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Abstract Partial differential equations (PDE) are indispensable to describe com-
plex processes. PDE constrained parameter estimation is still a prevailing topic
of research. The increase in computation time with increasing complexity of the
problem is one of the main problems.

With the application of multiple shooting, the number of required derivatives
for the generalized Gauss–Newton method rises rapidly. We introduce a method to
overcome this challenge. By using directional derivatives the computational effort
can be reduced to the minimal number. We demonstrate our methods with help of
the heat equation.

1 Introduction

Validated models are essential for process optimization and optimal control in
chemistry, engineering etc. Usually these models depend on parameters that are
not known initially but have to be identified from measurement data. Derivative
based methods, such as the generalized Gauss–Newton method for direct multiple
shooting by Bock [5], have shown good results for parameter estimation problems
with ordinary differential equations (ODEs).

If spatially distributed processes are taken into account, we have to consider
constraints given by partial differential equations (PDEs). If PDEs are discretized
by means of a method of lines, we end up with a high-dimensional system of
differential algebraic equations (DAEs). In general, we formulate the parameter
estimation problem as a nonlinear least squares problem and apply the generalized
Gauss–Newton method. In the context of multiple shooting, the effort for the
computation of the Jacobians in each iteration of the generalized Gauss–Newton
method is tremendous. We present a method which couples the evaluation of the
Jacobians and the subsequent block-Gaussian elimination. Thus, the number of
required derivatives is reduced to the minimal number. The reduced approach was
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introduced by Schlöder [13] for parameter estimation problems constrained by
high-dimensional systems of ODEs in 1987. A first extension to DAE constrained
problem was presented by Bauer [2]. In this paper, we develop a different for-
mulation of the reduced approach for DAE constraints which we consider as an
approximation of the solution of a partial differential equation. The first application
of the reduced approach to PDE constrained parameter estimation problems was
presented by Dieses [1]. Dieses considered only ODEs to approximate the solution
of a PDE.

We first introduce the general formulation of a parameter estimation problem
and the generalized Gauss–Newton method. Afterwards, we present the reduced
approach. In the end, an application example is investigated to show the advantages
of our method compared to the conventional approach. In the end, some conclusions
are drawn.

2 Problem Formulation

We consider a dynamic system defined by partial differential equations,

0 D F
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@ui
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@2xj@xk
; : : : ; p
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; (1)

on the bounded domain˝ � R
d:F is an arbitrary function with time t D Œt0; tend�;

independent variables x 2 R
d; dependent variables u 2 R

nu and parameters p 2 R
np :

We examine transient problems. Thus, let initial values of the form

u.t0/ D u0.p/ (2)

be given that may depend on the parameters. Additionally, let boundary conditions
be defined by

au C b
@u

@n
D c on @˝ (3)

for some constants a and b that can be zero but not at the same time and a given
function c on the boundary of the domain.

Assume that nex experiments have been executed which have provided a set
of measurements � j

k; k D 1; : : : ;m j; j D 1; : : : ; nex: By hj
k.t

j
k; u

�;j.t j
k/; p

�/; k D
1; : : : ;m j; j D 1; : : : ; nex, we denote the corresponding model response evaluated
for the true, but unknown parameters p� and states u�;j.t j

k/ computed by Eq. (1) for
p�: We assume the measurement errors
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to be normally distributed
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�2�
; k D 1; : : : ;m j; j D 1; : : : ; nex;

with mean 0 and standard deviation � j
k: The difference between measurement values

and model response can be evaluated for other values of p and u; too, and we obtain
the residuals

�
j
k � hj

k.t
j
k; u

j.t j
k/; p/; k D 1; : : : ;m j j D 1; : : : ; nex: (4)

The parameter estimation problem is then to minimize the weighted sum of the
residuals
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with the variances � j
k as weights. Equation (5) can also be interpreted as a log-

likelihood estimator for the parameters, see Seber [14].
Often, we have to deal with additional interior point and boundary constraints as

well:

0 D
n

j
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j.t j

l /; p/ (6)

with rl W Rnu � R
np ! R

r:

Considering the model equations (1)–(3) and the interior point constraints (6) as
additional constraints, we state the PDE constrained parameter estimation problem
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3 Discretization in Space and in Time

In this section, we present concepts for the discretization of the model equations (1)
in space and the concept of multiple shooting. If not declared otherwise, the
following methods are presented for the first experiment only. For the remaining
experiments, the steps have to be repeated. We neglect the superscript 1.

The first step in the parametrization of the parameter estimation problem (7)
consists of the discretization of the PDE constraints (1) by a method of lines, cf.
Schiesser [12] , e.g., by a finite difference methods (FDMs) or a finite element
methods (FEMs).

The approach leads to a high-dimensional system of differential algebraic
equations

A.y.t/; z.t/; p/Py D f .t; y.t/; z.t/; p/; (8a)

0 D g.t; y.t/; z.t//; (8b)

y.t0/ D y0.p/; (8c)

where A.y.t/; z.t/; p/ denotes the mass matrix that may depend on the spatially
discretized states y.t/ 2 R

ny and z.t/ 2 R
nz and the parameters p: We consider

only DAEs with differentiation index 1, i.e. the matrix @g
@z is regular.

To solve System (8) in time, we apply direct multiple shooting, see Bock [6].
Thus, the parameter estimation problem is transformed into a problem with finite
dimensional constraints.

We define the shooting grid, i.e., a partition of the time interval Œt0; tend�;

�0 D t0 < �1 < : : : < �nms < �nmsC1 D tend;

and the shooting intervals

Ii D Œ�i; �iC1/; i D 0; : : : ; nms:

We introduce artificial initial values si D .syT

i ; szT

i /
T ; i D 0; : : : ; nms; with

sy
0 D y0.p/ (9)

for the differential and algebraic states y.t/ and z.t/; respectively, and examine the
relaxed DAE system

A.y.t/; z.t/; p/Py.t/ D f .t; y.t/; z.t/; p/; t 2 Ii (10a)

y.�i/ D sy
i ; (10b)

0 D g.t; y.t/; z.t/; p/ � ˇ.t/g.�i; si; p/; i D 0; : : : ; nms; (10c)

ˇ.t/ 2 Œ0; 1�; ˇ.�i/ D 1; (10d)
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on each of the nms C 1 subintervals. Here, ˇ.t/ is a continuous, monotonically
decreasing function with

lim
t!�iC1

ˇ.t/ D 0:

The evaluation of the DAE system leads to a step-by-step formulation of the
trajectory

�
y.t/
z.t/

�
D  .tI si; p/; t 2 Ii; i D 0; : : : ; nms: (11)

We refer to  i.tI si; p/; t 2 Ii; i D 0; : : : ; nms as the nominal trajectory
By Eq. (11), we obtain a piecewise continuous, finite dimensional parametriza-

tion of the nominal trajectories of (10). To assure continuity of the trajectory for
the solution Op of the parameter estimation problem for the whole time interval and
consistency for the algebraic equations, we impose continuity constraints

c.�i; si; si�1; p/ WD  y.�iI sy
i�1; p/� sy

i D 0; i D 1; : : : ; nms (12)

and consistency constraints

g.�i; si; p/ D 0; i D 0; : : : ; nms: (13)

The variables si; i D 0; : : : ; nms are additional degrees of freedom of the parameter
estimation problem.

Before we formulate the finite dimensional constrained parameter estimation
problem, we have to adjust the interior point constraints (6) to the shooting
discretization. With the initial conditions (9) added to the set of constraints, we
introduce a new vector of variables sr that is locally uniquely determined by the
interior point constraints, i.e. the matrix @r

@sr ; has full rank. Here, we use the definition

r WD
nrX

lD1
rl. .tl/; p; s

r/; j D 1; : : : ; nex;

where we neglect the dependencies of the nominal trajectories  of s and p;
respectively.

When we present the generalized Gauss–Newton method in Sect. 5, we will
clarify the necessity of the variables sr in more detail. For later considerations, we
define the vector

s WD .s0; : : : ; sms; s
r/
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and the function

d.s; p/ WD
�

y0.sr; p/� sy
0;

r

�
: (14)

Note, that the initial conditions may depend on the variables sr; too.
Summarized, this results in the following finite dimensional nonlinear least

squares problem for nex experiments:

min
s;p
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nexX
jD1

m jX
kD1

 
�

j
k � hj

k.tk;  .tk/; p/
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!2
(15a)

s.t. 0 Dcj.�i; si; si�1; p/� sy
i ; i D 1; : : : ; nj

ms; j D 1; : : : ; nex;

(15b)

0 Dgj.�i; si; p/; i D 0; : : : ; nj
ms; (15c)

0 Ddj.s; p/: (15d)

4 The Generalized Gauss–Newton Method

For readability, we introduce a shorter notation of Problem (15)

min
s;p

kF1.s; p/k22 (16a)

s.t. 0 DF2.s; p/: (16b)

with F1.s; p/ 2 R
n1 ; F2.s; p/ 2 R

n2 and .s; p/ 2 R
n: We use the definitions

F1 WD
 
�

j
k � hj

k.tk;  .tk/; p/

�
j
k

!
kD1;:::;m j

jD1;:::;nex

(17a)

F2 WD

0
BBB@

�
cj.�i; si; si�1; p/� sy

i

�
iD1;:::;nj

ms
jD1;:::;nex�

gj.�; si; p/
�

iD0;:::;nj
ms

jD1;:::;nex�
dj.s; p/

�
jD1;:::;nex

1
CCCA (17b)

Bock [5] suggested to apply the generalized Gauss–Newton method to solve
nonlinear least squares problems with ODE constraints. The first application to DAE
constrained problems was presented by Bock et al. [7]. For a detailed description
we refer to Körkel [10]. Problem (16) is solved iteratively by examining linearized
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equations

min
�s;�p

����F1 C J1

�
�s
�p

�����
2

2

(18a)

s.t. 0 DF2 C J2

�
�s
�p

�
: (18b)

Therefore, we need to compute the Jacobians

J1 WD dF1
d.s; p/

; (19a)

J2 WD dF2
d.s; p/

: (19b)

For problem (15) and nex D 1; the Jacobian has the following structure:

J D
 

J1
J2

!
D

0
BBBBBBBBBBBBBB@

D1
0 D1

1 � � � D1
nms

D1
sr D1

p

G0 .�I; 0/ Gsr

0 Gp
0

: : :
: : :

:::
:::

Gnms�1 .�I; 0/ Gsr

nms�1 Gp
nms�1

H0 Hsr

0 Hp
0

: : :
:::

:::

Hnms Hsr

nms
Hp

nms

D2
0 D2

1 � � � D2
nms

D2
sr D2

p

1
CCCCCCCCCCCCCCA

; (20)

with the derivatives of

• of the residual of the measurements

D1
i WD @F1

@si
; i D 0; : : : ; nms; D1

Ov WD @F1
@ Ov ;

• of the continuity constraints

Gi WD @ y

@si
.�iC1I si; p/; i D 0; : : : ; nms � 1; G Ov

i WD @ y

@ Ov .�iC1; si; p/;

• of the consistency conditions

Hi WD @g

@si
.�i; si; p/; i D 0; : : : ; nms; H Ov

i WD @g

@ Ov .�i; si; p/;
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• and the initial conditions and the interior point constraints

D2
i WD @d

@si
; i D 0; : : : ; nms; D2

Ov WD @d

@ Ov :

with Ov D .p; sr/:

To assure uniqueness of the solution of Problem (16), we assume that the
following two conditions hold for all values of .s; p/; where we have to evaluate
F and J W
• Constraint Qualification (CQ)

rank J2.s; p/ D n2; (21)

• Positive Definiteness (PD)

rank J.s; p/ D n: (22)

We recall from Sect. 3 the dimension of F2: The continuity conditions (12) sum
up to ny � nms constraints, the consistency constraints (13) provide nz � .nms C 1/

additional constraints and the initial conditions and the interior point and boundary
constraints (14) results in ny C nr equations. We end up with

n2 D .ny C nz/ � .nms C 1/C nr:

Since we have already defined

.ny C nz/ � .nms C 1/

shooting variables, we need to introduce nr additional variables sr to guarantee that
(CQ) is fulfilled.

The linearization of (16) leads to a comparatively large, but sparse Jacobian.
Bock [5] introduced the condensing algorithm for ODE constrained parameter
estimation problems that exploits the sparse structure of (20) and eliminates the
shooting variables si; i D 1; : : : ; nms by a block-Gaussian elimination. The
condensed system depends only on�sy

0; �sr and �p

min
�s0;�p

��u1 C E1�sy
0 C Er

1�sr C Ep
1�p

��2
2

(23a)

s.t. 0 Du2 C E2�sy
0 C Er

2�sr C Ep
2�p (23b)

By projecting on the algebraic variables sz
i ; i D 0; : : : ; nms; the method can be ap-

plied to DAE constrained parameter estimation problems too, cf. Leineweber [11].
The procedure of evaluating the Jacobians first and applying the condensing

method afterwards is referred to as the general approach. The general approach
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is implemented in the software package for parameter estimation PARFIT which is
based on the methods presented in this section and in Bock [5] and Körkel [10].

5 The Reduced Approach

Especially for DAE constraints, that result from parametrized PDEs, the effort to
compute (20) is tremendous due to the high dimension of si: The computation of
submatrices Gi and Hi scales with the number of (discretized) states. For .ny C
nz/ � np; the effort to evaluate the blocks Gi and Hi dominates the evaluation of
the Jacobian. The computation of these blocks requires the evaluation of .ny C nz/

variational differential equations. That is why the common approach is not suitable
to solve PDE constrained parameter estimation problems in the context of multiple
shooting.

Schlöder [13] developed an approach for high-dimensional ODE systems that
couples the evaluation of the Jacobians and the subsequent condensing by using
directional derivatives. Thereby, the effort of the computation of the Jacobian (20)
reduces to the one of single shooting, i.e., the smallest possible number. Bauer [3]
extended this method to parameter estimation problems with differential algebraic
constraints.

We developed a different formulation of the reduced approach which fully
eliminates the algebraic constraints and, thus, leads to a reduced condensed system
of equal size as Problem (23). The approach of Bauer leads to redundant constraints
which may cause numerical problems.

As in Sect. 3, we present the following method only for the first experiment
and neglect the superscript 1: For the next steps, we assume that the interior point
constraints and the residuals of the measurements can be written in the following
form

0 D
nmsX
iD0

X
tk2Ii

Ohk. .tk/; p/ D
nmsX
iD0

R1i ; Ohk D �k � hk

�k
; (24a)
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X
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j.tl/; p; s

r/ D
nmsX
iD0

R2i : (24b)

We refer to Eqs. (24) as separability conditions. We define the derivatives of (6)
and (4) with respect to Ov D .p; sr/ according to

D1
Ov D d

d Ov
nmsX
iD0

X
tk2Ii
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nmsX
iD0

d
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X

tk2Ii

Ohk. .tk/; p/ D
nmsX
iD0

D1
Ov;i:
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Ov D d

d Ov
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iD0

X
tl2Ii

rl. .tl/; p/ D
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iD0

d

d Ov
X
tl2Ii

rl. .tl/; p/ D
nmsX
iD0

D2
Ov;i:
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cf. Eq. (20). To eliminate the shooting variables at t D �0; we define

d0.s; p/ WD y0.s
r; p/� sy

0: (25)

and we examine the rows of the Jacobian (20) that belong to the initial condi-
tions (25) and to the consistency constraints at t D �0

D
s

y
0

0 �sy
0 C D

sz
0

0 �sz
0 C Dsr

0 �sr C Dp
0�p C d0.s; p/ D 0;

H
s

y
0

0 �sy
0 C H

sz
0

0 �sz
0 C Hsr

0 �sr C Hp
0�p C g.�0; s0; p/ D 0:

(26)

Obviously, it holds

D
s

y
0

0 D �Iny ; D
sz
0

0 D 0:

Since we consider only DAEs with differentiation index 1, the matrix

M WD
 

�Iny 0

H
s

y
0

0 H
sz
0

0

!
(27)

is regular. We eliminate ny C nz variables�s0 formally from (26) and obtain

�
�sy

0

�sz
0

�
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�Iny 0
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y
0

0 H
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0

0

!�1 	�
Dsr

0

Hsr

0

�
�sr C

�
Dp
0

Hp
0

�
�p C

�
d0

g.�0; s0; p/

�


D M0
s�sr C M0

p�p C M0
r (28)

with

M0
r WD �

 
�Iny 0

H
s

y
0

0 H
sz
0

0

!�1 �
d0

g.�0; s0; p/

�
; (29a)

M0
s WD �

 
�Iny 0

H
s

y
0

0 H
sz
0

0

!�1 �
Dsr

0

Hsr

0

�
; (29b)

M0
p WD �

 
�Iny 0

H
s

y
0

0 H
sz
0

0

!�1 �
Gp
0

Hp
0

�
: (29c)

We refer to (29) as seed matrices. The following steps are closely related to the ODE
formulation of the reduced approach presented by Schlöder [13] with an extension
to the consistency constraints which are solved locally for sz

j ; j D 0; nms:
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The idea is to apply the explicit representation for the increments �s0 given by
Eq. (28) to the evaluation of the remaining constraints. We define

OEp;0
l WD Dl

0 � M0
p C Dl

p;0; (30a)

OEs;0
l WD Dl

0 � M0
s C Dl

sr;0; l D 1; 2; (30b)

Ou0l WD Dl
0 � M0

r C Rl
0: (30c)

Since we use the matrices OEp;0
l ; OEs;0

l and the vectors Ou0l ; l D 1; 2; for the computation
of the reduced condensed system, the notations in Eqs. (30) correspond to (23).
Then, we compute recursively

OEp;i
l D OEp;i�1

l C Dl
i � Mi

p C Dl
p;i; (31a)

OEs;i
l D OEs;i�1

l C Dl
i � Mi

s C Dl
sr;i; i D 1; : : : ; nms l D 1; 2; (31b)

Oui
l D Oui�1

l C Dl
i � Mi

r C Rl
i: (31c)

We set

QEp
l WD OEp;nms

l ; QEs
l WD OEs;nms

l ; Qul WD Ounms
i ; l D 1; 2;

and obtain the reduced condensed system

min
�p;�sr

1

2

��Qu1 C QEp
1�p C QEs

1�sr
��2
2

(32a)

s.t. 0 DQu2 C QEp
2�p C QEs

2�sr: (32b)

The seed matrices are updated iteratively by

Mi
p WD

�
Gi

HiC1

�
� Mi�1

p C
�

Gp
i

Hp
iC1

�
; (33a)

Mi
s WD

�
Gi

HiC1

�
� Mi�1

s C
�

Gsr

i

Hsr

iC1

�
; k D 1; : : : ; nms; (33b)

Mi
r WD

�
Gi

HiC1

�
� Mi�1

r C
�

c.�iC1; siC1; si; p/
g.�iC1; siC1; p/

�
: (33c)

In Eqs. (30), (31) and (33), the expressions given by " � " are evaluated by directional
derivatives and do not denote matrix products. In difference to the common
approach, described in Sect. 4, we have to evaluate np C nr C 1 directions instead of
ny C nz C np.

If the initial conditions (14) are given in the form

d0.s; p/ D y0.p/� sy
0;
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i.e., Eq. (14) does not depend explicitly on the variables sr, the number of required
directions is independent of the number of states.

After we have solved Problem (32) for �p and �sr; the increments for the
shooting variables .s1; : : : ; sms/ are determined by

�sj
i D Mi;j

r C Mi;j
s �sr C Mi;j

p �p; i D 0; : : : ; nj
ms; j D 1; : : : ; nex: (34)

The methods, which have been presented in this section, have been implemented
in a software package for parameter estimation called PAREMERA. PAREMERA
is a new implementation in Fortran90 that is suited for the treatment of multiple
experiments.

6 Example

In the following, we examine the 1D heat equation, e.g., see Evans [9]. which
describes the distribution of heat in a given region over time. The system is defined
by

0 D @u

@t
� p1r2u (35a)

0 D u.t; 0/ D u.t; 1/; (35b)

u.0; x/ D �4 � x � .x � 1/ (35c)

with homogeneous Dirichlet conditions on the domain ˝ � T D Œ0; 1� � Œ0; 1�

(Fig. 1).

Fig. 1 Heat distribution over
the domain ˝ � T: The white
asterisks mark the
measurement points
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Here, u is an arbitrary function, usually referred to as temperature. The parameter
p1 is the thermal diffusivity. We discretize (35) with second order central finite
differences for three different mesh sizes �x D f0:01; 0:002; 0:001g to obtain an
ODE system of 101; 501 and 1001 states, respectively.

To compare the results between the reduced approach and the common one, the
time interval is decomposed into four subintervals Œ�i; �iC1/ with �i D 0:25 � i; i D
0; : : : ; 4: We measure the peak at x D 0:5 at t 2 f0:2; 0:4; 0:6; 0:8; 1:0g:
The measurement data is determined by integrating the ODE system applying the
software package DAESOL by Bauer [4] with known true parameter

p�
1 D 0:1

and adding Gaussian noise. For the calculations, p�
1 is scaled to one.

We compare the results of the two previously mentioned parameter estimation
tools PAREMERA and PARFIT. Here, we use a version of PARFIT which is eligible
for the exploitation of multiple experiment structures, see von Schwerin [15]. Both
tools are embedded in software toolbox VPLAN by Körkel et al. [10].

We apply p01 D 2 as starting parameter for all six settings (three mesh sizes
and two algorithms). All computations are executed on a 64bit computer with 4 GB
memory and an Intel R� Core2Duo with 2�2:8GHz. The results are listed in Table 1.

Both algorithms converge for all mesh sizes to approximately the same solution
.Op1 � 1:00806/; but there is a significant difference in the time per iteration. For
101 states, PAREMERA is around four times faster then PARFIT. With increasing
number of states, the difference in computational time increases. PAREMERA is 13
and 26 times faster for 501 and 1001 states, respectively.

Another fact that differs drastically, is the number of iterations. For all dis-
cretizations, PAREMERA achieves convergence after 5 iterations while PARFIT
finds the solution after 10 iterations. This can be explained by the different types of
globalization strategies. In PAREMERA, the restricted monotonicity test (RMT) is
implemented as it is presented in Bock et al. [8]. In Parfit, only a first order Taylor
series expansion is used to compute the curvature information.

Note, that the computed increments .�s; �p/ for the first iteration of both
algorithms are exactly the same since both algorithms solve the same system.

Table 1 Survey of the results # states PAREMERA PARFIT

101 # iterations 5 10

Time per iteration 0:268 s 1:01 s

501 # iterations 5 10

Time per iteration 3:44 s 45:62 s

1001 # iterations 5 10

Time per iteration 15:06 s 392:5 s
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Fig. 2 Data fits for the starting parameter p01 D 2 and the estimated parameter Op1 D 1:00806

In Fig. 2, a comparison is shown between the two fitting curves with p01 D 2

on the left hand side and the resulting parameter Op1 D 1:00806 computed with
PAREMERA on the right hand side, respectively.

Even for this rather small example we could show the advantages of the reduced
approach. For more complex problems we expect even more significant savings in
computation time. This is important to solve higher dimensional PDE problems or
to do online parameter estimation. Thus, the reduced approach should be favored to
solve this kind of problems.
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