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Abstract In this contribution we present an optimal control approach for physics-
based optical flow estimation and image interpolation. The aim of the developed
process is to identify appropriate boundary data of an underlying physical model
describing the transport field, which reason the movement of an initial brightness
distribution. Thereby, the flow field as solution of the time-dependent non-linear
Navier-Stokes equations is coupled to a transport dominant convection-diffusion
equation describing the brightness intensity. Thus, we have to deal with a weakly
coupled PDE system as state equation of a PDE constrained optimisation problem.
The data is given in form of consecutive images, with a sparse temporal resolution,
representing the brightness distribution at different time points. We will present
the mathematical theory of the resulting optimisation problem, which is based on
a Robin-type boundary control. We describe the numerical solution process and
present by means of synthetical test cases the functionality of the method. Finally we
discuss the application of multiple shooting techniques for the considered problem,
since we observed that the employed Newton-type method is very sensitive with
respect to the chosen initial value.

1 Introduction

In many fields of research scientists are interested in fluid motion, e.g. weather
forecast, circulation around obstacles, microfluidic flows. However, to evaluate
accurate flow fields is often a hard task, regardless if we use measurement techniques
to document an observed flow or numerical modelling to simulate a similar flow
situation. A common methodology to document a fluid motion is to observe
the movement of a passive tracer in a given fluid flow by consecutive images.
These images represent a spatial and temporal discretisation of the evolution of
a brightness distribution given by a camera apparatus, which detects light signals
transmitting through the transparent fluid and the light absorbing passive tracer.
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The transport of a brightness value in the image domain is caused by a velocity
field, which is called the optical flow. In some situations the optical flow is closely
connected to the underlying physical flow. Heitz et al. [20] for example mention that
there exists a straightforward connection between the optical flow and the fluid flow
of a laser sheet visualisation of a two dimensional incompressible flow, when the
laser sheet is perfectly aligned with the flow. Thus the optical flow w is proportional
to the velocity u and satisfies a convection-diffusion equation. This connection
between optical flow and fluid flow can also be assumed for the observation of three
dimensional flows by two dimensional images, as long as the flow in z direction is
negligible. However, the optical flow field w serves then only as an approximation
of the planar flow field.

Hence, it is a good opportunity to work with optical flow estimation techniques
to obtain approximations of fluid flow fields. Approaches toward this direction
are already presented in the literature, as for example in the mentioned article of
Heitz et al. [20]. Another approach basing on the reformulation of the optical flow
functional by means of the underlying flow model was considered by Nakajima
et al. [29]. Another promising class of approaches was presented by Ruhnau and
coworkers [35–37], who regularised the classical Horn and Schunck cost functional
(cf. Horn et al. [22]) by applying physical models as PDE side condition in the
optimisation framework.

Especially, for environmental sciences this technique is attractive for the inves-
tigation of local wind systems in areas where a dense grid of measurement stations
is unavailable, but a tracer is transported in the atmosphere, which can be observed
by satellite remote sensing. For example Héas et al. [19] and Papadakis et al. [32]
considered the estimation of wind field information from satellite image sequences
observing cloud formations by image processing approaches. Another example for
environmental fluid flows is the movement of dust aerosols in northern Africa in
the Sahara desert. The measurements of the aerosol density in a certain area on
the earths surface at different time points, obtained by an instrument installed on a
geosynchronous satellite lead to a sequence of brightness distributions of a passive
tracer, the aerosols, which is transported by an optical flow field, which we assume to
be a approximation of the planar flow field in the ground-based atmospheric layers.
First attempts to use this image sequences to obtain these optical flow fields were
presented in the work of Bachl et al. [1, 2].

However, we aim to introduce a novel approach for physical-based fluid flow
estimation from observations of a passive tracer by combining the single features of
the above mentioned techniques in one approach, which place the emphasis on the
coupling of a high fidelity physical flow model, namely the incompressible, non-
linear and time-dependent Navier-Stokes equations, to the optical flow equation
by applying so called boundary controls. Then our focus is on the theoretical
justification and the numerical realisation of the method. Furthermore, we are
interested in the quality of the reconstructed underlying transport field by our
approach. Unfortunately, the mentioned example of a real world application has
too many complications (e.g. measurement errors, model uncertainties, occlusions,
varying illumination in the images) to tackle them all at the same time. Furthermore,
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appropriate reference data for a qualitative comparison of our results are not
available. Hence, we will consider a prototypical example with synthetic images
and some simplifications to present our approach, which employs beside the image
information also informations about the physical flow model and allows also
movement across the image domain boundaries, since images often represent only
an aperture of the real scenery.

Therefore, we assume that we observe a plane motion described by the time-
dependent (Navier-) Stokes equations, which transport a brightness distribution
I.x; t/ due to the following system of equations

@tI � "�I C u � rI D 0;

@tu � ��u C u � ru C rp D f; in ˝ � .0;T�;
r � u D 0;

(1)

with appropriate initial and boundary data. The image sequences are then obtained
by setting Ik D I.x; tk/ at discrete times tk.

Figures 1, 2 and 3 show three examples of such artificial image sequences. The
first two sequences are obtained with very simple flow fields but with flow across the
boundaries. In the third test case we observe a flow field which exhibits the time-
dependent character of the system (1). Our aim is then to identify the underlying
flow fields and the movement of the (bulb) signal. For this purpose we present an
optimisation problem with system (1) as PDE constraint. Thus, our methodology
can be interpreted as an optimal control problem with parabolic PDE constraints.
Such parabolic optimal control problems and their numerical treatment are widely

Fig. 1 Left: I1 at t D 0. Middle: I2 at t D 0:1. Right: I3 at t D 0:2. The transport field is given
by u D .2; 0/T

Fig. 2 .Ik/
6
kD1 at the time points tk D 0:04.k � 1/. The transport field is u D �.�y; x/T with

� D 5
2
�
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Fig. 3 .Ik/
6
kD1 at six different time points transported by a time-dependent solution of the Navier-

Stokes equations u.x; t/

discussed in the literature. We will mention a few example which are related to
the presented topics in this article. For example Kolmbauer et al. [26] present an
approach for time-periodic eddy current optimal control problems. Pearson et al.
[33] consider the numerical treatment of optimal control problems constrained by
convection-reaction problems while the article of Stoll et al. [38] considers the time-
dependent Stokes equation as side condition. Finally Gunzburger et al. [18] discuss
the use of space-time adaptive methods for optimal control problems with parabolic
evolution equations as side condition.

The article is organised in the following way. At first we describe variational op-
tical flow estimation techniques for the above mentioned synthetic image sequences.
Furthermore we describe their enhancement to optimal control problems. Then we
enhance the techniques to formulations which can even deal with flows across
the boundaries. Afterwards we discuss the mathematical theory for the presented
approach before we talk about the numerical techniques we need for a solution
of the presented approach. The sixth section is devoted to the presentation of
some numerical results for the mentioned artificial sequences. In the final section
we discuss the reformulation of our abstract problem as temporal boundary value
problem and the possible advantages of applying a multiple shooting method.

2 Physics-Based Optical Flow Equation

In the following˝ � R
2 denotes the image domain, which is in general a rectangle

˝ D .0; a/� .0; b/. The brightness function is given by

I W ˝ � Œ0;T� ! R
C; fx; tg 7! I.x; t/:

Our observations, the images, are spatial and temporal discretisations of I.x; t/:

I .i; j; k/ D I.xij; tk/
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on a certain space-time grid. However we assume throughout the article that the
spatial discretisation is fine, while the temporal discretisation is coarse, so that the
data is given by a temporally discrete sequence

.Ik/
N
kD1 D .I.x; tk//NkD1:

We consider throughout the article a two-dimensional incompressible flow with
the field u D .u; v/T . This flow field satisfies the two-dimensional non-stationary
Navier-Stokes equations

@tu � ��u C u � ru C rp D f in ˝ � .0;T�
r � u D 0 in ˝ � .0;T�

for appropriate initial values and boundary data. Since we do not consider a real
world application we conjecture w D u.

Remark 1 (Relation Between Optical Flow and Fluid Flow) As we already men-
tioned in the introduction their is a close relationship between the optical flow
in an image sequence and the fluid flow, which is documented by these images
observing the movement of a passive tracer. For a detailed description of this
relationship we refer the interested reader to Sect. 2.1 of Heitz et al. [20]. Especially,
for laser sheet visualisation of two-dimensional incompressible flows the connection
between optical and fluid flow is straightforward, as long as the laser sheet is aligned
with the flow field.

The brightness intensity function I.x; t/ fulfills then the physics-based optical flow
equation

@tI C u � rI D "�I in ˝ � .0;T�

with certain boundary conditions and an appropriate initial condition.
The coupled system of Eq. (1) describes then the evolution of an initial brightness

distribution I 0.x/. For further considerations we assume that no domain forces
cause the flow in the image domain, which means f D 0. Thus the boundary
conditions describe the flow scenario completely.

The aim of our work is to describe a method which recovers appropriate boundary
conditions for the flow field and the connected brightness function only by the
following available information:

(a) A temporal sparse image sequence: .Ik/
N
kD1,

(b) Model parameters: " and �,
(c) An estimate for the initial flow field: u0.
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3 Optimisation for Physics-Based Optical Flow

The recovering of appropriate boundary conditions is realised by a PDE constrained
optimisation problem. First ideas towards this direction, especially in the image
processing framework, are given in the work of Borzi et al. [8], Chen et al. [13] and
Klinger [25]. We start with the definition of the optimisation problem.

Definition 1 Find qI 2 QI , qu 2 Qu and .u; p; I/ 2 Vu � Vp � VI so that the
functional

J.fqI;qug; I/ D 1

2

NX

kD1
kI.tk/ � Ikk22 C ˛1

2

Z T

0

kqI.t/k2QI
dt C ˛2

2

Z T

0

kqu.t/k2Qu
dt

is minimised subject to an appropriate weak formulation of system (1), with f D 0,
I.0/ D I1 and u.0/ D u0 and so called control functions qu and qI for I and u on
the boundary.

The choices of Qu, QI and the type of boundary conditions are crucial for the well-
posedness of this optimisation problem as well as for the computational realisation
of the problem. We discuss a promising compromise in the next section.

3.1 Treatment of the Boundary Control Formulation

The first idea is to use Dirichlet controls

I D qI on @˝ � .0;T�
u D qu on @˝ � .0;T�; (2)

where we have to choose appropriate control spaces QI and Qu. For the existence
theory of solutions of the presented optimisation problem a main ingredient is the
existence theory of the state equation. In our case for the coupled system (1). This
system consists of a convection-diffusion equation, which is weakly coupled to
the incompressible Navier-Stokes equations. Both are parabolic PDEs. The natural
choice of functions to prescribe Dirichlet boundaries for parabolic PDEs is the space
H

1
2 .@˝/. This space is defined in the following way

H
1
2 .@˝/ D f' 2 L2.@˝/ W 9! 2 H1.˝/; ' D !j@˝g;

tributing to the fact, that L2-functions on the boundary exist which have no H1-
extensions to the interior of the domain.
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However, the implementation of an appropriate norm for this space in the cost
functional is complicated. One way of doing this was suggested by Of et al. [31], by
defining the semi-norm:

jqj2
H
1
2 .@˝/

D hS q; qi

with the Steklov-Poincare operator

S W H
1
2 .@˝/ ! H� 1

2 .@˝/; with q 7! @n!;

where ! is the solution of the elliptic PDE

��! D 0; in ˝; ! D q; on @˝:

Hence for each component controlled via a Dirichlet boundary condition we have
to solve an additional PDE problem, which increases the computational costs
drastically for fine spatial and temporal grids.

Other possibilities of implementing an H
1
2 -norm or an H

1
2 -semi-norm are based

on the calculation of complicated boundary integrals, which can hardly be treated
in the context of optimisation problems.

From the numerical point of view the most attractive choice of the control
space is the L2.@˝/. As mentioned before the theoretical justification for Dirichlet
controls is now cumbersome. However, there is a conceptual access to the problem,
which we want to briefly describe by means of the very simple PDE-constrained
optimisation problem

min
u2V;q2Q J.u; q/ D 1

2
ku � Ouk22 C ˛

2
kqk22

subject to the time-independent Poisson problem

��u D f in ˝; u D q on @˝:

The idea is now to work with the very weak formulation of the state equation as
constraint (see May et al. [27])

� .u; �'/C hq; @n'i D .f ; '/ 8' 2 H2.˝/\ H1
0.˝/;

and the spaces V D L2.˝/ and Q D L2.@˝/. The so formulated problem admits a
unique solution pair .u; q/. Belgacem et al. [7] showed that �-dependent solutions
.u�; q�/ of the optimisation problem

min
u� 2 H1.˝/;

q� 2 L2.@˝/

J.u�; q�/
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subject to

�ru�;r'
�C 1

�

˝
u� � q�; '

˛ D .f ; '/ ; 8' 2 H1.˝/

with � > 0, converge to a solution .u; q/ of the L2-Dirichlet control problem with
the very weak formulation of the Poisson problem as side condition as � tends to
zero.

Remark 2 It was shown by Hou et al. [23] that this concept of approximating
Dirichlet controls by using the penalised Neumann conditions for small choices of
� works also for optimisation problems with the time-independent Navier-Stokes
equations as PDE side condition and a certain choice of the cost functional.

However, for system (1) the presented theoretical background cannot easily be
carried over due to the fact that a very weak solution of the time-dependent Navier-
Stokes equations is only L4-regular in space (see Farwig et al. [16]), which is
neither sufficient for the presented cost functional nor for the existence theory of the
convection-diffusion equation describing the evolution of the brightness function.

We are not limited to use Dirichlet controls. For us the choice of the boundary
conditions is only a tool for the estimation of a reliable flow field which transports
the brightness distribution in an appropriate manner. Thus, we can work with the
above described Robin-type boundary conditions anyway. We state the optimisation
problem after introducing appropriate vector spaces.

Definition 2 (Solenoidal Vector Spaces) We define the following vector spaces

H1
div.˝/

2 WD f' 2 H1.˝/2 W r � ' D 0 in a weak senseg;

L2div.˝/
2 D H1

div.˝/
2

k�k2
:

Definition 3 (Robin-Type Control for Image Interpolation) Find

fu; Ig 2 L2
�
0;TI H1

div.˝/
2
� � L2

�
0;TI H1.˝/

�

and

fqu; qIg 2 L2
�
0;TI L2.@˝/2

� � L2
�
0;TI L2.@˝/

�

so that the functional

J.fqI;qug; I/

in Definition 1 is minimised, subject to the following weak formulation of the above
mentioned coupled system of equations.
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Definition 4 (Weak Formulation of the State Equation) For initial values
u0 2 L2div.˝/

2 and I1 2 L2.˝/ find a pair

fu; Ig 2 L2
�
0;TI H1

div.˝/
2
� � L2

�
0;TI H1.˝/

�

so that

Z T

0

�� .I; @t /C aI .uI I;  /C bI .uI qII I;  /
�
dt D .I1;  .0//

Z T

0

� � .u; @t'/C au .u/ .'/C bu .quI u/ .'/
�
dt D �

u0;'.0/
�

(3)

is fulfilled for all test functions

 2
n
 2 L2

�
0;TI H1.˝/

�
and @t 2 L2

�
0;TI �H1.˝/

�0� o
;

' 2
n
' 2 L2

�
0;TI H1

div.˝/
2
�

and @t' 2 L2
�
0;TI �H1

div.˝/
2
�0� o

:

(4)

The bi- and semi-linear forms are defined as follows

aI.uI I;  / WD " .rI;r /C .u � rI;  / ;

au .u/ .'/ WD � .ru;r'/C .u � ru;'/ ;

bI.uI qI I I;  / WD 1

�1
hI � qI;  i@˝ � 1

2
h.u � n/ I;  i@˝ ;

bu .quI u/ .'/ WD 1

�2
hu � qu;'i@˝ � 1

2
h.u � n/ u;'i@˝

(5)

Remark 3 (Temporal Regularity) The above formulation has on first glance not
enough regularity for a well-defined cost functional and meaningful initial condi-
tions in I and u. However, assume for a moment enough regularity to achieve the
equivalent weak formulation

.@tI; Q /C aI.uI I; Q /C bI.uI qI I ; Q / D 0 8 Q 2 H1.˝/

after partial integration and using a test function  .x; t/ D N .t/ Q .x/. It is
straightforward to show @tI 2 L2.0;TI H1.˝/0/ for the assumed regularity of I;u
and qI in Definition 3 outgoing from the last equation. Thus, due to the Gelfand
tripel

H1.˝/ � L2.˝/ � H1.˝/0
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we obtain I 2 C
�
Œ0;T�I L2.˝/

�
by a standard result (cf. Evans [15]). The same thing

can also be proven for the solenoidal spaces in the Navier-Stokes case (cf. Temam
[39]).

Remark 4 (Strong Formulation of the Boundary Conditions) Under the assumption
of sufficient regularity of the functions we can extract from the above stated weak
formulations the following corresponding Robin boundary conditions:

"@nI D 1

�1
.qI � I/C 1

2
.u � n/ I on @˝ � .0;T�;

�@nu � pn D 1

�2
.qu � u/C 1

2
.u � n/ u on @˝ � .0;T�:

In the next section we will prove the existence of minimisers of the optimisation
problem in Definition 3.

4 Mathematical Theory of the Optimisation Problem

A first step towards a proof of the existence of minimisers of the optimisation
problem in Definition 3 is to prove unique solvability of the weak formulation in
Definition 4. Therefore, we consider at first the following result:

Theorem 1 For �2 2 .0; 1�, u0 2 L2.˝/2 and a fixed boundary function

qu 2 L2
�
0;TI L2.@˝/2

�

the Navier-Stokes system in the second equation of (3) has a unique solution

u 2 L1 �
0;TI L2div.˝/

2
� \ L2

�
0;TI H1

div.˝/
2
�
:

Proof We can obtain the result by a few simple modifications of the standard
Galerkin technique as presented in Temam [39]. At first we obtain the a-priori bound

Z T

0

�
d

dt
ku.t/k22 C �kru.t/k22 C 1

�2
ku.t/k2L2.@˝/2

�
dt � c

�2

Z T

0

kqu.t/k2L2.˝/2 dt;

(6)
since

.u � ru;u/ D 1

2

Z

@˝

.u � n/u2ds; (7)

in contrast to the usual proof. With inequality (6) we obtain the usual (weak and
strong) convergence properties of a certain subsequence.
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The properties are then used to prove the convergence of the sequence of
approximative solutions um of the Navier-Stokes system. The only difference to
the standard proof is the convergence of the semi-linear boundary form

Z T

0

Z

@˝

..um � n/um � .u � n/u/'dsdt ! 0:

Therefore, we set wm D um � u and consider

ˇ̌
ˇ̌
Z T

0

Z

@˝

..wm � n/um C .u � n/wm/'dsdt

ˇ̌
ˇ̌ �

ˇ̌
ˇ̌
Z T

0

h.wm � n/ um;'i@˝ dt

ˇ̌
ˇ̌

C
ˇ̌
ˇ̌
Z T

0

Z

@˝

.u � n/wm'dsdt

ˇ̌
ˇ̌ :

(8)

As test functions ' we choose functions from a subset, which is sufficiently smooth
on the whole boundary and the time interval. The first term of the right hand side
in (8) is transformed in domain integrals by

Z T

0

h.wm � n/ um;'i@˝ dt D
Z T

0

.wm � rum;'/ dt C
Z T

0

.wm � r';um/ dt;

since um and wm are solenoidal. Due to the smoothness of the test function it is easy
to obtain that the terms on the right hand side vanish in the limit, since um converges
strongly in L2.0;TI L2.˝/2/. The second term of the right hand side in (8) can be
estimated

ˇ̌
ˇ̌
Z T

0

Z

@˝

.u � n/wm' dsdt

ˇ̌
ˇ̌ � sup

.x;t/2@˝�Œ0;T�
j'.x; t/j

Z T

0

j hu;wmi@˝ j dt

Weak convergence in L2.0;TI L2.@˝/2/ yields that this term is also vanishing. Thus,
the whole convergence of the Galerkin approximations in the weak formulation can
be obtained by standard continuity arguments.

For the uniqueness we assume the existence of two different solutions for the
same initial and boundary data. The difference is given by wm D u � v and we find
the identity

1

2

d

dt
kwmk22C�krwmk22C

1

�2
kwmk2L2.@˝/2 D �1

2
..wm � ru;wm/� .wm � rwm;u// ;

after standard manipulations and by using Eq. (7). The Ladyzhenskaya inequality in
two space dimensions

kwmkL4.˝/2 � ckwmk 1
2

2 krwmk 1
2

2
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is used in combination with Young’s inequality to find

d

dt
kwm.t/k22 � ˇ.t/kkwm.t/k22:

with

ˇ.t/ WD c.�;˝/
�
ku.t/k2H1.˝/2

C ku.t/k22ku.t/k2H1.˝/2

�

Gronwall’s inequality and wm.0; x/ D 0 yields the uniqueness, since

Z t

0

ˇ.s/ ds � c.�;˝/

 Z t

0

ku.s/k2H1.˝/2
ds C ess sup

s2Œ0;t�
ku.s/k22

Z t

0

ku.s/k2H1.˝/2
ds

!

stays bounded due to u 2 L1 �
0;TI L2div.˝/

2
� \ L2

�
0;TI H1

div.˝/
2
�
, which was

obtained by the a-priori bound in formula (6). ut
Theorem 2 For fixed parameters �1 and �2 in .0; 1� and boundary functions
qI 2 L2

�
0;TI L2.@˝/

�
and qu 2 L2

�
0;TI L2.@˝/2

�
there exists a unique solution

pair

fI�;u�g 2 L2.0;TI H1.˝// � L2.0;TI H1
div.˝/

2/:

Proof We consider the two aspects existence and uniqueness. We skip the index �i

with i D 1; 2 for abbreviation:

(Existence)

We use the standard Galerkin technique. Since the convection-diffusion equation
for the brightness I is not coupling back to the Navier-Stokes system we can argue
in the following way. By Theorem 1 we have the existence of a unique transport
field

u 2 L1 �
0;TI L2div.˝/

2
� \ L2

�
0;TI H1

div.˝/
2
�
:

Hence, we find in the standard way the a-priori bound

Z T

0

�
d

dt
kI.t/k22 C "krI.t/k22 C 1

�1
kI.t/k2L2.@˝/

�
dt � c

�1

Z T

0

kqI.t/k2L2.@˝/ dt;

(9)

since

.u � rI; I/ � 1

2
h.u � n/I; Ii@˝ D 0; (10)



A Variational Approach for Physically Based Image Interpolation Across Boundaries 327

for the transport field u. By the standard Galerkin technique and modifications
mentioned in the proof of Theorem 1 we find easily the existence of the solution
I 2 L2

�
0;TI H1.˝/

�
.

(Uniqueness)

The uniqueness of a solution pair fI;ug can be achieved by assuming as usual the
existence of two solution pairs fI1;u1g and fI2;u2g for the same data and building
the difference for the systems. We use the notation K D I1 � I2 and wm D u1 � u2.
Due to the independence of the Navier-Stokes part of the system from K and the
uniqueness of the Navier Stokes solution we have u1 D u2. Thus, the convection-
diffusion part is a linear equation, since we can use Eq. (10) for I D K. The rest of
the argumentation is standard and yields K D 0 by Gronwall’s lemma. ut
Now we are able to prove the existence of a minimiser of the optimisation problem
in Definition 3.

Theorem 3 (Solution of the Optimisation Problem) For � WD �1 D �2 2 .0; 1�
fixed we have the existence of at least one minimiser

I� 2 L2
�
0;TI H1.˝/

�

u� 2 L2
�
0;TI H1

div.˝/
2
�

qI;� 2 L2
�
0;TI L2.@˝/

�

qu;� 2 L2
�
0;TI L2.@˝/2

�

of the optimisation problem in Definition 3.

Proof Thanks to the previous theorem we have the existence of solutions of the state
equation and therefore the admissible set is not empty.

We skip the index � for abbreviation, collect the controls in the overall vector
q WD .qI;qu/ 2 L2.@˝/3 and choose then a minimising sequence fI.k/;u.k/;q.k/g in
this set with the property

lim
k!1 J.q.k/; I.k// D inf

fI;qg
J.q; I/ DW 	:

By using Young’s inequality we obtain a uniform bound for q:

kq.k/kL2.0;TIL2.@˝/3/ � 1

˛
J.q.k/; I.k//C 1

2
� B:

Thus, the controls qI and qu are bounded in L2
�
0;TI L2.@˝/

�
and L2

�
0;TI L2.@˝/2

�
.

Hence, by the energy estimates (6) and (9) we receive all necessary uniform bounds
for I.k/ and u.k/. Finally we find

I.k/ 2 L1.0;TI L2.˝//\ L2.0;TI H1.˝//\ L2.0;TI L2.@˝// (11)

u.k/ 2 L1.0;TI L2.˝/2/\ L2.0;TI H1
div.˝/

2/ \ L2.0;TI L2.@˝/2/ (12)



328 Matthias Klinger

We can then extract the subsequences

weakly in L2.0;TI H1.˝//;

I.k
0/ * I weakly-? in L1.0;TI L2.˝//; as k0 ! 1;

weakly in L2.0;TI L2.@˝//;

and

weakly in L2.0;TI H1
div.˝/

2/;

u.k
0/ * u weakly-? in L1.0;TI L2.˝/2/; as k0 ! 1;

weakly in L2.0;TI L2.@˝/2/;

By compactness results we obtain also the strong convergence properties

I.k
0/ ! I in L2.0;TI L2.˝//; u.k

0/ ! u in L2.0;TI L2.˝/2/;

of the subsequences. Thus, passing to the limit in the state equation is a standard
task.

It remains to show that the pair fI;u;qg is in fact a minimum of J.�; �/. We use
the obtained convergence properties to compute

	 D lim
k!1 J.I.k/;q.k// D lim

k!1

0

@1
2

NX

jD1
kI.k/.tj/ � Ijk22 C ˛

2

Z T

0

kq.k/.t/k2L2.@˝/3 dt

1

A

D 1

2

NX

jD1
kI.tj/� Ijk22 C lim inf

k!1
˛

2

Z T

0

kq.t/k2L2.@˝/3 dt:

Due to the continuity and convexity of the norm k � kL2.0;TIL2.@˝/3/ the norm is also
weakly lower semicontinuous. Thus, we find

	 � 1

2

NX

jD1
kI.tj/ � Ijk22 C ˛

2

Z T

0

kq.t/k2L2.@˝/3 dt D J.I;q/;

which proves the optimality of the pair fI;u;qg. ut
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5 Numerical Solution Process and Further Specifics

5.1 Optimisation Algorithm

We briefly present the optimisation algorithm. All following aspects are very well
summarised in the thesis of Meidner [28]. By Theorem 1 we know that the state
equation of our PDE constrained optimisation problem is uniquely solvable. Hence
we can introduce the solution operator and find fu; Ig D S.qu; qI/. By means of this
operator we can transform the original problem into an unconstrained problem

j. Qq/ D J.S. Qq/; Qq/; with Qq D fqu; qIg:

The first-order necessary condition is then given by

j0.q/.ıq/ D 0 8ıq 2 Q;

where Q denotes the vector space for the controls.
We use now a Newton-type algorithm to find a solution of the last equation.

Therefore we represent the first and second variationals derivative of j.�/ by auxiliary
variables, which have to be evaluated by solving additional PDE problems. The key
for this representation is the identity

j.q/ D J.q;u/ D L .q;u; z/; (13)

where L .�/ denotes the Lagrangian.
The first derivative can be expressed by

j0.q/.ıq/ D L 0
q.q;u; z/.ıq/ 8ıq 2 Q:

Therefore we have to compute u and z by solving the primal and the adjoint
equations

L 0
z .q;u; z/.'/ D 0 8' 2 V (Primal Eq.);

L 0
u.q;u; z/.'/ D 0 8' 2 V (Adjoint Eq.):

The second derivative is given by

j00.q/.ıq;�q/DL 00
qq.q;u; z/.ıq;�q/CL 00

uq.q;u; z/.ıu;�q/CL 00
zq.q;u; z/.ız;�q/:
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Beside the primal and the adjoint solutions u and z we need now two further
variables ıu and ız, which can be obtained by solving the following equations

L 00
qz.q;u; z/.ıq;'/C L 00

uz.q;u; z/.ıu;'/ D 0 (Tangent Eq.)

L 00
qu.q;u; z/.ıq;'/C L 00

uu.q;u; z/.ıu;'/

C L 00
zu.q;u; z/.ız;'/ D 0 (Additional Adjoint Eq.)

Algorithm 1 summarise theses principles.

Algorithm 1 Newton-CG Algorithm
1: Choose an initial q0 2 Qh, �0 2 R [ fC1g and set k D 0.
2: Solve the State Eq. : L 0

z .q; u; z/.'/ D 0 8' 2 V
3: Evaluate the cost functional J.q; u/
4: Solve the Dual Eq.: L 0

u .q; u; z/.'/ D 0 8' 2 V
5: Evaluate the residual : f WD �j0.qk/.ıqk/

6: If kf k < TOL then STOP
7: Solve the system

j00.q.k//.ıq.k/i ; 
q.k/j / D �j0.q.k//.
q.k/j / (14)

with a CG-method. For each iteration of the CG method we perform

7.1: Solve the Tangent Eq.: L 00

qz.q; u; z/.ıq; '/C L 00

uz.q; u; z/.ıu; '/ D 0.
7.2: Solve the Additional Adjoint Eq.:

L 00

qu.q; u; z/.ıq; '/C L 00

uu.q; u; z/.ıu; '/

C L 00

zu .q; u; z/.ız; '/ D 0

7.3: STOP the CG-method if the residual of the linear system drops below a given tolerance.

8: Update the control

q.kC1/ D q.k/ C �kq.k/;

The relaxation parameter �k is used to globalise the Newton method.
9: Go back to Step 2.

Remark 5 (Application of the CG Method in the Algorithm) The CG-method allows
a matrix-free solution process, which means that we do not have to assemble the
Hessian matrix, which saves computational effort. The desired number of iterations
to solve the system (14) for a given tolerance depends on the condition of the
Hessian matrix. In the case of ill-posed problems the condition number increases,
when the regularisation parameter decreases. The convergence behaviour of the CG-
method is then very bad. Usually we stop the iteration after a certain amount of steps,
unless the threshold for the residuum was reached. Then we work with a so called
inexact Newton method.
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5.2 PDE Subproblems

The PDE subproblems mentioned in Algorithm 1 are solved by a Rothe method,
which means that the problems are first discretised in the time variable and then in
the space variable. We will start with the time discretisation.

5.2.1 Time Discretisation

In the used Software library RoDoBo [6] we have the possibility to use either
a discontinuous Galerkin dG.r/ method or a continuous Galerkin cG.r/ method
for the time discretisation. The use of Galerkin discretisation was preferred by the
authors of the library, since it is necessary to preserve the property that ‘discretise-
then-optimise’ and ‘optimise-then-discretise’ commute.

The cG.r/ method consists of continuous trial functions of degree r and
discontinuous test functions of degree r � 1, while the dG.r/ method is based on
the use of discontinuous trial and test functions of degree r. Using a dG.0/ method,
where all occurring integrals are evaluated with the box rule, leads directly to the
standard backward Euler scheme. The cG.1/ method, where all occurring temporal
integrals are approximated with the trapezoidal rule, generates the Crank-Nicolson
scheme. For the following calculations we use these two methods only.

For the spatial discretisation of the resulting quasi-stationary equations we use
the well-known finite element method.

5.2.2 Spatial Discretisation

To describe the conceptual features of our finite element approach, we consider the
following abstract weak formulation for the quasi-stationary equation:

For a given q, find a suitable u 2 V such that

a.u; '/C b.qI u; '/ D l.'/ 8' 2 V (15)

with the bilinear forms a.u; '/; b.qI u; '/ and the linear form l.'/.
By choosing a conforming ansatz space Vh we derive the following Galerkin

equations:

a.uh; 'h/C b.qI uh; 'h/ D l.'h/ 8'h 2 Vh: (16)

Due to an appropriate choice of the space Vh and the linearity of the forms we end
up with the following system of equations

Ahxh D bh; with uh D
NX

iD1
xh;ie

.i/;
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which is then solved by a multigrid method.
For all our calculations we used the ansatz space Vh containing continuous

functions, which are piecewise bilinear polynomials on a decomposition of the
computational domain into regular quadrilaterals:

OVh WD fuh W N̋ ! R j uh 2 C. N̋ /; uhjT 2 Q1g (17)

For a detailed description of this methodology see the monographs of Braess [9] and
Brenner et al. [10].

Remark 6 (Nonlinear PDEs) In the case of nonlinear PDEs, e.g. the Navier-Stokes
system, we have to linearise the equation. In this case we use also a Newton method
and solve then in each step of the Newton method a PDE which fits in the above
presented setting.

5.3 Comments on Boundary Conditions

Since we consider boundary identification problems a special focus of this work
is on the treatment of boundary conditions. The suggested penalised Neumann
approach depends on the choice of the parameter �. Decreasing the parameter� the
condition of the discrete system is getting worse. A way out of this dilemma was
presented by Juntunen et al. [24] for the Poisson problem. This concept can easily
be carried over to convection-diffusion equations and the Navier-Stokes system.

5.3.1 Convection-Diffusion Equation

We consider the following convection-diffusion-reaction equation

���u C ˇ � ru C cu D f in ˝;

�@nu D 1

�
.qD � u/C 1

2
.ˇ � n/ u on @˝:

(18)

We use the bilinear forms

a.u; '/ WD � .ru;r'/C .ˇ � ru; '/C .cu; '/
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for the domain and

b.qDI u; '/ WD � �ı

�C ı
.h@nu; 'i@˝ C hu � qD; @n'i@˝/C 1

�C ı
hu � qD; 'i@˝

� ��ı

�C ı
h@nu; @n'i@˝ � �

2.�C ı/
h.ˇ � n/u; 'i@˝

C �ı

2.�C ı/
h.ˇ � n/u; @n'i@˝ ;

(19)

for the boundary to formulate the problem weakly

a.u; '/C b.qDI u; '/ D .f ; '/ 8' 2 V: (20)

Lemma 1 A solution of problem (18) also satisfies Eq. (20).

Proof We integrate the first equation in (18) over the domain after multiplying with
an arbitrary test function ' 2 V . Integration by parts yields

a.u; '/� � h@nu; 'i@˝ D .f ; '/ : (21)

We multiply now the boundary part of Eq. (18) with the same test function and
integrate over the boundary. Then we multiply both sides by �

�Cı and obtain

��

�C ı
h@nu; 'i@˝ D 1

�C ı
hqD � u; 'i@˝ C �

2.�C ı/
h.ˇ � n/u; 'i@˝ (22)

Doing the same again with the test function @n' and the factor � ı�

�Cı we get

� ��ı

�C ı
h@nu; @n'i@˝ D � ı

�C ı
hqD � u; @n'i@˝

� �ı

2.�C ı/
h.ˇ � n/u; @n'i@˝

(23)

Equation (20) is now the sum of Eqs. (21)–(23). ut
The bilinear form b.qDI u; '/ can even be evaluated for the case � D 0. We obtain
then a Nitsche type formulation (Nitsche [30]) for the convection-diffusion equation

bNi.qDI u; '/ D �� .h@nu; 'i@˝ C hu � qD; @n'i@˝/C 1

ı
hu � qD; 'i@˝ :

(24)
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Remark 7 (Linear Transport Equation) In the case of pure transport, � D 0, the
boundary form b.qDI u; '/ reads

b.qDI u; '/ D 1

�C ı

�
hu � qD; 'i@˝ � �

2
h.ˇ � n/ u; 'i@˝ C ı�

2
h.ˇ � n/ u; @n'i@˝

�

For an appropriate choice ı � ı0 > 0 we obtain by setting � D 0 a Nitsche-type
term for the realisation of Dirichlet boundary data for the pure transport equation

b.qDI u; '/ D 1

ı
hu � qD; 'i@˝ :

We are able to set Dirichlet conditions only on the inflow boundary �In, that means
all x 2 @˝ with ˇ � n < 0, in the following way

0 < ı WD � 1

.ˇ � n/
;

we obtain

b.qDI u; '/ WD � h.ˇ � n/.u � qD/; 'i�In
: (25)

This is consistent with a suggestion for Nitsche-type inflow presented in the work
of Freund et al. [17].

5.3.2 Navier-Stokes System

For V D H1
0.˝/

n the Navier-Stokes system

���u C u � ru C rp D f in ˝

r � u D 0 in ˝
(26)

can be weakly stated by

� .ru;r'/C .u � ru;'/� .p;r � '/ D .f;'/ 8' 2 V

.r � u;  / D 0 8 2 M
(27)

with M D L2.˝/. In the case V D H1.˝/n the additional boundary bilinear form

b.fu; pg;'/ WD �� h@nu;'i@˝ C hpn;'i@˝ ; (28)
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occurs in the above weak formulation. For the following strongly formulated Robin-
type boundary conditions

�@nu � pn D 1

�
.qD � u/C 1

2
.u � n/ u (29)

we obtain a well posed problem formulation with the boundary semi-linear form

b.qDI u/.'/ WD 1

�
h.u � qD/ ;'i@˝ � 1

2
h.u � n/ u;'i@˝ : (30)

Remark 8 (Nonlinear Term and Solvability Theory) Since

.u � ru;u/ D 1

2
h.u � n/u;ui@˝

we find similar uniform bounds for the Galerkin technique, which is used in the
solvability theory. This justifies the specific form of b.qDI fu; pg/.'/.
Analogously to the convection-diffusion-reaction equation we can formulate a
stabilised semi-linear form by

bı�.qDI fu; pg/.'/ WD � ı

�C ı
.h�@nu � pn;'i@˝ C hu � qD; �@n'C  ni@˝/

C 1

�C ı
hu � qD;'i@˝ � �

2.�C ı/
h.u � n/u;'i@˝

� �ı

ı C �
h�@nu � pn; �@n'C  ni@˝

C �ı

2.ıC �/
h.u � n/u; �'C  ni@˝

(31)

While b0�.�I �/.�/ corresponds to the penalty formulation the parameter choice� D 0

and ı D .h/ results in a Nitsche-type formulation for the Navier-Stokes system

b.h/0 .qDI fu; pg/.'/ WD � h@nu � pn;'i@˝ � hu � qD; @n'C  ni@˝
C 1

.h/
hu � qD;'i@˝ :

(32)

This form is almost the same as the one proposed in Becker [3].
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Lemma 2 A strong solution pair fu; pg of the Navier Stokes system (26) with the
boundary condition (29) satisfies also the equation

� .ru;r'/C .u � ru;'/C bı�.qDI fu; pg/.'/� .p;r � '/ D .f;'/ 8' 2 V;

.r � u;  / D 0 8 2 M:
(33)

Proof By multiplying the classical Navier-Stokes equations with arbitrary test
functions ' 2 V and  2 M, integrating over the domain ˝ and partial integration
we obtain Eq. (27) with an additional semi-linear form b.qDI fu; pg/.'/ like in
Eq. (30).

By multiplying the boundary condition (29) with ' and integration over the
boundary we obtain after multiplying with �

�Cı

�

�C ı
h�@nu � pn;'i@˝ C 1

�C ı
hu � qD;'i@˝

� �

2.�C ı/
h.u � n/u;'i@˝ D 0

(34)

Furthermore we multiply the boundary condition with the test function

�@n'C  n;

and integrate again over the boundary. Afterwards we multiply with the factor � �ı

�Cı
and obtain

� �ı

�C ı
h�@nu � pn; �@n'C  ni@˝ � ı

�C ı
hu � qD; �@n'C  ni@˝

C �ı

2.�C ı/
h.u � n/u; �@n'C  ni@˝ D 0

(35)

Adding the weak formulation and Eqs. (34) and (35) we obtain directly Eq. (33). ut

5.4 Comments on Stabilisation Techniques

The presented numerical scheme is unstable with respect to two different sources,
namely the convection dominance of the convection-diffusion equation or the
Navier-Stokes system for large Reynolds numbers and the lack of inf-sub stability,
due to the specific choice of the finite element spaces for the velocity and pressure
components in the Navier-Stokes system. We can overcome both issues by using
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the so called local projection stabilisation. We briefly comment on the technique
and cite further literature.

5.4.1 Convection Stabilisation

We use a method for the convection stabilisation, which was introduced by Becker
et al. [5]. For the model problem

.uh; 'h/C ..ˇ � r/ uh; 'h/ D .f ; '/ 8' 2 Vh;

we add hereby the stabilisation term

s.uh; 'h/ D sLPS.uh; 'h/ WD
X

T2Th

ıT .�h .ˇ � ruh/ ; �h .ˇ � r'//:

The operator �h D I � P2h consists of the difference of the identity operator and a
projection operator

P2h W Vh ! V2h

defining a mapping of the current trial function space Vh onto the coarser one V2h.
The so defined mapping measures fluctuation of the convection term. The parameter
ıT is chosen as follows

ıT D ı0
h

k	 jˇj :

This stabilisation scheme admits in principle the same properties in terms of stability
and accuracy as the SUPG scheme. An import advantage is that for this scheme
again the principles ‘optimise-then-discretise’ and ’discretise-then-optimise’ are
interchangeable.

5.4.2 Pressure Stabilisation

For computational simplicity we work with bilinear finite elements for both the
pressure and the velocity approximation. That means Vh D OV2

h for the discrete
velocity space and Mh D OVh for the discrete pressure space with OVh defined as
in Eq. (17). It is well known that the inf-sup condition

min
�h2Mh

�
max
'h2Vh

�.�h;r � 'h/

k'hkVhk�hkMh

�
� h �  > 0

for this particular choice is violated.
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We can also use the mentioned local projection stabilisation technique to stabilise
our approach related to inf-sup-instability as it is presented in the work of Becker
et al. [4].

We add therefore the bilinear form

sLPS.fuh; phg; f'h; �hg/ D
X

T2Th

˛T .r.�hph/;r.�h�h//T

to the left hand side of the divergence equation

.�h;r � uh/ D 0 8�h 2 Mh;

where �h denotes again the fluctuation operator defined as in the case of the
convection stabilisation. The parameter is chosen as suggested in the literature as

˛T D h2T
�
:

6 Numerical Results

We will use a few test cases to exemplify the functionality of the presented method.
Although the theory was already developed for the use of the fully nonlinear
Navier-Stokes equations, we avoid at first to work with high Reynolds-numbers
and suppress the time-dependent character of the flow equations in the first two test
cases. The reason for this is that our main objective is to prove that we can estimate
reliable boundary conditions for the flow field and the intensity function by only
sparsely given data. Afterwards, we will in a third test case apply the method to
identify a fluid flow, which is described by the fully non-linear and time-dependent
Navier-Stokes system, which emphasises especially the usage of the high-fidelity
physical model in the proposed identification method.

In the first two examples we use in principle the same setting. The computational
domain and the time horizon are given by

˝ D .0; 1/� .0; 1/; T D .0; 0:2�:

Furthermore we set

" D 10�10; and � D 1:

All numerical calculations are performed on a mesh with 289 spatial nodes and 40
time steps.
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6.1 First Test Data Set

The first test data set was already presented in the introduction in Fig. 1. It consists
of three intensity functions I1, I2 and I3 representing a brightness distribution
in form of a bulb signal. The first function shows the bulb signal at the initial time
t D 0, the second function shows the signal after a movement with the constant flow
field ˇ D .0; 2/T at the intermediate time point t D 0:1 and the third function shows
the transported signal at the end time point.

We performed then the approach from the Definitions 3 and 4 for the parameter
choice

�1 D �2 D h

with the cell diameter h.
The method is for small values of the regularisation parameter ˛ very unstable

unless we have a good initial value for the time dependent boundary functions qI and
qu. The reason for this is that we solve in general an inverse problem that requires a
certain regularisation (see Engl et al. [14]).

Thus we use a homotopy method in ˛, by solving the optimisation problem for
a large ˛k and then taking q.k/I and q.k/u as initial values for a further solution of
the optimisation problem with a reduced ˛kC1 D �˛k with � 2 .0; 0:5/. After
a few steps of this technique we obtain the reconstruction Ik;h presented in Fig. 4.
The regularisation parameter was around 10�2 and the final Newton residual was
approximately 10�5.

Fig. 4 From left to right: I.x/, u.x/, v.x/ and p.x/. Top: t D 3T
4

. Bottom: t D T
4

. Regularisation

parameter: � ˛ D 10�2 . kIk;h � OIk2
L2.0;TIL2.˝//

D 5:01 � 10�4
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Fig. 5 Top left: ˇ D .0; 2/T . Top right: uh at t D T
4

. Bottom left: uh at t D 3T
4

. Bottom right: uh at
t D T

The bottom row shows the brightness function I, the x- and y-component of the
transport field and the associated pressure function (from left to right) for the time
t D T

4
. The top row shows the same functions for the time t D 3T

4
. We see that the

signal is transported appropriately over the boundary and that within the area, where
the signal is different from zero also the estimation of the flow field seems to be a
good approximation of the expected field (see therefore also Fig. 5).

Furthermore, we compared the computed intensity function to the expected one
in terms of the L2-norm, which is a time continuous version of the data term:

kIk;h � OIk2
L2.0;TIL2.˝// D 5:01 � 10�4 .kOIk2

L2.0;TIL2.˝// D 2:48 � 10�1/:

However, this good looking result is only a coincidence, due to the simple
situation of our test case. Since we assumed the underlying transport field to
be constant the special choice of our regularisation term leads to an appropriate
recovering of the time-dependent function I.x; t/. In general there are infinitely
many solenoidal flow fields that generate the three given intensity functions I1, I2

and I3 (e.g. ˇc.x; t/ D sinc
�

t�
T

�
.0; 2/T), which we used as data in the optimisation
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problem. All of these flow fields lead to completely different intensity functions
(e.g. Iˇc.x; t/). Thus, it is impossible to reconstruct a specific flow field, without
introducing further a priori knowledge about the flow field in the optimisation
process. This consideration emphasises again the ill-posed character of the problem
and shows that we have to be careful in trusting the reconstruction of fluid flow
fields, without additional information about this fields.

Nevertheless, we can use the method as an interpolator between discrete intensity
functions as the next test case indicates.

6.2 Second Test Data Set

The second test case was also mentioned in the introduction and consists of the six
brightness functions presented in Fig. 2 at the time points t D 0:04.k � 1/ with
k D 1; : : : ; 6. The underlying transport field for the movement is

ˇ.x; t/ D 5�

2
.�y; x/T :

Obviously the signal is throughout the image sequence transported from the lower
boundary to the left boundary. Thus, we initialise our computational method this
time by the following assumption of the transport field

u0.x/ D .�2; 2/T ;

since this field describes the principle direction of the flow. Afterwards, we solve as
in the first test case the optimisation problem with

�1 D �2 D h:

The result of this calculation is visualised in Fig. 6. We want to emphasise that
we choose time points for the visualisation in which no data is available to
make clear that this method interpolates intermediate brightness distributions. Our
next aim is to compare different parameter choices for the boundary control
formulation. We use therefore four different cases. The first three cases are given
as follows

�1 D �2 D 1; .Case 1/

�1 D �2 D 0:1; .Case 2/

�1 D �2 D h; .Case 3/
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Fig. 6 Calculated solution for ˛ � 10�3. Left column: from bottom to top: I.x; tk/ with tk D kT
8

and k D 1; 3; 5; 7. Middle column: corresponding transport field. Right column: corresponding
pressure function
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Table 1 We indicate the error between the expected brightness function in time and the calculation
by eh;k WD kI � Ih;kk2L2.˝�Œ0;2�/

. The expected brightness function has the following norm

g WD kIk2L2.˝�Œ0;2�/
D 2:454 � 10�1

Case eh;k Rel. Error ( eh;k

g ) (%)

1 1:735 � 10�3 0.71

2 7:976 � 10�4 0.33

3 6:205 � 10�4 0.25

4 5:616 � 10�4 0.23

5 5:346 � 10�4 0.22

for the parameters in the Definitions 3 and 4. For the final test case we want to
set � D 0. Thus, we use instead of the usual boundary bilinear forms in the two
definitions the stabilised ones in Eq. (32) for the Navier-Stokes part and Eq. (25) for
the part of the physic-based optical flow equation

�1 D �2 D 0; Eq. (32) with .h/ WD h

5
and Eq. (25) .Case 4/:

We want to emphasise that these two conditions implement Dirichlet boundary
controls for which the developed theory could not be applied.

The results of the calculations are shown in Table 1. Here we document the ability
of the method to recover the expected movement of the bulb signal during the whole
time horizon in terms of the L2-error. The table shows that for � D 1 the method
is worse than for small choices of � or even for a implemented weak Dirichlet
condition. The reason for this is that artefacts on the inflow boundary occur for the
recovery of the signal. Thus, it seems to be a good idea to work with the weak
Dirichlet conditions.

Unfortunately, the solution has then another drawback since the transport field
is no longer continuous in time as Fig. 7 indicates. The left column represents the
transport field in the case of the weak Dirichlet controls. As we can see the field is
immediately changing after the time stepping scheme passing a time point, where
a brightness function information is available. Hence, the field has some kind of
jump with respect to the time variable. We want to emphasise that this is nothing
unexpected, since the theory is not working in this case and we cannot expect the
same temporal regularity as in the case of Robin controls.

As a result of the discussion we propose a “trade-off” version of the used
methods. Here we use the Robin-type control for the Navier-Stokes part with
�1 D h and the Dirichlet control in Eq. (25) for the brightness function. This leads to
a method which smoothly transports the signal across the boundary by a temporally
smooth transport field. We document the error of this combination by “Case 5” in
Table 1.

However, the last two examples rely on temporal constant solenoidal fields,
which could also be solutions of the steady Stokes equations. Thus, the spent
effort for interpolating discrete image intensities with our approach basing on a
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Fig. 7 Top: t D 0:04. Bottom: t D 0:0425. Left column: transport field for the weak Dirichlet
boundary control. Right column: transport field for the Robin-type control approach with �1 D
�2 D 0:1. The left transport field is immediately changing and has therefore a kink in the time
variable

regularisation with a fully time-dependent and non-linear physical model for the
fluid flow is questionable. To justify the reliability of our consideration we present
a final test case, which based on observations of a dynamic flow.

6.3 Third Test Data Set

The following example relies on the sequence Ik presented in Fig. 3, which was
obtained after executing a forward calculation of system (1). We will therefore
shortly present the generation of the image sequence. The computational domain
is (Fig. 8)

� D .�0:01m; 0:19m/� .0; 0:1m/:
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Fig. 8 The image domain
˝ D .0; 0:1m/2 is an
aperture of the original
computational domain
�D .�0:01m; 0:19m/� .0; 0:1m/

The time horizon is .0; 3s�. We prescribe no-slip boundary conditions on the upper
and lower boundary. The left boundary is an inflow boundary, while on the right
boundary the outflow occurs. The inflow is described by the function

u.x; t/ WD .10min.t; 1/max .0; !.x; y// ; 0/T

with

!.x; y/ WD 1

4

�
y �

�
1

4
C 1

5
sin.�t/

��
�
��

3

4
C 1

5
sin.�t/

�
� y

�
m

s
:

Furthermore, we choose a kinematic viscosity � D 0:01m2

s . Finally, the passive
tracer is also introduced by a Dirichlet-type boundary condition on the left side of
the domain �:

I.x; t/ WD max .cos.�t/; 0/ :

For the diffusivity parameter in the convection-diffusion equation of the tracer we
choose " D 1e � 10.

Then we perform a calculation with 60 steps of an implicit Euler method in time
and with a spatial discretisation into 2145 grid points of a regular mesh. Thus, we
obtain the reference solutions ur and Ir. By using Ir.x; tk/ for x 2 ˝ D .0; 0:1m/2

we generate afterwards three different “image sequences” on the aperture domain
˝ . Each sequence represents a different sampling rate for the images:

I .1/ WD Ir.x; tk/; with tk D 0:05k; k D 0; : : : ; 60;

I .2/ WD Ir.x; tk/; with tk D 0:25k; k D 0; : : : ; 12;

I .3/ WD Ir.x; tk/; with tk D 0:5k; k D 0; : : : ; 6:

We have a clear difference between sampling rate and time discretisation in
the sequences I .2/ and I .3/, while for I .1/ the sampling rate and the time
discretisation coincides.
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These sequences are used for the reconstruction of the flow on the aperture
domain ˝ . Therefore, we use our Robin-boundary control approach with the
following settings. From the image sequences we observe a starting phase of the
flow and a movement from left to right of the image patterns. Thus, we set

g.x; t/ WD .min.t; 1/umaxy.1 � y/; 0/T
m

s

and using instead the modified function

Qqu.x; t/ WD qu.x; t/C g.x; t/

in the Robin-boundary formulation [cf. fourth equation in (5)]. The parameter umax

can also be roughly estimated by the given images. We choose umax D 2.
To initialise also the inflow of signals I across the inflow boundary on the left

we choose a linear interpolation between the given discrete image signals of the
sequences on the boundary. We denote this interpolated function by I.I .j//.x; t/
with i D 1; 2; 3 and have thus the modified function

QqI WD I.I .j//.x; t/C qI

in the Robin-boundary formulation [cf. third equation in (5)]. For the parameter in
the Navier-Stokes part we choose this time �1 D 1 and perform a weak Dirichlet
control in the fashion of Eq. (25) as in the test case before for the convection-
diffusion equation part.

This time we will work with two different values for ˛1 and ˛2 in the cost
functional (see Definition 1). The reason for this is that we want to penalise too
big changes of the image function on the boundary since we assume that the linear
interpolated boundary conditions of the image sequence data is already a qualitative
approximation of the effective boundary conditions. Thus, the ˛1-term has more
the character of a correction. However, since we have no clue about the boundary
conditions for the fluid flow we want to choose ˛2 as small as possible. As in the
test cases before we apply therefore a homotopy-type method that stops, when ˛2
drops below a threshold Tol. Our experiences shows that ˛1 D 100 and Tol D 10�3
is an appropriate choice, when we additionally weighting the data term in the cost
functional by a factor 100.

The results for the identification by this settings are presented in Fig. 9 (Mag-
nitude of the flow field) and Fig. 10 (Intensity function) for the time points t1 D
0:75 .Row A/; t2 D 1:5 .Row B/; t3 D 2:25 .Row C/ and t4 D 3 .Row D/. From
left to right we visualise in the both figures the expected solution (Column 1), the
results for sequence I .1/ (Column 2), I .2/ (Column 3) and I .3/ (Column 4). For
a more qualitative comparison we investigate the following quantity of interest

�.t/ WD ku.t/ � rI.t/k22:
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Fig. 9 Comparison of the identified fluid flow in terms of the magnitude of the flow field. Row A
to row D: tk D 0:75k with k D 1; : : : ; 4. Columns from left to right: expected (1), I .1/ (2), I .2/

(3) and I .3/ (4)

This quantity has the feature that it depreciate the recovery in areas where the
intensity is nearly constant. The evolution of the �.t/ across the mentioned time
interval is documented in Fig. 11. The left picture shows the expected curve (blue),
the estimation with the data from sequence I .1/ (green dashed) and the results of
a forward calculation with g.x; t/ and I.I .j// (red dash-dotted). We see a clear
improvement by the usage of our identification process. In the left picture of
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Fig. 10 Comparison of the reconstructed intensity functions. Row A to row D: tk D 0:75k with
k D 1; : : : ; 4. Columns from left to right: expected (1), I .1/ (2), I .2/ (3) and I .3/ (4)

Fig. 11 we compared the quality of the reconstruction in terms of the three data
sequencesI .1/ (green),I .2/ (blue dashed) and I .3/ (red dash-dotted). As expected
we see a clear improvement by using as much data as possible. However, the result
also indicates that we are not able to fit the curve even if we have image data in
every time step of our temporal discretisation. The reason for this is the ill-posed
character of the problem.
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Fig. 11 Recovery of the quantity of interest �.t/ by our approach. Left: comparison of the expected
curve (blue), identification with intensity informations in each time step (green) and a forward
calculation (red). Right: different data sequences: I .1/ (green), I .2/ (blue) and I .3/ (red)

7 Discussion on the Application of Multiple Shooting
Methods

The numerical solution of the presented optimisation problem relies on a Newton-
type method developed by Becker et al. [6] to find a solution of the optimality
system, which can be introduced by means of the Lagrangian [see Eq. (13)].

We observed for all our calculations that the method’s performance is very
sensitive with respect to the choice of the initial values for the control variables
qI , qu, the length of the time horizon and the chosen regularisation parameter.

As mentioned in the last section we used a homotopy method in ˛ to be able to
solve the problem in a stable way for small values of the regularisation parameter.
We want to remark that for each step of the homotopy method a whole optimisation
problem must be solved, which increases the computational costs immensely.

However, the unstable behaviour is probably a result of the structure of the PDE-
constrained optimisation problem. We remember therefore the cost functional in
Definition 1

J.qI;qu; I/

which is minimised with respect to the weak formulation of the state equation in
Definition 4. The latter is now converted into the following abstract form

..@tI;  //C Na.uI I;  /C Nb.qI;  /C .I.0/� I1;  .0// D 0 8 2 XI

..@tu;'//C Nc.u/.'/C Nd.qu;'/C �
u.0/� u0;'.0/

� D 0 8' 2 Xu
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with the linear forms Na.�I �; �/, Nb.�; �/, Nc.�/.�/ and Nd.�/.�/ containing the terms of the
forms in Eq. (5) integrated over the time interval Œ0;T�. Here we separated the
control terms from the rest of the equation.

We concretise the Lagrangian

L .qI;qu; I;u;K; z/ WD J.qI;qu; I/C ..@tI;K//C Na.uI I;K/C Nb.qI;K/

C .I.0/� I1;K.0//C ..@tu; z//C Nc.u/.z/C Nd.qu; z/

C �
u.0/� u0; z.0/

�
:

With the Lagrangian we can obtain the mentioned optimality system, which consists
of the state equations

LK.qI;qu; I;u;K; z/.ıK/ D 0; 8ıK 2 XI ;

Lz.qI;qu; I;u;K; z/.ız/ D 0; 8ız 2 Xu;

adjoint equations

LI.qI;qu; I;u;K; z/.ıI/ D 0; 8ıI 2 XI ;

Lu.qI;qu; I;u;K; z/.ıu/ D 0; 8ıu 2 Xu;

and control equations

LqI .qI;qu; I;u;K; z/.ıqI/ D 0; 8ıqI 2 QI ;

Lqu.qI;qu; I;u;K; z/.ıqu/ D 0; 8ıqu 2 Qu:

The last two conditions can be used to substitute the control variables by the
adjoint variables in the state equation. Collecting afterwards the state and the adjoint
variables by the overall vector x WD fI;u;K; zg we can summarise the optimality
system by the abstract system of equations

@tx.t/ D A .x.t//; 8t 2 Œ0;T�;
Og.x.0/; x.T// W D B0x.0/C BTx.T/ � .I1;u0; I.T/ � IN ; 0/

T D 0
(36)

with

B0 D
�

I 0
0 0

�
; BT D

�
0 0
0 I

�
; and I D

�
1 0

0 1

�
;

and an abstract differential operator A . It is known that the above abstract problem
represents a boundary value problem (BVP) for the state and adjoint variables, with
respect to given values for the state variables I and u at the initial time and for the
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adjoint variables K and z at the end time point (cf. Carraro et al. [12] for optimal
control problems with parabolic PDE constraints).

This is a possible explanation for the instability of our sophisticated PDE-
constrained optimisation problem, especially if we consider long time horizons, as
it was figured out in the article of Weiss [40] for a much simpler configuration. To
follow this argumentation we discretise system (36) on a fixed spatial grid by the
method of lines:

x0
h.t/ D Ofh .t; xh.t// ; 8t 2 Œ0;T�;

Ogh .xh.0/; xh.T// D 0:

The resulting system is a classical ODE-based BVP. Weiss showed that for such
problems multiple shooting increases the size of the domain within which we may
choose the initial value for a successful performance of Newton’s method. However,
whether working with multiple shooting is reliable requires a further detailed
mathematical and numerical investigation. First steps towards the application of
multiple shooting methods to parabolic optimal control problems were presented
by Carraro et al. [11, 12], Hesse et al. [21] and Potschka [34].

Since our PDE-constrained optimisation problem could also be interpreted as a
parabolic boundary control problem, it would be an interesting topic for further
research to apply the rather technical multiple shooting method to our highly
complex problems. We conjecture that it is possible, due to the stabilising effect
of the multiple shooting method, to reduce the effort of the homotopy method in ˛.

Another big advantage of multiple shooting methods is that they are well suited
for parallelisation. This could also clearly accelerate the solution process in terms
of needed computational time.

8 Conclusion

In this contribution we suggested a PDE-constrained optimisation problem based
on the estimation of boundary functions, which can be used in a certain physical
setting to evaluate a flow field transporting a passive tracer across the computational
domain boundaries. The only available data is a temporally sparse sequence of
measurements of the intensity function of a passive tracer. The motivation for
the investigation is the increasing use of image processing, especially optical flow
estimation, techniques in fluid flow evaluation.

However our main objective was to formulate a mathematically well-posed
problem, which is also easy to handle from the computational point of view. We
suggested therefore a Robin-type control formulation, since in simple linear settings
a close connection to Dirichlet control problems was observed. Although our Robin-
type approach is well-posed and has a straightforward computational treatment, we
have not enhanced the theory for approximating Dirichlet controls by Robin-type
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controls to our system. On the one hand, it is not necessary to work with Dirichlet
controls for our identification purposes. On the other hand we have no appropriate
very weak formulation of the problem. Here we see a possible direction for further
theoretical research to connect Robin-type and Dirichlet controls also for such
sophisticated coupled systems of equations.

We proved the functionality of the method based on synthetic test cases. We were
able to interpolate a sparsely given image sequence, without the knowledge of the
underlying flow field, even when the information on the intensity function moved
across the boundary. However the examples were too simple to prove the necessity
of using the fully nonlinear Navier-Stokes equations. Applying the method to more
realistic prototypical examples or real world problems would be a further step for
our work.

For all our numerical calculations we enhanced a generalisation for weakly
imposed boundary conditions suggested by Juntunen et al. [24] to the class of PDEs
we have to deal with and used them for our numerical calculations.
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