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Abstract Parameter estimation in ordinary differential equations, although applied
and refined in various fields of the quantitative sciences, is still confronted with a
variety of difficulties. One major challenge is finding the global optimum of a log-
likelihood function that has several local optima, e.g. in oscillatory systems. In this
publication, we introduce a formulation based on continuation of the log-likelihood
function that allows to restate the parameter estimation problem as a boundary value
problem. By construction, the ordinary differential equations are solved and the
parameters are estimated both in one step. The formulation as a boundary value
problem enables an optimal transfer of information given by the measurement time
courses to the solution of the estimation problem, thus favoring convergence to the
global optimum. This is demonstrated explicitly for the fully as well as the partially
observed Lotka-Volterra system.

1 Introduction

Ordinary differential equation (ODE) models play a key role for understanding and
predicting the behavior of dynamic systems originating from various disciplines
like physics, chemistry or the life sciences. In many cases, these dynamic models
depend on parameters that are not known beforehand but need to be determined
from measurement data by means of statistical methods. Inference of parameters of
dynamic systems from measurement data is commonly realized by optimization of
the likelihood function. Optimization is a broad field and many different algorithms
have come up over the last decades [1, 7, 11, 13, 14], each of them with problem
specific advantages and disadvantages. One characteristic distinction between
optimizers is whether they include stochasticity or not. Stochastic optimizers,
e.g. evolutionary algorithms [6], particle swarms [9, 12] or simulated annealing
[18] are especially valuable for discontinuous likelihood functions where gradient
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information is not available or not defined. On the other hand, many deterministic
optimizers employ information about the differentiable structure of the likelihood,
i.e. gradient and Hessian information. For differentiable likelihood functions this
has the advantage that convergence is achieved much faster. However, this approach
has to struggle with other difficulties. If the likelihood function has local optima,
the outcome of the optimization procedure depends on the starting point. Once the
optimizer is approaching a local optimum, the algorithm will not leave this optimum
disregarding the existence of better optima.

The problem of local optima has been addressed by several approaches. It has
been shown that a combination of deterministic and stochastic optimization can
help escaping local optima and finding the global optimum [15]. Other approaches
modify the dynamic system by homotopy transformations [16] introducing a fac-
tor � that allows for a continuous transition between the modified, convex problem
and the original problem. Hence another approach is the multiple-shooting method
[2]. Most optimizers follow a single-shooting approach, i.e. model trajectories are
computed based on given initial values and the outcome is compared to the data. In
contrast, the multiple-shooting approach introduces a grid of time-points and initial
condition parameters. The optimizer is initialized with discontinuous trajectories
and constraints are defined guaranteeing that all trajectories become continuous in
the course of optimization.

In our work, we present a reformulation of the optimization problem as a
boundary value problem (BVP). The motivation for this approach is twofold.
The first argument follows from the history of gradient-based single-shooting
optimization for parameter estimation in ordinary differential equations. The per-
formance and accuracy of this method has been enormously increased by solving
the ODE together with its’ derivatives with respect to the parameters, i.e. the
sensitivity equations, in one integration run. This augmentation step allows a fast
and accurate computation of the gradient but still evaluation and optimization of the
objective function are separate steps. Our aim is to take the next logical step and
incorporate even optimization into the ODE integration. The second argument takes
up the multiple-shooting idea: the possibility to initialize BVP solvers with prior
knowledge like approximate trajectories from measurement data. If the optimization
problem is equivalently expressed as a boundary value problem then a good
initialization should increase the solver’s ability to find the correct solution.

In the following, we show how both objectives can be matched. Our aug-
mentation of the ODE is based on continuation of the log-likelihood function
to a differentiable function of time. The resulting system constitutes a BVP.
By construction, the solution of this BVP is optimal with respect to the log-
likelihood function and it can be obtained by standard numerical BVP solvers.
The initialization of the BVP solver allows for an efficient transfer of information
provided by the observation data.
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2 Methods

We consider a dynamic system defined by ordinary differential equations (ODE),

d

dt
x D f .x; p/; x.0/ D x0; (1)

with time t, states x 2 �
n and parameters p 2 �

r. The extension of the system
by d

dt p D 0 transforms the parameters into usual state variables. For the augmented
states � D .x; p/, parameter estimation becomes an estimation of initial conditions.
Furthermore, let xobs D .x1; : : : ; xm/, with m � n, be the observed states and let
fxD

1 .tj/; : : : ; xD
m.tj/gj denote the time-discrete observation data. The observation data

can be approximated by a continuous data function x D
obs.t/ D .xD

1 .t/; : : : ; xD
m.t//,

e.g. by linear interpolation or spline interpolation. On the other hand, we assume
that measurement events for different time points are statistically independent,
consequently, the likelihood function

L.�0jfx D
obs.tj/gj/ D

Y

j

Lj.�0jx D
obs.tj// (2)

factorizes and the negative log-likelihood

`.�0jfx D
obs.tj/gj/ D

X

j

� log Lj.�0; x D
obs.tj// (3)

� 1

T

Z T

0

r.�0; t/dt (4)

can be approximated by the integral. Here, r.�0; t/ denotes the continuous approx-
imation of � log Lj.�0; x D

obs.tj//. For standard normally distributed noise, r.�0; t/

becomes
�
xobs.t/�x D

obs.t/
�2

which will be used in the following. The argumentation
also holds for other noise distributions.

An initial condition vector O�0 D .Ox0; Op0/ 2 �nCr is a local optimum if r`. O�0; t D
T/ D 0 vanishes at the latest observed time point T. Since `.�0; t D 0/ D 0 for all
values of �0 at initial time, the gradient r`. O�0; t D 0/ D 0 vanishes, too. This
observation constitutes the boundary condition that needs to be matched for a local
optimum, i.e.

r`. O�0; 0/ D r`. O�0; T/ D 0: (5)

Each line of Eq. (5) has the potential to determine one parameter value. In order to
include this condition into the dynamic system (1), r` is derived with respect to
time. At this point it is crucial having approximated the negative log-likelihood by
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an integral expression:

d

dt
r`.�0jx D

obs.t// D 1

T

d

dt

Z t

0

rr.�0; �/d� (6)

D 1

T
rr.�0; t/ (7)

D 2

T

�
xobs.t/ � x D

obs.t/
��

D�0xobs.t/: (8)

Here, � indicates the transpose and D�0xobs.t/ denotes the Jacobian of xobs.t/ with
respect to the initial conditions �0, also known as the sensitivities of the solution
trajectory xobs.t/. The sensitivities are determined by an ODE, too, hence the
complete systems reads

d

dt
� D f .�/ (9)

d

dt
D�0� D D� f D�0� (10)

d

dt
r` D 2

T

�
xobs � x D

obs

��
D�0xobs: (11)

The sensitivity equation (10) have fixed initial conditions, diag.�nCr/, with the
identity matrix �nCr 2 �

.nCr/�.nCr/. The gradient equations (11) have both zero
initial and final condition, see Eq. (5), a boundary constraint that fully determines
the initial values of the augmented states in Eq. (9). On the other hand, these are
the parameters and initial conditions we seek to estimate. Hence, the desired values
O�0 optimizing the negative log-likelihood are part of the solution of the two-point
boundary value problem, Eqs. (9)–(11). Compared to gradient based single-shooting
methods, Eq. (11) represents the pivotal difference. It translates optimization into the
ambit of integration. This is the principle behind our optimization approach.

The solution of the two-point boundary value problem is obtained by the
Fortran 77 code TWPBVP [4, 5], available from the Netlib repository. The method
used in TWPBVP is a deferred correction method based on mono-implicit Runge-
Kutta formulas and adaptive mesh refinement. The deferred correction algorithm
uses the trapezoidal rule to obtain a first approximation to the required solution.
Finite difference approximations to the local truncation error are then added onto
this low order solution, increasing the accuracy of the solution repeatedly [3].

3 Example

In the following, we examine the Lotka-Volterra equations [8, 10, 17]. They give
a basic description of the predator and prey population dynamics. The system is
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defined by two differential equations

d

dt
A D A.˛ � ˇB/; (12)

d

dt
B D �B.� � ıA/; (13)

where A and B correspond to prey and predator respectively. The parameters ˛ and
ˇ describe prey reproduction and reduction, � and ı describe predator extinction
and reproduction. For non-zero initial condition, the solution of Eqs. (12)–(13) is a
sustained oscillation.

In the first part of the study, it is assumed that both populations are observed.
Observation data is simulated by numerically integrating the ODE system with
A0 D 1, B0 D 1:2, ˛ D 0:45, ˇ D 0:5, � D 0:3, ı D 0:1 and adding Gaussian
noise with � D 0:15 to the solution. Subsequently, the parameter values are sought
to be recovered from randomly chosen initial parameter guesses. The initialization
of the BVP solver, i.e. the grid of initially assumed values for each of the variables
in Eqs. (9)–(11), is obtained by integrating the sensitivity equation (10) with the
initial parameter guess and the data interpolations as input trajectories. The gradient
is assumed to vanish over the entire range.

Independently of the initial parameter values, the BVP solver converges to the
same solution. The result for one representative data set is shown in Fig. 1. The
States panel shows the solutions of the state variables A and B together with the data
points and error bars. As expected, the predator and prey trajectories hit about 67 %
of the error bars. In the Parameters panel, the solutions of the state variables ˛, ˇ,
� and ı are shown on a logarithmic scale, i.e. the dynamic parameters. The dots
indicate the values that have been used for simulation. The Sensitivities panel shows
the sensitivity trajectories which are typical for oscillating systems, i.e. oscillations
with increasing amplitude. Finally, in the Negative log-likelihood gradient panel,
the gradient solution is plotted. The time scale of gradient changes is determined by
the sampling density of the simulated time course. It hits the ground line in the end
point as desired, guaranteeing an optimum.

The BVP method has been tested systematically against a single-shooting
approach based on the Levenberg-Marquardt algorithm, implemented in the MIN-
PACK Fortran 77 package. For different simulated data sets, both, BVP method
and single-shooting method have been applied to the same random set of initial
parameter guesses. In order to avoid that, by chance, parameter vectors are too
similar, we employed Latin hypercube sampling with a hypercube covering 4 orders
of magnitude around the true parameter values. Both optimization approaches failed
convergence a number of times in which case 106 was assigned as value to the
negative log-likelihood. Figure 2 shows the first 200 sorted negative log-likelihood
values of the total 300 initial guesses for both approaches. The single-shooting
approach gets stuck in different local optima and finds the global optimum only in
4 % of the cases. In contrast, the BVP method proves to be robust against different
initial guesses for the parameter values. The solution converges either to the global
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Fig. 1 Solution generated by the BVP solver. The four panels show state solutions with simulated
data points, parameter solutions on a logarithmic scale with true values as dots, sensitivity solutions
and the gradient of the negative log-likelihood

minimum or it fails convergence. It is 6 times more efficient in finding the best
optimum. Figure 2 also gives some indication about parameter convergence regions.
For the BVP method, the set of initial parameters that finally converged to the best
parameter value covers almost the total range. However, fewer initial guesses with
˛ and ı larger than 1 lead to a successful reconstruction of the BVP solution. The
broad plateau of local optima for the single-shooting method is reflected in a clear
shift of final parameter values and a certain number of randomly distributed final
parameters.

In a second step, the observation of B is omitted and ˇ is fixed to 1 in order to
keep the system identifiable. Analogously to the fully observed system, data sets
have been simulated and Gaussian noise has been added. The comparison between
the single-shooting method and the BVP method is shown in Fig. 3a. The plots
indicate that the situation becomes more intricate if only one state is observed.
The convergence rate drops below 2 % for both approaches and the BVP method
reconstructs a variety of local optima, each of them with an almost identical negative
log-likelihood value. From the scatter plots in Fig. 3, two conclusions can be drawn
for the BVP method: First, whenever we found the global minimum, the parameters
were initially situated in the negative orthant, and second, the final parameters
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Fig. 2 Comparison of single-shooting and BVP method tested on the fully observed Lotka-
Volterra system. Each method has been applied to simulated data sets and for each data set,
initial parameter vectors have been generated by Latin hypercube sampling covering a range of 4
orders of magnitude around the true parameter values. The resulting negative log-likelihood values
were sorted, normalized by the smallest value and plotted on a logarithmic scale. In the scatter
plots, initial parameter vectors are plotted against final parameter values for each optimization that
resulted in a negative log-likelihood value smaller than 103

corresponding to the local optima form a submanifold with boundary in parameter
space.

Figure 3b shows the same picture for initial guesses starting from the negative
orthant only. In agreement with the expectation, the number of BVP solutions
corresponding to the global optimum increases considerably and exceeds the
success rate of the single-shooting method by a factor of 5.
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Fig. 3 Comparison of single-shooting and BVP method tested on the partially observed Lotka-
Volterra system. Each method has been applied to simulated data sets and for each data set, initial
parameter vectors have been generated by Latin hypercube sampling. Column (a) shows the results
for initial parameter vectors covering a range of 4 orders of magnitude around the true parameter
values. For column (b), initial parameters were restricted to values smaller than 100. In both cases,
the resulting negative log-likelihood values were sorted, normalized by the smallest value and
plotted on a logarithmic scale. In the scatter plots, initial parameter vectors are plotted against final
parameter values for each optimization that resulted in a negative log-likelihood value smaller than
103

4 Conclusion

In case of a partially observed system, the success rate of the BVP method depends
on favorable initial conditions. Whereas the single-shooting algorithm performed
equally badly over the entire parameter space, for the boundary value approach,
it was possible to identify an attractive basin resulting in a considerably increased
convergence rate.

From the fully observed Lotka-Volterra system, we conclude that the bound-
ary value approach is excellently suited as optimization approach if numerous
observables are available. In this case, it clearly outperforms the single-shooting
Levenberg-Marquardt algorithm in terms of convergence to the global optimum.
The strength of the presented optimization approach is its ability to exploit the
measured time courses in a natural way. This favors convergence to the global
optimum. Unlike single-shooting approaches, convergence to local optima or
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false convergence claims are efficiently reduced. On the other hand, the deferred
correction algorithm seemed to be very sensitive to the grid initialization by initial
parameter and state guesses, manifesting in a large number of non-convergent
attempts. This problem increased with the size of the time domain. At this point,
a multiple shooting algorithm, being based on time-domain decomposition, is
expected to be more stable and to provide a higher convergence rate.

In summary, we presented a reformulation of the estimation problem as a
boundary value problem which, in turn, is enabled by continuation of the negative
log-likelihood function to a time-differentiable function. This restatement elegantly
incorporates optimization and ODE solution in one task. By nature of the boundary
value problem, an initial guess for all state variables needs to be presented to the
numerical solver. The initialization by measured time-courses carries exactly the
information that is necessary to make the algorithm converge to the best optimum.
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