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Abstract Time parallel time integration methods have received renewed interest
over the last decade because of the advent of massively parallel computers, which
is mainly due to the clock speed limit reached on today’s processors. When solving
time dependent partial differential equations, the time direction is usually not used
for parallelization. But when parallelization in space saturates, the time direction
offers itself as a further direction for parallelization. The time direction is however
special, and for evolution problems there is a causality principle: the solution later
in time is affected (it is even determined) by the solution earlier in time, but not the
other way round. Algorithms trying to use the time direction for parallelization must
therefore be special, and take this very different property of the time dimension into
account.

We show in this chapter how time domain decomposition methods were invented,
and give an overview of the existing techniques. Time parallel methods can be
classified into four different groups: methods based on multiple shooting, methods
based on domain decomposition and waveform relaxation, space-time multigrid
methods and direct time parallel methods. We show for each of these techniques
the main inventions over time by choosing specific publications and explaining the
core ideas of the authors. This chapter is for people who want to quickly gain an
overview of the exciting and rapidly developing area of research of time parallel
methods.

1 Introduction

It has been precisely 50 years ago that the first visionary contribution to time
parallel time integration methods was made by Nievergelt [64]. We show in Fig. 1 an
overview of the many important contributions over the last 50 years to this field of
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Fig. 1 An overview over important contributions to time parallel methods

research. The methods with iterative character are shown on the left, and the direct
time parallel solvers on the right, and large scale parallel methods are more toward
the center of the figure, whereas small scale parallel methods useful for multicore
architectures are more towards the left and right borders of the plot.

We also identified the four main classes of space-time parallel methods in Fig. 1
using color:

1. methods based on multiple shooting are shown in magenta,
2. methods based on domain decomposition and waveform relaxation are shown in

red,
3. methods based on multigrid are shown in blue,
4. and direct time parallel methods are shown in black.

There have also been already overview papers, shown in green in Fig. 1, namely the
paper by Gear [40], and the book by Burrage [12].

The development of time parallel time integration methods spans now half a
century, and various methods have been invented and reinvented over this period.
We give a detailed account of the major contributions by presenting seminal papers
and explaining the methods invented by their authors.
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Fig. 2 Decomposition of the
space-time domain in time for
multiple shooting type
methods
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2 Shooting Type Time Parallel Methods

Time parallel methods based on shooting solve evolution problems in parallel using
a decomposition of the space-time domain in time, as shown in Fig. 2. An iteration
is then defined, or some other procedure, which only uses solutions in the time
subdomains, to obtain an approximate solution over the entire time interval .0; T/.

2.1 Nievergelt 1964

Nievergelt was the first to consider a pure time decomposition for the parallel
solution of evolution problems [64]. He stated precisely 50 years ago at the time
of writing of this chapter, how important parallel computing was to become in the
near future:

For the last 20 years, one has tried to speed up numerical computation mainly by providing
ever faster computers. Today, as it appears that one is getting closer to the maximal
speed of electronic components, emphasis is put on allowing operations to be performed
in parallel. In the near future, much of numerical analysis will have to be recast in a more
‘parallel’ form.

As we now know, the maximal speed of electronic components was only reached
40 years later, see Fig. 3.

Nievergelt presents a method for parallelizing the numerical integration of an
ordinary differential equation, a process which “by all standard methods, is entirely
serial”. We consider in Nievergelt’s notation the ordinary differential equation
(ODE)

y0 D f .x; y/; y.a/ D y0; (1)

and we want to approximate its solution on the interval Œa; b�. Such an approximation
can be obtained using any numerical method for integrating ODEs, so-called time
stepping methods, but the process is then entirely sequential. Nievergelt proposes
instead to partition the interval Œa; b� into subintervals x0 D a < x1 < : : : < xN D b,
as shown in his original drawing in Fig. 4, and then introduces the following direct
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Fig. 3 Maximal speed of electronic components reached 40 years after the prediction of Niev-
ergelt (taken from a talk of Bennie Mols at the VINT symposium 12.06.2013)
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Fig. 4 First idea by Nievergelt to obtain a parallel algorithm for the integration of a first order
ODE

time parallel solver:

1. Compute a rough prediction y0
i of the solution y.xi/ at each interface (see Fig. 4),

for example with one step of a numerical method with step size H D .b � a/=N.
2. For a certain number Mi of starting points yi;1; : : : ; yi;Mi at xi in the neighborhood

of the approximate solution y0
i (see Fig. 4), compute accurate (we assume here

for simplicity exact) trajectories yi;j.x/ in parallel on the corresponding interval
Œxi; xiC1�, and also y0;1.x/ on the first interval Œx0; x1� starting at y0.

3. Set Y1 WD y0;1.x1/ and compute sequentially for each i D 1; : : : ; N � 1 the
interpolated approximation by

• finding the interval j such that Yi 2 Œyi;j; yi;jC1�,

• determining p such that Yi D pyi;j C .1 � p/yi;jC1, i.e. p D Yi�yi;jC1

yi;j�yi;jC1
,
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• setting the next interpolated value at xiC1 to YiC1 WD pyi;j.xiC1/ C .1 �
p/yi;jC1.xiC1/.

For linear ODEs, this procedure does actually produce the same result as the
evaluation of the accurate trajectory on the grid, i.e. Yi D y.xi/ in our case of exact
local solves, there is no interpolation error, and it would in fact suffice to have only
two trajectories, Mi D 2 in each subinterval, since one can also extrapolate.

In the non-linear case, there is an additional error due to interpolation, and
Nievergelt defines a class of ODEs for which this error remains under control if one
uses Backward Euler for the initial guess with a coarse step H, and also Backward
Euler for the accurate solver with a much finer step h, and he addresses the question
on how to choose Mi and the location of the starting points yi;j in the neighborhood.
He then concludes by saying

The integration methods introduced in this paper are to be regarded as tentative examples
of a much wider class of numerical procedures in which parallelism is introduced at the
expense of redundancy of computation. As such, their merits lie not so much in their
usefulness as numerical algorithms as in their potential as prototypes of better methods
based on the same principle. It is believed that more general and improved versions of
these methods will be of great importance when computers capable of executing many
computations in parallel become available.

What a visionary statement again! The method proposed is inefficient compared
to any standard serial integration method, but when many processors are available,
one can compute the solution faster than with just one processor. This is the typical
situation for time parallel time integration methods: the goal is not necessarily
perfect scalability or efficiency, it is to obtain the solution faster than sequentially.

The method of Nievergelt is in fact a direct method, and we will see more such
methods in Sect. 5, but it is the natural precursor of the methods based on multiple
shooting we will see in this section.

2.2 Bellen and Zennaro 1989

The first to pick up the idea of Nievergelt again and to formally develop an iterative
method to connect trajectories were Bellen and Zennaro in [6]:

In addition to the two types of parallelism mentioned above, we wish to isolate a third which
is analogous to what Gear has more recently called parallelism across the time. Here it is
more appropriately called parallelism across the steps. In fact, the algorithm we propose is a
realization of this kind of parallelism. Without discussing it in detail here, we want to point
out that the idea is indeed that of multiple shooting and parallelism is introduced at the
cost of redundancy of computation.

Bellen and Zennaro define their method directly at the discrete level, for a
recurrence relation of the form

ynC1 D FnC1.yn/; y0 known. (2)
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This process looks entirely sequential, one needs to know yn in order to be able to
compute ynC1. Defining the vector of unknowns y WD .y0; y1; : : : ; yn; : : :/ however,
the recurrence relation (2) can be written simultaneously over many levels in the
fixed point form

y D �.y/; (3)

where �.y/ D .y0; F1.y0/; F2.y1/; : : : ; Fn.yn�1/; : : :/. Bellen and Zennaro propose
to apply a variant of Newton’s method called Steffensen’s method to solve the fixed
point equation (3). Like when applying Newton’s method and simplifying, as we
will see in detail in the next subsection, this leads to an iteration of the form

ykC1 D �.yk/ C ��.yk/.ykC1 � yk/; (4)

where �� is an approximation to the differential D�, and they choose as initial
guess y0

n D y0. Steffensen’s method for a nonlinear scalar equation of the form
f .x/ D 0 is

xkC1 D xk � g.xk/
�1f .xk/

g.x/ WD f .x C f .x// � f .x/

f .x/
;

and one can see how the function g.x/ becomes a better and better approximation of
the derivative f 0.x/ as f .x/ goes to zero. As Newton’s method, Steffensen’s method
converges quadratically once one is close to the solution.

Bellen and Zennaro show several results about Steffensen’s method (4) applied
to the fixed point problem (3):

1. They observe that each iteration gives one more exact value, i.e. after one
iteration, the exact value y1

1 D y1 is obtained, and after two iterations, the exact
value y2

2 D y2 is obtained, and so on. Hence convergence of the method is
guaranteed if the vector yk is of finite length.

2. They prove that convergence is locally quadratic, as it holds in general for
Steffensen’s method applied to non-linear problems.

3. The corrections at each step of the algorithm can be computed in parallel.
4. They also present numerically estimated speedups of 29–53 for a problem with

400 steps.

In contrast to the ad hoc interpolation approach of Nievergelt, the method of Bellen
and Zennaro is a systematic parallel iterative method to solve recurrence relations.
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2.3 Chartier and Philippe 1993

Chartier and Philippe return in [13] to the formalization of Bellen and Zennaro,1

which was given at the discrete level, and formulate their parallel integration method
at the continuous level for evolution problems:

Parallel algorithms for solving initial value problems for differential equations have
received only marginal attention in the literature compared to the enormous work
devoted to parallel algorithms for linear algebra. It is indeed generally admitted that
the integration of a system of ordinary differential equations in a step-by-step process is
inherently sequential.

The underlying idea is to apply a shooting method, which was originally
developed for boundary value problems, see [47] and references therein, to an initial
value problem, see also [48]. For a boundary value problem of the form

u00 D f .u/; u.0/ D a; u.1/ D b; (5)

a shooting method also considers the same differential equation, but as an initial
value problem,

u00 D f .u/; u.0/ D a; u0.0/ D s; (6)

and one then tries to determine the so-called shooting parameter s, the ‘angle of the
cannon to shoot with’, such that the solution passes through the point u.1/ D b,
which explains the name of the method. To determine the shooting parameter s,
one needs to solve in general a non-linear equation, which is preferably done by
Newton’s method, see for example [47].

If the original problem is however already an initial value problem,

u0 D f .u/; u.0/ D u0; x 2 Œ0; 1�; (7)

then there is in no target to hit at the other end, so at first sight it seems shooting is
not possible. To introduce targets, one uses the idea of multiple shooting: one splits
the time interval into subintervals, for example three, Œ0; 1

3
�, Œ 1

3
; 2

3
�, Œ 2

3
; 1�, and then

solves on each subinterval the underlying initial value problem

u0
0 D f .u0/; u0

1 D f .u1/; u0
2 D f .u2/;

u0.0/ D U0; u1.
1
3
/ D U1; u2.

2
3
/ D U2;

1“In diesem Artikel studieren wir verschiedene Versionen einer Klasse paralleler Algorithmen, die
ursprünglich von A. Bellen und M. Zennaro für Differenzengleichungen konzipiert und von ihnen
‘across the steps’ Methode genannt worden ist.”
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together with the matching conditions

U0 D u0; U1 D u0.
1

3
; U0/; U2 D u1.

2

3
; U1/:

Since the shooting parameters Un, n D 0; 1; 2 are not known (except for U0 D u0),
this leads to a system of non-linear equations one has to solve,

F.U/ WD
0
@

U0 � u0

U1 � u0.
1
3
; U0/

U2 � u1.
2
3
; U1/

1
A D 0; U D .U0; U1; U2/

T :

If we apply Newton’s method to this system, like in the classical shooting method,
to determine the shooting parameters, we obtain for k D 0; 1; 2; : : : the iteration

0
@

UkC1
0

UkC1
1

UkC1
2

1
A D

0
@

Uk
0

Uk
1

Uk
2

1
A �

2
64

1

� @u0

@U0
. 1

3
; Uk

0/ 1

� @u1

@U1
. 2

3
; Uk

1/ 1

3
75

�10
@

Uk
0 � u0

Uk
1 � u1.

1
3
; Uk

0/

Uk
2 � u1.

2
3
; Uk

1/

1
A :

Multiplying through by the Jacobian matrix, we find the recurrence relation

UkC1
0 D u0;

UkC1
1 D u0.

1
3
; Uk

0/ C @u0

@U0
. 1

3
; Uk

0/.UkC1
0 � Uk

0/;

UkC1
2 D u1.

2
3
; Uk

1/ C @u1

@U1
. 2

3
; Uk

1/.UkC1
1 � Uk

1/:

In the general case with N shooting intervals, solving the multiple shooting
equations using Newton’s method gives thus a recurrence relation of the form

UkC1
0 D u0;

UkC1
nC1 D un.tnC1; Uk

n/ C @un
@Un

.tnC1; Uk
n/.UkC1

n � Uk
n/; n D 0; 1; 2; : : : N;

(8)

and we recognize the form (4) of the method by Bellen and Zennaro. Chartier and
Philippe prove that (8) converges locally quadratically. They then however already
indicate that the method is not necessarily effective on general problems, and
restrict their analysis to dissipative right hand sides, for which they prove a global
convergence result. Finally, also discrete versions of the algorithm are considered.

2.4 Saha, Stadel and Tremaine 1996

Saha, Stadel and Tremaine cite the work of Bellen and Zennaro [6] and Nievergelt
[64] as sources of inspiration, but mention already the relation of their algorithm to
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waveform relaxation [52] in their paper on the integration of the solar system over
very long time [67]:

We describe how long-term solar system orbit integration could be implemented on a
parallel computer. The interesting feature of our algorithm is that each processor is
assigned not to a planet or a pair of planets but to a time-interval. Thus, the 1st
week, 2nd week, . . . , 1000th week of an orbit are computed concurrently. The problem of
matching the input to the .n C 1/-st processor with the output of the n-th processor can be
solved efficiently by an iterative procedure. Our work is related to the so-called waveform
relaxation methods. . . .

Consider the system of ordinary differential equations

Py D f .y/; y.0/ D y0;

or equivalently the integral formulation

y.t/ D y.0/ C
Z t

0

f .y.s//ds:

Approximating the integral by a quadrature formula, for example the midpoint rule,
we obtain for each time tn for y.tn/ the approximation

yn D y0 C h
n�1X
mD0

f .
1

2
.ymC1 C ym//; n D 1; : : : ; N: (9)

Collecting the approximations yn in a vector y WD .y0; y1; : : : ; yN/, the relation (9)
can again be written simultaneously over many steps as a fixed point equation of the
form

y D F.y/; (10)

which can be solved by an iterative process. Note that the quadrature formula (9)
can also be written by reusing the sums already computed at earlier steps,

yn D yn�1 C hf .
1

2
.yn C yn�1//; n D 1; : : : ; N; (11)

so the important step here is not the use of the quadrature formula. The interesting
step comes from the application of Saha, Stadel and Tremaine, namely a Hamilto-
nian problem with a small perturbation:

Pp D �@qH; Pq D @pH; H.p; q; t/ D H0.p/ C �H1.p; q; t/:

Denoting by y WD .p; q/, and f .y/ WD .�Hq.y/; Hp.y//, Saha, Stadel and Tremaine
derive Newton’s method for the associated fixed point problem (10), as Chartier and
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Philippe derived (8). Rewriting (8) in their notation gives

YkC1
nC1 D y�

n.tnC1; Yk
n/ C @y�

n

@Yn
.tnC1; Yk

n/.YkC1
n � Yk

n/; (12)

where the superscript � denotes the solution of the perturbed Hamiltonian system.
The key new idea of Saha, Stadel and Tremaine is to propose an approximation

of the derivative by a cheap difference for the unperturbed Hamiltonian problem,

YkC1
nC1 D y�

n.tnC1; Yk
n/ C y0

n.tnC1; YkC1
n / � y0

n.tnC1; Yk
n/: (13)

They argue that with the approximation for the Jacobian used in (13), each iteration
now improves the error by a factor �; instead of quadratic convergence for the
Newton method (12), one obtains linear convergence.

They show numerical results for our solar system: using for H0 Kepler’s law,
which leads to a cheap integrable system, and for �H1 the planetary perturbations,
they obtain the results shown in Fig. 5. They also carefully verify the possible
speedup with this algorithm for planetary simulations over long time. Figure 6
shows the iterations needed to converge to a relative error of 1e�15 in the planetary
orbits.

Fig. 5 Maximum error in
mean anomaly M versus time,
h D 7 1
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days, compared to
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Fig. 6 Top linear scaling,
and bottom logarithmic
scaling of the number of
iterations to reach a relative
error of 1e � 15 as a function
of the number of processors
(time intervals) used
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2.5 Lions, Maday and Turinici 2001

Lions, Maday and Turinici invented the parareal algorithm in a short note [54],
almost independently of earlier work; they only cite the paper by Chartier and
Philippe [13]:

On propose dans cette Note un schéma permettant de profiter d’une architecture parallèle
pour la discrétisation en temps d’une équation d’évolution aux dérivées partielles. Cette
méthode, basée sur un schéma d’Euler, combine des résolutions grossières et des
résolutions fines et indépendantes en temps en s’inspirant de ce qui est classique en
espace. La parallélisation qui en résulte se fait dans la direction temporelle ce qui est
en revanche non classique. Elle a pour principale motivation les problèmes en temps réel,
d’où la terminologie proposée de ‘pararéel’.

Lions, Maday and Turinici explain their algorithms on the simple scalar model
problem2

Py D �ay; on Œ0; T�; y.0/ D y0: (14)

2 “Pour commencer, on expose l’idée sur l’exemple simple.”
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The solution is first approximated using Backward Euler on the time grid Tn with
coarse time step �T,

Y1
nC1 � Y1

n C a�TY1
nC1 D 0; Y1

0 D y0: (15)

The approximate solution values Y1
n are then used to compute on each time interval

ŒTn; TnC1� exactly and in parallel the solution of

Py1
n D �ay1

n; y1
n.Tn/ D Y1

n : (16)

One then performs for k D 1; 2; : : : the correction iteration

1. Compute the jumps Sk
n WD yk

n�1.Tn/ � Yk
n .

2. Propagate the jumps ık
nC1 � ık

n C a�Tık
nC1 D Sk

n, ık
0 D 0.

3. Set YkC1
n WD yk

n�1.Tn/ C ık
n and solve in parallel

PykC1
n D �aykC1

n ; on ŒTn; TnC1�; ykC1
n .Tn/ D YkC1

n :

The authors prove the following error estimate for this algorithm 3

Proposition 1 (Lions, Maday and Turinici 2001) The parareal scheme is of order
k, i.e. there exists ck s.t.

jYk
n � y.Tn/j C max

t2ŒTn ;TnC1�
jyk

n.t/ � y.t/j � ck�Tk:

This result implies that with each iteration of the parareal algorithm, one obtains
a numerical time stepping scheme which has a truncation error that is one order
higher than before. So for a fixed iteration number k, one can obtain high order
time integration methods that are naturally parallel. The authors then note that
the same proposition also holds for Forward Euler. In both discretization schemes
however, the stability of the higher order methods obtained with the parareal
correction scheme degrades with iterations, as shown in Fig. 7 taken from the
original publication [54]. The authors finally show two numerical examples: one
for a heat equation where they obtain a simulated speedup of a factor 8 with 500
processors, and one for a semi-linear advection diffusion problem, where a variant
of the algorithm is proposed by linearization about the previous iterate, since the
parareal algorithm was only defined for linear problems. Here, the speedup obtained
is 18.

Let us write the parareal algorithm now in modern notation, directly for the non-
linear problem

u0 D f .u/; u.t0/ D u0: (17)

3“C’est alors un exercice que de montrer la:”



50 Years of Time Parallel Time Integration 81

Fig. 7 Stability of the parareal algorithm as function of the iteration, on the left for Backward
Euler, and on the right for Forward Euler

The algorithm is defined using two propagation operators:

1. G.t2; t1; u1/ is a rough approximation to u.t2/ with initial condition u.t1/ D u1,
2. F.t2; t1; u1/ is a more accurate approximation of the solution u.t2/ with initial

condition u.t1/ D u1.

Starting with a coarse approximation U0
n at the time points t0; t1; t2; : : : ; tN , for

example obtained using G, the parareal algorithm performs for k D 0; 1; : : : the
correction iteration

UkC1
nC1 D F.tnC1; tn; Uk

n/ C G.tnC1; tn; UkC1
n / � G.tnC1; tn; Uk

n/: (18)

Theorem 1 (Parareal is a Multiple Shooting Method [35]) The parareal algo-
rithm is a multiple shooting method

UkC1
nC1 D un.tnC1; Uk

n/ C @un

@Un
.tnC1; Uk

n/.UkC1
n � Uk

n/; (19)

where the Jacobian has been approximated in (18) by a difference on a coarse grid.

We thus have a very similar algorithm as the one proposed by Saha, Stadel and
Tremaine [67], the only difference being that the Jacobian approximation does not
come from a simpler model, but from a coarser discretization.

We now present a very general convergence result for the parareal algorithm
applied to the non-linear initial value problem (17), which contains accurate
estimates of the constants involved:

Theorem 2 (Convergence of Parareal [28]) Let F.tnC1; tn; Uk
n/ denote the exact

solution at tnC1 and G.tnC1; tn; Uk
n/ be a one step method with local truncation error

bounded by C1�TpC1. If

jG.t C �T; t; x/ � G.t C �T; t; y/j � .1 C C2�T/jx � yj;
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then the following error estimate holds for (18):

max
1�n�N

ju.tn/ � Uk
nj � C1�Tk.pC1/

kŠ
.1 C C2�T/N�1�k

kY
jD1

.N � j/ max
1�n�N

ju.tn/ � U0
n j

(20)

� .C1T/k

kŠ
eC2.T�.kC1/�T/�Tpk max

1�n�N
ju.tn/ � U0

nj: (21)

The proof uses generating functions and is just over a page long, see [28]. One
can clearly see the precise convergence mechanisms of the parareal algorithm in
this result: looking in (20) on the right, the product term is initially growing, for
k D 1; 2; 3 we get the products N � 1, .N � 1/.N � 2/, .N � 1/.N � 2/.N � 3/ and
so on, but as soon as k D N the product contains the factor zero, and the method has
converged. This is the property already pointed out by Bellen and Zennaro in [6].
Next looking in (21), we see that the method’s order increases at each iteration k by
p, the order of the coarse propagator, as already shown by Lions, Maday and Turinici
in their proposition for the Euler method. We have however also a precise estimate
of the constant in front in (21), and this constant contracts faster than linear, since it
is an algebraic power of C1T divided by kŠ (the exponential term is not growing as
the iteration k progresses). This division by kŠ is the typical convergence behavior
found in waveform relaxation algorithms, which we will see in more detail in the
next section.

3 Domain Decomposition Methods in Space-Time

Time parallel methods based on domain decomposition solve evolution problems
in quite a different way in parallel from multiple shooting based methods. The
decomposition of the space-time domain for such methods is shown in Fig. 8. Again

t

Ω1 Ω2 Ω3 Ω4 Ω5

T

0 x

Fig. 8 Decomposition of the space-time domain for domain decomposition time parallel methods
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an iteration is then used, which computes only solutions on the local space-time
subdomains ˝j. Since these solutions are obtained over the entire so-called time
window Œ0; T� before accurate interface values are available from the neighboring
subdomains over the entire time window, these methods are also time parallel in
this sense, and they are known under the name waveform relaxation.

3.1 Picard and Lindelöf 1893/1894

The roots of waveform relaxation type methods lie in the existence proofs of
solutions for ordinary differential equations of Picard [65] and Lindelöf [53]. Like
the alternating Schwarz method invented by Schwarz to prove the Dirichlet principle
[70] and hence existence of solutions of Laplace’s equation on general domains,
Picard invented his method of successive approximations to prove the existence of
solutions of the specific class of ordinary differential equations:

Les méthodes d’approximation dont nous faisons usage sont théoriquement susceptibles de
s’appliquer à toute équation, mais elles ne deviennent vraiment intéressantes pour l’étude
des propriétés des fonctions définies par les équations différentielles que si l’on ne reste pas
dans les généralités et si l’on envisage certaines classes d’équations.

Picard thus considers ordinary differential equations of the form

v0.t/ D f .v.t//; t 2 Œ0; T�; (22)

with given initial condition v.0/. In order to analyze if a solution of such a non-linear
problem exists, he proposed the nowadays called Picard iteration

vn.t/ D v.0/ C
Z t

0

f .vn�1.�//d�; n D 1; 2; : : : ; (23)

where v0.t/ is some initial guess. This transforms the problem of solving the ordi-
nary differential equation (22) into a sequence of problems using only quadrature,
which is much easier to handle. Picard proved convergence of this iteration in [65],
which was sufficient to answer the existence question. It was Lindelöf a year later
who gave the following convergence rate estimate in [53]:

Theorem 3 (Superlinear Convergence) On bounded time intervals t 2 Œ0; T�, the
iterates (23) satisfy the superlinear error bound

jjv � vnjj1 � .CT/n

nŠ
jjv � v0jj1; (24)

where C is the Lipschitz constant of the nonlinear right hand side f .

We see in the convergence estimate (24) the same term appear as in the parareal
convergence estimate (21). This term is typical for the convergence of waveform
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relaxation methods we will see next, and thus the comment of Saha, Stadel and
Tremaine in the quote at the beginning of Sect. 2.4 is justified.

3.2 Lelarasmee, Ruehli and Sangiovanni-Vincentelli 1982

The Picard iteration was not very successful as an iterative method for concrete
computations,4 but in the circuit community, an interesting variant was developed
based on a decomposition of the circuit by Lelarasmee, Ruehli and Sangiovanni-
Vincentelli [52]:

The Waveform Relaxation (WR) method is an iterative method for analyzing nonlinear
dynamical systems in the time domain. The method, at each iteration, decomposes the
system into several dynamical subsystems, each of which is analyzed for the entire
given time interval.

The motivation for this method was really the extremely rapid growth of
integrated circuits, which made it difficult to simulate a new generation of circuits on
the present generation computers.5 Lelarasmee, Ruehli and Sangiovanni-Vincentelli
explain the waveform relaxation algorithm on the concrete example of a MOS ring
oscillator shown in Fig. 9. The reason why this circuit is oscillating can be seen as
follows: suppose the voltage at node v1 equals 5 V. Then this voltage is connected
to the gate of the transistor to the right, which will thus open, and hence the voltage
at node v2 will be pulled down to ground, i.e. 0 V. This is however connected to the
gate of the next transistor to the right of v2, which will thus close, and v3 will be
pulled up to 5 V. These 5 V will now feedback to the gate of the transistor to the left
of v1, which will thus open, and thus v1, which was by assumption at 5 V, will be
pulled down to ground at 0 V, and we see how the oscillation happens.

Using the laws of Ohm and Kirchhoff, the equations for such a circuit can be
written in form of a system of ordinary differential equations

v0.t/ D f.v.t//; 0 < t < T;

v.0/ D g;

where v D .v1; v2; v3/, and g is the initial state of the circuit.
If the circuit is extremely large, so that it does not fit any more on one single

computer, the waveform relaxation algorithm is based on the idea of decomposing
the circuit into subcircuits, as shown in Fig. 10. The idea is to cut the wires with

4“Actually this method of continuing the computation is highly inefficient and is not recom-
mended”, see [59].
5“The spectacular growth in the scale of integrated circuits being designed in the VLSI era has
generated the need for new methods of circuit simulation. “Standard” circuit simulators, such as
SPICE and ASTAP, simply take too much CPU time and too much storage to analyze a VLSI
circuit”, see [52].
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Fig. 9 Historical example of the MOS ring oscillator, for which the waveform relaxation
algorithm was derived
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Fig. 10 Decomposition of the MOS ring oscillator circuit for the waveform relaxation algorithm

which the subcircuits are connected, and then to assume that there are small voltage
sources on the wires that were cut, which feed in the voltage that was calculated at
the previous iteration. This leads to the iterative method

@tv
kC1
1 D f1.vkC1

1 ; vk
2; vk

3/;

@tv
kC1
2 D f2.vk

1; vkC1
2 ; vk

3/;

@tv
kC1
3 D f3.vk

1; vk
2; vkC1

3 /:

(25)
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Fig. 11 Historical convergence result for the MOS ring oscillator from [52]. The x axis represents
time here and the y axis voltage values

Since in the circuit simulation community signals along wires are called ‘wave-
forms’, this gave the algorithm the name Waveform Relaxation. We see in (25) that
on the right all neighboring waveforms have been relaxed to the previous iteration,
which results in a Jacobi type relaxation known in numerical linear algebra, which is
entirely parallel. Naturally one could also use a Gauss-Seidel type relaxation which
would then be sequential.

We show in Fig. 11 a historical numerical convergence study for the MOS ring
oscillator taken from [52]. We can see that this circuit has the property that the
waveform relaxation algorithm converges in a finite number of steps. This can
be understood by the finite propagation speed of the information in this circuit,6

and we will see this again when looking at hyperbolic equations in the following
section. The convergence of waveform relaxation methods depends strongly on the
type of equations that are being solved, and the general convergence estimate of
Lindelöf (24), also valid for waveform relaxation, is not always sharp.

6 “Note that since the oscillator is highly non unidirectional due to the feedback from v3 to the
NOR gate, the convergence of the iterated solutions is achieved with the number of iterations
being proportional to the number of oscillating cycles of interest”, see [52].
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3.3 Gander 1996

The waveform relaxation algorithm from the previous subsection can be naturally
extended to partial differential equations, as it was shown in [24]:

Motivated by the work of Bjørhus [8], we show how one can use overlapping domain
decomposition to obtain a waveform relaxation algorithm for the semi-discrete heat
equation which converges at a rate independent of the mesh parameter.

The idea is best explained for the simple model problem of the one dimensional
heat equation,

@tu D @xxu; 0 < x < 1; t > 0 (26)

with given initial condition u.x; 0/ D u0.x/ and homogeneous boundary conditions.
Like in the waveform relaxation algorithm, where the circuit was partitioned into
subcircuits, one partitions the domain ˝ D .0; 1/ into overlapping subdomains, say
˝1 D .0; ˇ/ and ˝1 D .˛; 1/, ˛ < ˇ, and then performs the iteration

@tun
1 D @xxun

1; 0 < x < ˇ; t > 0;

un
1.ˇ; t/ D un�1

2 .ˇ; t/;
@tun

2 D @xxun
2; ˛ < x < 1; t > 0;

un
2.˛; t/ D un�1

1 .˛; t/:

(27)

Since the decomposition is overlapping like in the classical overlapping Schwarz
method for steady problems, and time dependent problems are solved in each
iteration like in waveform relaxation, these algorithms are called Schwarz Waveform
Relaxation algorithms. One can show that algorithm (27) converges linearly on
unbounded time intervals, see [34], and superlinearly on bounded time intervals,
see [41]. Both results can be found for nonlinear problems in [25]. The superlinear
convergence rate in Schwarz waveform relaxation algorithms is faster than in
classical waveform relaxation methods for circuits, since the heat kernel decay
gives additional contraction. If the equation is a wave equation, then one obtains
convergence in a finite number of steps, see for example [29]. Much better waveform
relaxation methods can however be obtained using the new concept of optimized
transmission conditions we will see next.

3.4 Gander, Halpern and Nataf 1999

It was shown in [36] that the Dirichlet transmission conditions used for the
information exchange do not lead to good convergence behavior of the Schwarz
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waveform relaxation algorithm:

We then show that the Dirichlet conditions at the artificial interfaces inhibit the
information exchange between subdomains and therefore slow down the convergence of
the algorithm.

This observation holds for all types of partial differential equations, also for
steady state problems [62]. The key new idea is to introduce more effective
transmission conditions, which leads for the model problem (26) to the new Schwarz
waveform relaxation algorithm

@tun
1 D @xxun

1; 0 < x < ˇ; t > 0;

B1un
1.ˇ; t/ D B1un�1

2 .ˇ; t/;
@tun

2 D @xxun
2; ˛ < x < 1; t > 0;

B2un
2.˛; t/ D B2un�1

1 .˛; t/:

(28)

If one choosesB1 D @n1 CDtN2 andB2 D @n2 CDtN1, where @nj denotes the normal
derivative, and DtNj denotes the Dirichlet to Neumann operator of the subdomain
j, then algorithm (28) converges in two iterations, independently of the overlap: it
becomes a direct solver. This can be generalized to N iterations with N subdomains,
or one iteration when using an alternating sweep, and is the underlying mechanism
for the good convergence of the sweeping preconditioner recently presented in [20].
Since the DtN operators are in general expensive, so-called optimized Schwarz
waveform relaxation methods use local approximations; for a complete treatment
of advection reaction diffusion equations see [7, 30], and for the wave equation,
see [29, 37]. An overview for steady problems and references can be found in [26].
We show in Fig. 12 as an illustration for an advection reaction diffusion equation
and a decomposition into eight overlapping subdomains how much faster optimized
Schwarz waveform relaxation methods converge compared to classical Schwarz
waveform relaxation methods. While the Dirichlet transmission conditions in the
left column greatly inhibit the information exchange, the absorbing conditions (here
second order Taylor conditions) lead almost magically to a very good approximation
already in the very first iteration. For more information, see [7, 30]. Waveform
relaxation methods should thus never be used with classical transmission conditions,
also when applied to circuits; optimized transmission conditions have also been
proposed and analyzed for circuits, see for example [1, 2] and references therein.

3.5 Recent Developments

Other domain decomposition methods for steady problems have been recently
proposed and analyzed for time dependent problems: for the convergence properties
of the Dirichlet-Neumann Waveform Relaxation algorithm, see [39, 58], and for the
Neumann-Neumann Waveform Relaxation algorithm, see [39, 50] for a convergence
analysis, and [44] for well posedness of the algorithm.
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Fig. 12 Snapshots in time of the first classical Schwarz waveform relaxation iteration in the left
column, and the first optimized Schwarz waveform relaxation iteration in the right column: the
exact solution is shown in solid red, and the Schwarz waveform relaxation approximation in dashed
blue
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Fig. 13 Space-time decomposition for parareal Schwarz waveform relaxation
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Fig. 14 Space-time multigrid methods work simultaneously on the entire space-time domain

It is also naturally possible to combine the multiple shooting method and the
Schwarz waveform relaxation methods, which leads to a space-time decomposition
of the form shown in Fig. 13. A parareal Schwarz waveform relaxation algorithm
for such decompositions was proposed in [38], see also [57] for a method which
uses waveform relaxation as a solver within parareal. These methods iterate
simultaneously on sets of unknowns in the space-time domain, as the space-time
multigrid methods we will see next.

4 Multigrid Methods in Space-Time

The methods we have seen so far were designed to be naturally parallel: the
time decomposition methods based on shooting use many processors along the
time axis, the waveform relaxation methods use many processors in the space
dimensions. The multigrid methods we see in this section are not naturally parallel,
but their components can be executed in parallel in space-time, since they work
simultaneously on the entire space-time domain, as indicated in Fig. 14.
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4.1 Hackbusch 1984

The first such method is the parabolic multigrid method developed by Hackbusch in
[43]. Like other multigrid methods, the smoother can be naturally implemented in
parallel in space, and in the parabolic multigrid method, the smoother operates over
many time levels, so that interpolation and restriction can be performed in parallel
in space-time.

In order to explain the method, we consider the parabolic PDE ut C L u D f
discretized by Backward Euler:

.I C �tL /un D un�1 C �tf .tn/: (29)

Hackbusch makes the following comment about this equation

The conventional approach is to solve (29) time step by time step; un is computed from
un�1, then unC1 from un etc. The following process will be different. Assume that un is
already computed or given as an initial state. Simultaneously, we shall solve for unC1,
unC2, . . . , unCk in one step of the algorithm.

In the method of Hackbusch, one starts with a standard smoother for the problem
at each time step. Let A be the iteration matrix, A WD I C �tL ; then one partitions
the matrix into its lower triangular, diagonal and upper triangular part, A D LCDC
U, and uses for example as a smoother the Gauss-Seidel iteration over many time
levels:

for n D 1 W N
for j D 1 W �

uj
n D .L C D/�1.�Uun

j�1 C u�
n�1 C �tf .tn//;

end;
end;

We see that the smoothing process is sequential in time: one first has to finish the
smoothing iteration at time step n � 1 in order to obtain u�

n�1, before one can start
the smoothing iteration at time step n, since u�

n�1 is needed on the right hand side.
After smoothing, one restricts the residual in space-time like in a classical

multigrid method to a coarser grid, before applying the procedure recursively.
Hackbusch first only considers coarsening in space, as shown in Fig. 15. In this
case, one can prove that standard multigrid performance can be achieved for this

Fig. 15 Original figure of
Hackbusch about the
coarsening in the parabolic
multigrid method. This figure
was taken from [43]
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method. If one however also coarsens in time, one does not obtain standard multigrid
performance, and the method can even diverge. This is traced back by Hackbusch
to errors which are smooth in space, but non smooth in time. Hackbusch illustrates
the performance of the method by numerical experiments for buoyancy-driven flow
with finite difference discretization.

4.2 Lubich and Ostermann 1987

Lubich and Ostermann [55] used the waveform relaxation context to define a space-
time multigrid method:

Multi-grid methods are known to be very efficient solvers for elliptic equations. Various
approaches have also been given to extend multi-grid techniques to parabolic problems. A
common feature of these approaches is that multi-grid methods are applied only after the
equation has been discretized in time. In the present note we shall rather apply multi-grid
(in space) directly to the evolution equation.

Their work led to the so-called Multigrid Waveform Relaxation algorithm. The
easiest way to understand it is to first apply a Laplace transform to the evolution
problem, assuming for simplicity a zero initial condition,

ut C Lhu D f H) A.s/Ou WD sOu C Lh Ou D Of :

One then applies a standard multigrid method to the Laplace transformed linear
system A.s/Ou D Of . Let A.s/ D L C D C sI C U be again the lower triangular,
diagonal and upper triangular part of the matrix A.s/. A standard two grid algorithm
would then start with the initial guess Ou0

0.s/, and perform for n D 0; 1; 2; : : : the
steps

for j D 1 W �

Ou j
n.s/ D .L C D C sI/�1.�U Ou j�1

n .s/ C Of .s//;
end;
Ou0

nC1.s/ D Ou�
n.s/ C PA�1

c R. Of � AOu�
n.s//;

smooth again;

where R and P are standard multigrid restriction and prolongation operators for
steady problems, and the coarse matrix can be defined using a Galerkin approach,
Ac WD RAP.

Applying the inverse Laplace transform to this algorithm, we obtain the multigrid
waveform relaxation algorithm: the smoothing step

.sI C L C D/Ou j
n.s/ D �U Ou j�1

n .s/ C Of .s/

becomes in the time domain

@tu
j
n C .L C D/u j

n C Uu j�1
n D f ;
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which is a Gauss Seidel Waveform Relaxation iteration, see Sect. 3.2. The coarse
correction

Ou0
nC1.s/ WD Ou�

n.s/ C PA�1
c R. Of � AOu�

n.s//

becomes back in the time domain

solve vt C LHv D R.f � @tu�
n � Lhu�

n/,
u0

nC1 D u�
n C Pv.

This is a time continuous parabolic problem on a coarse spatial mesh.
Lubich and Ostermann prove for the heat equation and finite difference dis-

cretization that red-black Gauss Seidel smoothing is not as good as for the stationary
problem, but still sufficient to give typical multigrid convergence, and that damped
Jacobi smoothing is as good as for stationary problems. The authors show with
numerical experiments that in the multigrid waveform relaxation algorithm one can
use locally adaptive time steps.

4.3 Horton and Vandewalle 1995

Horton and Vandewalle are the first to try to address the problem of time coarsening
in [45]:

In standard time-stepping techniques multigrid can be used as an iterative solver for the
elliptic equations arising at each discrete time step. By contrast, the method presented in
this paper treats the whole of the space-time problem simultaneously.

They first show that time coarsening does not lead to multigrid performance,
since the entire space-time problem is very anisotropic because of the time direction.
To address this issue, they explain that one could either use line smoothers, which
is related to the multigrid waveform relaxation algorithm we have seen in Sect. 4.2,
or the following two remedies:

1. Adaptive semi-coarsening in space or time depending on the anisotropy,
2. Prolongation operators only forward in time.

For the heat equation with finite difference discretization and Backward Euler,
BDF2 and Crank-Nicolson, Horton and Vandewalle perform a detailed local Fourier
mode analysis, and show that good contraction rates can be obtain for space-time
multigrid V-cycles, although not quite mesh independent. F-cycles are needed to
get completely mesh independent convergence rates. These results are illustrated by
numerical experiments for 1d and 2d heat equations.
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4.4 Emmett and Minion 2012

There are several steps in the development of the solver PFASST, which stands for
Parallel Full Approximation Scheme in Space-Time. The underlying iteration is a
deferred correction method [60]:

This paper investigates a variant of the parareal algorithm first outlined by Minion and
Williams in 2008 that utilizes a deferred correction strategy within the parareal
iterations.

We thus have to start by explaining the deferred correction method. Consider the
initial value problem

u0 D f .u/; u.0/ D u0: (30)

We can rewrite this problem in integral form

u.t/ D u.0/ C
Z t

0

f .u.�//d�: (31)

Let Qu.t/ be an approximation with error e.t/ WD u.t/ � Qu.t/. Inserting u.t/ D Qu.t/ C
e.t/ into (31), we get

Qu.t/ C e.t/ D u.0/ C
Z t

0

f .Qu.�/ C e.�//d�: (32)

Defining the function F.u/ WD u.0/CR t
0

f .u.�//d� �u.t/ from Eq. (31), the residual
r.t/ of the approximate solution Qu.t/ is

r.t/ WD F.Qu/ D Qu.0/ C
Z t

0

f .Qu.�//d� � Qu.t/; (33)

and thus from (32) the error satisfies the equation

e.t/ D u.0/ C
Z t

0

f .Qu.�/ C e.�//d� � Qu.t/

D r.t/ C
Z t

0

f .Qu.�/ C e.�// � f .Qu.�//d�;

or written as a differential equation

e0.t/ D r0.t/ C f .Qu.t/ C e.t// � f .Qu.t//: (34)

The idea of integral deferred correction is to choose a numerical method, for
example Forward Euler, and to get a first approximation of the solution of (30)
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by computing

QumC1 D Qum C �tf .Qum/; for m D 0; 1; : : : ; M � 1:

With these values, one then computes the residual defined in (33) at the points
tm, m D 0; 1; : : : ; M using a high order quadrature formula. One then solves the
error equation (34) in differential form again with the same numerical method, here
Forward Euler,

emC1 D em C rmC1 � rm C �t.f .Qum C em/ � f .Qum//: (35)

Adding this correction, one obtains a new approximation Qum C em, for which one
can show in our example of Forward Euler that the order has increased by one, i.e.
it is now a second order approximation. One can continue this process and increase
the order up to the order of the quadrature used.

This spectral deferred correction iteration can also be considered as an iterative
method to compute the Runge-Kutta method corresponding to the quadrature rule
used to approximate the integral: if we denote by u0 the initial approximation ob-
tained by forward Euler, u0 WD .Qu0; Qu1; : : : ; QuM/T , each integral deferred correction
corresponds to one step in the non-linear fixed point iteration

uk D F.uk�1; u0/; (36)

where u0 is the initial condition from (30). The classical application of integral
deferred correction is to partition the time interval Œ0; T� into subintervals ŒTj�1; Tj�,
j D 1; 2; : : : ; J, and then to start on the first subinterval ŒT0; T1� to compute
approximations uk

1 by performing K steps of (36) before passing to the next time
interval ŒT1; T2�, see also Fig. 18 for an example with M D 3. The overall iteration
is therefore

uK
0;M D u0;

for j D 1 W J
compute u0

j as Euler approximation on ŒTj�1; Tj�;
for k D 1 W K

uk
j D F.uk�1

j ; uK
j�1;M/;

end;
end;

We see that this is purely sequential, like a time stepping scheme: in each time
subinterval, one first has to finish the K spectral deferred corrections, before one
can pass to the next time subinterval. Minion proposed in [60] not to wait for each
time subinterval to finish, and to replace the inner updating formula by

uk
j D F.uk�1

j ; uk
j�1;M/; (note the lower case k !); (37)
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which means that one can now perform the spectral deferred corrections on many
time subintervals ŒTj�1; Tj� in parallel. This is very similar to the iteration of Womble
we will see Sect. 5.3. In the approach of Minion, this is however combined with a
coarse correction from the parareal algorithm, so it is like using a more and more
accurate fine integrator, as the iteration progresses.

The PFASST algorithm proposed in [19] is based on using the parallel deferred
correction iteration above as a smoother in a multigrid full approximation scheme
in space-time for non-linear problems:

The method is iterative with each iteration consisting of deferred correction sweeps
performed alternately on fine and coarse space-time discretizations. The coarse grid
problems are formulated using a space-time analog of the full approximation scheme
popular in multigrid methods for nonlinear equations.

The method has successfully been applied to non-linear problems in [19, 75, 76],
but there is so far no convergence analysis for PFASST.

4.5 Neumüller 2014

The new idea in this multigrid variant is to replace the classical point smoothers by
block Jacobi smoothers. Suppose we discretize the heat equation

ut D �u C f

globally in space-time by an implicit method, for example Backward Euler. Then
we obtain a block triangular linear system in space-time of the form

0
BBBBB@

A1

B2 A2

B3 A3

: : :
: : :

Bn An

1
CCCCCA

0
BBBBB@

u1

u2

u3

:::

un

1
CCCCCA

D

0
BBBBB@

f1

f2

f3

:::

fn

1
CCCCCA

: (38)

The space-time multigrid method consists now of applying a few damped block
Jacobi smoothing steps, inverting the diagonal blocks An, before restricting by
standard multigrid restriction operators in space-time to a coarser grid, and recur-
sively continuing. One can show that for the heat equation, we have (see Martin
Neumüller’s PhD thesis [63]):

• The optimal damping parameter for the block Jacobi smoother is ! D 1
2
.

• One always obtains good smoothing in time (semi-coarsening is always possi-
ble).

• For �t
�h2 � C, one also obtains good smoothing in space.
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Table 1 Scaling results for the space-time multigrid method with block Jacobi smoother; all
simulations performed by M. Neumüller

Weak scaling Strong scaling

Cores 1
�T dof Iter Time 1

�T dof Iter Time

1 4 59768 9 6.8 4096 61202432 9 6960:7

2 8 119536 9 8.1 4096 61202432 9 3964:8

4 16 239072 9 9.2 4096 61202432 9 2106:2

8 32 478144 9 9.2 4096 61202432 9 1056:0

16 64 956288 9 9.2 4096 61202432 9 530:4

32 128 1912576 9 9.3 4096 61202432 9 269:5

64 256 3825152 9 9.4 4096 61202432 9 135:2

128 512 7650304 9 9.4 4096 61202432 9 68:2

256 1024 15300608 9 9.4 4096 61202432 9 34:7

512 2048 30601216 9 9.4 4096 61202432 9 17:9

1024 4096 61202432 9 9.4 4096 61202432 9 9:4

2048 8192 122404864 9 9.5 4096 61202432 9 5:4

• One V-cycle in space suffices to invert the diagonal blocks An in the Jacobi
smoother.

This multigrid method has excellent scaling properties for the heat equation, as it
was shown in [63], from which the example in Table 1 is taken. The results are for
the 3D heat equation, and computed on the Vienna Scientific Cluster VSC-2; see
also [32].

5 Direct Solvers in Space-Time

The time parallel solvers we have seen so far were all iterative. There have been also
attempts to construct direct time parallel solvers. There are both small scale parallel
direct solvers and also large scale parallel direct solvers.

5.1 Miranker and Liniger 1967

The first small scale direct parallel solver was proposed by Miranker and Liniger
[61], who also were very much aware of the naturally sequential nature of evolution
problems:

It appears at first sight that the sequential nature of the numerical methods do not permit
a parallel computation on all of the processors to be performed. We say that the front of
computation is too narrow to take advantage of more than one processor. . . Let us consider
how we might widen the computation front.
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Fig. 16 Symbolic representation by Miranker and Liniger of an entirely sequential predictor
corrector method on the left, and a parallel one on the right

For y0 D f .x; y/, Miranker and Liniger consider the predictor corrector formulas

yp
nC1 D yc

n C h

2
.f .yc

n/ � f .yc
n�1//; yc

nC1 D yc
n C h

2
.f .yp

nC1/ C f .yc
n//:

This process is entirely sequential as they illustrated with a figure, a copy of which
is shown in Fig. 16 on the left. They then consider the modified predictor corrector
formulas

yp
nC1 D yc

n�1 C 2hf .yp
n/; yc

n D yc
n�1 C h

2
.f .yp

n/ C f .yc
n�1//:

Those two formulas can now be evaluated in parallel by two processors, as
illustrated in Fig. 16 on the right. Miranker and Liniger then show how one can
systematically derive a general class of numerical integration methods which can
be executed on 2s processors in parallel, and present a stability and convergence
analysis for those methods.

Similar parallelism can also be obtained with the block implicit one-step methods
developed by Shampine and Watts in [71]. These methods use different time
stepping formulas to advance several time levels at once. For an early numerical
comparison for parallel block methods and parallel predictor corrector methods, see
Franklin [23]. These methods are ideally suited to be used on the few cores of a
multicore processor, but they do not have the potential for large scale parallelism.

5.2 Axelson and Verwer 1985

Boundary value methods for initial value problems are a bit strange. A very good
early introduction is the paper by Axelson and Verwer [4]:

Hereby we concentrate on explaining the fundamentals of the method because for initial
value problems the boundary value method seems to be fairly unknown [. . . ] In the forward-
step approach, the numerical solution is obtained by stepping through the grid [. . . ] In this
paper, we will tackle the numerical solution in a completely different way [. . . ] We will
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consider Py D f .x; y/ as a two point boundary value problem with a given value at the
left endpoint and an implicitly defined value, by the equation Py D f .x; y/, at the right
endpoint.

It is best to understand boundary value methods by looking at a simple example.7

Suppose we discretize Py D f .y/ with the explicit midpoint rule

ynC1 � yn�1 � 2hf .yn/ D 0; y0 D y.0/:

Since the explicit midpoint rule is a two step method, we also need an initial
approximation for y1. Usually, one defines y1 from y0 using a one step method, for
example here by Backward Euler. In boundary value methods, one leaves y1 as an
unknown, and uses Backward Euler at the endpoint yN to close the system, imposing

yN � yN�1 � 2hf .yN/ D 0:

For a linear problem Py D ay, the midpoint rule and Backward Euler to define y1

gives the triangular linear system

0
BBBBB@

1 � ah
�2ah 1

�1 �2ah 1
: : :

: : :
: : :

�1 �2ah 1

1
CCCCCA

0
BBBBB@

y1

y2

y3

:::

yN

1
CCCCCA

D

0
BBBBB@

y0

y0

0
:::

0

1
CCCCCA

: (39)

For the boundary value method, leaving y1 free and using Backward Euler on the
right gives the tridiagonal system

0
BBBBB@

�2ah 1

�1 �2ah 1
: : :

: : :
: : :

�1 �2ah 1

�1 1 � ah

1
CCCCCA

0
BBBBB@

y1

y2

y3

:::

yN

1
CCCCCA

D

0
BBBBB@

y0

0

0
:::

0

1
CCCCCA

: (40)

The tridiagonal system can now be solved either directly by factorization, or also by
iteration, thus working on all time levels simultaneously.

It is very important however to realize that boundary value methods are com-
pletely different discretizations from initial value methods. The stability properties
often are the contrary when one transforms an initial value method into a bound-
ary value method. We show in Fig. 17 numerical examples for the initial value
method (39) and boundary value method (40). We see that for a decaying solution,

7This example had already been proposed by Fox in 1954.
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Fig. 17 Stability comparison of initial value and boundary value methods. (a) a D �6, h D 1=20.
(b) a D �6, h D 1=100. (c) a D 6, h D 1=20. (d) a D 6, h D 1=2000

a < 0, the initial value method is exhibiting stability problems, while the boundary
value method is perfectly stable (top row of Fig. 17). For growing solutions, a > 0

it is the opposite, the initial value method gives very good approximations, while
the boundary value method needs extremely fine time steps to converge (bottom
row of Fig. 17). One can therefore not just transform an initial value method into a
boundary value method in order to obtain a parallel solver, one has to first carefully
study the properties of the new method obtained, see [10, 11] and references therein.
Now if the method has good numerical properties and the resulting system can well
be solved in parallel, boundary value methods can be an attractive way of solving an
evolution problem in parallel, see for example [9], where a Backward Euler method
is proposed to precondition the boundary value method. This is still sequential, but
if one only uses subblocks of the Backward Euler method as preconditioner, by
dropping the connection after, say, every 10th time step, a parallel preconditioner
is obtained. Such methods are called nowadays block boundary value methods, see
for example [11]. If one introduces a coarse mesh with a coarse integrator, instead
of the backward Euler preconditioner, and does not use as the underlying integrator
a boundary value method any more, but just a normal time stepping scheme, the
approach can be related to the parareal algorithm, see for example [3].
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5.3 Womble 1990

The method presented by Womble in [79], see also the earlier work by Saltz and
Naik [68], is not really a direct method, it is using iterations, but not in the same
way of the iterative methods we have seen so far:

Parabolic and hyperbolic differential equations are often solved numerically by time
stepping algorithms. These algorithms have been regarded as sequential in time; that is, the
solution on a time level must be known before the computation for the solution at subsequent
time levels can start. While this remains true in principle, we demonstrate that it is possible
for processors to perform useful work on many time levels simultaneously.

The relaxation idea is similar to the one later used by Minion in [60] as a
smoother in the context of PFASST, see Sect. 4.4, but not for a deferred correction
iteration. In order to explain the method, we discretize the parabolic problem

ut D L u C f

by an implicit time discretization and obtain at each time step a linear system of the
form

Anun D fn C Bnun�1:

Such systems are often solved by iteration. If we want to use a stationary iterative
method, for example Gauss-Seidel, we would partition the matrix An D Ln C Dn C
Un, its lower triangular, diagonal, and upper triangular parts. Then starting with an
initial guess u0

n, one solves for k D 1; 2; : : : ; K

.Ln C Dn/uk
n D �Unuk�1

n C fn C BnuK
n�1: (41)

The key idea to break the sequential nature is to modify this iteration slightly so
that it can be performed in parallel over several time steps. It suffices to not wait for
convergence of the previous time level, but to iterate like

.Ln C Dn/uk
n D �Unuk�1

n C fn C Bnuk�1
n�1; (42)

which is the same idea also used in (37). Womble obtained quite good results with
this approach, and he was the first person to really demonstrate practical speedup
results with this time parallel method on a 1024-processor machine. Even though it
was later shown that only limited speedups are possible with this relaxation alone
[16], the work of Womble made people realize that indeed time parallelization could
become an important direction, and it drew a lot of attention toward time-parallel
algorithms.
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5.4 Worley 1991

Worley was already in his PhD thesis in 1988 very interested in theoretical limits on
the best possible sequential and parallel complexity when solving PDEs. While the
ultimate sequential algorithm for such a problem of size n is O.n/ on a sequential
machine, it is O.log n/ on a parallel machine. In [80], Worley presented an additional
direct time parallelization method, which when combined with multigrid waveform
relaxation leads to a nearly optimal time-parallel iterative method:

The waveform relaxation multigrid algorithm is normally implemented in a fashion that is
still intrinsically sequential in the time direction. But computation in the time direction
only involves solving linear scalar ODEs. If the ODEs are solved using a linear multistep
method with a statically determined time step, then each ODE solution corresponds to the
solution of a banded lower triangular matrix equation, or, equivalently, a linear recurrence.
Parallelizing linear recurrence equations has been studied extensively. In particular, if a
cyclic reduction approach is used to parallelize the linear recurrence, then parallelism
is introduced without increasing the order of the serial complexity.

The approach is based on earlier ideas for the parallel evaluation of recurrence
relations [49] and the parallel inversion of triangular matrices [69]. Worley explains
the fundamental idea as follows: suppose we want to solve the bidiagonal matrix
equation

0
BB@

a11

a21 a22

a32 a33

a43 a44

1
CCA

0
BB@

x1

x2

x3

x4

1
CCA D

0
BB@

f1
f2
f3
f4

1
CCA : (43)

Then one step of the cyclic reduction algorithm leads to a new matrix equation of
half the size,

 
a22

� a43

a33
a32 a44

!�
x2

x4

�
D
 

f2 � a21

a11
f1

f4 � a43

a33
f3

!
; (44)

i.e. we simply computed the Schur complement to eliminate variables with odd
indices. For a bigger bidiagonal matrix, this process can be repeated, and we
always obtain a bidiagonal matrix of half the size. Once a two by two system is
obtained, one can solve directly, and then back-substitute the values obtained to
recover the values of the eliminated variables. Each step of the cyclic reduction
is parallel, since each combination of two equations is independent of the others.
Similarly the back-substitution process is also parallel. Cyclic reduction is therefore
a direct method to solve a linear forward recurrence in parallel, and the idea can be
generalized to larger bandwidth using block elimination. The serial complexity of
simple forward substitution in the above example is 3n, whereas the cyclic reduction
serial complexity is 7n (or 5n if certain quantities are precomputed), and thus the
algorithm is not of interest for sequential computations. But performed in parallel,
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the complexity of cyclic reduction becomes a logarithm in n, and one can thus
obtain the solution substantially faster in parallel than just by forward substitution.
For further theoretical considerations and numerical results in combination with
multigrid waveform relaxation, see [46]. A truly optimal time-parallel algorithm,
based on a preconditioner in a waveform relaxation setting using a fast Fourier
transform in space to decouple the unknowns, and cyclic reduction in time can be
found in [74].

5.5 Sheen, Sloan and Thomée 1999

A new way to solve evolution problems with a direct method in parallel was
proposed in [72]:

These problems are completely independent, and can therefore be computed on
separate processors, with no need for shared memory. In contrast, the normal step-by-step
time-marching methods for parabolic problems are not easily parallelizable.

see also [15]. The idea is to Laplace transform the problem, and then to solve a
sequence of steady problems at quadrature nodes used for the numerical evaluation
of the inverse Laplace transform, and goes back to the solution in the frequency
domain of hyperbolic problems, see for example [17]. Suppose we have the initial
value problem

ut C Au D 0; u.0/ D u0;

where A represents a linear operator. Applying a Laplace transform to this prob-
lem in time with complex valued Laplace transform parameter s leads to the
parametrized equation

sOu C AOu D u0; (45)

and to obtain the solution in the time domain, one has to perform the inverse Laplace
transform

u.t/ D 1

2�i

Z
�

est Ou.s/ds; (46)

where � is a suitably chosen contour in the complex plane. If the integral in (46)
is approximated by a quadrature rule with quadrature nodes sj, one only needs to
compute u.s/ from (45) at s D sj, and these solutions are completely independent
of one another, see the quote above, and can thus be performed in parallel. This
direct time parallel solver is restricted to problems where Laplace transform can
be applied, i.e. linear problems with constant coefficients in the time direction, and
one needs a solver that works with complex numbers for (45). It is however a very
successful and efficient time parallel solver when it can be used, see [18, 51, 73, 77].
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5.6 Maday and Ronquist 2008

A new idea for a direct time parallel solver by diagonalization was proposed in [56]:

Pour briser la nature intrinsèquement séquentielle de cette résolution, on utilise
l’algorithme de produit tensoriel rapide.

To explain the idea, we discretize the linear evolution problem ut D Lu using
Backward Euler,
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Using the Kronecker symbol, this linear system can be written in compact form as

.B ˝ Ix � It ˝ L/u D f; (47)

where Ix is the identity matrix of the size of the spatial unknowns, and It is the
identity matrix of the size of the time direction unknowns, and the time stepping
matrix is

B WD
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1
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1
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:

If B is diagonalizable, B D SDS�1, one can rewrite the system (47) in factored form,
namely

.S ˝ Ix/.diag.D � L//.S�1 ˝ Ix/u D f; (48)

and we can hence solve it in 3 steps:

.a/ .S ˝ Ix/g D f;

.b/ . 1
�tn

� L/wn D gn; 1 � n � N;

.c/ .S�1 ˝ Ix/u D w:

Note that the expensive step (b) requiring a solve with the system matrix L can now
be done entirely in parallel for all time levels tn. Maday and Ronquist obtain with
this algorithm for the 1d heat equation close to perfect speedup. They recommend to
use a geometric time mesh �tk D 	k�1�t1, with 	 D 1:2, since “choosing 	 much
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closer to 1 may lead to instabilities”. This algorithm is not defined if identical time
steps are used, since it is not possible to diagonalize a Jordan block ! For a precise
truncation error analysis for a geometric time grid, a round-off error analysis due
to the diagonalization, and error estimates based on the trade-off between the two,
see [31].

5.7 Christlieb, Macdonald and Ong 2010

The integral deferred correction methods we have already seen in Sect. 4.4 in the
context of PFASST can also be used to create naturally small scale parallelism [14]:

. . . we discuss a class of defect correction methods which is easily adapted to create parallel
time integrators for multicore architectures.

As we see in the quote, the goal is small scale parallelism for multicore
architectures, as in the early predictor corrector and block methods from Sect. 5.1.
The new idea introduced by Christlieb, Macdonald and Ong is to modify integral
deferred correction so that pipelining becomes possible, which leads to so called
RIDC (Revisionist Integral Deferred Correction) methods. As we have seen already
in Sect. 4.4, the classical integral deferred correction method is working sequentially
on the time point groups I0; I1; : : : ; IJ�1 we show in Fig. 18 taken from [14],
corresponding to the time intervals ŒT0; T1�; ŒT1; T2�; : : : ; ŒTJ�1; TJ � in Sect. 4.4. For
each time point group Ij, one has to evaluate in the step (35) of integral deferred
correction the quadrature formula for (33) at time tj;mC1, using quadrature points at
time tj;0; tj;1; : : : ; tj;M , 0 < m < M, where M D 3 in the example shown in Fig. 18.
Only once all deferred correction steps on the time point group Ij are finished, one
can start with the next time point group IjC1, the method is like a sequential time
stepping method.

In order to obtain parallelism, the idea is to increase the size of the time point
groups M to contain more points than the quadrature formula needs. One can then
pipeline the computation, as shown in Fig. 19: the number of quadrature points is
still four, but M is much larger, and thus the Euler prediction step and the correction
steps of the integral deferred correction can be executed in parallel, since all the
values represented by the black dots are available simultaneously to compute the
next white ones, after an initial setup of this new ‘computation front’.

Fig. 18 Classical application of integral deferred correction, picture taken from [14]



106 M.J. Gander

Fig. 19 RIDC way to compute integral deferred correction type methods in a pipelined way, figure
taken from [14]

This leads to small scale parallel high order integrators which work very well on
multicore architectures. When run in parallel, RIDC can give high order accuracy
in a time comparable to the time of the low order integration method used, provided
the startup costs are negligible.

5.8 Güttel 2012

A new direct time parallel method based on a completely overlapping decomposi-
tion of the time direction was proposed in [42]:

We introduce an overlapping time-domain decomposition method for linear initial-value
problems which gives rise to an efficient solution method for parallel computers without
resorting to the frequency domain. This parallel method exploits the fact that homogeneous
initial-value problems can be integrated much faster than inhomogeneous problems by
using an efficient Arnoldi approximation for the matrix exponential function.

This method, called ParaExp [27], is only defined for linear problems, and
especially suited for the parallel time integration of hyperbolic problems, where
most large scale time parallel methods have severe difficulties (for a Krylov
subspace remedy, see [22, 33, 66], but reorthogonalization costs might be high).
ParaExp works very well also on diffusive problems [27], as we will also illustrate
with a numerical experiment. To explain the method, we consider the linear system
of evolution equations

u0.t/ D Au.t/ C g.t/; t 2 Œ0; T�; u.0/ D u0:

The ParaExp algorithm is based on a completely overlapping decomposition, as
shown in Fig. 20: the time interval Œ0; T� is decomposed into subintervals Œ0; T4 WD
T�, ŒT1; T4�, ŒT2; T4�, and ŒT3; T4�. ParaExp is a direct solver, consisting of two steps:
first one solves on the initial parts of the overlapping decomposition, Œ0; T1�, ŒT1; T2�,
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Fig. 20 Overlapping
decomposition and solution
strategy of ParaExp

ŒT2; T3�, and ŒT3; T4� the non-overlapping inhomogeneous problems (shown in solid
red in Fig. 20)

v0
j.t/ D Avj.t/ C g.t/; vj.Tj�1/ D 0; t 2 ŒTj�1; Tj�;

and then one solves the overlapping homogeneous problems (shown in dashed blue
in Fig. 20)

w0
j.t/ D Awj.t/; wj.Tj�1/ D vj�1.Tj�1/; t 2 ŒTj�1; T�

By linearity, the solution is then simply obtained by summation,

u.t/ D vk.t/ C
kX

jD1

wj.t/ with k such that t 2 ŒTk�1; Tk�:

Like in many time parallel methods, this seems to be absurd, since the overlapping
propagation of the linear homogeneous problems is redundant, and the blue dashed
solution needs to be integrated over the entire time interval Œ0; T�! The reason why
substantial parallel speedup is possible in ParaExp is that near-optimal approxi-
mations of the matrix exponential are known, and so the homogeneous problems
in dashed blue become very cheap. Two approaches work very well: projection
based methods, where one approximates an.t/ � exp.tA/v from a Krylov space
built with S WD .I � A=
/�1A, and expansion based methods, which approximate
exp.tA/v � Pn�1

jD0 ˇj.t/pj.A/v, where pj are polynomials or rational functions. For
more details, see [27].

We show in Table 2 the performance of the ParaExp algorithm applied to the
wave equation from [27],

@ttu.t; x/ D ˛2@xxu.t; x/ C hat(x) sin.2�ft/; x; t 2 .0; 1/;

u.t; 0/ D u.t; 1/ D u.0; x/ D u0.0; x/ D 0;

where hat(x) is a hat function centered in the spatial domain. The problem is
discretized with a second order centered finite difference scheme in space using
�x D 1

101
, and RK45 is used in time with �t0 D minf5�10�4=˛; 1:5�10�3=f g for the
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Table 2 Performance of ParaExp on a wave equation

Serial Parallel Efficiency (%)

˛2 f �0 Error max.�1/ max.�2/ Error

0.1 1 2.54e�01 3.64e�04 4.04e�02 1.48e�02 2.64e�04 58

0.1 5 1.20e+00 1.31e�04 1.99e�01 1.39e�02 1.47e�04 71

0.1 25 6.03e+00 4.70e�05 9.83e�01 1.38e�02 7.61e�05 76

1 1 7.30e�01 1.56e�04 1.19e�01 2.70e�02 1.02e�04 63

1 5 1.21e+00 4.09e�04 1.97e�01 2.70e�02 3.33e�04 68

1 25 6.08e+00 1.76e�04 9.85e�01 2.68e�02 1.15e�04 75

10 1 2.34e+00 6.12e�05 3.75e�01 6.31e�02 2.57e�05 67

10 5 2.31e+00 4.27e�04 3.73e�01 6.29e�02 2.40e�04 66

10 25 6.09e+00 4.98e�04 9.82e�01 6.22e�02 3.01e�04 73

Table 3 Performance of ParaExp on the heat equation

Serial Parallel Efficiency (%)

˛ f �0 Error max.�1/ max.�2/ Error

0.01 1 4.97e�02 3.01e�04 1.58e�02 9.30e�03 2.17e�04 50

0.01 10 2.43e�01 4.14e�04 7.27e�02 9.28e�03 1.94e�04 74

0.01 100 2.43e+00 1.73e�04 7.19e�01 9.26e�03 5.68e�05 83

0.1 1 4.85e�01 2.24e�05 1.45e�01 9.31e�03 5.34e�06 79

0.1 10 4.86e�01 1.03e�04 1.45e�01 9.32e�03 9.68e�05 79

0.1 100 2.42e+00 1.29e�04 7.21e�01 9.24e�03 7.66e�05 83

1 1 4.86e+00 7.65e�08 1.45e+00 9.34e�03 1.78e�08 83

1 10 4.85e+00 8.15e�06 1.45e+00 9.33e�03 5.40e�07 83

1 100 4.85e+00 3.26e�05 1.44e+00 9.34e�03 2.02e�05 84

inhomogeneous solid red problems. The homogeneous dashed blue problems were
solved using a Chebyshev exponential integrator, and 8 processors were used in this
set of experiments. We see that the parallel efficiency of ParaExp is excellent for
this hyperbolic problem, and it would be difficult for other time parallel algorithms
to achieve this.

ParaExp also works extremely well for parabolic problems. For the heat equation

@tu.t; x/ D ˛@xxu.t; x/ C hat(x) sin.2�ft/; x; t 2 .0; 1/;

u.t; 0/ D u.t; 1/ D 0; u.0; x/ D 4x.1 � x/;

we show numerical results from [27] in Table 3. The heat equation was discretized
using centered finite differences in space with �x D 1

101
, and again an RK45 method

in time was used with �t0 D minf5 � 10�4=˛; 1:5 � 10�3=f g for the inhomogeneous
problems, the homogeneous ones being solved also with a Chebyshev exponential
integrator. For the heat equation, 4 processors were used. We see that again excellent
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parallel efficiency is obtained with the ParaExp algorithm. For more information and
numerical results, see [27].

6 Conclusions

The efforts to integrate evolution problems in parallel span now five decades. We
have seen that historically methods have grown into four different classes of time
parallel methods: shooting type methods starting with Nievergelt, domain decom-
position and waveform relaxation methods starting with Lelarasmee, Ruehli and
Sangiovanni-Vincentelli, space-time multigrid methods starting with Hackbusch,
and direct time parallel solvers starting with Miranker and Liniger. An important
area which was not addressed in this review is a systematic comparison of the
performance of these methods, and a demonstration that these algorithms are really
faster than classical algorithms in a given parallel computational environment.
Such a result on a 512 processor machine was shown for the space-time multigrid
waveform relaxation algorithm in [78], compared to space parallel multigrid
waveform relaxation and standard time stepping, see also [46] for results on an even
larger machine, and [5]. A very recent comparison can be found in the short note
[21], where the authors show that above a certain number of processors time-parallel
algorithms indeed outperform classical ones. Time parallel methods are currently
a very active field of research, and many new developments extending the latest
directions we have seen, like Parareal, Schwarz-, Dirichlet-Neumann and Neumann-
Neumann waveform relaxation, PFASST and full space-time multigrid, and RIDC
and ParaExp, are to be expected over the coming years. These will help leverage the
power of new multicore and very large scale parallel computers in the near future.
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