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Abstract Application of the optimal control theory to turbulent flows and asso-
ciated transport phenomena opens up a unique possibility of seeking an optimal
set of control inputs (design parameters) without relying on researchers’ subjective
insights. As an example, it is shown that heat transfer enhancement and skin friction
drag reduction is simultaneously achieved in wall turbulence, where it has been
considered to be difficult to achieve such dissimilar heat transfer enhancement due
to the strong similarity in the governing equations of heat and fluid flow. The control
input is assumed to be zero-net-mass-flux wall blowing/suction and its spatio-
temporal distribution is optimized so as to minimize a prescribed cost functional
defined within a finite time horizon. Surprisingly, the resultant control input exhibits
a streamwise traveling wave-like property. Although increase in the time horizon
significantly enhances the resultant control performance, time horizons employed
in previous studies are commonly limited due to the strong nonlinearity of turbulent
flows. Applying a multiple shooting method would be promising to further increase
the time horizon, and thereby improve the resultant control performance.

1 Background

1.1 New Horizon for Optimizing Thermo-Fluids Systems

Towards achieving the future sustainable society, prediction and control of interfa-
cial phenomena play curtail roles. For example, the turbulent momentum transfer at
solid-fluid interfaces governs the energy losses in high-speed transport applications,
such as aircrafts, marine vessels, trains, automobiles, pipelines, ventilation systems,
to name a few. Enhancing heat and mass transfer across solid-fluid or fluid-
fluid interfaces is essential for improving energy efficiencies in air conditioning
systems, heat recovery systems, chemical reactors, and so forth. Optimal design
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of three-dimensional complex porous structure is particularly important to promote
electrochemical reactions in electrodes of solid-oxide fuel cells and lithium ion
batteries. Due to the multi-scale and highly non-linear nature of fluid flow and
associated transport phenomena, however, optimal design of these energy devices
are not trivial. In the present paper, we focus on control of turbulent transport
phenomena as a typical example of non-linear problems.

Conventionally, academic researchers have been extracting essential elements
from practical problems, and trying to understand the underlying physics. It
has been believed that such fundamental knowledge will eventually be useful
for designing innovative thermo-fluids systems. Since the first direct numerical
simulation (DNS) of wall turbulence by Kim et al. [12], with the aid of rapid
development of computational resources, numerical simulation has grown as a
powerful tool alternative to existing experimental techniques in deepening our
understanding and modeling of complex turbulent transport phenomena. Indeed, the
range of application of numerical simulation has been significantly expanded, and
this enables to obtain much more detailed flow statistics which cannot be measured
experimentally. Despite these progresses, optimization of thermo-fluids systems
remain a difficult task. There exists no established approach for predicting how
a finite change in a certain design parameter influences resultant drag, heat/mass
transfer or chemical reactions in thermo-fluid systems, due to their highly non-linear
and multi-scale nature. Optimal control theory opens up a new horizon for seeking
an optimal set of design parameters based on the governing equations of underlying
physics.

1.2 Overview of Turbulence Control Research for Skin
Friction Drag Reduction

During the past several decades, a huge amount of effort of the turbulence research
community has been devoted to advance our understanding of turbulent dynamics
both experimentally and numerically. Based on this knowledge, various types of
control strategies have been proposed. Although flow control has a wide range of
applications, such as modifying momentum/heat/mass transfer, suppressing noise,
enhancing lift and so forth, we hereafter focus on skin friction drag reduction, which
is one of the most active topics in the flow control community.

Existing control schemes are roughly classified into two categories, i.e., active
and passive controls. Passive control typified by a riblet surface is advantageous in
the sense that it does not require additional energy consumption for flow control.
However, their control performance is generally smaller than that of active controls.
In addition, they are effective under limited flow conditions close to a design point.

In contrast, active control is generally more flexible and effective, although
additional energy consumption for driving actuators is required. Active control
is further classified into predetermined and feedback controls. In the former, a
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control input with spatio-temporal coherence is specified a priori and it is applied
without sensing the instantaneous flow field. Starting from spanwise wall oscillation
[9], various types of predetermined control schemes have been developed. They
are, for example, spanwise traveling wave of body force[5], streamwise traveling
wave of wall blowing/suction [14] and deformation [8], standing and traveling
waves of spanwise wall forcing [15, 16]. Although significant drag reduction rate
is achieved in the predetermined controls, they commonly suffer from relative large
energy consumption for applying control. Finding a control input leading to a larger
drag reduction rate with smaller control energy input is a major challenge in the
predetermined control.

The feedback control generally offers better control performance with small
power consumption than the predetermined control. However, it requires a complex
sensor-actuator system, possibly fabricated by Micro Electro Mechanical System
(MEMS) [10] in order to detect an instantaneous flow state, of which signals
are used to trigger actuators. One of the most widely-accepted feed-back control
strategy is the so-called opposition control proposed by Choi et al. [4]. In this
strategy, wall blowing/suction is applied in order to oppose the wall-normal velocity
fluctuation at a certain distance away from the wall. By optimizing the sensing
location, they demonstrated 15–20 % drag reduction in DNS of a low Reynolds
number turbulent flow. In this study, the control input is determined based on the
sensing information inside the fluid domain. In real systems, however, the available
information is considered to be limited to wall quantities. Accordingly, Lee et al.
[13] developed a control algorithm using wall information based on the suboptimal
control theory. In the suboptimal control theory, the control input is optimized so
as to minimized a prescribed cost functional in the next computational time step.
Their algorithm achieves 12 % drag reduction by using the spanwise wall shear
stress or wall pressure. These quantities, however, are in most cases difficult to
measure using small sensors distributed on the wall [10]. Hence, Fukagata and
Kasagi [6] redefined the cost functional based on the near-wall Reynolds shear
stress, and achieve drag reduction by using streamwise wall shear stress, which is
the easiest quantity to measure with a relatively small error. In the above studies,
the control inputs are optimized by taking into account only short-term dynamics
in the suboptimal control framework. The “real” optimal control with a finite, but
non-vanishing time horizon was first conducted by Bewley et al. [3], where more
than 60 % drag reduction is obtained, and an initial turbulent flow is eventually
relaminarized due to the applied control. The significant enhancement of control
performance from suboptimal to optimal controls implies the importance of taking
into account the future dynamics in determining a control input.
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1.3 Dissimilar Control of Momentum and Heat Transfer: Less
Friction and More Heat Transfer

In many practical problems, one often encounters a significant challenge to not only
minimizing drag, but also enhance heat and mass transfer. Indeed, the analysis [2]
based on the second law of thermodynamics shows that one of ultimate goals in
controlling heat and fluid flow is to achieve an infinitely large heat transfer rate with
minimum drag. However, such dissimilar heat transfer enhancement should be a
difficult task due to strong similarity between the governing equations of fluid flow
and heat in most of shear flows. Namely, on the one hand, turbulence has to be
suppressed to reduce drag, but at the same time, mixing has to be promoted in order
to enhance heat/mass transfer.

Recently, Kasagi et al. [11] revisited the governing equations and boundary con-
ditions of heat and fluid flow in order to clarify possible scenarios for dissimilar heat
transfer control. Among these scenarios, a control strategy based on the fundamental
difference between the divergence-free velocity vector and the conservative scalar is
considered to be most promising. Based on this idea, Hasegawa and Kasagi [7] first
demonstrated dissimilar heat transfer enhancement in a fully developed turbulent
channel flow by applying the suboptimal control theory. More recently, Yamamoto
et al. [17] applied the optimal control theory to the same problem and higher
control performance was obtained. Specifically, they first achieved simultaneous
drag reduction and heat transfer enhancement. In the following, we summarize
the recent advancement on dissimilar heat transfer enhancement control in wall
turbulence.

2 Numerical Configurations

2.1 Numerical Schemes and Conditions

We consider a fully developed turbulent flow between two parallel plates as shown
in Fig. 1. The streamwise, wall-normal and spanwise directions are denoted by
x1, x2 and x3, whereas the corresponding velocity components are u1, u2 and u3,
respectively. The origin of x2 is located at the center of the channel so that the
locations of the two walls are x2 D 1 and �1, respectively. The total volume of
the computational domain is V˝ , whereas the domain boundary is expressed by � ,
the subscript of which represents the normal direction. In all cases, the horizontal
channel dimensions are set to 2:5�ı and �ı in x1 and x3 directions, respectively.
These are sufficiently large to reproduce the reliable turbulent statistics in a low
Reynolds number flow considered here.
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Fig. 1 Computational domain and coordinate system

The governing equations of incompressible fluid flow are given by the following
Navier-Stokes and continuity equations:

@ui

@t
C uj

@ui

@xj
D � @p

@xi
C 1

Re

@2ui

@xj@xj
; (1)

@ui

@xi
D 0: (2)

Here, all variables are normalized by the bulk mean velocity Ub defined later in
Eq. (7) and the channel half depth ı, so that the dimensionless channel height is two
(see, Fig. 1), whereas p is the static pressure and t is time. The Reynolds number is
defined as Re D Ubı=�, where � is the kinematic viscosity of fluid.

The temperature is treated as a passive scalar, so that any buoyancy effects do not
arise. Consequently, the transport equation of heat is given by

@�

@t
C uj

@�

@xj
D Q C 1

PrRe

@2�

@xj@xj
: (3)

Here, the temperature is also non-dimensionalized by the temperature difference
between the bulk fluid and the wall, �b � �w. The Prandtl number is the ratio of
� and the thermal diffusivity ˛, i.e., Pr D �=˛, whilst the heat source term Q is
generally a function of time and space.

In the present study, the heat source is assumed to be time-independent and
spatially uniform throughout the computational domain, and identical to the mean
pressure gradient:

Q D � @p

@x1

; (4)
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where the over-bar represents averaging in the homogeneous directions, i.e., x1 and
x3, and also time t. In addition, Pr is also set to be unity. This particular condition is
chosen, since it makes the transport equations and boundary conditions for u1 and �

similar, so that the essential difference between the divergence-free velocity vector
and the conservative scalar can be analyzed[7]. We also note that the present ideal
condition is close to the thermal conditions in real heat exchangers[17].

We consider local wall blowing/suction with zero-net-mass-flux as a control
input. For the tangential velocity components and the temperature, we impose
the no-slip and constant-temperature conditions at two walls. The resultant wall
boundary conditions are described as

ui

ˇ
ˇ
ˇ
�2˙

D �ni; (5)

�
ˇ
ˇ
ˇ
�2˙

D 0: (6)

Here, the control input, i.e., the wall-normal velocity component imposed at the
wall, is denoted by �, the sign of which is defined to be positive when the applied
control input is directed to the outer normal vector ni at the boundaries of the
fluid domain. In the horizontal directions x1 and x3, we apply periodic boundary
conditions.

The governing equations (1)–(3) for the velocity and thermal fields are solved
by DNS with a second-order finite volume method. More detailed description of
the numerical scheme can be found in Yamamoto et al. [17]. All calculations
are conducted under a constant bulk mean velocity and the Reynolds number is
mostly set to be Re D 2293. Due to the similarity in the mathematical form
between physical and adjoint problems (see, Eqs. (16) and (23)), the essentially
same numerical method is used for solving the adjoint velocity and thermal fields
introduced later.

2.2 Control Performance Indices

Following Hasegawa and Kasagi [7], the bulk velocity Ub and the bulk temperature
�b are respectively defined as the following cross-sectional average of flow rate and
temperature:

Ub D 1

V˝

Z

˝

u1dV; (7)

�b D 1

V˝

Z

˝

�dV: (8)
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As the indices of heat transfer and pressure loss, the following Stanton number
St and the friction coefficient Cf are defined:

St D qw

Ub.�b � �w/
; (9)

Cf D �w
1
2
Ub

2
; (10)

where

qw D � 1

PrRe

@�

@y
n2

ˇ
ˇ
ˇ
�2

; (11)

�w D � 1

Re

@u1

@y
n2

ˇ
ˇ
ˇ
�2

(12)

are the dimensionless wall heat flux and skin friction, respectively.
If the profiles of the averaged streamwise velocity and temperature are similar,

2St is exactly equal to Cf at Pr D 1. Therefore, we define an analogy factor as

A D 2St

Cf
: (13)

Physically, A represents heat transfer per unit pumping power. The main objective
in dissimilar control is to increase A from unity by manipulating turbulence.

2.3 Optimization Procedure

In applying optimal control theory to flow problems, a cost functional is first
defined, and then a control input is iteratively updated so as to minimize the
cost function within a prescribed time horizon. The correction of a control input
in each iteration is obtained by solving the adjoint velocity and thermal fields
backward in time. Ideally, the time horizon should be long enough to cover the
whole life-time of turbulence dynamics, but it is not computationally trackable.
Therefore, it is common to choose an intermediate finite time horizon T as shown
in Fig. 2. Once a control input converges, the time horizon is advanced by Ta,
and then a new optimization procedure in the next time horizon starts. In the
following, we define the cost functional, derive the adjoint equations, and describe
the optimization procedures without getting into the mathematical details, which
can be found in other literatures [1, 3]. In the present study, the time horizon is set to
be T=.ı=Ub/ D 10, which is almost identical to the maximal value used in the drag
reduction control by Bewley et al. [3], while Ta D T=10 is employed.
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Fig. 2 Schematic of optimization procedure. In each time horizon, the evolution of velocity and
thermal fields are solved under a preliminary control input as shown by the red arrows, which is
followed by adjoint computation depicted by the blue arrows

2.3.1 Defining the Cost Functional

We define a cost functional as follows:

J D 	

Z T

0

Z

�2˙

1

2
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�2˙
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0
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� 1

PrRe
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dSdt

Z T

0

Z

�2˙

� 1

Re

@u

@n
dSdt

; (14)

where t D 0 corresponds to the beginning of the time horizon. The first term
represents the cost of control, while the second term is exactly a quantity we
attempt to enhance, i.e., the analogy factor. Hence, under this cost functional, the
control input is optimized so as to maximize A with the least intensity of wall
blowing/suction. Ideally, A has to be determined by the ratio of 2St and Cf integrated
over a sufficiently long period. Since the optimal control theory takes into account
only flow dynamics within a finite time horizon, however, A is approximated by
the integrals within the time horizon as shown in the second line of Eq. (14). The
weight coefficient 	 corresponds to the relative cost of the control input. In the
present study, 	 is specified so that the intensity of the control input � is 5 % of the
bulk mean velocity.
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2.3.2 Optimal Control Theory

For ease of notation, the flow state  , the flow perturbation state  0 and the adjoint
state  � are expressed as the following vector forms:

 D
0
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p
ui
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1

A ; 0 D
0

@

p0
u0

i

� 0

1

A ; � D
0

@

p�
ui

�
��

1

A : (15)

The governing equations (1)–(3) for the velocity and thermal fields can be written
in a functional form as
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D 0: (16)

Then, we consider the perturbation field 0 of velocity and thermal fields induced
by a small change of a control input �. Following Bewley et al. [3], the perturbation
is defined by the Frechét differential of the original flow state  as

 0 
D lim
�!0

 .� C �0�/ � .�/

�
; (17)

where � is an infinitesimal constant.
Since both the original and perturbed flow states satisfy Eq. (16), the following

linear equations for  0 is obtained:
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where the wall boundary conditions are given by

u0
i D ��0ni; � 0 D 0 on �˙2; (19)

u0
i D 0; � 0 D 0 at t D 0: (20)
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In Eq. (18), the products between perturbations are all neglected since the pertur-
bation is assumed to be sufficiently small. Although Eqs. (18)–(20) indicate the
linear relationship between �0 and  0, it is not straightforward to derive the explicit
relationship between �0 and the resultant change of the cost functional J0. In order
to overcome this difficulty, the adjoint velocity and thermal fields are introduced.

The flow optimization can generally be viewed as a minimization problem of
a cost functional J under the constraints on the flow states, i.e., the governing
equations and the boundary conditions of flow and thermal fields. This is equivalent
to minimizing the following Hamiltonian H:

H D J � hN. /; �i ; (21)

where the adjoint state  � corresponds to the Lagrangian multiplier.
The Frechét differential of Eq. (21) leads to

DH

D�
�0 D J0 � ˝

N0. 0/; �˛

D J0 � ˝

 0; N�. �/
˛ � b; (22)

where N� is the adjoint operator of N0. We impose the following relationship for the
adjoint field:
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so that the second term on the right-hand-side of Eq. (22) vanishes. The first term
on the right-hand-side of Eq. (22) is the Frechét differential of the cost functional,
and can be written as

J0 D 	
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��0dSdt
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@n
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where S� 2˙ represents the boundary area of �2˙. The third term on the right-hand-
side of Eq. (22) is called a boundary term, since it includes only boundary integrals
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as shown below:
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The terminal and boundary conditions for the adjoint state are given by

 �
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so that the integrand of Eq. (22) is eventually factorized by �0 as follows
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The final form of Eq. (29) guarantees that correcting the control input by �0 D
�.	� � p�/ decreases H. Therefore, after solving the adjoint field, the control input
is updated as follows:

�nC1 D �n � ˇ.	�n � p�/; (30)

where the superscript represents the number of iteration, while ˇ is a relaxation
coefficient. In the present study, ˇ is determined so that both j�nC1 � �nj < 3:0 �
10�3. This increases ˇ as the control input converges. Hence, ˇ < 8 is also imposed
throughout the optimization procedure.
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2.3.3 Suboptimal Control Theory

One of major obstacles in applying the optimal control theory to fluid flow and
associated transport phenomena is to solve physical and adjoint problems iteratively
within a time horizon as shown in Fig. 2. In addition, solving the adjoint equations
requires complete information of the physical field during the time horizon (see,
Eq. (23)), so that large memory capacity is needed. In order to mitigate the
computational load, the suboptimal control theory was developed. In the suboptimal
control, a control input minimizing a cost functional within a vanishingly small time
horizon is considered. Neglecting the response of the non-linear terms appearing in
Eqs. (1)–(3) to an infinitesimal change of control input, the short-term response of
the velocity and thermal fields to a control input can be obtained analytically by
taking into account linear processes only.

The suboptimal control input for dissimilar heat transfer enhancement was
derived in Hasegawa and Kasagi [7]. The resultant control inputs at bottom and
top walls are given by

O�
ˇ
ˇ
ˇ
�2�

D �

�Z 1

�1

y

�
sinhfk.y � 1/g

sinh.2k/
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; (31)
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�
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Z 1

�1

y

�
sinhfk.y C 1/g

sinh.2k/
O�.y/

�
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: (32)

Here, O� represents Fourier coefficient for a particular combination of the streamwise
and spanwise wave numbers, i.e., kx and kz, and k D p

k2
x C k2

z . It should be
emphasized that the control inputs (31), (32) are expressed with the information
of the physical field at the same instant. Therefore, the iterative computation of the
adjoint field is not required in the suboptimal control.

The proportional constant � is determined so that the intensity of � is equal to
5 % of the bulk mean velocity as is the case for the optimal control introduced in the
previous subsection.

3 Results

In this section, the control performances achieved by the optimal and suboptimal
control theories are compared. Note that the control performance is generally
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Fig. 3 Time traces of Cf and
St achieved in the optimal and
suboptimal controls
normalized by the values of
the uncontrolled flow

Fig. 4 Time traces of
analogy factor achieved in the
optimal and suboptimal
controls

enhanced with increasing the intensity of the control input. Accordingly, the
intensity of the control input is fixed to 5 % of the bulk mean velocity in both
controls for fair comparison.

In Fig. 3, the time traces of Cf and St obtained in the suboptimal and optimal
controls normalized by the values in the uncontrolled flow are shown. In the case of
the suboptimal control, Cf and St are both increased due to the control. However,
St is enhanced more than Cf . Specifically, St is increased three times from the
uncontrolled value, whereas Cf remains only doubled. In the case of optimal control,
more significant control performance can be confirmed. Namely, St is doubled,
whilst Cf is decreased by 30 % from the uncontrolled value. This is a surprising
result, since 30 % drag reduction rate is larger than that obtained in the opposition
control [4]. In addition, the opposition control causes drag reduction only, but does
not enhance heat transfer. The time trace of the analogy factor A is shown in Fig. 4.
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Fig. 5 Instantaneous
snapshot of the control input
obtained in (a) suboptimal
and (b) optimal control
theories. The flow direction is
from left to right

It is found that A � 1:5 is achieved in the suboptimal control, whereas A reaches as
high as 2.7 in the optimal control.

The top views of the instantaneous control inputs at the bottom wall obtained in
the suboptimal and optimal control theories are shown in Fig. 5. The red and blue
colors correspond to regions of wall blowing and suction, respectively. Interestingly,
both the control inputs are characterized by wavy distributions in the streamwise
direction. In addition, visualization of time traces of these waves (not shown here)
reveals that they travel downstream at a constant phase speed, which is around 20–
30 % of the bulk mean velocity [7, 17]. These results indicate that the streamwise
traveling wave of wall blowing/suction is promising for enhancing heat transfer with
minimum pressure penalty.

4 Discussions: Possible Application of Multiple Shooting
Method

The advantage of applying the optimal control theory to flow problems is that
a control input is optimized based on the governing equations of heat and fluid
flow. As shown in Fig. 5, the present control inputs obtained by the optimal and
suboptimal control theories commonly exhibit a streamwise traveling-wave like
property. Despite their simplicity, it is quite difficult to derive such a control strategy
only from researchers’ physical insight.

It is also interesting to compare the control performances obtained in the subop-
timal and optimal control theories. Obviously, the control performance achieved in
the optimal control theory with a finite time horizon T is better than that achieved in
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the suboptimal control theory, where a vanishingly small time horizon is assumed.
Similar trend is also observed in the drag reduction control by Bewley et al. [3].

Although there is tendency that a larger T results in better control performance
up to T � 10, it is found that further increase of the time horizon makes the adjoint
computation diverge. This could be attributed to the fact that the mathematical
derivation of the optimal control input is based on the linearized perturbation
equation (18), where the perturbation of a flow state induced by a small change
of a control input is assumed to remain sufficiently small during the time horizon,
so that all non-linear terms can be neglected. However, it is well-known that a
small disturbance grows very rapidly in turbulent flow due to its nonlinear nature.
This implies that the perturbation equation (18) is invalid for a large time horizon.
Obviously, a different approach is necessary to extend the time horizon further.
In this respect, a multiple shooting technique would be an interesting option. Its
application to flow problems remains the future work.

5 Summary

Although significant progresses have been made in understanding and modeling
turbulent flows in the last few decades, control of turbulence and associated transport
phenomena remains a challenging task due to their highly nonlinear and multi-scale
nature. The optimal control theory provides a unique opportunity to optimize a con-
trol input without relying on researchers’ subjective insights. In the present article,
we apply two different approaches, i.e., the optimal and suboptimal control theories,
to wall turbulence with heat transfer. In the former, the control input is determined
so as to minimize a prescribed cost functional defined within a finite time horizon,
whereas in the latter, the time horizon is assumed to be infinitesimal, so that the
response of the non-linear terms are all neglected. Although the suboptimal control
theory has advantage that it does not require iterative computations of the physical
and adjoint equations, there exists a general trend that the control performance is
enhanced with increasing the time horizon. This implies significance of taking into
consideration the future dynamics in determining the control input. However, the
time horizons employed in previous studies are commonly limited due to strong
non-linearity of turbulent flows. Applying a multiple shooting method would be
one promising option for further increasing the time horizon, and thereby achieving
higher control performances.
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