, and matrix-vector products with Hessian matrices

Level Integration Forward Adjoint Hessian
1 100.5 745.5 19.8 669.1
2 29.5 6.6 16.2 55.8
3 45.4 8.2 22.0 71.7
4 53.4 7.5 21.2 70.5
5 144.2 15.2 42.6 141.4
6 1314.9 73.5 190.3 597.9

problems on all 20 shooting intervals together. In this case, the spatial and temporal
discretization errors are well balanced, because a high-order method is used in time.

In Table 2 we sum up the cumulative CPU time needed for the computation of
values concerning the initial value problems on each spatial discretization level.
This is the main part of the computational burden. The solution of all the condensed
QPs (14) only takes 0.6 s, for instance. We observe that most of the effort is spent on
levels 1 and 6. The effort on level 1 is due to the coarse grid computations in each
iteration. Due to DAESOL-II’s memory requirements, we could not refine the fine
grid further. Were we able to do so, then the numerical effort spent on the finest grid
level £ = 7 would dominate the overall effort even more.
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7 Conclusions

We elaborated on the challenges and a numerical approach for a Direct Multiple
Shooting method for optimal control problems with coupled ODE and parabolic
PDE constraints. Even difficult boundary conditions like time periodicity of the
states can be treated efficiently in this framework. The large-scale nature of the
resulting NLPs can be tamed by a structure exploiting two-grid Newton-Picard
inexact SQP method. Encouraging numerical results indicate that challenging
PDE constrained optimal control problems can be solved efficiently with a Direct
Multiple Shooting method. The proposed method does not require the often time-
consuming derivation of adjoint equations and can be easily parallelized. It is in
particular suited for practitioners who need an accurate resolution of the system
dynamics and can live with lower resolution of the optimal control.

We would like to thank the unknown reviewer for the constructive comments on
the initial manuscript. Support by the EU through S. Engell’s and H.G. Bock’s ERC
Advanced Investigator Grant MOBOCON (291 458) is gratefully acknowledged.
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