On Time Discretizations of Fluid-Structure
Interactions

Thomas Richter and Thomas Wick

Abstract In this contribution, time discretizations of fluid-structure interactions are
considered. We explore two specific complexities: first, the stiffness of the coupled
system including different scales of the Navier-Stokes equations of parabolic type
and the structure equation of hyperbolic type and second, the problem of moving
domains that is inherent to fluid-structure interactions.

Typical moving mesh approaches, such as the arbitrary Lagrangian-Eulerian
framework, give rise to nonlinearities and time-derivatives with respect to the mesh-
deformation. We derive different time-stepping techniques of Crank-Nicolson type
and analyse their stability and approximation properties. Further, we closely look
at the dominant time-scales that must be resolved to capture the global dynam-
ics. Moreover, our discussion is supplemented with an analysis of the temporal
discretization of Eulerian fixed-mesh approaches for fluid-structure interactions,
where the interface between fluid and solid will change from time-step to time-
step. Finally, a formulation of parallel multiple shooting methods for fluid-structure
interaction is presented.

1 Introduction

Fluid-structure interactions (fsi) are part of many application problems and appear
in mechanical engineering, aeroelasticity, hemodynamics, or as pore-scale modeling
in porous media flow. Concretely in this work, we consider the interaction of a
laminar, incompressible fluid with an elastic solid governed by the Saint Venant
Kirchhoff material law. While the simulation of both single sub-processes is already
a difficult task, covering their interaction is further complicated by the two-way
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coupling between both systems. In this contribution, we will focus on issues
concerning the time-discretization of fully-coupled fluid-structure interactions by
means of time-stepping schemes. In every time-step, an approximation to the fully
coupled system at a new time-step is to be found. The fully coupled approach is
called monolithic compared to partitioned approaches, where the fluid- and solid-
problem are solved separately and coupled via outer iterations. Monolithic schemes
always belong to strongly coupled methods whereas partitioned schemes can be
either strongly or loosely coupled depending on the number of inner iterations
and the desired accuracy of force balance at the interface. For instance, strongly
coupled schemes are necessary when the added mass effect takes place as in
applications in hemodynamics. On the other hand, partitioned solution schemes
are very efficient for problems with a less stiff coupling, as they are common in
aeroelasticity.

Time discretization of fluid-structure interactions is mainly governed by two
specific complexities. First, the overall stiffness of the coupled problem is by
far greater than that of the sub-problems. This is mainly due to the coupling of
parabolic-type fluid equations with hyperbolic-type solid equations. Second, using
a (most common) moving-mesh approach, time derivatives do not appear separated
from spatial differential operators, but they depend nonlinearly on other solution
variables and their spatial derivatives, giving rise to terms like

det(I + Vu)[I + Vu] ™' Vva,u,

where v is the unknown velocity and u is the unknown deformation determining
the domain motion. Detailed analysis for fluid flows on moving domains has
been performed by Formaggia and Nobile [15, 16]. These studies already tackle
several important aspects such as stability, order of convergence and the geometric
conservation law. In fluid-structure interaction, the fluid-domain movement is
caused by the solid deformation. Hence, the analysis of fully coupled fluid-structure
interaction is similar but must also include detailed consideration of the solid
discretization. This analysis is not present in literature.

In the following section, we will shortly introduce the governing equations
for the fully coupled fluid-structure interaction problem in Arbitrary Lagrangian
Eulerian (ALE) coordinates. Then, in the central third section, we analyze time-
dependent dynamics of a typical fluid-structure interaction benchmark. In Sect. 4
we present and discuss different time-stepping technique and closely analyze their
accuracy and stability properties. In Sect.5, we recapitulate the current state-
of-the-art of an alternative (to the ALE approach) monolithic formulation, the
fully Eulerian framework and discuss special aspects with respect to its time-
discretization. The prospective of applying parallel multiple shooting methods to
enhance stability and efficiency is discussed in Sect. 6. Finally, we conclude in
Sect.7.
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2 Fluid-Structure Interactions

By £2 C R¢ we denote a two or three-dimensional domain that is split into a fluid-
part % and a solid-part .. The splitting is such, that .% and . are d-dimensional
domains with a common interface .¢# = 0.% N 0.7. Figure 1 shows a possible
configuration of fluid-structure interactions, where the fluid encloses an obstacle
with elastic beam. By the arising dynamics, the beam will deform and hence, solid
and fluid domain will change such that at time ¢ > 0 it holds £2(¢) = .7 (t) U L (¢)
with interface .Z (f) = 9.7 (t) N 0.7 (¢). In F (1), fluid’s velocity v; and pressure
py are governed by the incompressible Navier-Stokes equations, where in .#(¢) the
elastic beam’s deformation uy and velocity v; is controlled by a St. Venant Kirchhoff
material, see [28].

The coupling between these two sub-problems is controlled by the kinematic
condition that calls for continuity of the velocities on the common interface .7 (¢)
and the dynamic condition that asks for continuity of normal stresses on ¥ (f).

To cope with the moving fluid-domain, we introduce the Arbitrary Lagrangian
Eulerian (ALE) formulation that maps the domains .% (¢) back to the fixed reference
domain .# at time + = 0. We introduce by u; the deformation field of the
fluid-domain, that maps every reference point X € .% to a point in the current
configuration x € .7 (t) via

xeZ: Tk =x+ux1 e F().

This mapping is not the physically motivated mapping between Lagrangian and
Eulerian coordinates that follows the path of a particle, but a mapping between a
completely arbitrary reference domain and the current configuration, see [8, 27, 32].
In both subdomains .% and ., we denote by F := I + Vu the deformation gradient
and by J := det(F) its determinant.

On 2, .# and . we introduce the function spaces

V= Hy(2; TP, & :=I4F), ¥ :=H)(F0F), ¥ :=IL*7),

T0.02

57
Lyan

0.41
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Fig. 1 Configuration of the fsi3-benchmark problem. Flow around obstacle with elastic beam.
Inflow boundary I3,, outflow boundary I5,, and fluid-solid interface .#. The cfd-benchmark is
recovered by omitting the beam
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where by H!(£2; I") we denote the Sobolev space of Lebesgue integrable functions
with the first weak derivative in L? and trace zero on the boundary I". The full
system of coupled fluid-structure interactions in variational formulation is to find

v=(v,v) eV, u=wu) e, pre,

such that
(pfj(a,v + VWF (v — du)), ¢)gz n (J&fF—T, v¢>)gz
+(piv.¢)  +(FZ.V9) (1)
+(detVE V). &)+ (Vomen VYr) _+ (du—v.9) = ().
for all
peV, et YreV Ysei

Here, by f we denote a given volume force, by X the 2nd Piola Kirchhoff stress
tensor, which for the St. Venant Kirchhoff material takes the form

1
X, = 2uE, + A trace(Ey)I, E,:= E(FTF -1,

where by i, and A, we indicate the two material parameters. By 6y we denote the
fluid’s Cauchy stresses expressed in the reference coordinate system

oy = prvr(F'Vvy + Vv[F") — psI.,
and finally, by o nesn We denote the mesh-moving operator of harmonic, linear-
elastic, or biharmonic type [23, 49, 57].
Kinematic
V=V, on.JZ(1),

and dynamic coupling conditions

JoF"np =FXn;, on.7(1),
are embedded in this formulation, as the velocities v € ¥ and test-functions ¢ € ¥
have a well-defined continuous trace on the interface ..

Spatial discretization of this coupled system will be accomplished with conform-
ing finite elements. For details, we refer to [12, 41-43, 45, 57].
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3 Analysis of Two Benchmark Problems: cfd and fsi

We start the discussion on time-discretizations of fluid-structure interaction with
a literature survey on published results for two benchmark problems in fluid-
dynamics: first, the cfd-benchmark Laminar Flow Around a Cylinder as published in
1995 by Schifer and Turek [46] and called cfd-benchmark in the following. Second
an extension of this benchmark to fluid-structure interactions, the fsi3-benchmark
problem, published in 2006 by Hron and Turek [30] and called fsi3 in the following.
Both problems feature the flow around a circular obstacle. In the fsi3 configuration,
an elastic beam is attached to the rear of the circular obstacle. See Fig. 1 for a sketch
of the configuration. The cfd benchmark is obtained by completely omitting the
beam. Both problems are driven by a time-dependent inflow data v = v” on I},.
The full set of parameters for both problems is given by

yH—y)_

cfd __ fsi __ 3 cfd/fsi __ —3 D _
IOf =1, IOf =107, Uf =107, v (O,y) = 1.560(I)WV,

where w(f) = (1 — cos(mt/2))/2 fort < 2 and w(t) = 1 for ¢t > 2 is used for
regularizing the initial data. As average velocity, v = 2 for the fsi3-benchmark and
v = 1 for the cfd benchmark was considered. With the radius of the circular obstacle
D = 0.1, the Reynolds number is given by

vD vD
Recfd = — = 100, R@fsi = — = 200.
v v

The description of the problem is closed by providing the material parameters of the
elastic solid

oS =10, pu,=2-10% A, =8-10°

As quantity of interest, we consider principal boundary stresses in x- and y-direction
on the obstacle with boundary IGps:

2
Jarag(v,p) = /F ome,do, Jin(v,p) = {72pr /F one, do.
obs g obs

By Iops we denote the boundary of the circle with diameter in the case of
the cfd-benchmark and the circle with attached beam in the case of the fsi-
benchmark problem. Efficient ways for evaluating these functionals are shown
in ([5]) and ([43]).

Figure 2 shows the drag-coefficient as function over time I = [0, 5] for the two
benchmark problems. To avoid confusion, we note, that Hron and Turek [30] also
published a new fluid dynamics benchmark, the cfd3-benchmark problem, where
the beam was considered as rigid part of the obstacle and the flow was driven
with Reynolds number Re = 200. Here however, we compare the fsi3-benchmark

{,2pr
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problem with the published results of the original cfd-benchmark taken from [46].
Both configurations show a similar behavior with a transient initial phase leading to
a periodic oscillation with dominant frequencies f.qq = 13 Hz for the cfd-benchmark
and fii &~ 11Hz for the fsi problem. The first obvious difference is the longer
transient phase for the fsi-benchmark problem. An insight look into the subinterval
I' = [2.5, 3] reveals high frequent oscillations fzn ~ 100 Hz in the drag-coefficient
with a small amplitude a ~ 10™* that is not visible on the large scale. These high
frequent oscillations are no numerical artefacts but remain stable under temporal
and spatial mesh refinement.

Reviewing the results published by many research groups in the two surveys on
the cfd benchmark problem [46] and the fsi3-benchmark [30, 31] a first surprising
observation is the choice of discretization parameters that have been necessary to
obtain approximations with appropriate accuracy: even though more than a decade
lies between both benchmark problems, the dimension of the spatial discretization
is very similar. In both cases, different research groups had to use 20.000 to 200.000
spatial degrees of freedom to generate output values with at least 1% accuracy.
The large margin stems from different discretization schemes (lowest order finite
element or finite volume schemes, higher order methods) but also from different
triangulations of the geometry. The increased difficulty of the fsi3-benchmark
problem has been accounted for by a general use of higher order finite elements.

However, observing the temporal discretization, it is found, that the fsi bench-
mark asks for significantly finer resolution in time. While less than 10 time-steps
per period of the oscillation were sufficient in the cfd case, accurate results to the fsi
benchmark problem required up to 100 time-steps per period of oscillation resulting
in time-steps as small as 1073, One explanation for this difference in temporal
discretization can be found in the high frequent oscillations that are present with
small amplitude, see Fig. 2.

Further insight is given by a discrete Fourier analysis of the output functional
Jarag () as function over time. At very fine temporal resolution (down to k = 1079),
some complete periods of the fully developed oscillation are analyzed in detail.
Figure 3 reveals several dominant frequencies, at about 100 Hz (see also Fig. 2, 500

Fig. 2 Comparison of the T T T T T T T T T
two benchmark problems,
original cfd [46] and

fsi3 [30]. We plot the drag
coefficient as function over
time. For the fsi-problem we |
show a detailed view of the
transient oscillations E
revealing high frequent
modes

time

0 05 1 15 2 25 3 35 4 45

o



On Time Discretizations of Fluid-Structure Interactions 383

frequency of oscillation

L L 1

40 60 80 100 120 140 160 180 200 220 240

-

200 300 400 500 600 700 800 900 1000

Fig. 3 Discrete Fourier analysis of the output functional (drag) shows the dominant frequency
Jisi &~ 11 Hz and further important sub-frequencies at about f = 100 and 500 Hz as well as 800 Hz.
These modes are stable under temporal and spatial mesh refinement

and 800 Hz. These modes are stable under mesh refinement and further decrease
of the time step. The results in Fig.3 are scaled. The modes belonging to higher
frequencies carry less energy. But even though the high frequent contributions take
place on a much smaller scale as the dominant oscillation fi; &~ 11 Hz, they must
be carefully resolved to capture the overall dynamics of the coupled benchmark
problem. The key question in this respect is the origin of these micro-oscillations.
They are not present in pure fluid-dynamical simulations. Further, they are no
numerical artifact, but stable under discretization of both spatial and temporal
discretization. Instead they stem from the coupling to the hyperbolic structure
equations.
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4 Time-Stepping Schemes for Fluid-Structure Interactions

There is little theoretical background to monolithic time-discretizations of fluid-
structure interactions. The main difficulty stems from the motion of the subdomains,
that must either be modeled explicitly in partitioned approaches or that must be
taken care of by implicit transformations of either the fluid-domain or the solid-
domain. Concentrating first on pure fluid problems on moving domains, some
crucial aspects with respect to stability and order of convergence are already
identified [15, 16]. The equations presented therein can be directly employed in
an implementation. In addition, [14] provided stability analysis of fluid-structure
interaction problems. Several studies with qualitative comparisons of different time-
stepping schemes and their long-time behavior has been reported in [56, 62]. In the
primer study and additionally [57, 61], we provide many details for the practical
realization and implementation of time-stepping schemes for ALE fluid-structure
interaction.

In the following, we focus the attention to the well-established ALE-approach
that results from transformation of the moving fluid-domain to a fixed reference
domain. The domain motion is hidden in the ALE-map Ty(x, f) and calls for the
discretization of non-standard space-time coupled terms like [see (1)]

(J()VVE ' (w)du, ¢) . 2)

Most approaches for the temporal discretization of this term are ad hoc and based
on the experience with other types of equations as Navier-Stokes of multiphase
fluids, see [29].

Remark 1 An alternative approach to the monolithic formulation of fluid-structure
interactions is given by an implicit transformation of the solid-domain to Eulerian
coordinates resulting in the Fully Eulerian approach [11, 45]. This method of
interface-capturing type must deal with subdomains that move freely through a fixed
background mesh from time-step to time-step. We come back to this procedure in
Sect. 5.

4.1 Derivation of Second Order Time-Stepping Schemes

The derivation of a second order stable time-stepping scheme is not obvious.
Specifically, regarding (2), two immediate reasonable choices for are given by the
secant version

JHvyvlFE L) J)VVvTF T () T u” — ut!
([ 2 * 2 } o ’¢)’
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and the midpoint-tangent version

u" — um—l um—l + u™ Vm—l + y™
JVVF @) —m.¢), 0= —, V= ——————,
([ (@) VVF ()] 0 ¢) i 5 v 5
of the trapezoidal rule. This idea is explored in [56, 62]. A third version of a
time-stepping scheme can be derived by using a temporal cG(1)/dG(0)-Galerkin
approach on (2) (see [44]):

([éj(u”’_l)va_lF_l(um_l) + %J(ﬁ)v‘_’F_l(ﬁ)

1 m __ ggm—l1
+61(u”’)Vv’”F_l(u’”)} %, ¢) )

where again by u and v we denote the average of old and new approximation. Such
a Galerkin-derivation is also possible for more advanced time-stepping schemes like
the fractional step theta method, see [37, 38].

Simple truncation error analysis shows second order convergence for k — 0 in
all three cases. The leading error constants slightly differ:

C 1 C > C
l"\‘87 2"\’87 3~

W

In numerical experiments, it is found, that all these variants show a very similar
performance. Significant differences in temporal accuracy could not be found.

Finally, we point out, that the Crank-Nicolson scheme applied to the elas-
tic structure equation in mixed formulation is closely related to the Newmark
scheme [3], which is one of the most prominent time-discretization techniques in
solid mechanics.

4.2 Temporal Stability

Issues of numerical stability are of utter importance for fluid-structure inter-
action problems, as they consist of the coupled consideration of two differ-
ent types of equations: the incompressible Navier-Stokes equations which is of
parabolic type and that comes with smoothing properties and the hyperelastic
solid equation of hyperbolic type, that calls for good conservation properties
with very little numerical dissipation. By these considerations, the Crank-Nicolson
scheme and its variants like shifted versions [34, 40] or the fractional step theta
scheme [7, 54], appear to be ideal candidates that further show second order
accuracy.
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Fig. 4 Simulation for k = 0.005. Top: undamped Crank-Nicolson scheme develops an instability
after 7 = 8.5. Bottom: implicitly shifted scheme produces a stable solution on I = [0, 10]

Motivated by [16, 26, 34], it is reported in [14, 62], that the discretization
of the domain-motion term (2) introduces further stability issues. To investigate
this stability problem, we again consult the fsi3-benchmark problem introduced
in the previous sections. Figure 4 shows the drag as functional over time for an
unstable pair of spatial and temporal discretization parameters. Further, we also
show the stable simulation using a damped version of the time-stepping scheme,
see Sect. 4.3.

In a first test, we aim at obtaining a stable solution up to 7 = 10. On a
sequence of uniform meshes, we identify the largest timestep k that is suited to
generate a stable solution. The left part of Table 1 shows the results. Here, we
see, that on the coarsest mesh, the large step size k = 0.02 is sufficient, while
on finer meshes k < 0.004 is required. We however cannot identify a further
relationship between mesh size and time step if we go to an even finer spatial mesh
resolution.
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Table 1 Long-term stability of the Crank-Nicolson scheme

Time step size
Mesh-level 0.025 0.02 0.004 0.003 Mesh-level k = 0.005 0.003

1 x W J W 1 > 10 > 10

2 x x x J 2 8.48 10.82

3 x x x J 3 6.04 12.54
4 3.84 3.84

Left: combination of time-step k and mesh size A, such that the solution is stable in the interval / =
[0, 10]. We cannot find a strict time-step relation k ~ h%. Right: maximum interval [ = [0, Tyax],
where a solution could be found for k = 0.005 and k = 0.003, depending on the mesh-size. Here,
we also cannot identify an obvious relationship

In a second test-case, we consider the (relatively large) step size k = 0.005 and
k = 0.003 and determine the point in time T, Where the solution gets unstable.
Again, we carry out this test-case on different meshes. At first glance, the results in
the right part of Table 1 for £ = 0.005 suggest a stability relationship between time
step and mesh size. The results concerning the second configuration with k = 0.003
however does not confirm this conjecture. Here, we can even reach a larger final
point in time Tp,x on finer meshes. Further, the simulations on the finest mesh do
not cease due to stability problems but due to early failure of the Newton scheme.
Altogether, it is not possible to numerically certify a strict time-step restriction.
Instead, we find general stability problems for long-term simulation, if we consider
the Crank-Nicolson scheme.

4.3 Stable Time-Discretization and Damping

By analyzing the fsi3-benchmark problem, it seems, that time-step restrictions
due to stability issues are too restrictive and not justified by the needs of ap-
proximation accuracy, see Sects.4.2 and 4.1. It is therefore nearby to search
for accurate time-discretization schemes with better stability properties. Differ-
ent possibilities are either to resort to A stable time-discretization schemes, or
to apply modifications to the Crank-Nicolson schemes. Here, two possibilities
are often discussed in literature: by slight implicit shifting of the discretiza-
tion

" —u"t p) + (% + O(k)) a”,p) + (% - O(k)) a@"',¢) =0,

global stability is recovered, see [25, 26, 34]. This is just sufficient for the
damping of accumulated errors by truncation, quadrature or inexact solution
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of the algebraic systems. If the shift depends on the time-step size, the re-
sulting scheme is still second order accurate in time. Similar results are re-
covered by applying some initial time-steps with the A-stable backward Euler
method, see [40]. If these few (usually two are sufficient) backward Euler steps
are introduced after every fixed time-interval, e.g. at every t = j for j =
0,1,..., we also recover sufficient stability for long term calculations. This
scheme, also referred to as Rannacher time-marching, is second order accu-
rate.

Higher stability, that is also able to cover non-smooth initial data is reached
by applying strongly A-stable time-integration techniques. Here, the fractional-
step theta method appears to be an optimal choice [7]. This time-stepping scheme
consists of three sub-steps, that results in a second order, strongly A-stable scheme
that further has very good dissipation properties. It is highly preferable for flow
problems [54] and also frequently used in the analysis of fluid-structure interactions
problems [29, 55, 56].

An analysis of different damping strategies applied to the fsi-2 benchmark
problem (a slightly more difficult test-case) is given in [62], which we briefly
summarize in the following: There are only minor differences in the drag evalu-
ation computed with the unstabilized Crank-Nicolson scheme using the different
ALE convection term discretizations. Specifically, unstable behavior (blow-up) for
computations over long-term intervals is observed. As expected, the shifted Crank-
Nicolson scheme and the Fractional-Step-6 scheme do not show any stability
problems in long-term computations, even for large time steps k = 0.01. This
result indicates that the instabilities induced by the ALE convection term have
minor consequences, and our observation is in agreement with the statement in
[16].

In the following, we compare the three possibilities of a non-damped Crank-
Nicolson scheme, with an implicitly shifted version using % + k and the Rannacher
time-marching algorithm with two steps of the backward Euler method at times
t=0,t= 1,7 =2 and so on. In Fig. 5 we compare these three damping strategies.
We show the drag-coefficient (see Figs. 2 or 4 for a global view) in the sub-intervals
te€[3.5,4.2],t € [7.95,8.15] and ¢ € [9.3, 9.6]. While all three versions are stable at
initial time, Rannacher time-marching develops a first instability after two steps
of backward Euler at time ¢+ = 4, see the left sketch in Fig.5. This instability
will stay during the simulation, but it will not be further developed, as can be
seen in the middle and right sketch of the figure. The undamped version of the
Crank-Nicolson scheme delivers stable solutions up to a moderate time of about
t = 5 but develops a strong instability that fill finally lead to a break-down of
the scheme, as can be seen in the middle and right sketch. Finally, the implicitly
shifted version of the Crank-Nicolson scheme gives stable and good result globally
in time.
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t € [3.5,4.2]

Not damped —e—
t € [7.95,8.15] Shifted

Rannacher-Timestepping

Fig. 5 Comparison of different damping strategies: undamped Crank-Nicolson, shifted version
% + k and Rannacher time-marching with two backward Euler steps at every time-unit

5 Alternative Formulation in Fully Eulerian Coordinates

As previously mentioned, an interesting alternative to ALE formulations is the
fully Eulerian framework [11, 45]. Specific extensions are reported in [43, 58]
and combinations with ALE in [59, 60]. Apart from monolithic formulations,
other recent studies (but not tested with the fsi-benchmarks) on fully Eulerian
formulations are known [9, 22, 50, 51, 64]. As discussed in the previous sections,
the ALE formulation of the fluid problems introduced several difficulties for the
analysis as well as the implementation. In fact, all kinds of transformation in the
fluid equations are avoided in a fully Eulerian description of the equations.
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Here, the idea is to have fluid- and solid-problem on the moving domains .% (¢)
and .7 (¢). While fluid-system is simply let in Eulerian coordinates, we now need to
transform the solid problem to match the Eulerian coordinate system. An illustration
is given in Fig. 6.

By the simple observation, that the deformation @(%, 1) = x(X,) — X just maps
between Lagrangian points x € . and their Eulerian coordinates x = x(,7) €
7 (1), we can defined Eulerian counterparts for deformation uy(x, f) = @,(x, r) and
velocity vy (x, f) = Vs(x, 7). Then, following [11, 45], the Eulerian system is similar
to a multiphase flow

pr(0vy +vp-Vvg) —divoy = pf in F(1),
divvy =0 in  Z(1),

Jops(@,vs + v - Vvg) —div e, = Jypf in (1), 3)
0u; + vy - Vug = v in (1),

Vi=V,, n-6y=n-0, on J(1).

For the exact form of modeling structural stresses o in Eulerian coordinates, we
refer to the literature [45]. The big advantage of this Eulerian framework is the
avoidance of any kind of unphysical (hence arbitrary) mapping of the systems.
The transformation between Lagrangian and Eulerian coordinates of the structure
system motivated by physical principles and will not be cause for break-down of
the scheme, see e.g. [43]. The obvious drawback of an Eulerian model is the front-
capturing type of this formulation, where the interface .# (r) will move freely in the
domain and through the mesh elements. The ALE technique has a front-tracking
character that allows to resolve the interface at all times with a finite element mesh.

To capture the interface, we need to constantly keep record of its location. One
classical approach is the Level Set techniques [39, 47], where a scalar function v is
introduces, that indicates the signed distance to the interface and that is transported
with the velocity of the interface. Here, we instead use the Initial Point Set [11, 43,
58], a vector field, that transports the complete reference coordinate system. In the
context of fluid-structure interactions, this Initial Point Set is exactly the structure’s
deformation and its extension to the fluid-domain. Another benefit of the Initial
Point Set technique is its ability to depict sharp edges.

As a front-capturing technique, the fully Eulerian formulation is an interface
problem, where some mesh elements are cut by the interface and where different
equations live on the two sides of the interface. Solutions to such interface problems
are usually not regular and standard finite element schemes only give sub-optimal
convergence 0(\/%) independent of the approximation degree, see the early works
of Babuska [1] or MacKinnon and Carey [35]. Modern techniques to enhance
the interface accuracy are to locally fit the mesh in order to recover the optimal
approximation order [4, 6, 18, 63] or to enhance the finite element space with special
basis functions that can resolve irregularities [2, 20, 21, 36].
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Fig. 6 Comparison of cell occupation and computational domains for two time steps between
the ALE (fop and middle) and Eulerian (bottom) method. In ALE, all computations are done
in the same fixed reference domain £2 (fop). In particular, a specific cell remains all times the
same material (here, an elastic structure in red), i.e., £2; and §2; are time-independent. The mesh
movement is hidden in the transformation F and J. The physical ALE domain £2(¢) including the
mesh movement is displayed in the middle. In contrast, the computation with the Eulerian approach
is performed on a fixed (time-independent) mesh 2g (bottom). However, the two sub-domains for
the structure and the fluid £, ¢ and §2; ¢ change in each time step because the material id of a
cell might change since the elastic structure (red) moves freely through the mesh. Figures partially
taken from [59]

All these techniques are suited to accomplish the problems of limited spatial
accuracy. It then remains to derive efficient time-stepping schemes. This problem
is still not sufficiently solved. To illustrate this problem, we step back from the
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coupled fluid-structure interaction problem and instead discuss a simple parabolic
equation

A (u, @) in.7 (1)

du. ) + A (. ¢) =0, o (u,p)= ,
(O, ¢) + o (u, ¢) = 0 (. $) S d) inF)

where /] and % represent two different differential operators and where
the interface between the two subdomains moves from one time-step to the
other. Direct time-stepping approaches result in iterative schemes of the type

" —u" 1 p) + Okt (", p) + (1 — Okt (", ¢) = 0. 4)

It is now possible, that for a given point x € £2 it holds x € £2(t,—;) but
x € §25(ty), i.e., that one points belongs to the fluid domain at the old time-step
and the solid-domain at the new time. For such a configuration, the expression
u"(x) — u”'(x) lacks any physical relevance, as there is not immediate relation
between the two different phases. This problem also appears in the discretization of
multiphase flows, here however it is justifiable to replace the sharp interface by a
smoothed one using harmonic averages of the different parameters, see [48, 53].
Smoothing of two entirely different phases like fluid and solid is however no
option.

If problem (4) is to be discretized with fitted finite elements, where the mesh
locally resolves the interface, or by the extended finite element technique, different
time-steps require difference finite element spaces V,g”_l and V}". Then, evaluation
of terms like

JZ{(um_l , ¢m)’

with ! € V,’l”_l and ¢™ € V" requires the projection of basis functions from one
mesh to the other and numerical quadrature that carefully resolves all possible areas
of non-smoothness.

The difficulties of deriving adequate time-discretizations for the Fully Eulerian
scheme are even more articulate, if we simply discuss the discretization of the
elastic structure equation in Eulerian coordinates. This relates to solving a partial
differential equation on a moving domain. For simplicity, we simply consider the
parabolic problem:

O, P)ew + (Vu, Vo) ou = 0.

Here, ad hoc time-discretization with the backward Euler method using changing
finite element spaces would results in

W" =" " 2 + k(Vu", V™) 2(,) = 0.
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The expression u™ — u”~' is not valid, as the two functions live on different

domains. Averaging techniques that may work for multiphase flow problem will
not be applicable here.

Efficient and accurate time-discretization schemes for the Eulerian approach will
have to consider the motion of the domain. In the following, we will outline two
basic ideas. For details, we refer to [17]. The first idea is closely related to the ALE
approach flow problems on moving domains and based on old ideas on the method
of characteristics [10]. We start by formulating the problem on the time-dependent
domain

(a,«u, ¢)Q(t) + (Vu, V¢)Q(,«) =0, te€ (l‘m_l, tm). 5)

Then, by T,,(?) : £2(t,,) — §2(¢) we denote the transformation between the domains
at time f,,, and back at time ¢ € (¢,,—1, ). In the context of fluid-structure interaction
or solid problems in Eulerian coordinates, such a mapping is implicitly given by
the deformation. By this transformation, we can map Eq. (5) onto the fixed domain
£2(t,,) similar to the ALE approach:

(det(VT,)(u — 0,T,n - Vi), @) 2wy T (det(VT,) VT, 'VuVT, " V) 26y =0

(6)
Nonlinearities are introduced, we however shift the motion of the domain into this
implicit mapping such that standard time-stepping schemes can be applied.
An alternative approach is given by formulating (5) as a space-time Galerkin
approach, based on

| @602 + (Tu). V40100 dr = 0.

Then, following the concepts introduced by Eriksson, Estep, Hansbo, and John-
son [13] and Thomée [52], discrete space-time functions are used to approximate
this equation. We know for instance, that by combining piece-wise linear (in time)
trial functions with piece-wise constant test-functions, we result in a variant of
the Crank-Nicolson scheme. To apply this technique to problems with moving
interface, we must consider space-time meshes that fit to the interface, see Fig. 7.

A1)
\ tm
t k
Kin

: A\

Fig. 7 Triangulation in space and time. The triangulation fits the interface .# (¢) in space and time.
By Kj;, we denote one space-time element

Ip—1
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A space-time Galerkin approach must now resolve the interface location. To derive
a Crank-Nicolson like scheme, the piece-wise linear trial functions must be linear
along the interface and not necessarily linear in straight ¢-direction. This causes
an implicit coupling of space- and time-variables. On the element Ky, the space-
time Galerkin approach is simply the space of bilinear elements in space and time
span{1, x, ¢, xt}. This coupling of spacial and temporal variables again leads to an
implicit mapping of the space-time slice onto a fixed domain with straight edges
which is equivalent to the mapping-approach described in (6). In [17] this technique
is analyzed for parabolic problems with moving interfaces. By a proper projection
of the old solution to the new finite element space and by applying suitable mapping
between the domains at different time-steps, second order schemes in space and time
can be derived. First results show however, that the error is not clearly separated into
a spatial and a temporal part, but that for elements cut by the interface, simultaneous
refinement in space and time is required.

6 Multiple Shooting as Time-Parallel Time-Integration
for Fluid-Structure Interaction: Concepts and an Outlook

A further possibility to enhance the stability of time-discretization schemes is to
realize them in a time-domain decomposition fashion [19, 33]. Stability issues in the
context of fluid-structure interactions mostly appear due to long-time accumulated
error contributions. The small time-steps that are necessary to efficiently resolve
all these modes are not required for obtaining an adequate accuracy. Here, it might
be an option to employ the multiple shooting method for time-discretization. By
keeping the sub-intervals small, stability will be under control.

In the following, we briefly explain conceptional issues related to fluid-structure
interaction. Once we have set up the basis of a consistent semi-linear form, the
solution of the multiple shooting problem follows standard techniques. Specifically,
a consistent semi-linear form is provided by a monolithic formulation of the ALE
system (1) or the fully Eulerian system (3), respectively.

Find U = {vy, v, up,uy, pr} € X := 7 x ¥ x £ such that

/A(U)(q)) =0 VdeX
1
with @ = {¢. &. Yy, ¥} € ¥ x £ x ¥ x ¥ and

AU (@) = (pfj(a,v + Vv (0 — du)), ¢)gz n (J&fF—T, v¢>)gz

+(pdv.g) +(FE.V8) —(G.9)a (D

+(det(JF—1v), gf)g + (wmesh, wf)y + (d,u —v, Ips)y.
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In fully Eulerian coordinates we have: Find U = {vy, v,,u,,ps} € X 1= ¥ X ¥ x 2L
such that

/A(U)(cp) =0 VdeX
1
with @ = {¢. &. Yy, ¥} € ¥ x £ x ¥ x ¥ and

AU)(®) = (pr vy + vr - V). $) + (div 07, V) — (prfy. ¢)
+(div vy, §)
+(sps(0rVs + Vs - VVy), Yy) + (div o, Vir) — (Jspifs, Yy)
+ (0 + vy - Vug — vy, ¥y)
= (pr (0,7, @) + (Jsps(:Vs, Yy) + (9rug, V) (®)
(orvy - Vvp. @) + (div o7, Vo) — (prfy. ¢)
+(div vy, §)
+(spsvs - Vs, Yp) 4 (div a5, Vr) — (Jopefs. ¥r)
+(vy - Vug — v, ¥r5).

In order to obtain a standard setting for multiple shooting for PDEs [24], we re-
arranged and separated the time derivatives from the spatial operators in the previous
equation.

In the following, we describe the algorithm for the fully Eulerian case. The
formal description (apart from the specific difficulties as described in the previous
sections) of the ALE system is analogous. Let I = (0, T') be a decomposition of the
time interval into m (not necessarily of the same length) multiple shooting intervals
I; .= (lj, lj+1) with

O=tm<th<...<ty1 <tp,=T.

The multiple shooting formulation asks now for the solution of the matching
conditions at the multiple shooting nodes #,j = 0,...,m in which we introduce
the multiple shooting variables ¢/, r/, s/ (in some Hilbert space) for vy, vy, uy. The
variables ¢/, r/,s/ serve as initial value for vj{, v/, u/ in t;. Then, the multiple
shooting system for the m (separate) interval-wise boundary value problems of fluid-
structure interaction read:

[(@ﬁw}¢)+(km&ﬂﬁh)+(&#ﬂm)+AﬂVM®%+

(V}@6) = 4. (@) + (V5) = 1)) + (W) — 5T s (1))
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where the semi-linear form of all ‘stationary’ terms is given by

AU)(®@) = (porvy - V7, §) + (div 07, V) = (pefy )
+(div v, §)

+(spsVs - Vs, ) + (div a5, Vir) — (Jopdfs. ¥r)
+(vy - Vug — vy, ¥ry).

Now, the multiple shooting system is solved by finding ¢°,....q", 1, ... ",

s, ..., s™ such that the matching conditions hold true:

(" —v}.¥) =0 V admissible ¢,

("' =v/(ti1).¥) =0V admissible ¢, j=0.....m—1,
(" =%, yy) =0V admissible v,

(T —vI(tit1),¥r) =0V admissible yy, j=0,...,m—1,
(s"=u’ ¥) =0 V admissible v,

(st —w/(tj41), ¥5) =0V admissible y;, j=0,...,m—1,

These matching conditions form a nonlinear system
FX)=0 withX = (" ....q". /% . .../ s° ....s™),

which can be solved with Newton’s method. Details for the general solution
algorithm are found in [19]. The implementation and analysis for our fluid-structure
interaction systems is planned as next task in our future work. We are specifically
interested in the parallel solution capabilities (the link to the parallel algorithm
[19, 33]) of this approach because we have to solve for, let us say, ten shooting
time intervals for the fsi2-benchmark and m = 100 in the case of fsi3-benchmark.
This leads to a huge Newton system to solve.

7 Conclusion

We have analyzed implicit time-discretizations of fully coupled monolithic fluid-
structure interactions. The difficulties connected to this special application field is
two-fold: first, the implicit handling of the mesh motion, captured by the ALE-
map, leads to non-standard coupling of temporal and spatial derivatives. For such
nonlinear couplings, time discretizations schemes have not been investigated so far.
Further, the motion of the mesh, and the coupling of the incompressible Navier-
Stokes equations with hyperelastic materials gives rise to stability problems that
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play an important role for long-time simulations. By analyzing the fsi benchmark
problems published by Hron & Turek, these difficulties have been investigated
in detail. For running stable long-time simulations, one must either resort to
strongly A-stable time-discretization schemes like the fractional step theta method
or one must modify standard schemes to improve the stability. A further promising
approach to run long-time fluid-structure interaction simulations is the use of
the multiple shooting method as a time domain decomposition scheme. Such an
approach would allow to use efficient standard schemes like the Crank-Nicolson
method by keeping the sub-intervals short.
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