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Abstract Optimum experimental design (OED) for parameter identification has
become a key technique in the model validation process for dynamical systems. This
paper deals with optimum experimental design for systems modelled by differential-
algebraic equations. We show how to formulate OED as a nonstandard nonlinear
optimal control problem. The direct multiple shooting method is a state of the art
method for the solution of standard optimal control problems that leads to structured
nonlinear programs. We present two possibilities how to adapt direct multiple
shooting to OED by introducing additional variables and constraints. We highlight
special structures in the constraint and objective derivatives whose evaluation is
usually the bottleneck when solving dynamic optimization problems by multiple
shooting. We have implemented a structure exploiting algorithm that takes all these
structures into account. Two benchmark examples show the efficiency of the new
algorithm.

1 Introduction

Many processes in engineering, chemistry, or physics can be described by dynamical
systems given by ordinary differential equations (ODEs) or differential-algebraic
equations (DAEs). These equations usually depend on model parameters, for exam-
ple material specific constants that are not directly accessible by measurements.
However, as the models are often highly nonlinear, simulation results can vary
strongly depending on the values of the model parameters. Thus it is desirable to
estimate the model parameters with high precision. This process is called model
validation. Only a validated model can be used to make meaningful predictions.

The first step in the model validation process is usually a parameter estimation.
That means the model is fitted to given measurement data, yielding a first estimate
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for the parameters. Then one can perform a sensitivity analysis to obtain estimates
for the covariance matrix of the parameters. The covariance matrix can reveal large
uncertainties in the parameter values or correlations between different parameters.
In this context, it is also possible to quantify the uncertainty of arbitrary model
quantities of interest.

An important observation is that the covariance matrix depends not only on
the parameters but also on the experimental conditions. This leads to the task of
optimum experimental design (OED): Choose experimental conditions such that
a subsequent parameter estimation yields parameters with minimum uncertainty.
The uncertainty of the vector of parameters is characterized by a functional on the
predicted covariance matrix. OED for general statistical models has been studied
for several decades and it is a well-established field of research, see the textbooks
[2, 10, 18]. Nonlinear OED for processes modeled by differential equations has been
investigated by several authors, see, e.g., [4, 12, 15] for an overview.

In mathematical terms, optimum experimental design can be cast as a special
(nonstandard) type of optimal control (OC) problem. As the objective, namely the
functional on the covariance matrix, depends on first-order sensitivities of the states,
variational differential equations or sensitivity equations must be explicitly included
in the problem formulation, leading to large, but specially structured differential
equation systems. We are interested in direct methods for OED problems, in
particular direct multiple shooting, that transform the infinite dimensional optimal
control problem into a finite dimensional nonlinear programming problem (NLP).
The direct multiple shooting method for optimal control problems as described by
Bock and Plitt [7] makes use of the partial separability of the objective function.
This leads to a block-diagonal Hessian of the Lagrangian that can and should be
exploited by Newton-type methods. However, a straightforward formulation of the
OED objective function lacks the feature of partial separability, so special care must
be taken to reformulate the OED problem as a standard optimal control problem.
In [14, 16] direct multiple shooting has been applied to OED. In [13], a collocation
discretization is applied to a similar problem. The main contribution of this paper
consists in detailed descriptions of the structured NLPs that result from a multiple
shooting discretization as well as numerical results that demonstrate their benefits
and limitations.

The paper is organized as follows: In Sect. 2, we give an introduction to optimum
experimental design and formulate it as a nonstandard optimal control problem. In
Sect. 3, the direct multiple shooting method is described for standard optimal control
problems. Afterwards, in Sect. 4 we propose two ways how to transform the OED
problem to a specially structured standard OC problem. In Sect. 5 we show how to
efficiently evaluate the constraint Jacobian as well as the gradient and Hessian of the
objective. A numerical example from chemical engineering illustrates the efficacy
of the approach in Sect. 6. Section 7 concludes.
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2 Nonlinear Optimum Experimental Design for Parameter
Estimation

Optimum experimental design aims at improving parameter estimation results in a
statistical sense. We first introduce the type of parameter estimation problems whose
results we seek to improve with OED along with some general notation that we use
throughout the paper.

2.1 Parameter Estimation for Dynamical Systems

We consider a dynamical process on a fixed time horizon Œt0; tf � that is described by
the following differential-algebraic equation (DAE) system with interior point and
boundary conditions:

Py.t/ D f .t; y.t/; z.t/; p; u.t//; y.t0/ D y0.p; u/ (1a)

0 D g.t; y.t/; z.t/; p; u.t// (1b)

0 D
NrX

iD1

ri.ti; y.ti/; z.ti/; p/ (1c)

where

y.t/ 2 R
ny (differential states)

z.t/ 2 R
nz (algebraic states)

p 2 R
np (parameters)

u.t/ 2 R
nu (controls)

ri.ti; y.ti/; z.ti/; p/ 2 R
nr (boundary conditions):

Throughout the text we will use the notation x.t/ D .y.t/T ; z.t/T /T to denote both
differential and algebraic states.

Assume measurement data �1; : : : ; �NM are available at sampling times t1; : : : ; tM
such that

hi.ti; y.ti/; z.ti/; p?/ D �i C "i; i D 1; : : : ; NM;

where p? are the true—but inaccessible—parameters, y and z the corresponding
states, and "i are independently normally distributed with zero mean and standard
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deviation �i. This assumption states that the model is structurally correct and errors
arise only due to inaccuracies in the measurement process. We call

hi.t; y.t/; z.t/; p/; i D 1; : : : ; NM

the model response or observable.
The maximum likelihood parameter estimation problem can be stated as:

min
y0;x;p

NmX

iD1

�
hi.ti; y.ti/; z.ti/; p/ � �i

�i

�2

(2a)

s.t. Py.t/ D f .t; y.t/; z.t/; p; u.t//; y.t0/ D y0.p; u/ (2b)

0 D g.t; y.t/; z.t/; p; u.t// (2c)

0 D
NrX

iD1

ri.ti; y.ti/; z.ti/; p/ (2d)

Parameter estimation problems constrained by differential equations can be solved
by different approaches, e.g. by direct multiple shooting in combination with a
generalized Gauss-Newton method, see [6].

2.2 Sensitivity Analysis

The solution Op of the parameter estimation problem (2) is a random variable due to
the fact that the measurements �i are random. The variance-covariance matrix C of
Op is given by:

C D �
I 0
� �J T

1 J1 J T
2

J2 0

��1 �
I
0

�
(3)

where J1 2 R
Nm�np and J2 2 R

nr�np are the Jacobians of the residual vectors of
the parameter estimation problem. We denote by J1;i the rows of J1 and by J2;i

the summands that make up J2:

J1;i D
�p

wi

�i

�
@hi

@x
.ti; y.ti/; z.ti/; p/

@x

@p
.ti/ C @hi

@p
.ti; y.ti/; z.ti/; p/

��

iD1;:::;Nm

(4)

J2 D
NrX

iD1

J2;i; J2;i D @ri

@x
.ti; y.ti/; z.ti/; p/

@x

@p
.ti/ C @ri

@p
.ti; y.ti/; z.ti/; p/:

(5)
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We assume that J2 has full rank and that J T
1 J1 is positive definite on KerJ2

which implies existence of C.
In (4) we have also introduced measurement weights wi 2 f0; 1g; i D 1; : : : ; Nm

for each measurement time. They are fixed in the parameter estimation context but
will be design variables in the experimental design where they allow us to select or
de-select measurements.

The sensitivities of the states x with respect to the parameters p are subject
to the following variational differential-algebraic equations (VDAE), also called
sensitivity equations:

Pyp.t/ D @f

@x
.t; y.t/; z.t/; p; u.t//xp.t/ C @f

@p
.t; y.t/; z.t/; p; u.t// (6)

0 D @g

@x
.t; y.t/; z.t/; p; u.t//xp.t/ C @g

@p
.t; y.t/; z.t/; p; u.t//; (7)

where

xp.t/ D @x

@p
.t/ D

�
@y

@p
.t/;

@z

@p
.t/

�
:

Initial values for the VDAE are given by

yp.t0/ D @y0

@p

for the variational differential states and by (7) for the variational algebraic states.
Note that (6) and (7) depend on y.t/ and z.t/ and therefore have to be solved together
with (1a) and (1b).

2.3 The Optimum Experimental Design Problem

Based on the sensitivity analysis, we can predict the variance-covariance matrix
for different experimental settings that are characterized by controls u.t/ as well
as a choice of measurements. An experiment may also be constrained by external
process constraints, e.g. safety or cost constraints.

The task of optimum experimental design is to choose experimental settings such
that the predicted covariance matrix has the best properties in some statistical sense.
The quality of the matrix is measured by a criterion � from statistical experimental
design:

• A-criterion: � D tr C
• D-criterion: � D det C
• E-criterion: � D maxf�i, i D 1; : : : ; np, �i eigenvalue of Cg D jjCjj2
• M-criterion: � D maxfCii, i D 1; : : : ; npg
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The complete optimum experimental design problem is

min
y0;x;xp;u;w

�

 
�
I 0
� �J T

1 J1 J T
2

J2 0

��1 �
I
0

�!
(8a)

s.t. Py.t/ D f .t; y.t/; z.t/; p; u.t//; t 2 Œt0; tf � (8b)

0 D g.t; y.t/; z.t/; p; u.t//; t 2 Œt0; tf � (8c)

y.t0/ D y0.p; u/ (8d)

Pyp.t/ D @f

@x
.t; y.t/; z.t/; p; u.t//xp.t/ C @f

@p
.t; y.t/; z.t/; p; u.t//; t 2 Œt0; tf �

(8e)

0 D @g

@x
.t; y.t/; z.t/; p; u.t//xp.t/ C @g

@p
.t; y.t/; z.t/; p; u.t//; t 2 Œt0; tf �

(8f)

yp.t0/ D @y0

@p
(8g)

0 D
NrX

iD1

ri.ti; y.ti/; z.ti/; p/ (8h)

0 � c .t; y.t/; z.t/; u.t/; w/ ; t 2 Œt0; tf � (8i)

wi 2 f0; 1g; i D 1; : : : ; Nm (8j)

J1;i D
�p

wi

�i

�
@hi

@x
.ti; y.ti/; z.ti/; p/xp.ti/ C @hi

@p
.ti; y.ti/; z.ti/; p/

��

iD1;:::;Nm

(8k)

J2 D
NrX

iD1

@ri

@x
.ti; y.ti/; z.ti/; p/xp.ti/ C @ri

@p
.ti; y.ti/; z.ti/; p/ (8l)

with the nominal DAE system (8b) and (8c) with initial values (8d), the variational
DAE system (8e) and (8f) with initial values (8g), multipoint boundary constraints
from the parameter estimation problem (8h), path and control constraints (8i),
and integrality constraints for the measurement weights (8j). The Jacobians of the
parameter estimation residuals (8k) and (8l) are given to define the covariance
matrix on which a functional � is minimized (8a). Note that while initial values for
the nominal differential states (8b) may be degrees of freedom in the optimization,
initial values for the variational differential states (8e) are explicitly defined by the
relation (8g) and for the algebraic states z.t/ and zp.t/ they are implicitly defined by
the algebraic conditions (8c) and (8f).
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3 The Direct Multiple Shooting Method for Optimal Control
Problems

The direct multiple shooting method for optimal control problems has been first
introduced in [7]. Let us first consider the standard optimal control problem

min
Qy0;Qx;u

˚.Qx.tf // (9a)

s.t. PQy.t/ D Qf .t; Qy.t/; Qz.t/; Qu.t//; Qy.t0/ D Qy0 (9b)

0 D Qg.t; Qy.t/; Qz.t/; Qu.t// (9c)

0 � Qc.t; Qy.t/; Qz.t/; Qu.t// (9d)

0 �
N

QrX

iD1

Qri.ti; Qy.ti/; Qz.ti//: (9e)

In direct methods the infinite-dimensional optimal control problem (9) is
approximated by a nonlinear programming problem (NLP) which is then solved
by suitable numerical methods. The following infinite-dimensional objects of the
optimal control problem must be treated adequately when setting up the finite-
dimensional NLP:

• control functions Qu
• differential and algebraic states Qy and Qz
• path constraints 0 � Qc.t; Qy.t/; Qz.t/; Qu.t//

3.1 Control Functions

We consider a time grid

t0 D � c
0 < � c

1 < � � � < � c
Nc

D tf (10)

on which the control function Qu.�/ is parameterized by means of local basis
functions:

Qu.t/ D ' j.t; qj/; t 2 Œ� c
j ; � c

jC1�;

where the qj 2 R
nu are vectors of finitely many real optimization variables. We

define q WD .q0; : : : ; qNc�1/T . The local functions ' j are typically polynomials of
low degree, e.g. linear or constant functions.
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3.2 States

In shooting methods, initial value problem solvers are employed to obtain repre-
sentations of the states x for given q and y0. In the case of direct single shooting
and pure ODEs, the states are regarded as dependent variables, and only q and y0

are kept as variables in the optimization problem. Thus the tasks of simulation and
optimization are kept separate.

The direct multiple shooting method for DAEs is a simultaneous strategy to
resolve simulation and optimization in parallel. Again, we consider a discretization
of the time horizon

t0 D � s
0 < � s

1 < � � � < � s
Ns

D tf (11)

where we assume without loss of generality the grid points to be a subset of the grid
points of the control grid (10). On this shooting grid we consider the following set
of initial value problems with initial values sj

x D .sj
y; sj

z/ that become variables in
the optimization problem:

PQy.t/ D Qf .t; Qy.t/; Qz.t/; p; Qu.t// Qy.� s
j / D sj

y (12a)

0 D Qg.t; Qy.t/; Qz.t/; p; Qu.t// � �j.t/Qg.� s
j ; sj

y; sj
z; p; Qu.t// Qz.� s

j / D sj
z; (12b)

where �j.�/ is a fast decreasing damping function with �.� s
j / D 1. This relaxed

formulation was proposed in [8] and means that the algebraic condition (12b)
is automatically consistent for any initial values sj

z. That means the DAE solver
does not need to solve the (nonlinear) algebraic condition in every iteration of the
optimization algorithm to find feasible initial values. Instead, the nonlinear algebraic
consistency conditions

0 D Qg.� s
j ; sj

y; sj
z; Oqj/; j D 0; : : : ; Ns

are added to the optimization problem which ensures the solution of the original
DAE at the solution of the optimization problem.

Note that the DAEs (12) are solved independently on the smaller time intervals
Œ� s

j ; � s
jC1� as the initial values sj

x are variables of the optimization problem. To
ensure equivalence to the original system (1), continuity conditions are added to the
optimization problem for every shooting interval. Let us denote by Qy.� s

jC1I sj
y; sj

z; Oqj/

a representation of the solution to problem (12) on the intervals Œ� s
j ; � s

jC1�, where
Oqj denotes the subvector of q that represents Qu on the interval Œ� s

j ; � s
jC1�. Then the

continuity conditions read as:

Qy.� s
jC1I sj

y; sj
z; Oqj/ D sjC1

y ; j D 0; : : : ; Ns � 1:
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Fig. 1 Concept of direct multiple shooting for one state and one piecewise constant control. The
continuity conditions are violated (vertical dotted lines). Note how the control is also allowed to
switch within shooting intervals

Figure 1 illustrates the concept of direct multiple shooting. Note that we explicitly
maintain separate grids for controls and states. A special case is of course to choose
the same grid for both. However, in our experience, the decoupling of grids provides
greater flexibility and a smaller number of shooting intervals can greatly accelerate
convergence for problems where a relatively fine discretization of the controls is
desirable.

3.3 Path Constraints

All path constraints such as (9d) that are required to hold at infinitely many points
are evaluated on finitely many checkpoints only. Let us assume—without loss
of generality—that the checkpoints are the grid points of the multiple shooting
grid (10). Then the discretized path constraints read as

0 � Qc.� s
j ; sj

y; sj
z; Oqj/; j D 0; : : : ; Ns: (13)

Depending on the choice of the time grid, the constraints might be violated in
between grid points. There exist strategies how to adaptively add checkpoints, see,
e.g., [17], but to keep the notation simple we assume for the scope of this paper that
they match the grid points of the shooting grid.
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3.4 Structured NLP

We have now addressed all constraints of the optimal control problem and can
formulate the structured multiple shooting NLP as follows:

min
sy;sz;q

�.sN
x / (14a)

s.t. 0 D Qy.� s
0/ � s0

y (14b)

0 D Qy.� s
jC1I sj

y; sj
z; Oqj/ � sjC1

y ; j D 0; : : : ; Ns � 1

(14c)

0 D Qg.� s
j ; sj

y; sj
z; Oqj/; j D 0; : : : ; Ns

(14d)

0 � c.� c
j ; Qy.� c

j /; Qz.� c
j /; Oqj/; j D 0; : : : ; Ns

(14e)

0 �
NsX

jD0

N
QrX

i;
�j�ti<�jC1

Qri.ti; Qy.tiI sj
y; sj

z; Oqj/; Qz.tiI sj
y; sj

z; Oqj//; (14f)

where (14c) and (14d) are the continuity and consistency conditions that guar-
antee the solution of the original DAE (1) at the solution of the optimization
problem.

In Newton-type methods, the Jacobian of the constraints and the Hessian of the
Lagrangian are of special importance. It is clear that the evaluation of the continuity
and consistency constraints with index j only depend on variables sj

x and Oqj in a
nonlinear way. This leads to a constraint Jacobian that has a banded structure and a
Hessian of the Lagrangian with a block diagonal structure according to the shooting
discretization. These structures can be seen in the structure of the KKT matrix as
depicted in Fig. 2.

Depending on the shooting discretization, problems of type (14) can be very
large, but sparse. Algorithmic techniques such as condensing (see [7]) exploit this
sparsity and reduce the additional effort considerably that is caused by the larger
matrices when using a fine multiple shooting discretization.
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Fig. 2 Sparsity pattern of the
KKT matrix of a multiple
shooting discretized optimal
control problem. The
constraint Jacobian comprises
continuity constraints that are
responsible for the banded
structure. Linearly coupled
constraints give rise to a
dense block. The Hessian of
the Lagrangian (upper left)
has block diagonal structure.
Different block sizes may
occur if the numbers of
control variables on two
intervals differ

4 Optimum Experimental Design as Separable NLP

We now want to apply the multiple shooting discretization as described in the
previous section to the optimum experimental design problem (8). In particular we
need to extend the problem formulation (14) to cope with the special kind of coupled
objective that is characteristic for OED. Multiple Shooting for OED problems has
first been applied in [16] and has been further investigated in [14].

4.1 Measurements

The grid of possible measurements depends on the process and should be indepen-
dent of the shooting and control grid. In particular, more than one measurement
could be taken at the same time, see [15].

In the original formulation, integrality of the measurement weights is required.
In our formulation we employ a continuous relaxation:

0 � wi � 1; i D 1; : : : ; Nm

In practice, this often yields satisfactory results, as a bang-bang structure is observed
for the measurements and so integrality is satisfied automatically. In fact there is also
some theoretical evidence for this, see [20].

The measurement weights, along with the controls, are experimental design
variables. All simple bounds and linear constraints on the measurement weights
fit into the framework of general path constraints and linearly coupled interior point
constraints (9d) and (9e).
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4.2 Dynamical System

We combine nominal and variational states into one system:

Qy.t/ D
�

y.t/
�yp.t/� 2 R

nyCny�np

for the differential states and

Qz.t/ D
�

z.t/
�zp.t/� 2 R

nzCnz�np

for the algebraic states, where we denote by � �� the map that combines the columns
of an m � n matrix into a single m � n column vector by stacking them one below the
other.

That leaves us with the new DAE system

PQy.t/ D Qf .t; Qy; Qz; p; u/ D
(

f .t; y.t/; z.t/; p; u.t//
� @f

@x .t; y.t/; z.t/; p; u.t//xp.t/ C @f
@p .t; y.t/; z.t/; p; u.t//�

(15)

0 D Qg.t; Qy; Qz; p; u/ D
(

g.t; y.t/; z.t/; p; u.t//
� @g

@x .t; y.t/; z.t/; p; u.t//xp.t/ C @g
@p .t; y.t/; z.t/; p; u.t//� :

(16)

This system has of course a special structure that can and should be exploited in an
efficient implementation. We will give details on this in Sect. 5.

4.3 Objective Function

An important difference between the problem of optimum experimental design (8)
and the standard optimal control problem (9) is the nonlinear coupling in time in the
objective that is due to the inversion when computing the covariance matrix, as it
has been noted in [16]. In particular this violates the property of partial separation
of the Lagrange function that is responsible for its sparse, block-diagonal Hessian.
We present two approaches to resolve that nonlinear coupling.
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4.3.1 Linearly Coupled Constraint for Information Matrix

Recall the definition of the covariance matrix:

C D �
I 0
� �J T

1 J1 J T
2

J2 0

��1 �
I
0

�

with the rows of J1 and the summands that constitute J2 as defined by (4) and (5):

J1;i D
�p

wi

�i

�
@hi

@x
xp.ti/ C @hi

@p

��

iD1;:::;Nm

J2;i D @ri

@x
.ti; y.ti/; z.ti/; p/xp.ti/ C @ri

@p
.ti; y.ti/; z.ti/; p/:

In [16] it has been pointed out that

�
J T

1 J1 J T
2

J2 0

�
D
 PNm

iD0 J
T
1;iJ1;i

PNr
iD0 J

T
2;iPNr

iD0 J2;i 0

!
: (17)

Note that in particular, J1;i and J2;i depend on evaluations of the nominal and
variational states x and xp at individual points ti. Thus, (17) implies that the matrices
J T

1 J1 and J2 only exhibit a linear coupling in time. In a multiple shooting
context, we assign the points ti to the proper shooting intervals and plug in the
representation of the solution x.� s

jC1I sj
y; sj

z; Oqj/ and xp.� s
jC1I sj

Qy; sj
Qz; Oqj/, respectively.

We write this as

J T
1 J1 D

Ns�1X

jD0

NmX

�j<ti��jC1

J1;i.s
j
Qy; sj

Qz; Oqj; wi/
TJ1;i.s

j
Qy; sj

Qz; Oqj; wi/

J2 D
Ns�1X

jD0

NrX

�j<ti��jC1

J2;i.s
j
Qy; sj

Qz; Oqj/:

We introduce additional variables H and J and linearly coupled constraints that fit
into the framework of (14). The objective then only depends on the newly introduced
variables H and J and we obtain the following structured NLP:

min
s
Qy;s

Qz;q;w;H;J
�

 
�
I 0
� �H JT

J 0

��1 �
I
0

�!
(18a)

s.t. 0 D H �
Ns�1X

jD0

NmX

�j<ti��jC1

J1;i.s
j
Qy; sj

Qz; Oqj; wi/
TJ1;i.s

j
Qy; sj

Qz; Oqj; wi/ (18b)
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0 D J �
Ns�1X

jD0

NrX

�j<ti��jC1

J2;i.s
j
Qy; sj

Qz; Oqj/ (18c)

0 D Qy.� s
0I Oq0/ � s0

Qy (18d)

0 D Qy.� s
jC1I sj

Qy; sj
Qz; Oqj/ � sjC1

Qy ; j D 0; : : : ; Ns � 1 (18e)

0 D g.� s
j ; sj

Qy; sj
Qz; Oqj/; j D 0; : : : ; Ns (18f)

0 � c.� s
j ; sj

y; sj
z; Oqj; wj/; j D 0; : : : ; Ns (18g)

0 � wi � 1; i D 1; : : : ; Nm (18h)

0 �
NsX

jD0

NrX

�j�ti<�jC1

ri.ti; y.tiI sj
y; sj

z; Oqj/; z.tiI sj
y; sj

z; Oqj//: (18i)

4.3.2 Pseudo States for Covariance Matrix

Another possibility to resolve the coupling in the objective is to move the computa-
tion of the covariance to the constraints by deriving a recursion formula.

Using this formula, we introduce matrix-valued variables

Cj D
 

Cj
1 CjT

2

Cj
2 Cj

3

!
2 R

.npCnr/�.npCnr/; j D 1; : : : ; Ns (19)

and constraints for the recursion at the multiple shooting nodes and add them as
additional variables to the NLP. This resembles the treatment of dynamical states in
a multiple shooting method, hence we refer to Cj as pseudo states for the covariance
matrix.

Let us first derive the formula in the unconstrained case: Let Hj denote the
information matrix including all terms up to time �j. Then Hj is given as the sum
of Hj�1 and the information gain by measurements and constraint evaluations in the
interval .�j�1; �j�:

HjC1 D Hj C
X

iW�j<ti��jC1

J1;i.s
j
Qy; sj

Qz; Oqj; wi/
TJ1;i.s

j
Qy; sj

Qz; Oqj; wi/; (20)

where we start with some initial information given as a positive definite matrix H0,
e.g., from previous experiments or from literature.
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At every grid point �j the covariance matrix taking into account all measurements
up to time �j is the inverse of Hj. From (20) we obtain as recursion formula for the
covariance matrix:

C0 D .H0/�1 (21)

CjC1 D
0

@.Cj/�1 C
X

iW�j<ti��jC1

J1;i.s
j
Qy; sj

Qz; Oqj; wi/
TJ1;i.s

j
Qy; sj

Qz; Oqj; wi/

1

A
�1

: (22)

Equation (22) can be simplified to

CjC1 D Cj

0

@I C
X

iW�j<ti��jC1

J1;i.s
j
Qy; sj

Qz; Oqj; wi/
TJ1;i.s

j
Qy; sj

Qz; Oqj; wi/C
j

1

A
�1

:

This can be easily generalized to the case of constrained parameter esti-
mation problems and we obtain the complete NLP by replacing the coupled
constraints (18b) and (18c) by the pseudo continuity constraints

0 D
0

@
 

Cj
1 CjT

2

Cj
2 Cj

3

!�1

C
X

iW�j<ti��jC1

�
J T

1iJ1i J T
2i

J2i 0

�1

A
�1

�
 

CjC1
1 CjC1T

2

CjC1
2 CjC1

3

!
;

(23)

j D 0; : : : ; N � 1:

As initial values for the pseudo states we take some a priori uncertainty given by
a positive definite matrix C0

1 and a full rank matrix C0
2 such that C0

2C0T
2 is positive

definite to ensure invertibility of C0. The a priori uncertainty should be chosen
several orders of magnitude larger than the expected uncertainty after the OED to
make sure that the choice of C0

1 and C0
2 does not interfere significantly with the

solution. The objective for this formulation simplifies to

�

��
I 0
� �CNs

1 CNsT
2

CNs
2 CNs

3

��
I
0

��
: (24)

While this formulation seems to be very much in the spirit of multiple shooting—
the covariance of the system is modelled as a kind of state on each interval
which is coupled via continuity-type constraints, the nonlinearity of the objective is
distributed over the shooting intervals—it is computationally much less appealing:
The objective (24) is simpler because the matrix inversion is now contained in
the constraints, however, the pseudo continuity constraints (23) are numerically
delicate, each containing two matrix inversions (in fact, we can reduce this to one
by appropriate reformulation) of potentially ill-conditioned matrices.
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5 Evaluation of Problem Functions

After discretization we need to solve the large but structured NLP (18). In derivative
based methods such as sequential quadratic programming often the number of vari-
ables and constraints corresponds to the overall runtime of the method. In shooting
methods for optimal control and especially optimum experimental design, however,
the runtime is often dominated by the evaluation of states and their derivatives within
the continuity constraints because they comprise possibly expensive calls to external
numerical integrators. Thus it is worthwhile to have a closer look at the structures of
constraints and objective and derive efficient and accurate evaluation schemes. We
concentrate on the formulation (18) of the problem—linearly coupled constraints
for the information matrix—as it is numerically more promising.

5.1 Constraint Derivatives

The OED problem (18) has a special structure in the constraints due to the fact
that the dynamic system consists of closely related states, namely nominal and
corresponding variational states. Ideally, they are evaluated together using the
principle of internal numerical differentiation (IND), see [1, 5].

Let us now have a closer look at the derivatives of continuity and consistency
constraints (18e) and (18f) for the system that consists of nominal and variational
states.

We denote by

sj
Qx D

�
sj

x; sj
x;p1

; : : : ; sj
x;pNp

�T

the shooting variables for the nominal and variational states at one shooting node.
Observation 1. Variational states for different parameters are independent. This

means

@xpi .�jC1/

@sj
x;pk

D 0; i ¤ k:

Observation 2. By differentiating (6) and (7), we see that the derivative of a
variational state with respect to its initial value satisfies the following nx � nx

variational DAEs:

P 
@ypi .t/

@sj
x;pi

!
D @

@xpi

�
@f

@x
xpi.t/ C @f

@p

�
� @xpi.t/

@sj
x;pi

D @f

@x
� @xpi.t/

@sj
x;pi
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0 D @

@xpi

�
@g

@x
xpi.t/ C @g

@p

�
� @xpi.t/

@sj
x;pi

D @g

@x
� @xpi .t/

@sj
x;pi

:

These are the same equations that describes the sensitivity of the nominal states
x with respect to their initial values and hence

@xpi .�jC1/

@sj
x;pi

D @x.�jC1/

@sj
x

:

In particular that means that we do not need to evaluate any additional state
sensitivities when we explicitly discretize the variational equations by multiple
shooting. Instead @x.�/

@sx
needs to be computed only once for each shooting interval

and then can be used multiple times in the constraint Jacobian.
The part of the constraint Jacobian that corresponds to the derivative of the

continuity constraints (18e) coupling the states starting at �j�1 and at �j has the
following structure:
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: : :
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z
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.�j/
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CCCCCCA

;

where the variable vector is ordered as follows:

�
sj�1

y ; sj�1
y;p1

; : : : ; sj�1
y;pNp

; sj�1
z ; sj�1

z;p1
; : : : ; sj�1

z;pNp
; qj�1; wj�1

�T
:

A similar structure can be observed for the consistency conditions (18f).
Note that the derivatives @y

@.�/ are first-order and @yp

@.�/ are second-order sensitivities
of the states and must be supplied by the integrator.

5.2 Objective Derivatives

The objective (18a) also deserves special attention as it is a nontrivial—but more
or less fixed for the whole problem class—function that in particular comprises the
inversion of a symmetric matrix.

First of all we note that (18a) only depends on the newly introduced variables
H and J. This allows us to derive explicit formulas for the first and second
derivative of the objective. Furthermore H and J enter the constraints only linearly
through the coupled constraints (18b) and (18c), so the second derivative of
the objective contains the entire curvature of the problem with respect to H
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and J. This can be used to cheaply compute part of the Hessian approxima-
tions in SQP methods without the need to evaluate state sensitivities of higher
order.

We only discuss the case of unconstrained parameter estimation problems (i.e.
no matrix J) and �.�/ D tr .�/ as optimization criterion.

5.2.1 Objective Gradient

We have an objective � that maps a symmetric matrix to a scalar, however, we only
include the lower triangular matrix as degrees of freedom in the nonlinear program.
So whenever we need the gradient of the objective in a derivative based method we
need derivatives of � with respect to every entry Huv , 1 � v � u � np.

In the unconstrained case we have H�1 D C and for every entry Huv

@�

@Huv

D @�

@C
� @C

@Huv

:

Using the general formula

@H�1
ij

@Hkl
D �.H�1/ik � .H�1/lj (25)

we obtain for the derivative with respect to a fixed entry Huv:

@�

@Huv

D
X

1�i;j�np
1�k;l�np

@�

@Cij
� @Cij

@Hkl
� @Hkl

@Huv

D �
X

1�i;j�np
1�k;l�np

@�

@Cij
� Cik � Clj � @Hkl

@Huv

:

Taking symmetry into account, we have

@Hkl

@Huv

D
�

1; if .k; l/ D .u; v/ or .l; k/ D .u; v/

0; else;

and thus

@�

@Huu
D �

X

1�i;j�np

@�

@Cij
� Ciu � Cuj (26)

@�

@Huv

D �2
X

1�i;j�np

@�

@Cij
� Ciu � Cvj; u > v: (27)
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For � D tr this simplifies to

@�

@Huu
D �

X

1�i�np

C2
iu (28)

@�

@Huv

D �2
X

1�i�np

Ciu � Cvi; u > v: (29)

This can be calculated immediately once the covariance matrix C is computed.

5.2.2 Objective Hessian

We now use formulae (28) and (29) to derive an explicit formula for the Hessian of
tr .H�1/ with respect to the entries of H.

When computing @2 tr .H�1/

@Huv@Hrs
we distinguish between three cases:

• Huv and Hrs diagonal elements
• Huv diagonal, Hrs off-diagonal element
• Huv and Hrs off-diagonal elements.

For two diagonal elements we obtain:

@2�.C/

@Huu@Hrr
D @

@Huu

�
@�

@Hrr

�
D @

@Huu

0

@�
X

1�i�nv

C2
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1

A

D �2
X

1�i�nv

@Cir

@Huu
� Cir D 2

X

1�i�nv

Ciu � Cur � Cir:

If we have one diagonal and one off-diagonal element we compute:

@2�.C/

@Huu@Hrs
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@Huu

�
@�

@Hrs

�
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@Huu

0

@�2
X

1�i�nv

Cir � Csi

1

A

D �2
X

1�i�nv

@Cir

@Huu
� Csi C Cir � @Csi

@Huu

D 2
X

1�i�nv

Ciu � Cur � Csi C Cir � Csp � Cui:
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Taking the second derivative with respect to two off-diagonal elements yields:

@2�.C/

@Hpq@Hrs
D @

@Huv

�
@�

@Hrs

�
C @

@Hvu

�
@�

@Hrs

�

D @

@Huv

0

@�2
X

1�i�nv

Cir � Csi

1

AC @

@Hvu

0

@�2
X

1�i�nv

Cir � Csi

1

A

D �2
X

1�i�nv

@Cir

@Huv

� Csi C Cir � @Csi

@Huv

C @Cir

@Hvu
� Csi C Cir � @Csi

@Hvu

D 2
X

1�i�nv

Ciu � Cvr � Csi C Cir � Csu � Cvi C Civ � Cur � Csi C Cir � Csv � Cui:

As the variables H enter the constraints only linearly we note that the objective
Hessian with respect to H is in fact the same as the Hessian of the Lagrangian with
respect to H.

6 Numerical Results

We test our methods on two examples: The first one is a predator-prey model
adapted to OED [19] that serves as proof of concept for both formulations. The
second one is a more involved example from chemical engineering: the urethane
reaction [15]. We report SQP iterations which basically amount to derivative
evaluations as well as CPU time and compare the results to a single shooting
implementation.

6.1 Implementation

We implemented direct multiple shooting for OED within our software package
VPLAN [15] that allows to formulate, simulate and optimize DAE models. From
a user specified formulation of the nominal DAE system, parameters, controls,
and process constraints it generates structured NLPs for OED as described in
Sect. 4. A special focus is on the efficient sparse evaluation of the constraints and
their derivatives as outlined in Sect. 5 and parallelization of state integration and
derivative evaluation on multi experiment and shooting node level.

As integrator we use DAESOL [3], a variable order and stepsize BDF method
that can efficiently compute sensitivities of first and second order. The absolute and
relative tolerance for all computations was set to 10�9.

For the solution of the structured nonlinear programs, we implemented a filter
based line search SQP method as described in [21]. The block structured quadratic
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subproblems are solved by a modified version of the parametric active set solver
qpOASES [11] that uses direct sparse linear algebra. The Hessian of the Lagrangian
is approximated blockwise depending on the number of shooting intervals. For each
block a positive definite damped BFGS update is employed which is scaled by the
centered Oren-Luenberger sizing factor as described in [9]. Both full space and
limited memory updates are available. In a multiple shooting context, the exact
objective Hessian is computed cheaply as discussed in Sect. 5.2 and used for the
lowermost diagonal block instead of a BFGS approximation. The optimality and
nonlinear feasibility tolerance are set to 10�5. Details of the SQP implementation
will be discussed in an upcoming publication.

All results were obtained on a workstation with two Intel Xeon hexacore CPUs
(2.4 GHz) allowing 24 parallel threads in total and 32 GB RAM running Ubuntu
12.04.

6.2 Example 1: Predator-Prey Model

We consider a predator-prey dynamics taken from [19] on the time horizon Œ0; 12�

with fixed initial values and an additional fishing term 0 � u.t/ � 1 as control:

Py1.t/ D y1.t/ � p1 � y1.t/ � y2.t/ � 0:4 � u.t/ � y1.t/; y1.0/ D 0:5

Py2.t/ D �y2.t/ C p2 � y1.t/ � y2.t/ � 0:2 � u.t/ � y2.t/; y2.0/ D 0:7:

We assume p1 D p2 D 1 and that both states can be observed at most four times
during the experiment with constant variances for the measurement errors, i.e.,
�i D 1. Both the control u.t/ and the grid of possible measurements are discretized
on 50 equidistant intervals. The objective is to minimize the average variance of p1

and p2, i.e. 1
2

tr.C/.
The initial guess for the controls is u.t/ � 0:3 and all 50 measurements selected,

i.e. w1
i D w2

i D 1, i D 1; : : : ; 50. It yields an objective function value (average
variance) of 1

2
tr.C/ D 0:00683 but note that this design is infeasible: all 50 possible

measurements for both states are selected but only four per state are allowed.

6.3 Example 2: Urethane Reaction

The Urethane reaction is a well-known example from chemical reaction kinetics,
see [15]. The reaction scheme is the following:

A C B ! C

A C C • D

3A ! E
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Educts are phenylisocyanate A and butanol B in the solvent dimethylsulfoxide L.
During the reaction the product urethane C, the byproduct allophanate D and the
byproduct isocyanate E are formed.

The products C, D, and E are modelled as differential states while A, B, and
L can be computed from C, D, and E using molar number balance. In total,
six parameters have to be identified, namely the frequency factors and activation
energies for the Arrhenius kinetics. The objective is to minimize 1

6
tr.C/. To achieve

this, one experiment is to be designed for the time horizon Œt0; tend� D Œ0h; 80h�

and one out of three possible measurements can be taken at each of 11 equidistant
points in time. The reactor is run in a stirrer tank with two feeds: Feed 1 contains
phenylisocyanate and the solvent, feed 2 contains dimethylsulfoxide and the solvent.
Both can be fed into the reactor during the process. Furthermore, the temperature
can be controlled. For our numerical experiments, we parameterize the derivative of
the control functions PT.t/, Pf eed1.t/, and Pf eed2.t/ by piecewise constant functions on
ten equidistant intervals. The actual process controls T.t/, feed1.t/, and feed2.t/ are
set up as additional differential states, so we end up with a total of six state variables.
The constraints on the controls are formulated as path constraints. The full model
including process constraints and measurement methods is summarized in Fig. 3.
The variances of the measurement errors are assumed constant with �i D 1.

The initial guess for the controls is depicted in Fig. 4. It yields an objective
function value (average variance) of 1

6
tr.C/ D 1936:3.

6.4 Results Predator-Prey

We solved the problem with both direct multiple shooting formulations intro-
duced in Sect. 4. We keep the control discretization fixed but vary the number of
shooting intervals giving rise to different, yet equivalent, NLPs. We discovered a
number of different local minima that differ mainly with respect to the placing
of the measurements. Table 1 shows the results for the first multiple shooting
formulation—a coupled constraint for the information matrix—as well as the single
shooting formulation while Table 2 shows results for the formulation where the
covariance is distributed over the shooting intervals. Both algorithms terminated
successfully when restarted in the minima found by the other one indicating the
structural correctness of our approach.

Table 1 shows that the first formulation converges for all discretizations. How-
ever, we note how the number of SQP iterations increases when we increase the
number of shooting intervals. Preliminary experiments show that this is probably
due to the BFGS update that is unable to reflect negative curvature of the underlying
Lagrangian. A block SQP method that can handle indefinite approximations which
can reduce this effect is currently under development. When we look at the CPU
time, however, we see that the benefits of the efficient evaluation scheme for the
multiple shooting formulation outweighs the smaller number of SQP iterations
for single shooting, making direct multiple shooting with a moderate number of



Direct Multiple Shooting for Nonlinear Optimum Experimental Design 137

Fig. 3 Urethane reaction model
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Fig. 4 Initial values for controls and corresponding states for the urethane example. The objective
(average variance) is 1

6
tr.C/ D 1936:3

Table 1 Performance of multiple shooting for information matrix for predator-prey

Shooting intervals Var. Cons. SQP iterations Obj. Time (s)

Single shooting 150 2 16 7.614527e-03 11:03

2 159 11 22 7.614526e-03 3:47

4 173 25 37 7.908877e-03 2:30

6 187 39 52 7.908865e-03 2:18

12 229 81 82 7.908856e-03 2:27

25 297 149 91 7.908878e-03 2:77

50 447 299 126 7.634122e-03 5:94

Table 2 Performance of multiple shooting for covariance matrix for predator-prey

Shooting intervals Var. Cons. SQP iterations Obj. Time (s)

2 162 14 41 7.794461e-03 6.55

4 182 34 122 7.646316e-03 9.73

6 202 54 – – –

12 262 114 90 8.270562e-03 6.29

25 369 221 – – –

50 594 446 304 7.952309e-03 34.01

shooting intervals the best overall choice. The following aspects are responsible for
this:

• derivatives with respect to controls are required only locally that means less
directional derivatives of second order are needed

• derivative evaluation is easily parallelized on a multicore machine.

While the first formulation converges for all discretizations within a reasonable
number of SQP iterations, the second formulation does not converge for every
multiple shooting discretization. Furthermore, many of the SQP steps were reduced
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steps, which means many additional constraint and objective evaluations were
necessary. Overall, the behaviour was competitive to the first formulation and single
shooting only for certain problem instances.

6.5 Results Urethane

We solved the problem with the more promising variant of direct multiple shooting
meaning we transform it to an NLP of the form (18) where we introduce a
coupled constraint for the information matrix. Again, we use different numbers of
shooting intervals with the same control discretization. The problem exhibits several
structurally different local minima, however, all of them yield significantly better
objective values than the initial guess. The states and controls for one of them are
depicted in Fig. 5.

The SQP method was able to find a local minimum for every multiple shooting
discretization. The results comprising the number of major iterations, the final
objective value and the CPU time in seconds are summarized in Table 3.

We see that the method performs comparably well in terms of SQP iterations for
single and multiple shooting. For CPU time, again the results shift strongly in favor
of multiple shooting because the derivative evaluation can be done much cheaper.

Fig. 5 Optimum experimental design for the urethane example. The objective (average variance)
is 1

6
tr.C/ D 0:0665

Table 3 Performance of single and multiple shooting for urethane

Shooting intervals Var. Cons. SQP iterations Obj. Time (s)

Single shooting 68 45 68 1.241664e-01 85:87

2 138 112 62 3.441588e-01 30:61

4 242 261 105 6.651601e-02 32:64

10 530 480 117 8.889849e-02 43:07
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7 Conclusions

In this paper, we reviewed a nonstandard optimal control problem formulation of
OED. For this formulation, we showed how to extend the classical direct multiple
shooting method for optimal control problems for OED problems in two ways,
leading to highly structured nonlinear programs. Special structures in the constraints
and objective derivatives are highlighted that must be taken into account in an
efficient implementation. The algorithms presented are implemented within the
software package VPLAN. We presented two application examples, one of them
a challenging example from chemical engineering that could be solved successfully
with one of the new formulations. Our implementation outperforms an existing
single shooting implementation in terms of CPU time.

We expect direct multiple shooting for OED to have more benefits for more chal-
lenging, large-scale real-life problems. Especially when nontrivial path constraints
are present, as it is often the case for real-life systems, direct single shooting can
run into problems finding feasible points. The direct multiple shooting method as
introduced in this paper allows to choose fine shooting discretizations in critical
regions and offers more flexibility for initialization. Another point is that OED, even
for small nominal systems, basically requires the solution of an additional nx � np

variational system and even though this can be done efficiently using the principles
of IND, its solution becomes very time consuming for large-scale systems. Here the
lower sensitivity load as well as the excellent potential for parallelization provide
great benefits for multiple shooting.
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