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Abstract We present two multiple shooting approaches for optimal control prob-
lems (OCP) governed by parabolic partial differential equations (PDE). In the
context of ordinary differential equations, shooting techniques have become a
state-of-the-art solver component, whereas their application in the PDE case is
still in an early phase of development. We derive both direct (DMS) and indirect
(IMS) multiple shooting for PDE optimal control from the same extended problem
formulation. This approach shows that they are algebraically equivalent on an
abstract function space level. However, discussing their respective algorithmic
realizations, we underline differences between DMS and IMS. In the numerical
examples, we cover both linear and nonlinear parabolic side conditions.

1 Introduction

Multiple shooting methods have been extensively used during the past four decades
to solve both ODE boundary value problems (BVP) and optimal control problems
(OCP), and for the latter problem class different shooting techniques were devel-
oped, according to the general dichotomy of indirect and direct solution methods
for OCP. In the context of PDE constrained OCP, where the past 15 years have seen
a rapid development of both theoretical insights and solution algorithms, shooting
methods are up to now rarely used despite their success in the ODE framework.
Direct multiple shooting (DMS) or related time-domain decomposition methods are
treated, e.g., in [13, 29], and an indirect shooting approach was introduced in [14].
All these articles employ shooting techniques focusing on specific aspects such as
adaptivity or preconditioning, while our scope in this article is to show the derivation
of DMS and IMS from the same extended problem formulation to underline their
peculiarities in the PDE framework.

Shooting algorithms for parabolic OCP have to overcome additional difficulties
caused mainly by the spatial variables. On the continuous level, the functional
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analytic setting (solution spaces, weak formulations etc.) has to be developed
carefully; e.g., the initial values for the subinterval solutions are L2 functions rather
than R

n vectors as in the ODE case. On the discrete level, the usually high-
dimensional spatial discretization leads to large-scale optimization problems and
strongly advises the development of suitable adaptive techniques.

The two most attractive features of multiple shooting are its intrinsic stabilizing
effect and its potential for parallelization. The former enables the solution of ill-
conditioned problems where other methods fail; such instabilities are mirrored by
local stability estimates such as

ku.tI s1/ � u.tI s2/k � ceL.t�t0/ks1 � s2k

that are common in the analysis of initial value problems (IVP). Here, t is the
independent variable normally interpreted as time, t0 is the initial time-point, s1
and s2 are two parameter values (in multiple shooting methods, they denote initial
values) and u.tI s/ is the solution depending on the parameter s. Furthermore, L is a
fixed Lipschitz constant inherent to the problem; the value of the exponential factor
can be controlled by splitting the solution interval into smaller parts as is common
in multiple shooting.

The parallelizability of shooting techniques has been addressed and exploited
in the PDE context by the so-called parareal method (developed in [22]) which
has been shown to be equivalent to multiple shooting in [11]. Despite the results
mentioned so far, there are many aspects that have not yet been systematically
examined, which is why shooting techniques for PDE problems still constitute an
interesting and promising subject.

A detailed presentation of indirect multiple shooting (IMS) for nonlinear
parabolic OCP with additional control constraints has recently been given in [9].
In the current publication, we continue this work by comparing IMS and DMS
techniques for the mentioned problem class, but without considering additional
control or state constraints. The latter simplification prevents us from losing track
of our main objective, namely to show the equivalence of IMS and DMS on an
abstract function space level and the differences of their respective algorithmic
concretization. Furthermore, as in the well studied ODE case, we expect IMS and
DMS to behave differently in the presence of control and/or state constraints. In
fact, in the ODE context the presence of state and control constraints has led to
prefer DMS to IMS. An accurate performance comparison between DMS and IMS
in PDE context is left as an interesting topic for further research.

In the literature of multiple shooting methods, the distinction between direct and
indirect approaches is done according to two aspects: how the method is derived and
at which stage the underlying system is discretized. According to the first aspect,
the distinction is done between methods that are derived by certain optimality
conditions (indirect approach) and methods that are not obtained by optimality
conditions (direct approach). Considering the second aspect, the same methods are
classified as indirect if they use the ‘first optimize then discretize’ approach or direct
if they follow the ‘first discretize, then optimize’ approach.
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Formerly in the ODE context, to develop indirect methods a Hamiltonian
functional was introduced and the optimality conditions were derived following the
Pontryagin Maximum Principle [25] and introducing adjoint (or co-state) variables.
Numerical methods for this approach lead to a boundary value problem for the state
and adjoint variables. As a result, in indirect methods the control is not present in the
shooting system. On the contrary, in direct methods the control variable is included
in the shooting system, leading to a procedure that in the multiple shooting context
is also called ‘all-at-once’ approach.

Following the other distinction between indirect and direct methods, namely
the differentiation between the approaches that optimize first and approaches that
discretize first, in indirect methods first the optimality conditions are derived at
the continuous level, and then a discretization method is used to derive a finite
dimensional system that can be solved numerically. On the contrary, in direct
methods the state and control variables are discretized first and typically the discrete
control space has low dimension. Then, a method for nonlinear programming
problems is applied to the resulting discrete system [18, 28]. According to this
distinction, direct methods are not derived in a function space setting. This has
the advantage of avoiding the definition of adjoint variables in function spaces,
especially if state constraints are included in the optimization problem.

We do not want to discuss the several arguments that indicate advantages and
disadvantages of either one method or the other, we will rather discuss the derivation
of the two methods starting from the same formulation at the continuum level.
Therefore, we give a unique argumentation to define whether a method is ‘direct’ or
‘indirect’ allowing to distinguish the two approaches without recurring to specific
discretization methods. Proceeding like this has practical consequences because
keeping the derivation at the continuous level will allow for example to derive error
estimation methods in PDE context for the specific discretization of choice. This
opens up new directions for future research.

The remainder of this contribution is oriented along the following outline: In the
next section, we recapitulate the notational framework for PDE optimal control.
Section 3 presents the OCP in a slightly modified but equivalent form which
provides the suitable context for shooting methods. The KKT conditions of this
extended OCP formulation are the starting point for both IMS and DMS methods
on a function space level, which are described in separate sections. We start Sect. 4
by introducing a second variant of DMS which is common in ODE and DAE
governed optimal control (here called ‘classical’ DMS); the connection between
these two DMS approaches constitutes the main result of the section. After some
brief remarks on discretization in Sect. 5, we discuss the effects of the differences
between IMS and DMS in Sect. 6 by considering two concrete numerical examples.
Some concluding remarks as well as an outlook toward possible further research
constitute the final section.
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2 Preliminaries

The general structure of an OCP requires the minimization of an objective func-
tional, where the minimum is sought in a set of functions u given as solutions of a
differential equation which depends on a control quantity q:

min
.q;u/

J.q; u/ subject to e.q; u/ D 0: (1)

In many problems, one has to deal with additional constraints to the control and/or
state variables of the form c.q; u/ � 0 which make the problems more difficult
to solve. We skip them in order to avoid an excessive notation and in order not
to lose track of our actual objective, namely comparing IMS and DMS methods.
Concerning multiple shooting for parabolic OCP with control constraints c.q/ � 0,
we refer to [9].

We now describe in detail the parabolic OCP which is considered throughout this
article. In this context, we have to deal with the following theoretical setting. The
OCP reads in detail:

min
.q;u/

J.q; u/ D �1J1.u/C �2J2.u.T//C ˛

2
kqk2Q; (2)

subject to the parabolic PDE

@tu.x; t/C A .u.x; t//C B.q.x; t// D f .x; t/ in ˝ � I; (3a)

u.x; 0/ D u0.x/ in ˝ (3b)

We discuss the constituent parts of this formulation separately. Therefore, we
assume that V ,! H D H� ,! V� is a Gelfand triple of Hilbert spaces of functions
on˝ (where the superscript � denotes duality of spaces) and R is a suchlike Banach
space. In the objective functional J.q; u/, we eliminate either J1.u/, which we
always assume to be of tracking type

R
I ku.t/ � Ou.t/k2V dt, or the end-time matching

term J2.u.T// WD ku.T/ � OuTk2H by imposing the conditions �i 2 f0; 1
2
g; �1 ¤ �2.

The term ˛
2
kqk2Q serves as a regularization term, and ˛ is the usual regularization

parameter.
The computational domain of our problem is a space-time cylinder˝ � I with a

bounded convex polygonal or polyhedral spatial domain˝ � R
d with d 2 f1; 2; 3g

and a finite time interval I D .0;T/. The function spaces for state and control
variables are usually Bochner spaces of the type W.II Y/ where the time variable
t is mapped into a Banach space Y.

In the above function space framework, the natural setting for the parabolic
PDE (3a) is the following: For given q.x; t/ 2 Q WD L2.II R/ and righthand side
f .x; t/ 2 L2.II V�/, find a state function u.x; t/ that satisfies (3) obeying additionally
imposed suitable boundary conditions. Under these structural assumptions, the
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solution space for u.x; t/,

X WD fv.x; t/ 2 L2.II V/ j @tv.x; t/ 2 L2.II V�/g; (4)

is known to be continuously embedded into the space C.II H/ of temporally
continuous functions with values in H (see, e.g., [10]), which means that an initial
condition u0.x/ 2 H is well-defined. The differential operator A W X ! L2.II V�/
may be linear or nonlinear, whereas B W L2.II R/ ! L2.II V�/ is usually linear and
often simply an injection operator, given R ,! V�.

For a weak formulation of (3) we need some preparatory definitions. If A W V !
V� and B W R ! V� are pointwise-in-time operators corresponding to A and
B, respectively, we assume the elliptic operator A to be coercive and define the
following scalar products and semilinear forms:

..u; '//I WD
Z

I
.u.t/; '.t//H dt; aI.u/.'/ WD

Z

I
hA .u.t//; '.t/iV��V dt;

bI.q/.'/ WD
Z

I
hB.q.t//; '.t/iV��V dt:

We normally omit the index I denoting the integration interval if it is evident from
the context. In this notational framework, the weak formulation of (3) reads: Find
u 2 X, so that for all ' 2 X

..@tu; '//C a.u/.'/C b.q/.'/C .u.0/; '.0// D ..f ; '//C .u0; '.0//; (6)

where we included the initial condition (3b) weakly.

Remark 1 Conditions which guarantee that linear parabolic equations of type (3)
or (6) possess a unique solution are provided in [16]. This framework is based on
the underlying elliptic case which was presented, e.g., in [32]. We emphasize that
both our theoretical observations for the linear case in the current and next sections
and our linear example Sect. 6.1 fulfil the mentioned conditions and therefore allow
for unique solutions.

The solution of the OCP is known to be among the stationary points of the Lagrange
functional

L .q; u; z/ WD J.q; u/C e.q; uI z/ (7)

where e.q; uI z/ is an abbreviation for the weakly formulated PDE side condition (6),

e.q; uI z/ WD ..@tu; z//C a.u/.z/C b.q/.z/� ..f ; z//C .u.0/� u0; z.0//;

which sometimes enables a compact presentation on a more abstract level, see
the discussion in Sect. 4. The Lagrange multiplier z 2 X denotes the solution of
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the adjoint equation L 0u.ıu/ D 0 which naturally arises as part of the following
optimality conditions:

L 0z .ız/ D ..@tu; ız//C a.u/.ız/C b.q/.ız/

�..f ; ız//C .u.0/� u0; ız.0// D 0;

(8a)

L 0u.ıu/ D J0u.q; u/.ıu/� ..@tz; ıu//C a0u.u/.ıu; z/C .z.T/; ıu.T// D 0;

(8b)

L 0q.ıq/ D J0q.q; u/.ıq/C b0q.q/.ıq; z/ D 0:

(8c)

This so-called KKT system consists of the derivatives of (7) that form the state,
adjoint and control equations. In the next section, we rewrite the above OCP in a
form that is more suited to the derivation of multiple shooting algorithms.

Remark 2 The regularity of the Lagrange multiplier z is in general a delicate matter.
Due to the structure of our objective functional, which may either be a temporally
distributed L2-term or an L2-term at the final timepoint T, in our case the adjoint
variable z lies in the same space X as the state variable u. A similar argument reveals
the regularity of the adjoint variables � 2 H in Sect. 3.1.

3 Multiple Shooting Methods for Parabolic OCP

As a suitable starting point for our observations we have introduced a general
parabolic OCP which we extend, in Sect. 3.1, to a formulation tailored to the
derivation of multiple shooting. The remainder of this section will be concerned
with two variants of multiple shooting that are common in ODE optimal control. We
will embed them into the context of parabolic OCP, thereby taking into account the
additional challenges arising during the transfer from ODE to PDE (see Sect. 3.2 for
IMS and Sect. 3.3 for DMS). Instead of only emphasizing the differences between
these multiple shooting approaches, it is our objective to also show that they are
rooted in one single common problem formulation and merely constitute different
algorithmic realizations that may render either IMS or DMS preferable in concrete
situations, depending on the problem at hand. We compare both shooting techniques
in the concluding Sect. 3.4.

Remark 3 For simplicity, we assume the PDE side conditions of the OCP occurring
in the following sections to be uniquely solvable, which has to be justified separately
in every concrete problem. Furthermore, we assume also the OCP themselves to be
uniquely solvable, which is guaranteed in a linear-quadratic framework on a convex
domain but in general has to be verified. By these assumptions we avoid a detailed
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discussion of theoretical issues; for more information, we refer to the textbooks
[16, 30].

3.1 The Modified Formulation of the Optimal Control Problem

The modification of the OCP (2) subject to (6) relies on a decomposition of the
closure I of the interval I,

I D f�0g [
M�1[

jD0
Ij; Ij D .�j; �jC1�; (9)

where �0 D 0 and �M D T, and the subsequent redefinition of the OCP in terms
of local control and state functions q j; u j on the subintervals Ij, which lie in the
spaces Qj WD L2.IjI R/ and Xj WD fv 2 L2.IjI V/ j @tv 2 L2.IjI V�/g, respectively.
For a more global view on these intervalwise problems, we define the compositions
u D ..u j/M�1jD0 / and q D ..q j/M�1jD0 / as well as the corresponding spaces

X WD
M�1�
jD0

Xj; Q WD
M�1�
jD0

Qj:

We note that X D fv 2 L2.II V/ j vjIj 2 Xjg and Q D fq 2 L2.II R/ j qjIj 2 Qjg,
which implies X ¨ X and Q D Q. With these notations, the modified control
problem reads:

min
.q;u/

J.q;u/ WD
M�1X

jD0
Jj.q j; u j/ D �1

M�1X

jD0

Z

Ij

ku j � OujIjk2V dt

C�2kuM�1.�M/ � OuTk2H C ˛

2

M�1X

jD0

Z

Ij

kq jk2Q dt (10a)

s. t. ..@tu
j; '//C a.u j/.'/C b.q j/.'/ � ..f jIj ; '//

C.u j.�j/ � sj; '.�j// D 0 for j 2 f0; : : : ;M � 1g: (10b)

In this formulation, Eq. (10b) represent IVP on the subintervals Ij. However, we do
not know the exact values u.�j/ and therefore have to impose artificial initial values
s D .sj/MjD0 2 HMC1. This leads to jumps in the global solution u composed of the
interval solutions (i.e. ujIj � u j). Therefore, problem (10) cannot be equivalent
to the original OCP, because u 62 C.II H/, whereas the solution u 2 X of the
global OCP has to be continuous on I due to the above mentioned embedding
X ,! C.II H/. This matches the fact that X is a proper subset of X. We therefore have
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to enforce the global continuity of the solution u of (10) by imposing the following
additional continuity conditions:

.s0 � u0; �/ D 0 8� 2 H; (11a)

.sjC1 � u j.�jC1/; �/ D 0 8� 2 H; j 2 f0; : : : ;M � 1g: (11b)

Before we prove the equivalence of the original OCP and the extended problem
formulation (10)–(11), we state the following preparatory lemma.

Lemma 1 The objective functionals J.q; u/ and J.q;u/ coincide for u D ..u j/M�1jD0 /
with u j D ujIj , i.e. for globally continuous intervalwise defined functions u.

Proof Due to the additivity of integration on subintervals, we obtain

J.q; u/ D �1

Z

I
ku.t/ � Ou.t/k2V dt C �2ku.T/ � OuTk2H C ˛

2

Z

I
kq.t/k2R dt

D �1

M�1X

jD0

Z

Ij

ku j.t/ � OujIj.t/k2V dt C �2kuM�1.�M/� OuTk2H C ˛

2

M�1X

jD0

Z

Ij

kq j.t/k2R dt:

This corresponds to J.q;u/ D PM�1
jD0 Jj.q j; u j/. ut

The following theorem states the equivalence of the original and the modified OCP.

Theorem 1

.a/ Let .q; u/ 2 Q � X be a solution to the original OCP (2) subject to (6). Then
.q;u/ 2 Q�X, defined by q j WD qjIj and u j WD ujIj , is a solution to the modified
OCP (10)–(11).

.b/ Let, on the other hand, .q;u/ 2 Q � X solve the modified problem (10)–(11).
If we define q by qjIj WD q j and u by ujIj WD u j, then .q; u/ 2 Q � X solves the
original OCP (2) subject to (6).

Proof

(a) Since u 2 X is globally continuous in time, we have s0 D u0 as well as
sjC1 D ujC1.�jC1/ D u.�jC1/ and u j.�jC1/ D u.�jC1/, which means in turn
sjC1 D u j.�jC1/. Thus, the matching conditions (11) are fulfilled. Let now
. Qq; Qu/ D ..Qqj; Quj/M�1jD0 / 2 Q � X such that J. Qq; Qu/ < J.q;u/ and the continuity
conditions (11) are fulfilled. The latter assumption immediately implies Qu 2 X,
i.e. .Qq; Qu/ WD . Qq; Qu/ 2 Q � X due to Q D Q. Lemma 1 now yields

J.Qq; Qu/ D J. Qq; Qu/ < J.q;u/ D J.q; u/

which is a contradiction to the assumed optimality of .q; u/.
(b) Since u is part of a solution of the modified OCP, especially (11), we know

that s0 D u0 and sjC1 D u j.�jC1/. The initial value sjC1 on IjC1 clearly fulfils
sjC1 D ujC1.�jC1/. From u 2 X we know that u j 2 C.IjI H/, and together with
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the global continuity we know u 2 C.II H/. Considering @tu j 2 L2.IjI V�/, the
corresponding global property @tu 2 L2.II V�/ now directly follows. This means
that u, defined by ujIj WD u j, lies in X, and together with q (analogously defined
by qjIj WD q j) we obtain .q; u/ 2 Q � X. Assuming that there is .Qq; Qu/ 2 Q � X
with J.Qq; Qu/ < J.q; u/, we get

J. Qq; Qu/ D J.Qq; Qu/ < J.q; u/ D J.q;u/

by Lemma 1, which is a contradiction to the optimality of .q;u/. ut
Agreement To avoid a cumbersome case-by-case analysis, we assume for the rest
of this contribution that all considerations are based on a distributed objective
functional corresponding to �1 D 1

2
and �2 D 0. The necessary modifications in

case of an end-time functional (where �1 D 0 and �2 D 1
2
) are straightforward and

will be covered in brief remarks.
The reformulated problem (10)–(11) is the starting point for multiple shooting

algorithms. In order to state the IMS and DMS methods properly, we have to derive
the first order necessary optimality conditions of the modified OCP. Therefore, we
first define the corresponding Lagrange functional, which is an extended version
of (7) where the equality constraints (11) are considered in addition. We have in
detail:

L ..q j; u j; z j/M�1jD0 ; .sj; �j/MjD0/ WD
M�1X

jD0
Jj.q j; u j/

C
M�1X

jD0
Œ..@tu

j; z j//C a.u j/.z j/C b.q j/.z j/� ..f jIj ; z
j//� (13)

C
M�1X

jD0
.u j.�j/� sj; z j.�j//C

M�1X

jD0
.sjC1 � u j.�jC1/; �jC1/C .s0 � u0; �

0/

The cost functional (10a) has been rearranged in an intervalwise fashion where all
addends are structured alike. We have two kinds of Lagrange multipliers, the adjoint
variables z D ..z j/M�1jD0 / 2 X corresponding to the intervalwise PDE side condition,
and, newly, the spatial functions � D .�j/MjD0 2 HMC1 as multipliers for the equality
constraints (11). We are now able to derive the first order optimality conditions,
the so-called KKT system, by differentiating the above Lagrangian w.r.t. all its
arguments. This yields, for all test functions .ız; ıu; ıq; ı�; ıs/ 2 Xj�Xj�Qj�H�H
and for all j 2 f0; � � � ;M � 1g, the intervalwise equations

L 0z j.ız/ D ..@tu
j; ız//C a.u j/.ız/C b.q j/.ız/

�..f jIj ; ız//C .u j.�j/� sj; ız.�j// D 0; (14a)
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L 0u j.ıu/ D Jj0
u .q

j; u j/.ıu/� ..@tz
j; ıu//C a0u.u j/.ıu; z j/

C.z j.�jC1/ � �jC1; ıu.�jC1// D 0; (14b)

L 0q j.ıq/ D Jj0
q .q

j; u j/.ıq/C b0q.q j/.ıq; z j/ D 0; (14c)

L 0
�0
.ı�/ D .s0 � u0; ı�/ D 0; (14d)

L 0
�j.ı�/ D ..sjC1 � u j.�jC1/; ı�/ D 0; (14e)

L 0sj.ıs/ D ..�j � z j.�j/; ıs/ D 0; (14f)

L 0sM.ıs/ D .�M; ıs/ D 0: (14g)

Remark 4 The last equation (14g) reflects a homogeneous initial condition at the
final time-point �M D T [see also the original adjoint equation (8b)], whereas
the terms Jj0

u .q
j; u j/.ıu/ serve as righthand sides for the intervalwise adjoints.

In case of an end-time functional, (14g) comprises an extra term describing the
initial condition for the adjoint equation, whereas the derivatives of the distributed
functional terms w.r.t. u in (14b) vanish.

This system of equations can be split into two parts. The first one, Eqs. (14a)–
(14c), correspond to the KKT system of the original problem (2) subject to (6), but
restricted to a subinterval Ij [compare these equations to (8)]. The corresponding
unknowns u j; z j and q j are functions depending on spatial variables and time.
The second part consists of Eqs. (14d)–(14g) and appears only in our problem
reformulation. The unknowns sj and �j are spatial functions in the isolated time-
points �j.

Stationary points of the Lagrangian, i.e. solutions of (14), are solution candidates
for the modified OCP. The KKT system constitutes a root-finding problem, which
can, e.g., be handled by Newton’s method. For this purpose, we need the second
derivatives of the extended Lagrange functional (13), which is the Jacobian of the
optimality conditions (14). We recall that Newton’s method for solving a nonlinear
but continuously differentiable problem f .x/ D 0 consists in the iteration

xkC1 D xk � Jf .xk/
�1f .xk/

initialized by a suitable starting point x0. To avoid inverting the Jacobian Jf , this is
usually rewritten in the two-step form

Jf .xk/ � ıx D �f .xk/; (15a)

xkC1 D xk C ıx: (15b)

The linear system displayed in the following is merely a formal representation
of (15a) transferred to our context. We therefore rearranged Eq. (14) in a way that
facilitates the illustration of IMS and DMS concepts in the subsequent sections but
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is not performed in practice:

0

B
B
B
B
B
@

0 L 00uz L 00qz L 00sz 0

L 00zu L 00uu 0 0 L 00�u

L 00zq 0 L 00qq 0 0

L 00zs 0 0 0 L 00�s

0 L 00u� 0 L 00s� 0

1

C
C
C
C
C
A

0

B
B
B
B
B
@

ız
ıu
ıq
ıs
ı�

1

C
C
C
C
C
A

D �

0

B
B
B
B
B
@

L 0z
L 0u
L 0q
L 0s
L 0�

1

C
C
C
C
C
A
: (16)

The righthand side of (16) consists of block vectors, i.e., the components of L 0z ,
e.g., are the subinterval state equations, i.e. L 0z D .L 0

z0
; � � � ;L 0

zM�1/
>. Analogously,

each of the solution variables is a block vector consisting of subinterval update
values (e.g., ıq D .ıq.0/; � � � ; ıq.M�1//>). The blocks of the matrix are either
zero submatrices in case the equation to be differentiated does not depend on the
variable w.r.t. which we differentiate, or they are sparse (often diagonal, or, after
discretization, block diagonal) matrices due to the decoupling of the component
equations of (14) between different subintervals. We underline that in the context of
large scale parabolic OCP this system is never assembled explicitly due to its huge
size. The multiple shooting techniques derived in the following sections rely on
different splittings of system (16) which reduce its size significantly. Nevertheless,
we will still not assemble the corresponding smaller matrices, but employ Krylov-
Newton methods that allow to solve the respective Newton equations in a matrix-
free manner.

Remark 5 For a discussion of the size of system (16), we exemplarily describe the
matrix in more detail. The upper left 3 � 3 block consists of nine quadratic M � M
blocks, whereas the lower right 2�2 block comprises four .MC1/�.MC1/ blocks.
The remaining submatrices are rectangular matrices of appropriate dimension.
Summarizing, the Newton matrix is of size .5M C 2/ � .5M C 2/. Assuming the
number M of subintervals Ij to be of moderate size (from M D 1 in the case of
simple shooting up to M 	 10�100), the system appears to be small. We emphasize,
however, that so far we are still situated in a function space environment, i.e. up to
now we considered neither time nor space discretization. We will see later in Sect. 5
that especially the discretization of the spatial variables leads to a huge enlargement
of the systems that have to be solved numerically (cf. also Remark 12).

3.2 Indirect Multiple Shooting

We start with indirect shooting and describe first the overall structure of the method.
As stated above, we seek ways of splitting the solution process of the linear
system (16) (respectively, of its discrete counterpart). One such splitting leads to
IMS, which is structured like a two-step (fixed-point) iteration. Furthermore, we
discuss some algorithmic details that can also be found in [9]; therefore, we keep
the presentation rather short.
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3.2.1 Structure

In the Newton system (16), all variables u j; z j; q j; sj and �j are independent. We
regroup them according to the following scheme,
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thus creating two subsystems and introducing inherent dependencies between the
variables. In a first solution step, we fix s D .sj/MjD0 and � D .�j/MjD0 and solve the
intervalwise boundary value problems

..@tu
j; ız//C a.u j/.ız/C b.q j/.ız/ � ..f jIj ; ız//

C .u j.�j/ � sj; ız.�j// D 0; (17a)

Jj0
u .q

j; u j/.ıu/� ..@tz
j; ıu// C a0u.u j/.ıu; z j/

C .z j.�jC1/ � �jC1; ıu.�jC1// D 0; (17b)

Jj0
q .q

j; u j/.ıq/ C b0q.q j/.ıq; z j/ D 0: (17c)

These equations correspond to L 0
z j D 0;L 0

u j D 0 and L 0
q j D 0 in (14). The

variables u j; z j and q j do now depend on sj and �jC1. The BVP character of the
intervalwise problems results from the forward-backward structure of the state and
adjoint equations: sj is the initial value for u j at �j, and �jC1 is the initial value for
z j at the subinterval endpoint �jC1.

Remark 6 It is an interesting problem in its own right how to choose sj and �jC1,
as the quality of the initial choice certainly influences the convergence of Newton’s
method. For ODE problems, there have been several suggestions; e.g., additional
information on the solution, if available, could improve the initial guesses (for an
example, see [8]). Alternatively, one could employ homotopy methods as in [23].

The states u j.sj; �jC1/ and z j.sj; �jC1/ are coupled via the control equation, and
together the three equations yield the same structure on each subinterval as the
global KKT system (8). However, the intervalwise solutions do not fit together
at the subinterval endpoints, thus the solution is globally discontinuous due to
the artificially chosen initial values sj and �jC1. This contradicts the embedding
X ,! C.II H/. Therefore, we use the local solutions u j.sj; �jC1/; z j.sj; �jC1/ and
q j.sj; �jC1/ in order to update sj and �jC1 in the second solution step. This consists
in solving the following system (corresponding to L 0

�j D 0;L 0
sj D 0):
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Algorithm 1 Indirect multiple shooting for PDE governed OCP

Require: Decomposition I D f�0g [SM�1
jD0 .�j; �jC1�, initial values f.sj

0; �
jC1
0 /M�1

jD0 g.
1: Set k D 1.
2: while Shooting conditions (18) not fulfilled do
3: for j D 0 to M � 1 do
4: Solve intervalwise boundary value problems (17).
5: end for
6: Solve (19), compute update f.sj

k ; �
jC1
k /M�1

jD0 g of initial values, set k kC 1.
7: end while

.s0 � u0; ı�/ D 0; (18a)

.�j � z j.�jI sj; �jC1/; ıs/ D 0; .j D 0; : : : ;M � 1/ (18b)

.sj � uj�1.�jI sj�1; �j/; ı�/ D 0; .j D 1; : : : ;M/ (18c)

.�M; ıs/ D 0: (18d)

These equations constitute the shooting system, which is the part of (14) we actually
solve by Newton’s method. Abbreviating the above shooting equations by F.s;�/ D
0, we thus have to solve

r.s;�/F.s;�/ �
�
ıs
ı�

�

D �F.s;�/: (19)

This leads to improved initial values snew D s C ıs; �new D � C ı�, with which
we restart from step one described above. We see now the asserted structure of
a two-step fixed-point iteration where we alternate between computing .u j; z j; q j/

and updating .sj; �j/. The whole process is resumed in the following Algorithm 1.

3.2.2 Algorithms for the Subproblems

We now focus on the two essential Steps 4 and 6 of Algorithm 1, namely the
solution of the intervalwise BVP (17) (the first part of our two stage problem) and
the solution of the shooting system (19) (the second part, correspondingly).

There are several possibilities how to solve the intervalwise BVP. In Algorithm 2,
we present a so-called reduced approach which has also been implemented for our
numerical examples. The important feature is the reduction of the set of independent
variables from .q j; u j/ to the control q j alone, meaning that the interval state
u j D u j.q j/ is interpreted in terms of the interval control. To clarify the notation
of Algorithm 2, we define the reduced cost functional (on subinterval Ij)

j.q j/ WD Jj.q j; u j.q j//: (20)
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Algorithm 2 Solution of the intervalwise BVP (reduced approach)

Require: Set � D 0, prescribe tolerance TOL1 and initial control qj
0.

1: while krj.qj
� /k > TOL1 do

2: Solve state equation (17a).
3: Solve adjoint equation (17b).
4: Compute gradient rj.qj

� / of reduced cost functional.
5: Set i D 0, prescribe tolerance TOL2 and ıqj

�;0 .

6: while kıqj
�;iC1 � ıqj

�;ik > TOL2 do

7: Compute matrix-vector product r2j.qj
� /ıq

j
�;i.

8: Solve system r2j.qj
�/ıq

j
�;i D �rj.qj

� / by a Newton-CG type method (this requires the
solution of two additional equations per iteration; these so-called tangent and additional
adjoint equations are obtained by linearization of (17a) and (17b)).

9: end while
10: Set � � C 1 and qj

�C1 D qj
� C ıqj

�;end .
11: end while

Algorithm 3 Solution of the IMS shooting system (matrix-free approach)
Require: Shooting variables .sk;�k/, intervalwise OCP solutions u j; z j

1: Build up residual �F.sk ;�k/.
2: Set i D 0, prescribe tolerance TOL and choose .ıs.0/k ; ı�

.0/
k /.

3: while krF.sk ;�k/.ıs
.i/
k ; ı�

.i/
k /C F.sk ;�k/k > TOL do

4: Compute matrix-vector product rF.sk ;�k/.ıs
.i/
k ; ı�

.i/
k /.

5: Solve system rF.sk ;�k/.ıs
.i/
k ; ı�

.i/
k / D �F.sk ;�k/ by a Newton-GMRES type method

(this requires the solution of two additional BVP, the linearizations of (17) w.r.t. s resp. �,
in each iteration).

6: end while
7: Set k kC 1 and skC1 D sk C ısend

k ;�kC1 D �k C ı�end
k .

For a more detailed presentation we refer to [9],where IMS for parabolic OCP has
already been described thoroughly. We will meet the concept of reduced control
problems again in Sect. 4 in the context of different DMS techniques.

The solution of (19) by Newton’s method involves the Jacobian matrix
r.s;�/F.s;�/ of the shooting conditions (18). Despite having substantially reduced
the size of the Newton system [in this regard, (19) must be compared to (16)], the
effort for explicitly assembling this Jacobian is still not manageable. Therefore,
we choose a matrix-free method (in our case a Newton-GMRES approach) to
solve (19). Algorithm 3 comprises the essential steps. Details of the Krylov-Newton
method addressed in Step 5 can again be found in [9]. The proceeding in the case
of DMS is quite similar in many respects and will be discussed in more detail in the
next section.
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3.3 Direct Multiple Shooting

We have already seen in the introduction that almost all literature on multiple
shooting for PDE governed OCP concentrates on DMS methods (see [13, 29,
31]). Furthermore, the ‘classical’ method mostly used for ODE optimal control
introduced in [3–5] is a direct method. Many algorithmic and implementational
details can be found, e.g., in [20]. Further developments of this method, especially
considering specific condensing techniques, can be found for example in [6, 17–
19, 27]. The application of the ‘classical’ DMS method to large scale systems can
be found for example in [21, 26]. The DMS method presented here is substantially
equivalent to this ‘classical’ approach, the difference consists in the reduced and
unreduced strategies to solve the problem as will be shown in Sect. 4.

We will now introduce direct shooting focusing on algorithmic details that we
have skipped in the IMS context.

3.3.1 Structure

We derive DMS along the very same lines as IMS by splitting the solution process
of system (16) into two parts. However, DMS relies on a different regrouping of the
variables which is illustrated by the following scheme:
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Thus, we now fix sj; �j, and here also the controls q j, and compute in the first
solution step only the state and adjoint variables u j D u j.q j; sj/ and z j.q j; sj; �jC1/,
which have now become dependent variables. This leads to the following initial
value problems:

..@tu
j; ız//C a.u j/.ız/C b.q j/.ız/ � ..f jIj ; ız//

C .u j.�j/ � sj; ız.�j// D 0; (21a)

Jj0
u .q

j; u j/.ıu/� ..@tz
j; ıu// C a0u.u j/.ıu; z j/

C .z j.�jC1/ � �jC1; ıu.�jC1// D 0: (21b)

Contrarily to the IMS case, these equations bear no BVP structure, because they
are not fully coupled. We may in a first step compute the state solutions u j.q jI sj/

and then use the result to compute the adjoint solutions z j.u j.q jI sj/I�jC1/, albeit
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backward in time. The local IVP (21) correspond to the first two equation blocks
of (14), L 0

z j D 0 and L 0
u j D 0.

In the current situation, we still have to solve the matching conditions
L 0

sj D 0;L 0
�j D 0 and the control equation L 0

q j D 0, together constituting
the second solution step. The resulting system that has to be solved by Newton’s
method reads

.s0 � u0; ı�/ D 0; (22a)

J00q .q0; u0/.ıq/C b0q.q0/.ıq; z0.�jI q0; s0; �1// D 0; (22b)

.�j � z j.�jI q j; sj; �jC1/; ıs/ D 0; .j D 0; : : : ;M � 1/ (22c)

.sj � uj�1.�jI qj�1; sj�1/; ı�/ D 0; .j D 1; : : : ;M/ (22d)

Jj0
q .q

j; u j/.ıq/C b0q.q j/.ıq; z j.�jI q j; sj; �jC1// D 0; .j D 0; : : : ;M � 1/ (22e)

.�M; ıs/ D 0: (22f)

Thus we have again reduced the size of the original Newton system (16), but here
the resulting system is larger than in the IMS framework. Therefore, the first step in
DMS consists of only solving the IVP (21) in contrast to the far more complicated
BVP (17). Abbreviating (22) by F.q; s;�/ D 0, we end up with Newton’s equation

r.q;s;�/F.q; s;�/ �
0

@
ıq
ıs
ı�

1

A D �F.q; s;�/: (23)

Altogether, the structure of DMS is again a two-step fixed-point iteration, where we
first keep the controls and initial values fixed and compute .u j; z j/ before updating
.q j; sj; �j/. We resume the solution process in the following Algorithm 4.

Algorithm 4 Direct multiple shooting for PDE governed OCP

Require: Decomp. I D f�0g [SM�1
jD0 .�j; �jC1�, initial values and controls f.qj

0; s
j
0; �

jC1
0 /M�1

jD0 g.
1: Set k D 1.
2: while Shooting conditions (22) not fulfilled do
3: for j D 0 to M � 1 do
4: Solve intervalwise initial value problems (21).
5: end for
6: Solve (23), comp. update f.qj

k ; s
j
k; �

jC1
k /M�1

jD0 g of initial values and controls, set k kC 1.
7: end while
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3.3.2 Algorithm for Newton’s Method

In contrast to the IMS case above, where we presented the details of the solution of
both the intervalwise BVP (17) and the system (19) of shooting conditions, only
Step 6 of Algorithm 4, i.e. the realization of Newton’s method, is worth being
discussed more thoroughly. The solution of the IVP in Step 4 is straightforward; the
only important feature is that, on each subinterval, we have to first solve the state
equation, because u j is needed for solving the adjoint equation. With this restriction
in mind, we turn our attention to Newton’s system (23), the solution of which is
different from that of the corresponding system in IMS and has not been presented
elsewhere; therefore, we elaborate the following presentation in detail.

In Sect. 3.2, we stated that application of a matrix-free Krylov-Newton method is
desirable due to the size of problem (19). We did not go into the details and referred
to [9] instead. As the system (23) is even larger than (19) (due to the presence of
the controls, see also Remark 12 below), a direct solver is even less advisable here.
We will now discuss a Newton-GMRES method that has not been addressed in the
DMS context before.

We see that the Jacobian r.q;s;�/F.q; s;�/ of (22) involves derivatives u j
s ; u

j
q

of u j w.r.t. sj and q j as well as derivatives z j
s ; z

j
�; z

j
q of z j w.r.t. sj; �jC1 and q j.

These derivatives, the so-called sensitivities, are obtained by solving five additional
(linearized) IVP, the sensitivity equations (also known as variational equations), for
j 2 f0; : : : ;M � 1g. First, we differentiate (21a) where u j D u j.sj; q j/ w.r.t. sj in
direction ıs and w.r.t. q j in direction ıq to obtain the equations

..@tu
j
s; '//C a0u.u j/.uj

s; '/C .uj
s.�j/� ısj; '.�j// D 0; (24a)

..@tu
j
q; '//C a0u.u j/.u j

q; '/C b0q.q j/.ıq j; '/C .u j
q.�j/; '.�j// D 0; (24b)

which have to hold for all ' 2 Xj. Having solved these problems (for given initial
data ısj;0 and ıqj;0), we end up with u j

s ; u
j
q which can now be inserted into the

following three IVP that are obtained by differentiation of the adjoint equation (21b)
w.r.t. all its arguments in corresponding directions and must hold for all  2 Xj:

Jj00
uu.q

j; u j/.uj
s;  / � ..@tz

j
s;  //C a00uu.u

j/.uj
s;  ; z

j/

Ca0u.u j/. ; zj
s/C .zj

s.�jC1/;  .�jC1// D 0; (25a)

Jj00
uu.q

j; u j/.u j
q;  / � ..@tz

j
q;  //C a00uu.u

j/.u j
q;  ; z

j/

Ca0u.u j/. ; z j
q/C .z j

q.�jC1/;  .�jC1// D 0; (25b)

�..@tz
j
�;  //C a0u.u j/. ; zj

�/C .zj
�.�jC1/� ı�jC1;  .�jC1// D 0: (25c)

Solving these problems with initial data ı�jC1;0 leaves us with a complete set of
sensitivities, but only w.r.t. the chosen initial values .ıqj;0; ısj;0; ı�jC1;0/. In order
to assemble r.q;s;�/F explicitly, we have to solve the sensitivity equations for a
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whole basis of
SM�1

jD0 ŒQj �H �H�, which is numerically expensive for fine temporal
or spatial discretizations. Therefore, we choose an adjoint approach (matrix-free)
where we handle Newton’s system (23) with an iterative solver, for which we choose
in our case, due to the asymmetric structure of the matrix, a GMRES method. We
then have to solve the sensitivity equations only once per GMRES iteration. The
adjoint approach thus avoids assembling the Jacobian and operates on the matrix-
vector product r.q;s;�/F.q; s;�/ � .ıq; ıs; ı�/> instead.

This matrix-vector product, the left-hand side of (23), has the concrete form

r.q;s;�/F.q; s;�/ �
0

@
ıq
ıs
ı�

1

A D

0

B
B
B
B
B
B
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B
B
B
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B
@

ıs0

J000qq .q
0; u0/.ıq0/C b00qq.q

0/.ıq0; z0/
Cb0q.q0/Œz0s .ıs0/C z0q.ıq

0/C z0�.ı�
0/�

ı�j � zj
s.�jI ısj/� zj

�.�jI ı�jC1/
ısjC1 � uj

s.�jC1I ısj/ � uj
�.�jC1I ı�jC1/

Jj00
qq.q

j; u j/.ıq j/C b00qq.q
j/.ıq j; z j/

Cb0q.q j/Œzj
s.ıs

j/C z j
q.ıq
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�.ı�
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where the middle part has to be interpreted for j D 0; : : : ;M �1; note the index shift
we performed in the second component of the middle part to keep the presentation
consistent. We can now formulate the following Algorithm 5 which yields the details
of Step 6 of the above DMS algorithm:

Algorithm 5 Solution of the DMS shooting system (matrix-free approach)
Require: Shooting variables .sk;�k/ and controls qk, intervalwise OCP solutions u j; z j

1: Build up residual �F.qk ; sk;�k/.
2: Set i D 0, prescribe tolerance TOL and choose .ıq.0/k ; ıs.0/k ; ı�

.0/
k /.

3: while krF.qk ; sk;�k/.ıq
.i/
k ; ıs

.i/
k ; ı�

.i/
k /C F.qk ; sk;�k/k > TOL do

4: Compute matrix-vector product rF.qk ; sk;�k/.ıq
.i/
k ; ıs

.i/
k ; ı�

.i/
k / by solving the state and

adjoint sensitivity equations (24) and (25).
5: Solve system rF.qk ; sk;�k/.ıq

.i/
k ; ıs

.i/
k ; ı�

.i/
k / D �F.qk ; sk;�k/ by a Newton-GMRES

type method (this requires the renewed solution of (24) and (25) in each iteration).
6: end while
7: Set k kC 1 and qkC1 D qk C ıqend

k ; skC1 D sk C ısend
k ;�kC1 D �k C ı�end

k .
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3.4 Comparison of Both Approaches

From the last two Sects. 3.2 and 3.3 we see that IMS and DMS on a purely
algebraic level, i.e. looking merely at the equations to be solved [which are in both
cases the extended KKT conditions (14)], are in fact equivalent. The differences
are due to the respective algorithmic realizations that result from the different
splittings of system (16) leading to different internal dependencies of the arguments
of the common starting point, the extended formulation of the optimal control
problem (10)–(11).

Remark 7 Note that there are further possibilities how to split the set of arguments
of the extended Lagrangian (13), although they might not work as well as the ones
discussed so far. This might give reason to further research.

In the algorithmic description, we concentrated on the solution of the shooting
systems (19) resp. (23) by Newton’s method, which may lead to the supposition that
DMS is more expensive (in this context, see also Remark 12 below). However, in the
DMS context we only have to solve a (nonlinear) IVP (21) on each subinterval, and
also the additional sensitivity equations are only intervalwise (linear) IVP, which can
be solved in a rather straightforward manner. Despite the IMS shooting system (19)
being much smaller than the DMS one, the solution of the (nonlinear) subinterval
problems (17) and the corresponding (linearized) problems for the Newton-GMRES
method necessitates large effort, because they constitute smaller versions of the
original OCP and its linearization. It is thus not clear a priori which of the two
methods (IMS or DMS) is to be preferred.

Both IMS and DMS still comprise a variety of algorithms, depending on how
we solve the subinterval problems (reduced approach as above vs. all-at-once
approach), on how we solve Newton’s system (iterative matrix-free solver as above
vs. direct solver, inclusion of globalization techniques or of an SQP-like inexact
Newton method), on how we solve the sensitivity equations (simply by a fixed-point
method or by more sophisticated approaches) etc.

We will now turn our attention to some of these differences which are responsible
for the seemingly large differences between ‘classical’ DMS (introduced in Sect. 4.1
for parabolic OCP) and the DMS approach given in Algorithm 4.

4 Variants of DMS

The following considerations were initiated by the observation that the DMS method
derived in Sect. 3.3, despite being called ‘direct’, seems to be rather an indirect
method judged by the standard classification (see Introduction), because it is based
on the optimality conditions (14), i.e., the optimization has already been done
when shooting comes into play. According to our classification discussed in the
Introduction, the DMS approach shown here is a direct approach since the control
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is included in the shooting system. Therefore, it benefits from the advantages of
direct methods in terms of convergence as shown in our nonlinear example Sect. 6.2.
Further study to compare IMS and DMS in the PDE context is needed, but is left for
future work, especially considering state and control constraints.

Typical implementations of direct methods [1, 28], that use the ‘first discretize,
then optimize’ approach, avoid the use of an adjoint equation either by using
a sensitivity approach or by applying automatic differentiation techniques. We
therefore present in Sect. 4.1 the ‘classical’ DMS approach but tailored to the
parabolic situation, and show in Sect. 4.2 that this approach, relying on a reduced
formulation of the extended optimal control problem (10)–(11), is equivalent to our
variant of DMS. In the classical framework, the reduced problem is discretized, and
the resulting nonlinear programming problem (NLP) is usually solved by an all-at-
once approach, e.g. a sequential quadratic programming (SQP) method. In contrast,
our DMS variant relies on a continuous unreduced formulation. The dichotomy of
reduced versus unreduced approaches is discussed in [16] for the global OCP (2)–
(3), and we use the notational framework established there. Note that the whole
discussion takes place on the abstract function space level.

4.1 DMS Based on a Reduced Form of the Extended OCP
Formulation

We will now embed a DMS method that was developed (mainly by Bock and his
co-workers) in the 1980s (see, e.g. [3–5]) into the context of parabolic OCP.

DMS methods for problem (10)–(11) are usually based on a reformulation of this
extended OCP formulation completely in terms of the primal shooting variables sj

and the intervalwise controls q j, i.e. u j D u j.q j; sj/. Pursuing this strategy, we end
up with the minimization problem

min
.q;s/

J.q; s/ WD
M�1X

jD0
Jj.q j; u j.q j; sj// (26a)

s. t. s0 � u0 D 0; (26b)

sjC1 � u j.�jC1I q j; sj/ D 0; (26c)

where (26c) comprises the continuity conditions for j D 0; : : : ;M � 1. We call (26)
a reduced formulation of the extended OCP formulation (10)–(11). It is formulated
in terms of the independent variables q j and sj and relies upon the solution of the
IVP

e j.q j; sj; u j.q j; sj// D
�
@tu j.q j; sj/C A .u j.q j; sj//C B.q j/� f jIj

u j.�jI q j; sj/� sj

�

D
�
0

0

�

(27)
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that has been solved on all subintervals Ij for j D 0; : : : ;M � 1. We assume unique
solvability of the subinterval problems which implies the existence of a solution
operator mapping Qj � H to Xj. In (27), e j.q j; sj; u j.q j; sj// is an intervalwise
counterpart of the abstract side condition in (1) which is, in contrast to the preceding
sections, again strongly formulated. This abstract notation helps us to keep the proof
of the equivalence result in the next section short.

Remark 8 In the reformulation (26)–(27) of the extended OCP formulation, the
local control variable q j.x; t/ is a function of both spatial variables x and time
t. In DMS methods for ODE control problems which depend only on t, the
control is usually parameterized as a piecewise polynomial of order p � 3 on the
subintervals Ij, i.e. q j � q j.qj

0; � � � ; qj
p/ (see, e.g., [20]). This parameterization of

the control saves a large amount of computing time and storage (up to four control
parameters per shooting interval Ij as opposed to a number of control values on
each Ij determined by the control discretization, which is usually much finer than
the mentioned parameterization). Furthermore, so-called condensing techniques
(reducing the shooting system to the control variables) are frequently employed;
they are not efficient if q is discretized on a similarly fine level as the state u.
However, reducing the control to a much smaller space by parameterization leads
to only suboptimal solutions of the given control problems. In the PDE case, a
parameterization of the control q.x; t/ may lead to a loss of structural information in
the spatial variables. Some ideas in this regard are briefly discussed in Sect. 5 (see
Remark 11 below).

Starting from (26), we derive the corresponding Lagrange functional (introducing a
Lagrange multiplier � D .�j/MjD0 2 HmC1):

L .q; s;�/ D J.q; s/C .s0 � u0; �
0/C

M�1X

jD0
.sjC1 � u j.�jC1I q j; sj/; �jC1/: (28)

We obtain the (reduced) optimality system as usual by differentiation w.r.t. the argu-
ments .q; s;�/. This yields the system [where j 2 f0; : : : ;M�1g in Eqs. (29b), (29c)
and (29e)]

L 0
�0
.ı�/ D .s0 � u0; ı�/; (29a)

L 0
�j.ı�/ D .sjC1 � u j.�jC1I q j; sj/; ı�/; (29b)

L 0sj.ıs/ D hJj0
u ; u

j0
s .ıs/iXj��Xj C .�j; ıs/ � .�jC1; uj0

s Œ�jC1�.ıs//; (29c)

L 0sM.ıs/ D .�M; ıs/; (29d)

L 0q j.ıq/ D hJj0
q ; ıqiQj��Qj C hJj0

u ; u
j0
q.ıq/iXj��Xj � .�jC1; uj0

q Œ�jC1�.ıq//: (29e)
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Here, uj0
q W Qj ! Xj and uj0

s W H ! Xj are operators mapping the controls and

initial values to the respective (variational) states uj0
q=s that are denoted by the same

symbols. Furthermore, the notation uj0
q=sŒ�jC1� means that the respective variational

state obtained by application of the operator uj0
q=s is evaluated at time-point �jC1. The

classical DMS method consists in the solution of system (29). In the framework
of ODE optimal control, [20] gives a detailed description of SQP methods that
solve (29) without employing an adjoint equation. Therefore, either the Jacobian
of (29) has to be assembled, or additional sophisticated algorithms are needed to
circumvent this matrix assembly. An alternative matrix-free SQP approach has been
proposed by Ulbrich [31]. This procedure corresponds to the sensitivity approach
for generating derivative information that is needed during the solution process;
this sensitivity approach is usually too expensive in PDE optimal control, because
one has to solve an additional linearized problem for each basis vector ıq of the
(discrete) control space (see [16] or [24]).

4.2 Equivalence of the Two DMS Approaches

Comparing the two DMS variants presented in Sects. 3.3 and 4.1 yields, besides
several minor differences, a central distinction that influences the structure of the
solution process strongly. It consists of the absence of any adjoint problem in the
DMS method from Sect. 4.1, whereas the variant discussed in Sect. 3.3 is based on
the same full optimality system (14) as the IMS approach of Sect. 3.2, including the
adjoint part.

Remark 9 Generally, modern implementations of DMS for ODE optimal control
problems, which are capable of handling parabolic OCP by transforming the
PDE side condition into a huge ODE system via the method of lines (MOL)
approach, make use of adjoint methods for sensitivity generation, which constitute a
suitable alternative to the above described approach. They often compute the adjoint
equations (which may be nasty to derive by hand in case of large ODE systems with
complicated nonlinear terms) by automatic differentiation (see [1]).

The following theorem, which is the main result of this section, shows the equiva-
lence of the two DMS approaches. Moreover, the proof reveals that the seemingly
so different DMS variant of Sect. 3.3 is merely a reformulation of ‘classical’ DMS
by means of an adjoint approach for sensitivity generation. It is performed in an
abstract function space setting, meaning that the argumentation is not affected by
discretization.

Theorem 2 The solution of the reduced formulation (26) of the modified OCP (10)–
(11) by means of an adjoint approach leads to the DMS method described in
Sect. 3.3.
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The following outline prepares the proof of Theorem 2. Classical DMS for
problem (26) relies upon the solution of system (27) and necessitates the solution
of (29). Analogously, the DMS approach from Sect. 3.3 for problem (10)–(11) relies
upon (21) having been solved and necessitates the solution of (22). Comparing
the two settings, the following correspondences are evident: (27) is the strong
formulation of (21a), and (29a), (29b) and (29d) are identical to (22a), (22d)
and (22f), respectively. It is thus our goal to derive the adjoint equation (21b), the
continuity conditions (22c) and the control equations (22b) and (22e) from (29c)
and (29e). To achieve this, we extend the ideas and techniques of Sect. 1.6 from [16]
to the more complex multiple shooting situation. The following proof has already
been outlined in [12].

Proof For the following discussion, we introduce adjoint operators uj0�
q W Xj� ! Qj�

and uj0�
s W Xj� ! H� � H (as well as their restrictions to the final time-point,

uj0�
q Œ�jC1� W H � H� ! Qj� and uj0�

s Œ�jC1� W H � H� ! H� � H) corresponding
to the differential operators uj0

q W Qj ! Xj and uj0
s W H ! Xj and rewrite Eqs. (29c)

and (29e) in an abstract adjoint form:

L 0sj.ıs/ D .uj0�
s .J

j0
u /; ıs/C .�j; ıs/� .uj0�

s Œ�jC1�.�jC1/; ıs/; (29c�)

L 0q j.ıq/ D hJj0
q ; ıqiQj��Qj C huj0�

q .J
j0
u /; ıqiQj��Qj

� huj0�
q Œ�jC1�.�jC1/; ıqiQj��Qj : (29e�)

We discuss the adjoint operators first on an abstract level which enables a clear
presentation of the formal framework. By differentiating the interval state equa-
tions (27) w.r.t. q j in direction ıq and w.r.t. sj in direction ıs, we obtain (the
arguments .q j; sj; u j.q j; sj// are omitted for brevity)

ej0
u.ıuq/ D �ej0

q.ıq/; ej0
u.ıus/ D �ej0

s .ıs/: (30)

Here, ıuq and ıus are abbreviations for u j
q.ıq/ and u j

s.ıs/, respectively. Assuming
ej0

u to have a bounded inverse, we use the implicit function theorem to obtain

uj0
q D �.ej0

u/
�1 ı ej0

q ; uj0
s D �.ej0

u/
�1 ı ej0

s :

Now, the definition of adjoint operators gives us the following representation:

uj0�
q D �ej0�

q ı .ej0
u/
��; uj0�

s D �ej0�
s ı .ej0

u/
��:

Inserting these expressions for uj0�
s and uj0�

q into the corresponding terms of (29c�)
and (29e�), we get

.uj0�
s .J

j0
u /; ıs/ D �.ej0�

s ..e
j0
u/
��.Jj0

u //; ıs/; (31a)
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.uj0�
s Œ�jC1�.�jC1/; ıs/ D �.ej0�

s ..e
j0
u/
��Œ�jC1�.�jC1//; ıs/; (31b)

huj0�
q .J

j0
u /; ıqiQj��Qj D �hej0�

q ..e
j0
u/
��.Jj0

u //; ıqiQj��Qj ; (31c)

huj0�
q Œ�jC1�.�jC1/; ıqiQj��Qj D �hej0�

q ..e
j0
u/
��Œ�jC1�.�jC1//; ıqiQj��Qj : (31d)

We notice that, in (31a) and (31c), the same argument .ej0
u/
��.Jj0

u / is inserted
into both operators ej0�

s and ej0�
q . The same holds for .ej0

u/
��Œ�jC1�.�jC1/ in (31b)

and (31d). We define the variables z j
J WD �.ej0

u/
��.Jj0

u / and z j
� WD .ej0

u/
��Œ�jC1�.�jC1/,

which then fulfil the following equations, respectively:

ej0�
u .z

j
J/ D �Jj0

u ; ej0�
u Œ�jC1�.z j

�/ D �jC1: (32)

These are the (formal) adjoint equations; we will see below that they can be merged
into one equation, due to the linearity of the operator ej0�

u and a superposition
principle, which interprets z j

J as a solution belonging to a homogeneous initial value
and non-homogeneous right-hand side �Jj0

u , and z j
� as a solution belonging to a

homogeneous right-hand side and non-homogeneous initial value �jC1.
In our concrete situation, we start from the weak formulation of (27) given by

..@tu
j; '//C a.u j/.'/C b.q j/.'/ � ..f jIj ; '//C .u j.�j/� sj; '.�j// D 0: (33)

The differential operator uj0
q W Qj ! Xj mentioned above is the solution operator of

the following linearized equation (which is the derivative of (33) w.r.t. q j in direction
ıq):

..@tıuq; '//C a0u.u j/.ıuq; '/C .ıuq.�j/; '.�j// D �b0q.q j/.ıq; '/: (34)

Analogously, uj0
s W H ! Xj is the solution operator of the derivative of (33) w.r.t. sj

in direction ıs:

..@tıus; '//C a0u.u j/.ıus; '/C .ıus.�j/; '.�j// D .ıs; '.�j//: (35)

Here, ıuq and ıus denote the respective solution variables. We call (34) and (35)
the sensitivity equations belonging to (27). They correspond to the formal equa-
tions (30).

Now we are able to substantiate the adjoint equations (32). We have seen above
that the application of the adjoint operator uj0�

q resp. uj0�
s to a functional Jj0

u 2 Xj� (or

of uj0�
q Œ�jC1� resp. uj0�

s Œ�jC1� to �jC1) corresponds to carrying out the following steps:

1. Solve the adjoint equation ej0�
u .z

j
J/ D �Jj0

u (or ej0�
u Œ�jC1�.z j

�/ D �jC1).
2. Apply the adjoint operators ej0�

q resp. ej0�
s to the solution z j

J (or z j
�).
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Discussing the first step will lead us to the adjoint equation, while the second step
yields the continuity conditions for the adjoint equation and the control equations.
The general adjoint equation corresponding to both (34) and (35) is given by

� ..@tıu
�
q=s;  //C a0u.u j/.ıu�q=s;  /C .ıu�q=s.�jC1/;  .�jC1// D rhs. /: (36)

Here, the term rhs. / which is fanning the dynamics represents either a distributed
source term or an end-time initial condition. Our situation comprises the following
two adjoint equations (where the abstract adjoint variable ıu�q=s has been suitably
replaced):

� ..@tz
j
J ;  //C a0u.u j/.z j

J ;  /C .z j
J.�jC1/;  .�jC1// D �Jj0

u .q
j; u j/. /; (37a)

�..@tz
j
�;  //C a0u.u j/.z j

�;  /C .z j
�.�jC1/;  .�jC1// D .�jC1;  .�jC1//: (37b)

Evidently, Eq. (37) are both fully linear, as the possibly nonlinear operators a.�/.�/
and Jj.�/ enter only in linearized form. Therefore, we may write (37a) and (37b) as
one single equation by defining z j WD z j

J � z j
�. The resulting adjoint equation reads

Jj0
u .q

j; u j/. / � ..@tz
j;  //C a0u.u j/.z j;  /

C.z j.�jC1/� �jC1;  .�jC1// D 0: (38)

A comparison of (21b) and (38) shows that, substituting the test function  by ıu,
our first objective, namely the introduction of the adjoint equation into the reduced
DMS method by means of an adjoint approach to sensitivity generation, has been
achieved.

We finally explain the second step of the above proceeding in detail. By means
of the described superposition z j WD z j

J � z j
�, system (31) diminishes to

.uj0�
s .J

j0
u /� uj0�

s Œ�jC1�.�jC1/; ıs/ D �.ej0�
s .z

j/; ıs/; (39a)

huj0�
q .J

j0
u /� uj0�

q Œ�jC1�.�jC1/; ıqiQj��Qj D �hej0�
q .z

j/; ıqiQj��Qj ; (39b)

where the adjoint solution has been inserted into the right-hand side terms. Since
the right-hand sides of the second equation of (30) and of (35) coincide, we get the
following equalities (making use of the weak form ej0

s .ıs/.'/ WD .ej0
s .ıs/; '/):

.ıs; ej0�
s .z

j// D .ej0
s .ıs/; z

j/ D ej0
s .ıs/.z

j/ D .ıs; z j.�j//:

Thus, replacing (for all j 2 f0; : : : ;M � 1g) the adjoint terms in (29c�) by the
corresponding term in (39a) and using the last equality, we end up with

L 0sj.ıs/ D .�j; ıs/ � .z j.�j/; ıs/; (40)
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which is exactly the adjoint continuity condition (22c). Analogously, we can
exploit (39b). The right-hand sides of the first equation of (30) and of (34) coincide,
which leaves us with

hej0�
q .z

j/; ıqiQj��Qj D hej0
q.ıq/; z

jiXj��Xj D ej0
q.ıq/.z

j/ D �b0q.q j/.ıq; z j/:

Here, we have made use of the definition hej0
q.ıq/; 'iXj��Xj WD ej0

q.ıq/.'/. We can
now replace the adjoint terms in (29e�) by the corresponding term in (39b), use the
last equality and obtain for all j 2 f0; : : : ;M � 1g:

L 0q j.ıq/ D hJj0
q ; ıqiQj��Qj C b0q.q j/.ıq; z j/: (41)

Since the last relationship is identical to (22e) [and, in the case j D 0, to (22b)], this
completes the proof. ut

5 Discretization

For the sake of completeness, we briefly present the discretization schemes that will
be used for computing the examples in Sect. 6 below. We treat the discretization
of the time variable and the spatial variables separately, but choose the same
discretization schemes for IMS and DMS.

5.1 Time Semi-Discretization

The decomposition (9) of the solution interval I into subintervals Ij D .�j; �jC1� is
not to be seen as a discretization, but rather as a reformulation of the problem. As we
have seen, it is compensated by introducing the additional equality constraints (11).
Here, we describe a further decomposition of each shooting interval Ij into smaller
time intervals In

j D .tn
j ; t

nC1
j � of length kn

j WD tnC1
j � tn

j with timepoints

�j D t0j < t1j < � � � < t
Nj

j D �jC1;

which is now an actual discretization of the time variable. On each shooting interval,
we use the discontinuous Galerkin method of order r (dG(r) method). All semi-
discrete variables are indexed with a symbol k denoting a piecewise constant
function kjIn

j
WD kn

j . We denote space-time scalar products and semilinear forms
on In

j by ..�; �//n; an.�/.�/ and bn.�/.�/, suppressing the shooting interval index j. The
same holds for the functional Jj

n.�/.
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Starting point for the dG(r) method is the space of semi-discrete functions

Xr
k.Ij/ WD fvk 2 L2.IjI V/ j vk.t

0
j / 2 H; vkjIn

j
2 Pr.I

n
j I V/; n D 1; : : : ;Njg

where the space Pr.In
j / contains all polynomials on In

j up to degree r. The time-
discrete functions on Ij may be discontinuous at the timepoints tn, hence we
introduce the following notation for describing the jumps:

v
j;C
k;n WD lim

t&0
vk.t

n
j C t/; v

j;�
k;n WD lim

t%0
vk.t

n
j C t/; Œv

j
k�n WD v

j;C
k;n � v

j;�
k;n :

Now we are prepared to formulate the time semi-discrete state and adjoint equations:
Find uj

k; z
j
k 2 Xr

k.Ij/, such that for all ızk; ıuk 2 Xr
k.Ij/, the following equations hold:

Nj�1X

nD0

h
..@tu

j
k; ızk//n C an.u

j
k/.ızk/C bn.q

j/.ızk/ � ..f jIn
j
; ızk//n

i

C
Nj�1X

nD1
.Œuj

k�n; ız
C
k;n/C .uj

k.�j/ � sj; ızk.�j// D 0; (42a)

Nj�1X

nD0

h
J

j0

n;u.q
j; uj

k/.ıuk/� ..@tz
j
k; ıuk//n C a0n;u.u

j
k/.ıuk; z

j
k/

i

�
Nj�1X

nD1
.Œzj

k�n; ıu
�
k;n/C .zj

k.�jC1/� �jC1; ıuk.�jC1// D 0: (42b)

Additional linearized equations needed to compute sensitivities (e.g., the tangent
and additional adjoint equations in the IMS case) are discretized analogously. In the
context of parabolic OCP without shooting, this is described in detail in [2]. Note
that the control has not been discretized.

Remark 10 We will only consider the case r D 0, where the Galerkin method is
equivalent to the backward Euler time-stepping scheme up to a quadrature error
induced by the box rule. To keep the presentation short, we omit the discussion of
alternatives like the continuous Galerkin method of order r (cG(r) method); details
can be found, e.g., in [24].

5.2 Space-Time Discretization

For discretizing the spatial variables, we use a conforming finite element method
on a shape-regular mesh Th decomposing the domain ˝ into closed cells K
(for definitions and details we refer to, e.g., the textbook [7]). Spatially discrete
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quantities are indexed by h, where hjK WD hK is the (cellwise constant) diameter
of K. On the mesh Th, we define the space Vs

h � V of finite element functions of
polynomial degree s by

Vs
h WD ˚

vh

ˇ
ˇ vhjK 2 Qs.K/;K 2 Th

�
:

We denote by Qs.K/ the space of functions that result from isoparametric transfor-
mations of polynomials defined on a reference unit cell OK. As we only consider the
case s D 1, we exclusively deal with bilinear transformations. To formulate the fully
discretized problem, we need the function space

Xr;s
k;h.Ij/ WD fvkh 2 L2.IjI Vs

h/ j vkh.t
0
j / 2 Vs

h; vkhjIn
j

2 Pr.I
n
j I Vs

h/; n D 1; : : : ;Njg

which consists of all piecewise polynomials of degree r on the time intervals with
values in the finite element space Vs

h. The space-time discrete problem now consists
in finding ukh; zkh 2 Xr;s

k;h.Ij/, such that for all ıukh; ızkh 2 Xr;s
k;h.Ij/ the following

equations hold:

Nj�1X

nD0

h
..@tu

j
kh; ızkh//n C an.u

j
kh/.ızkh/C bn.q

j
kh/.ızkh/� ..f jIn

j
; ızkh//n

i

C
Nj�1X

nD1
.Œuj

kh�n�1; ız
C
kh;n�1/C .uj

kh.�j/ � sj; ızkh.�j// D 0; (43a)

Nj�1X

nD0

h
J

j0

n;u.q
j
kh; u

j
kh/.ıukh/ � ..@tz

j
kh; ıukh//n C a0n;u.u

j
kh/.ıukh; z

j
kh/

i

�
Nj�1X

nD1
.Œzj

kh�n; ıu
�
kh;n/C .zj

kh.�jC1/� �jC1; ıukh.�jC1// D 0: (43b)

This system is, apart from the additional index h and the different function spaces,
evidently equal to (42).

Remark 11 Note that for the fully discrete formulation, we discretized the control
q. In doing so, we followed the approach suggested in [15] and let the control
discretization be induced by the corresponding one for the states u and z, thus we did
not describe it in detail. Alternatively, one might discretize q explicitly; this allows
for a coarser resolution of the control in both space and time, either by choosing a
coarser mesh (here, one could use hierarchically structured meshes for the state and
control variables) or by employing time-stepping schemes or finite element methods
of lower order than those chosen for state discretization.

Remark 12 We are now in a position to compare the dimension of systems (19)
for IMS and (23) for DMS. Assume I is decomposed into 10 shooting intervals
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each of which is discretized by 50 time steps, and the spatial domain ˝ is the
unit square divided into 256 identical elements (for other configurations, see the
examples in Sect. 6). In the IMS case, the solution vector .ıs; ı�/ of (19) comprises
10 initial values for the state and 10 for the adjoint solution, each of the size of the
spatial discretization. This amounts to a system dimension of 5120. With DMS, the
control enters into the system. As we resolve the control completely in the IMS case,
we do not use any condensing techniques here, either, in order to keep the results
comparable and the comparison fair. Thus the control is distributed in space and
time and comprises a total of 10 �50 �256D 128;000 degrees of freedom. Therefore,
the solution vector .ıq; ıs; ı�/ of (23) has dimension 133,120.

6 Numerical Results

In this section, we discuss the practical realization of the theoretical results from
Sect. 3 by regarding two examples. In Sect. 6.1 we consider the case of a linear-
quadratic optimal control problem. Afterwards, we introduce a nonlinear reaction
term into the PDE side condition and discuss the semilinear case in Sect. 6.2. All
computations have been done using the finite element software deal.ii and rely
upon the discretization routines presented in the last section.

6.1 Linear Example

The following linear-quadratic OCP is considered on the space-time domain˝�I D
.Œ�1I 3� � Œ�1; 1�/ � Œ0; 1� and aims at matching a given state profile OuT at the time
interval endpoint T D 1:

min
.q;u/

�
1

2
ku.x; 1/� OuT.x/k2L2.˝/ C ˛

2

Z 1

0

kq.x; t/k2L2.˝/ dt

�

;

subject to the parameterized nonstationary Helmholtz equation

@tu.x; t/��u.x; t/� !u.x; t/ D q.x; t/ in ˝ � .0; 1�;
u.x; t/ D 0 on @˝ � Œ0; 1�;
u.x; 0/ D max

n
0; cos

�	

2
x1

�
cos

�	

2
x2

�o
on ˝

The prescribed profile is chosen as OuT.x1; x2/ D min
˚
0; cos

	
	
2

x1



cos
	
	
2

x2

�

. Thus,
we expect the state solution to be a cosine bump moving from the left to the right
half of the spatial domain over time, thereby changing its sign.
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We compute solutions of this problem for different values of the parameter !
and ˛ D 0:01 by means of IMS and DMS (in the variant of Sect. 3.2) We use a
four times globally refined spatial mesh (512 cells) and five equidistant shooting
intervals discretized each by 100 time steps. The results are shown in Table 1: from
left to right, we see that only one Newton step is needed, furthermore the number
of GMRES iterations, the functional value, the residual of the respective shooting
system (which also yields the stopping criterion) and the computing time measured
in seconds.

Both methods have been implemented as described in Sect. 3, without any
additional tuning (like condensing, reduction of control spaces etc.). Since we use
the same implementation for both linear and nonlinear problems, we solve the
shooting system by a Newton-type method, which requires only one iteration in
the current example, as can be expected for a linear problem. For increasing !, the
number of inner GMRES iterations also increases in both cases, which reflects the
worsening conditioning of the respective problems; indeed, there is a value of !
where five shooting intervals are not sufficient to solve the problem. With DMS,
altogether more GMRES steps are needed than with IMS, which is due to the much
larger linear system. The functional values J.q; u/ coincide for both methods, and
also the shooting residual kFk is of comparable size. However, the DMS algorithm
takes longer (by a factor of 1.5 up to 2) than IMS to solve the problem with this same
accuracy. Finally, in Fig. 1 we see that after convergence of the shooting methods
(here: IMS) the expected wandering and inversion of the cosine bump is reproduced.

Table 1 Comparison of IMS (left) and DMS (right) for varying ! (required: kFk < 5:0e�5) in a
linear framework

! #New #GMRES J.q; u/ kFk t.s/ #New #GMRES J.q; u/ kFk t.s/

0 1 52 0.0446 1:6e�11 1497 1 110 0.0446 1:9e�10 2507

1 1 64 0.0367 1:8e�11 1825 1 128 0.0367 2:2e�10 2909

2 1 76 0.0290 2:1e�11 2149 1 156 0.0290 2:3e�10 3531

3 1 83 0.0218 2:4e�11 2347 1 192 0.0218 2:3e�10 4360

4 1 130 0.0163 2:6e�11 3601 1 248 0.0163 2:6e�10 5586

5 1 165 0.0148 2:9e�11 4571 1 416 0.0148 2:8e�10 9423

Fig. 1 Contour plot of the IMS solution on 5 shooting intervals after convergence: initial time
T D 0 (left), final time T D 1 (right)
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Table 2 Comparison of IMS (left) and DMS (right) for varying ! (required: kFk < 1:0e�3) in a
nonlinear framework

! #New #GMRES J.q; u/ kFk t.s/ #New #GMRES J.q; u/ kFk t.s/

0 4 24/51 0.1639 3:1e�6 2530 4 28/53 0.1639 3:1e�5 2088

1 4 26/52 0.1420 6:4e�6 2795 4 38/62 0.1420 1:5e�5 2427

2 4 28/56 0.1187 2:5e�6 3118 4 43/74 0.1187 9:0e�5 2926

3 4 28/75 0.0948 3:9e�6 4201 4 51/84 0.0948 1:4e�4 3280

4 4 28/79 0.0735 5:6e�6 4713 4 68/108 0.0735 2:1e�4 4201

5 4 28/94 0.0645 1:2e�5 5658 4 80/139 0.0645 2:6e�4 5376

6.2 Nonlinear Example

The second problem is a slight modification of the first one. We now choose
the regularization parameter as ˛ D 0:05. Furthermore, we add a polynomial
nonlinearity to the PDE side condition and consider the problem

@tu.x; t/ ��u.x; t/ � !u.x; t/C u.x; t/3 D q.x; t/ in ˝ � .0; 1�;

whereas the initial condition, the boundary values, the objective functional and the
computational domain are chosen identical to the configuration in Sect. 6.1.

We need several Newton iterations before convergence, but at the beginning, the
shooting variables are still far away from their true values. It is thus not necessary to
carry out the first Newton steps on a highly refined spatial mesh. On the contrary, the
shooting process becomes far more efficient if the first iterations are carried out on a
coarse mesh until a good approximation has been obtained and if the spatial mesh is
only then refined. In the above example, we therefore start on a mesh of only 8 cells
and alternate between computing a Newton update for the shooting variables and
refining the spatial mesh. This is repeated until we reach the finest mesh with 512
cells. Table 2 shows the results of this approach with global mesh refinement; in the
second column of the respective method, we have given the minimum and maximum
number of GMRES iterations needed within one Newton step. We emphasize that
this process carries the potential of including adaptive mesh refinement into the
shooting process, which is a starting point for further research. Furthermore, the
IMS and DMS methods are comparable w.r.t. computing time, which is contrary to
the linear example above. An extended comparison of IMS and DMS has to include
additional control or state constraints, which is currently being examined.

7 Conclusion and Outlook

To underline the algebraic equivalence of DMS and IMS on an abstract function
space level, we have rigorously derived the two approaches starting from a common
formulation. Furthermore, we have given a detailed description of their algorithmic
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realization. We have shown that our DMS approach is equivalent to the ‘classical’
approach known in ODE context, which leads, in contrast to our approach, to a
reduced formulation. The advantage of keeping the derivation of a DMS method
at the continuous level, in contrast to the ‘first discretize then optimize’ classical
approach, is the possibility to derive an a posteriori error estimation for the space
and time discretization, including the continuity conditions in the shooting system.
This important aspect is part of our current research.
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