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Preface to the Series

Contributions to Mathematical and Computational Sciences

Mathematical theories and methods and effective computational algorithms are
crucial in coping with the challenges arising in the sciences and in many areas of
their application. New concepts and approaches are necessary in order to overcome
the complexity barriers particularly created by nonlinearity, high-dimensionality,
multiple scales and uncertainty. Combining advanced mathematical and computa-
tional methods and computer technology is an essential key to achieving progress,
often even in purely theoretical research.

The term mathematical sciences refers to mathematics and its genuine sub-fields,
as well as to scientific disciplines that are based on mathematical concepts and
methods, including sub-fields of the natural and life sciences, the engineering and
social sciences and recently also of the humanities. It is a major aim of this series to
integrate the different sub-fields within mathematics and the computational sciences
and to build bridges to all academic disciplines, to industry and to other fields of
society, where mathematical and computational methods are necessary tools for
progress. Fundamental and application-oriented research will be covered in proper
balance.

The series will further offer contributions on areas at the frontier of research,
providing both detailed information on topical research and surveys of the state of
the art in a manner not usually possible in standard journal publications. Its volumes
are intended to cover themes involving more than just a single “spectral line” of the
rich spectrum of mathematical and computational research.

The Mathematics Center Heidelberg (MATCH) and the Interdisciplinary Center
for Scientific Computing (IWR) with its Heidelberg Graduate School of Mathemat-
ical and Computational Methods for the Sciences (HGS) are in charge of providing
and preparing the material for publication. A substantial part of the material will be
acquired in workshops and symposia organized by these institutions in topical areas
of research. The resulting volumes should be more than just proceedings collecting
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vi Preface to the Series

papers submitted in advance. The exchange of information and the discussions
during the meetings should also have a substantial influence on the contributions.

Starting this series is a venture posing challenges to all partners involved. A
unique style attracting a larger audience beyond the group experts in the subject
areas of specific volumes will have to be developed.

The first volume covers the mathematics of knots in theory and application, a
field that appears excellently suited for the start of the series. Furthermore, due to
the role that famous mathematicians in Heidelberg like Herbert Seifert (1907–1996)
played in the development of topology in general and knot theory in particular,
Heidelberg seemed a fitting place to host the special activities underlying this
volume.

Springer Verlag deserves our special appreciation for its most efficient support in
structuring and initiating this series.

Heidelberg, Germany Hans Georg Bock
Willi Jäger

Hans Knüpfer
Otmar Venjakob



Preface

The point of origin of this book was an international workshop with the same title
(Multiple Shooting and Time Domain Decomposition Methods—MuSTDD 2013)
that took place at the Interdisciplinary Center of Scientific Computing (IWR) at
Heidelberg University in late spring 2013. Most of the chapters presented here are
based on topics exposed in the talks given during this workshop.

The leading motivation for realizing this book project was its potential to fill
a gap in the existing literature on time domain decomposition methods. So far, in
contrast to domain decomposition methods for the spatial variables, which have
found broad interest in the past two decades, the decomposition of the time domain
still constitutes a niche. There is no comparable compendium on this subject,
although an increasing amount of journal articles proves a growing need for these
methods. Therefore, we firmly believe that this volume provides a useful overview
over the state-of-the-art knowledge on the subject and offers a strong incentive for
further research.

The book at hand is divided into two parts, which roughly reflect a classification
of the articles into theoretical and application-oriented contributions:

• The first part comprises methodical, algorithmic, and implementational aspects
of time domain decomposition methods. Although the context is often given by
optimization problems (optimal control and parameter estimation with nonsta-
tionary differential equations), the covered topics are also accessible and crucial
for researchers who intend to utilize time decomposition in a modeling and
simulation framework. The topics covered in this theoretical part range from
a historical survey of time domain decomposition methods via state-of-the-
art environments for multiple shooting (such as ODE parameter estimation or
DAE problems) up to recent research results, e.g. on different multiple shooting
approaches for PDE, on multiple shooting in the optimal experimental design
(OED) or the nonlinear model predictive control (NMPC) frameworks or on
parareal methods as preconditioners.

• The second part is concerned with applications in different scientific areas
that can potentially benefit from multiple shooting schemes and the related

vii



viii Preface

parareal methods. In the application fields covered in this volume (amongst them
fluid dynamics, data compression, image processing, computational biology, and
fluid structure interaction problems), the two essential features of time domain
decomposition methods, namely the stabilization of the solution process and its
parallelizability, display their full potential.

Overall, we are convinced that this volume constitutes a unique compilation of
methodical and application-oriented aspects of time domain decomposition useful
for mathematicians, computer scientists, and researchers working in different
application areas. Although it does not claim to be exhaustive, it provides a
comprehensive accumulation of material that can both serve as a starting point for
researchers who are interested in the subject and extend the horizon of experienced
scientists who intend to deepen their knowledge.

We would like to acknowledge the support of several sponsors who made
the MuSTDD workshop possible: the Priority Program 1253 of the German
Research Association (DFG), the Mathematics Center Heidelberg (MATCH), and
the Heidelberg Graduate School of Mathematical and Computational Methods for
the Sciences (HGS MathComp). Furthermore, we thank all the authors for their
precious contributions. The cooperation with Springer, MATCH, and IWR should
not be left unmentioned: it was a pleasure to work with them, and we thank all
the people who rendered this 9th volume of Contributions in Mathematical and
Computational Sciences possible by quietly and efficiently acting behind the scenes.

Heidelberg, Germany Thomas Carraro
Michael Geiger

Stefan Körkel
Rolf Rannacher
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Direct Multiple Shooting and Generalized
Gauss-Newton Method for Parameter
Estimation Problems in ODE Models

Hans Georg Bock, Ekaterina Kostina, and Johannes P. Schlöder

Abstract The paper presents a boundary value problem approach for optimization
problems in nonlinear ordinary differential equations, in particular for parameter
estimation, based on multiple shooting as originally introduced by Bock in the
1970s. A special emphasis is placed on the theoretical analysis including numerical
stability, grid condition and a posteriori error analysis. The paper discusses advan-
tages of multiple shooting versus single shooting which are illustrated by numerical
examples.

1 Introduction

The history of shooting methods for optimization problems in differential equations
goes back to the 1950s when shooting methods were first used to solve two point
boundary value problems (TPBVP) resulting from application of the Pontryagin
maximum principle to optimal control problems, see e.g. [26, 31, 38, 40]. A
first versatile algorithm capable to treat TPBVP with switching points has been
developed by Bulirsch and Stoer [18] giving start to numerous theses in the
Bulirsch group extending optimal control theory and multiple shooting algorithms
for TPBVP. The drawbacks of this “indirect” approach are that the boundary value
problems resulting from the maximum principle for optimal control problems are
difficult to derive, moreover, they are usually ill-conditioned and highly nonlinear
in terms of state and adjoint variables, they have jumps and switching conditions.

Another type of methods for optimal control problems—“direct” single shooting
methods—appeared in the 1960s. Instead of using the maximum principle and
adjoint variables, in these methods the controls were discretized, such that solving
differential equations resulted in finite nonlinear programming problems. Numerous
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2 H.G. Bock et al.

direct algorithms were developed, usually as feasible step gradient type methods,
e.g. [17, 36, 37]. The reason for this was that effective non-feasible step algorithms
for constrained nonlinear optimization emerged only in the 1970s, i.e. SQP [25, 41].

In this paper we consider a “direct” multiple shooting method for optimization
problems with differential equations, also known nowadays as “optimization bound-
ary value problem”, “all-at-once”, or “simultaneous” approaches. This approach is
based on constrained nonlinear optimization instead of the maximum principle,
and the discretized BVP is treated as an equality constraint in the optimization
problem which is then solved by non-feasible step methods. This approach became
a standard tool for solving optimization problems for differential equation models,
see [9, 10, 12, 13].

The multiple shooting combined with the generalized Gauss-Newton is espe-
cially suitable for parameter estimation.

In this paper we focus on the multiple shooting for parameter estimation for
differential equations. A special emphasis is placed on the theoretical analysis
including numerical stability, grid condition and a posteriori error analysis. We
discuss also advantages of multiple shooting versus single shooting which are
illustrated by numerical examples.

2 Parameter Estimation Problem in ODE Systems

We consider parameter estimation problems that are characterized by a system of
ordinary differential equations for state variables x.t/

Px D f .t; x; p/;

the right hand side of which depends on a parameter vector p. Furthermore,
measurements �ij for the state variables or more general for functions in the states
are given

�ij D gij.x.tj/; p/C "ij;

which are collected at measurement times tj; j D 1; : : : ; k;
t0 � t1 < : : : < tk � tf ;

over a period Œt0; tf �; and are assumed to be affected by a measurement error "ij.
The unknown parameters p have to be determined such that the measured

(observed) process is “optimally” reproduced by the model. If the measurement
errors "ij are independent, Gaussian with zero mean value and variances �2ij an
appropriate objective function is given by a weighted l2-norm of the measurement
errors

l2.x; p/ WD
X

i;j

��2ij "
2
ij D

X

i;j

��2ij .�ij � gij.x.tj/; p//
2: (1)
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In this case the minimization of the weighted squared errors provides a maximum-
likelihood estimator for the unknown parameter vector.

In a more general case where the measurement errors are correlated with a
known (positive definite) covariance matrix C, we have to use C�1 as a weight
for the definition of a scalar product replacing (1) to receive a maximum-likelihood
estimator.

In many problems additional (point-wise) equality and/or inequality constraints
on parameters and state variables arise as restrictions onto the model

e.tj; x.tj/; p/ D 0; u.tj; x.tj/; p/ � 0; j D 1; : : : ; k:

For notation simplicity we assume the constraints are stated at the same points as
measurements.

A rather general parameter estimation problem for ordinary differential equations
can be summarized as follows:

Problem [PE1] Find a parameter vector p 2 R
np and a trajectory x W Œt0; tf � !

R
nd , that minimize the objective function (describing a weighted norm of measure-

ment errors)

l2 D kr1.x.t1/; : : : ; x.tk/; p/k2; r1 2 R
n1 ; (2)

where n1 is a number of all measurements. The solution has to satisfy the system of
ordinary differential equations of dimension nd

Px D f .t; x; p/; t 2 Œt0; tf �; (3)

the n2 equality constraints

r2.x.t1/; : : : ; x.tk/; p/ D 0 (4)

and the n3 inequality constraints

r3.x.t1/; : : : ; x.tk/; p/ � 0: (5)

Other functionals than the l2-norm can be used, like the general lq-functional

lq.x; p/ D
X

i;j

ˇ̌
ˇij.�ij � gij.x.tj/; p//

ˇ̌q
; 1 � q <1

with the sum of absolute values of errors for q D 1 as the most significant special
case besides q D 2; and the limit case of the Chebyshev or minimax problem

l1.x; p/ D max
i;j

ˇ̌
��1ij .�ij � gij.x.tj/; p//

ˇ̌
:
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l1- and l1-estimators have some specific properties which make them interesting.
Under certain regularity assumptions l1-optimization leads to a solution in which
exactly nC1 of the weighted measurement errors take the maximum value, whereas
exactly n errors vanish in case of the l1-optimization so that the l1-optimal solution
interpolates n measurement values. Here n D nv � ncon is the number of the
remaining degrees of freedom, where nv D ndCnp counts the differential equations
and parameters, ncon counts the equality and active inequality constraints at the
solution. Hence, the optimal solution is only specified by few “best” .l1/ and “worst”
.l1/ measurement values, respectively. From statistical point of view l1-based
estimator provides a maximum-likelihood estimation for uniformly distributed
errors with maximum �ij, lq-based estimator is related to distributions of the type
˛ij exp.�jˇij"ijjq/. For further discussion see [2, 15, 32].

3 Initial Value Problem Approach

The simplest—and maybe most obvious—approach for the numerical treatment of
parameter estimation problems in differential equations is the repeated solution
of the initial value problem (IVP) for fixed parameter values in framework of
an iterative procedure for refinement of the parameters to improve the parameter
estimates and to fulfill possible constraints on states and parameters. Thus, the
inverse problem is lead back to a sequence of IVPs.

Besides the undeniable advantage of a simple implementability the IVP approach
has two severe fundamental disadvantages which are clearly shown in numerical
practice and are verified by theoretical analysis.

On the one hand the state variables x.t/ are eliminated—by means of differential
equation (3)—in favor of the unknown parameters p by the re-inversion of the
inverse problem. As a consequence any information during the solution process that
is especially characteristic for the inverse problem is disregarded. Consequently, the
structure of the inverse problem is destroyed.

On the other hand the elimination of the state variables can cause a drastical
loss of stability of the numerical procedure. At least for bad initial guesses of the
parameters, which always have to be expected in practice, the (non-linear) initial
value problem can be ill-conditioned and difficult to solve or can be not solvable
at all even if the inverse problem is well-conditioned. As a consequence the IVP
approach places high demands on the used iterative method or on the quality of the
initial values.

Let us illustrate these properties of the IVP approach by two examples.
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3.1 Test Problem 1

This parameter estimation problem is a modification of a two-point boundary value
problem originally given in Bulirsch and Stoer [18]. A system of ODEs with two
states and one unknown parameter p is given by

Px1 D x2; x1.0/ D 0
Px2 D �2x1 � .�2 C p2/ sin pt; x2.0/ D �

t 2 Œ0; 1� (6)

For the true value of parameter p D � the solution is

x1.t/ D sin�t; x2.t/ D � cos�t:

In this example measurement data is generated by adding a normally distributed
pseudo random noise .N.0; �2/; � D 0:05/ to the solution x.t/; t 2 Œ0; 1� at
measurement points tj D 0:1j; j D 1; : : : ; 10. The results for the IVP approach
shown in Fig. 1 are disappointing. Choosing p.0/ D 1: as an initial value, the
numerical integration routine stops at about t � 0:4 (in case � D 60) and even for
the true value of the parameter p.0/ D � (up to 16 decimals) the solution is correctly
reproduced even less than for the first half of the interval. Not even the objective
function is (numerically) defined for these trajectories. Hence, the problem is not
numerically solvable with the IVP approach. The reason for this does not lie in the

Fig. 1 Test problem 1: IVP
approach, initial trajectories
x1.�/ for p.0/ D 1 (black line),
p.0/ D � (grey line),
measurements (black dots)
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integration method: the eigenvalues of the matrix fx.t; x.t/; p/ WD @f .t; x.t/; p/

@x
are

�1;2 D ˙� and the general solution of the ODE has the form

x1.t/ D sin�t C "1 sinh�tC "2 cosh�tI "1 D x2.0/� p

�
;

x2.t/ � � cos�tC "1 cosh�tC "2 sinh�tI "2 D x1.0/:
(7)

Even smallest errors of the initial values and the parameter and the (unavoidable)
discretization and rounding errors, respectively, are drastically intensified, as a result
the exact solution is dominated by highly increasing parasitic solution components.

3.2 Test Problem 2

The performance of an ecological system consisting of one predator and one prey
can be described by the following model of Lotka and Volterra

Px1 D �k1x1 C k2x1x2; Px2 D k3x2 � k4x1x2; t 2 Œ0; 10�:

The measurements in the points tj D j; j D 1; : : : ; 10; are simulated by numerical
integration of ODE for the “true” values ki D 1; i D 1; : : : ; 4; and x1.0/ D 0:4,
x2.0/ D 1:0 on Œ0; 10�, disturbed by normally distributed pseudo random noise
(N.0; �2/; � D 0:05).

The measurement data and the initial trajectory of the IVP approach for k D
.0:5; 0:5; 0:5;�0:2/T are shown in Fig. 2. The solution has a singularity at Ot D 3:3,
therefore the IVP approach must fail.

Fig. 2 Test problem 2. Initial trajectory of the IVP approach (black line), true solution (grey line)
and measurements (black dots)
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4 A Multiple Shooting Method for Parameter Estimation

Alternatively to the IVP approach, the inverse problem [PE1] can be interpreted
as an over-determined, constrained multi-point boundary value problem (BVP).
Therefore, a stable and efficient solution method has been developed as an ap-
propriate generalization of the method for the treatment of multi-point boundary
value problems described in Bock [7], based on the multiple shooting approach (cf.
Bulirsch and Stoer [18], Stoer and Bulirsch[47], and Deuflhard [19]).

A BVP method for parameter estimation problem [PE1] has been first presented
by Bock in [6] and implemented in the program package PARFIT.

4.1 Description of the Multiple Shooting Algorithm

For an appropriate grid of m nodes 	j

	1 < 	2 < : : : < 	m; 
	j WD 	jC1 � 	j j D 1; : : : ;m � 1 (8)

that covers the sampling interval (Œ	1; 	m� D Œt0; tf �), we introduce the discrete
trajectory fsj WD x.	j/g as optimization variables in addition to the unknown
parameters p. For a given estimate of the extended vector of variables .s1; : : : ; sm; p/
we compute the solutions x.tI sj; p/ of m � 1 independent initial value problems

Px D f .t; x; p/; x.	j/ D sj; t 2 Ij WD Œ	j; 	jC1�

on each subinterval Ij and in this way obtain a (discontinuous) parameterization
of the ODE solution x.t/; t 2 Œt0; tf �. Formally inserting the solutions at the
measurements points ti

x.tiI sj.i/; p/ for ti 2 Œ	j.i/; 	j.i/C1Œ

into the objective function and constraints (2), (4), and (5)

Rl.s1; : : : ; sm; p/ WD rl.x.t1I sj.1/; p/; : : : ; x.tkI sj.k/; p/; p/; l D 1; 2; 3;

we get a constrained finite-dimensional estimation problem the solution of which is
equivalent to the solution of [PE1].

Problem [PE2] (Discretized Parameter Estimation Boundary Value Problem)
Find a parameter vector p 2 R

np and a discrete trajectory .sT
1 ; : : : ; s

T
m/

T 2 R
nd�m,

that minimize the objective function

kR1.s1; : : : ; sm; p/k (9)
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subject to the constraints

R2.s1; : : : ; sm; p/ D 0; R3.s1; : : : ; sm; p/ � 0; (10)

and the additional continuity conditions

hj.sj; sjC1; p/ WD x.	jC1I sj; p/� sjC1 D 0; (11)

which ensure the continuity of the solution.

4.2 Well-Definedness

By an appropriate choice of the multiple shooting nodes we can ensure that the
parameterized trajectory of the state variables exists on the whole interval and
remains in a specified region. Well-definedness and differentiability properties of
problem [PE2] then follow from existence and differentiability of the trajectories
x.tI sj; p/; j D 1; : : : ;m; in the multiple shooting intervals, under certain assumptions
on functions r1, r2, r3, see e.g. [4, 5]. Other advantages of the multiple shooting
approach will be discussed in the following.

The following lemma provides a qualitative statement about the choice of
multiple shooting nodes.

Lemma 1 Let �.t/ 2 C0Œt0; tf �nd be piecewise continuously differentiable, Op 2 R
np ,

ı > "0 > 0, "p > 0 arbitrary, f 2 Cr.D/, D a domain, such that S WD f.t; x; p/ j t 2
Œt0; tf �; kx��.t/k � ı; kp� Opk � "pg � D. Then there exists a grid such that for all
sj, p with

ksj � �.	j/k � "0; kp � Opk � "p

the solution x.	 I xj; sj; p/ of

Px D f .t; x; p/; x.	j/ D sj; t 2 Œ	j; 	jC1�

exists, is r times continuously differentiable in .t; 	j; sj; p/ and does not deviate from
�.t/ more than ı

kx.tI 	j; sj; p/� �.t/k � ı: (12)

Proof The proof is based on classical arguments. The central statement follows
from the elementary estimate for ıx.t/ WD x.tI 	; s; p/ � 	.t/, ıp WD p � Op

kıx.t/k � kıx.	/k � e�jt�	 j C ��1.�kıpk C ˇ/.e�jt�	 j � 1/ (13)
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where kfx.t; x; p/k � �, kfp.t; x; p/k � � in S and k P�.t/ � f .t; �.t/; Op/k � ˇ.
From (13) we get

j
	jj � ��1 log..ı C �/=."0 C �//; � WD ��1."p� C ˇ/ (14)

as a bound for the grid size. ut
Let us note, that the criterion for well-definedness (12) can be ensured even without
knowing the constants �; �; ˇ by using e.g. a node strategy suggested by Bulirsch
and Stoer [18]: Starting with an initial function �.t/ that has to be given, the
integration of the initial value problem is stopped as soon as the distance from �.t/
exceeds a bound ı and a node 	j with sj D �.	j/ is inserted at this position.

For a differential equation with a perturbed right hand side

Px D f .t; x; p/C '.t/ (15)

the relations (13) and (14) also hold with Ň D ˇ C "d, "d � k'.t/k. With this
presentation the discretization error of a numerical integrator can easier be taken
into account.

In the following let .�.t/; Op/ be a solution of [PE1] (i.e. ˇ D 0). From (13)
it follows that a “drift off the solution” as a result of bad initial values, which in
IVP approaches can lead to an exponential error growth near the solution or even to
singularities in the non-linear case, can be avoided by a suitable choice of the nodes.

Therefore, in multiple shooting the domain and the convergence region of the
parameter estimation problem are enlarged, the demands on the initial values for a
solution procedure can be significantly reduced.

Note, that particularly the information available for the inverse problem allows an
excellent choice of the initial values sj in the state space for which ıx.	j/ is small.
Hence, the evaluation of the objective function and constraints can be done near
the optimal solution trajectory right from the beginning of the iterative solution
procedure. As models in non-trivial parameter estimation problems are almost
always non-linear, the efficiency of the solution scheme is thus seriously improved.

Hence, better initial guesses improve global convergence of the iterative pro-
cedure, help to avoid local minima and reduce nonlinearity of the optimization
problem leading to improved local convergence, e.g. even up to one step if
parameters enter the differential equations linearly.

Figure 3 shows for the test problem 2 how the consideration of the given
measurement data damps the influence of bad parameter estimates in the multiple
shooting approach. Though the initial guesses for the constants are chosen rather
poor with k.0/i D .0:5; 0:5; 0:5;�0:2/T (the optimized values are ki D 1; i D
1; : : : ; 4), the trajectories lie relatively “near” to the optimal solution.
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Fig. 3 Test problem 2: measurements (black dots), initial (black line) and optimal (grey line)
trajectories of the multiple shooting approach, k.0/i D .0:5; 0:5; 0:5;�0:2/T

4.3 Stability

Besides the advantages of the multiple shooting method concerning applicability,
generation of a favorable initial trajectory and the involved increase of efficiency
compared to the IVP approach, which are illustrated by the numerical examples (see
Sect. 7), the multiple shooting approach particularly has the advantage of numerical
stability. With the notations

N�j WD e�j
	j j; N�p
j WD ��1� N�j

and "x � "0 C j
	jj"d � kıx.	j/k C j
	jj k'.s/k Eqs. (13) and (15) lead to the
bound

kıx.t/k � N�j � "x C N�p
j � "p:

By the choice of the nodes the propagation of inevitable rounding and discretiza-
tion errors can be limited sufficiently.

But for a numerically reasonable grid choice strategy the estimations from
Lemma 1 are useless. The bounds�, � are hardly accessible in practice, furthermore
they usually provide an overestimation of the true error propagation.

Realistic and quantitatively accessible estimations of the error propagation result
from a linear perturbation analysis for IVP (15) with perturbed initial values and
parameters. As a global error on the interval Ij we get as a first-order approximation

ıx.t/
:D G.t; 	j/ıx.	j/C

Z t

	j

G.t; s/'.s/ dsC Gp.t; 	j/ıp;
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where the sensitivity matrices G, Gp are the solution of the variational differential
equations

d

dt
.G;Gp/.t; 	/ D fx.t; y.t/; p/.G;G

p/.t; 	/C .0; fp.t; y.t/; p//
.G;Gp/.	; 	/ D .I; 0/:

(16)

Inserting discretization and rounding error and estimating via

�j WD max
t2�t12Ij

kG.t2; t1/k � 1; �
p
j WD max

t1�	j2Ij

kGp.t1; 	j/k � 0;

we get as a minimum requirement for the choice of nodes the grid condition [GC]

[GC] �j"x C �p
j "p � ıj: (17)

Here, ıj is the (global) accuracy of the solution of the IVP problem on the multiple
shooting interval Ij, which bounds the error appearing in the computation of the
objective and constraint functions Ri; i D 1; 2; 3 and the continuity functions hj

and which depends on the condition of the problem and the desired accuracy of the
solution.

4.4 Grid Determination

Knowing the matrices G, Gp, which may be computed in a very efficient way, see
e.g. [10], the bounds �j, �

p
j can be easily approximated.

For a fixed grid, condition [GC] can be satisfied by reduction of the discretization
error if necessary. This also my be done by a somewhat finer estimation than (17)
by adapting the discretization error.

If limit accuracy is reached, the grid has to be refined in order to reduce the
constants of �j, �

p
j or the stopping criterion and thus the tolerance ıj has to be

damped.

Example In case of test problem 1 one can easily verify that �j, �
p
j � 1026 for

the IVP approach. Computing with 16 digits precision, [GC] is not satisfiable
for reasonable accuracies ıj. In contrast, for the multiple shooting approach an
equidistant grid with 
	j D 0:1 (11 nodes) already suffices for �j, �

p
j � 104. With

integration accuracies around 10�4 � ıj one can achieve practically sufficient errors
ıj which are global on Ij.

Basically, the grid condition [GC] is a stability condition and hence also
allows relatively gross grids for most problems with moderate instabilities of the
differential equations. Thus, the node choice can be used itself with the aim of
a good initial trajectory and low memory space complexity at the same time.
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In practical applications it turns out that the number of required nodes often is
significantly smaller than the number of measurement points.

Let us note, that condition [GC] provides the possibility of an automatic grid
choice for which the nodes are distributed in order to reach an overall low
computational effort.

5 A Generalized Gauss-Newton Method for Constrained
Non-linear Least Squares Problems

The discretized parameter estimation boundary value problem [PE2] is a non-linear
constrained least squares problem of the general form

Problem PN (Non-linear Constrained Least Squares Problem)

min
x
kF1.x/k22; subject to the constraints F2.x/ D 0; F3.x/ � 0:

Let the mappings Fi W D � R
n ! R

mi 2 C3.D/ on a domain D. The derivatives are
denoted as Ji.x/ WD F0i.x/.

The basic algorithm can be formulated as follows:

Basic Algorithm A given estimate x0 is iteratively improved by

xkC1 D xk C Œtk�
xk; tk 2�0; 1�; (18)

where the increment 
xk is a solution of the problem [PL(xk)] linearized in xk:

Problem [PL(x)] (Linearized Constrained Least Squares Problem)

min

x
kF1.x/C J1.x/
xk22; s.t. F2.x/C J2.x/
x D 0; F3.x/C J3.x/
x � 0:

There is numerous literature about Gauss-Newton methods for the unconstrained
problem. The general constrained case was first implemented in the context of the
parameter estimation in the algorithm PARFIT, including also inequality constraints.
The properties of the generalized Gauss-Newton method are investigated also for the
l1-case, see e.g. [10, 15, 16, 32]. We briefly sketch here the facts that are necessary
for further analysis of multiple shooting approach.

5.1 Characterization of an Optimal Solution

Let the inequality constraints that are active in a point z 2 D be defined by the
index set

I.z/ WD fi j F3i.z/ D 0; i D 1; : : : ;m3g;
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let these components and their derivatives be combined in QF3, QJ3. Furthermore,
denote by

Fc WD
�

F2
QF3
�
; Jc WD

�
J2
QJ3
�

the mapping Fc W D � R
n ! R

mc , mc WD m2 C Qm3, Qm3 D jI.z/j and its derivative.
The point z is called regular if the constraint qualification

Rang Jc.z/ D mc (19)

is satisfied.
With the Lagrange function L.x; �; �/,

L.x; �; �/ D 1

2
kF1.x/k22 � �TF2.x/� �TF3.x/;

we get the following optimality conditions as a consequence of standard statements
of non-linear optimization:

Theorem 2 (Necessary Optimality Conditions) Let x� 2 D be regular solution
of the non-linear problem PN. Then x� is feasible,

F2.x
�/ D 0; F3.x

�/ � 0;

and the necessary conditions of the first order hold: There exist adjoint variables
��, �� such that conditions hold

@

@x
L.x�; ��; ��/ D F1.x

�/TJ1.x
�/� ��TJ2.x

�/� ��TJ3.x
�/ D 0 (20a)

�� � 0; i 62 I.x�/) ��i D 0 (i.e. ��TF3.x
�/ D 0/: (20b)

Furthermore, the second-order necessary conditions hold: the Hessian of the
Lagrange function is positive semi-definite

pTH.x�; ��; ��/p � 0; H.x�; ��; ��/ WD @2

@x2
L.x�; ��; ��/:

for all directions p 2 T.x�/

T.x�/ WD fp 6D 0 j J2.x�/p D 0; Q��i QJ3i.x
�/p D 0; QJ3.x�/p � 0g:
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Theorem 3 (Sufficient Conditions) Let .x�; ��; ��/ be a Kuhn-Tucker point of
[PN] and let the Hessian of the Lagrange function be positive definite for all
directions p 2 T.x�/

pTH.x�; ��; ��/p > 0:

Then x� is a strict local minimum of [PN].

Lemma 4 Let a Kuhn-Tucker triple fx�; ��; ��g satisfy the constraint qualifica-
tion (19), the first-order necessary conditions, the strict complementarity ��i >

0; i 2 I.x�/, and let the Hessian H be positive definite for all directions p 2 fd ¤
0jJc.x�/d D 0g. Then x� is a strict local minimum of [PN].

Applying Theorem 2 to the linear problem [PL(x�)] we obtain that, if the triple
fx�; ��; ��g satisfies the assumptions of the theorem, then x� is a fixed point
of the Gauss-Newton iterations. Using Lemma 4 we may conclude that as the
iterates of the Gauss-Newton method approach a local minimum satisfying the
assumptions of Lemma 4, namely constraint qualification, positive definiteness and
strict complementarity, the active set remains fixed and hence in a neighbourhood
D of the solution x� we may ignore inequalities not belonging to Ic.x�/ and may
consider (locally) only equality constrained problems in the form

min
x
kF1.x/k22; s.t. Fc.x/ D 0:

If the Jacobians J1.x/ and Jc.x/ satisfy two regularity assumptions in the domain D

[CQ] Rang Jc.x/ D mc;

[PD] Rang J.x/ D m; where J.x/ WD
�

J1.x/
Jc.x/

�
:

(21)

then the linearized constrained least squares problem

min

x
kJ1
xC F1k22; s.t. Jc
xC Fc D 0;

has a unique solution
x� and a unique Lagrange vector ��c satisfying the following
optimality conditions

JT
1 J1
x � JT

c �c C JT
1 F1 D 0;

Jc
xC Fc D 0: (22)

Under regularity assumptions (21) this system has a unique solution

�

x�
���c

�
D �

�
JT
1 J1 JT

c

Jc 0

��1 �
JT
1 0

0 I

��
F1
Fc

�
: (23)
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Using a linear mapping JC W Rm1Cmc ! R
n:

JC WD .I; 0/
�

JT
1 J1 JT

c

Jc 0

��1 �
JT
1 0

0 I

�

the solution
x� can be formally written as


x D �JCF; F WD
�

F1
Fc

�
:

Let us note that the solution operator JC is a generalized inverse, i.e. it satisfies the
condition JCJJC D JC.

6 Aspects of Numerical Implementation

In this section we concentrate ourselves on numerical aspects of the basic algorithm
resulting from multiple shooting.

6.1 Solution of Linearized Problems

The linearization of the discretized parameter least squares boundary value problem
[PE2] according to (9)–(11)

kR1.s1; : : : ; sm; p/k ! min
s1;:::;sm;p

;

R2.s1; : : : ; sm; p/ D 0; R3.s1; : : : ; sm; p/ � 0;
hj.sj; sjC1; p/ D 0; j D 1; : : : ;m � 1;

leads to a sparse Jacobian which is large compared to the initial value approach and
has the special structure

J D

D1
1 D2

1 : : : Dm
1 Dp

1

D1
2 D2

2 : : : Dm
2 Dp

2

D1
3 D2

3 : : : Dm
3 Dp

3

Gl
1 �Gr

1 Gp
1

: : :
: : : 0

:::

: : :
: : :

:::

0
: : :

: : :
:::

Gl
m�1 �Gr

m�1 Gp
m�1

; F D

R1
R2
R3
h1
:::
:::
:::

hm�1

(24)
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with the notations

Dj
i WD dRi=dsj; Dp

i WD dRi=dp;

Gl
j WD dhj=dsj; Gr

J WD dhj=dsjC1; GP
j WD dhj=dp:

6.1.1 The Classical Condensing Algorithm

For the multiple shooting method according to Sect. 4 we get for the derivatives of
the continuity conditions hj

Gr
j D I; Gl

j D G.	jC1; 	j/ DW Gj;

Gp
j D Gp.	jC1; 	j/;

where .G;Gp/ are the sensitivity matrices which solve the variational differential
equation (16). The constrained linear least squares problem characterized by the
structured Jacobian (24) can be transformed by backward recursion

Start W um
i WD Ri;P

m
i WD Dp

i ;E
m
i WD Dm

i ;

uj�1
i WD uj

i C Ej
ihj;

Pj�1
i WD Pj

i C Ej
i;G

p
j�1

Ej�1
i WD Dj�1

i C Ej
iGj�1; j D m; : : : ; 2; i D 1; 2; 3;

to a condensed problem

min

s1;
p

ku11 C E11
s1 C P11
pk; (25)

u12 C E12
s1 C P12
p D 0; u13 C E13
s1 C P13
p � 0;

which only depends on the increments of the initial values
s1 and of the parameters

p and thus has just dimension .m1Cm2Cm3/	nv , nv WD ndCnp. Having solved
the condensed problem , the increments of the remaining variables can be computed
via forward recursion


sjC1 WD Gj
sj CGp
j
pC hj; j D 1; : : : ;m � 1:

Further variants of the condensing algorithm based on other matrix decompositions
as block-Gauss are described in [16].

Numerical solution of the condensed problem can be performed by combination
of active set strategy with various numerical algorithms for solving resulting equal-
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ity constrained problems. One of such algorithms based on QR-decompositions of
problem matrices can be found e.g. in Stoer [46].

6.1.2 Computation of the Adjoint Variables of the Complete System

The adjoint variables �c for equality and active inequality constraints �c can be
computed together with the solution of the condensed problem.

With the definitions

r WD R1 C
mP

jD1
Dj
1
sj C Dp

1
p;

dj WD Dj>

1 r; dp WD Dp>

1 r;
(26)

the Kuhn-Tucker conditions (20) for the complete system take the form

D1>

c Gl>
1

D2>

c �Gr>

1 Gl>
2 0

::: �Gr>

2

: : :
::: 0

: : : Gl>
m�1

Dm>

c �Gr>

m�1
Dp>

c Gp>

1 Gp>

2 � � � Gp>

m�1

�

�c

�1
:::
:::

�m�1

D

d1

d2

:::
:::

dm

dp

: (27)

This in general overdetermined problem has a unique solution according to The-
orem 2. Therefore the adjoint variables �i to the continuity conditions can be
efficiently computed using the decompositions of the matrices of the condensing
algorithm by backward recursion

Start: �m�1 WD .Gr>

m�1/�1.Dm>

c �c � dm/; (28)

�j�1 WD .Gr>

j�1/�1.Dj>
c �c � dj C Gl>

j �j/; j D m � 1; : : : ; 2:

6.2 Condition of the Discretized Parameter Estimation
Boundary Value Problem

In this section based on a generalization of the condensing algorithm, we give
an explicit representation of the generalized inverse of the Jacobian J of the
complete system and derive grid independent bounds for its norm which can be
used to estimate the condition of the problem. For simplification we assume that the
Jacobian along a solution

.t; x.t/; p/; t 2 I D Œt0; tf � (29)
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of the parameter estimation boundary value problem has been determined for which
the assumptions of Lemma 1 hold with �.t/ D x.t/, Op D p. Then for arbitrary
t1; t2 2 I the solutions .G;Gp/.t1; t2/ of the variational differential equation (16)
exist, are nonsingular, and there exist bounds � , �p with

kG.t1; t2/k � �; kGp.t1; t2/k � �p; 8t1; t2 2 I: (30)

With the notations

Dk D
�

Dk
1

Dk
c

�
; Bl D

mX

kDl

DkG.	k; 	l/; Al D �
l�1X

kD1
DkG.	k; 	l/;

El D Bl � Al; Pl D Dp C
l�1X

jD1
AjC1Gp

j C
m�1X

jCl

BjC1Gp
j

we get a condensed problem in the node 	l

kEl
1
sl C Pl

1
pC R1 C
l�1P
jD1

AjC1
1 hj C

m�1P
jDl

BjC1
1 hjk22 ! min

.
sl;
p/
;

El
c
sl C Pl

c
pC Rc C
l�1P
jD1

AjC1
c hj C

m�1P
jDl

BjC1
c hj D 0;

(31)

with a corresponding generalized inverse

Vl D
�

El
1 Pl

1

El
c Pl

c

�C
D ŒVl

1 Vl
c�: (32)

Due to (30) we have, that if the matrix

ŒEl Pl� D
�

El
1 Pl

1

El
c Pl

c

�

satisfies the regularity conditions (21) for a node 	l then this property holds true for
all other nodes as well.

Due to the uniqueness of the solution of the complete system the part of the
matrix Vl corresponding to the parameters is apparently independent of the node
index l. Defining

Mlj WD
�

VlAjC1 .j < l/
VlBjC1 .j � l/
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we get the explicit representation of the solution

�
�

sl


p

�
D Vl

1R1 C Vl
cRc C

m�1X

jD1
Mljhj:

Theorem 5 (Condition of the Discretized Parameter Estimation Boundary
Value Problem) Under assumption (30) it holds:

1. There exist constants kl
1, K1, kl

c, Kc, al
j, bl

j, kl
M, KM such that

kVl
1k1 � kl

1 � K1 <1 l D 1; : : : ;m;
j D 1; : : : ;m � 1;

kVl
ck1 � kl

c � Kc <1

kMljk �
(

al
j .j < l/

bl
j .j � l/

� kl
M � KM <1

2. The following bounds hold for 
S D .
sT
1 ; : : : ; 
sT

m; 
pT/T:

.a/ k
Sk1 � max
l

����
�

sl


p

�����
1

� max
l

0

@kl
1kR1k1 C kl

ckRck1 C
l�1X

jD1
al

jkhjk C
m�1X

jDl

bl
jkhjk

1

A

� max
l

�
kl
1kR1k1 C kl

ckRck1 C kl
M.m � 1/khk1

	

� K1kR1k1 C KckRck1 C .m � 1/KMkhk1
.b/ kJCk1 � K1 C Kc C .m � 1/KM:

3. (a) The bounds K1, Kc, KM are independent of position and number of the nodes.
(b) The bounds kl

1, kl
c, kl

M, al
j, bl

j depending on the nodes are grid independent
insofar as they hold for any grid which includes the nodes 	l or .	l; 	j/,
respectively.

Proof Consider the variation system of the parameter estimation boundary value
problem

min
";Op

�����

kX

iD1
NDi
1
.ti/C Dp

1 OpC "1
�����
2

; (33a)
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P
.t/ � X.t/
.t/ � Y.t/Op � '.t/ D 0; (33b)

kX

iD1
NDi

c
.ti/C Dp
c OpC "c D 0; (33c)

where .X;Y/.t/ WD .fx; fp/.t; x.t/; p/, NDi
c;1 WD @rc;1

@xi
.x.t1/; : : : ; x.tk/; p/: Here we

have assumed (without loss of generality) that the time points t1 < t2 < : : : < tk �
Œt0; tf � are fixed.

For a solution of the linear system (33b) the relation holds


.s/ D G.s; 	/
.	/C
Z s

	

G.s; t/.Y.t/OpC '.t// dt; s; 	 2 I: (34)

After inserting (34) into (33c), (33a) we get

kX

iD1
NDiG.ti; 	/
.	/C Dp OpC

kX

iD1
NDi
Z ti

	

G.ti; t/Y.t/Op dt

C "C
kX

iD1
NDi
Z ti

	

G.ti; t/'.t/ dt:

Using the matrices

B.	/ WD
kP

iD1
.ti�	/

NDiG.ti; 	/; A.	/ WD �
kP

iD1
.ti<	/

NDiG.ti; 	/;

E.	/ WD B.	/� A.	/: 	 2 Œt0; tf �
we get the representation

kX

iD1
NDi
Z ti

	

G.ti; t/g.t/ dt D
Z tf

	

B.t/g.t/ dtC
Z 	

t0

A.t/g.t/ dt:

Setting

P.	/ D Dp C
Z 	

t0

A.t/Y.t/ dt C
Z tf

	

B.t/Y.t/ dt

we get the condensed at the node 	 least squares problem:
����E1.	/
.	/C P1.	/OpC "1 C

Z 	

t0

A1.t/'.t/ dt C
Z tf

	

B1.t/'.t/ dt

����
2

! min

.	/; Op

;

Ec.	/
.	/C Pc.	/OpC "c C
Z 	

t0

Ac.t/'.t/ dtC
Z tf

	

Bc.t/'.t/ dt D 0:
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Under the assumption (30) a bounded generalized inverse .E.	/P.	//C exists for a
specific value 	 as well as a bounded generalized inverse .E.t/P.t//C exists for all
t 2 Œt0; tf �, and the relation holds

ŒE.t/ P.t/�C D
�

G.t; 	/ Gp.t; 	/
0 I

�
ŒE.	/ P.	/�C DW ŒV1.t/; Vc.t/�

since
Z s

	

G.s; t/Y.t/Op dt � Gp.s; 	/Op:

With the notation

M.	; t/ D
�

V.	/A.t/ 	 > t
V.	/B.t/ 	 � t

we explicitly get the solution of the linearized parameter estimation boundary value
problem as

�
�

.	/

Op
�
D V1.	/"1 C Vc.	/"c C

Z tf

t0

M.	; t/'.t/ dt:

Therefore, the bounds

k1.t/ WD kV1.t/k; K1 WD sup
t2Œt0; tf �

k1.t/;

kc.t/ WD kVc.t/k; Kc WD sup
t2Œt0; tf �

kc.t/;

kM.t; 	/k DW
�

a.t; 	/ .t > 	/
b.t; 	/ .t � 	/ ;

kM.t/ WD sup
	2Œt0; tf �

kM.t; 	/k; KM WD sup
t2Œt0; tf �

kM.t/

exist and consequently the continuous estimates are true

sup
t2I

����

.t/
Op
���� � sup

t2I

�
k1.t/k"1k C kc.t/k"ck C kM.t/

Z tf

t0

k'.	/k d	

�

� K1k"1k C Kck"ck C KM

Z tf

t0

k'.	/k d	:
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The statements for the discretized case follow immediately after verifying

Bl D
mX

kDl

DkG.	k; 	l/ D
kX

iD1
.ti�	l/

NDiG.ti; 	l/ D B.	l/

for a given grid and analogously Al D A.	l/; El D E.	l/; Pl D P.	l/; Mlj D
M.	l; 	j/. ut
The bounds derived in Theorem 5 describe the sensitivity of the parameter
estimation boundary value problem with respect to perturbations in the continuity
conditions, constraints and the right hand side of the differential equations system.
They also allow to estimate the influence of the discretization error on the computed
solution (see next section), thus proving the numerical stability of the multiple
shooting approach.

6.3 Influence of Discretization Errors on the Global Error
of the Solution

In the following explicit relations between the local errors and the resulting global
perturbation of the optimal solution are derived.

Consider the perturbed equality constrained linear parameter least squares
problem

k.J1 C ıJ1/.xC ıx/C .F1 C ıF1/k2 ! min
ıx

.Jc C ıJc/.xC ıx/C .Fc C ıFc/ D 0:
(35)

Denote

NJ D J C ıJ; cov .NJ/ WD NJC
�

I 0
0 0

�
.NJC/T :

Lemma 6 (Solution of a Perturbed Least Squares Problem) Assume that Jc

satisfies (19). Let x be a stationary point of the unperturbed problem (ıJ D 0,
ıF D 0), R D J1xCF1 be the residual and � be the corresponding adjoint variable
with JT

1 R � JT
c � D 0. Then the solution Nx of the perturbed problem (35) is equal to

Nx D xC ıx where

ıx D �NJCıF � cov .NJ/ıJT

�
R
��

�
� NJCıJx

DW ıx1 C ıx2 C ıx3:
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Proof The problem (35) can be rewritten as

kNJ1ıxC ıF1 C ıJ1xC Rk ! min
ıx

NJcıxC ıFc C ıJcx D 0:

Hence, the solution ıx can be presented with the help of a generalized inverse:

ıx D �NJC
�
ıF1 C ıJ1xC R
ıF2 C ıJ2x

�
D �NJC.ıF C ıJx/ � NJC

�
R
0

�

D ıx1 C ıx3 � NJC
�

R
0

�
:

Using properties of generalized inverse and the equality JT
1 R � JT

c � D 0 we may
reformulate the third term

NJC
�

R
0

�
D NJC

�
I 0
0 0

��
R
��

�
D NJC

�
I 0
0 0

�
.NJC/T NJT

�
R
��

�

D cov.NJ/.JT C ıJT/

�
R
��

�
D cov.NJ/ıJT

�
R
��

�
:

ut
Let us note, that the perturbation estimations by Lawson and Hanson for the
unconstrained problem [34] immediately follow from this lemma as special cases.
Furthermore, Lemma 6 has the advantage of explicitly giving the presentation of the
global error of the solution.

For applications particularly the terms ıx1, ıx2 are important as long as the
inequality ˛ WD kNJCıJk 
 1 holds, namely in a fixed point of the generalized
Gauss-Newton method we get Nx D 0, and hence kıx3k � ˛kıxk � ˛=.1 �
˛/kıx1 C ıx2k. Consequently, though the term ıx3 affects the convergence rate of
the generalized Gauss-Newton method, this term is of minor importance for the
perturbation of the fixed point.

Lemma 6 allows to interpret the perturbation of the derivative matrix ıJ as an
additional perturbation of the measurement data, which is weighted by the residual R
(and the adjoint variables �, respectively) and by the norm of the covariance matrix
kcov .NJ/k.

For an estimation of the global error ıx by means of the errors ıF, ıJ we assume
that the bounds

kNJC
�

I 0
0 0

�
k � NK1; kNJC

�
0 0

0 I

�
k � NKC
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or their estimates are available e.g. by the repeated solution of the linear systems
during the Gauss-Newton process. Furthermore, we assume that the vectors QR and
Q� exist, such that the component-wise inequalities hold

jRij � QRi; j�jj � Q�j; i D 1; : : : ; n1; j D 1; : : : ; nc;

Using the notation

Qy WD 
jıJ1ijj
�T QRC 
jıJcijj

�T Q� (36)

we get the estimation for ıx

kıxk � NKCkıFCk C NK1kıF1k C NK2
1kQyk:

Now let us apply this analysis to the linearized discretized parameter estimation
boundary value problem in the case of the multiple shooting method. For simpli-
fication we assume that all errors except the discretization errors can be neglected
and that these only occur in the right hand sides of the continuity conditions hj and
the matrices Gj, Gp

j . With the notations (26)–(28) we have

Qyj D

jıGjikj

�T Q�j; j D 1; : : : ;m � 1;

Qyp DPm�1
jD1 Qyp

j ; Qyp
j D

h
jıGp

j ik
j
iT Q�j:

If we require in the node 	jC1 (we assume without loss of generality that NKC 6D
0; NK1 ¤ 0), that

kıhjk � j
	jj
2 NKCj	m � 	1j

e DW TOLX
j ;

kQyjk C kQyp
j k �

j
	jj
2 NK2

1 j	m � 	1j
e DW TOLG

j ;

then the following bound holds for the global solution error kıxk

kıxk � NKC

m�1X

jD1
kıhjk C NK2

1

m�1X

jD1
.kQyjk C kQyp

j k/ � e:

Let us note that, the constants NKC and NK1 can be bounded by the grid independent
estimates .m � 1/KM , KC and K1 from Theorem 5. This analysis may be used to
tailor accuracies of integration and computing of constraint Jacobians in order to
reduce computational efforts.
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7 Numerical Examples

The aim of this section is the illustration of the numerical analysis presented in this
paper. The choice of the problems is not necessarily representative for the large class
of treatable problems but still allows an examination of the numerical properties
of the algorithm in practical use under aspects of stability, reliability, efficiency,
accuracy, and last but not least general applicability.

For further challenging problems of parameter estimation and optimal control
and their treatment with BVP methods see e.g. [3, 8, 11, 14, 20, 21, 27, 28, 30, 33,
35, 43–45, 48].

7.1 Test Problem 1

Test problem 1 was introduced in Sect. 3 to demonstrate the effect of instabilities in
the initial value problem approach (single shooting). In contrast, with the multiple
shooting method the problem remains solvable also for significantly larger values
of the constants � and thus of the eigenvalues �1;2 D ˙� of the Jacobians of the
differential equations.

The numerical results for 10 � � � 120 are summarized in Table 1. The IVP
approach still provides results for � D 10; 20, though only with great integration
effort. For � D 40 error propagation (fourth row) over the whole interval Œ0; 1� is
already at 1019, for computation with 16 digits precision the required local errors ıj

can no longer be maintained, see grid condition (17).
The multiple shooting approach with 11 nodes (all measurement points) still

satisfies the grid condition up to � D 120 with ımin
j � 10�8 (third row)

Figure 4 shows the initial and the solution trajectory for the medium high value
� D 60 and the parameter initial value p.0/ D 1 like in Fig. 1. Despite the extreme
variations convergence is achieved within 4 iterations with a relative accuracy of
" D 10�3.

Table 1 Test problem 1 (6)–(7)

� 10 20 40 60 80 100 120

Number of iterations 4 4 4 4 4 4 4

Min. local error ımin
j D �j"mach 10�14 10�13 10�12 10�11 10�10 10�9 10�8

Error propagation kG.0; 1/k 105 1010 1019 1027 1036 1045 1054



26 H.G. Bock et al.

Fig. 4 Test problem 1, multiple shooting approach (� D 60, p.0/ D 1), measurements (black
dots), initial (black line) and optimal (grey line) trajectories

Fig. 5 Test problem 2, multiple shooting approach (10 multiple shooting nodes), initial trajectory
(black line), measurements (black dots) , solution (grey line), left: x1.�/, right: x2.�/
Table 2 Solution and
estimated error, test
problem 2

k1 k2 k3 k4
Solution 0:923 0:934 1:106 1:110

Standard error ˙0:040 ˙0:044 ˙0:045 ˙0:080

7.2 Test Problem 2

Also the predator prey problem (Sect. 3.2) can be treated with multiple shooting
without difficulties. Figure 5 shows the initial trajectory for the set of parameters
k D .0:5; 0:5; 0:5;�0:2/. The singularity at t D 3:3 apparently does not show up.
The generalized Gauss-Newton method needs 8 iterations until convergence (" D
10�3) (Table 2).

This test problem also clearly demonstrates that the multiple shooting combined
with generalized Gauss-Newton method reduces the nonlinearity of the problem
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Fig. 6 Test problem 2, multiple shooting approach, trajectory after first iteration (black line),
measurements (black dots), solution (grey line), left: x1.�/, right: x2.�/, first row: 10 multiple
shooting nodes, right: 20 multiple shooting nodes

thus improving the convergence from arbitrary initial parameter guesses up to one
step convergence for problems with dense not-noisy measurements for all states and
parameters entering linearly the differential equations. Figure 6 show the multiple
shooting trajectories after the first iteration. Obviously, the more measurements we
have the nearer the multiple shooting trajectories are to the optimal solution.

7.3 FitzHugh-Nagumo Test Problem

We consider now a test problem developed by FitzHugh [24] and Nagumo et al. [39]
as simplifications of the Hodgkin and Huxley model

PV D c.V � V3

3
C R/; PR D �1

c
.V � aC bR/; t 2 Œ0; 20�;

V.0/ D �1; R.0/ D 1

This test problem was used by Ramsay et al. [42] and characterized as complicated.
The “true” parameter set is a D 0:2; b D 0:2 and c D 3:0: Measurement data is
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Fig. 7 FitzHugh-Nagumo test problem, single shooting approach, initial trajectory (black line),
measurements (black dots), solution (grey line), starting guesses a.0/ D 0:4; b.0/ D 0:1 and c.0/ D
6:0, convergence to a� D 0:3709; b� D 0:9153 and c� D 4:3204; left: R, right: V

Fig. 8 FitzHugh-Nagumo test problem, multiple shooting approach, initial trajectory (black line),
measurements (black dots), solution (grey line), starting guesses a.0/ D 0:4; b.0/ D 0:1 and c.0/ D
6:0; left: R, right: V

Table 3 Solution (after 5
iterations) and estimated
error, FitzHugh-Nagumo test
problem

a b c

Solution 0:1998 0:2002 2:9990

Standard error ˙0:0001 ˙0:0014 ˙0:0017

generated by adding a normally distributed pseudo random noise .N.0; �2/; � D
0:01/ to the solution x.t/; t 2 Œ0; 20� at measurement points tj D 0:5j; j D 1; : : : ; 10.
This test problem demonstrates that IVP approaches tend to converge to wrong
local minima for poorly chosen parameter initial values. In the multiple shooting
method this is widely avoided due to advantages of the multiple shooting and last
but not least also due to the applied generalized Gauss-Newton method (Figs. 7 and
8; Table 3).
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7.4 Oscillating Chemical Reactions: The Oregonator Model

The next test problem is the so-called oregonator [22, 23], which is regarded as
the simplest realistic model of the chemical dynamics of the oscillatory Belousov-
Zhabotinsky reaction and can be written in the scaled form

"
dx1
dt
D qx2 � x1x2 C x1.1 � x1/;

"1
dx2
dt
D �qx2 � x1x2 C fx3; (37)

dx3
dt
D x1 � x3:

Defining the parameters

p1 D q="; p2 D �1="; p3 D 1="; p4 D �1=";
p5 D �q="1; p6 D �1="1; p7 D f="1; p8 D 1; p9 D �1;

we rewrite (37) as

Px1 D p1x2 C p2x1x2 C p3x1 C p4x
2
1;

Px2 D p5x2 C p6x1x2 C p7x3; (38)

Px3 D p8x1 C p9x3:

Our aim is now to estimate the parameters p1–p9 of the ODE model (38). As
in previous tests the measurements have been generated using “true” solution at
time points ti D 0:5i; i D 1; : : : ; 20 with adding normally distributed noise
.N.0; �2/; � D 0:01/. The “true” parameter values have been calculated using
values presented in [23]. The initial guesses for parameter have been taken as
p.0/i D 2p“true”

i ; i D 1; ::; 9. The initial values for the states have been taken as
x1.0/ D x2.0/ D x3.0/ D 1: The parameter estimates resulted after 4 iterations
using the multiple shooting are presented in Table 4. Figure 9 shows the solution

Table 4 Oregonator problem: “True” parameter, estimated values and error

p1 p2 p3 p4 p5
“True” 0.007697 �10.101010 10.101010 �10.101010 �3.848485

Solution 7.778 �10�1 �1.020 �101 1.013�101 �0.101�102 �0.383 �102
Error ˙1.911 �10�1 ˙ 0.01131 �101 ˙0.01268 �101 ˙0.01973�101 ˙0.02590�101

p6 p7 p8 p9
“True” �5050.505002 5050.505002 1.000000 1.000000

Solution �5.136 �103 5.088 �103 1.004 1.001

Error ˙0.01017 �103 ˙0.01005 �103 ˙0.0663 ˙0.0231
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Fig. 9 Oregonator model, measurements (black dots), solution using the single (black line) and
the multiple shooting (grey line), left: log x1 , middle: log x2, right: log x3

trajectories for the single and multiple shooting approaches. Clearly, also in this test
the single shooting converges to a wrong minimum.

7.5 Chaotic Test Problem

The last test problem is a parameter estimation problem with chaotic data. We
consider an ODE model

Px1 D
3X

jD1

3X

k�j

a1j;kxjxk C
3X

j1

b1j xj C c1

Px2 D
3X

jD1

3X

k�j

a2j;kxjxkxjxk C
3X

j1

b2j xj C c2 (39)

Px3 D
3X

jD1

3X

k�j

a3j;kxjxk C
3X

j1

b3j xj C c3

with 30 unknown parameters a1j;k; b1j , c1, a2j;k; b2j , c2, a3j;k; b3j , c3 and initial values
x1.0/; x2.0/; x3.0/. Note that the Lorenz model

Px1 D 10x2 � 10x1; x1.0/ D 5:76540
Px2 D �x1x3 C 46x1 � x2; x2.0/ D 10:50547 (40)

Px3 D x1x2 � 8
3
x3; x3.0/ D 30:58941

is a special case of the model (39). Our aim is to identify all 30 parameters from
the data simulated by the Lorenz model (40) with adding normally distributed noise
.N.0; �2/; � D 0:01/: The multiple shooting is initiated with parameters equal to 0.
Results of the numerical experiments are presented in Fig. 10 and Table 5. We can
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Fig. 10 Chaotic model, measurements (black dots), initial (black line) and solution (grey line)
trajectories, multiple shooting approach, left: x1, middle: x2, right: x3

Table 5 Chaotic test problem: “True” parameter, estimated values and error

a111 a112 a113 a122 a123
“True” 0 0 0 0 0

Solution �0.0015 0.0014 �0.0014 �0.0004 0.0008

Standard error ˙ 0.0055 ˙ 0.0029 ˙ 0.0029 ˙ 0.0024 ˙ 0.0024

a133 b11 b12 b13 c1

“True” 0 �10 10 0 0

Solution 0.0004 �9.9242 9.9585 �0.0206 0.2817

Standard error ˙ 0.0024 ˙ 0.0211 ˙ 0.0169 ˙ 0.0180 ˙ 0.0690

a211 a212 a213 a222 a223
“True” 0 0 �1 0 0

Solution �0.0006 �0.0000 �0.9993 0.0001 �0.0003

Standard error ˙ 0.0052 ˙ 0.0047 ˙ 0.0030 ˙ 0.0025 ˙ 0.0026

a233 b21 b22 b23 c2

“True” 0 46 �1 0 0

Solution 0.0000 45.9551 �0.9754 �0.0046 0.1129

Standard error ˙ 0.0023 ˙ 0.0215 ˙ 0.0177 ˙ 0.0185 ˙ 0.0764

a311 a312 a313 a322 a323
“True” 0 1 0 0 0

Solution �0.0017 1.0015 0.0008 �0.0005 �0.0006

Standard error ˙ 0.0055 ˙ 0.0048 ˙ 0.0029 ˙ 0.0024 ˙ 0.0025

a333 b31 b32 b33 c3

“True” 0 0 0 8
3

0

Solution 0.0001 �0.0394 0.0283 �2.6694 0.0487

Standard error ˙ 0.0023 ˙ 0.0207 ˙ 0.0167 ˙ 0.0176 ˙ 0.0670

see that even with chaotic noisy data the inverse problem is well-posed and allows
to identify all parameters relatively good. For more details and other examples see
[1, 29].
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8 Conclusions

We have presented a boundary value problem approach for parameter estimation
problems in nonlinear ordinary differential equations based on multiple shooting
as originally introduced by Bock in the 1970s. A special emphasis is placed on
the theoretical analysis including numerical stability, grid condition and a posteriori
error analysis. The advantages of multiple shooting versus single shooting have been
illustrated by numerical examples.
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Direct and Indirect Multiple Shooting
for Parabolic Optimal Control Problems

Thomas Carraro and Michael Geiger

Abstract We present two multiple shooting approaches for optimal control prob-
lems (OCP) governed by parabolic partial differential equations (PDE). In the
context of ordinary differential equations, shooting techniques have become a
state-of-the-art solver component, whereas their application in the PDE case is
still in an early phase of development. We derive both direct (DMS) and indirect
(IMS) multiple shooting for PDE optimal control from the same extended problem
formulation. This approach shows that they are algebraically equivalent on an
abstract function space level. However, discussing their respective algorithmic
realizations, we underline differences between DMS and IMS. In the numerical
examples, we cover both linear and nonlinear parabolic side conditions.

1 Introduction

Multiple shooting methods have been extensively used during the past four decades
to solve both ODE boundary value problems (BVP) and optimal control problems
(OCP), and for the latter problem class different shooting techniques were devel-
oped, according to the general dichotomy of indirect and direct solution methods
for OCP. In the context of PDE constrained OCP, where the past 15 years have seen
a rapid development of both theoretical insights and solution algorithms, shooting
methods are up to now rarely used despite their success in the ODE framework.
Direct multiple shooting (DMS) or related time-domain decomposition methods are
treated, e.g., in [13, 29], and an indirect shooting approach was introduced in [14].
All these articles employ shooting techniques focusing on specific aspects such as
adaptivity or preconditioning, while our scope in this article is to show the derivation
of DMS and IMS from the same extended problem formulation to underline their
peculiarities in the PDE framework.

Shooting algorithms for parabolic OCP have to overcome additional difficulties
caused mainly by the spatial variables. On the continuous level, the functional
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analytic setting (solution spaces, weak formulations etc.) has to be developed
carefully; e.g., the initial values for the subinterval solutions are L2 functions rather
than R

n vectors as in the ODE case. On the discrete level, the usually high-
dimensional spatial discretization leads to large-scale optimization problems and
strongly advises the development of suitable adaptive techniques.

The two most attractive features of multiple shooting are its intrinsic stabilizing
effect and its potential for parallelization. The former enables the solution of ill-
conditioned problems where other methods fail; such instabilities are mirrored by
local stability estimates such as

ku.tI s1/ � u.tI s2/k � ceL.t�t0/ks1 � s2k

that are common in the analysis of initial value problems (IVP). Here, t is the
independent variable normally interpreted as time, t0 is the initial time-point, s1
and s2 are two parameter values (in multiple shooting methods, they denote initial
values) and u.tI s/ is the solution depending on the parameter s. Furthermore, L is a
fixed Lipschitz constant inherent to the problem; the value of the exponential factor
can be controlled by splitting the solution interval into smaller parts as is common
in multiple shooting.

The parallelizability of shooting techniques has been addressed and exploited
in the PDE context by the so-called parareal method (developed in [22]) which
has been shown to be equivalent to multiple shooting in [11]. Despite the results
mentioned so far, there are many aspects that have not yet been systematically
examined, which is why shooting techniques for PDE problems still constitute an
interesting and promising subject.

A detailed presentation of indirect multiple shooting (IMS) for nonlinear
parabolic OCP with additional control constraints has recently been given in [9].
In the current publication, we continue this work by comparing IMS and DMS
techniques for the mentioned problem class, but without considering additional
control or state constraints. The latter simplification prevents us from losing track
of our main objective, namely to show the equivalence of IMS and DMS on an
abstract function space level and the differences of their respective algorithmic
concretization. Furthermore, as in the well studied ODE case, we expect IMS and
DMS to behave differently in the presence of control and/or state constraints. In
fact, in the ODE context the presence of state and control constraints has led to
prefer DMS to IMS. An accurate performance comparison between DMS and IMS
in PDE context is left as an interesting topic for further research.

In the literature of multiple shooting methods, the distinction between direct and
indirect approaches is done according to two aspects: how the method is derived and
at which stage the underlying system is discretized. According to the first aspect,
the distinction is done between methods that are derived by certain optimality
conditions (indirect approach) and methods that are not obtained by optimality
conditions (direct approach). Considering the second aspect, the same methods are
classified as indirect if they use the ‘first optimize then discretize’ approach or direct
if they follow the ‘first discretize, then optimize’ approach.
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Formerly in the ODE context, to develop indirect methods a Hamiltonian
functional was introduced and the optimality conditions were derived following the
Pontryagin Maximum Principle [25] and introducing adjoint (or co-state) variables.
Numerical methods for this approach lead to a boundary value problem for the state
and adjoint variables. As a result, in indirect methods the control is not present in the
shooting system. On the contrary, in direct methods the control variable is included
in the shooting system, leading to a procedure that in the multiple shooting context
is also called ‘all-at-once’ approach.

Following the other distinction between indirect and direct methods, namely
the differentiation between the approaches that optimize first and approaches that
discretize first, in indirect methods first the optimality conditions are derived at
the continuous level, and then a discretization method is used to derive a finite
dimensional system that can be solved numerically. On the contrary, in direct
methods the state and control variables are discretized first and typically the discrete
control space has low dimension. Then, a method for nonlinear programming
problems is applied to the resulting discrete system [18, 28]. According to this
distinction, direct methods are not derived in a function space setting. This has
the advantage of avoiding the definition of adjoint variables in function spaces,
especially if state constraints are included in the optimization problem.

We do not want to discuss the several arguments that indicate advantages and
disadvantages of either one method or the other, we will rather discuss the derivation
of the two methods starting from the same formulation at the continuum level.
Therefore, we give a unique argumentation to define whether a method is ‘direct’ or
‘indirect’ allowing to distinguish the two approaches without recurring to specific
discretization methods. Proceeding like this has practical consequences because
keeping the derivation at the continuous level will allow for example to derive error
estimation methods in PDE context for the specific discretization of choice. This
opens up new directions for future research.

The remainder of this contribution is oriented along the following outline: In the
next section, we recapitulate the notational framework for PDE optimal control.
Section 3 presents the OCP in a slightly modified but equivalent form which
provides the suitable context for shooting methods. The KKT conditions of this
extended OCP formulation are the starting point for both IMS and DMS methods
on a function space level, which are described in separate sections. We start Sect. 4
by introducing a second variant of DMS which is common in ODE and DAE
governed optimal control (here called ‘classical’ DMS); the connection between
these two DMS approaches constitutes the main result of the section. After some
brief remarks on discretization in Sect. 5, we discuss the effects of the differences
between IMS and DMS in Sect. 6 by considering two concrete numerical examples.
Some concluding remarks as well as an outlook toward possible further research
constitute the final section.
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2 Preliminaries

The general structure of an OCP requires the minimization of an objective func-
tional, where the minimum is sought in a set of functions u given as solutions of a
differential equation which depends on a control quantity q:

min
.q;u/

J.q; u/ subject to e.q; u/ D 0: (1)

In many problems, one has to deal with additional constraints to the control and/or
state variables of the form c.q; u/ � 0 which make the problems more difficult
to solve. We skip them in order to avoid an excessive notation and in order not
to lose track of our actual objective, namely comparing IMS and DMS methods.
Concerning multiple shooting for parabolic OCP with control constraints c.q/ � 0,
we refer to [9].

We now describe in detail the parabolic OCP which is considered throughout this
article. In this context, we have to deal with the following theoretical setting. The
OCP reads in detail:

min
.q;u/

J.q; u/ D �1J1.u/C �2J2.u.T//C ˛

2
kqk2Q; (2)

subject to the parabolic PDE

@tu.x; t/CA .u.x; t//CB.q.x; t// D f .x; t/ in ˝ 	 I; (3a)

u.x; 0/ D u0.x/ in ˝ (3b)

We discuss the constituent parts of this formulation separately. Therefore, we
assume that V ,! H D H� ,! V� is a Gelfand triple of Hilbert spaces of functions
on˝ (where the superscript � denotes duality of spaces) and R is a suchlike Banach
space. In the objective functional J.q; u/, we eliminate either J1.u/, which we
always assume to be of tracking type

R
I ku.t/ � Ou.t/k2V dt, or the end-time matching

term J2.u.T// WD ku.T/ � OuTk2H by imposing the conditions �i 2 f0; 12g; �1 ¤ �2.
The term ˛

2
kqk2Q serves as a regularization term, and ˛ is the usual regularization

parameter.
The computational domain of our problem is a space-time cylinder˝ 	 I with a

bounded convex polygonal or polyhedral spatial domain˝ � R
d with d 2 f1; 2; 3g

and a finite time interval I D .0;T/. The function spaces for state and control
variables are usually Bochner spaces of the type W.IIY/ where the time variable
t is mapped into a Banach space Y.

In the above function space framework, the natural setting for the parabolic
PDE (3a) is the following: For given q.x; t/ 2 Q WD L2.IIR/ and righthand side
f .x; t/ 2 L2.IIV�/, find a state function u.x; t/ that satisfies (3) obeying additionally
imposed suitable boundary conditions. Under these structural assumptions, the
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solution space for u.x; t/,

X WD fv.x; t/ 2 L2.IIV/ j @tv.x; t/ 2 L2.IIV�/g; (4)

is known to be continuously embedded into the space C.IIH/ of temporally
continuous functions with values in H (see, e.g., [10]), which means that an initial
condition u0.x/ 2 H is well-defined. The differential operator A W X ! L2.IIV�/
may be linear or nonlinear, whereas B W L2.IIR/! L2.IIV�/ is usually linear and
often simply an injection operator, given R ,! V�.

For a weak formulation of (3) we need some preparatory definitions. If A W V !
V� and B W R ! V� are pointwise-in-time operators corresponding to A and
B, respectively, we assume the elliptic operator A to be coercive and define the
following scalar products and semilinear forms:

..u; '//I WD
Z

I
.u.t/; '.t//H dt; aI.u/.'/ WD

Z

I
hA .u.t//; '.t/iV��V dt;

bI.q/.'/ WD
Z

I
hB.q.t//; '.t/iV��V dt:

We normally omit the index I denoting the integration interval if it is evident from
the context. In this notational framework, the weak formulation of (3) reads: Find
u 2 X, so that for all ' 2 X

..@tu; '//C a.u/.'/C b.q/.'/C .u.0/; '.0// D ..f ; '//C .u0; '.0//; (6)

where we included the initial condition (3b) weakly.

Remark 1 Conditions which guarantee that linear parabolic equations of type (3)
or (6) possess a unique solution are provided in [16]. This framework is based on
the underlying elliptic case which was presented, e.g., in [32]. We emphasize that
both our theoretical observations for the linear case in the current and next sections
and our linear example Sect. 6.1 fulfil the mentioned conditions and therefore allow
for unique solutions.

The solution of the OCP is known to be among the stationary points of the Lagrange
functional

L .q; u; z/ WD J.q; u/C e.q; uI z/ (7)

where e.q; uI z/ is an abbreviation for the weakly formulated PDE side condition (6),

e.q; uI z/ WD ..@tu; z//C a.u/.z/C b.q/.z/� ..f ; z//C .u.0/� u0; z.0//;

which sometimes enables a compact presentation on a more abstract level, see
the discussion in Sect. 4. The Lagrange multiplier z 2 X denotes the solution of
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the adjoint equation L 0u.ıu/ D 0 which naturally arises as part of the following
optimality conditions:

L 0z .ız/ D ..@tu; ız//C a.u/.ız/C b.q/.ız/

�..f ; ız//C .u.0/� u0; ız.0// D 0;

(8a)

L 0u.ıu/ D J0u.q; u/.ıu/� ..@tz; ıu//C a0u.u/.ıu; z/C .z.T/; ıu.T// D 0;

(8b)

L 0q.ıq/ D J0q.q; u/.ıq/C b0q.q/.ıq; z/ D 0:

(8c)

This so-called KKT system consists of the derivatives of (7) that form the state,
adjoint and control equations. In the next section, we rewrite the above OCP in a
form that is more suited to the derivation of multiple shooting algorithms.

Remark 2 The regularity of the Lagrange multiplier z is in general a delicate matter.
Due to the structure of our objective functional, which may either be a temporally
distributed L2-term or an L2-term at the final timepoint T, in our case the adjoint
variable z lies in the same space X as the state variable u. A similar argument reveals
the regularity of the adjoint variables � 2 H in Sect. 3.1.

3 Multiple Shooting Methods for Parabolic OCP

As a suitable starting point for our observations we have introduced a general
parabolic OCP which we extend, in Sect. 3.1, to a formulation tailored to the
derivation of multiple shooting. The remainder of this section will be concerned
with two variants of multiple shooting that are common in ODE optimal control. We
will embed them into the context of parabolic OCP, thereby taking into account the
additional challenges arising during the transfer from ODE to PDE (see Sect. 3.2 for
IMS and Sect. 3.3 for DMS). Instead of only emphasizing the differences between
these multiple shooting approaches, it is our objective to also show that they are
rooted in one single common problem formulation and merely constitute different
algorithmic realizations that may render either IMS or DMS preferable in concrete
situations, depending on the problem at hand. We compare both shooting techniques
in the concluding Sect. 3.4.

Remark 3 For simplicity, we assume the PDE side conditions of the OCP occurring
in the following sections to be uniquely solvable, which has to be justified separately
in every concrete problem. Furthermore, we assume also the OCP themselves to be
uniquely solvable, which is guaranteed in a linear-quadratic framework on a convex
domain but in general has to be verified. By these assumptions we avoid a detailed
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discussion of theoretical issues; for more information, we refer to the textbooks
[16, 30].

3.1 The Modified Formulation of the Optimal Control Problem

The modification of the OCP (2) subject to (6) relies on a decomposition of the
closure I of the interval I,

I D f	0g [
M�1[

jD0
Ij; Ij D .	j; 	jC1�; (9)

where 	0 D 0 and 	M D T, and the subsequent redefinition of the OCP in terms
of local control and state functions q j; u j on the subintervals Ij, which lie in the
spaces Qj WD L2.IjIR/ and Xj WD fv 2 L2.IjIV/ j @tv 2 L2.IjIV�/g, respectively.
For a more global view on these intervalwise problems, we define the compositions
u D ..u j/M�1jD0 / and q D ..q j/M�1jD0 / as well as the corresponding spaces

X WD
M�1	
jD0

Xj; Q WD
M�1	
jD0

Qj:

We note that X D fv 2 L2.IIV/ j vjIj 2 Xjg and Q D fq 2 L2.IIR/ j qjIj 2 Qjg,
which implies X ¨ X and Q D Q. With these notations, the modified control
problem reads:

min
.q;u/

J.q;u/ WD
M�1X

jD0
Jj.q j; u j/ D �1

M�1X

jD0

Z

Ij

ku j � OujIjk2V dt

C�2kuM�1.	M/ � OuTk2H C
˛

2

M�1X

jD0

Z

Ij

kq jk2Q dt (10a)

s. t. ..@tu
j; '//C a.u j/.'/C b.q j/.'/ � ..f jIj ; '//

C.u j.	j/ � sj; '.	j// D 0 for j 2 f0; : : : ;M � 1g: (10b)

In this formulation, Eq. (10b) represent IVP on the subintervals Ij. However, we do
not know the exact values u.	j/ and therefore have to impose artificial initial values
s D .sj/MjD0 2 HMC1. This leads to jumps in the global solution u composed of the
interval solutions (i.e. ujIj � u j). Therefore, problem (10) cannot be equivalent
to the original OCP, because u 62 C.IIH/, whereas the solution u 2 X of the
global OCP has to be continuous on I due to the above mentioned embedding
X ,! C.IIH/. This matches the fact that X is a proper subset of X. We therefore have
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to enforce the global continuity of the solution u of (10) by imposing the following
additional continuity conditions:

.s0 � u0; �/ D 0 8� 2 H; (11a)

.sjC1 � u j.	jC1/; �/ D 0 8� 2 H; j 2 f0; : : : ;M � 1g: (11b)

Before we prove the equivalence of the original OCP and the extended problem
formulation (10)–(11), we state the following preparatory lemma.

Lemma 1 The objective functionals J.q; u/ and J.q;u/ coincide for u D ..u j/M�1jD0 /
with u j D ujIj , i.e. for globally continuous intervalwise defined functions u.

Proof Due to the additivity of integration on subintervals, we obtain

J.q; u/ D �1
Z

I
ku.t/ � Ou.t/k2V dtC �2ku.T/ � OuTk2H C

˛

2

Z

I
kq.t/k2R dt

D �1
M�1X

jD0

Z

Ij

ku j.t/ � OujIj.t/k2V dtC �2kuM�1.	M/� OuTk2H C
˛

2

M�1X

jD0

Z

Ij

kq j.t/k2R dt:

This corresponds to J.q;u/ DPM�1
jD0 Jj.q j; u j/. ut

The following theorem states the equivalence of the original and the modified OCP.

Theorem 1

.a/ Let .q; u/ 2 Q 	 X be a solution to the original OCP (2) subject to (6). Then
.q;u/ 2 Q	X, defined by q j WD qjIj and u j WD ujIj , is a solution to the modified
OCP (10)–(11).

.b/ Let, on the other hand, .q;u/ 2 Q 	 X solve the modified problem (10)–(11).
If we define q by qjIj WD q j and u by ujIj WD u j, then .q; u/ 2 Q 	 X solves the
original OCP (2) subject to (6).

Proof

(a) Since u 2 X is globally continuous in time, we have s0 D u0 as well as
sjC1 D ujC1.	jC1/ D u.	jC1/ and u j.	jC1/ D u.	jC1/, which means in turn
sjC1 D u j.	jC1/. Thus, the matching conditions (11) are fulfilled. Let now
. Qq; Qu/ D ..Qqj; Quj/M�1jD0 / 2 Q 	 X such that J. Qq; Qu/ < J.q;u/ and the continuity
conditions (11) are fulfilled. The latter assumption immediately implies Qu 2 X,
i.e. .Qq; Qu/ WD . Qq; Qu/ 2 Q 	 X due to Q D Q. Lemma 1 now yields

J.Qq; Qu/ D J. Qq; Qu/ < J.q;u/ D J.q; u/

which is a contradiction to the assumed optimality of .q; u/.
(b) Since u is part of a solution of the modified OCP, especially (11), we know

that s0 D u0 and sjC1 D u j.	jC1/. The initial value sjC1 on IjC1 clearly fulfils
sjC1 D ujC1.	jC1/. From u 2 X we know that u j 2 C.IjIH/, and together with
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the global continuity we know u 2 C.IIH/. Considering @tu j 2 L2.IjIV�/, the
corresponding global property @tu 2 L2.IIV�/ now directly follows. This means
that u, defined by ujIj WD u j, lies in X, and together with q (analogously defined
by qjIj WD q j) we obtain .q; u/ 2 Q 	 X. Assuming that there is .Qq; Qu/ 2 Q 	 X
with J.Qq; Qu/ < J.q; u/, we get

J. Qq; Qu/ D J.Qq; Qu/ < J.q; u/ D J.q;u/

by Lemma 1, which is a contradiction to the optimality of .q;u/. ut
Agreement To avoid a cumbersome case-by-case analysis, we assume for the rest
of this contribution that all considerations are based on a distributed objective
functional corresponding to �1 D 1

2
and �2 D 0. The necessary modifications in

case of an end-time functional (where �1 D 0 and �2 D 1
2
) are straightforward and

will be covered in brief remarks.
The reformulated problem (10)–(11) is the starting point for multiple shooting

algorithms. In order to state the IMS and DMS methods properly, we have to derive
the first order necessary optimality conditions of the modified OCP. Therefore, we
first define the corresponding Lagrange functional, which is an extended version
of (7) where the equality constraints (11) are considered in addition. We have in
detail:

L ..q j; u j; z j/M�1jD0 ; .sj; �j/MjD0/ WD
M�1X

jD0
Jj.q j; u j/

C
M�1X

jD0
Œ..@tu

j; z j//C a.u j/.z j/C b.q j/.z j/� ..f jIj ; z
j//� (13)

C
M�1X

jD0
.u j.	j/� sj; z j.	j//C

M�1X

jD0
.sjC1 � u j.	jC1/; �jC1/C .s0 � u0; �

0/

The cost functional (10a) has been rearranged in an intervalwise fashion where all
addends are structured alike. We have two kinds of Lagrange multipliers, the adjoint
variables z D ..z j/M�1jD0 / 2 X corresponding to the intervalwise PDE side condition,
and, newly, the spatial functions� D .�j/MjD0 2 HMC1 as multipliers for the equality
constraints (11). We are now able to derive the first order optimality conditions,
the so-called KKT system, by differentiating the above Lagrangian w.r.t. all its
arguments. This yields, for all test functions .ız; ıu; ıq; ı�; ıs/ 2 Xj	Xj	Qj	H	H
and for all j 2 f0; � � � ;M � 1g, the intervalwise equations

L 0z j.ız/ D ..@tu
j; ız//C a.u j/.ız/C b.q j/.ız/

�..f jIj ; ız//C .u j.	j/� sj; ız.	j// D 0; (14a)
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L 0u j.ıu/ D Jj0
u .q

j; u j/.ıu/� ..@tz
j; ıu//C a0u.u j/.ıu; z j/

C.z j.	jC1/ � �jC1; ıu.	jC1// D 0; (14b)

L 0q j.ıq/ D Jj0
q .q

j; u j/.ıq/C b0q.q j/.ıq; z j/ D 0; (14c)

L 0
�0
.ı�/ D .s0 � u0; ı�/ D 0; (14d)

L 0
�j.ı�/ D ..sjC1 � u j.	jC1/; ı�/ D 0; (14e)

L 0sj.ıs/ D ..�j � z j.	j/; ıs/ D 0; (14f)

L 0sM.ıs/ D .�M; ıs/ D 0: (14g)

Remark 4 The last equation (14g) reflects a homogeneous initial condition at the
final time-point 	M D T [see also the original adjoint equation (8b)], whereas
the terms Jj0

u .q
j; u j/.ıu/ serve as righthand sides for the intervalwise adjoints.

In case of an end-time functional, (14g) comprises an extra term describing the
initial condition for the adjoint equation, whereas the derivatives of the distributed
functional terms w.r.t. u in (14b) vanish.

This system of equations can be split into two parts. The first one, Eqs. (14a)–
(14c), correspond to the KKT system of the original problem (2) subject to (6), but
restricted to a subinterval Ij [compare these equations to (8)]. The corresponding
unknowns u j; z j and q j are functions depending on spatial variables and time.
The second part consists of Eqs. (14d)–(14g) and appears only in our problem
reformulation. The unknowns sj and �j are spatial functions in the isolated time-
points 	j.

Stationary points of the Lagrangian, i.e. solutions of (14), are solution candidates
for the modified OCP. The KKT system constitutes a root-finding problem, which
can, e.g., be handled by Newton’s method. For this purpose, we need the second
derivatives of the extended Lagrange functional (13), which is the Jacobian of the
optimality conditions (14). We recall that Newton’s method for solving a nonlinear
but continuously differentiable problem f .x/ D 0 consists in the iteration

xkC1 D xk � Jf .xk/
�1f .xk/

initialized by a suitable starting point x0. To avoid inverting the Jacobian Jf , this is
usually rewritten in the two-step form

Jf .xk/ � ıx D �f .xk/; (15a)

xkC1 D xk C ıx: (15b)

The linear system displayed in the following is merely a formal representation
of (15a) transferred to our context. We therefore rearranged Eq. (14) in a way that
facilitates the illustration of IMS and DMS concepts in the subsequent sections but
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is not performed in practice:

0
BBBBB@

0 L 00uz L 00qz L 00sz 0

L 00zu L 00uu 0 0 L 00�u

L 00zq 0 L 00qq 0 0

L 00zs 0 0 0 L 00�s

0 L 00u� 0 L 00s� 0

1
CCCCCA

0
BBBBB@

ız
ıu
ıq
ıs
ı�

1
CCCCCA
D �

0
BBBBB@

L 0z
L 0u
L 0q
L 0s
L 0�

1
CCCCCA
: (16)

The righthand side of (16) consists of block vectors, i.e., the components of L 0z ,
e.g., are the subinterval state equations, i.e. L 0z D .L 0z0 ; � � � ;L 0zM�1/

>. Analogously,
each of the solution variables is a block vector consisting of subinterval update
values (e.g., ıq D .ıq.0/; � � � ; ıq.M�1//>). The blocks of the matrix are either
zero submatrices in case the equation to be differentiated does not depend on the
variable w.r.t. which we differentiate, or they are sparse (often diagonal, or, after
discretization, block diagonal) matrices due to the decoupling of the component
equations of (14) between different subintervals. We underline that in the context of
large scale parabolic OCP this system is never assembled explicitly due to its huge
size. The multiple shooting techniques derived in the following sections rely on
different splittings of system (16) which reduce its size significantly. Nevertheless,
we will still not assemble the corresponding smaller matrices, but employ Krylov-
Newton methods that allow to solve the respective Newton equations in a matrix-
free manner.

Remark 5 For a discussion of the size of system (16), we exemplarily describe the
matrix in more detail. The upper left 3 	 3 block consists of nine quadratic M 	M
blocks, whereas the lower right 2	2 block comprises four .MC1/	.MC1/ blocks.
The remaining submatrices are rectangular matrices of appropriate dimension.
Summarizing, the Newton matrix is of size .5M C 2/ 	 .5M C 2/. Assuming the
number M of subintervals Ij to be of moderate size (from M D 1 in the case of
simple shooting up to M � 10�100), the system appears to be small. We emphasize,
however, that so far we are still situated in a function space environment, i.e. up to
now we considered neither time nor space discretization. We will see later in Sect. 5
that especially the discretization of the spatial variables leads to a huge enlargement
of the systems that have to be solved numerically (cf. also Remark 12).

3.2 Indirect Multiple Shooting

We start with indirect shooting and describe first the overall structure of the method.
As stated above, we seek ways of splitting the solution process of the linear
system (16) (respectively, of its discrete counterpart). One such splitting leads to
IMS, which is structured like a two-step (fixed-point) iteration. Furthermore, we
discuss some algorithmic details that can also be found in [9]; therefore, we keep
the presentation rather short.
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3.2.1 Structure

In the Newton system (16), all variables u j; z j; q j; sj and �j are independent. We
regroup them according to the following scheme,

0
BBBBB@

0 L 00uz L 00qz L 00sz 0

L 00zu L 00uu 0 0 L 00�u

L 00zq 0 L 00qq 0 0

L 00zs 0 0 0 L 00�s

0 L 00u� 0 L 00s� 0

1
CCCCCA

0
BBBBB@

ız
ıu
ıq

ıs
ı�

1
CCCCCA
D �

0
BBBBB@

L 0z
L 0u
L 0q
L 0s
L 0�

1
CCCCCA
;

thus creating two subsystems and introducing inherent dependencies between the
variables. In a first solution step, we fix s D .sj/MjD0 and � D .�j/MjD0 and solve the
intervalwise boundary value problems

..@tu
j; ız//C a.u j/.ız/C b.q j/.ız/ � ..f jIj ; ız//

C .u j.	j/ � sj; ız.	j// D 0; (17a)

Jj0
u .q

j; u j/.ıu/� ..@tz
j; ıu// C a0u.u j/.ıu; z j/

C .z j.	jC1/ � �jC1; ıu.	jC1// D 0; (17b)

Jj0
q .q

j; u j/.ıq/ C b0q.q j/.ıq; z j/ D 0: (17c)

These equations correspond to L 0
z j D 0;L 0

u j D 0 and L 0
q j D 0 in (14). The

variables u j; z j and q j do now depend on sj and �jC1. The BVP character of the
intervalwise problems results from the forward-backward structure of the state and
adjoint equations: sj is the initial value for u j at 	j, and �jC1 is the initial value for
z j at the subinterval endpoint 	jC1.

Remark 6 It is an interesting problem in its own right how to choose sj and �jC1,
as the quality of the initial choice certainly influences the convergence of Newton’s
method. For ODE problems, there have been several suggestions; e.g., additional
information on the solution, if available, could improve the initial guesses (for an
example, see [8]). Alternatively, one could employ homotopy methods as in [23].

The states u j.sj; �jC1/ and z j.sj; �jC1/ are coupled via the control equation, and
together the three equations yield the same structure on each subinterval as the
global KKT system (8). However, the intervalwise solutions do not fit together
at the subinterval endpoints, thus the solution is globally discontinuous due to
the artificially chosen initial values sj and �jC1. This contradicts the embedding
X ,! C.IIH/. Therefore, we use the local solutions u j.sj; �jC1/; z j.sj; �jC1/ and
q j.sj; �jC1/ in order to update sj and �jC1 in the second solution step. This consists
in solving the following system (corresponding to L 0

�j D 0;L 0sj D 0):
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Algorithm 1 Indirect multiple shooting for PDE governed OCP

Require: Decomposition I D f	0g [SM�1
jD0 .	j; 	jC1�, initial values f.sj

0; �
jC1
0 /M�1

jD0 g.
1: Set k D 1.
2: while Shooting conditions (18) not fulfilled do
3: for j D 0 to M � 1 do
4: Solve intervalwise boundary value problems (17).
5: end for
6: Solve (19), compute update f.sj

k ; �
jC1
k /M�1

jD0 g of initial values, set k kC 1.
7: end while

.s0 � u0; ı�/ D 0; (18a)

.�j � z j.	jI sj; �jC1/; ıs/ D 0; .j D 0; : : : ;M � 1/ (18b)

.sj � uj�1.	jI sj�1; �j/; ı�/ D 0; .j D 1; : : : ;M/ (18c)

.�M; ıs/ D 0: (18d)

These equations constitute the shooting system, which is the part of (14) we actually
solve by Newton’s method. Abbreviating the above shooting equations by F.s;�/ D
0, we thus have to solve

r.s;�/F.s;�/ �
�
ıs
ı�

�
D �F.s;�/: (19)

This leads to improved initial values snew D sC ıs; �new D � C ı�, with which
we restart from step one described above. We see now the asserted structure of
a two-step fixed-point iteration where we alternate between computing .u j; z j; q j/

and updating .sj; �j/. The whole process is resumed in the following Algorithm 1.

3.2.2 Algorithms for the Subproblems

We now focus on the two essential Steps 4 and 6 of Algorithm 1, namely the
solution of the intervalwise BVP (17) (the first part of our two stage problem) and
the solution of the shooting system (19) (the second part, correspondingly).

There are several possibilities how to solve the intervalwise BVP. In Algorithm 2,
we present a so-called reduced approach which has also been implemented for our
numerical examples. The important feature is the reduction of the set of independent
variables from .q j; u j/ to the control q j alone, meaning that the interval state
u j D u j.q j/ is interpreted in terms of the interval control. To clarify the notation
of Algorithm 2, we define the reduced cost functional (on subinterval Ij)

j.q j/ WD Jj.q j; u j.q j//: (20)
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Algorithm 2 Solution of the intervalwise BVP (reduced approach)

Require: Set � D 0, prescribe tolerance TOL1 and initial control qj
0.

1: while krj.qj
� /k > TOL1 do

2: Solve state equation (17a).
3: Solve adjoint equation (17b).
4: Compute gradient rj.qj

� / of reduced cost functional.
5: Set i D 0, prescribe tolerance TOL2 and ıqj

�;0 .

6: while kıqj
�;iC1 � ıqj

�;ik > TOL2 do

7: Compute matrix-vector product r2j.qj
� /ıq

j
�;i.

8: Solve system r2j.qj
�/ıq

j
�;i D �rj.qj

� / by a Newton-CG type method (this requires the
solution of two additional equations per iteration; these so-called tangent and additional
adjoint equations are obtained by linearization of (17a) and (17b)).

9: end while
10: Set � � C 1 and qj

�C1 D qj
� C ıqj

�;end .
11: end while

Algorithm 3 Solution of the IMS shooting system (matrix-free approach)
Require: Shooting variables .sk;�k/, intervalwise OCP solutions u j; z j

1: Build up residual �F.sk ;�k/.
2: Set i D 0, prescribe tolerance TOL and choose .ıs.0/k ; ı�

.0/
k /.

3: while krF.sk ;�k/.ıs
.i/
k ; ı�

.i/
k /C F.sk ;�k/k > TOL do

4: Compute matrix-vector product rF.sk ;�k/.ıs
.i/
k ; ı�

.i/
k /.

5: Solve system rF.sk ;�k/.ıs
.i/
k ; ı�

.i/
k / D �F.sk ;�k/ by a Newton-GMRES type method

(this requires the solution of two additional BVP, the linearizations of (17) w.r.t. s resp. �,
in each iteration).

6: end while
7: Set k kC 1 and skC1 D sk C ısend

k ;�kC1 D �k C ı�end
k .

For a more detailed presentation we refer to [9],where IMS for parabolic OCP has
already been described thoroughly. We will meet the concept of reduced control
problems again in Sect. 4 in the context of different DMS techniques.

The solution of (19) by Newton’s method involves the Jacobian matrix
r.s;�/F.s;�/ of the shooting conditions (18). Despite having substantially reduced
the size of the Newton system [in this regard, (19) must be compared to (16)], the
effort for explicitly assembling this Jacobian is still not manageable. Therefore,
we choose a matrix-free method (in our case a Newton-GMRES approach) to
solve (19). Algorithm 3 comprises the essential steps. Details of the Krylov-Newton
method addressed in Step 5 can again be found in [9]. The proceeding in the case
of DMS is quite similar in many respects and will be discussed in more detail in the
next section.
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3.3 Direct Multiple Shooting

We have already seen in the introduction that almost all literature on multiple
shooting for PDE governed OCP concentrates on DMS methods (see [13, 29,
31]). Furthermore, the ‘classical’ method mostly used for ODE optimal control
introduced in [3–5] is a direct method. Many algorithmic and implementational
details can be found, e.g., in [20]. Further developments of this method, especially
considering specific condensing techniques, can be found for example in [6, 17–
19, 27]. The application of the ‘classical’ DMS method to large scale systems can
be found for example in [21, 26]. The DMS method presented here is substantially
equivalent to this ‘classical’ approach, the difference consists in the reduced and
unreduced strategies to solve the problem as will be shown in Sect. 4.

We will now introduce direct shooting focusing on algorithmic details that we
have skipped in the IMS context.

3.3.1 Structure

We derive DMS along the very same lines as IMS by splitting the solution process
of system (16) into two parts. However, DMS relies on a different regrouping of the
variables which is illustrated by the following scheme:

0

BBBBB@
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BBBBB@
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L 0�

1

CCCCCA
:

Thus, we now fix sj; �j, and here also the controls q j, and compute in the first
solution step only the state and adjoint variables u j D u j.q j; sj/ and z j.q j; sj; �jC1/,
which have now become dependent variables. This leads to the following initial
value problems:

..@tu
j; ız//C a.u j/.ız/C b.q j/.ız/ � ..f jIj ; ız//

C .u j.	j/ � sj; ız.	j// D 0; (21a)

Jj0
u .q

j; u j/.ıu/� ..@tz
j; ıu// C a0u.u j/.ıu; z j/

C .z j.	jC1/ � �jC1; ıu.	jC1// D 0: (21b)

Contrarily to the IMS case, these equations bear no BVP structure, because they
are not fully coupled. We may in a first step compute the state solutions u j.q jI sj/

and then use the result to compute the adjoint solutions z j.u j.q jI sj/I�jC1/, albeit
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backward in time. The local IVP (21) correspond to the first two equation blocks
of (14), L 0

z j D 0 and L 0
u j D 0.

In the current situation, we still have to solve the matching conditions
L 0

sj D 0;L 0
�j D 0 and the control equation L 0

q j D 0, together constituting
the second solution step. The resulting system that has to be solved by Newton’s
method reads

.s0 � u0; ı�/ D 0; (22a)

J00q .q0; u0/.ıq/C b0q.q0/.ıq; z0.	jI q0; s0; �1// D 0; (22b)

.�j � z j.	jI q j; sj; �jC1/; ıs/ D 0; .j D 0; : : : ;M � 1/ (22c)

.sj � uj�1.	jI qj�1; sj�1/; ı�/ D 0; .j D 1; : : : ;M/ (22d)

Jj0
q .q

j; u j/.ıq/C b0q.q j/.ıq; z j.	jI q j; sj; �jC1// D 0; .j D 0; : : : ;M � 1/ (22e)

.�M; ıs/ D 0: (22f)

Thus we have again reduced the size of the original Newton system (16), but here
the resulting system is larger than in the IMS framework. Therefore, the first step in
DMS consists of only solving the IVP (21) in contrast to the far more complicated
BVP (17). Abbreviating (22) by F.q; s;�/ D 0, we end up with Newton’s equation

r.q;s;�/F.q; s;�/ �
0

@
ıq
ıs
ı�

1

A D �F.q; s;�/: (23)

Altogether, the structure of DMS is again a two-step fixed-point iteration, where we
first keep the controls and initial values fixed and compute .u j; z j/ before updating
.q j; sj; �j/. We resume the solution process in the following Algorithm 4.

Algorithm 4 Direct multiple shooting for PDE governed OCP

Require: Decomp. I D f	0g [SM�1
jD0 .	j; 	jC1�, initial values and controls f.qj

0; s
j
0; �

jC1
0 /M�1

jD0 g.
1: Set k D 1.
2: while Shooting conditions (22) not fulfilled do
3: for j D 0 to M � 1 do
4: Solve intervalwise initial value problems (21).
5: end for
6: Solve (23), comp. update f.qj

k ; s
j
k; �

jC1
k /M�1

jD0 g of initial values and controls, set k kC 1.
7: end while
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3.3.2 Algorithm for Newton’s Method

In contrast to the IMS case above, where we presented the details of the solution of
both the intervalwise BVP (17) and the system (19) of shooting conditions, only
Step 6 of Algorithm 4, i.e. the realization of Newton’s method, is worth being
discussed more thoroughly. The solution of the IVP in Step 4 is straightforward; the
only important feature is that, on each subinterval, we have to first solve the state
equation, because u j is needed for solving the adjoint equation. With this restriction
in mind, we turn our attention to Newton’s system (23), the solution of which is
different from that of the corresponding system in IMS and has not been presented
elsewhere; therefore, we elaborate the following presentation in detail.

In Sect. 3.2, we stated that application of a matrix-free Krylov-Newton method is
desirable due to the size of problem (19). We did not go into the details and referred
to [9] instead. As the system (23) is even larger than (19) (due to the presence of
the controls, see also Remark 12 below), a direct solver is even less advisable here.
We will now discuss a Newton-GMRES method that has not been addressed in the
DMS context before.

We see that the Jacobian r.q;s;�/F.q; s;�/ of (22) involves derivatives u j
s ; u

j
q

of u j w.r.t. sj and q j as well as derivatives z j
s ; z

j
�; z

j
q of z j w.r.t. sj; �jC1 and q j.

These derivatives, the so-called sensitivities, are obtained by solving five additional
(linearized) IVP, the sensitivity equations (also known as variational equations), for
j 2 f0; : : : ;M � 1g. First, we differentiate (21a) where u j D u j.sj; q j/ w.r.t. sj in
direction ıs and w.r.t. q j in direction ıq to obtain the equations

..@tu
j
s; '//C a0u.u j/.uj

s; '/C .uj
s.	j/� ısj; '.	j// D 0; (24a)

..@tu
j
q; '//C a0u.u j/.u j

q; '/C b0q.q j/.ıq j; '/C .u j
q.	j/; '.	j// D 0; (24b)

which have to hold for all ' 2 Xj. Having solved these problems (for given initial
data ısj;0 and ıqj;0), we end up with u j

s ; u
j
q which can now be inserted into the

following three IVP that are obtained by differentiation of the adjoint equation (21b)
w.r.t. all its arguments in corresponding directions and must hold for all  2 Xj:

Jj00
uu.q

j; u j/.uj
s;  / � ..@tz

j
s;  //C a00uu.u

j/.uj
s;  ; z

j/

Ca0u.u j/. ; zj
s/C .zj

s.	jC1/;  .	jC1// D 0; (25a)

Jj00
uu.q

j; u j/.u j
q;  / � ..@tz

j
q;  //C a00uu.u

j/.u j
q;  ; z

j/

Ca0u.u j/. ; z j
q/C .z j

q.	jC1/;  .	jC1// D 0; (25b)

�..@tz
j
�;  //C a0u.u j/. ; zj

�/C .zj
�.	jC1/� ı�jC1;  .	jC1// D 0: (25c)

Solving these problems with initial data ı�jC1;0 leaves us with a complete set of
sensitivities, but only w.r.t. the chosen initial values .ıqj;0; ısj;0; ı�jC1;0/. In order
to assemble r.q;s;�/F explicitly, we have to solve the sensitivity equations for a
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whole basis of
SM�1

jD0 ŒQj	H	H�, which is numerically expensive for fine temporal
or spatial discretizations. Therefore, we choose an adjoint approach (matrix-free)
where we handle Newton’s system (23) with an iterative solver, for which we choose
in our case, due to the asymmetric structure of the matrix, a GMRES method. We
then have to solve the sensitivity equations only once per GMRES iteration. The
adjoint approach thus avoids assembling the Jacobian and operates on the matrix-
vector product r.q;s;�/F.q; s;�/ � .ıq; ıs; ı�/> instead.

This matrix-vector product, the left-hand side of (23), has the concrete form

r.q;s;�/F.q; s;�/ �
0

@
ıq
ıs
ı�

1

A D

0
BBBBBBBBBBBBBBBB@

ıs0

J000qq .q
0; u0/.ıq0/C b00qq.q

0/.ıq0; z0/
Cb0q.q0/Œz0s .ıs0/C z0q.ıq

0/C z0�.ı�
0/�

ı�j � zj
s.	jI ısj/� zj

�.	jI ı�jC1/
ısjC1 � uj

s.	jC1I ısj/ � uj
�.	jC1I ı�jC1/

Jj00
qq.q

j; u j/.ıq j/C b00qq.q
j/.ıq j; z j/

Cb0q.q j/Œzj
s.ıs

j/C z j
q.ıq

j/C zj
�.ı�

j/�

ı�M

1
CCCCCCCCCCCCCCCCA

where the middle part has to be interpreted for j D 0; : : : ;M�1; note the index shift
we performed in the second component of the middle part to keep the presentation
consistent. We can now formulate the following Algorithm 5 which yields the details
of Step 6 of the above DMS algorithm:

Algorithm 5 Solution of the DMS shooting system (matrix-free approach)
Require: Shooting variables .sk;�k/ and controls qk, intervalwise OCP solutions u j; z j

1: Build up residual �F.qk ; sk;�k/.
2: Set i D 0, prescribe tolerance TOL and choose .ıq.0/k ; ıs.0/k ; ı�

.0/
k /.

3: while krF.qk ; sk;�k/.ıq
.i/
k ; ıs

.i/
k ; ı�

.i/
k /C F.qk ; sk;�k/k > TOL do

4: Compute matrix-vector product rF.qk ; sk;�k/.ıq
.i/
k ; ıs

.i/
k ; ı�

.i/
k / by solving the state and

adjoint sensitivity equations (24) and (25).
5: Solve system rF.qk ; sk;�k/.ıq

.i/
k ; ıs

.i/
k ; ı�

.i/
k / D �F.qk ; sk;�k/ by a Newton-GMRES

type method (this requires the renewed solution of (24) and (25) in each iteration).
6: end while
7: Set k kC 1 and qkC1 D qk C ıqend

k ; skC1 D sk C ısend
k ;�kC1 D �k C ı�end

k .
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3.4 Comparison of Both Approaches

From the last two Sects. 3.2 and 3.3 we see that IMS and DMS on a purely
algebraic level, i.e. looking merely at the equations to be solved [which are in both
cases the extended KKT conditions (14)], are in fact equivalent. The differences
are due to the respective algorithmic realizations that result from the different
splittings of system (16) leading to different internal dependencies of the arguments
of the common starting point, the extended formulation of the optimal control
problem (10)–(11).

Remark 7 Note that there are further possibilities how to split the set of arguments
of the extended Lagrangian (13), although they might not work as well as the ones
discussed so far. This might give reason to further research.

In the algorithmic description, we concentrated on the solution of the shooting
systems (19) resp. (23) by Newton’s method, which may lead to the supposition that
DMS is more expensive (in this context, see also Remark 12 below). However, in the
DMS context we only have to solve a (nonlinear) IVP (21) on each subinterval, and
also the additional sensitivity equations are only intervalwise (linear) IVP, which can
be solved in a rather straightforward manner. Despite the IMS shooting system (19)
being much smaller than the DMS one, the solution of the (nonlinear) subinterval
problems (17) and the corresponding (linearized) problems for the Newton-GMRES
method necessitates large effort, because they constitute smaller versions of the
original OCP and its linearization. It is thus not clear a priori which of the two
methods (IMS or DMS) is to be preferred.

Both IMS and DMS still comprise a variety of algorithms, depending on how
we solve the subinterval problems (reduced approach as above vs. all-at-once
approach), on how we solve Newton’s system (iterative matrix-free solver as above
vs. direct solver, inclusion of globalization techniques or of an SQP-like inexact
Newton method), on how we solve the sensitivity equations (simply by a fixed-point
method or by more sophisticated approaches) etc.

We will now turn our attention to some of these differences which are responsible
for the seemingly large differences between ‘classical’ DMS (introduced in Sect. 4.1
for parabolic OCP) and the DMS approach given in Algorithm 4.

4 Variants of DMS

The following considerations were initiated by the observation that the DMS method
derived in Sect. 3.3, despite being called ‘direct’, seems to be rather an indirect
method judged by the standard classification (see Introduction), because it is based
on the optimality conditions (14), i.e., the optimization has already been done
when shooting comes into play. According to our classification discussed in the
Introduction, the DMS approach shown here is a direct approach since the control
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is included in the shooting system. Therefore, it benefits from the advantages of
direct methods in terms of convergence as shown in our nonlinear example Sect. 6.2.
Further study to compare IMS and DMS in the PDE context is needed, but is left for
future work, especially considering state and control constraints.

Typical implementations of direct methods [1, 28], that use the ‘first discretize,
then optimize’ approach, avoid the use of an adjoint equation either by using
a sensitivity approach or by applying automatic differentiation techniques. We
therefore present in Sect. 4.1 the ‘classical’ DMS approach but tailored to the
parabolic situation, and show in Sect. 4.2 that this approach, relying on a reduced
formulation of the extended optimal control problem (10)–(11), is equivalent to our
variant of DMS. In the classical framework, the reduced problem is discretized, and
the resulting nonlinear programming problem (NLP) is usually solved by an all-at-
once approach, e.g. a sequential quadratic programming (SQP) method. In contrast,
our DMS variant relies on a continuous unreduced formulation. The dichotomy of
reduced versus unreduced approaches is discussed in [16] for the global OCP (2)–
(3), and we use the notational framework established there. Note that the whole
discussion takes place on the abstract function space level.

4.1 DMS Based on a Reduced Form of the Extended OCP
Formulation

We will now embed a DMS method that was developed (mainly by Bock and his
co-workers) in the 1980s (see, e.g. [3–5]) into the context of parabolic OCP.

DMS methods for problem (10)–(11) are usually based on a reformulation of this
extended OCP formulation completely in terms of the primal shooting variables sj

and the intervalwise controls q j, i.e. u j D u j.q j; sj/. Pursuing this strategy, we end
up with the minimization problem

min
.q;s/

J.q; s/ WD
M�1X

jD0
Jj.q j; u j.q j; sj// (26a)

s. t. s0 � u0 D 0; (26b)

sjC1 � u j.	jC1I q j; sj/ D 0; (26c)

where (26c) comprises the continuity conditions for j D 0; : : : ;M � 1. We call (26)
a reduced formulation of the extended OCP formulation (10)–(11). It is formulated
in terms of the independent variables q j and sj and relies upon the solution of the
IVP

e j.q j; sj; u j.q j; sj// D
�
@tu j.q j; sj/CA .u j.q j; sj//CB.q j/� f jIj

u j.	jI q j; sj/� sj

�
D
�
0

0

�

(27)
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that has been solved on all subintervals Ij for j D 0; : : : ;M � 1. We assume unique
solvability of the subinterval problems which implies the existence of a solution
operator mapping Qj 	 H to Xj. In (27), e j.q j; sj; u j.q j; sj// is an intervalwise
counterpart of the abstract side condition in (1) which is, in contrast to the preceding
sections, again strongly formulated. This abstract notation helps us to keep the proof
of the equivalence result in the next section short.

Remark 8 In the reformulation (26)–(27) of the extended OCP formulation, the
local control variable q j.x; t/ is a function of both spatial variables x and time
t. In DMS methods for ODE control problems which depend only on t, the
control is usually parameterized as a piecewise polynomial of order p � 3 on the
subintervals Ij, i.e. q j � q j.qj

0; � � � ; qj
p/ (see, e.g., [20]). This parameterization of

the control saves a large amount of computing time and storage (up to four control
parameters per shooting interval Ij as opposed to a number of control values on
each Ij determined by the control discretization, which is usually much finer than
the mentioned parameterization). Furthermore, so-called condensing techniques
(reducing the shooting system to the control variables) are frequently employed;
they are not efficient if q is discretized on a similarly fine level as the state u.
However, reducing the control to a much smaller space by parameterization leads
to only suboptimal solutions of the given control problems. In the PDE case, a
parameterization of the control q.x; t/ may lead to a loss of structural information in
the spatial variables. Some ideas in this regard are briefly discussed in Sect. 5 (see
Remark 11 below).

Starting from (26), we derive the corresponding Lagrange functional (introducing a
Lagrange multiplier � D .�j/MjD0 2 HmC1):

L .q; s;�/ D J.q; s/C .s0 � u0; �
0/C

M�1X

jD0
.sjC1 � u j.	jC1I q j; sj/; �jC1/: (28)

We obtain the (reduced) optimality system as usual by differentiation w.r.t. the argu-
ments .q; s;�/. This yields the system [where j 2 f0; : : : ;M�1g in Eqs. (29b), (29c)
and (29e)]

L 0
�0
.ı�/ D .s0 � u0; ı�/; (29a)

L 0
�j.ı�/ D .sjC1 � u j.	jC1I q j; sj/; ı�/; (29b)

L 0sj.ıs/ D hJj0
u ; u

j0
s .ıs/iXj��Xj C .�j; ıs/ � .�jC1; uj0

s Œ	jC1�.ıs//; (29c)

L 0sM.ıs/ D .�M; ıs/; (29d)

L 0q j.ıq/ D hJj0
q ; ıqiQj��Qj C hJj0

u ; u
j0
q.ıq/iXj��Xj � .�jC1; uj0

q Œ	jC1�.ıq//: (29e)



56 T. Carraro and M. Geiger

Here, uj0
q W Qj ! Xj and uj0

s W H ! Xj are operators mapping the controls and

initial values to the respective (variational) states uj0
q=s that are denoted by the same

symbols. Furthermore, the notation uj0
q=sŒ	jC1� means that the respective variational

state obtained by application of the operator uj0
q=s is evaluated at time-point 	jC1. The

classical DMS method consists in the solution of system (29). In the framework
of ODE optimal control, [20] gives a detailed description of SQP methods that
solve (29) without employing an adjoint equation. Therefore, either the Jacobian
of (29) has to be assembled, or additional sophisticated algorithms are needed to
circumvent this matrix assembly. An alternative matrix-free SQP approach has been
proposed by Ulbrich [31]. This procedure corresponds to the sensitivity approach
for generating derivative information that is needed during the solution process;
this sensitivity approach is usually too expensive in PDE optimal control, because
one has to solve an additional linearized problem for each basis vector ıq of the
(discrete) control space (see [16] or [24]).

4.2 Equivalence of the Two DMS Approaches

Comparing the two DMS variants presented in Sects. 3.3 and 4.1 yields, besides
several minor differences, a central distinction that influences the structure of the
solution process strongly. It consists of the absence of any adjoint problem in the
DMS method from Sect. 4.1, whereas the variant discussed in Sect. 3.3 is based on
the same full optimality system (14) as the IMS approach of Sect. 3.2, including the
adjoint part.

Remark 9 Generally, modern implementations of DMS for ODE optimal control
problems, which are capable of handling parabolic OCP by transforming the
PDE side condition into a huge ODE system via the method of lines (MOL)
approach, make use of adjoint methods for sensitivity generation, which constitute a
suitable alternative to the above described approach. They often compute the adjoint
equations (which may be nasty to derive by hand in case of large ODE systems with
complicated nonlinear terms) by automatic differentiation (see [1]).

The following theorem, which is the main result of this section, shows the equiva-
lence of the two DMS approaches. Moreover, the proof reveals that the seemingly
so different DMS variant of Sect. 3.3 is merely a reformulation of ‘classical’ DMS
by means of an adjoint approach for sensitivity generation. It is performed in an
abstract function space setting, meaning that the argumentation is not affected by
discretization.

Theorem 2 The solution of the reduced formulation (26) of the modified OCP (10)–
(11) by means of an adjoint approach leads to the DMS method described in
Sect. 3.3.
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The following outline prepares the proof of Theorem 2. Classical DMS for
problem (26) relies upon the solution of system (27) and necessitates the solution
of (29). Analogously, the DMS approach from Sect. 3.3 for problem (10)–(11) relies
upon (21) having been solved and necessitates the solution of (22). Comparing
the two settings, the following correspondences are evident: (27) is the strong
formulation of (21a), and (29a), (29b) and (29d) are identical to (22a), (22d)
and (22f), respectively. It is thus our goal to derive the adjoint equation (21b), the
continuity conditions (22c) and the control equations (22b) and (22e) from (29c)
and (29e). To achieve this, we extend the ideas and techniques of Sect. 1.6 from [16]
to the more complex multiple shooting situation. The following proof has already
been outlined in [12].

Proof For the following discussion, we introduce adjoint operators uj0�
q W Xj� ! Qj�

and uj0�
s W Xj� ! H� � H (as well as their restrictions to the final time-point,

uj0�
q Œ	jC1� W H � H� ! Qj� and uj0�

s Œ	jC1� W H � H� ! H� � H) corresponding
to the differential operators uj0

q W Qj ! Xj and uj0
s W H ! Xj and rewrite Eqs. (29c)

and (29e) in an abstract adjoint form:

L 0sj.ıs/ D .uj0�
s .J

j0
u /; ıs/C .�j; ıs/� .uj0�

s Œ	jC1�.�jC1/; ıs/; (29c�)

L 0q j.ıq/ D hJj0
q ; ıqiQj��Qj C huj0�

q .J
j0
u /; ıqiQj��Qj

� huj0�
q Œ	jC1�.�jC1/; ıqiQj��Qj : (29e�)

We discuss the adjoint operators first on an abstract level which enables a clear
presentation of the formal framework. By differentiating the interval state equa-
tions (27) w.r.t. q j in direction ıq and w.r.t. sj in direction ıs, we obtain (the
arguments .q j; sj; u j.q j; sj// are omitted for brevity)

ej0
u.ıuq/ D �ej0

q.ıq/; ej0
u.ıus/ D �ej0

s .ıs/: (30)

Here, ıuq and ıus are abbreviations for u j
q.ıq/ and u j

s.ıs/, respectively. Assuming
ej0

u to have a bounded inverse, we use the implicit function theorem to obtain

uj0
q D �.ej0

u/
�1 ı ej0

q ; uj0
s D �.ej0

u/
�1 ı ej0

s :

Now, the definition of adjoint operators gives us the following representation:

uj0�
q D �ej0�

q ı .ej0
u/
��; uj0�

s D �ej0�
s ı .ej0

u/
��:

Inserting these expressions for uj0�
s and uj0�

q into the corresponding terms of (29c�)
and (29e�), we get

.uj0�
s .J

j0
u /; ıs/ D �.ej0�

s ..e
j0
u/
��.Jj0

u //; ıs/; (31a)
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.uj0�
s Œ	jC1�.�jC1/; ıs/ D �.ej0�

s ..e
j0
u/
��Œ	jC1�.�jC1//; ıs/; (31b)

huj0�
q .J

j0
u /; ıqiQj��Qj D �hej0�

q ..e
j0
u/
��.Jj0

u //; ıqiQj��Qj ; (31c)

huj0�
q Œ	jC1�.�jC1/; ıqiQj��Qj D �hej0�

q ..e
j0
u/
��Œ	jC1�.�jC1//; ıqiQj��Qj : (31d)

We notice that, in (31a) and (31c), the same argument .ej0
u/
��.Jj0

u / is inserted
into both operators ej0�

s and ej0�
q . The same holds for .ej0

u/
��Œ	jC1�.�jC1/ in (31b)

and (31d). We define the variables z j
J WD �.ej0

u/
��.Jj0

u / and z j
� WD .ej0

u/
��Œ	jC1�.�jC1/,

which then fulfil the following equations, respectively:

ej0�
u .z

j
J/ D �Jj0

u ; ej0�
u Œ	jC1�.z j

�/ D �jC1: (32)

These are the (formal) adjoint equations; we will see below that they can be merged
into one equation, due to the linearity of the operator ej0�

u and a superposition
principle, which interprets z j

J as a solution belonging to a homogeneous initial value
and non-homogeneous right-hand side �Jj0

u , and z j
� as a solution belonging to a

homogeneous right-hand side and non-homogeneous initial value �jC1.
In our concrete situation, we start from the weak formulation of (27) given by

..@tu
j; '//C a.u j/.'/C b.q j/.'/ � ..f jIj ; '//C .u j.	j/� sj; '.	j// D 0: (33)

The differential operator uj0
q W Qj ! Xj mentioned above is the solution operator of

the following linearized equation (which is the derivative of (33) w.r.t. q j in direction
ıq):

..@tıuq; '//C a0u.u j/.ıuq; '/C .ıuq.	j/; '.	j// D �b0q.q j/.ıq; '/: (34)

Analogously, uj0
s W H ! Xj is the solution operator of the derivative of (33) w.r.t. sj

in direction ıs:

..@tıus; '//C a0u.u j/.ıus; '/C .ıus.	j/; '.	j// D .ıs; '.	j//: (35)

Here, ıuq and ıus denote the respective solution variables. We call (34) and (35)
the sensitivity equations belonging to (27). They correspond to the formal equa-
tions (30).

Now we are able to substantiate the adjoint equations (32). We have seen above
that the application of the adjoint operator uj0�

q resp. uj0�
s to a functional Jj0

u 2 Xj� (or

of uj0�
q Œ	jC1� resp. uj0�

s Œ	jC1� to �jC1) corresponds to carrying out the following steps:

1. Solve the adjoint equation ej0�
u .z

j
J/ D �Jj0

u (or ej0�
u Œ	jC1�.z j

�/ D �jC1).
2. Apply the adjoint operators ej0�

q resp. ej0�
s to the solution z j

J (or z j
�).
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Discussing the first step will lead us to the adjoint equation, while the second step
yields the continuity conditions for the adjoint equation and the control equations.
The general adjoint equation corresponding to both (34) and (35) is given by

� ..@tıu
�
q=s;  //C a0u.u j/.ıu�q=s;  /C .ıu�q=s.	jC1/;  .	jC1// D rhs. /: (36)

Here, the term rhs. / which is fanning the dynamics represents either a distributed
source term or an end-time initial condition. Our situation comprises the following
two adjoint equations (where the abstract adjoint variable ıu�q=s has been suitably
replaced):

� ..@tz
j
J ;  //C a0u.u j/.z j

J ;  /C .z j
J.	jC1/;  .	jC1// D �Jj0

u .q
j; u j/. /; (37a)

�..@tz
j
�;  //C a0u.u j/.z j

�;  /C .z j
�.	jC1/;  .	jC1// D .�jC1;  .	jC1//: (37b)

Evidently, Eq. (37) are both fully linear, as the possibly nonlinear operators a.�/.�/
and Jj.�/ enter only in linearized form. Therefore, we may write (37a) and (37b) as
one single equation by defining z j WD z j

J � z j
�. The resulting adjoint equation reads

Jj0
u .q

j; u j/. / � ..@tz
j;  //C a0u.u j/.z j;  /

C.z j.	jC1/� �jC1;  .	jC1// D 0: (38)

A comparison of (21b) and (38) shows that, substituting the test function  by ıu,
our first objective, namely the introduction of the adjoint equation into the reduced
DMS method by means of an adjoint approach to sensitivity generation, has been
achieved.

We finally explain the second step of the above proceeding in detail. By means
of the described superposition z j WD z j

J � z j
�, system (31) diminishes to

.uj0�
s .J

j0
u /� uj0�

s Œ	jC1�.�jC1/; ıs/ D �.ej0�
s .z

j/; ıs/; (39a)

huj0�
q .J

j0
u /� uj0�

q Œ	jC1�.�jC1/; ıqiQj��Qj D �hej0�
q .z

j/; ıqiQj��Qj ; (39b)

where the adjoint solution has been inserted into the right-hand side terms. Since
the right-hand sides of the second equation of (30) and of (35) coincide, we get the
following equalities (making use of the weak form ej0

s .ıs/.'/ WD .ej0
s .ıs/; '/):

.ıs; ej0�
s .z

j// D .ej0
s .ıs/; z

j/ D ej0
s .ıs/.z

j/ D .ıs; z j.	j//:

Thus, replacing (for all j 2 f0; : : : ;M � 1g) the adjoint terms in (29c�) by the
corresponding term in (39a) and using the last equality, we end up with

L 0sj.ıs/ D .�j; ıs/ � .z j.	j/; ıs/; (40)
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which is exactly the adjoint continuity condition (22c). Analogously, we can
exploit (39b). The right-hand sides of the first equation of (30) and of (34) coincide,
which leaves us with

hej0�
q .z

j/; ıqiQj��Qj D hej0
q.ıq/; z

jiXj��Xj D ej0
q.ıq/.z

j/ D �b0q.q j/.ıq; z j/:

Here, we have made use of the definition hej0
q.ıq/; 'iXj��Xj WD ej0

q.ıq/.'/. We can
now replace the adjoint terms in (29e�) by the corresponding term in (39b), use the
last equality and obtain for all j 2 f0; : : : ;M � 1g:

L 0q j.ıq/ D hJj0
q ; ıqiQj��Qj C b0q.q j/.ıq; z j/: (41)

Since the last relationship is identical to (22e) [and, in the case j D 0, to (22b)], this
completes the proof. ut

5 Discretization

For the sake of completeness, we briefly present the discretization schemes that will
be used for computing the examples in Sect. 6 below. We treat the discretization
of the time variable and the spatial variables separately, but choose the same
discretization schemes for IMS and DMS.

5.1 Time Semi-Discretization

The decomposition (9) of the solution interval I into subintervals Ij D .	j; 	jC1� is
not to be seen as a discretization, but rather as a reformulation of the problem. As we
have seen, it is compensated by introducing the additional equality constraints (11).
Here, we describe a further decomposition of each shooting interval Ij into smaller
time intervals In

j D .tn
j ; t

nC1
j � of length kn

j WD tnC1
j � tn

j with timepoints

	j D t0j < t1j < � � � < t
Nj

j D 	jC1;

which is now an actual discretization of the time variable. On each shooting interval,
we use the discontinuous Galerkin method of order r (dG(r) method). All semi-
discrete variables are indexed with a symbol k denoting a piecewise constant
function kjIn

j
WD kn

j . We denote space-time scalar products and semilinear forms
on In

j by ..�; �//n; an.�/.�/ and bn.�/.�/, suppressing the shooting interval index j. The
same holds for the functional Jj

n.�/.
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Starting point for the dG(r) method is the space of semi-discrete functions

Xr
k.Ij/ WD fvk 2 L2.IjIV/ j vk.t

0
j / 2 H; vkjIn

j
2 Pr.I

n
j IV/; n D 1; : : : ;Njg

where the space Pr.In
j / contains all polynomials on In

j up to degree r. The time-
discrete functions on Ij may be discontinuous at the timepoints tn, hence we
introduce the following notation for describing the jumps:

v
j;C
k;n WD lim

t&0
vk.t

n
j C t/; v

j;�
k;n WD lim

t%0
vk.t

n
j C t/; Œv

j
k�n WD vj;C

k;n � vj;�
k;n :

Now we are prepared to formulate the time semi-discrete state and adjoint equations:
Find uj

k; z
j
k 2 Xr

k.Ij/, such that for all ızk; ıuk 2 Xr
k.Ij/, the following equations hold:

Nj�1X

nD0

h
..@tu

j
k; ızk//n C an.u

j
k/.ızk/C bn.q

j/.ızk/ � ..f jIn
j
; ızk//n

i

C
Nj�1X

nD1
.Œuj

k�n; ız
C
k;n/C .uj

k.	j/ � sj; ızk.	j// D 0; (42a)

Nj�1X

nD0

h
J

j0

n;u.q
j; uj

k/.ıuk/� ..@tz
j
k; ıuk//n C a0n;u.u

j
k/.ıuk; z

j
k/
i

�
Nj�1X

nD1
.Œzj

k�n; ıu
�
k;n/C .zj

k.	jC1/� �jC1; ıuk.	jC1// D 0: (42b)

Additional linearized equations needed to compute sensitivities (e.g., the tangent
and additional adjoint equations in the IMS case) are discretized analogously. In the
context of parabolic OCP without shooting, this is described in detail in [2]. Note
that the control has not been discretized.

Remark 10 We will only consider the case r D 0, where the Galerkin method is
equivalent to the backward Euler time-stepping scheme up to a quadrature error
induced by the box rule. To keep the presentation short, we omit the discussion of
alternatives like the continuous Galerkin method of order r (cG(r) method); details
can be found, e.g., in [24].

5.2 Space-Time Discretization

For discretizing the spatial variables, we use a conforming finite element method
on a shape-regular mesh Th decomposing the domain ˝ into closed cells K
(for definitions and details we refer to, e.g., the textbook [7]). Spatially discrete
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quantities are indexed by h, where hjK WD hK is the (cellwise constant) diameter
of K. On the mesh Th, we define the space Vs

h � V of finite element functions of
polynomial degree s by

Vs
h WD

˚
vh

ˇ̌
vhjK 2 Qs.K/;K 2 Th

�
:

We denote by Qs.K/ the space of functions that result from isoparametric transfor-
mations of polynomials defined on a reference unit cell OK. As we only consider the
case s D 1, we exclusively deal with bilinear transformations. To formulate the fully
discretized problem, we need the function space

Xr;s
k;h.Ij/ WD fvkh 2 L2.IjIVs

h/ j vkh.t
0
j / 2 Vs

h; vkhjIn
j
2 Pr.I

n
j IVs

h/; n D 1; : : : ;Njg

which consists of all piecewise polynomials of degree r on the time intervals with
values in the finite element space Vs

h. The space-time discrete problem now consists
in finding ukh; zkh 2 Xr;s

k;h.Ij/, such that for all ıukh; ızkh 2 Xr;s
k;h.Ij/ the following

equations hold:

Nj�1X

nD0

h
..@tu

j
kh; ızkh//n C an.u

j
kh/.ızkh/C bn.q

j
kh/.ızkh/� ..f jIn

j
; ızkh//n

i

C
Nj�1X

nD1
.Œuj

kh�n�1; ız
C
kh;n�1/C .uj

kh.	j/ � sj; ızkh.	j// D 0; (43a)

Nj�1X

nD0

h
J

j0

n;u.q
j
kh; u

j
kh/.ıukh/ � ..@tz

j
kh; ıukh//n C a0n;u.u

j
kh/.ıukh; z

j
kh/
i

�
Nj�1X

nD1
.Œzj

kh�n; ıu
�
kh;n/C .zj

kh.	jC1/� �jC1; ıukh.	jC1// D 0: (43b)

This system is, apart from the additional index h and the different function spaces,
evidently equal to (42).

Remark 11 Note that for the fully discrete formulation, we discretized the control
q. In doing so, we followed the approach suggested in [15] and let the control
discretization be induced by the corresponding one for the states u and z, thus we did
not describe it in detail. Alternatively, one might discretize q explicitly; this allows
for a coarser resolution of the control in both space and time, either by choosing a
coarser mesh (here, one could use hierarchically structured meshes for the state and
control variables) or by employing time-stepping schemes or finite element methods
of lower order than those chosen for state discretization.

Remark 12 We are now in a position to compare the dimension of systems (19)
for IMS and (23) for DMS. Assume I is decomposed into 10 shooting intervals



Direct and Indirect Multiple Shooting for Parabolic Optimal Control Problems 63

each of which is discretized by 50 time steps, and the spatial domain ˝ is the
unit square divided into 256 identical elements (for other configurations, see the
examples in Sect. 6). In the IMS case, the solution vector .ıs; ı�/ of (19) comprises
10 initial values for the state and 10 for the adjoint solution, each of the size of the
spatial discretization. This amounts to a system dimension of 5120. With DMS, the
control enters into the system. As we resolve the control completely in the IMS case,
we do not use any condensing techniques here, either, in order to keep the results
comparable and the comparison fair. Thus the control is distributed in space and
time and comprises a total of 10 �50 �256D 128;000 degrees of freedom. Therefore,
the solution vector .ıq; ıs; ı�/ of (23) has dimension 133,120.

6 Numerical Results

In this section, we discuss the practical realization of the theoretical results from
Sect. 3 by regarding two examples. In Sect. 6.1 we consider the case of a linear-
quadratic optimal control problem. Afterwards, we introduce a nonlinear reaction
term into the PDE side condition and discuss the semilinear case in Sect. 6.2. All
computations have been done using the finite element software deal.ii and rely
upon the discretization routines presented in the last section.

6.1 Linear Example

The following linear-quadratic OCP is considered on the space-time domain˝	I D
.Œ�1I 3� 	 Œ�1; 1�/ 	 Œ0; 1� and aims at matching a given state profile OuT at the time
interval endpoint T D 1:

min
.q;u/

�
1

2
ku.x; 1/� OuT.x/k2L2.˝/ C

˛

2

Z 1

0

kq.x; t/k2L2.˝/ dt

�
;

subject to the parameterized nonstationary Helmholtz equation

@tu.x; t/��u.x; t/� !u.x; t/ D q.x; t/ in ˝ 	 .0; 1�;
u.x; t/ D 0 on @˝ 	 Œ0; 1�;
u.x; 0/ D max

n
0; cos


�
2

x1
�

cos

�
2

x2
�o

on ˝

The prescribed profile is chosen as OuT.x1; x2/ D min
˚
0; cos

�
�
2

x1
	

cos
�
�
2

x2
	�

. Thus,
we expect the state solution to be a cosine bump moving from the left to the right
half of the spatial domain over time, thereby changing its sign.
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We compute solutions of this problem for different values of the parameter !
and ˛ D 0:01 by means of IMS and DMS (in the variant of Sect. 3.2) We use a
four times globally refined spatial mesh (512 cells) and five equidistant shooting
intervals discretized each by 100 time steps. The results are shown in Table 1: from
left to right, we see that only one Newton step is needed, furthermore the number
of GMRES iterations, the functional value, the residual of the respective shooting
system (which also yields the stopping criterion) and the computing time measured
in seconds.

Both methods have been implemented as described in Sect. 3, without any
additional tuning (like condensing, reduction of control spaces etc.). Since we use
the same implementation for both linear and nonlinear problems, we solve the
shooting system by a Newton-type method, which requires only one iteration in
the current example, as can be expected for a linear problem. For increasing !, the
number of inner GMRES iterations also increases in both cases, which reflects the
worsening conditioning of the respective problems; indeed, there is a value of !
where five shooting intervals are not sufficient to solve the problem. With DMS,
altogether more GMRES steps are needed than with IMS, which is due to the much
larger linear system. The functional values J.q; u/ coincide for both methods, and
also the shooting residual kFk is of comparable size. However, the DMS algorithm
takes longer (by a factor of 1.5 up to 2) than IMS to solve the problem with this same
accuracy. Finally, in Fig. 1 we see that after convergence of the shooting methods
(here: IMS) the expected wandering and inversion of the cosine bump is reproduced.

Table 1 Comparison of IMS (left) and DMS (right) for varying ! (required: kFk < 5:0e�5) in a
linear framework

! #New #GMRES J.q; u/ kFk t.s/ #New #GMRES J.q; u/ kFk t.s/

0 1 52 0.0446 1:6e�11 1497 1 110 0.0446 1:9e�10 2507

1 1 64 0.0367 1:8e�11 1825 1 128 0.0367 2:2e�10 2909

2 1 76 0.0290 2:1e�11 2149 1 156 0.0290 2:3e�10 3531

3 1 83 0.0218 2:4e�11 2347 1 192 0.0218 2:3e�10 4360

4 1 130 0.0163 2:6e�11 3601 1 248 0.0163 2:6e�10 5586

5 1 165 0.0148 2:9e�11 4571 1 416 0.0148 2:8e�10 9423

Fig. 1 Contour plot of the IMS solution on 5 shooting intervals after convergence: initial time
T D 0 (left), final time T D 1 (right)
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Table 2 Comparison of IMS (left) and DMS (right) for varying ! (required: kFk < 1:0e�3) in a
nonlinear framework

! #New #GMRES J.q; u/ kFk t.s/ #New #GMRES J.q; u/ kFk t.s/

0 4 24/51 0.1639 3:1e�6 2530 4 28/53 0.1639 3:1e�5 2088

1 4 26/52 0.1420 6:4e�6 2795 4 38/62 0.1420 1:5e�5 2427

2 4 28/56 0.1187 2:5e�6 3118 4 43/74 0.1187 9:0e�5 2926

3 4 28/75 0.0948 3:9e�6 4201 4 51/84 0.0948 1:4e�4 3280

4 4 28/79 0.0735 5:6e�6 4713 4 68/108 0.0735 2:1e�4 4201

5 4 28/94 0.0645 1:2e�5 5658 4 80/139 0.0645 2:6e�4 5376

6.2 Nonlinear Example

The second problem is a slight modification of the first one. We now choose
the regularization parameter as ˛ D 0:05. Furthermore, we add a polynomial
nonlinearity to the PDE side condition and consider the problem

@tu.x; t/ ��u.x; t/ � !u.x; t/C u.x; t/3 D q.x; t/ in ˝ 	 .0; 1�;

whereas the initial condition, the boundary values, the objective functional and the
computational domain are chosen identical to the configuration in Sect. 6.1.

We need several Newton iterations before convergence, but at the beginning, the
shooting variables are still far away from their true values. It is thus not necessary to
carry out the first Newton steps on a highly refined spatial mesh. On the contrary, the
shooting process becomes far more efficient if the first iterations are carried out on a
coarse mesh until a good approximation has been obtained and if the spatial mesh is
only then refined. In the above example, we therefore start on a mesh of only 8 cells
and alternate between computing a Newton update for the shooting variables and
refining the spatial mesh. This is repeated until we reach the finest mesh with 512
cells. Table 2 shows the results of this approach with global mesh refinement; in the
second column of the respective method, we have given the minimum and maximum
number of GMRES iterations needed within one Newton step. We emphasize that
this process carries the potential of including adaptive mesh refinement into the
shooting process, which is a starting point for further research. Furthermore, the
IMS and DMS methods are comparable w.r.t. computing time, which is contrary to
the linear example above. An extended comparison of IMS and DMS has to include
additional control or state constraints, which is currently being examined.

7 Conclusion and Outlook

To underline the algebraic equivalence of DMS and IMS on an abstract function
space level, we have rigorously derived the two approaches starting from a common
formulation. Furthermore, we have given a detailed description of their algorithmic
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realization. We have shown that our DMS approach is equivalent to the ‘classical’
approach known in ODE context, which leads, in contrast to our approach, to a
reduced formulation. The advantage of keeping the derivation of a DMS method
at the continuous level, in contrast to the ‘first discretize then optimize’ classical
approach, is the possibility to derive an a posteriori error estimation for the space
and time discretization, including the continuity conditions in the shooting system.
This important aspect is part of our current research.
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50 Years of Time Parallel Time Integration

Martin J. Gander

Abstract Time parallel time integration methods have received renewed interest
over the last decade because of the advent of massively parallel computers, which
is mainly due to the clock speed limit reached on today’s processors. When solving
time dependent partial differential equations, the time direction is usually not used
for parallelization. But when parallelization in space saturates, the time direction
offers itself as a further direction for parallelization. The time direction is however
special, and for evolution problems there is a causality principle: the solution later
in time is affected (it is even determined) by the solution earlier in time, but not the
other way round. Algorithms trying to use the time direction for parallelization must
therefore be special, and take this very different property of the time dimension into
account.

We show in this chapter how time domain decomposition methods were invented,
and give an overview of the existing techniques. Time parallel methods can be
classified into four different groups: methods based on multiple shooting, methods
based on domain decomposition and waveform relaxation, space-time multigrid
methods and direct time parallel methods. We show for each of these techniques
the main inventions over time by choosing specific publications and explaining the
core ideas of the authors. This chapter is for people who want to quickly gain an
overview of the exciting and rapidly developing area of research of time parallel
methods.

1 Introduction

It has been precisely 50 years ago that the first visionary contribution to time
parallel time integration methods was made by Nievergelt [64]. We show in Fig. 1 an
overview of the many important contributions over the last 50 years to this field of
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Fig. 1 An overview over important contributions to time parallel methods

research. The methods with iterative character are shown on the left, and the direct
time parallel solvers on the right, and large scale parallel methods are more toward
the center of the figure, whereas small scale parallel methods useful for multicore
architectures are more towards the left and right borders of the plot.

We also identified the four main classes of space-time parallel methods in Fig. 1
using color:

1. methods based on multiple shooting are shown in magenta,
2. methods based on domain decomposition and waveform relaxation are shown in

red,
3. methods based on multigrid are shown in blue,
4. and direct time parallel methods are shown in black.

There have also been already overview papers, shown in green in Fig. 1, namely the
paper by Gear [40], and the book by Burrage [12].

The development of time parallel time integration methods spans now half a
century, and various methods have been invented and reinvented over this period.
We give a detailed account of the major contributions by presenting seminal papers
and explaining the methods invented by their authors.
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Fig. 2 Decomposition of the
space-time domain in time for
multiple shooting type
methods

t
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2 Shooting Type Time Parallel Methods

Time parallel methods based on shooting solve evolution problems in parallel using
a decomposition of the space-time domain in time, as shown in Fig. 2. An iteration
is then defined, or some other procedure, which only uses solutions in the time
subdomains, to obtain an approximate solution over the entire time interval .0;T/.

2.1 Nievergelt 1964

Nievergelt was the first to consider a pure time decomposition for the parallel
solution of evolution problems [64]. He stated precisely 50 years ago at the time
of writing of this chapter, how important parallel computing was to become in the
near future:

For the last 20 years, one has tried to speed up numerical computation mainly by providing
ever faster computers. Today, as it appears that one is getting closer to the maximal
speed of electronic components, emphasis is put on allowing operations to be performed
in parallel. In the near future, much of numerical analysis will have to be recast in a more
‘parallel’ form.

As we now know, the maximal speed of electronic components was only reached
40 years later, see Fig. 3.

Nievergelt presents a method for parallelizing the numerical integration of an
ordinary differential equation, a process which “by all standard methods, is entirely
serial”. We consider in Nievergelt’s notation the ordinary differential equation
(ODE)

y0 D f .x; y/; y.a/ D y0; (1)

and we want to approximate its solution on the interval Œa; b�. Such an approximation
can be obtained using any numerical method for integrating ODEs, so-called time
stepping methods, but the process is then entirely sequential. Nievergelt proposes
instead to partition the interval Œa; b� into subintervals x0 D a < x1 < : : : < xN D b,
as shown in his original drawing in Fig. 4, and then introduces the following direct
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ergelt (taken from a talk of Bennie Mols at the VINT symposium 12.06.2013)

y1M1

y2M2

x y°

y
12

y
11

y
21

y
22

x y°

x
1

x
2

a=x
0

yN–1,MN–1

y
N–1,1

x
N–1

b=x
N

x y°

c

•
•
••

•
•

N–1

2

1
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time parallel solver:

1. Compute a rough prediction y0i of the solution y.xi/ at each interface (see Fig. 4),
for example with one step of a numerical method with step size H D .b� a/=N.

2. For a certain number Mi of starting points yi;1; : : : ; yi;Mi at xi in the neighborhood
of the approximate solution y0i (see Fig. 4), compute accurate (we assume here
for simplicity exact) trajectories yi;j.x/ in parallel on the corresponding interval
Œxi; xiC1�, and also y0;1.x/ on the first interval Œx0; x1� starting at y0.

3. Set Y1 WD y0;1.x1/ and compute sequentially for each i D 1; : : : ;N � 1 the
interpolated approximation by

• finding the interval j such that Yi 2 Œyi;j; yi;jC1�,
• determining p such that Yi D pyi;j C .1 � p/yi;jC1, i.e. p D Yi�yi;jC1

yi;j�yi;jC1
,
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• setting the next interpolated value at xiC1 to YiC1 WD pyi;j.xiC1/ C .1 �
p/yi;jC1.xiC1/.

For linear ODEs, this procedure does actually produce the same result as the
evaluation of the accurate trajectory on the grid, i.e. Yi D y.xi/ in our case of exact
local solves, there is no interpolation error, and it would in fact suffice to have only
two trajectories, Mi D 2 in each subinterval, since one can also extrapolate.

In the non-linear case, there is an additional error due to interpolation, and
Nievergelt defines a class of ODEs for which this error remains under control if one
uses Backward Euler for the initial guess with a coarse step H, and also Backward
Euler for the accurate solver with a much finer step h, and he addresses the question
on how to choose Mi and the location of the starting points yi;j in the neighborhood.
He then concludes by saying

The integration methods introduced in this paper are to be regarded as tentative examples
of a much wider class of numerical procedures in which parallelism is introduced at the
expense of redundancy of computation. As such, their merits lie not so much in their
usefulness as numerical algorithms as in their potential as prototypes of better methods
based on the same principle. It is believed that more general and improved versions of
these methods will be of great importance when computers capable of executing many
computations in parallel become available.

What a visionary statement again! The method proposed is inefficient compared
to any standard serial integration method, but when many processors are available,
one can compute the solution faster than with just one processor. This is the typical
situation for time parallel time integration methods: the goal is not necessarily
perfect scalability or efficiency, it is to obtain the solution faster than sequentially.

The method of Nievergelt is in fact a direct method, and we will see more such
methods in Sect. 5, but it is the natural precursor of the methods based on multiple
shooting we will see in this section.

2.2 Bellen and Zennaro 1989

The first to pick up the idea of Nievergelt again and to formally develop an iterative
method to connect trajectories were Bellen and Zennaro in [6]:

In addition to the two types of parallelism mentioned above, we wish to isolate a third which
is analogous to what Gear has more recently called parallelism across the time. Here it is
more appropriately called parallelism across the steps. In fact, the algorithm we propose is a
realization of this kind of parallelism. Without discussing it in detail here, we want to point
out that the idea is indeed that of multiple shooting and parallelism is introduced at the
cost of redundancy of computation.

Bellen and Zennaro define their method directly at the discrete level, for a
recurrence relation of the form

ynC1 D FnC1.yn/; y0 known. (2)
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This process looks entirely sequential, one needs to know yn in order to be able to
compute ynC1. Defining the vector of unknowns y WD .y0; y1; : : : ; yn; : : :/ however,
the recurrence relation (2) can be written simultaneously over many levels in the
fixed point form

y D �.y/; (3)

where �.y/ D .y0;F1.y0/;F2.y1/; : : : ;Fn.yn�1/; : : :/. Bellen and Zennaro propose
to apply a variant of Newton’s method called Steffensen’s method to solve the fixed
point equation (3). Like when applying Newton’s method and simplifying, as we
will see in detail in the next subsection, this leads to an iteration of the form

ykC1 D �.yk/C
�.yk/.ykC1 � yk/; (4)

where 
� is an approximation to the differential D�, and they choose as initial
guess y0n D y0. Steffensen’s method for a nonlinear scalar equation of the form
f .x/ D 0 is

xkC1 D xk � g.xk/
�1f .xk/

g.x/ WD f .xC f .x// � f .x/

f .x/
;

and one can see how the function g.x/ becomes a better and better approximation of
the derivative f 0.x/ as f .x/ goes to zero. As Newton’s method, Steffensen’s method
converges quadratically once one is close to the solution.

Bellen and Zennaro show several results about Steffensen’s method (4) applied
to the fixed point problem (3):

1. They observe that each iteration gives one more exact value, i.e. after one
iteration, the exact value y11 D y1 is obtained, and after two iterations, the exact
value y22 D y2 is obtained, and so on. Hence convergence of the method is
guaranteed if the vector yk is of finite length.

2. They prove that convergence is locally quadratic, as it holds in general for
Steffensen’s method applied to non-linear problems.

3. The corrections at each step of the algorithm can be computed in parallel.
4. They also present numerically estimated speedups of 29–53 for a problem with

400 steps.

In contrast to the ad hoc interpolation approach of Nievergelt, the method of Bellen
and Zennaro is a systematic parallel iterative method to solve recurrence relations.
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2.3 Chartier and Philippe 1993

Chartier and Philippe return in [13] to the formalization of Bellen and Zennaro,1

which was given at the discrete level, and formulate their parallel integration method
at the continuous level for evolution problems:

Parallel algorithms for solving initial value problems for differential equations have
received only marginal attention in the literature compared to the enormous work
devoted to parallel algorithms for linear algebra. It is indeed generally admitted that
the integration of a system of ordinary differential equations in a step-by-step process is
inherently sequential.

The underlying idea is to apply a shooting method, which was originally
developed for boundary value problems, see [47] and references therein, to an initial
value problem, see also [48]. For a boundary value problem of the form

u00 D f .u/; u.0/ D a; u.1/ D b; (5)

a shooting method also considers the same differential equation, but as an initial
value problem,

u00 D f .u/; u.0/ D a; u0.0/ D s; (6)

and one then tries to determine the so-called shooting parameter s, the ‘angle of the
cannon to shoot with’, such that the solution passes through the point u.1/ D b,
which explains the name of the method. To determine the shooting parameter s,
one needs to solve in general a non-linear equation, which is preferably done by
Newton’s method, see for example [47].

If the original problem is however already an initial value problem,

u0 D f .u/; u.0/ D u0; x 2 Œ0; 1�; (7)

then there is in no target to hit at the other end, so at first sight it seems shooting is
not possible. To introduce targets, one uses the idea of multiple shooting: one splits
the time interval into subintervals, for example three, Œ0; 1

3
�, Œ 1

3
; 2
3
�, Œ 2

3
; 1�, and then

solves on each subinterval the underlying initial value problem

u00 D f .u0/; u01 D f .u1/; u02 D f .u2/;
u0.0/ D U0; u1. 13 / D U1; u2. 23 / D U2;

1“In diesem Artikel studieren wir verschiedene Versionen einer Klasse paralleler Algorithmen, die
ursprünglich von A. Bellen und M. Zennaro für Differenzengleichungen konzipiert und von ihnen
‘across the steps’ Methode genannt worden ist.”
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together with the matching conditions

U0 D u0; U1 D u0.
1

3
;U0/; U2 D u1.

2

3
;U1/:

Since the shooting parameters Un, n D 0; 1; 2 are not known (except for U0 D u0),
this leads to a system of non-linear equations one has to solve,

F.U/ WD
0

@
U0 � u0

U1 � u0.
1
3
;U0/

U2 � u1. 23 ;U1/

1

A D 0; U D .U0;U1;U2/
T :

If we apply Newton’s method to this system, like in the classical shooting method,
to determine the shooting parameters, we obtain for k D 0; 1; 2; : : : the iteration

0

@
UkC1
0

UkC1
1

UkC1
2

1

A D
0

@
Uk
0

Uk
1

Uk
2

1

A �

2
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1

� @u0
@U0
. 1
3
;Uk

0/ 1

� @u1
@U1
. 2
3
;Uk

1/ 1

3
75

�10

@
Uk
0 � u0

Uk
1 � u1. 13 ;U

k
0/

Uk
2 � u1.

2
3
;Uk

1/

1

A :

Multiplying through by the Jacobian matrix, we find the recurrence relation

UkC1
0 D u0;

UkC1
1 D u0. 13 ;U

k
0/C @u0

@U0
. 1
3
;Uk

0/.U
kC1
0 �Uk

0/;

UkC1
2 D u1.

2
3
;Uk

1/C @u1
@U1
. 2
3
;Uk

1/.U
kC1
1 �Uk

1/:

In the general case with N shooting intervals, solving the multiple shooting
equations using Newton’s method gives thus a recurrence relation of the form

UkC1
0 D u0;

UkC1
nC1 D un.tnC1;Uk

n/C @un
@Un
.tnC1;Uk

n/.U
kC1
n � Uk

n/; n D 0; 1; 2; : : :N; (8)

and we recognize the form (4) of the method by Bellen and Zennaro. Chartier and
Philippe prove that (8) converges locally quadratically. They then however already
indicate that the method is not necessarily effective on general problems, and
restrict their analysis to dissipative right hand sides, for which they prove a global
convergence result. Finally, also discrete versions of the algorithm are considered.

2.4 Saha, Stadel and Tremaine 1996

Saha, Stadel and Tremaine cite the work of Bellen and Zennaro [6] and Nievergelt
[64] as sources of inspiration, but mention already the relation of their algorithm to
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waveform relaxation [52] in their paper on the integration of the solar system over
very long time [67]:

We describe how long-term solar system orbit integration could be implemented on a
parallel computer. The interesting feature of our algorithm is that each processor is
assigned not to a planet or a pair of planets but to a time-interval. Thus, the 1st
week, 2nd week, . . . , 1000th week of an orbit are computed concurrently. The problem of
matching the input to the .nC 1/-st processor with the output of the n-th processor can be
solved efficiently by an iterative procedure. Our work is related to the so-called waveform
relaxation methods. . . .

Consider the system of ordinary differential equations

Py D f .y/; y.0/ D y0;

or equivalently the integral formulation

y.t/ D y.0/C
Z t

0

f .y.s//ds:

Approximating the integral by a quadrature formula, for example the midpoint rule,
we obtain for each time tn for y.tn/ the approximation

yn D y0 C h
n�1X

mD0
f .
1

2
.ymC1 C ym//; n D 1; : : : ;N: (9)

Collecting the approximations yn in a vector y WD .y0; y1; : : : ; yN/, the relation (9)
can again be written simultaneously over many steps as a fixed point equation of the
form

y D F.y/; (10)

which can be solved by an iterative process. Note that the quadrature formula (9)
can also be written by reusing the sums already computed at earlier steps,

yn D yn�1 C hf .
1

2
.yn C yn�1//; n D 1; : : : ;N; (11)

so the important step here is not the use of the quadrature formula. The interesting
step comes from the application of Saha, Stadel and Tremaine, namely a Hamilto-
nian problem with a small perturbation:

Pp D �@qH; Pq D @pH; H.p; q; t/ D H0.p/C �H1.p; q; t/:

Denoting by y WD .p; q/, and f .y/ WD .�Hq.y/;Hp.y//, Saha, Stadel and Tremaine
derive Newton’s method for the associated fixed point problem (10), as Chartier and
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Philippe derived (8). Rewriting (8) in their notation gives

YkC1
nC1 D y�n.tnC1;Yk

n/C
@y�n
@Yn

.tnC1;Yk
n/.Y

kC1
n � Yk

n/; (12)

where the superscript � denotes the solution of the perturbed Hamiltonian system.
The key new idea of Saha, Stadel and Tremaine is to propose an approximation

of the derivative by a cheap difference for the unperturbed Hamiltonian problem,

YkC1
nC1 D y�n.tnC1;Yk

n/C y0n.tnC1;YkC1
n /� y0n.tnC1;Yk

n/: (13)

They argue that with the approximation for the Jacobian used in (13), each iteration
now improves the error by a factor �; instead of quadratic convergence for the
Newton method (12), one obtains linear convergence.

They show numerical results for our solar system: using for H0 Kepler’s law,
which leads to a cheap integrable system, and for �H1 the planetary perturbations,
they obtain the results shown in Fig. 5. They also carefully verify the possible
speedup with this algorithm for planetary simulations over long time. Figure 6
shows the iterations needed to converge to a relative error of 1e�15 in the planetary
orbits.

Fig. 5 Maximum error in
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Fig. 6 Top linear scaling,
and bottom logarithmic
scaling of the number of
iterations to reach a relative
error of 1e� 15 as a function
of the number of processors
(time intervals) used
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2.5 Lions, Maday and Turinici 2001

Lions, Maday and Turinici invented the parareal algorithm in a short note [54],
almost independently of earlier work; they only cite the paper by Chartier and
Philippe [13]:

On propose dans cette Note un schéma permettant de profiter d’une architecture parallèle
pour la discrétisation en temps d’une équation d’évolution aux dérivées partielles. Cette
méthode, basée sur un schéma d’Euler, combine des résolutions grossières et des
résolutions fines et indépendantes en temps en s’inspirant de ce qui est classique en
espace. La parallélisation qui en résulte se fait dans la direction temporelle ce qui est
en revanche non classique. Elle a pour principale motivation les problèmes en temps réel,
d’où la terminologie proposée de ‘pararéel’.

Lions, Maday and Turinici explain their algorithms on the simple scalar model
problem2

Py D �ay; on Œ0;T�; y.0/ D y0: (14)

2 “Pour commencer, on expose l’idée sur l’exemple simple.”
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The solution is first approximated using Backward Euler on the time grid Tn with
coarse time step 
T,

Y1nC1 � Y1n C a
TY1nC1 D 0; Y10 D y0: (15)

The approximate solution values Y1n are then used to compute on each time interval
ŒTn;TnC1� exactly and in parallel the solution of

Py1n D �ay1n; y1n.Tn/ D Y1n : (16)

One then performs for k D 1; 2; : : : the correction iteration

1. Compute the jumps Sk
n WD yk

n�1.Tn/� Yk
n .

2. Propagate the jumps ık
nC1 � ık

n C a
Tık
nC1 D Sk

n, ık
0 D 0.

3. Set YkC1
n WD yk

n�1.Tn/C ık
n and solve in parallel

PykC1
n D �aykC1

n ; on ŒTn;TnC1�; ykC1
n .Tn/ D YkC1

n :

The authors prove the following error estimate for this algorithm 3

Proposition 1 (Lions, Maday and Turinici 2001) The parareal scheme is of order
k, i.e. there exists ck s.t.

jYk
n � y.Tn/j C max

t2ŒTn ;TnC1�
jyk

n.t/ � y.t/j � ck
Tk:

This result implies that with each iteration of the parareal algorithm, one obtains
a numerical time stepping scheme which has a truncation error that is one order
higher than before. So for a fixed iteration number k, one can obtain high order
time integration methods that are naturally parallel. The authors then note that
the same proposition also holds for Forward Euler. In both discretization schemes
however, the stability of the higher order methods obtained with the parareal
correction scheme degrades with iterations, as shown in Fig. 7 taken from the
original publication [54]. The authors finally show two numerical examples: one
for a heat equation where they obtain a simulated speedup of a factor 8 with 500
processors, and one for a semi-linear advection diffusion problem, where a variant
of the algorithm is proposed by linearization about the previous iterate, since the
parareal algorithm was only defined for linear problems. Here, the speedup obtained
is 18.

Let us write the parareal algorithm now in modern notation, directly for the non-
linear problem

u0 D f .u/; u.t0/ D u0: (17)

3“C’est alors un exercice que de montrer la:”
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Fig. 7 Stability of the parareal algorithm as function of the iteration, on the left for Backward
Euler, and on the right for Forward Euler

The algorithm is defined using two propagation operators:

1. G.t2; t1; u1/ is a rough approximation to u.t2/ with initial condition u.t1/ D u1,
2. F.t2; t1; u1/ is a more accurate approximation of the solution u.t2/ with initial

condition u.t1/ D u1.

Starting with a coarse approximation U0
n at the time points t0; t1; t2; : : : ; tN , for

example obtained using G, the parareal algorithm performs for k D 0; 1; : : : the
correction iteration

UkC1
nC1 D F.tnC1; tn;Uk

n/C G.tnC1; tn;UkC1
n /� G.tnC1; tn;Uk

n/: (18)

Theorem 1 (Parareal is a Multiple Shooting Method [35]) The parareal algo-
rithm is a multiple shooting method

UkC1
nC1 D un.tnC1;Uk

n/C
@un

@Un
.tnC1;Uk

n/.U
kC1
n � Uk

n/; (19)

where the Jacobian has been approximated in (18) by a difference on a coarse grid.

We thus have a very similar algorithm as the one proposed by Saha, Stadel and
Tremaine [67], the only difference being that the Jacobian approximation does not
come from a simpler model, but from a coarser discretization.

We now present a very general convergence result for the parareal algorithm
applied to the non-linear initial value problem (17), which contains accurate
estimates of the constants involved:

Theorem 2 (Convergence of Parareal [28]) Let F.tnC1; tn;Uk
n/ denote the exact

solution at tnC1 and G.tnC1; tn;Uk
n/ be a one step method with local truncation error

bounded by C1
TpC1. If

jG.tC
T; t; x/ � G.tC
T; t; y/j � .1C C2
T/jx � yj;
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then the following error estimate holds for (18):

max
1�n�N

ju.tn/� Uk
nj �

C1
Tk.pC1/

kŠ
.1C C2
T/N�1�k

kY

jD1
.N � j/ max

1�n�N
ju.tn/ �U0

n j

(20)

� .C1T/k

kŠ
eC2.T�.kC1/
T/
Tpk max

1�n�N
ju.tn/� U0

nj: (21)

The proof uses generating functions and is just over a page long, see [28]. One
can clearly see the precise convergence mechanisms of the parareal algorithm in
this result: looking in (20) on the right, the product term is initially growing, for
k D 1; 2; 3 we get the products N � 1, .N � 1/.N � 2/, .N � 1/.N � 2/.N � 3/ and
so on, but as soon as k D N the product contains the factor zero, and the method has
converged. This is the property already pointed out by Bellen and Zennaro in [6].
Next looking in (21), we see that the method’s order increases at each iteration k by
p, the order of the coarse propagator, as already shown by Lions, Maday and Turinici
in their proposition for the Euler method. We have however also a precise estimate
of the constant in front in (21), and this constant contracts faster than linear, since it
is an algebraic power of C1T divided by kŠ (the exponential term is not growing as
the iteration k progresses). This division by kŠ is the typical convergence behavior
found in waveform relaxation algorithms, which we will see in more detail in the
next section.

3 Domain Decomposition Methods in Space-Time

Time parallel methods based on domain decomposition solve evolution problems
in quite a different way in parallel from multiple shooting based methods. The
decomposition of the space-time domain for such methods is shown in Fig. 8. Again

t

Ω1 Ω2 Ω3 Ω4 Ω5

T

0 x

Fig. 8 Decomposition of the space-time domain for domain decomposition time parallel methods
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an iteration is then used, which computes only solutions on the local space-time
subdomains ˝j. Since these solutions are obtained over the entire so-called time
window Œ0;T� before accurate interface values are available from the neighboring
subdomains over the entire time window, these methods are also time parallel in
this sense, and they are known under the name waveform relaxation.

3.1 Picard and Lindelöf 1893/1894

The roots of waveform relaxation type methods lie in the existence proofs of
solutions for ordinary differential equations of Picard [65] and Lindelöf [53]. Like
the alternating Schwarz method invented by Schwarz to prove the Dirichlet principle
[70] and hence existence of solutions of Laplace’s equation on general domains,
Picard invented his method of successive approximations to prove the existence of
solutions of the specific class of ordinary differential equations:

Les méthodes d’approximation dont nous faisons usage sont théoriquement susceptibles de
s’appliquer à toute équation, mais elles ne deviennent vraiment intéressantes pour l’étude
des propriétés des fonctions définies par les équations différentielles que si l’on ne reste pas
dans les généralités et si l’on envisage certaines classes d’équations.

Picard thus considers ordinary differential equations of the form

v0.t/ D f .v.t//; t 2 Œ0;T�; (22)

with given initial condition v.0/. In order to analyze if a solution of such a non-linear
problem exists, he proposed the nowadays called Picard iteration

vn.t/ D v.0/C
Z t

0

f .vn�1.	//d	; n D 1; 2; : : : ; (23)

where v0.t/ is some initial guess. This transforms the problem of solving the ordi-
nary differential equation (22) into a sequence of problems using only quadrature,
which is much easier to handle. Picard proved convergence of this iteration in [65],
which was sufficient to answer the existence question. It was Lindelöf a year later
who gave the following convergence rate estimate in [53]:

Theorem 3 (Superlinear Convergence) On bounded time intervals t 2 Œ0;T�, the
iterates (23) satisfy the superlinear error bound

jjv � vnjj1 � .CT/n

nŠ
jjv � v0jj1; (24)

where C is the Lipschitz constant of the nonlinear right hand side f .

We see in the convergence estimate (24) the same term appear as in the parareal
convergence estimate (21). This term is typical for the convergence of waveform
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relaxation methods we will see next, and thus the comment of Saha, Stadel and
Tremaine in the quote at the beginning of Sect. 2.4 is justified.

3.2 Lelarasmee, Ruehli and Sangiovanni-Vincentelli 1982

The Picard iteration was not very successful as an iterative method for concrete
computations,4 but in the circuit community, an interesting variant was developed
based on a decomposition of the circuit by Lelarasmee, Ruehli and Sangiovanni-
Vincentelli [52]:

The Waveform Relaxation (WR) method is an iterative method for analyzing nonlinear
dynamical systems in the time domain. The method, at each iteration, decomposes the
system into several dynamical subsystems, each of which is analyzed for the entire
given time interval.

The motivation for this method was really the extremely rapid growth of
integrated circuits, which made it difficult to simulate a new generation of circuits on
the present generation computers.5 Lelarasmee, Ruehli and Sangiovanni-Vincentelli
explain the waveform relaxation algorithm on the concrete example of a MOS ring
oscillator shown in Fig. 9. The reason why this circuit is oscillating can be seen as
follows: suppose the voltage at node v1 equals 5 V. Then this voltage is connected
to the gate of the transistor to the right, which will thus open, and hence the voltage
at node v2 will be pulled down to ground, i.e. 0 V. This is however connected to the
gate of the next transistor to the right of v2, which will thus close, and v3 will be
pulled up to 5 V. These 5 V will now feedback to the gate of the transistor to the left
of v1, which will thus open, and thus v1, which was by assumption at 5 V, will be
pulled down to ground at 0 V, and we see how the oscillation happens.

Using the laws of Ohm and Kirchhoff, the equations for such a circuit can be
written in form of a system of ordinary differential equations

v0.t/ D f.v.t//; 0 < t < T;
v.0/ D g;

where v D .v1; v2; v3/, and g is the initial state of the circuit.
If the circuit is extremely large, so that it does not fit any more on one single

computer, the waveform relaxation algorithm is based on the idea of decomposing
the circuit into subcircuits, as shown in Fig. 10. The idea is to cut the wires with

4“Actually this method of continuing the computation is highly inefficient and is not recom-
mended”, see [59].
5“The spectacular growth in the scale of integrated circuits being designed in the VLSI era has
generated the need for new methods of circuit simulation. “Standard” circuit simulators, such as
SPICE and ASTAP, simply take too much CPU time and too much storage to analyze a VLSI
circuit”, see [52].
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Fig. 9 Historical example of the MOS ring oscillator, for which the waveform relaxation
algorithm was derived
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Fig. 10 Decomposition of the MOS ring oscillator circuit for the waveform relaxation algorithm

which the subcircuits are connected, and then to assume that there are small voltage
sources on the wires that were cut, which feed in the voltage that was calculated at
the previous iteration. This leads to the iterative method

@tv
kC1
1 D f1.v

kC1
1 ; vk

2; v
k
3/;

@tv
kC1
2 D f2.vk

1; v
kC1
2 ; vk

3/;

@tv
kC1
3 D f3.vk

1; v
k
2; v

kC1
3 /:

(25)
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Fig. 11 Historical convergence result for the MOS ring oscillator from [52]. The x axis represents
time here and the y axis voltage values

Since in the circuit simulation community signals along wires are called ‘wave-
forms’, this gave the algorithm the name Waveform Relaxation. We see in (25) that
on the right all neighboring waveforms have been relaxed to the previous iteration,
which results in a Jacobi type relaxation known in numerical linear algebra, which is
entirely parallel. Naturally one could also use a Gauss-Seidel type relaxation which
would then be sequential.

We show in Fig. 11 a historical numerical convergence study for the MOS ring
oscillator taken from [52]. We can see that this circuit has the property that the
waveform relaxation algorithm converges in a finite number of steps. This can
be understood by the finite propagation speed of the information in this circuit,6

and we will see this again when looking at hyperbolic equations in the following
section. The convergence of waveform relaxation methods depends strongly on the
type of equations that are being solved, and the general convergence estimate of
Lindelöf (24), also valid for waveform relaxation, is not always sharp.

6 “Note that since the oscillator is highly non unidirectional due to the feedback from v3 to the
NOR gate, the convergence of the iterated solutions is achieved with the number of iterations
being proportional to the number of oscillating cycles of interest”, see [52].
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3.3 Gander 1996

The waveform relaxation algorithm from the previous subsection can be naturally
extended to partial differential equations, as it was shown in [24]:

Motivated by the work of Bjørhus [8], we show how one can use overlapping domain
decomposition to obtain a waveform relaxation algorithm for the semi-discrete heat
equation which converges at a rate independent of the mesh parameter.

The idea is best explained for the simple model problem of the one dimensional
heat equation,

@tu D @xxu; 0 < x < 1; t > 0 (26)

with given initial condition u.x; 0/ D u0.x/ and homogeneous boundary conditions.
Like in the waveform relaxation algorithm, where the circuit was partitioned into
subcircuits, one partitions the domain˝ D .0; 1/ into overlapping subdomains, say
˝1 D .0; ˇ/ and ˝1 D .˛; 1/, ˛ < ˇ, and then performs the iteration

@tun
1 D @xxun

1; 0 < x < ˇ; t > 0;
un
1.ˇ; t/ D un�1

2 .ˇ; t/;
@tun

2 D @xxun
2; ˛ < x < 1; t > 0;

un
2.˛; t/ D un�1

1 .˛; t/:

(27)

Since the decomposition is overlapping like in the classical overlapping Schwarz
method for steady problems, and time dependent problems are solved in each
iteration like in waveform relaxation, these algorithms are called Schwarz Waveform
Relaxation algorithms. One can show that algorithm (27) converges linearly on
unbounded time intervals, see [34], and superlinearly on bounded time intervals,
see [41]. Both results can be found for nonlinear problems in [25]. The superlinear
convergence rate in Schwarz waveform relaxation algorithms is faster than in
classical waveform relaxation methods for circuits, since the heat kernel decay
gives additional contraction. If the equation is a wave equation, then one obtains
convergence in a finite number of steps, see for example [29]. Much better waveform
relaxation methods can however be obtained using the new concept of optimized
transmission conditions we will see next.

3.4 Gander, Halpern and Nataf 1999

It was shown in [36] that the Dirichlet transmission conditions used for the
information exchange do not lead to good convergence behavior of the Schwarz
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waveform relaxation algorithm:

We then show that the Dirichlet conditions at the artificial interfaces inhibit the
information exchange between subdomains and therefore slow down the convergence of
the algorithm.

This observation holds for all types of partial differential equations, also for
steady state problems [62]. The key new idea is to introduce more effective
transmission conditions, which leads for the model problem (26) to the new Schwarz
waveform relaxation algorithm

@tun
1 D @xxun

1; 0 < x < ˇ; t > 0;
B1un

1.ˇ; t/ D B1un�1
2 .ˇ; t/;

@tun
2 D @xxun

2; ˛ < x < 1; t > 0;
B2un

2.˛; t/ D B2un�1
1 .˛; t/:

(28)

If one choosesB1 D @n1CDtN2 andB2 D @n2CDtN1, where @nj denotes the normal
derivative, and DtNj denotes the Dirichlet to Neumann operator of the subdomain
j, then algorithm (28) converges in two iterations, independently of the overlap: it
becomes a direct solver. This can be generalized to N iterations with N subdomains,
or one iteration when using an alternating sweep, and is the underlying mechanism
for the good convergence of the sweeping preconditioner recently presented in [20].
Since the DtN operators are in general expensive, so-called optimized Schwarz
waveform relaxation methods use local approximations; for a complete treatment
of advection reaction diffusion equations see [7, 30], and for the wave equation,
see [29, 37]. An overview for steady problems and references can be found in [26].
We show in Fig. 12 as an illustration for an advection reaction diffusion equation
and a decomposition into eight overlapping subdomains how much faster optimized
Schwarz waveform relaxation methods converge compared to classical Schwarz
waveform relaxation methods. While the Dirichlet transmission conditions in the
left column greatly inhibit the information exchange, the absorbing conditions (here
second order Taylor conditions) lead almost magically to a very good approximation
already in the very first iteration. For more information, see [7, 30]. Waveform
relaxation methods should thus never be used with classical transmission conditions,
also when applied to circuits; optimized transmission conditions have also been
proposed and analyzed for circuits, see for example [1, 2] and references therein.

3.5 Recent Developments

Other domain decomposition methods for steady problems have been recently
proposed and analyzed for time dependent problems: for the convergence properties
of the Dirichlet-Neumann Waveform Relaxation algorithm, see [39, 58], and for the
Neumann-Neumann Waveform Relaxation algorithm, see [39, 50] for a convergence
analysis, and [44] for well posedness of the algorithm.
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Fig. 12 Snapshots in time of the first classical Schwarz waveform relaxation iteration in the left
column, and the first optimized Schwarz waveform relaxation iteration in the right column: the
exact solution is shown in solid red, and the Schwarz waveform relaxation approximation in dashed
blue
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Fig. 13 Space-time decomposition for parareal Schwarz waveform relaxation
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Fig. 14 Space-time multigrid methods work simultaneously on the entire space-time domain

It is also naturally possible to combine the multiple shooting method and the
Schwarz waveform relaxation methods, which leads to a space-time decomposition
of the form shown in Fig. 13. A parareal Schwarz waveform relaxation algorithm
for such decompositions was proposed in [38], see also [57] for a method which
uses waveform relaxation as a solver within parareal. These methods iterate
simultaneously on sets of unknowns in the space-time domain, as the space-time
multigrid methods we will see next.

4 Multigrid Methods in Space-Time

The methods we have seen so far were designed to be naturally parallel: the
time decomposition methods based on shooting use many processors along the
time axis, the waveform relaxation methods use many processors in the space
dimensions. The multigrid methods we see in this section are not naturally parallel,
but their components can be executed in parallel in space-time, since they work
simultaneously on the entire space-time domain, as indicated in Fig. 14.
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4.1 Hackbusch 1984

The first such method is the parabolic multigrid method developed by Hackbusch in
[43]. Like other multigrid methods, the smoother can be naturally implemented in
parallel in space, and in the parabolic multigrid method, the smoother operates over
many time levels, so that interpolation and restriction can be performed in parallel
in space-time.

In order to explain the method, we consider the parabolic PDE ut C L u D f
discretized by Backward Euler:

.I C
tL /un D un�1 C
tf .tn/: (29)

Hackbusch makes the following comment about this equation

The conventional approach is to solve (29) time step by time step; un is computed from
un�1, then unC1 from un etc. The following process will be different. Assume that un is
already computed or given as an initial state. Simultaneously, we shall solve for unC1,
unC2, . . . , unCk in one step of the algorithm.

In the method of Hackbusch, one starts with a standard smoother for the problem
at each time step. Let A be the iteration matrix, A WD I C
tL ; then one partitions
the matrix into its lower triangular, diagonal and upper triangular part, A D LCDC
U, and uses for example as a smoother the Gauss-Seidel iteration over many time
levels:

for n D 1 W N
for j D 1 W �

uj
n D .LC D/�1.�Uun

j�1 C u�n�1 C
tf .tn//;
end;

end;

We see that the smoothing process is sequential in time: one first has to finish the
smoothing iteration at time step n � 1 in order to obtain u�n�1, before one can start
the smoothing iteration at time step n, since u�n�1 is needed on the right hand side.

After smoothing, one restricts the residual in space-time like in a classical
multigrid method to a coarser grid, before applying the procedure recursively.
Hackbusch first only considers coarsening in space, as shown in Fig. 15. In this
case, one can prove that standard multigrid performance can be achieved for this

Fig. 15 Original figure of
Hackbusch about the
coarsening in the parabolic
multigrid method. This figure
was taken from [43]
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method. If one however also coarsens in time, one does not obtain standard multigrid
performance, and the method can even diverge. This is traced back by Hackbusch
to errors which are smooth in space, but non smooth in time. Hackbusch illustrates
the performance of the method by numerical experiments for buoyancy-driven flow
with finite difference discretization.

4.2 Lubich and Ostermann 1987

Lubich and Ostermann [55] used the waveform relaxation context to define a space-
time multigrid method:

Multi-grid methods are known to be very efficient solvers for elliptic equations. Various
approaches have also been given to extend multi-grid techniques to parabolic problems. A
common feature of these approaches is that multi-grid methods are applied only after the
equation has been discretized in time. In the present note we shall rather apply multi-grid
(in space) directly to the evolution equation.

Their work led to the so-called Multigrid Waveform Relaxation algorithm. The
easiest way to understand it is to first apply a Laplace transform to the evolution
problem, assuming for simplicity a zero initial condition,

ut C Lhu D f H) A.s/Ou WD sOuC Lh Ou D Of :

One then applies a standard multigrid method to the Laplace transformed linear
system A.s/Ou D Of . Let A.s/ D L C D C sI C U be again the lower triangular,
diagonal and upper triangular part of the matrix A.s/. A standard two grid algorithm
would then start with the initial guess Ou00.s/, and perform for n D 0; 1; 2; : : : the
steps

for j D 1 W �
Ou j

n.s/ D .LC DC sI/�1.�U Ou j�1
n .s/C Of .s//;

end;
Ou0nC1.s/ D Ou�n.s/C PA�1c R. Of � AOu�n.s//;
smooth again;

where R and P are standard multigrid restriction and prolongation operators for
steady problems, and the coarse matrix can be defined using a Galerkin approach,
Ac WD RAP.

Applying the inverse Laplace transform to this algorithm, we obtain the multigrid
waveform relaxation algorithm: the smoothing step

.sI C LC D/Ou j
n.s/ D �U Ou j�1

n .s/C Of .s/

becomes in the time domain

@tu
j
n C .LC D/u j

n C Uu j�1
n D f ;
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which is a Gauss Seidel Waveform Relaxation iteration, see Sect. 3.2. The coarse
correction

Ou0nC1.s/ WD Ou�n.s/C PA�1c R. Of � AOu�n.s//

becomes back in the time domain

solve vt C LHv D R.f � @tu�n � Lhu�n/,
u0nC1 D u�n C Pv.

This is a time continuous parabolic problem on a coarse spatial mesh.
Lubich and Ostermann prove for the heat equation and finite difference dis-

cretization that red-black Gauss Seidel smoothing is not as good as for the stationary
problem, but still sufficient to give typical multigrid convergence, and that damped
Jacobi smoothing is as good as for stationary problems. The authors show with
numerical experiments that in the multigrid waveform relaxation algorithm one can
use locally adaptive time steps.

4.3 Horton and Vandewalle 1995

Horton and Vandewalle are the first to try to address the problem of time coarsening
in [45]:

In standard time-stepping techniques multigrid can be used as an iterative solver for the
elliptic equations arising at each discrete time step. By contrast, the method presented in
this paper treats the whole of the space-time problem simultaneously.

They first show that time coarsening does not lead to multigrid performance,
since the entire space-time problem is very anisotropic because of the time direction.
To address this issue, they explain that one could either use line smoothers, which
is related to the multigrid waveform relaxation algorithm we have seen in Sect. 4.2,
or the following two remedies:

1. Adaptive semi-coarsening in space or time depending on the anisotropy,
2. Prolongation operators only forward in time.

For the heat equation with finite difference discretization and Backward Euler,
BDF2 and Crank-Nicolson, Horton and Vandewalle perform a detailed local Fourier
mode analysis, and show that good contraction rates can be obtain for space-time
multigrid V-cycles, although not quite mesh independent. F-cycles are needed to
get completely mesh independent convergence rates. These results are illustrated by
numerical experiments for 1d and 2d heat equations.
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4.4 Emmett and Minion 2012

There are several steps in the development of the solver PFASST, which stands for
Parallel Full Approximation Scheme in Space-Time. The underlying iteration is a
deferred correction method [60]:

This paper investigates a variant of the parareal algorithm first outlined by Minion and
Williams in 2008 that utilizes a deferred correction strategy within the parareal
iterations.

We thus have to start by explaining the deferred correction method. Consider the
initial value problem

u0 D f .u/; u.0/ D u0: (30)

We can rewrite this problem in integral form

u.t/ D u.0/C
Z t

0

f .u.	//d	: (31)

Let Qu.t/ be an approximation with error e.t/ WD u.t/� Qu.t/. Inserting u.t/ D Qu.t/C
e.t/ into (31), we get

Qu.t/C e.t/ D u.0/C
Z t

0

f .Qu.	/C e.	//d	: (32)

Defining the function F.u/ WD u.0/CR t
0

f .u.	//d	�u.t/ from Eq. (31), the residual
r.t/ of the approximate solution Qu.t/ is

r.t/ WD F.Qu/ D Qu.0/C
Z t

0

f .Qu.	//d	 � Qu.t/; (33)

and thus from (32) the error satisfies the equation

e.t/ D u.0/C
Z t

0

f .Qu.	/C e.	//d	 � Qu.t/

D r.t/C
Z t

0

f .Qu.	/C e.	//� f .Qu.	//d	;

or written as a differential equation

e0.t/ D r0.t/C f .Qu.t/C e.t// � f .Qu.t//: (34)

The idea of integral deferred correction is to choose a numerical method, for
example Forward Euler, and to get a first approximation of the solution of (30)
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by computing

QumC1 D Qum C
tf .Qum/; for m D 0; 1; : : : ;M � 1:

With these values, one then computes the residual defined in (33) at the points
tm, m D 0; 1; : : : ;M using a high order quadrature formula. One then solves the
error equation (34) in differential form again with the same numerical method, here
Forward Euler,

emC1 D em C rmC1 � rm C
t.f .Qum C em/� f .Qum//: (35)

Adding this correction, one obtains a new approximation Qum C em, for which one
can show in our example of Forward Euler that the order has increased by one, i.e.
it is now a second order approximation. One can continue this process and increase
the order up to the order of the quadrature used.

This spectral deferred correction iteration can also be considered as an iterative
method to compute the Runge-Kutta method corresponding to the quadrature rule
used to approximate the integral: if we denote by u0 the initial approximation ob-
tained by forward Euler, u0 WD .Qu0; Qu1; : : : ; QuM/

T , each integral deferred correction
corresponds to one step in the non-linear fixed point iteration

uk D F.uk�1; u0/; (36)

where u0 is the initial condition from (30). The classical application of integral
deferred correction is to partition the time interval Œ0;T� into subintervals ŒTj�1;Tj�,
j D 1; 2; : : : ; J, and then to start on the first subinterval ŒT0;T1� to compute
approximations uk

1 by performing K steps of (36) before passing to the next time
interval ŒT1;T2�, see also Fig. 18 for an example with M D 3. The overall iteration
is therefore

uK
0;M D u0;

for j D 1 W J
compute u0j as Euler approximation on ŒTj�1;Tj�;
for k D 1 W K

uk
j D F.uk�1

j ; uK
j�1;M/;

end;
end;

We see that this is purely sequential, like a time stepping scheme: in each time
subinterval, one first has to finish the K spectral deferred corrections, before one
can pass to the next time subinterval. Minion proposed in [60] not to wait for each
time subinterval to finish, and to replace the inner updating formula by

uk
j D F.uk�1

j ; uk
j�1;M/; (note the lower case k !); (37)
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which means that one can now perform the spectral deferred corrections on many
time subintervals ŒTj�1;Tj� in parallel. This is very similar to the iteration of Womble
we will see Sect. 5.3. In the approach of Minion, this is however combined with a
coarse correction from the parareal algorithm, so it is like using a more and more
accurate fine integrator, as the iteration progresses.

The PFASST algorithm proposed in [19] is based on using the parallel deferred
correction iteration above as a smoother in a multigrid full approximation scheme
in space-time for non-linear problems:

The method is iterative with each iteration consisting of deferred correction sweeps
performed alternately on fine and coarse space-time discretizations. The coarse grid
problems are formulated using a space-time analog of the full approximation scheme
popular in multigrid methods for nonlinear equations.

The method has successfully been applied to non-linear problems in [19, 75, 76],
but there is so far no convergence analysis for PFASST.

4.5 Neumüller 2014

The new idea in this multigrid variant is to replace the classical point smoothers by
block Jacobi smoothers. Suppose we discretize the heat equation

ut D 
uC f

globally in space-time by an implicit method, for example Backward Euler. Then
we obtain a block triangular linear system in space-time of the form

0

BBBBB@

A1
B2 A2

B3 A3
: : :

: : :

Bn An

1

CCCCCA

0

BBBBB@

u1
u2
u3
:::

un

1

CCCCCA
D

0

BBBBB@

f1
f2
f3
:::

fn

1

CCCCCA
: (38)

The space-time multigrid method consists now of applying a few damped block
Jacobi smoothing steps, inverting the diagonal blocks An, before restricting by
standard multigrid restriction operators in space-time to a coarser grid, and recur-
sively continuing. One can show that for the heat equation, we have (see Martin
Neumüller’s PhD thesis [63]):

• The optimal damping parameter for the block Jacobi smoother is ! D 1
2
.

• One always obtains good smoothing in time (semi-coarsening is always possi-
ble).

• For 
t

h2
� C, one also obtains good smoothing in space.
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Table 1 Scaling results for the space-time multigrid method with block Jacobi smoother; all
simulations performed by M. Neumüller

Weak scaling Strong scaling

Cores 1

T dof Iter Time 1


T dof Iter Time

1 4 59768 9 6.8 4096 61202432 9 6960:7

2 8 119536 9 8.1 4096 61202432 9 3964:8

4 16 239072 9 9.2 4096 61202432 9 2106:2

8 32 478144 9 9.2 4096 61202432 9 1056:0

16 64 956288 9 9.2 4096 61202432 9 530:4

32 128 1912576 9 9.3 4096 61202432 9 269:5

64 256 3825152 9 9.4 4096 61202432 9 135:2

128 512 7650304 9 9.4 4096 61202432 9 68:2

256 1024 15300608 9 9.4 4096 61202432 9 34:7

512 2048 30601216 9 9.4 4096 61202432 9 17:9

1024 4096 61202432 9 9.4 4096 61202432 9 9:4

2048 8192 122404864 9 9.5 4096 61202432 9 5:4

• One V-cycle in space suffices to invert the diagonal blocks An in the Jacobi
smoother.

This multigrid method has excellent scaling properties for the heat equation, as it
was shown in [63], from which the example in Table 1 is taken. The results are for
the 3D heat equation, and computed on the Vienna Scientific Cluster VSC-2; see
also [32].

5 Direct Solvers in Space-Time

The time parallel solvers we have seen so far were all iterative. There have been also
attempts to construct direct time parallel solvers. There are both small scale parallel
direct solvers and also large scale parallel direct solvers.

5.1 Miranker and Liniger 1967

The first small scale direct parallel solver was proposed by Miranker and Liniger
[61], who also were very much aware of the naturally sequential nature of evolution
problems:

It appears at first sight that the sequential nature of the numerical methods do not permit
a parallel computation on all of the processors to be performed. We say that the front of
computation is too narrow to take advantage of more than one processor. . . Let us consider
how we might widen the computation front.
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Fig. 16 Symbolic representation by Miranker and Liniger of an entirely sequential predictor
corrector method on the left, and a parallel one on the right

For y0 D f .x; y/, Miranker and Liniger consider the predictor corrector formulas

yp
nC1 D yc

n C
h

2
.f .yc

n/� f .yc
n�1//; yc

nC1 D yc
n C

h

2
.f .yp

nC1/C f .yc
n//:

This process is entirely sequential as they illustrated with a figure, a copy of which
is shown in Fig. 16 on the left. They then consider the modified predictor corrector
formulas

yp
nC1 D yc

n�1 C 2hf .yp
n/; yc

n D yc
n�1 C

h

2
.f .yp

n/C f .yc
n�1//:

Those two formulas can now be evaluated in parallel by two processors, as
illustrated in Fig. 16 on the right. Miranker and Liniger then show how one can
systematically derive a general class of numerical integration methods which can
be executed on 2s processors in parallel, and present a stability and convergence
analysis for those methods.

Similar parallelism can also be obtained with the block implicit one-step methods
developed by Shampine and Watts in [71]. These methods use different time
stepping formulas to advance several time levels at once. For an early numerical
comparison for parallel block methods and parallel predictor corrector methods, see
Franklin [23]. These methods are ideally suited to be used on the few cores of a
multicore processor, but they do not have the potential for large scale parallelism.

5.2 Axelson and Verwer 1985

Boundary value methods for initial value problems are a bit strange. A very good
early introduction is the paper by Axelson and Verwer [4]:

Hereby we concentrate on explaining the fundamentals of the method because for initial
value problems the boundary value method seems to be fairly unknown [. . . ] In the forward-
step approach, the numerical solution is obtained by stepping through the grid [. . . ] In this
paper, we will tackle the numerical solution in a completely different way [. . . ] We will
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consider Py D f .x; y/ as a two point boundary value problem with a given value at the
left endpoint and an implicitly defined value, by the equation Py D f .x; y/, at the right
endpoint.

It is best to understand boundary value methods by looking at a simple example.7

Suppose we discretize Py D f .y/ with the explicit midpoint rule

ynC1 � yn�1 � 2hf .yn/ D 0; y0 D y.0/:

Since the explicit midpoint rule is a two step method, we also need an initial
approximation for y1. Usually, one defines y1 from y0 using a one step method, for
example here by Backward Euler. In boundary value methods, one leaves y1 as an
unknown, and uses Backward Euler at the endpoint yN to close the system, imposing

yN � yN�1 � 2hf .yN/ D 0:

For a linear problem Py D ay, the midpoint rule and Backward Euler to define y1
gives the triangular linear system

0

BBBBB@

1 � ah
�2ah 1

�1 �2ah 1
: : :

: : :
: : :

�1 �2ah 1

1

CCCCCA

0

BBBBB@

y1
y2
y3
:::

yN

1

CCCCCA
D

0

BBBBB@

y0
y0
0
:::

0

1

CCCCCA
: (39)

For the boundary value method, leaving y1 free and using Backward Euler on the
right gives the tridiagonal system

0

BBBBB@

�2ah 1

�1 �2ah 1
: : :

: : :
: : :

�1 �2ah 1

�1 1 � ah

1

CCCCCA

0

BBBBB@

y1
y2
y3
:::

yN

1

CCCCCA
D

0

BBBBB@

y0
0

0
:::

0

1

CCCCCA
: (40)

The tridiagonal system can now be solved either directly by factorization, or also by
iteration, thus working on all time levels simultaneously.

It is very important however to realize that boundary value methods are com-
pletely different discretizations from initial value methods. The stability properties
often are the contrary when one transforms an initial value method into a bound-
ary value method. We show in Fig. 17 numerical examples for the initial value
method (39) and boundary value method (40). We see that for a decaying solution,

7This example had already been proposed by Fox in 1954.
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Fig. 17 Stability comparison of initial value and boundary value methods. (a) a D �6, h D 1=20.
(b) a D �6, h D 1=100. (c) a D 6, h D 1=20. (d) a D 6, h D 1=2000

a < 0, the initial value method is exhibiting stability problems, while the boundary
value method is perfectly stable (top row of Fig. 17). For growing solutions, a > 0

it is the opposite, the initial value method gives very good approximations, while
the boundary value method needs extremely fine time steps to converge (bottom
row of Fig. 17). One can therefore not just transform an initial value method into a
boundary value method in order to obtain a parallel solver, one has to first carefully
study the properties of the new method obtained, see [10, 11] and references therein.
Now if the method has good numerical properties and the resulting system can well
be solved in parallel, boundary value methods can be an attractive way of solving an
evolution problem in parallel, see for example [9], where a Backward Euler method
is proposed to precondition the boundary value method. This is still sequential, but
if one only uses subblocks of the Backward Euler method as preconditioner, by
dropping the connection after, say, every 10th time step, a parallel preconditioner
is obtained. Such methods are called nowadays block boundary value methods, see
for example [11]. If one introduces a coarse mesh with a coarse integrator, instead
of the backward Euler preconditioner, and does not use as the underlying integrator
a boundary value method any more, but just a normal time stepping scheme, the
approach can be related to the parareal algorithm, see for example [3].



50 Years of Time Parallel Time Integration 101

5.3 Womble 1990

The method presented by Womble in [79], see also the earlier work by Saltz and
Naik [68], is not really a direct method, it is using iterations, but not in the same
way of the iterative methods we have seen so far:

Parabolic and hyperbolic differential equations are often solved numerically by time
stepping algorithms. These algorithms have been regarded as sequential in time; that is, the
solution on a time level must be known before the computation for the solution at subsequent
time levels can start. While this remains true in principle, we demonstrate that it is possible
for processors to perform useful work on many time levels simultaneously.

The relaxation idea is similar to the one later used by Minion in [60] as a
smoother in the context of PFASST, see Sect. 4.4, but not for a deferred correction
iteration. In order to explain the method, we discretize the parabolic problem

ut D L uC f

by an implicit time discretization and obtain at each time step a linear system of the
form

Anun D fn C Bnun�1:

Such systems are often solved by iteration. If we want to use a stationary iterative
method, for example Gauss-Seidel, we would partition the matrix An D Ln CDn C
Un, its lower triangular, diagonal, and upper triangular parts. Then starting with an
initial guess u0n, one solves for k D 1; 2; : : : ;K

.Ln C Dn/u
k
n D �Unuk�1

n C fn C BnuK
n�1: (41)

The key idea to break the sequential nature is to modify this iteration slightly so
that it can be performed in parallel over several time steps. It suffices to not wait for
convergence of the previous time level, but to iterate like

.Ln C Dn/u
k
n D �Unuk�1

n C fn C Bnuk�1
n�1; (42)

which is the same idea also used in (37). Womble obtained quite good results with
this approach, and he was the first person to really demonstrate practical speedup
results with this time parallel method on a 1024-processor machine. Even though it
was later shown that only limited speedups are possible with this relaxation alone
[16], the work of Womble made people realize that indeed time parallelization could
become an important direction, and it drew a lot of attention toward time-parallel
algorithms.
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5.4 Worley 1991

Worley was already in his PhD thesis in 1988 very interested in theoretical limits on
the best possible sequential and parallel complexity when solving PDEs. While the
ultimate sequential algorithm for such a problem of size n is O.n/ on a sequential
machine, it is O.log n/ on a parallel machine. In [80], Worley presented an additional
direct time parallelization method, which when combined with multigrid waveform
relaxation leads to a nearly optimal time-parallel iterative method:

The waveform relaxation multigrid algorithm is normally implemented in a fashion that is
still intrinsically sequential in the time direction. But computation in the time direction
only involves solving linear scalar ODEs. If the ODEs are solved using a linear multistep
method with a statically determined time step, then each ODE solution corresponds to the
solution of a banded lower triangular matrix equation, or, equivalently, a linear recurrence.
Parallelizing linear recurrence equations has been studied extensively. In particular, if a
cyclic reduction approach is used to parallelize the linear recurrence, then parallelism
is introduced without increasing the order of the serial complexity.

The approach is based on earlier ideas for the parallel evaluation of recurrence
relations [49] and the parallel inversion of triangular matrices [69]. Worley explains
the fundamental idea as follows: suppose we want to solve the bidiagonal matrix
equation

0

BB@

a11
a21 a22

a32 a33
a43 a44

1

CCA

0

BB@

x1
x2
x3
x4

1

CCA D

0

BB@

f1
f2
f3
f4

1

CCA : (43)

Then one step of the cyclic reduction algorithm leads to a new matrix equation of
half the size,

 
a22
� a43

a33
a32 a44

!�
x2
x4

�
D
 

f2 � a21
a11

f1
f4 � a43

a33
f3

!
; (44)

i.e. we simply computed the Schur complement to eliminate variables with odd
indices. For a bigger bidiagonal matrix, this process can be repeated, and we
always obtain a bidiagonal matrix of half the size. Once a two by two system is
obtained, one can solve directly, and then back-substitute the values obtained to
recover the values of the eliminated variables. Each step of the cyclic reduction
is parallel, since each combination of two equations is independent of the others.
Similarly the back-substitution process is also parallel. Cyclic reduction is therefore
a direct method to solve a linear forward recurrence in parallel, and the idea can be
generalized to larger bandwidth using block elimination. The serial complexity of
simple forward substitution in the above example is 3n, whereas the cyclic reduction
serial complexity is 7n (or 5n if certain quantities are precomputed), and thus the
algorithm is not of interest for sequential computations. But performed in parallel,
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the complexity of cyclic reduction becomes a logarithm in n, and one can thus
obtain the solution substantially faster in parallel than just by forward substitution.
For further theoretical considerations and numerical results in combination with
multigrid waveform relaxation, see [46]. A truly optimal time-parallel algorithm,
based on a preconditioner in a waveform relaxation setting using a fast Fourier
transform in space to decouple the unknowns, and cyclic reduction in time can be
found in [74].

5.5 Sheen, Sloan and Thomée 1999

A new way to solve evolution problems with a direct method in parallel was
proposed in [72]:

These problems are completely independent, and can therefore be computed on
separate processors, with no need for shared memory. In contrast, the normal step-by-step
time-marching methods for parabolic problems are not easily parallelizable.

see also [15]. The idea is to Laplace transform the problem, and then to solve a
sequence of steady problems at quadrature nodes used for the numerical evaluation
of the inverse Laplace transform, and goes back to the solution in the frequency
domain of hyperbolic problems, see for example [17]. Suppose we have the initial
value problem

ut C Au D 0; u.0/ D u0;

where A represents a linear operator. Applying a Laplace transform to this prob-
lem in time with complex valued Laplace transform parameter s leads to the
parametrized equation

sOuC AOu D u0; (45)

and to obtain the solution in the time domain, one has to perform the inverse Laplace
transform

u.t/ D 1

2�i

Z

�

est Ou.s/ds; (46)

where � is a suitably chosen contour in the complex plane. If the integral in (46)
is approximated by a quadrature rule with quadrature nodes sj, one only needs to
compute u.s/ from (45) at s D sj, and these solutions are completely independent
of one another, see the quote above, and can thus be performed in parallel. This
direct time parallel solver is restricted to problems where Laplace transform can
be applied, i.e. linear problems with constant coefficients in the time direction, and
one needs a solver that works with complex numbers for (45). It is however a very
successful and efficient time parallel solver when it can be used, see [18, 51, 73, 77].
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5.6 Maday and Ronquist 2008

A new idea for a direct time parallel solver by diagonalization was proposed in [56]:

Pour briser la nature intrinsèquement séquentielle de cette résolution, on utilise
l’algorithme de produit tensoriel rapide.

To explain the idea, we discretize the linear evolution problem ut D Lu using
Backward Euler,
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Using the Kronecker symbol, this linear system can be written in compact form as

.B˝ Ix � It ˝ L/u D f; (47)

where Ix is the identity matrix of the size of the spatial unknowns, and It is the
identity matrix of the size of the time direction unknowns, and the time stepping
matrix is
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If B is diagonalizable, B D SDS�1, one can rewrite the system (47) in factored form,
namely

.S˝ Ix/.diag.D � L//.S�1 ˝ Ix/u D f; (48)

and we can hence solve it in 3 steps:

.a/ .S˝ Ix/g D f;

.b/ . 1

tn
� L/wn D gn; 1 � n � N;

.c/ .S�1 ˝ Ix/u D w:

Note that the expensive step (b) requiring a solve with the system matrix L can now
be done entirely in parallel for all time levels tn. Maday and Ronquist obtain with
this algorithm for the 1d heat equation close to perfect speedup. They recommend to
use a geometric time mesh 
tk D �k�1
t1, with � D 1:2, since “choosing � much
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closer to 1 may lead to instabilities”. This algorithm is not defined if identical time
steps are used, since it is not possible to diagonalize a Jordan block ! For a precise
truncation error analysis for a geometric time grid, a round-off error analysis due
to the diagonalization, and error estimates based on the trade-off between the two,
see [31].

5.7 Christlieb, Macdonald and Ong 2010

The integral deferred correction methods we have already seen in Sect. 4.4 in the
context of PFASST can also be used to create naturally small scale parallelism [14]:

. . . we discuss a class of defect correction methods which is easily adapted to create parallel
time integrators for multicore architectures.

As we see in the quote, the goal is small scale parallelism for multicore
architectures, as in the early predictor corrector and block methods from Sect. 5.1.
The new idea introduced by Christlieb, Macdonald and Ong is to modify integral
deferred correction so that pipelining becomes possible, which leads to so called
RIDC (Revisionist Integral Deferred Correction) methods. As we have seen already
in Sect. 4.4, the classical integral deferred correction method is working sequentially
on the time point groups I0; I1; : : : ; IJ�1 we show in Fig. 18 taken from [14],
corresponding to the time intervals ŒT0;T1�; ŒT1;T2�; : : : ; ŒTJ�1;TJ � in Sect. 4.4. For
each time point group Ij, one has to evaluate in the step (35) of integral deferred
correction the quadrature formula for (33) at time tj;mC1, using quadrature points at
time tj;0; tj;1; : : : ; tj;M , 0 < m < M, where M D 3 in the example shown in Fig. 18.
Only once all deferred correction steps on the time point group Ij are finished, one
can start with the next time point group IjC1, the method is like a sequential time
stepping method.

In order to obtain parallelism, the idea is to increase the size of the time point
groups M to contain more points than the quadrature formula needs. One can then
pipeline the computation, as shown in Fig. 19: the number of quadrature points is
still four, but M is much larger, and thus the Euler prediction step and the correction
steps of the integral deferred correction can be executed in parallel, since all the
values represented by the black dots are available simultaneously to compute the
next white ones, after an initial setup of this new ‘computation front’.

Fig. 18 Classical application of integral deferred correction, picture taken from [14]
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Fig. 19 RIDC way to compute integral deferred correction type methods in a pipelined way, figure
taken from [14]

This leads to small scale parallel high order integrators which work very well on
multicore architectures. When run in parallel, RIDC can give high order accuracy
in a time comparable to the time of the low order integration method used, provided
the startup costs are negligible.

5.8 Güttel 2012

A new direct time parallel method based on a completely overlapping decomposi-
tion of the time direction was proposed in [42]:

We introduce an overlapping time-domain decomposition method for linear initial-value
problems which gives rise to an efficient solution method for parallel computers without
resorting to the frequency domain. This parallel method exploits the fact that homogeneous
initial-value problems can be integrated much faster than inhomogeneous problems by
using an efficient Arnoldi approximation for the matrix exponential function.

This method, called ParaExp [27], is only defined for linear problems, and
especially suited for the parallel time integration of hyperbolic problems, where
most large scale time parallel methods have severe difficulties (for a Krylov
subspace remedy, see [22, 33, 66], but reorthogonalization costs might be high).
ParaExp works very well also on diffusive problems [27], as we will also illustrate
with a numerical experiment. To explain the method, we consider the linear system
of evolution equations

u0.t/ D Au.t/C g.t/; t 2 Œ0;T�; u.0/ D u0:

The ParaExp algorithm is based on a completely overlapping decomposition, as
shown in Fig. 20: the time interval Œ0;T� is decomposed into subintervals Œ0;T4 WD
T�, ŒT1;T4�, ŒT2;T4�, and ŒT3;T4�. ParaExp is a direct solver, consisting of two steps:
first one solves on the initial parts of the overlapping decomposition, Œ0;T1�, ŒT1;T2�,
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Fig. 20 Overlapping
decomposition and solution
strategy of ParaExp

ŒT2;T3�, and ŒT3;T4� the non-overlapping inhomogeneous problems (shown in solid
red in Fig. 20)

v0j.t/ D Avj.t/C g.t/; vj.Tj�1/ D 0; t 2 ŒTj�1;Tj�;

and then one solves the overlapping homogeneous problems (shown in dashed blue
in Fig. 20)

w0j.t/ D Awj.t/; wj.Tj�1/ D vj�1.Tj�1/; t 2 ŒTj�1;T�

By linearity, the solution is then simply obtained by summation,

u.t/ D vk.t/C
kX

jD1
wj.t/ with k such that t 2 ŒTk�1;Tk�:

Like in many time parallel methods, this seems to be absurd, since the overlapping
propagation of the linear homogeneous problems is redundant, and the blue dashed
solution needs to be integrated over the entire time interval Œ0;T�! The reason why
substantial parallel speedup is possible in ParaExp is that near-optimal approxi-
mations of the matrix exponential are known, and so the homogeneous problems
in dashed blue become very cheap. Two approaches work very well: projection
based methods, where one approximates an.t/ � exp.tA/v from a Krylov space
built with S WD .I � A=�/�1A, and expansion based methods, which approximate
exp.tA/v � Pn�1

jD0 ˇj.t/pj.A/v, where pj are polynomials or rational functions. For
more details, see [27].

We show in Table 2 the performance of the ParaExp algorithm applied to the
wave equation from [27],

@ttu.t; x/ D ˛2@xxu.t; x/C hat(x) sin.2�ft/; x; t 2 .0; 1/;
u.t; 0/ D u.t; 1/ D u.0; x/ D u0.0; x/ D 0;

where hat(x) is a hat function centered in the spatial domain. The problem is
discretized with a second order centered finite difference scheme in space using

x D 1

101
, and RK45 is used in time with
t0 D minf5�10�4=˛; 1:5�10�3=f g for the
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Table 2 Performance of ParaExp on a wave equation

Serial Parallel Efficiency (%)

˛2 f 	0 Error max.	1/ max.	2/ Error

0.1 1 2.54e�01 3.64e�04 4.04e�02 1.48e�02 2.64e�04 58

0.1 5 1.20e+00 1.31e�04 1.99e�01 1.39e�02 1.47e�04 71

0.1 25 6.03e+00 4.70e�05 9.83e�01 1.38e�02 7.61e�05 76

1 1 7.30e�01 1.56e�04 1.19e�01 2.70e�02 1.02e�04 63

1 5 1.21e+00 4.09e�04 1.97e�01 2.70e�02 3.33e�04 68

1 25 6.08e+00 1.76e�04 9.85e�01 2.68e�02 1.15e�04 75

10 1 2.34e+00 6.12e�05 3.75e�01 6.31e�02 2.57e�05 67

10 5 2.31e+00 4.27e�04 3.73e�01 6.29e�02 2.40e�04 66

10 25 6.09e+00 4.98e�04 9.82e�01 6.22e�02 3.01e�04 73

Table 3 Performance of ParaExp on the heat equation

Serial Parallel Efficiency (%)

˛ f 	0 Error max.	1/ max.	2/ Error

0.01 1 4.97e�02 3.01e�04 1.58e�02 9.30e�03 2.17e�04 50

0.01 10 2.43e�01 4.14e�04 7.27e�02 9.28e�03 1.94e�04 74

0.01 100 2.43e+00 1.73e�04 7.19e�01 9.26e�03 5.68e�05 83

0.1 1 4.85e�01 2.24e�05 1.45e�01 9.31e�03 5.34e�06 79

0.1 10 4.86e�01 1.03e�04 1.45e�01 9.32e�03 9.68e�05 79

0.1 100 2.42e+00 1.29e�04 7.21e�01 9.24e�03 7.66e�05 83

1 1 4.86e+00 7.65e�08 1.45e+00 9.34e�03 1.78e�08 83

1 10 4.85e+00 8.15e�06 1.45e+00 9.33e�03 5.40e�07 83

1 100 4.85e+00 3.26e�05 1.44e+00 9.34e�03 2.02e�05 84

inhomogeneous solid red problems. The homogeneous dashed blue problems were
solved using a Chebyshev exponential integrator, and 8 processors were used in this
set of experiments. We see that the parallel efficiency of ParaExp is excellent for
this hyperbolic problem, and it would be difficult for other time parallel algorithms
to achieve this.

ParaExp also works extremely well for parabolic problems. For the heat equation

@tu.t; x/ D ˛@xxu.t; x/C hat(x) sin.2�ft/; x; t 2 .0; 1/;
u.t; 0/ D u.t; 1/ D 0; u.0; x/ D 4x.1 � x/;

we show numerical results from [27] in Table 3. The heat equation was discretized
using centered finite differences in space with
x D 1

101
, and again an RK45 method

in time was used with 
t0 D minf5 � 10�4=˛; 1:5 � 10�3=f g for the inhomogeneous
problems, the homogeneous ones being solved also with a Chebyshev exponential
integrator. For the heat equation, 4 processors were used. We see that again excellent



50 Years of Time Parallel Time Integration 109

parallel efficiency is obtained with the ParaExp algorithm. For more information and
numerical results, see [27].

6 Conclusions

The efforts to integrate evolution problems in parallel span now five decades. We
have seen that historically methods have grown into four different classes of time
parallel methods: shooting type methods starting with Nievergelt, domain decom-
position and waveform relaxation methods starting with Lelarasmee, Ruehli and
Sangiovanni-Vincentelli, space-time multigrid methods starting with Hackbusch,
and direct time parallel solvers starting with Miranker and Liniger. An important
area which was not addressed in this review is a systematic comparison of the
performance of these methods, and a demonstration that these algorithms are really
faster than classical algorithms in a given parallel computational environment.
Such a result on a 512 processor machine was shown for the space-time multigrid
waveform relaxation algorithm in [78], compared to space parallel multigrid
waveform relaxation and standard time stepping, see also [46] for results on an even
larger machine, and [5]. A very recent comparison can be found in the short note
[21], where the authors show that above a certain number of processors time-parallel
algorithms indeed outperform classical ones. Time parallel methods are currently
a very active field of research, and many new developments extending the latest
directions we have seen, like Parareal, Schwarz-, Dirichlet-Neumann and Neumann-
Neumann waveform relaxation, PFASST and full space-time multigrid, and RIDC
and ParaExp, are to be expected over the coming years. These will help leverage the
power of new multicore and very large scale parallel computers in the near future.

Acknowledgements The author is very thankful for the comments of Stefan Vandewalle, which
greatly improved this manuscript and also made the content more complete. We thank the
Bibliotheque de Geneve for granting permission to reproduce pictures from the original sources.
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Direct Multiple Shooting for Nonlinear
Optimum Experimental Design

Dennis Janka, Stefan Körkel, and Hans Georg Bock

Abstract Optimum experimental design (OED) for parameter identification has
become a key technique in the model validation process for dynamical systems. This
paper deals with optimum experimental design for systems modelled by differential-
algebraic equations. We show how to formulate OED as a nonstandard nonlinear
optimal control problem. The direct multiple shooting method is a state of the art
method for the solution of standard optimal control problems that leads to structured
nonlinear programs. We present two possibilities how to adapt direct multiple
shooting to OED by introducing additional variables and constraints. We highlight
special structures in the constraint and objective derivatives whose evaluation is
usually the bottleneck when solving dynamic optimization problems by multiple
shooting. We have implemented a structure exploiting algorithm that takes all these
structures into account. Two benchmark examples show the efficiency of the new
algorithm.

1 Introduction

Many processes in engineering, chemistry, or physics can be described by dynamical
systems given by ordinary differential equations (ODEs) or differential-algebraic
equations (DAEs). These equations usually depend on model parameters, for exam-
ple material specific constants that are not directly accessible by measurements.
However, as the models are often highly nonlinear, simulation results can vary
strongly depending on the values of the model parameters. Thus it is desirable to
estimate the model parameters with high precision. This process is called model
validation. Only a validated model can be used to make meaningful predictions.

The first step in the model validation process is usually a parameter estimation.
That means the model is fitted to given measurement data, yielding a first estimate
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for the parameters. Then one can perform a sensitivity analysis to obtain estimates
for the covariance matrix of the parameters. The covariance matrix can reveal large
uncertainties in the parameter values or correlations between different parameters.
In this context, it is also possible to quantify the uncertainty of arbitrary model
quantities of interest.

An important observation is that the covariance matrix depends not only on
the parameters but also on the experimental conditions. This leads to the task of
optimum experimental design (OED): Choose experimental conditions such that
a subsequent parameter estimation yields parameters with minimum uncertainty.
The uncertainty of the vector of parameters is characterized by a functional on the
predicted covariance matrix. OED for general statistical models has been studied
for several decades and it is a well-established field of research, see the textbooks
[2, 10, 18]. Nonlinear OED for processes modeled by differential equations has been
investigated by several authors, see, e.g., [4, 12, 15] for an overview.

In mathematical terms, optimum experimental design can be cast as a special
(nonstandard) type of optimal control (OC) problem. As the objective, namely the
functional on the covariance matrix, depends on first-order sensitivities of the states,
variational differential equations or sensitivity equations must be explicitly included
in the problem formulation, leading to large, but specially structured differential
equation systems. We are interested in direct methods for OED problems, in
particular direct multiple shooting, that transform the infinite dimensional optimal
control problem into a finite dimensional nonlinear programming problem (NLP).
The direct multiple shooting method for optimal control problems as described by
Bock and Plitt [7] makes use of the partial separability of the objective function.
This leads to a block-diagonal Hessian of the Lagrangian that can and should be
exploited by Newton-type methods. However, a straightforward formulation of the
OED objective function lacks the feature of partial separability, so special care must
be taken to reformulate the OED problem as a standard optimal control problem.
In [14, 16] direct multiple shooting has been applied to OED. In [13], a collocation
discretization is applied to a similar problem. The main contribution of this paper
consists in detailed descriptions of the structured NLPs that result from a multiple
shooting discretization as well as numerical results that demonstrate their benefits
and limitations.

The paper is organized as follows: In Sect. 2, we give an introduction to optimum
experimental design and formulate it as a nonstandard optimal control problem. In
Sect. 3, the direct multiple shooting method is described for standard optimal control
problems. Afterwards, in Sect. 4 we propose two ways how to transform the OED
problem to a specially structured standard OC problem. In Sect. 5 we show how to
efficiently evaluate the constraint Jacobian as well as the gradient and Hessian of the
objective. A numerical example from chemical engineering illustrates the efficacy
of the approach in Sect. 6. Section 7 concludes.
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2 Nonlinear Optimum Experimental Design for Parameter
Estimation

Optimum experimental design aims at improving parameter estimation results in a
statistical sense. We first introduce the type of parameter estimation problems whose
results we seek to improve with OED along with some general notation that we use
throughout the paper.

2.1 Parameter Estimation for Dynamical Systems

We consider a dynamical process on a fixed time horizon Œt0; tf � that is described by
the following differential-algebraic equation (DAE) system with interior point and
boundary conditions:

Py.t/ D f .t; y.t/; z.t/; p; u.t//; y.t0/ D y0.p; u/ (1a)

0 D g.t; y.t/; z.t/; p; u.t// (1b)

0 D
NrX

iD1
ri.ti; y.ti/; z.ti/; p/ (1c)

where

y.t/ 2 R
ny (differential states)

z.t/ 2 R
nz (algebraic states)

p 2 R
np (parameters)

u.t/ 2 R
nu (controls)

ri.ti; y.ti/; z.ti/; p/ 2 R
nr (boundary conditions):

Throughout the text we will use the notation x.t/ D .y.t/T ; z.t/T /T to denote both
differential and algebraic states.

Assume measurement data �1; : : : ; �NM are available at sampling times t1; : : : ; tM
such that

hi.ti; y.ti/; z.ti/; p
?/ D �i C "i; i D 1; : : : ;NM;

where p? are the true—but inaccessible—parameters, y and z the corresponding
states, and "i are independently normally distributed with zero mean and standard
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deviation �i. This assumption states that the model is structurally correct and errors
arise only due to inaccuracies in the measurement process. We call

hi.t; y.t/; z.t/; p/; i D 1; : : : ;NM

the model response or observable.
The maximum likelihood parameter estimation problem can be stated as:

min
y0;x;p

NmX

iD1

�
hi.ti; y.ti/; z.ti/; p/� �i

�i

�2
(2a)

s.t. Py.t/ D f .t; y.t/; z.t/; p; u.t//; y.t0/ D y0.p; u/ (2b)

0 D g.t; y.t/; z.t/; p; u.t// (2c)

0 D
NrX

iD1
ri.ti; y.ti/; z.ti/; p/ (2d)

Parameter estimation problems constrained by differential equations can be solved
by different approaches, e.g. by direct multiple shooting in combination with a
generalized Gauss-Newton method, see [6].

2.2 Sensitivity Analysis

The solution Op of the parameter estimation problem (2) is a random variable due to
the fact that the measurements �i are random. The variance-covariance matrix C of
Op is given by:

C D �I 0	
�
J T

1 J1 J T
2

J2 0

��1 �
I
0

�
(3)

where J1 2 R
Nm�np and J2 2 R

nr�np are the Jacobians of the residual vectors of
the parameter estimation problem. We denote by J1;i the rows of J1 and by J2;i

the summands that make up J2:

J1;i D
�p

wi

�i

�
@hi

@x
.ti; y.ti/; z.ti/; p/

@x

@p
.ti/C @hi

@p
.ti; y.ti/; z.ti/; p/

��

iD1;:::;Nm

(4)

J2 D
NrX

iD1
J2;i; J2;i D @ri

@x
.ti; y.ti/; z.ti/; p/

@x

@p
.ti/C @ri

@p
.ti; y.ti/; z.ti/; p/:

(5)
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We assume that J2 has full rank and that J T
1 J1 is positive definite on KerJ2

which implies existence of C.
In (4) we have also introduced measurement weights wi 2 f0; 1g; i D 1; : : : ;Nm

for each measurement time. They are fixed in the parameter estimation context but
will be design variables in the experimental design where they allow us to select or
de-select measurements.

The sensitivities of the states x with respect to the parameters p are subject
to the following variational differential-algebraic equations (VDAE), also called
sensitivity equations:

Pyp.t/ D @f

@x
.t; y.t/; z.t/; p; u.t//xp.t/C @f

@p
.t; y.t/; z.t/; p; u.t// (6)

0 D @g

@x
.t; y.t/; z.t/; p; u.t//xp.t/C @g

@p
.t; y.t/; z.t/; p; u.t//; (7)

where

xp.t/ D @x

@p
.t/ D

�
@y

@p
.t/;

@z

@p
.t/

�
:

Initial values for the VDAE are given by

yp.t0/ D @y0
@p

for the variational differential states and by (7) for the variational algebraic states.
Note that (6) and (7) depend on y.t/ and z.t/ and therefore have to be solved together
with (1a) and (1b).

2.3 The Optimum Experimental Design Problem

Based on the sensitivity analysis, we can predict the variance-covariance matrix
for different experimental settings that are characterized by controls u.t/ as well
as a choice of measurements. An experiment may also be constrained by external
process constraints, e.g. safety or cost constraints.

The task of optimum experimental design is to choose experimental settings such
that the predicted covariance matrix has the best properties in some statistical sense.
The quality of the matrix is measured by a criterion � from statistical experimental
design:

• A-criterion: � D tr C
• D-criterion: � D det C
• E-criterion: � D maxf�i, i D 1; : : : ; np, �i eigenvalue of Cg D jjCjj2
• M-criterion: � D maxfCii, i D 1; : : : ; npg
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The complete optimum experimental design problem is

min
y0;x;xp;u;w

�

 
�
I 0
	 �J T

1 J1 J T
2

J2 0

��1 �
I
0

�!
(8a)

s.t. Py.t/ D f .t; y.t/; z.t/; p; u.t//; t 2 Œt0; tf � (8b)

0 D g.t; y.t/; z.t/; p; u.t//; t 2 Œt0; tf � (8c)

y.t0/ D y0.p; u/ (8d)

Pyp.t/ D @f

@x
.t; y.t/; z.t/; p; u.t//xp.t/C @f

@p
.t; y.t/; z.t/; p; u.t//; t 2 Œt0; tf �

(8e)

0 D @g

@x
.t; y.t/; z.t/; p; u.t//xp.t/C @g

@p
.t; y.t/; z.t/; p; u.t//; t 2 Œt0; tf �

(8f)

yp.t0/ D @y0
@p

(8g)

0 D
NrX

iD1
ri.ti; y.ti/; z.ti/; p/ (8h)

0 � c .t; y.t/; z.t/; u.t/;w/ ; t 2 Œt0; tf � (8i)

wi 2 f0; 1g; i D 1; : : : ;Nm (8j)

J1;i D
�p

wi

�i

�
@hi

@x
.ti; y.ti/; z.ti/; p/xp.ti/C @hi

@p
.ti; y.ti/; z.ti/; p/

��

iD1;:::;Nm

(8k)

J2 D
NrX

iD1

@ri

@x
.ti; y.ti/; z.ti/; p/xp.ti/C @ri

@p
.ti; y.ti/; z.ti/; p/ (8l)

with the nominal DAE system (8b) and (8c) with initial values (8d), the variational
DAE system (8e) and (8f) with initial values (8g), multipoint boundary constraints
from the parameter estimation problem (8h), path and control constraints (8i),
and integrality constraints for the measurement weights (8j). The Jacobians of the
parameter estimation residuals (8k) and (8l) are given to define the covariance
matrix on which a functional � is minimized (8a). Note that while initial values for
the nominal differential states (8b) may be degrees of freedom in the optimization,
initial values for the variational differential states (8e) are explicitly defined by the
relation (8g) and for the algebraic states z.t/ and zp.t/ they are implicitly defined by
the algebraic conditions (8c) and (8f).
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3 The Direct Multiple Shooting Method for Optimal Control
Problems

The direct multiple shooting method for optimal control problems has been first
introduced in [7]. Let us first consider the standard optimal control problem

min
Qy0;Qx;u

˚.Qx.tf // (9a)

s.t. PQy.t/ D Qf .t; Qy.t/; Qz.t/; Qu.t//; Qy.t0/ D Qy0 (9b)

0 D Qg.t; Qy.t/; Qz.t/; Qu.t// (9c)

0 � Qc.t; Qy.t/; Qz.t/; Qu.t// (9d)

0 �
NQrX

iD1
Qri.ti; Qy.ti/; Qz.ti//: (9e)

In direct methods the infinite-dimensional optimal control problem (9) is
approximated by a nonlinear programming problem (NLP) which is then solved
by suitable numerical methods. The following infinite-dimensional objects of the
optimal control problem must be treated adequately when setting up the finite-
dimensional NLP:

• control functions Qu
• differential and algebraic states Qy and Qz
• path constraints 0 � Qc.t; Qy.t/; Qz.t/; Qu.t//

3.1 Control Functions

We consider a time grid

t0 D 	 c
0 < 	

c
1 < � � � < 	 c

Nc
D tf (10)

on which the control function Qu.�/ is parameterized by means of local basis
functions:

Qu.t/ D ' j.t; qj/; t 2 Œ	 c
j ; 	

c
jC1�;

where the qj 2 R
nu are vectors of finitely many real optimization variables. We

define q WD .q0; : : : ; qNc�1/T . The local functions ' j are typically polynomials of
low degree, e.g. linear or constant functions.
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3.2 States

In shooting methods, initial value problem solvers are employed to obtain repre-
sentations of the states x for given q and y0. In the case of direct single shooting
and pure ODEs, the states are regarded as dependent variables, and only q and y0
are kept as variables in the optimization problem. Thus the tasks of simulation and
optimization are kept separate.

The direct multiple shooting method for DAEs is a simultaneous strategy to
resolve simulation and optimization in parallel. Again, we consider a discretization
of the time horizon

t0 D 	 s
0 < 	

s
1 < � � � < 	 s

Ns
D tf (11)

where we assume without loss of generality the grid points to be a subset of the grid
points of the control grid (10). On this shooting grid we consider the following set
of initial value problems with initial values sj

x D .sj
y; s

j
z/ that become variables in

the optimization problem:

PQy.t/ D Qf .t; Qy.t/; Qz.t/; p; Qu.t// Qy.	 s
j / D sj

y (12a)

0 D Qg.t; Qy.t/; Qz.t/; p; Qu.t// � �j.t/Qg.	 s
j ; s

j
y; s

j
z; p; Qu.t// Qz.	 s

j / D sj
z; (12b)

where �j.�/ is a fast decreasing damping function with �.	 s
j / D 1. This relaxed

formulation was proposed in [8] and means that the algebraic condition (12b)
is automatically consistent for any initial values sj

z. That means the DAE solver
does not need to solve the (nonlinear) algebraic condition in every iteration of the
optimization algorithm to find feasible initial values. Instead, the nonlinear algebraic
consistency conditions

0 D Qg.	 s
j ; s

j
y; s

j
z; Oqj/; j D 0; : : : ;Ns

are added to the optimization problem which ensures the solution of the original
DAE at the solution of the optimization problem.

Note that the DAEs (12) are solved independently on the smaller time intervals
Œ	 s

j ; 	
s
jC1� as the initial values sj

x are variables of the optimization problem. To
ensure equivalence to the original system (1), continuity conditions are added to the
optimization problem for every shooting interval. Let us denote by Qy.	 s

jC1I sj
y; s

j
z; Oqj/

a representation of the solution to problem (12) on the intervals Œ	 s
j ; 	

s
jC1�, where

Oqj denotes the subvector of q that represents Qu on the interval Œ	 s
j ; 	

s
jC1�. Then the

continuity conditions read as:

Qy.	 s
jC1I sj

y; s
j
z; Oqj/ D sjC1

y ; j D 0; : : : ;Ns � 1:
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Fig. 1 Concept of direct multiple shooting for one state and one piecewise constant control. The
continuity conditions are violated (vertical dotted lines). Note how the control is also allowed to
switch within shooting intervals

Figure 1 illustrates the concept of direct multiple shooting. Note that we explicitly
maintain separate grids for controls and states. A special case is of course to choose
the same grid for both. However, in our experience, the decoupling of grids provides
greater flexibility and a smaller number of shooting intervals can greatly accelerate
convergence for problems where a relatively fine discretization of the controls is
desirable.

3.3 Path Constraints

All path constraints such as (9d) that are required to hold at infinitely many points
are evaluated on finitely many checkpoints only. Let us assume—without loss
of generality—that the checkpoints are the grid points of the multiple shooting
grid (10). Then the discretized path constraints read as

0 � Qc.	 s
j ; s

j
y; s

j
z; Oqj/; j D 0; : : : ;Ns: (13)

Depending on the choice of the time grid, the constraints might be violated in
between grid points. There exist strategies how to adaptively add checkpoints, see,
e.g., [17], but to keep the notation simple we assume for the scope of this paper that
they match the grid points of the shooting grid.
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3.4 Structured NLP

We have now addressed all constraints of the optimal control problem and can
formulate the structured multiple shooting NLP as follows:

min
sy;sz;q

�.sN
x / (14a)

s.t. 0 D Qy.	 s
0/� s0y (14b)

0 D Qy.	 s
jC1I sj

y; s
j
z; Oqj/ � sjC1

y ; j D 0; : : : ;Ns � 1
(14c)

0 D Qg.	 s
j ; s

j
y; s

j
z; Oqj/; j D 0; : : : ;Ns

(14d)

0 � c.	 c
j ; Qy.	 c

j /; Qz.	 c
j /; Oqj/; j D 0; : : : ;Ns

(14e)

0 �
NsX

jD0

NQrX

i;
	j�ti<	jC1

Qri.ti; Qy.tiI sj
y; s

j
z; Oqj/; Qz.tiI sj

y; s
j
z; Oqj//; (14f)

where (14c) and (14d) are the continuity and consistency conditions that guar-
antee the solution of the original DAE (1) at the solution of the optimization
problem.

In Newton-type methods, the Jacobian of the constraints and the Hessian of the
Lagrangian are of special importance. It is clear that the evaluation of the continuity
and consistency constraints with index j only depend on variables sj

x and Oqj in a
nonlinear way. This leads to a constraint Jacobian that has a banded structure and a
Hessian of the Lagrangian with a block diagonal structure according to the shooting
discretization. These structures can be seen in the structure of the KKT matrix as
depicted in Fig. 2.

Depending on the shooting discretization, problems of type (14) can be very
large, but sparse. Algorithmic techniques such as condensing (see [7]) exploit this
sparsity and reduce the additional effort considerably that is caused by the larger
matrices when using a fine multiple shooting discretization.
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Fig. 2 Sparsity pattern of the
KKT matrix of a multiple
shooting discretized optimal
control problem. The
constraint Jacobian comprises
continuity constraints that are
responsible for the banded
structure. Linearly coupled
constraints give rise to a
dense block. The Hessian of
the Lagrangian (upper left)
has block diagonal structure.
Different block sizes may
occur if the numbers of
control variables on two
intervals differ

4 Optimum Experimental Design as Separable NLP

We now want to apply the multiple shooting discretization as described in the
previous section to the optimum experimental design problem (8). In particular we
need to extend the problem formulation (14) to cope with the special kind of coupled
objective that is characteristic for OED. Multiple Shooting for OED problems has
first been applied in [16] and has been further investigated in [14].

4.1 Measurements

The grid of possible measurements depends on the process and should be indepen-
dent of the shooting and control grid. In particular, more than one measurement
could be taken at the same time, see [15].

In the original formulation, integrality of the measurement weights is required.
In our formulation we employ a continuous relaxation:

0 � wi � 1; i D 1; : : : ;Nm

In practice, this often yields satisfactory results, as a bang-bang structure is observed
for the measurements and so integrality is satisfied automatically. In fact there is also
some theoretical evidence for this, see [20].

The measurement weights, along with the controls, are experimental design
variables. All simple bounds and linear constraints on the measurement weights
fit into the framework of general path constraints and linearly coupled interior point
constraints (9d) and (9e).
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4.2 Dynamical System

We combine nominal and variational states into one system:

Qy.t/ D
�

y.t/
�yp.t/�

2 R
nyCny�np

for the differential states and

Qz.t/ D
�

z.t/
�zp.t/�

2 R
nzCnz�np

for the algebraic states, where we denote by � �� the map that combines the columns
of an m	 n matrix into a single m � n column vector by stacking them one below the
other.

That leaves us with the new DAE system

PQy.t/ D Qf .t; Qy; Qz; p; u/ D
(

f .t; y.t/; z.t/; p; u.t//
� @f
@x .t; y.t/; z.t/; p; u.t//xp.t/C @f

@p .t; y.t/; z.t/; p; u.t//�
(15)

0 D Qg.t; Qy; Qz; p; u/ D
(

g.t; y.t/; z.t/; p; u.t//
� @g
@x .t; y.t/; z.t/; p; u.t//xp.t/C @g

@p .t; y.t/; z.t/; p; u.t//�
:

(16)

This system has of course a special structure that can and should be exploited in an
efficient implementation. We will give details on this in Sect. 5.

4.3 Objective Function

An important difference between the problem of optimum experimental design (8)
and the standard optimal control problem (9) is the nonlinear coupling in time in the
objective that is due to the inversion when computing the covariance matrix, as it
has been noted in [16]. In particular this violates the property of partial separation
of the Lagrange function that is responsible for its sparse, block-diagonal Hessian.
We present two approaches to resolve that nonlinear coupling.
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4.3.1 Linearly Coupled Constraint for Information Matrix

Recall the definition of the covariance matrix:

C D �I 0	
�
J T

1 J1 J T
2

J2 0

��1 �
I
0

�

with the rows of J1 and the summands that constitute J2 as defined by (4) and (5):

J1;i D
�p

wi

�i

�
@hi

@x
xp.ti/C @hi

@p

��

iD1;:::;Nm

J2;i D @ri

@x
.ti; y.ti/; z.ti/; p/xp.ti/C @ri

@p
.ti; y.ti/; z.ti/; p/:

In [16] it has been pointed out that

�
J T

1 J1 J T
2

J2 0

�
D
 PNm

iD0J T
1;iJ1;i

PNr
iD0J T

2;iPNr
iD0J2;i 0

!
: (17)

Note that in particular, J1;i and J2;i depend on evaluations of the nominal and
variational states x and xp at individual points ti. Thus, (17) implies that the matrices
J T

1 J1 and J2 only exhibit a linear coupling in time. In a multiple shooting
context, we assign the points ti to the proper shooting intervals and plug in the
representation of the solution x.	 s

jC1I sj
y; s

j
z; Oqj/ and xp.	

s
jC1I sj

Qy; s
j
Qz; Oqj/, respectively.

We write this as

J T
1 J1 D

Ns�1X

jD0

NmX

	j<ti�	jC1

J1;i.s
j
Qy; s

j
Qz; Oqj;wi/

TJ1;i.s
j
Qy; s

j
Qz; Oqj;wi/

J2 D
Ns�1X

jD0

NrX

	j<ti�	jC1

J2;i.s
j
Qy; s

j
Qz; Oqj/:

We introduce additional variables H and J and linearly coupled constraints that fit
into the framework of (14). The objective then only depends on the newly introduced
variables H and J and we obtain the following structured NLP:

min
sQy;sQz;q;w;H;J

�

 
�
I 0
	 �H JT

J 0

��1 �
I
0

�!
(18a)

s.t. 0 D H �
Ns�1X

jD0

NmX

	j<ti�	jC1

J1;i.s
j
Qy; s

j
Qz; Oqj;wi/

TJ1;i.s
j
Qy; s

j
Qz; Oqj;wi/ (18b)
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0 D J �
Ns�1X

jD0

NrX

	j<ti�	jC1

J2;i.s
j
Qy; s

j
Qz; Oqj/ (18c)

0 D Qy.	 s
0I Oq0/� s0Qy (18d)

0 D Qy.	 s
jC1I sj

Qy; s
j
Qz; Oqj/ � sjC1

Qy ; j D 0; : : : ;Ns � 1 (18e)

0 D g.	 s
j ; s

j
Qy; s

j
Qz; Oqj/; j D 0; : : : ;Ns (18f)

0 � c.	 s
j ; s

j
y; s

j
z; Oqj;wj/; j D 0; : : : ;Ns (18g)

0 � wi � 1; i D 1; : : : ;Nm (18h)

0 �
NsX

jD0

NrX

	j�ti<	jC1

ri.ti; y.tiI sj
y; s

j
z; Oqj/; z.tiI sj

y; s
j
z; Oqj//: (18i)

4.3.2 Pseudo States for Covariance Matrix

Another possibility to resolve the coupling in the objective is to move the computa-
tion of the covariance to the constraints by deriving a recursion formula.

Using this formula, we introduce matrix-valued variables

Cj D
 

Cj
1 CjT

2

Cj
2 Cj

3

!
2 R

.npCnr/�.npCnr/; j D 1; : : : ;Ns (19)

and constraints for the recursion at the multiple shooting nodes and add them as
additional variables to the NLP. This resembles the treatment of dynamical states in
a multiple shooting method, hence we refer to Cj as pseudo states for the covariance
matrix.

Let us first derive the formula in the unconstrained case: Let Hj denote the
information matrix including all terms up to time 	j. Then Hj is given as the sum
of Hj�1 and the information gain by measurements and constraint evaluations in the
interval .	j�1; 	j�:

HjC1 D Hj C
X

iW	j<ti�	jC1

J1;i.s
j
Qy; s

j
Qz; Oqj;wi/

TJ1;i.s
j
Qy; s

j
Qz; Oqj;wi/; (20)

where we start with some initial information given as a positive definite matrix H0,
e.g., from previous experiments or from literature.



Direct Multiple Shooting for Nonlinear Optimum Experimental Design 129

At every grid point 	j the covariance matrix taking into account all measurements
up to time 	j is the inverse of Hj. From (20) we obtain as recursion formula for the
covariance matrix:

C0 D .H0/�1 (21)

CjC1 D
0

@.Cj/�1 C
X

iW	j<ti�	jC1

J1;i.s
j
Qy; s

j
Qz; Oqj;wi/

TJ1;i.s
j
Qy; s

j
Qz; Oqj;wi/

1

A
�1

: (22)

Equation (22) can be simplified to

CjC1 D Cj

0

@I C
X

iW	j<ti�	jC1

J1;i.s
j
Qy; s

j
Qz; Oqj;wi/

TJ1;i.s
j
Qy; s

j
Qz; Oqj;wi/C

j

1

A
�1

:

This can be easily generalized to the case of constrained parameter esti-
mation problems and we obtain the complete NLP by replacing the coupled
constraints (18b) and (18c) by the pseudo continuity constraints

0 D
0

@
 

Cj
1 CjT

2

Cj
2 Cj

3

!�1
C

X

iW	j<ti�	jC1

�
J T

1iJ1i J T
2i

J2i 0

�1

A
�1

�
 

CjC1
1 CjC1T

2

CjC1
2 CjC1

3

!
;

(23)

j D 0; : : : ;N � 1:

As initial values for the pseudo states we take some a priori uncertainty given by
a positive definite matrix C0

1 and a full rank matrix C0
2 such that C0

2C
0T
2 is positive

definite to ensure invertibility of C0. The a priori uncertainty should be chosen
several orders of magnitude larger than the expected uncertainty after the OED to
make sure that the choice of C0

1 and C0
2 does not interfere significantly with the

solution. The objective for this formulation simplifies to

�

��
I 0
	 �CNs

1 CNsT
2

CNs
2 CNs

3

��
I
0

��
: (24)

While this formulation seems to be very much in the spirit of multiple shooting—
the covariance of the system is modelled as a kind of state on each interval
which is coupled via continuity-type constraints, the nonlinearity of the objective is
distributed over the shooting intervals—it is computationally much less appealing:
The objective (24) is simpler because the matrix inversion is now contained in
the constraints, however, the pseudo continuity constraints (23) are numerically
delicate, each containing two matrix inversions (in fact, we can reduce this to one
by appropriate reformulation) of potentially ill-conditioned matrices.
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5 Evaluation of Problem Functions

After discretization we need to solve the large but structured NLP (18). In derivative
based methods such as sequential quadratic programming often the number of vari-
ables and constraints corresponds to the overall runtime of the method. In shooting
methods for optimal control and especially optimum experimental design, however,
the runtime is often dominated by the evaluation of states and their derivatives within
the continuity constraints because they comprise possibly expensive calls to external
numerical integrators. Thus it is worthwhile to have a closer look at the structures of
constraints and objective and derive efficient and accurate evaluation schemes. We
concentrate on the formulation (18) of the problem—linearly coupled constraints
for the information matrix—as it is numerically more promising.

5.1 Constraint Derivatives

The OED problem (18) has a special structure in the constraints due to the fact
that the dynamic system consists of closely related states, namely nominal and
corresponding variational states. Ideally, they are evaluated together using the
principle of internal numerical differentiation (IND), see [1, 5].

Let us now have a closer look at the derivatives of continuity and consistency
constraints (18e) and (18f) for the system that consists of nominal and variational
states.

We denote by

sj
Qx D



sj

x; sj
x;p1 ; : : : ; sj

x;pNp

�T

the shooting variables for the nominal and variational states at one shooting node.
Observation 1. Variational states for different parameters are independent. This

means

@xpi .	jC1/
@sj

x;pk

D 0; i ¤ k:

Observation 2. By differentiating (6) and (7), we see that the derivative of a
variational state with respect to its initial value satisfies the following nx 	 nx

variational DAEs:

P 
@ypi .t/

@sj
x;pi

!
D @

@xpi

�
@f

@x
xpi.t/C

@f

@p

�
� @xpi.t/

@sj
x;pi

D @f

@x
� @xpi.t/

@sj
x;pi
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0 D @

@xpi

�
@g

@x
xpi.t/C

@g

@p

�
� @xpi.t/

@sj
x;pi

D @g

@x
� @xpi .t/

@sj
x;pi

:

These are the same equations that describes the sensitivity of the nominal states
x with respect to their initial values and hence

@xpi .	jC1/
@sj

x;pi

D @x.	jC1/
@sj

x

:

In particular that means that we do not need to evaluate any additional state
sensitivities when we explicitly discretize the variational equations by multiple
shooting. Instead @x.	/

@sx
needs to be computed only once for each shooting interval

and then can be used multiple times in the constraint Jacobian.
The part of the constraint Jacobian that corresponds to the derivative of the

continuity constraints (18e) coupling the states starting at 	j�1 and at 	j has the
following structure:
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;

where the variable vector is ordered as follows:



sj�1

y ; sj�1
y;p1 ; : : : ; sj�1

y;pNp
; sj�1

z ; sj�1
z;p1 ; : : : ; sj�1

z;pNp
; qj�1; wj�1�T

:

A similar structure can be observed for the consistency conditions (18f).
Note that the derivatives @y

@.�/ are first-order and @yp

@.�/ are second-order sensitivities
of the states and must be supplied by the integrator.

5.2 Objective Derivatives

The objective (18a) also deserves special attention as it is a nontrivial—but more
or less fixed for the whole problem class—function that in particular comprises the
inversion of a symmetric matrix.

First of all we note that (18a) only depends on the newly introduced variables
H and J. This allows us to derive explicit formulas for the first and second
derivative of the objective. Furthermore H and J enter the constraints only linearly
through the coupled constraints (18b) and (18c), so the second derivative of
the objective contains the entire curvature of the problem with respect to H
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and J. This can be used to cheaply compute part of the Hessian approxima-
tions in SQP methods without the need to evaluate state sensitivities of higher
order.

We only discuss the case of unconstrained parameter estimation problems (i.e.
no matrix J) and �.�/ D tr .�/ as optimization criterion.

5.2.1 Objective Gradient

We have an objective � that maps a symmetric matrix to a scalar, however, we only
include the lower triangular matrix as degrees of freedom in the nonlinear program.
So whenever we need the gradient of the objective in a derivative based method we
need derivatives of � with respect to every entry Huv , 1 � v � u � np.

In the unconstrained case we have H�1 D C and for every entry Huv

@�

@Huv
D @�

@C
� @C

@Huv
:

Using the general formula

@H�1ij

@Hkl
D �.H�1/ik � .H�1/lj (25)

we obtain for the derivative with respect to a fixed entry Huv:

@�

@Huv
D

X

1�i;j�np
1�k;l�np

@�

@Cij
� @Cij

@Hkl
� @Hkl

@Huv
D �

X

1�i;j�np
1�k;l�np

@�

@Cij
� Cik � Clj � @Hkl

@Huv
:

Taking symmetry into account, we have

@Hkl

@Huv
D
�
1; if .k; l/ D .u; v/ or .l; k/ D .u; v/
0; else;

and thus

@�

@Huu
D �

X

1�i;j�np

@�

@Cij
� Ciu � Cuj (26)

@�

@Huv
D �2

X

1�i;j�np

@�

@Cij
� Ciu � Cvj; u > v: (27)
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For � D tr this simplifies to

@�

@Huu
D �

X

1�i�np

C2
iu (28)

@�

@Huv
D �2

X

1�i�np

Ciu � Cvi; u > v: (29)

This can be calculated immediately once the covariance matrix C is computed.

5.2.2 Objective Hessian

We now use formulae (28) and (29) to derive an explicit formula for the Hessian of
tr .H�1/ with respect to the entries of H.

When computing @2 tr .H�1/

@Huv@Hrs
we distinguish between three cases:

• Huv and Hrs diagonal elements
• Huv diagonal, Hrs off-diagonal element
• Huv and Hrs off-diagonal elements.

For two diagonal elements we obtain:

@2�.C/

@Huu@Hrr
D @

@Huu

�
@�

@Hrr

�
D @

@Huu

0

@�
X

1�i�nv

C2
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1

A

D �2
X

1�i�nv

@Cir

@Huu
� Cir D 2

X

1�i�nv

Ciu � Cur � Cir:

If we have one diagonal and one off-diagonal element we compute:
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@Huu

�
@�

@Hrs

�
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@Huu

0

@�2
X

1�i�nv
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1

A

D �2
X

1�i�nv

@Cir

@Huu
� Csi C Cir � @Csi

@Huu

D 2
X

1�i�nv

Ciu � Cur � Csi C Cir � Csp � Cui:
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Taking the second derivative with respect to two off-diagonal elements yields:

@2�.C/
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�
@�

@Hrs

�
C @
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�
@�

@Hrs

�

D @

@Huv

0

@�2
X

1�i�nv

Cir � Csi

1

AC @

@Hvu

0

@�2
X

1�i�nv

Cir � Csi

1

A

D �2
X

1�i�nv

@Cir

@Huv
� Csi C Cir � @Csi

@Huv
C @Cir

@Hvu
� Csi C Cir � @Csi

@Hvu

D 2
X

1�i�nv

Ciu � Cvr � Csi C Cir � Csu � Cvi C Civ � Cur � Csi C Cir � Csv � Cui:

As the variables H enter the constraints only linearly we note that the objective
Hessian with respect to H is in fact the same as the Hessian of the Lagrangian with
respect to H.

6 Numerical Results

We test our methods on two examples: The first one is a predator-prey model
adapted to OED [19] that serves as proof of concept for both formulations. The
second one is a more involved example from chemical engineering: the urethane
reaction [15]. We report SQP iterations which basically amount to derivative
evaluations as well as CPU time and compare the results to a single shooting
implementation.

6.1 Implementation

We implemented direct multiple shooting for OED within our software package
VPLAN [15] that allows to formulate, simulate and optimize DAE models. From
a user specified formulation of the nominal DAE system, parameters, controls,
and process constraints it generates structured NLPs for OED as described in
Sect. 4. A special focus is on the efficient sparse evaluation of the constraints and
their derivatives as outlined in Sect. 5 and parallelization of state integration and
derivative evaluation on multi experiment and shooting node level.

As integrator we use DAESOL [3], a variable order and stepsize BDF method
that can efficiently compute sensitivities of first and second order. The absolute and
relative tolerance for all computations was set to 10�9.

For the solution of the structured nonlinear programs, we implemented a filter
based line search SQP method as described in [21]. The block structured quadratic
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subproblems are solved by a modified version of the parametric active set solver
qpOASES [11] that uses direct sparse linear algebra. The Hessian of the Lagrangian
is approximated blockwise depending on the number of shooting intervals. For each
block a positive definite damped BFGS update is employed which is scaled by the
centered Oren-Luenberger sizing factor as described in [9]. Both full space and
limited memory updates are available. In a multiple shooting context, the exact
objective Hessian is computed cheaply as discussed in Sect. 5.2 and used for the
lowermost diagonal block instead of a BFGS approximation. The optimality and
nonlinear feasibility tolerance are set to 10�5. Details of the SQP implementation
will be discussed in an upcoming publication.

All results were obtained on a workstation with two Intel Xeon hexacore CPUs
(2.4 GHz) allowing 24 parallel threads in total and 32 GB RAM running Ubuntu
12.04.

6.2 Example 1: Predator-Prey Model

We consider a predator-prey dynamics taken from [19] on the time horizon Œ0; 12�
with fixed initial values and an additional fishing term 0 � u.t/ � 1 as control:

Py1.t/ D y1.t/ � p1 � y1.t/ � y2.t/ � 0:4 � u.t/ � y1.t/; y1.0/ D 0:5
Py2.t/ D �y2.t/C p2 � y1.t/ � y2.t/ � 0:2 � u.t/ � y2.t/; y2.0/ D 0:7:

We assume p1 D p2 D 1 and that both states can be observed at most four times
during the experiment with constant variances for the measurement errors, i.e.,
�i D 1. Both the control u.t/ and the grid of possible measurements are discretized
on 50 equidistant intervals. The objective is to minimize the average variance of p1
and p2, i.e. 1

2
tr.C/.

The initial guess for the controls is u.t/ � 0:3 and all 50 measurements selected,
i.e. w1i D w2i D 1, i D 1; : : : ; 50. It yields an objective function value (average
variance) of 1

2
tr.C/ D 0:00683 but note that this design is infeasible: all 50 possible

measurements for both states are selected but only four per state are allowed.

6.3 Example 2: Urethane Reaction

The Urethane reaction is a well-known example from chemical reaction kinetics,
see [15]. The reaction scheme is the following:

AC B! C

AC C• D

3A! E
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Educts are phenylisocyanate A and butanol B in the solvent dimethylsulfoxide L.
During the reaction the product urethane C, the byproduct allophanate D and the
byproduct isocyanate E are formed.

The products C, D, and E are modelled as differential states while A, B, and
L can be computed from C, D, and E using molar number balance. In total,
six parameters have to be identified, namely the frequency factors and activation
energies for the Arrhenius kinetics. The objective is to minimize 1

6
tr.C/. To achieve

this, one experiment is to be designed for the time horizon Œt0; tend� D Œ0h; 80h�
and one out of three possible measurements can be taken at each of 11 equidistant
points in time. The reactor is run in a stirrer tank with two feeds: Feed 1 contains
phenylisocyanate and the solvent, feed 2 contains dimethylsulfoxide and the solvent.
Both can be fed into the reactor during the process. Furthermore, the temperature
can be controlled. For our numerical experiments, we parameterize the derivative of
the control functions PT.t/, Pf eed1.t/, and Pf eed2.t/ by piecewise constant functions on
ten equidistant intervals. The actual process controls T.t/, feed1.t/, and feed2.t/ are
set up as additional differential states, so we end up with a total of six state variables.
The constraints on the controls are formulated as path constraints. The full model
including process constraints and measurement methods is summarized in Fig. 3.
The variances of the measurement errors are assumed constant with �i D 1.

The initial guess for the controls is depicted in Fig. 4. It yields an objective
function value (average variance) of 1

6
tr.C/ D 1936:3.

6.4 Results Predator-Prey

We solved the problem with both direct multiple shooting formulations intro-
duced in Sect. 4. We keep the control discretization fixed but vary the number of
shooting intervals giving rise to different, yet equivalent, NLPs. We discovered a
number of different local minima that differ mainly with respect to the placing
of the measurements. Table 1 shows the results for the first multiple shooting
formulation—a coupled constraint for the information matrix—as well as the single
shooting formulation while Table 2 shows results for the formulation where the
covariance is distributed over the shooting intervals. Both algorithms terminated
successfully when restarted in the minima found by the other one indicating the
structural correctness of our approach.

Table 1 shows that the first formulation converges for all discretizations. How-
ever, we note how the number of SQP iterations increases when we increase the
number of shooting intervals. Preliminary experiments show that this is probably
due to the BFGS update that is unable to reflect negative curvature of the underlying
Lagrangian. A block SQP method that can handle indefinite approximations which
can reduce this effect is currently under development. When we look at the CPU
time, however, we see that the benefits of the efficient evaluation scheme for the
multiple shooting formulation outweighs the smaller number of SQP iterations
for single shooting, making direct multiple shooting with a moderate number of



Direct Multiple Shooting for Nonlinear Optimum Experimental Design 137

Fig. 3 Urethane reaction model
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Fig. 4 Initial values for controls and corresponding states for the urethane example. The objective
(average variance) is 1

6
tr.C/ D 1936:3

Table 1 Performance of multiple shooting for information matrix for predator-prey

Shooting intervals Var. Cons. SQP iterations Obj. Time (s)

Single shooting 150 2 16 7.614527e-03 11:03

2 159 11 22 7.614526e-03 3:47

4 173 25 37 7.908877e-03 2:30

6 187 39 52 7.908865e-03 2:18

12 229 81 82 7.908856e-03 2:27

25 297 149 91 7.908878e-03 2:77

50 447 299 126 7.634122e-03 5:94

Table 2 Performance of multiple shooting for covariance matrix for predator-prey

Shooting intervals Var. Cons. SQP iterations Obj. Time (s)

2 162 14 41 7.794461e-03 6.55

4 182 34 122 7.646316e-03 9.73

6 202 54 – – –

12 262 114 90 8.270562e-03 6.29

25 369 221 – – –

50 594 446 304 7.952309e-03 34.01

shooting intervals the best overall choice. The following aspects are responsible for
this:

• derivatives with respect to controls are required only locally that means less
directional derivatives of second order are needed

• derivative evaluation is easily parallelized on a multicore machine.

While the first formulation converges for all discretizations within a reasonable
number of SQP iterations, the second formulation does not converge for every
multiple shooting discretization. Furthermore, many of the SQP steps were reduced
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steps, which means many additional constraint and objective evaluations were
necessary. Overall, the behaviour was competitive to the first formulation and single
shooting only for certain problem instances.

6.5 Results Urethane

We solved the problem with the more promising variant of direct multiple shooting
meaning we transform it to an NLP of the form (18) where we introduce a
coupled constraint for the information matrix. Again, we use different numbers of
shooting intervals with the same control discretization. The problem exhibits several
structurally different local minima, however, all of them yield significantly better
objective values than the initial guess. The states and controls for one of them are
depicted in Fig. 5.

The SQP method was able to find a local minimum for every multiple shooting
discretization. The results comprising the number of major iterations, the final
objective value and the CPU time in seconds are summarized in Table 3.

We see that the method performs comparably well in terms of SQP iterations for
single and multiple shooting. For CPU time, again the results shift strongly in favor
of multiple shooting because the derivative evaluation can be done much cheaper.

Fig. 5 Optimum experimental design for the urethane example. The objective (average variance)
is 1

6
tr.C/ D 0:0665

Table 3 Performance of single and multiple shooting for urethane

Shooting intervals Var. Cons. SQP iterations Obj. Time (s)

Single shooting 68 45 68 1.241664e-01 85:87

2 138 112 62 3.441588e-01 30:61

4 242 261 105 6.651601e-02 32:64

10 530 480 117 8.889849e-02 43:07
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7 Conclusions

In this paper, we reviewed a nonstandard optimal control problem formulation of
OED. For this formulation, we showed how to extend the classical direct multiple
shooting method for optimal control problems for OED problems in two ways,
leading to highly structured nonlinear programs. Special structures in the constraints
and objective derivatives are highlighted that must be taken into account in an
efficient implementation. The algorithms presented are implemented within the
software package VPLAN. We presented two application examples, one of them
a challenging example from chemical engineering that could be solved successfully
with one of the new formulations. Our implementation outperforms an existing
single shooting implementation in terms of CPU time.

We expect direct multiple shooting for OED to have more benefits for more chal-
lenging, large-scale real-life problems. Especially when nontrivial path constraints
are present, as it is often the case for real-life systems, direct single shooting can
run into problems finding feasible points. The direct multiple shooting method as
introduced in this paper allows to choose fine shooting discretizations in critical
regions and offers more flexibility for initialization. Another point is that OED, even
for small nominal systems, basically requires the solution of an additional nx 	 np

variational system and even though this can be done efficiently using the principles
of IND, its solution becomes very time consuming for large-scale systems. Here the
lower sensitivity load as well as the excellent potential for parallelization provide
great benefits for multiple shooting.
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Parameter Estimation for High-Dimensional
PDE Models Using a Reduced Approach

Robert Kircheis and Stefan Körkel

Abstract Partial differential equations (PDE) are indispensable to describe com-
plex processes. PDE constrained parameter estimation is still a prevailing topic
of research. The increase in computation time with increasing complexity of the
problem is one of the main problems.

With the application of multiple shooting, the number of required derivatives
for the generalized Gauss–Newton method rises rapidly. We introduce a method to
overcome this challenge. By using directional derivatives the computational effort
can be reduced to the minimal number. We demonstrate our methods with help of
the heat equation.

1 Introduction

Validated models are essential for process optimization and optimal control in
chemistry, engineering etc. Usually these models depend on parameters that are
not known initially but have to be identified from measurement data. Derivative
based methods, such as the generalized Gauss–Newton method for direct multiple
shooting by Bock [5], have shown good results for parameter estimation problems
with ordinary differential equations (ODEs).

If spatially distributed processes are taken into account, we have to consider
constraints given by partial differential equations (PDEs). If PDEs are discretized
by means of a method of lines, we end up with a high-dimensional system of
differential algebraic equations (DAEs). In general, we formulate the parameter
estimation problem as a nonlinear least squares problem and apply the generalized
Gauss–Newton method. In the context of multiple shooting, the effort for the
computation of the Jacobians in each iteration of the generalized Gauss–Newton
method is tremendous. We present a method which couples the evaluation of the
Jacobians and the subsequent block-Gaussian elimination. Thus, the number of
required derivatives is reduced to the minimal number. The reduced approach was
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introduced by Schlöder [13] for parameter estimation problems constrained by
high-dimensional systems of ODEs in 1987. A first extension to DAE constrained
problem was presented by Bauer [2]. In this paper, we develop a different for-
mulation of the reduced approach for DAE constraints which we consider as an
approximation of the solution of a partial differential equation. The first application
of the reduced approach to PDE constrained parameter estimation problems was
presented by Dieses [1]. Dieses considered only ODEs to approximate the solution
of a PDE.

We first introduce the general formulation of a parameter estimation problem
and the generalized Gauss–Newton method. Afterwards, we present the reduced
approach. In the end, an application example is investigated to show the advantages
of our method compared to the conventional approach. In the end, some conclusions
are drawn.

2 Problem Formulation

We consider a dynamic system defined by partial differential equations,

0 D F

�
t; x; u;

@ui

@t
;
@ui

@xj
;
@ui

@2xj@xk
; : : : ; p

�
; (1)

on the bounded domain˝ � R
d:F is an arbitrary function with time t D Œt0; tend�;

independent variables x 2 R
d; dependent variables u 2 R

nu and parameters p 2 R
np :

We examine transient problems. Thus, let initial values of the form

u.t0/ D u0.p/ (2)

be given that may depend on the parameters. Additionally, let boundary conditions
be defined by

auC b
@u

@n
D c on @˝ (3)

for some constants a and b that can be zero but not at the same time and a given
function c on the boundary of the domain.

Assume that nex experiments have been executed which have provided a set
of measurements � j

k; k D 1; : : : ;m j; j D 1; : : : ; nex: By hj
k.t

j
k; u
�;j.t j

k/; p
�/; k D

1; : : : ;m j; j D 1; : : : ; nex, we denote the corresponding model response evaluated
for the true, but unknown parameters p� and states u�;j.t j

k/ computed by Eq. (1) for
p�: We assume the measurement errors

"
j
k WD � j

k � hj
k.t

j
k; u

j;�.t j
k/; p

�/; k D 1; : : : ;m j; j D 1; : : : ; nex;
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to be normally distributed

"
j
k � N



0;
�
� i

k

	2�
; k D 1; : : : ;m j; j D 1; : : : ; nex;

with mean 0 and standard deviation � j
k: The difference between measurement values

and model response can be evaluated for other values of p and u; too, and we obtain
the residuals

�
j
k � hj

k.t
j
k; u

j.t j
k/; p/; k D 1; : : : ;m j j D 1; : : : ; nex: (4)

The parameter estimation problem is then to minimize the weighted sum of the
residuals

1

2

nexX

jD1

m jX

kD1

 
�

j
k � hj

k.t
j
k; u

j.tk/; p/

�
j
k

!2
(5)

with the variances � j
k as weights. Equation (5) can also be interpreted as a log-

likelihood estimator for the parameters, see Seber [14].
Often, we have to deal with additional interior point and boundary constraints as

well:

0 D
n

j
rX

lD1
rj

l.u
j.t j

l /; p/ (6)

with rl W Rnu 	 R
np ! R

r:

Considering the model equations (1)–(3) and the interior point constraints (6) as
additional constraints, we state the PDE constrained parameter estimation problem

min
y;p

1

2

nexX

jD1

m jX

kD1

 
�

j
k � hj

k.t
j
k; u

j.t j
k/; p/

�
j
k

!2
(7a)

s.t. 0 DF j

 
t; x; uj;

@uj
i

@t
;
@uj

i

@xj
;
@uj

i

@2xj@xk
; : : : ; p

!
j D 1; : : : ; nex: (7b)

uj.t0/ Duj
0.p/; (7c)

cj Dajuj C bj @uj

@n
on @˝; (7d)

0 D
n

j
rX

lD1
rj

l.u
j.t j

l /; p/: (7e)
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3 Discretization in Space and in Time

In this section, we present concepts for the discretization of the model equations (1)
in space and the concept of multiple shooting. If not declared otherwise, the
following methods are presented for the first experiment only. For the remaining
experiments, the steps have to be repeated. We neglect the superscript 1.

The first step in the parametrization of the parameter estimation problem (7)
consists of the discretization of the PDE constraints (1) by a method of lines, cf.
Schiesser [12] , e.g., by a finite difference methods (FDMs) or a finite element
methods (FEMs).

The approach leads to a high-dimensional system of differential algebraic
equations

A.y.t/; z.t/; p/Py D f .t; y.t/; z.t/; p/; (8a)

0 D g.t; y.t/; z.t//; (8b)

y.t0/ D y0.p/; (8c)

where A.y.t/; z.t/; p/ denotes the mass matrix that may depend on the spatially
discretized states y.t/ 2 R

ny and z.t/ 2 R
nz and the parameters p: We consider

only DAEs with differentiation index 1, i.e. the matrix @g
@z is regular.

To solve System (8) in time, we apply direct multiple shooting, see Bock [6].
Thus, the parameter estimation problem is transformed into a problem with finite
dimensional constraints.

We define the shooting grid, i.e., a partition of the time interval Œt0; tend�;

	0 D t0 < 	1 < : : : < 	nms < 	nmsC1 D tend;

and the shooting intervals

Ii D Œ	i; 	iC1/; i D 0; : : : ; nms:

We introduce artificial initial values si D .syT

i ; szT

i /
T ; i D 0; : : : ; nms; with

sy
0 D y0.p/ (9)

for the differential and algebraic states y.t/ and z.t/; respectively, and examine the
relaxed DAE system

A.y.t/; z.t/; p/Py.t/ D f .t; y.t/; z.t/; p/; t 2 Ii (10a)

y.	i/ D sy
i ; (10b)

0 D g.t; y.t/; z.t/; p/ � ˇ.t/g.	i; si; p/; i D 0; : : : ; nms; (10c)

ˇ.t/ 2 Œ0; 1�; ˇ.	i/ D 1; (10d)
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on each of the nms C 1 subintervals. Here, ˇ.t/ is a continuous, monotonically
decreasing function with

lim
t!	iC1

ˇ.t/ D 0:

The evaluation of the DAE system leads to a step-by-step formulation of the
trajectory

�
y.t/
z.t/

�
D  .tI si; p/; t 2 Ii; i D 0; : : : ; nms: (11)

We refer to  i.tI si; p/; t 2 Ii; i D 0; : : : ; nms as the nominal trajectory
By Eq. (11), we obtain a piecewise continuous, finite dimensional parametriza-

tion of the nominal trajectories of (10). To assure continuity of the trajectory for
the solution Op of the parameter estimation problem for the whole time interval and
consistency for the algebraic equations, we impose continuity constraints

c.	i; si; si�1; p/ WD  y.	iI sy
i�1; p/� sy

i D 0; i D 1; : : : ; nms (12)

and consistency constraints

g.	i; si; p/ D 0; i D 0; : : : ; nms: (13)

The variables si; i D 0; : : : ; nms are additional degrees of freedom of the parameter
estimation problem.

Before we formulate the finite dimensional constrained parameter estimation
problem, we have to adjust the interior point constraints (6) to the shooting
discretization. With the initial conditions (9) added to the set of constraints, we
introduce a new vector of variables sr that is locally uniquely determined by the
interior point constraints, i.e. the matrix @r

@sr ; has full rank. Here, we use the definition

r WD
nrX

lD1
rl. .tl/; p; s

r/; j D 1; : : : ; nex;

where we neglect the dependencies of the nominal trajectories  of s and p;
respectively.

When we present the generalized Gauss–Newton method in Sect. 5, we will
clarify the necessity of the variables sr in more detail. For later considerations, we
define the vector

s WD .s0; : : : ; sms; s
r/
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and the function

d.s; p/ WD
�

y0.sr; p/� sy
0;

r

�
: (14)

Note, that the initial conditions may depend on the variables sr; too.
Summarized, this results in the following finite dimensional nonlinear least

squares problem for nex experiments:

min
s;p

1

2

nexX

jD1

m jX

kD1

 
�

j
k � hj

k.tk;  .tk/; p/

�
j
k

!2
(15a)

s.t. 0 Dcj.	i; si; si�1; p/� sy
i ; i D 1; : : : ; nj

ms; j D 1; : : : ; nex;

(15b)

0 Dgj.	i; si; p/; i D 0; : : : ; nj
ms; (15c)

0 Ddj.s; p/: (15d)

4 The Generalized Gauss–Newton Method

For readability, we introduce a shorter notation of Problem (15)

min
s;p

kF1.s; p/k22 (16a)

s.t. 0 DF2.s; p/: (16b)

with F1.s; p/ 2 R
n1 ; F2.s; p/ 2 R

n2 and .s; p/ 2 R
n: We use the definitions

F1 WD
 
�

j
k � hj

k.tk;  .tk/; p/

�
j
k

!

kD1;:::;m j

jD1;:::;nex

(17a)

F2 WD

0
BBB@

�
cj.	i; si; si�1; p/� sy

i

	
iD1;:::;nj

ms
jD1;:::;nex�

gj.	; si; p/
	

iD0;:::;nj
ms

jD1;:::;nex�
dj.s; p/

	
jD1;:::;nex

1
CCCA (17b)

Bock [5] suggested to apply the generalized Gauss–Newton method to solve
nonlinear least squares problems with ODE constraints. The first application to DAE
constrained problems was presented by Bock et al. [7]. For a detailed description
we refer to Körkel [10]. Problem (16) is solved iteratively by examining linearized
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equations

min

s;
p

����F1 C J1

�

s

p

�����
2

2

(18a)

s.t. 0 DF2 C J2

�

s

p

�
: (18b)

Therefore, we need to compute the Jacobians

J1 WD dF1
d.s; p/

; (19a)

J2 WD dF2
d.s; p/

: (19b)

For problem (15) and nex D 1; the Jacobian has the following structure:

J D
 

J1
J2

!
D

0
BBBBBBBBBBBBBB@

D1
0 D1

1 � � � D1
nms

D1
sr D1

p

G0 .�I; 0/ Gsr

0 Gp
0

: : :
: : :

:::
:::

Gnms�1 .�I; 0/ Gsr

nms�1 Gp
nms�1

H0 Hsr

0 Hp
0

: : :
:::

:::

Hnms Hsr

nms
Hp

nms

D2
0 D2

1 � � � D2
nms

D2
sr D2

p

1
CCCCCCCCCCCCCCA

; (20)

with the derivatives of

• of the residual of the measurements

D1
i WD

@F1
@si

; i D 0; : : : ; nms; D1
Ov WD

@F1
@ Ov ;

• of the continuity constraints

Gi WD @ y

@si
.	iC1I si; p/; i D 0; : : : ; nms � 1; G Ovi WD

@ y

@ Ov .	iC1; si; p/;

• of the consistency conditions

Hi WD @g

@si
.	i; si; p/; i D 0; : : : ; nms; H Ovi WD

@g

@ Ov .	i; si; p/;
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• and the initial conditions and the interior point constraints

D2
i WD

@d

@si
; i D 0; : : : ; nms; D2

Ov WD
@d

@ Ov :

with Ov D .p; sr/:

To assure uniqueness of the solution of Problem (16), we assume that the
following two conditions hold for all values of .s; p/; where we have to evaluate
F and J W
• Constraint Qualification (CQ)

rank J2.s; p/ D n2; (21)

• Positive Definiteness (PD)

rank J.s; p/ D n: (22)

We recall from Sect. 3 the dimension of F2: The continuity conditions (12) sum
up to ny � nms constraints, the consistency constraints (13) provide nz � .nms C 1/
additional constraints and the initial conditions and the interior point and boundary
constraints (14) results in ny C nr equations. We end up with

n2 D .ny C nz/ � .nms C 1/C nr:

Since we have already defined

.ny C nz/ � .nms C 1/

shooting variables, we need to introduce nr additional variables sr to guarantee that
(CQ) is fulfilled.

The linearization of (16) leads to a comparatively large, but sparse Jacobian.
Bock [5] introduced the condensing algorithm for ODE constrained parameter
estimation problems that exploits the sparse structure of (20) and eliminates the
shooting variables si; i D 1; : : : ; nms by a block-Gaussian elimination. The
condensed system depends only on
sy

0; 
sr and 
p

min

s0;
p

��u1 C E1
sy
0 C Er

1
sr C Ep
1
p

��2
2

(23a)

s.t. 0 Du2 C E2
sy
0 C Er

2
sr C Ep
2
p (23b)

By projecting on the algebraic variables sz
i ; i D 0; : : : ; nms; the method can be ap-

plied to DAE constrained parameter estimation problems too, cf. Leineweber [11].
The procedure of evaluating the Jacobians first and applying the condensing

method afterwards is referred to as the general approach. The general approach
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is implemented in the software package for parameter estimation PARFIT which is
based on the methods presented in this section and in Bock [5] and Körkel [10].

5 The Reduced Approach

Especially for DAE constraints, that result from parametrized PDEs, the effort to
compute (20) is tremendous due to the high dimension of si: The computation of
submatrices Gi and Hi scales with the number of (discretized) states. For .ny C
nz/ 
 np; the effort to evaluate the blocks Gi and Hi dominates the evaluation of
the Jacobian. The computation of these blocks requires the evaluation of .ny C nz/

variational differential equations. That is why the common approach is not suitable
to solve PDE constrained parameter estimation problems in the context of multiple
shooting.

Schlöder [13] developed an approach for high-dimensional ODE systems that
couples the evaluation of the Jacobians and the subsequent condensing by using
directional derivatives. Thereby, the effort of the computation of the Jacobian (20)
reduces to the one of single shooting, i.e., the smallest possible number. Bauer [3]
extended this method to parameter estimation problems with differential algebraic
constraints.

We developed a different formulation of the reduced approach which fully
eliminates the algebraic constraints and, thus, leads to a reduced condensed system
of equal size as Problem (23). The approach of Bauer leads to redundant constraints
which may cause numerical problems.

As in Sect. 3, we present the following method only for the first experiment
and neglect the superscript 1: For the next steps, we assume that the interior point
constraints and the residuals of the measurements can be written in the following
form

0 D
nmsX

iD0

X

tk2Ii

Ohk. .tk/; p/ D
nmsX

iD0
R1i ; Ohk D �k � hk

�k
; (24a)

0 D
nmsX

iD0

X

tl2Ii

rl. 
j.tl/; p; s

r/ D
nmsX

iD0
R2i : (24b)

We refer to Eqs. (24) as separability conditions. We define the derivatives of (6)
and (4) with respect to Ov D .p; sr/ according to

D1
Ov D

d

d Ov
nmsX

iD0

X

tk2Ii

Ohk. .tk/; p/ D
nmsX

iD0

d

d Ov
X

tk2Ii

Ohk. .tk/; p/ D
nmsX

iD0
D1
Ov;i:

D2
Ov D

d

d Ov
nmsX

iD0

X

tl2Ii

rl. .tl/; p/ D
nmsX

iD0

d

d Ov
X

tl2Ii

rl. .tl/; p/ D
nmsX

iD0
D2
Ov;i:
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cf. Eq. (20). To eliminate the shooting variables at t D 	0; we define

d0.s; p/ WD y0.s
r; p/� sy

0: (25)

and we examine the rows of the Jacobian (20) that belong to the initial condi-
tions (25) and to the consistency constraints at t D 	0

D
s

y
0

0 
sy
0 C D

sz
0

0 
sz
0 CDsr

0 
sr C Dp
0
pC d0.s; p/ D 0;

H
s

y
0

0 
sy
0 C H

sz
0

0 
sz
0 C Hsr

0 
sr C Hp
0
pC g.	0; s0; p/ D 0:

(26)

Obviously, it holds

D
s

y
0

0 D �Iny ; D
sz
0

0 D 0:

Since we consider only DAEs with differentiation index 1, the matrix

M WD
 
�Iny 0

H
s

y
0

0 H
sz
0

0

!
(27)

is regular. We eliminate ny C nz variables
s0 formally from (26) and obtain

�

sy

0


sz
0

�
D �

 
�Iny 0

H
s

y
0

0 H
sz
0

0

!�1 ��
Dsr

0

Hsr

0

�

sr C

�
Dp
0

Hp
0

�

pC

�
d0

g.	0; s0; p/

��

D M0
s
sr CM0

p
pCM0
r (28)

with

M0
r WD �

 
�Iny 0

H
s

y
0

0 H
sz
0

0

!�1 �
d0

g.	0; s0; p/

�
; (29a)

M0
s WD �

 
�Iny 0

H
s

y
0

0 H
sz
0

0

!�1 �
Dsr

0

Hsr

0

�
; (29b)

M0
p WD �

 
�Iny 0

H
s

y
0

0 H
sz
0

0

!�1 �
Gp
0

Hp
0

�
: (29c)

We refer to (29) as seed matrices. The following steps are closely related to the ODE
formulation of the reduced approach presented by Schlöder [13] with an extension
to the consistency constraints which are solved locally for sz

j ; j D 0; nms:
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The idea is to apply the explicit representation for the increments 
s0 given by
Eq. (28) to the evaluation of the remaining constraints. We define

OEp;0
l WD Dl

0 �M0
p C Dl

p;0; (30a)

OEs;0
l WD Dl

0 �M0
s C Dl

sr;0; l D 1; 2; (30b)

Ou0l WD Dl
0 �M0

r C Rl
0: (30c)

Since we use the matrices OEp;0
l ; OEs;0

l and the vectors Ou0l ; l D 1; 2; for the computation
of the reduced condensed system, the notations in Eqs. (30) correspond to (23).
Then, we compute recursively

OEp;i
l D OEp;i�1

l C Dl
i �Mi

p C Dl
p;i; (31a)

OEs;i
l D OEs;i�1

l C Dl
i �Mi

s C Dl
sr;i; i D 1; : : : ; nms l D 1; 2; (31b)

Oui
l D Oui�1

l C Dl
i �Mi

r C Rl
i: (31c)

We set

QEp
l WD OEp;nms

l ; QEs
l WD OEs;nms

l ; Qul WD Ounms
i ; l D 1; 2;

and obtain the reduced condensed system

min

p;
sr

1

2

��Qu1 C QEp
1
pC QEs

1
sr
��2
2

(32a)

s.t. 0 DQu2 C QEp
2
pC QEs

2
sr: (32b)

The seed matrices are updated iteratively by

Mi
p WD

�
Gi

HiC1

�
�Mi�1

p C
�

Gp
i

Hp
iC1

�
; (33a)

Mi
s WD

�
Gi

HiC1

�
�Mi�1

s C
�

Gsr

i

Hsr

iC1

�
; k D 1; : : : ; nms; (33b)

Mi
r WD

�
Gi

HiC1

�
�Mi�1

r C
�

c.	iC1; siC1; si; p/
g.	iC1; siC1; p/

�
: (33c)

In Eqs. (30), (31) and (33), the expressions given by " � " are evaluated by directional
derivatives and do not denote matrix products. In difference to the common
approach, described in Sect. 4, we have to evaluate npC nrC 1 directions instead of
ny C nz C np.

If the initial conditions (14) are given in the form

d0.s; p/ D y0.p/� sy
0;
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i.e., Eq. (14) does not depend explicitly on the variables sr, the number of required
directions is independent of the number of states.

After we have solved Problem (32) for 
p and 
sr; the increments for the
shooting variables .s1; : : : ; sms/ are determined by


sj
i D Mi;j

r CMi;j
s 
sr CMi;j

p 
p; i D 0; : : : ; nj
ms; j D 1; : : : ; nex: (34)

The methods, which have been presented in this section, have been implemented
in a software package for parameter estimation called PAREMERA. PAREMERA
is a new implementation in Fortran90 that is suited for the treatment of multiple
experiments.

6 Example

In the following, we examine the 1D heat equation, e.g., see Evans [9]. which
describes the distribution of heat in a given region over time. The system is defined
by

0 D @u

@t
� p1r2u (35a)

0 D u.t; 0/ D u.t; 1/; (35b)

u.0; x/ D �4 � x � .x � 1/ (35c)

with homogeneous Dirichlet conditions on the domain ˝ 	 T D Œ0; 1� 	 Œ0; 1�
(Fig. 1).

Fig. 1 Heat distribution over
the domain ˝ � T: The white
asterisks mark the
measurement points
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Here, u is an arbitrary function, usually referred to as temperature. The parameter
p1 is the thermal diffusivity. We discretize (35) with second order central finite
differences for three different mesh sizes 
x D f0:01; 0:002; 0:001g to obtain an
ODE system of 101; 501 and 1001 states, respectively.

To compare the results between the reduced approach and the common one, the
time interval is decomposed into four subintervals Œ	i; 	iC1/ with 	i D 0:25 � i; i D
0; : : : ; 4: We measure the peak at x D 0:5 at t 2 f0:2; 0:4; 0:6; 0:8; 1:0g:
The measurement data is determined by integrating the ODE system applying the
software package DAESOL by Bauer [4] with known true parameter

p�1 D 0:1

and adding Gaussian noise. For the calculations, p�1 is scaled to one.
We compare the results of the two previously mentioned parameter estimation

tools PAREMERA and PARFIT. Here, we use a version of PARFIT which is eligible
for the exploitation of multiple experiment structures, see von Schwerin [15]. Both
tools are embedded in software toolbox VPLAN by Körkel et al. [10].

We apply p01 D 2 as starting parameter for all six settings (three mesh sizes
and two algorithms). All computations are executed on a 64bit computer with 4 GB
memory and an Intel R� Core2Duo with 2	2:8GHz. The results are listed in Table 1.

Both algorithms converge for all mesh sizes to approximately the same solution
.Op1 � 1:00806/; but there is a significant difference in the time per iteration. For
101 states, PAREMERA is around four times faster then PARFIT. With increasing
number of states, the difference in computational time increases. PAREMERA is 13
and 26 times faster for 501 and 1001 states, respectively.

Another fact that differs drastically, is the number of iterations. For all dis-
cretizations, PAREMERA achieves convergence after 5 iterations while PARFIT
finds the solution after 10 iterations. This can be explained by the different types of
globalization strategies. In PAREMERA, the restricted monotonicity test (RMT) is
implemented as it is presented in Bock et al. [8]. In Parfit, only a first order Taylor
series expansion is used to compute the curvature information.

Note, that the computed increments .
s; 
p/ for the first iteration of both
algorithms are exactly the same since both algorithms solve the same system.

Table 1 Survey of the results # states PAREMERA PARFIT

101 # iterations 5 10

Time per iteration 0:268 s 1:01 s

501 # iterations 5 10

Time per iteration 3:44 s 45:62 s

1001 # iterations 5 10

Time per iteration 15:06 s 392:5 s
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Fig. 2 Data fits for the starting parameter p01 D 2 and the estimated parameter Op1 D 1:00806

In Fig. 2, a comparison is shown between the two fitting curves with p01 D 2

on the left hand side and the resulting parameter Op1 D 1:00806 computed with
PAREMERA on the right hand side, respectively.

Even for this rather small example we could show the advantages of the reduced
approach. For more complex problems we expect even more significant savings in
computation time. This is important to solve higher dimensional PDE problems or
to do online parameter estimation. Thus, the reduced approach should be favored to
solve this kind of problems.

Acknowledgements Financial support by BASF SE and HGS MathComp is gratefully acknowl-
edged.
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Direct Multiple Shooting for Parabolic PDE
Constrained Optimization

Andreas Potschka

Abstract Direct Multiple Shooting is a flexible and efficient method to solve
difficult optimal control problems constrained by ordinary differential equations or
differential-algebraic equations. The aim of this article is to concisely summarize
the main conceptual and methodological approaches to solve also optimal control
problems with parabolic partial differential equations constraints via a Direct
Multiple Shooting method. The main obstacle is the sheer size of the discretized op-
timization problems. We explain a typical direct discretization approach and discuss
an inexact SQP method based on two-grid Newton-Picard preconditioning. Special
attention is given to a-posteriori �-estimators that monitor contraction and to the
structure-exploiting treatment of the resulting large-scale quadratic programming
subproblems, including an extended condensing technique that exploits Multiple
Shooting and two-grid Newton-Picard structures. Finally, we present numerical
results for an advection-diffusion and a bacterial chemotaxis example.

1 Introduction

The early approaches for optimal control for ordinary differential equations (ODEs)
were mostly based on Dynamic Programming [3] or Pontryagin’s Maximum
Principle [16]. Due to the curse of dimensionality, Dynamic Programming is
not applicable to problems with more than a few state variables. The Maximum
Principle is an indirect method in the sense that the controls are given as a closed
form representation of adjoint states, the so-called co-states, which satisfy an adjoint
differential equation and suitable boundary constraints. The resulting boundary
value problems in the states and co-states can then be discretized by numerical
methods for boundary value problems like Multiple Shooting [15] or Collocation
[21]. The Maximum Principle is a typical example for an optimize-then-discretize
approach. It was found out later that ideas from numerical methods for boundary
value problems can also be used on the optimal control problem itself instead of
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its optimality conditions, thus disposing of the need to formulate adjoint equations,
which can be a time-consuming affair (discretize-then-optimize). Furthermore, this
approach lends itself quite naturally to a direct formulation, in which the discretized
controls are not eliminated in favor of adjoint variables. For Direct Collocation,
we refer the reader to [4, 25] and for Direct Multiple Shooting to [6]. Direct
formulations have been found to reflect the real conditioning of the optimal control
problem better, in particular when the mapping of the adjoint to the control has
a large Lipschitz constant. We want to remark that there are also direct optimize-
then-discretize methods for which the control is kept in the system of optimality
conditions and its discretization.

In optimal control for partial differential equations (PDEs), indirect optimize-
then-discretize methods prevail (see, e.g., [24]). This is mostly due to the fact that
indirect methods usually yield more accurate representations of the control (see also
[11, Chap. 3]).

The contribution of this article is to summarize a Direct Multiple Shooting
method for parabolic PDE constrained problems from Potschka [17, 18] in a concise
form and to present numerical results for problems that could also be treated well
with indirect methods. The main challenge in this approach is to tame the large-scale
nature of the discretized Nonlinear Programming problems (NLPs), which can be
mastered by the use of inexact Sequential Quadratic Programming (SQP) with two-
grid Newton-Picard preconditioning.

The main strengths of the Direct Multiple Shooting approach can unfold in par-
ticular for practitioners who want to solve parabolic PDE constrained optimization
problems and need an accurate representation of the system dynamics, but can live
with lower resolution of the optimal control. This situation is not unusual due to
physical restrictions of manipulator hardware. These practitioners can then benefit
from time savings in the problem setup, because no adjoint equations need to
be derived, but also in the problem solution, because the method can be easily
parallelized on the basis of the Multiple Shooting structures. Furthermore, the
solutions delivered by Direct Multiple Shooting can serve as initial guesses for other
methods with higher accuracy.

2 Problem Formulation

Let ˝ � R
d be a bounded d-dimensional spatial domain with sufficiently regular

boundary @˝ . Regarding time, we only consider the fixed interval .0; 1/ here for
simplicity. We assume that the control satisfies

q 2 L2..0; 1/IQ/; where Q � L2.˝/n
d
q 	 L2.@˝/n

b
q ;
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with nd
q distributed and nb

q boundary controls. We would already like to point out
that the pure boundary control case nd

q D 0 is especially advantageous in a Multiple
Shooting approach, as we describe in Sect. 3.

We consider two kinds of coupled state variables: ODE states v 2 C1.Œ0; 1�IRnv /,
which are not spatially distributed, and PDE states u 2 W.0; 1/nu , for which we use
the standard Hilbert space for parabolic PDEs

W.0; 1/ D fu 2 L2..0; 1/IV/ j @tu 2 L2..0; 1/IV�/g;

where .V;L2.˝/;V�/ is a Gelfand triple and @tu denotes the time derivative of u
in the sense of vectorial distributions (see, e.g., [29, Chap. IV]). We assume that the
spatial regularity of u is V � H1.˝/. According to [7, Chap. XVIII, Theorem 1],
we can trade some spatial regularity for higher temporal regularity, because W.0; 1/
is continuously embedded in C0.Œ0; 1�IL2.˝//. Thus, we have existence of the trace
u.t/ 2 L2.˝/nu for all t 2 Œ0; 1�, which is important for the formulation of boundary
constraints in time.

We assume that the time derivative Pv equals a sufficiently regular nonlinear
function f ODE W Q 	 L2.˝/nu 	 R

nv ! R
nv and �@tu equals a possibly

nonlinear elliptic differential operator A W Q 	 V 	 R
nv ! V�. Furthermore, we

allow for generalized temporal boundary constraints, mixed control-ODE-state path
constraints and final ODE state constraints via the functions

rb W L2.˝/nu 	R
nv ! L2.˝/nu 	 R

nv ; rc W Q 	 R
nv ! R

nc
r ; re W Rnv ! R

ne
r :

The objective function ˚ W L2.˝/nu 	 R
nv ! R depends on the final values of the

ODE and PDE states. Finally, we can state the problem of interest of this article as

minimize
q2L2..0;1/IQ/
u2W.0;1/nu

v2C1.Œ0;1�IRnv /

˚.u.1/; v.1// (1a)

s: t: @tu D �A.q.t/; u.t/; v.t//; t 2 .0; 1/; (1b)

Pv D f ODE.q.t/; u.t/; v.t//; t 2 .0; 1/; (1c)

.u.0/; v.0// D rb.u.1/; v.1//; (1d)

rc.q.t/; v.t// � 0; t 2 .0; 1/; (1e)

re.v.1// � 0: (1f)

More general problems with free initial and final time or integral-type objectives
can be equivalently reformulated using extra v variables to fit problem class (1).
Further assumptions concerning regularity requirements on the occurring functions
above is a delicate issue. From a practical point of view, we require that (1) is well-
posed and that there exists an appropriate discretization for the involved variables
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and functions such that the solution of the resulting finite dimensional optimization
problem is consistent with (1).

3 Discretization

In Potschka [17], problem (1) is discretized in space first and then in time. We
explain here a different route, where time is discretized before space. In both cases,
though, the resulting discretized problem (3) exhibits the same structure.

3.1 Time Discretization

We start out by discretizing the controls in time. To this end, let 0 D t0 < � � � <
tnMS D 1 denote a partition of the interval Œ0; 1�. On the shooting intervals Ii WD
.ti; tiC1/; i D 0; : : : ; nMS�1, we perform a piecewise discretization of the controls in
time. The piecewise nature is important for decoupling properties to be exploited in
the numerics. We restrict ourselves here to the simplest case of a piecewise constant
discretization in time such that

Qq.t/ D
nMS�1X

jD0
qj�Ij .t/; with qi 2 Q; i D 0; : : : ; nMS � 1;

where �Ii denotes the characteristic function of Ii.
In the next step, we parametrize the state variables by local initial values

ui; vi; i D 0; : : : ; nMS: We assume that the local initial value problems of the
form (1b)–(1c) on Ii with initial values ui; vi admit a unique solution denoted by

�
ui.tI qi; ui; vi/

vi.tI qi; ui; vi/

�
2 L2.˝/nu 	 R

nv ; for all t 2 Ii; i D 0; : : : ; nMS � 1:

Continuity of the states on the full time horizon .0; 1/ must then be enforced with
matching conditions of the form

ui.tI qi; ui; vi/ D uiC1; vi.tI qi; ui; vi/ D viC1; i D 0; : : : ; nMS � 1: (2)

At this stage of the discretization procedure, we have arrived at a problem
depending only on variables that are either real vectors or functions distributed in
space only, namely qi; ui; vi; i D 0; : : : ; nMS. Note, that we have en passant added
an additional control variable qnMS to lend a common structure to the optimization
variables corresponding to each shooting node ti. We have to eliminate these
additional degrees of freedom later via (3f).
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3.2 Space Discretization

Now, we can discretize qi and ui in space, e.g., by Finite Differences, Finite
Elements, or Finite Volumes. We denote the corresponding vectors by qi and ui.
The quantities ui and vi can then be discretized by an appropriate time stepping
method. We denote the result by ui.tiC1I qi;ui; vi/ and vi.tiC1I qi;ui; vi/. It is not
mandatory to use the same grids for the controls or states on all shooting intervals,
or even within one shooting interval for the time steps of states in case of a Rothe-
type time stepping scheme. According to [10], a good compromise for balancing
good mesh adaptivity with few Finite Element matrix assembly calls is to fix the
state mesh on each shooting interval and discretize the matching conditions (2) in a
variational manner. In this case, a Method of Lines discretization in time seems to
be a flexible and efficient approach, because existing ODE solvers can be used. For
a more detailed discussion of discretization issues of parabolic PDEs, we refer the
reader to [23].

For simplicity, we assume here that qi and ui are based on the same spatial
discretization in each shooting node. However, we assume that there is a hierarchy of
nested discretizations V1

h � V2
h � � � � � V for the states, which in turn yields on each

level ` D 1; 2; : : : discretized states and shooting solutions. The path constraint is
discretized on the shooting grid only. For more sophisticated methods, see Potschka
[19].

All remaining functions of problem (1) need to be appropriately discretized
as well. Finally, we arrive at a highly structured, finite dimensional optimization
problem on each spatial discretization level `

minimize
.qi;ui;vi/

nMS
iD0

˚.unMS ; vnMS/ (3a)

s: t: rb
u.u

nMS ; vnMS/� u0 D 0; (3b)

ui.tiI qi�1;ui�1; vi�1/� ui D 0; i D 1; : : : ; nMS; (3c)

rb
v.u

nMS ; vnMS/� v0 D 0; (3d)

vi.tiI qi�1;ui�1; vi�1/� vi D 0; i D 1; : : : ; nMS; (3e)

qnMS � qnMS�1 D 0; (3f)

ri.qi�1; vi�1/ � 0; i D 1; : : : ; nMS; (3g)

re.vnMS/ � 0: (3h)

The numerical evaluation of (3c) and (3e) is expensive, because it comprises the
solution of an initial value problem for the spatially discretized PDE. To this end,
we use an adaptive backward differentiation formula with monitoring strategy [1, 2],
which is implemented in the C++ code DAESOL-II. It also supplies efficient first
and second order forward and backward directional derivatives of the solutions of
the initial value problems on the basis of Internal Numerical Differentiation [5] and
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Algorithmic Differentiation [9, 28], for which the backwards mode of Algorithmic
Differentiation delivers an automated and efficient way to compute gradients in the
style of adjoint equations.

We want to remark that special attention has to be paid to the question of
consistency of the discretized problem (3) with the original problem (1) for fine
discretizations. For instance, it is necessary to use correct weighting matrices for
the discrete approximations of Hilbert space inner products and their corresponding
norms. Their inverses must also be used for correct discrete Riesz representations
of discrete variables that really live in the dual space, for example the Lagrange
multipliers of (3b) and (3c). Then, it is typically possible to prove consistency of (3)
and (1) for the particular problem at hand.

4 Newton-Picard Inexact SQP

When disregarding its special structure for a moment, we see that problem (3) is a
Nonlinear Programming (NLP) problem of the form

minimize
x2Rn

f .x/ (4a)

s: t: gi.x/ D 0; i 2 E ; (4b)

gi.x/ � 0; i 2 I; (4c)

with f W Rn ! R and g W Rn ! R
m. We assume throughout that f and g are twice

continuously differentiable functions and that the sets E and I form a partition of
f1; : : : ;mg D E P[ I. For z D .x; y/ 2 R

nCm, we can then define the Lagrangian
function

L.z/ D f .x/�
mX

iD1
yigi.x/:

For the theory of NLP we refer the reader to [14].

4.1 The Equality Constrained Case

We first consider the equality constrained case I D fg. If x� 2 R
n satisfies a

constraint qualification and is a local minimizer of (3), then there exists a Lagrange
multiplier y� 2 R

m such that with z� D .x�; y�/

F.z�/ D
�

F1.z�/
F2.z�/

�
D
�rxL.z�/

g.x�/

�
D 0: (5)
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In practice, a Newton-type method is used to solve the necessary optimality
condition (5) in order to obtain a critical point z�. In general we must then check
(second order) sufficient conditions to ensure that x� is really a minimizer and not a
maximizer or saddle-point.

Because of the large-scale nature of (3), it is a good idea to employ iterative
methods for the solution of the linearized subproblems within the Newton-type
method. We recede to a rather simple iterative method here, namely a Linear
Iterative Splitting Approach (LISA), because we can generalize it from linear
systems to Quadratic Programming (QP) problems in Sect. 4.4.

Let N D n C m; J.z/ D dF
dz .z/; and OM W RN ! R

N�N be given such that
OM.z/J.z/ � IN . Then, the LISA-Newton iterates are defined via

zkC1 D zk C ˛k
zk; z0 given; (6)

where ˛k 2 .0; 1� is an appropriately chosen damping factor to ensure global
convergence and 
zk is computed via the inner LISA iteration


zk
iC1 D 
zk

i � OM.zk/


J.zk/
zk

i C F.zk/
�
; 
zk

0 D 0: (7)

The iteration (7) converges for all values of F.xk/ and
zk
0 if and only if the spectral

radius �lin of Ak WD IN � OM.zk/J.zk/ is less than 1, see [22, Theorem 4.1].
The choice of the damping factors ˛k exceeds the scope of this article. The

interested reader is referred to the discussion in [8] and its specialization for the
LISA-Newton method [17].

4.2 A-Posteriori �-Estimators

Based on [17, Lemma 4.28], we observe that there is a representation of 
zk
l for

l � 1 in terms of a truncated Neumann series


zk
l D �

�Xl�1
iD0



IN � OM.zk/J.zk/

�i
�
OM.zk/F.zk/ DW �M.zk/F.zk/;

where M.zk/ depends on l. On the basis of this M, we can observe the connection

�" 2 Œ.�lin/
l; .�lin/

l C "� for all " > 0

between the linear convergence rate �lin of the LISA iteration (7) and the linear
convergence rate �" (which depends on an "-dependent norm) of the nonlinear
LISA-Newton iteration (6), if each 
zk is computed from l LISA iterations [17,
Theorem 4.29]. This implies that under the assumption �lin < 1, l D 1 is already
enough for local convergence and, moreover, if we perform l > 1 LISA iterations
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per outer step, then this extra effort is compensated for by fewer outer LISA-Newton
iterations, at least asymptotically for k!1.

Furthermore, this result is the basis for a-posteriori �-estimators [17]. To explain
the different estimators, we fix k and define �l WD 
zk

lC1 � 
zk
l . We immediately

observe that �lC1 D Ak�l. The Rayleigh �-estimator is based on the Rayleigh
quotient

�
Rayleigh
l D �T

l Ak�l

�T
l �l

D �T
l �lC1
�T

l �l
:

The sequence .�Rayleigh
l / converges to �lin for l ! 1 if Ak is diagonalizable, has

a single eigenvalue of largest modulus, and �1 has a nonzero component in the
corresponding eigenspace. For non-diagonalizable Ak, the Root �-estimator

�Root
l D .k�lC1k = k�lk/1=l

can be used. It converges if �lin > 0 and �1 has a nonzero component in the dominant
invariant subspace of Ak. However, convergence to �lin can be quite slow. In contrast,
the Ritz �-estimator converges in a finite number of iterations. It is based on the
largest Ritz value �Ritz

l of Ak on the order-l Krylov subspace generated by Ak and
�1. The disadvantage is that an orthonormal basis of the Krylov subspace needs to
be maintained, which can be prohibitive due to excessive memory consumption. In
our numerical experience, this is not a problem because the Newton-Picard based
preconditioners OM described in Sect. 4.3 require only few LISA iterations.

The �-estimators can also be used to asses the error of the LISA iteration (7)
in the following sense: For all " 2 .0; 1 � �lin/, there exists a vector-norm k:k�;k
with corresponding matrix-norm kAkk�;k � �lin C " < 1 such that (compare [17,
Lemma 4.30])

��
zk
l �
zk

���;k �
.�lin C "/l

1 � .�lin C "/
��
zk

1 �
zk
0

���;k :

In our implementation, we have l � 2 and terminate the LISA iterations as soon
as either the �-estimate is lower than �max D

p
1=2 or a maximum number of

LISA iterations, in our case lmax D 7, is reached. In the latter case, we ameliorate
the preconditioner OM in order to reduce the contraction rate �lin as discussed in the
following section. In most outer iterations only l D 2 LISA iterations are required.
We used the Ritz �-estimator for the computations in Sect. 6.

4.3 Two-Grid Newton-Picard Preconditioning

The requirement �lin < 1 for convergence of the LISA iteration (7) is a strong
requirement, which calls for specially tailored preconditioners. In our case, Newton-
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Picard preconditioning is the method of choice for computing OM, see [20]. Although
grid-independent convergence has so far only been proven for a linear quadratic
model problem with single shooting, our numerical experience on nonlinear prob-
lems with Multiple Shooting is completely satisfying.

The general paradigm of Newton-Picard preconditioners is the following: Under
reasonable assumptions, ui has a compact Fréchet derivative with respect to qi and
ui. Thus, even though the discretized Jacobian matrices Gi

q D @ui=@qi and Gi
u D

@ui=@ui are in general large dense matrices, their eigenvalues and singular values
cluster at 0 and they can thus be approximated well by low-rank matrices.

From a geometrical point of view, the compactness is a result of a smoothing
property of ui, which can alternatively be exploited to form a low-rank approxima-
tion by a two-grid approach. To this end, we approximate the Jacobian matrices Gi

q

and Gi
u on coarse grids with suitable projection and restriction matrices P and R.

This is the preferred way because no large eigenvalue and singular value problems
have to be solved. Furthermore, this approach can be extended in a straight-forward
fashion to Multiple Shooting approaches.

4.4 The Inequality Constrained Case

We now consider the inequality constrained case when I ¤ fg. The Jacobian

J.z/ D
�

J1.z/ �J2.z/T

J2.z/ 0

�
D
�r2xxL.z/ �rg.x/
rg.x/T 0

�

is a saddle-point matrix in unsymmetric form. It is singular in general, e.g., due to
rank deficiency of J2.z/ if lower and upper variable bounds are present. Thus, we
need to recede to a pseudo-inverse approach. Let us first consider the case of exact
derivatives in the SQP method. In this case, we can define a suitable pseudo-inverse


zk D J˚.zk;�F.zk// instead of 
zk D �M.zk/F.zk/;

by computing the primal-dual solution Qz D . Qx; Qy/ 2 R
nCm of the QP

minimize
Qx2Rn

1

2
QxTJ1.z

k/ QxC �F1.zk/ � J1.z
k/xk C J2.z

k/Tyk
	T Qx (8a)

s: t:
�
J2.z

k/ QxC �F2.zk/ � J2.z
k/xk

		
i
D 0; i 2 E ; (8b)

�
J2.z

k/ QxC �F2.zk/ � J2.z
k/xk

		
i
� 0; i 2 I; (8c)

and then the step
zk D Qz� zk. One can show that if QP (8) has a unique solution at
zk and if some Oz D . Ox; Oy/ 2 R

N satisfies Oyi � �yi for all i 2 I, then J˚ acts linearly
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on the second argument like a pseudo-inverse in the sense that J˚.zk; J.zk/ Oz/ D Oz
[17, Lemma 4.36].

Furthermore, if the active set of QP (8) does not change from iteration k � 1 to k
and the second order sufficient condition and strong complementarity hold, then we
can construct a matrix Mk such that for a neighborhood U of F.zk/ it holds that

�Mk OF D J˚.zk;� OF/ for all OF 2 U:

In words, the pseudo-inverse J˚ acts locally like a matrix [17, Theorem 4.37].
In addition, if the SQP method with J˚ converges to z�, then z� is a critical
point of NLP (4). Moreover, the second order sufficiency condition and strong
complementarity transfer from QP (8) at z� to NLP (4) at z� [17, Theorem 4.41].

In the case of inexact derivatives on the basis of the Newton-Picard approxima-
tion from Sect. 4.3 we use a structured approximation of the Jacobian

J.zk/ D
�r2xxL.zk/ �rg.xk/

rg.xk/T 0

�
�
� QBk �. QCk/T

QCk 0

�
DW OJk:

In analogy to the construction of J˚.zk; :/ from J.zk/, we can construct a QP
preconditioner OM.zk/ for a QP-LISA iteration. We first compute the primal-dual
solution Qz D . Qx; Qy/ of the QP

minimize
Qx2Rn

1

2
QxT QBk QxC �F1.xk/ � QCk.xk C
xk

l�1/C . QCk/T.yk C
yk
l�1/

	T Qx
(9a)

s: t:
� QCk QxC �F2.xk/� QCk.xk C
xk

l�1/
		

i
D 0; i 2 E ; (9b)

� QCk QxC �F2.xk/� QCk.xk C
xk
l�1/

		
i
� 0; i 2 I; (9c)

and then 
zk
l D Qz� zk �
zk

l�1.
In order to have valid �-estimators, the working set of QP (9) should be fixed

for l > 1, effectively deferring further changes of the active set to the next outer
iteration.

5 Numerical Solution of the Large-Scale QPs

In order to solve the large-scale QP (9) efficiently, we need to exploit the specific
block-sparse and low-rank structures generated in the Multiple Shooting and
Newton-Picard approaches. To this end, we first regroup the n1 PDE variables and
n2 non-PDE variables of NLP (3) in the order

.u0; : : : ;unMS j v0; : : : ; vnMS ; q0; : : : ; qnMS/ D .x1 j x2/ 2 R
n1Cn2 :
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Then we observe that we can also divide the constraints of NLP (3) to obtain the
structured NLP form

minimize
.x1;x2/2Rn1Cn2

f .x1; x2/ (10a)

s: t: gi.x1; x2/ D 0; i 2 E1; (10b)

gi.x1; x2/ D 0; i 2 E2; (10c)

gi.x1; x2/ � 0; i 2 I; (10d)

where jE1j D n1. The constraints (10b) comprise the PDE boundary constraints (3b)
and PDE matching conditions (3c).

5.1 Multiple Shooting Structure Exploitation

The QP constraint matrix C has the form

C D
0

@
C11 C12
C21 C22
C31 C32

1

A

D

0

BBBBBBBBBBBBBBBBBBBBBBBBB@

�Inu Rb
uu Rb

uv

G1
u �Inu G1

v G1
q

: : :
: : :

: : :
: : :

GnMS
u �Inu GnMS

v GnMS
q

Rb
vu �Inv Rb

vv

H1
u H1

v �Inv H1
q

: : :
: : :

: : :
: : :

HnMS
u HnMS

v �Inv HnMS
q

Inq �Inq

Ri;1
v Ri;1

q
: : :

: : :

Ri;nMS
v Ri;nMS

q

Re;nMS
v

1

CCCCCCCCCCCCCCCCCCCCCCCCCA

;
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with the derivative abbreviations

Rb
uu D

@rb
u

@unMS
; Rb

uv D
@rb

u

@vnMS
; Rb

vu D
@rb
v

@unMS
; Rb

vv D
@rb
v

@vnMS
; Re D re

@vnMS
;

Gi
q D

@ui

@qi�1 ; Gi
u D

@ui

@ui�1 ; Gi
v D

@ui

@vi�1 ; Ri;i
q D

@ri

@qi�1 ;

Hi
q D

@vi

@qi�1 ; Hi
u D

@vi

@ui�1 ; Hi
v D

@vi

@vi�1 ; Ri;i
v D

@ri

@vi�1 ;

at the current iterate zk. We want to stress that contrary to the appearance the block
C11 is several orders of magnitude larger than the blocks C22 and C32 on fine spatial
discretization levels.

Let MB D Inu � .
QnMS

iD1 Gi
u/R

b
uu. It is easy to see that if MB is invertible, then C11

is also invertible and its inverse is given by C�111 D
0
BBB@

�I �.Q0
iD1 Gi

u/R
b
uu

: : :
:::

�I �.QnMS�1
iD1 Gi

u/R
b
uu

�I

1
CCCA

0
BBB@

I

: : :

I

M�1B

1
CCCA

0
BBB@

IQ1
iD1 Gi

u I

:::
: : :

: : :QnMS
iD1 Gi

u � � �
QnMS

iDnMS
Gi

u I

1
CCCA :

This decomposition into block-triangular matrices yields a procedural recipe for
evaluating matrix-vector products with C�111 that does not require to explicitly form
either C11 or any part of C�111 , except for the M�1B block. In the following, we shall
see that a two-grid Newton-Picard approximation of C11 also enables us to use a
simple procedural form for matrix-vector products with the approximation of M�1B .

5.2 Two-Grid Newton-Picard Structure Exploitation

To this end, we need to establish grid transfer operators between a coarse and a fine
grid. For two grid levels `c � `f, we denote the PDE-state degrees of freedom by
nc D n`c

u and nf D n`f
u . Typically, nc � 100, while nf > 10;000. We then assume

that the prolongation operator P 2 R
nf�nc and the restriction operator R 2 R

nc�nf

satisfy

RP D Inc : (11)

On nested grids, it is rather simple to construct P via interpolation. The restriction
of vf 2 R

nf can then be computed as the unique coarse grid vector vc 2 R
nc whose

prolongation minimizes the L2-distance to vf on the fine grid. In case of a variational
spatial discretization, we can use the coarse and fine grid mass matrices Mc 2 R

nc�nc

and Mf 2 R
nf�nf in order to obtain the form

R D M�1c PTMf;
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which satisfies (11) due to PTMfP D Mc. Again, the matrix R should not be formed
explicitly if M�1c is a dense matrix.

We then approximate the blocks of C via a two-grid approach. To this end, we
denote all matrices on the coarse grid with hats (O) and approximate C by a matrix
QC of the same block pattern, but consisting of the approximated blocks

QRb
uu D P ORb

uuR; QRb
uv D P ORb

uv;
QRb
vu D ORb

vuR; QRb
vv D ORb

vv; (12a)

QGi
q D P OGi

q;
QGi

u D P OGi
uR; QGi

v D P OGi
v; (12b)

QHi
q D OHi

q;
QHi

u D OHi
uR; QHi

v D OHi
v; (12c)

QRi;i
q D ORi;i

q ;
QRi;i
v D ORi;i

v ;
QRe D ORe: (12d)

Along the same lines, we use the approximations

OGB WD
 

nMSY

iD1
OGi

u

!
ORb

uu;
OMB WD Inc � OGB;

QGB WD
 

nMSY

iD1
QGi

u

!
QRb

uu;
QMB WD Inf � QGB:

We can then observe that if OMB is invertible, then QMB is also invertible and we obtain
the procedural recipe [17, Lemma 7.2]

QM�1B D


Inf � P OGBR

��1 D Inf � P


Inc � OM�1B

�
R:

Thus, we do not need to explicitly form any matrix but OMB on the coarse grid in order
to evaluate matrix-vector products with QMB and thus also with QC�111 . Furthermore,
this form of QMB allows for an even more concise representation of QC�111 . To this end,
we define the projectors

˘ slow D InMS ˝ .PR/; ˘ fast D InMSnf �˘ slow;

where˝ denotes the Kronecker product of matrices. Thus˘ slow is a block-diagonal
matrix of nMS blocks PR. Then, we can show [17, Theorem 7.3] that

QC�111 ˘ slow D .InMS ˝ P/ OC�111 .InMS ˝ R/; QC�111 ˘ fast D �˘ fast:

This equation illustrates the name Newton-Picard: On the slowly converging modes,
we approximate the inverse of C11 by its coarse grid counterpart and perform a
Newton iteration on this subspace, while we only use a Picard (or fixed point)
iteration on the anyway fast converging modes through approximating the Jacobian
with a negative identity. Moreover, we can now easily derive [17, Corollary 7.4] that
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if it exists, the Newton-Picard approximation of block C11 has the inverse

QC�111 D .InMS ˝ P/

 OC�111 C InMSnc

�
.InMS ˝ R/� InMSnf :

5.3 QP Condensing

We now consider again QPs with a structure inherited from NLP (10)

minimize
.x1;x2/2Rn1Cn2

1

2

�
x1
x2

�T �
B11 B12
B21 B22

��
x1
x2

�
C
�

b1
b2

�T �
x1
x2

�
(13a)

s: t: C11x1 C C12x2 D c1; (13b)

C21x1 C C22x2 D c2; (13c)

C31x1 C C32x2 � c3: (13d)

We show that we can employ a partial null-space approach called condensing in
order to efficiently solve the large-scale, structured QP (13b). Condensing is the key
linear algebra ingredient for an efficient Direct Multiple Shooting method (see, e.g.,
[6]), but must be extended to also exploit the two-grid Newton-Picard structures.
For this purpose, we prefer the following presentation of the concept of condensing.

Theorem 1 (Condensing) Assume that C11 in QP (13) is invertible and define

Z D
��C�111 C12

In2

�
; B0 D ZTBZ;

c01 D C�111 c1; b0 D B21c
0
1 C b2 � CT

12C
�T
11 .B11c

0
1 C b1/;

c02 D c2 � C21c
0
1; C02 D C22 � C21C

�1
11 C12;

c03 D c3 � C31c
0
1; C03 D C32 � C31C

�1
11 C12:

Let furthermore .x�2 ; y�E2 ; y
�
I/ 2 R

n2Cm2Cm3 be a primal-dual solution of the QP

minimize
x22Rn2

1

2
xT
2B0x2 C b0Tx2 s: t: C02x2 D c02; C03x2 � c03: (14)

If we choose

x�1 D C�111 .c1 � C12x
�
2 /; (15a)

y�E1 D C�T
11

�
.B12 � B11C

�1
11 C12/x

�
2 C B11c

0
1 C b1 � CT

21y
�
E2 � CT

31y
�
I
	

(15b)

then .x�; y�/ WD .x�1 ; x�2 ; y�E1 ; y�E2 ; y�I/ is a primal-dual solution of QP (13).
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Proof See, e.g., [17, Theorem 7.6].

Theorem 1 shows how the solution of the structured, large-scale QP (13) can be
boiled down to a medium-scale QP (14), which only contains non-PDE variables
x2. The pre- and post-processing steps only require matrix-vector products with the
large-scale blocks, e.g., n2 matrix-vector products for the computation of C�111 C12.

5.4 Two-Grid Hessian Approximation

If we now use the approximated version of QP (13), we see that based on Sects. 5.1
and 5.2, the partial null-space basis can be evaluated purely on the coarse grid due
to

QZ D
�� QC�111 QC12

I

�
D
��.I˝ P/ OC�111 .I˝ R/.I˝ P/ OC12

I

�
D
��.I˝ P/ OC�111 OC12

I

�
:

This observation suggests a projected Newton-Picard approximation of the Hessian
matrix via

QBfast D
�
.˘ fast/TB11˘ fast 0

0 0

�
;

QBslow D
�
.InMS ˝ R/T OB11.InMS ˝ R/ .InMS ˝ R/T OB12

OB21.InMS ˝ R/ OB22
�
;

QB D QBfast C QBslow:

Consequently, we have

QZT QBfast QZ D 0

and thus we can also compute the condensed two-grid Newton-Picard Hessian
matrix purely on the coarse grid according to

QB0 D QZT QB QZ D OZT OB OZ with OZ D
�� OC�111 OC12

Inc

�
:

Thus, it is possible to set up QP (14) efficiently with only a few fine-grid operations.
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6 Numerical Examples

We now report on the numerical results for Direct Multiple Shooting applied
to tracking problems for an advection-diffusion equation in 2D and a bacterial
chemotaxis example in 1D. Further examples can be found in [17], including a
real-world separation process from chemical engineering with economic objective
and constraint functions. All computational results were computed on a Linux
workstation with four 2.67 GHz Intel Core i7 cores and 24 GB of RAM.

6.1 Advection-Diffusion Equation

We consider an advection-diffusion equation on ˝ � .�1; 1/2, whose boundary
@˝ is partitioned into disjoint sets �i; i D 0; 1; 2; 3. Let � denote the outwards
pointing normal on @˝ and let U 2 L2.˝/2 be a divergence-free velocity field. For
�; ";T > 0, inflow profiles uin

i 2 L2.�i/; i D 1; 2, and a desired profile Ou 2 L2.˝/,
we apply the proposed method to the following periodic tracking-type boundary-
control problem with control gradient constraints

minimize
u2W.0;T/

q2H1.0;T/2

1

2
ku.T; :/ � Ouk2L2.˝/ C

�

2

� kq1k2H1.0;T/ C kq2k2H1.0;T/

	
(16a)

s: t: @tu D "r � ru � U � ru; in ˝; (16b)

u.0; :/ D u.T; :/; in ˝; (16c)

� � ."ru �Uu/ D 0; on �0; (16d)

� � ."ru �Uu/ D uin
i qi � u; on �i; i D 1; 2; (16e)

� � ."ru �Uu/ D �u; on �3; (16f)

qi.0/ D qi.T/; for i D 1; 2; (16g)

qi.t/ � 0; for t 2 Œ0;T�; i D 1; 2; (16h)

dqi

dt
.t/ 2 Œ�20; 20�; for a.a. t 2 Œ0;T�; i D 1; 2: (16i)

The setting qi 2 H1.0;T/ can be reformulated with L2.0;T/ controls by introduction
of ODE states vi, whose time-derivative we control, and adequate adaption of all
occurrences of qi in (16).
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Fig. 1 Divergence-free
velocity field obtained from
the solution of a Stokes
problem on an
inverted-T-shaped domain
with inflow from the left on
�1, inflow from the right on
�2 and outflow on top on �3

x1

x
2

-1 -1/3 1/3 1

-1

-1/3

1/3

1

We obtain a suitable velocity field U as the solution of a Stokes problem with
parabolic inflow velocities on �1 D f�1g	 .�1;�1=3/ and �2 D f1g	 .�1;�1=3/
and free outflow velocity on �3 D .�1=3; 1=3/	 f1g (compare Fig. 1)

�r � rU Crp D 0; in ˝;

r � U D 0; in ˝;

U.x/ D 0; for x 2 �0;
U.x/ D .9.x2 C 1=3/.x2 C 1/; 0/; for x 2 �1;
U.x/ D .�9.x2 C 1=3/.x2 C 1/; 0/; for x 2 �2:

We use Finite Differences on equidistant, staggered grids for the discretization of
the Stokes problem. This discretization is compatible with an upwind-flux Finite
Volume method for the advection-diffusion equation, because the velocity degrees
of freedom align with the center of the volume interfaces.

We compute optimal controls for T D 10; Ou.x/ D 1Cx1; uin
i .x/ D exp.�10.x2C

2=3/2//; i D 1; 2; and for varying values of " D 100; 10�1; 10�2; 5 � 10�3 and � D
10�2; 10�3 on nMS D 20 shooting intervals. We use a 5-level hierarchy of grids with
mesh sizes h D 2=15; 1=15; 1=30; 1=60; 1=120, giving rise to 125, 500, 2000, 8000,
and 32,000 degrees of freedom on the respective level. As initial values, we chose
ui D 0; vi D .0:1; 0:1/T; qi D .0:01; 0:01/T for i D 0; : : : ; 20.

One purpose of treating an advection-diffusion problem here is to fathom the
limits of the Newton-Picard approach, which exploits dispersion numerically. We
can expect the problem to become more difficult to solve as we approach the
hyperbolic limit " ! 0. Because the upwind discretization achieves numerical
stability by introduction of spurious numerical dispersion, the discretized problem
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Table 1 The number of inexact SQP iterations and the computation times depend on the diffusion
coefficient " and the regularization parameter �

� D 10�1 � D 10�3

" D 100 10�1 10�2 5 � 10�3 100 10�1 10�2 5 � 10�3

Overall iterations 12 15 19 16 12 21 17 28

Iterations lf D 5 5 7 7 7 5 6 6 8

Final coarse level 1 1 2 2 1 2 2 2

Time steps 657 760 884 903 655 741 859 935

Sim. time (min:s) 1:48 2:09 2:10 2:13 1:48 1:54 2:17 2:12

Time (h:min:s) 0:49:04 1:21:53 2:34:15 3:30:21 0:48:58 1:23:36 2:49:57 3:22:31

The overall computation time is given as the wall-clock time on four processors, while the
simulation time is the CPU time on a single processor

exhibits more diffusion on coarser grid levels where the effect of numerical
dispersion is more pronounced. Thus, the efficiency of the diffusion-exploiting
Newton-Picard preconditioners is slightly better for coarser fine grids. We also
want to remark that problem (16) is a linear-quadratic problem. We tackle it with
a nonlinear solver and thus the reader should keep in mind that numerical linear
algebra approaches (e.g., along the lines of Potschka et al. [20]) are more efficient,
because they exploit linearity explicitly.

From the computational results in Table 1, we can observe the expected trend in
the number of overall inexact SQP iterations that is growing for decreasing values of
the diffusion coefficient ". The increase is higher for lower regularization parameters
� . The number of inexact SQP iterations with the fine grid on the finest level grows
only slightly. For high diffusion " D 100, level `c D 1 for the coarse grid is already
enough for sufficient local contraction on all fine grid levels `f � 5. For " D 10�1,
`c D 1 is still sufficiently fine for a high regularization parameter � D 10�1, but
not for � D 10�3. For " D 10�2; 5 � 10�3, the �-estimators trigger a refinement of
the coarse level to `c D 2 in order to obtain local contraction of the method on all
fine grid levels `f � 5. For " D 10�3, the coarse grid needs to be refined to `c D 3.
In this case, the memory consumption of DAESOL-II on the coarse and fine grids
exceeds the available RAM space. This problem, however, is a momentary technical
restriction of the software implementation and not a fundamental restriction of the
method.

We can also observe in Table 1 that the number of adaptive time-steps for the
initial value problem solver increases with decreasing diffusion coefficient � . From
the number of required time-steps we see that the time discretization has a higher
resolution than the spatial discretization. The reason for this imbalance in accuracy
are stability requirements for the solution of the initial value problems in (3c) and
its first and second order derivatives as discussed in [17, Chap. 9, Sect. 3]. If we
take into account the intermediate time steps, we obtain on the finest level between
2:1 � 107 and 3:0 � 107 state variables, although NLP (3) really only has 6:7 � 105
degrees of freedom in the PDE state variables ui; i D 0; : : : ; nMS; (independently of
").
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Fig. 2 The optimal controls for problem (16) with " D 10�2; � D 10�3 work with different
magnitudes. The control gradient constraint is active for q2 at the slopes of the initial peak

If we compare the serial simulation time for the numerical solution of the initial
value problems for fixed initial values and fixed controls with the wall-clock time
for the inexact SQP method parallelized on four cores, we obtain a ratio of 27–95.
This is quite remarkable, because already for the forward problem of finding a time-
periodic solution for fixed controls, several Newton-Picard iterations (in the sense
of Lust et al. [13]) would be required.

For completeness, we depict the optimal control and the corresponding optimal
final state for the case " D 10�2 and � D 10�3 in Figs. 2 and 3. We can observe that
most of the control action happens at �2, where high values of u are to be tracked.
The control gradient constraint (16i) is active at the slopes of the initial peak of q2.
Furthermore, the optimal state at the end of the period matches the desired profile Ou
well except for the area around the inflow boundary �2.

6.2 Bacterial Chemotaxis

On the basis of a chemotaxis model by Tyson et al. [26, 27], we consider on ˝ D
.0; 1/ with @˝ D �1[�2 D f0g[f1g the nonlinear tracking-type boundary control
problem (compare also [12])

minimize
z;c2W.0;1/

q1;q22L2.0;1/

1

2

Z

˝

.z.1; �/� Oz/2 C �c

2

Z

˝

.c.1; �/� Oc/2 C �q

2

Z 1

0

�
q21 C q22

	
(17a)

s: t: @tz D r �
�

Dzrz� ˛ z

.1C c/2
rc

�
; in .0; 1/ 	˝; (17b)
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Fig. 3 For " D 10�2; � D 10�3, the black isolines of the optimal final state u.T; :/ match the
gray isolines of the target well except for the south-east part of the domain. A boundary layer is
visible at the northern outflow �3

@tc D r � rcC w
z2

.�C z2/
� �c in .0; 1/ 	˝; (17c)

@�z D ˛ˇ.qi � c/z

Dz.1C c/2
; @�c D ˇ.qi � c/; in .0; 1/ 	 �i; i D 1; 2;

(17d)

z.0; :/ D z0; c.0; :/ D c0; (17e)

qi.t/ 2 Œ0; 1�; for a.a. t 2 .0; 1/; (17f)

where @� denotes the derivative in direction of the outwards pointing normal on ˝ .
The parameters considered here are Dz D 0:3; ˛ D 4; ˇ D 1;w D 0:1; � D 10; � D
0:1; �c D 10�2; �q D 10�5. The targets to be tracked are Oz.x/ D 2x; Oc.x/ D 0 and
the initial states are given as z0.x/ D 1; c0.x/ D 0.

On the basis of a Finite Difference discretization on a six-level hierarchy of
nested grids with 322, 642, 1282, 2562, 5122, 10,242 degrees of freedom for the
PDE states, we can use the proposed Direct Multiple Shooting method to obtain the
optimal controls and states depicted in Fig. 4. Level `c D 1 for the coarse level is
sufficient to yield good local contraction for the inexact SQP method. In the solution,
DAESOL-II uses 889 integration adaptive steps for the solution of the initial value
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Fig. 4 Left: the desired cell distribution Oz (dotted line) can be reached well with the optimal final
cell distribution z.1; :/ (solid line). The final chemoattractor concentration c.1; :/ is almost affine-
linear (dashed line). Right: the control bound constraints are active most of the time for q2. Not
shown: the optimal control q1 is always 0

Table 2 Cumulative CPU time in seconds for the chemotaxis example on each spatial discretiza-
tion level for computations concerning the dynamic system, including system integration, forward
and adjoint derivatives, and matrix-vector products with Hessian matrices

Level Integration Forward Adjoint Hessian

1 100:5 745:5 19:8 669:1

2 29:5 6:6 16:2 55:8

3 45:4 8:2 22:0 71:7

4 53:4 7:5 21:2 70:5

5 144:2 15:2 42:6 141:4

6 1314:9 73:5 190:3 597:9

problems on all 20 shooting intervals together. In this case, the spatial and temporal
discretization errors are well balanced, because a high-order method is used in time.

In Table 2 we sum up the cumulative CPU time needed for the computation of
values concerning the initial value problems on each spatial discretization level.
This is the main part of the computational burden. The solution of all the condensed
QPs (14) only takes 0.6 s, for instance. We observe that most of the effort is spent on
levels 1 and 6. The effort on level 1 is due to the coarse grid computations in each
iteration. Due to DAESOL-II’s memory requirements, we could not refine the fine
grid further. Were we able to do so, then the numerical effort spent on the finest grid
level ` D 7 would dominate the overall effort even more.



180 A. Potschka

7 Conclusions

We elaborated on the challenges and a numerical approach for a Direct Multiple
Shooting method for optimal control problems with coupled ODE and parabolic
PDE constraints. Even difficult boundary conditions like time periodicity of the
states can be treated efficiently in this framework. The large-scale nature of the
resulting NLPs can be tamed by a structure exploiting two-grid Newton-Picard
inexact SQP method. Encouraging numerical results indicate that challenging
PDE constrained optimal control problems can be solved efficiently with a Direct
Multiple Shooting method. The proposed method does not require the often time-
consuming derivation of adjoint equations and can be easily parallelized. It is in
particular suited for practitioners who need an accurate resolution of the system
dynamics and can live with lower resolution of the optimal control.

We would like to thank the unknown reviewer for the constructive comments on
the initial manuscript. Support by the EU through S. Engell’s and H.G. Bock’s ERC
Advanced Investigator Grant MOBOCON (291 458) is gratefully acknowledged.

References

1. Albersmeyer, J.: Adjoint based algorithms and numerical methods for sensitivity generation
and optimization of large scale dynamic systems. Ph.D. thesis, Ruprecht-Karls-Universität
Heidelberg (2010)

2. Albersmeyer, J., Bock, H.G.: Sensitivity generation in an adaptive BDF-method. In: Bock,
H.G., Kostina, E., Phu, X.H., Rannacher, R. (eds.) Modeling, Simulation and Optimization
of Complex Processes. Proceedings of the International Conference on High Performance
Scientific Computing, pp. 15–24, Hanoi, 6–10 March 2006. Springer, Berlin (2008)

3. Bellman, R.E.: Dynamic Programming, 6th edn. University Press, Princeton (1957)
4. Biegler, L.T.: Solution of dynamic optimization problems by successive quadratic program-

ming and orthogonal collocation. Comput. Chem. Eng. 8, 243–248 (1984)
5. Bock, H.G.: Recent advances in parameter identification techniques for ODE. In: Deuflhard,

P., Hairer, E. (eds.) Numerical Treatment of Inverse Problems in Differential and Integral
Equations, pp. 95–121. Birkhäuser, Boston (1983)

6. Bock, H.G., Plitt, K.J.: A multiple shooting algorithm for direct solution of optimal control
problems. In: Proceedings of the 9th IFAC World Congress, pp. 242–247, Budapest. Pergamon
Press (1984)

7. Dautray, R., Lions, J.-L.: Evolution problems I. In: Craig, A. (ed.) Mathematical Analysis and
Numerical Methods for Science and Technology, vol. 5. Springer, Berlin (1992)

8. Deuflhard, P.: Newton Methods for Nonlinear Problems. Affine Invariance and Adaptive
Algorithms. Springer Series in Computational Mathematics, vol. 35. Springer, Berlin (2006)

9. Griewank, A., Walther, A.: Evaluating Derivatives, 2nd edn. SIAM, Philadelphia (2008)
10. Hesse, H.K.: Multiple shooting and mesh adaptation for PDE constrained optimization

problems. Ph.D. thesis, University of Heidelberg (2008)
11. Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints. Springer,

New York (2009)
12. Lebiedz, D., Brandt-Pollmann, U.: Manipulation of self-aggregation patterns and waves in

a reaction-diffusion system by optimal boundary control strategies. Phys. Rev. Lett. 91(20),
208301 (2003)



Direct Multiple Shooting for Parabolic PDE Constrained Optimization 181

13. Lust, K., Roose, D., Spence, A., Champneys, A.R.: An adaptive Newton-Picard algorithm with
subspace iteration for computing periodic solutions. SIAM J. Sci. Comput. 19(4), 1188–1209
(1998)

14. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, Berlin (2006)
15. Osborne, M.R.: On shooting methods for boundary value problems. J. Math. Anal. Appl. 27,

417–433 (1969)
16. Pontryagin, L.S., Boltyanski, V.G., Gamkrelidze, R.V., Miscenko, E.F.: The Mathematical

Theory of Optimal Processes. Wiley, Chichester (1962)
17. Potschka, A.: A direct method for the numerical solution of optimization problems with time-

periodic PDE constraints. Ph.D. thesis, Universität Heidelberg (2011)
18. Potschka, A.: A Direct Method for Parabolic PDE Constrained Optimization Problems.

Advances in Numerical Mathematics. Springer, Berlin (2013)
19. Potschka, A., Bock, H.G., Schlöder, J.P.: A minima tracking variant of semi-infinite

programming for the treatment of path constraints within direct solution of optimal control
problems. Optim. Methods Softw. 24(2), 237–252 (2009)

20. Potschka, A., Mommer, M.S., Schlöder, J.P., Bock, H.G.: Newton-Picard-based precondition-
ing for linear-quadratic optimization problems with time-periodic parabolic PDE constraints.
SIAM J. Sci. Comput. 34(2), 1214–1239 (2012)

21. Russell, R.D., Shampine, L.F.: A collocation method for boundary value problems. Numer.
Math. 19, 1–28 (1972)

22. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelpha (2003)
23. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer Series in

Computational Mathematics, vol. 25, 2nd edn. Springer, Berlin (2006)
24. Tröltzsch, F.: Optimale Steuerung partieller Differentialgleichungen: Theorie, Verfahren und

Anwendungen, 2nd edn. Vieweg+Teubner Verlag, Wiesbaden (2009)
25. Tsang, T.H., Himmelblau, D.M., Edgar, T.F.: Optimal control via collocation and non-linear

programming. Int. J. Control. 21, 763–768 (1975)
26. Tyson, R., Lubkin, S.R., Murray, J.D.: Model and analysis of chemotactic bacterial patterns in

a liquid medium. J. Biol. 38, 359–375 (1999). doi:10.1007/s002850050153
27. Tyson, R., Lubkin, S.R., Murray, J.D.: A minimal mechanism for bacterial pattern formation.

Proc. R. Soc. B Biol. Sci. 266, 299–304 (1999)
28. Walther, A., Kowarz, A., Griewank, A.: ADOL-C: a package for the automatic differentiation

of algorithms written in C/C++. Technical report, Institute of Scientific Computing, Technical
University Dresden (2005)

29. Wloka, J.: Partial Differential Equations. Cambridge University Press, Cambridge (1987).
Translated from the German by C.B. Thomas and M.J. Thomas

http://dx.doi.org/10.1007/s002850050153


Multiple Shooting in a Microsecond

Rien Quirynen, Milan Vukov, and Moritz Diehl

Abstract Nonlinear Model Predictive Control (NMPC) is a feedback control
technique that uses the most current state estimate of a nonlinear system to
compute an optimal plan for the future system behavior. This plan is recomputed
at every sampling time, creating feedback. Thus, NMPC needs to repeatedly solve a
nonlinear optimal control problem (OCP). Direct multiple shooting is since long
known as a reliable approach for discretization of OCPs. This is mainly due to
the fact that the approach shows good contraction properties within the NMPC
framework. Moreover, the procedure is easy to initialize and parallelize. In the
context of real-time NMPC, the multiple shooting method was tailored to the Real-
Time Iteration (RTI) scheme. This scheme uses a strategy known as Initial Value
Embedding to deal efficiently with the transition from one optimization problem to
the next. It performs two algorithmic steps in each sampling time, a long preparation
phase and a short feedback phase to minimize the feedback time to the system.
The two phases respectively prepare and solve a convex Quadratic Program (QP)
that depends parametrically on the estimated system state. The solution of this QP
delivers quickly a generalized tangential predictor to the solution of the nonlinear
problem. Recent algorithmic progress makes the solution of NMPC optimization
problems possible at sampling times in the milli- or even microsecond range on
modern computational hardware. An essential part is the simulation of the nonlinear
model together with the propagation of its derivative information. This article
describes the developments and their efficient software implementations that made it
possible to solve a classical NMPC benchmark problem within 1�s sampling time.
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1 Introduction

Model Predictive Control (MPC) needs to solve an Optimal Control Problem (OCP)
at each sampling instant using the current system state Nx0 as initial value. This
optimization task is almost exclusively executed using a direct approach which first
discretizes the continuous time system to obtain a discrete time OCP formulation.
Multiple Shooting (MS) will be motivated and shown to be such a time discretization
with nice contraction properties and extra advantages, e.g. it is more flexible both
to initialize and parallelize. One crucial dividing line in MPC is between convex
and non-convex problems. In the case that the OCP is convex, e.g. for linear MPC,
algorithms exist that find a global solution in a fast and reliable way. This paper
will focus on the problems that use a nonlinear model i.e. the resulting OCP is non-
convex and one generally has to be satisfied with approximations of locally optimal
solutions. Nonlinear MPC (NMPC) has become a popular approach for real-time
optimal control since it can explicitly handle constraints and nonlinear dynamics.
Recent algorithmic progress [1, 2] allows to consider NMPC also for systems
having rather fast dynamics. Among the available online algorithms, the Real-Time
Iteration (RTI) scheme has been proposed as a highly competitive approach [3]. It
is an SQP-type algorithm that uses a shooting discretization and a Gauss-Newton
Hessian approximation.

It is important to use the right algorithmic tools to be able to meet the hard timing
constraints of real-time applications. This paper focuses on the RTI scheme as an
online algorithm to handle nonlinear OCPs using a multiple shooting discretization.
It divides the computations at each sampling time into a preparation and a feedback
phase [4]. The preparation phase takes care of the linearization and condensing
resulting in a small scale Quadratic Program (QP). Reducing the computation time
of this phase is crucial for achieving a certain sampling frequency since it will often
dominate the total execution time. The prepared QP cannot be solved yet before the
current state estimate is available. Once it becomes available, the feedback phase
will quickly solve the subproblem to obtain an approximate solution to the original
OCP. The faster this QP is solved, the faster the next control input can be fed back
to the real process. Condensing is still a rather popular technique, because it leaves
us with a dense but small scale QP to be solved in the feedback phase [5, 6]. This
can be done by any embedded QP solver such as e.g. qpOASES [7] which uses an
online active set strategy [8]. The alternative to this condensing approach would be
to directly solve the multi-stage QP, using a structure exploiting convex solver such
as FORCES [9], qpDUNES [10] or HPMPC [11]. An important disadvantage could
be that the solution of the full QP then becomes part of the feedback phase in the
context of the RTI framework.
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Apart from using suitable algorithms, efficient implementations are needed to
run them in real-time on embedded control hardware. One way to achieve this
is by automatic code generation, i.e. by exporting a fully customized solver.
Significant improvements in the computation time can be obtained by removing
unnecessary computations, by optimizing the memory access and cache usage, and
by exploiting the structure in the problem. This idea is already rather popular for
convex optimization, examples of this are CVXGEN [12] and FORCES [9] which
both generate tailored Interior Point (IP) convex solvers. In the context of NMPC, an
important computational step is that of the integration and sensitivity generation for
the nonlinear model. The export of tailored Explicit Runge-Kutta (ERK) integrators
using the Variational Differential Equations (VDE) for sensitivity propagation has
been presented and been experimentally validated in [13, 14]. This idea has been
strongly extended in the work on automatic code generation for Implicit RK
(IRK) methods with a tailored approach for computing their sensitivities [15, 16].
Embedded, implicit solvers allow their natural extension to Differential Algebraic
Equations (DAE) and an efficient computation of continuous outputs [17]. The
ACADO code generation tool pursues to export efficient C-code for the complete
RTI scheme, assembled from the different necessary components [18]. It is part
of the open-source ACADO Toolkit [19] with interfaces to multiple convex
solvers [5, 10].

This paper is organized as follows. Section 2 presents the parametric optimization
problem that needs to be solved at each sampling time together with its shooting
discretization. This direct approach requires efficient integration and sensitivity
generation for the nonlinear model, which is the topic of interest in Sect. 3. The
optimization details are discussed in Sect. 4, focusing on Sequential Quadratic
Programming (SQP) in a RTI framework. Finally, Sect. 5 shows us that NMPC can
be done within 1�s for a benchmark problem taken from the literature and this
using the tools provided in this paper.

2 Nonlinear Model Predictive Control

NMPC is an approach of increasing popularity for real-time control due to the ability
to explicitly handle constraints and nonlinear dynamics that characterize the system
of interest. Section 2.1 presents the optimization problem that needs to be solved at
each sampling time. Section 2.2 then describes multiple shooting as a reliable way
of reformulating this as an approximate but tractable problem.
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2.1 Parametric Optimization Problem

In what follows, the OCP that needs to be solved at each time point is assumed to
be of the following form

minimize
x.�/; u.�/

Z T

0

kF.t; x.t/; u.t//k22 dtC kFN.x.T//k22 (1a)

subject to x.0/ D Nx0; (1b)

Px.t/ D f.t; x.t/; u.t//; 8t 2 Œ0;T�; (1c)

0 � h.x.t/; u.t//; 8t 2 Œ0;T�; (1d)

0 � r.x.T//; (1e)

where x.t/ 2 R
nx denotes the differential states at time t, u.t/ 2 R

nu are the
control inputs and Eq. (1a) defines the NMPC objective while Eqs. (1d) and (1e) are
respectively the path and terminal constraints. The nonlinear dynamics in Eq. (1c)
are described by an explicit system of Ordinary Differential Equations (ODE),
although this could be generalized to e.g. an implicit DAE system of index 1. Note
that Nx0 2 R

nx is a parameter on which the OCP depends through the initial value
constraint in Eq. (1b). What is mainly of interest is u�.Nx0/, which denotes a locally
optimal control trajectory to be applied as a function of the current system state Nx0.

2.2 Multiple Shooting Discretization

The continuous time OCP formulation from (1) leaves us with an infinite dimen-
sional optimization problem which is impossible to solve in a general case. This
problem is often discretized and subsequently optimized which is characteristic for
any direct approach to optimal control. An important separator here is whether such
a direct approach is either sequential or simultaneous. Variants of the latter approach
are direct discretization [20] and direct multiple shooting [21], the focus of this
paper. A shooting discretization of the problem in Eq. (1) results in the structured
Nonlinear Program (NLP)

minimize
X;U

1

2

N�1X

iD0
kFi.xi; ui/k22 C

1

2
kFN.xN/k22 (2a)

subject to 0 D x0 � Nx0; (2b)

0 D xiC1 �˚i.xi; ui/; i D 0; : : : ;N � 1; (2c)

0 � hi.xi; ui/; i D 0; : : : ;N � 1; (2d)

0 � r.xN/; (2e)
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with state trajectory X D Œx>0 ; : : : ; x>N �> where xi 2 R
nx and control trajectory

U D Œu>0 ; : : : ; u>N�1�> where ui 2 R
nu . Note that the function ˚i.xi; ui/ here denotes

the simulation of the nonlinear dynamics over one shooting interval, starting from
the states xi and using the control values ui. This component is essential for any
shooting method and will be the topic of interest in Sect. 3. When one addresses
this optimization problem directly in a Newton-type framework, the variables in X
generally represent a feasible state trajectory only at convergence. In direct multiple
shooting, simulation and optimization are therefore performed simultaneously.

On the other hand, a sequential approach carries out the simulation task
separately from solving the optimization problem. A reduced OCP formulation is
obtained after replacing the variables xi by the results Xsim.Nx0;U/ of a forward
simulation starting from the initial states Nx0 using the control trajectory U. This
technique is also known as single shooting. The equality constraints from Eq. (2c)
are now automatically satisfied and can therefore be eliminated. Since the variable
space of this problem is strongly reduced in dimension from .N C 1/nx C Nnu to
only Nnu, the task of solving this NLP appears to be simplified. But it has been
shown that the cost per Newton iteration can be made equal for both approaches
because of the sparsity structure in (2). Advantages of multiple shooting over single
shooting are also the stronger flexibility in initializing the problem and parallelizing
the algorithm, and the improved convergence properties especially in case of an
unstable system [22].

3 Auto Generated Integrators

This section presents auto generated RK methods with efficient sensitivity gen-
eration. As one-step methods, they are particularly suited for simulation over
relatively short shooting intervals such as needed in Eq. (2c). Their implementation
is discussed in Sect. 3.1, for ODE as well as DAE systems of index 1. Extending
these methods with an efficient computation of continuous outputs and first order
sensitivity information is respectively described in Sects. 3.2 and 3.3. In Sect. 3.4, a
common three stage model formulation is briefly introduced.

3.1 Runge-Kutta Methods

An integration method in general needs to solve the following Initial Value Problem
(IVP) over a certain time interval t 2 Œ0;Ts�:

0 D g.t; Px.t/; x.t/; z.t/; u.t//;
x.0/ D x0;

(3)
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with x.t/ a vector of nx differential states, Px.t/ the corresponding time derivatives
and z.t/ a vector of nz algebraic states. This covers models ranging from explicit
ODE to fully implicit DAE systems, which can be dealt with by IRK methods [15].
The only assumption is that the Jacobian matrix @g.�/

@.z;Px/ is invertible, i.e. the DAE
system is of index 1. Mainly because of their good stability properties, the focus is
often on A-stable schemes such as the Gauss methods [23].

With real-time applications in mind, a code generation tool exports a tailored
integrator with a deterministic runtime. Applying an s-stage IRK method to the
model in (3) results in a nonlinear system that can be solved using a Newton-type
method. The step size, the order of the method and the number of Newton iterations
have to be fixed such that there is no adaptivity. In the context of shooting methods,
a good initialization of the variables using the previous solution is available so that a
small amount of iterations is typically sufficient. Even a custom linear solver can be
exported to perform the iterations, e.g. based on an LU decomposition. Note that an
ERK method can be used in case of a model described by an explicit ODE system.
Its code generation implementation is relatively trivial and these methods can also
be more efficient when their use is restricted to non-stiff models [13].

3.2 Continuous Output

Some promising possibilities of auto generated integration methods with continuous
output have been illustrated in [13, 17]. The general idea is to define some output
function y D  .t; Px.t/; x.t/; z.t// that can be evaluated efficiently on an arbitrarily
fine grid, independent of the integration grid. These output functions can then be
used to define the objective function or some constraint functions in the NMPC
formulation. In case of collocation methods which are a specific family of IRK
methods, this continuous extension comes rather naturally. But it is also possible to
define continuous extensions for explicit or semi-implicit RK methods.

3.3 Sensitivity Generation

In the context of dynamic optimization, at least first order sensitivities with respect
to the variables are needed in addition to the simulated values of states and outputs.
A thorough discussion on techniques of forward sensitivity propagation for IRK
methods can be found in [24]. The conclusion from that work is that the most
efficient way is to apply the Implicit Function Theorem (IFT) to the nonlinear
system of the IRK method. This direct approach also provides very accurate
derivatives which is important for optimization. Note that for an explicit method, it
is efficient to compute the first order derivatives by simulating the system extended
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with the Variational Differential Equations (VDE):

Px.t/ D f .t; x.t/; u.t//;

PSx.t/ D @f .t; x.t/; u.t//

@x
Sx.t/;

PSu.t/ D @f .t; x.t/; u.t//

@x
Su.t/C @f .t; x.t/; u.t//

@u
;

(4)

with x.0/ D x0 and the sensitivity matrices are defined as Sx.t/ D @x.t/=@x0 and
Su.t/ D @x.t/=@u for which it holds that Œ Sx.0/ j Su.0/ � D Œ1 j 0 �. Since a fixed
step size is assumed for the auto generated integrators, this approach is equivalent
to performing algorithmic differentiation in forward mode [18].

3.4 Linear Subsystems

When modeling a system, the result is typically a set of nonlinear differential
equations with possibly some algebraic states but one would often recognize one
or more of the following three subsystems in this specific order:

C1 PxŒ1� D A1xŒ1� C B1u; (5a)

0 D f2.PxŒ1�; xŒ1�; PxŒ2�; xŒ2�; z; u/; (5b)

C3 PxŒ3� D A3xŒ3� C f3.PxŒ1�; xŒ1�; PxŒ2�; xŒ2�; z; u/; (5c)

with matrices A1, B1, A3 and invertible matrices C1 and C3 and the nonlinear
functions f2 and f3. The main assumption is that the Jacobian matrix @f2.�/

@.z;PxŒ2�/ is
invertible, i.e. the second subsystem represents a DAE of index 1. In the case that
A3 D 0 and C3 is an identity matrix, Eq. (5c) reduces to

PxŒ3� D f3.PxŒ1�; xŒ1�; PxŒ2�; xŒ2�; z; u/ (6)

which are better known as quadrature states [25]. They are typically used to
formulate objective and constraint functions, similar to how the more general linear
input and output states can be used respectively from Eqs. (5a) and (5c). The
exploitation of this three-stage model formulation in auto generated integration
methods has been presented and illustrated in [16].

4 Sequential Quadratic Programming

A Newton-type algorithm to solve the NLP in (2) is dedicated to find a locally
optimal solution by solving the nonlinear Karush-Kuhn-Tucker (KKT) conditions.
There are different options to treat the inequality constraints in this system. One way



190 R. Quirynen et al.

which is done by nonlinear IP methods is to smoothen the corresponding KKT con-
ditions, a popular software implementation of this is the code IPOPT [26]. The focus
in this article is on Sequential Quadratic Programming (SQP), which defines another
family of algorithms. The QP subproblem to be solved is described in Sect. 4.1
together with the popular Gauss-Newton Hessian approximation. Section 4.2 then
presents two alternative ways to deal with this structured, multi-stage QP. Some
important implementation details of the RTI scheme are discussed eventually in
Sect. 4.3.

4.1 Generalized Gauss-Newton

After linearizing the nonlinear functions in the KKT system, it becomes equivalent
to solving the following Quadratic Program (QP)

minimize
X;U

˚quad.X;UIXŒk�;UŒk�;Y Œk�; �Œk�/ (7a)

subject to Geq;lin.�/ D

2
66664

x0 � Nx0
x1��0.xŒk�0; uŒk�0 /�

h
AŒk�0;B

Œk�
0

i"x0�xŒk�0
u0�uŒk�0

#

:::

3
77775
D 0; (7b)

Gineq;lin.�/ D

2
66664

h0.x
Œk�
0; u

Œk�
0 /C

h
CŒk�
0;D

Œk�
0

i"x0�xŒk�0
u0�uŒk�0

#

:::

r.xŒk�N /C CŒk�
N .xN � xŒk�N /

3
77775
� 0; (7c)

where Y Œk� and �Œk� are the Lagrange multipliers for respectively the equality and
inequality constraints and AŒk�i ;B

Œk�
i ;C

Œk�
i ;D

Œk�
i denote the Jacobian matrices of the

corresponding functions evaluated at the current iterate k. Note that �i.�/, Ai and Bi

for i D 0; : : : ;N�1 form the information that needs to be provided by the integration
methods from Sect. 3. The result is a sequence of QPs of which the solution provides
a sequence of iterations, converging to a local solution of the original, nonlinear
optimal control problem under the assumptions as discussed in [27].

There are different variants of the SQP algorithm that use certain expressions for
the QP objective in (7a). In case of an exact Hessian variant, the sparse Hessian of
the Lagrangian r2L needs to be evaluated and used in the QP subproblem leading
to a locally quadratic convergence rate in solving the NLP. The Hessian is often
approximated resulting in a trade-off between computational complexity per step
and convergence speed. The special case of using a least squares objective such as
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in Eq. (2a) allows a popular Hessian approximation that is known as the Generalized
Gauss-Newton (GGN) method [28]. The objective function to be used in Eq. (7a)
then reads as

˚quad D 1

2

N�1X

iD0

"
xi � xŒk�i

ui � uŒk�i

#>
JŒk�i

>
JŒk�i

"
xi � xŒk�i

ui � uŒk�i

#
C

N�1X

iD0
FŒk�i

>
JŒk�i

"
xi � xŒk�i

ui � uŒk�i

#

C 1

2
.xN � xŒk�N /

> JŒk�N

>
JŒk�N .xN � xŒk�N / C FŒk�N

>
JŒk�N .xN � xŒk�N /

(8)

where FŒk�i D Fi.x
Œk�
i ; u

Œk�
i / and FŒk�N D FN.x

Œk�
N / are evaluations of the residual

functions from Eq. (2a) and JŒk�i , JŒk�N are respectively their Jacobians @Fi.x
Œk�
i ;u

Œk�
i /

@.xi;ui/

and @FN .x
Œk�
N /

@xN
. The GGN method is based on the observation that JŒk�i

>
JŒk�i for each

i D 0; : : : ;N forms a good approximation for the Hessian result r2wi
L where

wi D .xi; ui/, as long as the residual evaluations Fi.�/ remain small [27]. The
convergence rate of the GGN method is only linear but its implementation is rather
simple and works very well in practice for such small residual problems. A special
case of this is when the original objective function ˚.X;U/ was already convex
quadratic, meaning that it can be used directly in the QP. The method can also
be further generalized to Sequential Convex Programming e.g. in case of NMPC
problems with elliptic terminal regions [29].

4.2 Sparsity Exploitation

The QP subproblem presented in the previous Subsection shows a specific sparsity
structure which should be exploited. One option is to reduce the variable space by
a procedure called condensing, and then to solve the smaller, condensed QP using
a suitable solver [5]. Another option is to directly use a tailored QP solver that can
efficiently exploit this structure.

4.2.1 The Condensed Problem

To simplify notation, let us define the trajectories
X D X�XŒk� and
U D U�UŒk�.
The constraints in (7b) can be used to eliminate 
X from the QP using


X D dC C
Nx0 C E
U with 
Nx0 D Nx0 � xŒk�0 ; (9)
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and

d D

2

6664


�0

�1 C A1
�0


�2 C A2
�1 C A2A1
�0
:::

3

7775 , C D

2

6664

A0
A1A0

A2A1A0
:::

3

7775 and

E D

2

6664

B0
A1B0 B1

A2A1B0 A2B1 B2
:::

: : :

3

7775 ;

(10)

where 
�i D �i.x
Œk�
i; u

Œk�
i / � xŒk�iC1. Note that a compact notation Ai;Bi has been used

here for respectively the matrices AŒk�i ;B
Œk�
i at the current iteration. Insertion of the

expression 
X D d C C
Nx0 C E
U into (7c) and (8) yields an equivalent, but
smaller scale QP of the following form:

minimize

U

1

2

U>Hc 
U C
U>gc (11a)

subject to wC K
U � 0: (11b)

Let us omit the lengthy explicit expressions for the matrices Hc;K and the vectors gc

and w. For a simplified setting of a quadratic objective and simple bound constraints,
these expressions can be found in [5]. Although the QP subproblem can now be
solved in the reduced variable space 
U 2 R

Nnu , the variables in X are still
updated using an expansion step based on Eq. (9). The fact that the iterations are
still performed in the full variable space, is the crucial difference with using a
single shooting formulation. The bottleneck in an implementation of condensing
is the computation of the condensed Hessian Hc, which has been shown to be
of complexity O.N2/ [6, 30]. It is hereby important to exploit the lower block
triangular structure of matrix E from (10), the separability of the objective function
in (8) and the symmetry of the Hessian matrix [5, 31]. Note that the small scale
QP can be solved by an efficient, dense linear algebra solver such as qpOASES.
This significantly reduces the feedback delay time between receiving the new state
estimate Nx0 and applying the next control input uŒkC1�0 D uŒk�0 C
u?0 .

4.2.2 Solving the Sparse Problem

Using a condensing approach, the corresponding cost per iteration is of order
O.N2/ including the factorization cost as discussed in [30, 32]. Alternatively, one
would directly solve the sparse QP problem from (7) in the full variable space
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and exploiting the sparsity structure then becomes essential. Both for active set and
Interior Point (IP) algorithms to solve this multi-stage QP, the cost per iteration of
the solver can be made of order O.N/ [33]. Code generation tools exist that export
tailored convex IP solvers, popular examples are CVXGEN [34] and FORCES [9].
An efficient implementation of a structure exploiting, primal-barrier IP method
can be found in [35]. Employing the condensing technique is known to perform
very well for relatively short horizon lengths N but can be outperformed by using
a structure exploiting convex solver for longer horizons. Comparative simulation
results can be found in [5]. Classical condensing is generally a good approach in
case of many state variables nx > nu, while complementary condensing [36] was
proposed as a competitive alternative in case of many controls nu > nx. A known
issue with IP methods in a real-time framework is that it is difficult to warm-start
them efficiently. There is ongoing research on combining the beneficial properties of
both an active set method and a structure exploiting IP solver. A promising example
based on a dual Newton strategy to solve structured multi-stage QPs is the open-
source software qpDUNES, presented in [10].

4.3 Real-Time Iterations

The RTI scheme has already been mentioned multiple times in this paper, but it is
important to elaborate on some of its properties since it is the key idea that allows
nonlinear optimal control with microsecond execution times.

4.3.1 Initial Value Embedding

In NMPC, a sequence of optimal control problems with different initial values
NxŒ0�0 ; NxŒ1�0 ; : : : needs to be solved. For the transition from one problem to the next, it is
beneficial to take into account the fact that the optimal solution U�.Nx0/ depends
almost everywhere differentiably on Nx0 which is the idea behind a continuation
method. The solution manifold has smooth parts whenever the active set does not
change, but non-differentiable points occur where the active set changes. After
linearizing at such a point in the context of a nonlinear IP method, a simple
tangential predictor would lead to a rather bad approximation. One remedy would
be to increase the path parameter 	 , which decreases the nonlinearity but it comes
at the expense of generally less accurate solutions.

One can deal with active set changes naturally in an SQP type framework by
the following procedure proposed and analysed in [4, 29, 37]: first of all, the
parameter Nx0 needs to enter the NLP linearly, which is automatically the case for
a simultaneous OCP formulation such as in Eq. (2b). The problem needs to be
addressed using an exact Hessian SQP method. Finally, the solution trajectories
XŒk� and UŒk� for the current problem in NxŒk�0 are used as initial guess to solve the
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OCP for the new parameter value NxŒkC1�0 . In the context of NMPC with a quadratic
cost, this continuation technique can also be used with a Gauss-Newton Hessian
approximation. This is done in the RTI algorithm and yields a multiplier free,
generalized tangential predictor i.e. one that works across active set changes [2].

4.3.2 Reducing the Computational Delay

Ideally, the solution to a new optimal control problem is obtained instantly which is
however impossible due to computational delays. Several ingredients of the RTI
scheme can help us in dealing with this issue. A first and important one is to
divide the computations at each sampling time into a preparation and a feedback
phase [4]. The typically more CPU intensive preparation phase is performed with
a predicted state, before the state estimate is even available. Once the new value Nx0
becomes available, the feedback phase quickly delivers an approximate solution to
the original problem by solving the prepared, convex subproblem. The idea is to
always work with the most current information in each iteration, i.e. not to iterate
until convergence for an MPC problem that is only getting older. It can also be seen
as a distributed-in-time optimization procedure.

Another important ingredient is to transfer solution information from one OCP
to the next one, i.e. to efficiently warm-start each solution procedure. This can be
done by using the previously optimal trajectories as an initial guess at the next time
step and this either directly or in a shifted version. A last technique concerns code
generation which has become a quite popular way to do code optimizations based
on a high-level description of the problem to be solved. Multiple tools already
exist to automatically generate custom solvers in a low-level language [34, 38].
Also for NMPC, the consecutive optimal control problems are similar and many
computations can be done offline before the controller starts. The auto generated
code then exploits problem dimensions and sparsity structures, it avoids dynamic
memory allocation and has a nearly deterministic runtime. The latter is important
to be able to satisfy the hard timing constraints in real-time applications. A tailored
RTI algorithm for nonlinear optimal control can be generated as plain C-code by the
open-source software ACADO Toolkit [18].

5 A Classical Benchmark Problem

This section presents numerical results that allow for interesting comparisons to be
made between different NMPC formulations, algorithms and their implementation.
The problem formulation is first presented in Sect. 5.1, followed by a description
in Sect. 5.2 of the three test cases that are used in simulation. Some results of
the corresponding numerical experiments are eventually shown and discussed in
Sect. 5.3. The simulations presented in this section are performed using the ACADO
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code generation tool on a modern computer equipped with Intel i7-3720QM
processor, running a 64-bit version of Ubuntu 12.04. All programs are compiled
using the Clang 3.0 compiler.

5.1 Problem Formulation

Throughout this section, the simple NMPC problem from [39] will be used as a
benchmark example. Its corresponding continuous time OCP reads

min
x.�/;u.�/

Z tCT

t
.kx.	/k2Q C ku.	/k2R/ d	 C kx.tC T/k2P (12a)

s.t. x.t/ D Nxt; (12b)

Px1.	/ D x2.	/C u.	/ .�C .1 � �/ x1.	// ;

Px2.	/ D x1.	/C u.	/ .� � 4.1 � �/ x2.	// ; (12c)

� 2 � u.	/ � 2; 8	 2 Œt; t C T�; (12d)

kx.tC T/k2P � ˛; (12e)

where Eq. (12c) defines the simple but unstable ODE system with two differential
states x1 and x2, a control input u and constant value� D 0:5. The parameters P � 0
and ˛ � 0 from Eqs. (12a) and (12e) define the terminal penalty and the terminal
region ˝˛ of which the latter is preferably as large as possible, while still leading
to closed-loop stability for the resulting NMPC approach. The following parameter
values will be used in simulation:

Ts D 0:1s N D 15 T D 1:5s

Q D
�
2:0 0:0

0:0 2:0

�
R D 0:1

P D
�
10:605 �9:395
�9:395 10:605

�
˛ D 0:7

w here Ts and N respectively define the size and number of shooting intervals over
the horizon Œ0;T� i.e. they define the shooting discretization of the OCP.
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5.2 Simulation Test Cases

5.2.1 Case A: Original Formulation and QP

Starting from the formulation in (12), a first NMPC scheme is to solve this OCP
until convergence at every time point and this will be further called case A. Note
that the resulting NMPC controller is the same as case A in the paper from [39].

5.2.2 Case B: Tuned Formulation and QP

It is interesting to have a look at the tuning possibilities to achieve faster sampling
times when necessary. First of all, the RTI scheme can be used instead of iterating
the procedure until convergence. Then it is important to use a suitable integration
method with efficient sensitivity generation for the shooting discretization, as
discussed in Sect. 3. The ODE system in (12c) is rather simple and non-stiff, thus
an explicit Euler discretization with a step size of 0:1s already suffices in this
case. To further improve the computation time of one RTI iteration, the number
of optimization variables can be reduced. This means that the number of shooting
intervals N will be reduced while keeping the horizon length long enough for a
good NMPC performance. To achieve this, a non equidistant control grid is used
as depicted in Fig. 1. Eventually, the quadratic terminal constraint in (12e) is also
removed and the resulting scheme will be referred to as case B.

To obtain results that are comparable to the original scheme (case A), a few
details must be addressed. One is the terminal cost matrix P that needs to be altered
since the new horizon is shorter. By integrating the differential Riccati equation
backwards over 0:5s, a new terminal cost matrix P.1:0/ can be found:

P.1:5/ D
�
10:605 �9:395
�9:395 10:605

�
) P.1:0/ D

�
4:432 �3:558
�3:558 4:432

�
:

Because of the varying interval size in the alternative control horizon, the weighting
matrices Q and R are scaled using a factor relative to this interval size. Also standard
shifting approaches are not applicable anymore and therefore abandoned.

Fig. 1 Illustration of a non equidistant control grid of only four shooting intervals over ones
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5.2.3 Case C: Original Formulation and QCQP

It is important to note that all presented techniques can be extended further towards
Sequential Convex Programming (SCP) [29]. In Sect. 4.2.2, FORCES has been
presented as a sparsity exploiting QP solver although the most general convex
problem that it targets is a quadratically constrained QP (QCQP). For our benchmark
example, the terminal inequality constraint from (12e) can be kept in the convex
subproblem such that it becomes of this QCQP form. This will be referred to as
case C and it uses the same, original OCP formulation as case A.

5.3 Numerical Results

5.3.1 Comparison of Single and Multiple Shooting

First of all, let us illustrate multiple shooting by comparing it with a single shooting
discretization both on the OCP formulation of case A using initial value embedding.
The performance of the NMPC controller will be measured using the Karush-Kuhn-
Tucker (KKT) tolerance, computed as in [31]. Figure 2 illustrates the resulting
convergence rate for both solvers in a simulation over a time period of 5s. It
can be seen that the convergence is slightly better using the multiple shooting
discretization. In both cases, the solver starts from the exact same initial guess which
is the reference trajectory. Note that also the computational complexity is the same
for both.
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Fig. 2 Closed-loop NMPC performance using both single and multiple shooting
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Table 1 Average computation times for NMPC using the RTI scheme

NMPC Case A .�s/ Case B .�s/ Case C (�s)

Integration method 0:222 0:142 0:221

Condensing 3:370 0:088 –

QP solution 4:340 0:633 29:300

Remaining operations 1:608 0:087 0:679

One real-time iteration 9:540 0:950 30:200

5.3.2 Execution Times

The average computational times for the different components in one RTI iteration
are shown in Table 1 and this for the three different cases. Using ACADO code
generation, one iteration for case A, B and C on average takes respectively 9:54,
0:95 and 30:2 �s. Note that the formulation used in case B has been tuned precisely
to result in a total execution time that is below 1�s. The scheme which uses
FORCES to solve a QCQP subproblem (case C) appears not to be competitive
with the condensing based approach (case A) for this example. The reason is
that the used horizon is relatively small as discussed more detailed in [5]. An
important advantage of case C is that the terminal inequality becomes part of
the subproblem to be solved and it is therefore guaranteed to be satisfied for a
feasible trajectory. This is not necessarily true when linearizing that same constraint.
Exploiting convexity as much as possible can therefore be a rather powerful
tool.

5.3.3 Tracking Performance

Figure 3 compares the closed-loop tracking performance of the three NMPC
schemes for five different initial values, also used in [39]. As a reference, the closed-
loop behavior of the corresponding LQR scheme with control saturation is shown in
the same figure. The latter controller appears to be unstable for one of these initial
values while the NMPC schemes all exhibit a performance that is similar to one
another. According to the RTI scheme, only one SQP iteration is performed per
time step for cases B and C while the NMPC results for case A are iterated until
convergence using a rather strict stopping criterion. Note that the feedback delay
has not been taken into account in these closed-loop simulations.
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Fig. 3 Closed-loop performance of three different NMPC schemes and the LQR controller and
this for five different initial values. This figure is comparable to one presented originally in [39]

6 Conclusions

This paper handled a general parametric optimization problem, which arises
naturally in NMPC where one has to solve a nonlinear OCP at every sampling
instant. It gave an outline of the different algorithmic developments that made these
techniques real-time feasible today even for nonlinear systems with fast dynamics.
Auto generated integration methods have been presented as an essential part to
efficiently linearize the problem and compute derivative information. The RTI
scheme has been described as an online algorithm that allows to perform real-time
NMPC while having a fast control feedback to the real process. A simple example
taken from the literature, was used to illustrate the performance of the presented
tools. The average execution time per time step for this nonlinear problem was
eventually shown to be below 1�s.
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Preconditioners Based on “Parareal”
Time-Domain Decomposition for
Time-Dependent PDE-Constrained
Optimization

Stefan Ulbrich

Abstract We consider optimization problems governed by time-dependent
parabolic PDEs and discuss the construction of parallel preconditioners based
on the parareal method for the solution of quadratic subproblems which arise within
SQP methods. In the case without control constraints, the optimality system of
the subproblem is directly reduced to a symmetric PDE system, for which we
propose a preconditioner that decouples into a forward and backward PDE solve.
In the case of control constraints we apply a semismooth Newton method and
apply the preconditioner to the semismooth Newton system. We prove bounds
on the condition number of the preconditioned system which shows no or only
a weak dependence on the size of regularization parameters for the control. We
propose to use the parareal time domain decomposition method for the forward
and backward PDE solves within the PDE preconditioner to construct an efficient
parallel preconditioner. Numerical results show the efficiency of the approach.

1 Introduction

We consider parallel preconditioners for time-dependent PDE-constrained opti-
mization problems of the form

min
y2Y;u2U

f .y/C ˛

2
kuk2U subject to E.y; u/ D 0; u 2 Uad; (1)
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where u 2 U is the control, Uad � U is closed and convex, y 2 Y � C.Œ0;T�IV/
is a time-dependent state and ˛ > 0 is a regularization parameter. U is a Hilbert
space, Y;V are Banach spaces, where V � L2.˝/ with a domain ˝ � R

n. The
state equation E.y; u/ D 0 represents an appropriate (usually weak) formulation of
a time-dependent PDE (or system of PDEs)

yt C F.t; x; y; u/ D 0; .t; x/ 2 ˝T WD .0;T/ 	˝
y.0; x/ D y0.x/; x 2 ˝ (2)

with initial data y0 2 V . For convenience we assume that boundary conditions
are incorporated in the state space Y. For notational convenience, we use the
abbreviations W D Y 	U and w D .y; u/.

Throughout the paper we will work under the following assumptions.

Assumption 1 With W WD Y 	 U the following holds for a given open convex set
W0 D Y0 	U0 � W containing the feasible set of (1).

• The mappings

y 2 Y 7! f .y/; .y; u/ 2 W 7! E.y; u/ 2 Z�

are continuously differentiable and the derivatives are uniformly bounded and
Lipschitz on W0.

• For any u 2 U0 there exists a unique solution y.u/ 2 Y0 of E.y.u/; u/ D 0.
• The derivative Ey.y; u/ 2 L.Y;Z�/ has an inverse that is uniformly bounded for

all .y; u/ 2 W0.
• Uad � U is closed and convex.

In recent years, the design of efficient methods for the solution of PDE-
constrained optimization problems (1) has received considerable attention, see for
example [11, 13, 15–17, 23, 28–33].

Usually, iterative solvers are applied to solve the arising linear systems and
the inexactness is controlled by the globalization mechanism of the optimization
method [13, 23, 33]. Optimization methods such as SQP- or interior point methods
usually lead to auxiliary problems with a saddle point structure, e.g. the optimality
system for the SQP subproblem or the primal-dual Newton system of interior point
methods. To exploit the sparsity of these systems it is therefore of importance to have
fast iterative solvers for these systems available, which are usually ill conditioned.
Therefore, preconditioners are required to achieve fast convergence of iterative,
often Krylov-based, solvers. The development of preconditioning and multigrid
techniques for optimality systems in PDE-constrained optimization is an active
research topic. First approaches for preconditioners of optimality systems have been
proposed in [3, 4]. Block preconditioners for such systems have been proposed
e.g. in [7, 22, 25, 34]. Multigrid preconditioners have for example been considered
in [5, 6]. While problems without inequality constraints are nowadays quite well
understood, there are less results on the efficient preconditioning in the case of
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control and/or state constraints, see e.g. [14, 21, 24, 27]. While standard block
preconditioners may depend strongly on critical parameters such as regularization
or penalty parameter [14], the related preconditioners in [21, 24] show only a weak
dependence and in [24] estimates for the condition number are given, which apply
to problems for control constraints and regularized state constraints.

Time-domain decomposition methods based on a block Gauss-Seidel iteration
for linear-quadratic optimal control problems have been proposed and analyzed in
[12] and block parareal preconditioners for such problems in [20].

In this work we build on the class of preconditioners proposed in [24] and extend
their analysis to parabolic problems. The preconditioner decouples into two PDE
solves. To obtain a parallel preconditioner, we use the time-domain decomposition
method parareal to approximate the PDE solves within the preconditioner.

The parareal method was proposed in [18] as a parallel numerical scheme to
solve evolution problems. The method is a time domain decomposition method and
consists of a parallel predictor step based on a sufficiently exact propagator on the
time slabs and a sequential corrector step computed by a coarse propagator. The
algorithm has been successfully applied, e.g., to the Navier-Stokes equations and
fluid-structure interaction problems [8, 9]. Its stability and convergence properties
have for example been studied in [1, 10, 18, 19, 26]. In [10] it was shown that the
parareal algorithm can be considered as a multiple shooting method as well as a
time-multigrid method.

In this paper, we combine the class of preconditioners in [24], see also [21],
with the parareal method to approximate the PDE solves within the preconditioner.
We focus on the construction of preconditioners for the fast solution of subproblems
arising in optimization methods for (1). For example SQP-type methods solve, given
a current iterate wk D .yk; uk/, uk 2 Uad subproblems of the form

min
sD.sy;su/2W

qk.s/ WD hfy.yk/; syiY�;Y C 1

2
hsy;HksyiY;Y� C ˛

2
kuk C suk2U

subject to E.wk/C Ew.w
k/s D 0; uk C su 2 Uad; (3)

where Hk 2 L.Y;Y�/ is an approximation of Lyy.wk; �k/ with the Lagrangian
function

L.y; u; �/ D f .y/C ˛kuk2U C h�;E.y; u/iZ;Z� :

In many practical algorithms Hk is chosen in such a way that the quadratic
problem (3) is strictly convex. This is usually achieved by using Hk D M�k Mk,
where Mk 2 L.Y;Q/, which we assume from now on. Under Assumption 1, the
unique solution sk satisfies with a Lagrange multiplier (adjoint state) �k 2 Z the
following optimality system

E.wk/C Ew.w
k/sk D 0; (4)
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qk
y.s

k/C Ey.w
k/��k D 0; (5)

sk
u 2 Uad � uk; hqk

u.s
k/C Eu.w

k/��k; su � sk
uiU�;U � 0 8 su 2 Uad � uk: (6)

Since U is a Hilbert space and Uad � U is convex and closed, it is well known that
with the identification U D U� the variational inequality (6) can equivalently be
replaced by

sk
u D PUad�uk.sk

u � �.qk
u.s

k/C Eu.w
k/��k// (7)

with any fixed � > 0 and the projection PUad�uk in U onto Uad � uk.
We consider now two cases, the unconstrained case Uad D U and the box

constrained case U D L2.!/, Uad D fu 2 UI a � u � b a.e.g with a; b 2 U,
a � b.

In the case Uad D U optimality system (4)–(6) simplifies to the linear system

E.wk/C Ew.w
k/sk D 0;

fy.y
k/C Hksk

y C Ey.w
k/��k D 0;

˛.uk C sk
u/C Eu.w

k/��k D 0:

Solving the last equation for sk
u and inserting in the first equation yields the reduced

optimality system

�
Hk Ey.wk/�

Ey.wk/ �˛�1Eu.wk/Eu.wk/�
� 

sk
y

�k

!
D
 

�fy.yk/

�E.wk/C Eu.wk/uk

!
:

In the box constrained case U D L2.!/, Uad D fu 2 UI a � u � b a.e.g with
a; b 2 U, a � b, we set � D ˛�1 in (7) and obtain

sk
u D �uk Cmax.a;min.b;�˛�1Eu.w

k/��k//:

Inserting this in (4), (5), we arrive at the reduced optimality system

fy.y
k/C Hksk

y C Ey.w
k/��k D 0;

E.wk/ � Eu.w
k/uk C Ey.w

k/sk
yC

CEu.w
k/max.a;min.b;�˛�1Eu.w

k/��k// D 0;

9
>>=

>>;
G.sk

y; �
k/ D 0:

It is well known that this is a semismooth system as long as Eu.wk/� 2 L.Z;U/
(note that we have identified U� D U) satisfies in addition Eu.wk/� 2 L.Z;Lp.!//

for some p > 2, see [16, 30, 31]. If we now apply a semismooth Newton method then
the iterates are given by .sk;lC1

y ; �k;lC1/ D .sk;l
y ; �

k;l/ C .
y; 
�/, where .
y; 
�/
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solves the linear system

�
Hk Ey.wk/�

Ey.wk/ �˛�1Eu.wk/Dk;lEu.wk/�
� 


y


�

!
D �G.sk;l

y ; �
k:l/: (8)

Here, Dk;l D dk;l � id is a multiplication operator with dk;l 2 L1.!/ defined by
dk;l D 1fa��˛�1Eu.wk/��k;l�bg.

We conclude that in both cases we have for given w D .y; u/ 2 W, � 2 Z and
H 2 L.Y;Y�/ to solve linear systems of the form

�
H Ey.w/�

Ey.w/ �˛�1Eu.w/DEu.w/�
� 


y


�

!
D
 

r1
r2

!
;

where r1 2 Y�, r2 2 Z� and D D id in the case Uad D U or D D 1fa��˛�1Eu.w/���bg �
id in the case Uad D fu 2 UI a � u � b a.e.g, U D L2.!/.

Hence, introducing the operators

A WD Ey.w/; CC� WD ˛�1Eu.w/DEu.w/
�

and using that we consider Hessian approximations of the form H D M�M, we
arrive at saddle point systems of the form

�
M�M A�

A �CC�
� 


y


�

!
D
 

r1
r2

!
:

We note that also the application of interior point methods leads to a system of this
structure.

Our aim is to develop a preconditioner for this type of systems. To this end, we
use the preconditioner in [24] that requires essentially the solution of two linear
systems with operators of the form ACCIM and .ACCIM/�, respectively. We then
use the parareal time domain decomposition technique within the preconditioner to
approximately solve these linear PDEs in parallel.

The paper is organized as follows. In Sect. 2 we introduce the general precondi-
tioner of Schiela and Ulbrich [24] and extend its analysis to parabolic problems. We
will derive estimates for the condition number which show only a weak dependence
on critical parameters such as the regularization parameter ˛. We will treat the
case with and without control constraints. In Sect. 3 we will recall the parareal
method and its basic convergence properties. In Sect. 4 we propose a parareal based
preconditioner by using the parareal algorithm as approximate PDE solver within
the preconditioner of Sect. 2. Moreover, we present numerical results for parabolic
control problems without and with control constraints. We end in Sect. 5 with some
conclusions.
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2 A Preconditioner for Optimality Systems

As we have seen, the solution of (3) leads—either directly or after applying a
semismooth Newton or interior point method—to linear systems of the form

�
M�M A�

A �CC�
� 


y


�

!
D
 

r1
r2

!
: (9)

Here, A corresponds to the linearized forward PDE operator Ey.w/ and A� to its
adjoint.

In order to apply the preconditioner and its analysis from [24], we make the
following assumptions.

Assumption 2 (Basic Assumptions)

1. Assume that the state space Y and the space of adjoints Z are reflexive Banach
spaces and the control space U as well as the space Q are Hilbert spaces.

2. Let A 2 L.Y;Z�/ be an isomorphism, which implies that its Banach-space
adjoint A� W Z ! Y� is an isomorphism as well.

3. Let M 2 L.Y;Q/ with dense range and let C 2 L.U;Z�/.
We denote by the (Hilbert space) adjoint C� W Z ! U� D U the mapping that

satisfies

.C�p; u/U D h�;CuiZ;Z� 8u 2 U

It is continuous as well. Analogously, the (Hilbert space) adjoint M� W Q D
Q� ! Y� is defined via

hM�q; yiY�;Y D .My; q/Q 8y 2 Y:

It is continuous and injective since M has dense range.

Moreover, we need the following assumption which requires some compatibility
between the control space and the objective function.

Assumption 3 Let I be a non-zero continuous mapping

I W Q! U:

with kIkQ;U � 1.
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2.1 Development of the Preconditioner

To motivate the preconditioner, we start with some observations. As we have already
noted, M� W Q! Y� is injective, and hence M� W Q! ran M� is a bijective operator
with inverse M�� W ran M� ! Q. We define the new space OZ � Z

OZ WD A��.ran M�/ D fz 2 Z W A�z 2 ran M�g � Z:

Then M��A�z is well defined for all z 2 OZ and M��A� W OZ ! Q is a bijective
mapping. The following lemma shows that OZ becomes a Hilbert space with the scalar
product

.z1; z2/ 2 OZ2 7! .z1; z2/ OZ WD .M��A�z1;M��A�z2/Q: (10)

Moreover, the bilinear form

.z1; z2/ 2 OZ2 7! .z1; z2/K WD .M��A�z1;M��A�z2/Q C .C�z1;C�z2/U (11)

is a scalar product that defines an equivalent norm on OZ.
By using this we will in Lemma 2 reduce (9) to a system that will be used to

construct our preconditioner.

Lemma 1 OZ is a Hilbert space with the scalar product .�; �/ OZ in (10). Moreover,
. OZ; .�; �/ OZ/ is continuously embedded in Z and .�; �/K in (11) is a scalar product that
defines an equivalent norm on OZ.

Proof For z1; z2 2 OZ � Z we have A�zi 2 ran M�, i D 1; 2, and thus there are
q1:q2 2 Q with A�zi D M�qi. Hence, .z1; z2/ OZ D .q1; q2/Q < 1. Moreover, for
z 2 OZ we have .z; z/ OZ � 0 and since M��A� W OZ ! Q is injective, .z; z/ OZ D 0

implies z D 0. Hence, . OZ; .�; �/ OZ/ is a pre Hilbert space.
Let z 2 OZ be arbitrary. Then A�z D M�q with some q 2 Q and

kzk OZ D .z; z/
1
2

OZ D .q; q/
1
2

Q D kqkQ: (12)

Hence, kzkZ D kA��M�qkZ � kA��M�kQ;ZkqkQ D kA��M�kQ;Zkzk OZ and thus the

embedding . OZ; .�; �/ OZ/ ,! Z is continuous.
Finally, . OZ; .�; �/ OZ/ is complete and thus a Hilbert space. In fact, any Cauchy

sequence .zk/ in . OZ; .�; �/ OZ/ satisfies A�zk D M�qk with qk 2 Q and (12) shows
that .qk/ is a Cauchy sequence in Q and hence qk ! q in Q. This implies
A�zk D M�qk ! M�q in Y�. By the continuous embedding . OZ; .�; �/ OZ/ ,! Z, .zk/ is
also a Cauchy sequence in Z and thus zk ! z in Z which implies A�zk ! A�z in Y�.
We conclude that A�z D M�q 2 ran M� and thus z 2 OZ. This shows that . OZ; .�; �/ OZ/
is complete.
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Since C� 2 L.Z;U/ and . OZ; .�; �/ OZ/ ,! Z, we have C� 2 L. OZ;U/ and thus
.�; �/K D .�; �/ OZ C .C��;C��/U is a bounded bilinear form on . OZ; .�; �/ OZ/. Moreover,
for all z 2 OZ holds

.z; z/ OZ � .z; z/ OZ C .C�z;C�z/U D .z; z/K � .1C kC�k2OZ;U/.z; z/ OZ

and thus .�; �/K is a scalar product on OZ that induces an equivalent norm. ut
Lemma 2 Let Assumption 2 hold. Then the system

.M��A�Oz;M��A�w/Q C .C�Oz;C�w/U D
D �hr2;wiZ�;Z�.C�A��r1;C�w/U 8w 2 OZ

(13)

has a unique solution Oz 2 OZ and the solution of (9) can be obtained by


� D OzC A��r1; (14)


y D A�1.r2 C CC�
�/: (15)

Proof A proof can be found in [24, Lemma 2.4]. We give here a more constructive
proof. Inserting
� D OzC A��r1 in (9) yields the following system for Oz.

�
M�M A�

A �CC�
� 


y

Oz

!
D
 

0

r2 C CC�A��r1

!
: (16)

This shows that A�Oz 2 ran M� and therefore Oz 2 OZ. To derive a reduced system for
Oz, we perform block elimination with the second equation. This yields the equation

.A� CM�MA�1CC�/Oz D �M�MA�1.r2 C CC�A��r1/

and we observe that all terms are in ran M�. Applying the bijective operator M�� W
ran M� ! Q yields the equivalent system

.M��A� CMA�1CC�/Oz D �MA�1.r2 C CC�A��r1/:

Since M��A� W OZ ! Q is bijective, we obtain an equivalent variational equation if
we use M��A�w with w 2 OZ as test functions. This leads to

.M��A�w;M��A�Oz/Q C .M��A�w;MA�1CC�Oz/Q D
D �.M��A�w;MA�1.r2 C CC�A��r1//Q 8w 2 OZ;
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and since A��M�M��A�w D w for all w 2 OZ, we obtain (13). Hence, we have
shown that (9) is with (14) equivalent to (16). Moreover, (16) is equivalent to (13)
and the second equation in (16), while the latter is by (14) equivalent to (15). We
conclude that (13), (14) and (15) are equivalent to (9).

The unique solvability of (13) follows from Lemma 1 and the Riesz representa-
tion theorem, since the left hand side can be written as .Oz;w/K , and . OZ; .�; �/K/ is a
Hilbert space by Lemma 1. ut

Hence, we have seen that (9) can by (14), (15) be reduced to (13), which can
by (11) be written as

.Oz;w/K D hr;wiZ�;Z 8w 2 OZ: (17)

Clearly, this system can be solved by a preconditioned conjugate gradient method.
Following [24] we construct a preconditioner by approximately decoupling the

operator K induced by .�; �/K into the product of two PDE operators.
By Assumptions 2, 3 we have CIM 2 L.Y;Z�/ and therefore .CIM/� D

M�I�C� 2 L.Y�;Z/. We consider the preconditioner OK W OZ ! OZ� defined by

.z;w/ OK WD .M��.AC CIM/�z;M��.AC CIM/�w/Q 8w 2 OZ: (18)

The application of the preconditioner is described in Algorithm 2.1.

Algorithm 2.1 Application of the Preconditioner OK
Input: ` 2 OZ�
Output: Solution z 2 OZ of .z;w/ OK D h`;wi OZ�; OZ8w 2 OZ
1. Let q 2 Q be the solution of

.q;M��.AC CIM/�w/Q D h`;wi OZ�; OZ 8w 2 OZ:

2. Let z 2 Z be the solution of

h.AC CIM/�z;wiY� ;Y D hM�q;wiY� ;Y 8w 2 Y: (19)

Note that the solution z satisfies A�z D M�q �M�I�C�z 2 ran.M�/ and therefore
z 2 OZ.

The following Lemma estimates the condition number of K relative to the
preconditioner OK.

Lemma 3 Consider the preconditioner OK W OZ ! OZ� defined in (18). Assume that
the quantity

� OK WD sup
0¤z2OZ

.C�z;C�z/U
.z; z/ OK
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is finite. Then we have the estimate

1

2
.z; z/ OK � .z; z/K � .2C 3� OK/.z; z/ OK 8 Oz 2 OZ: (20)

Hence, the condition number of K relative to OK is bounded by � OK � 4 C 6� OK.
Moreover, if ..M��A� C 1

2
I�C�/z; I�C�z/Q � 0 for all z 2 OZ then we obtain the

improved estimate

1

2
.z; z/ OK � .z; z/K � .1C � OK/.z; z/ OK :

Proof The first part was already shown in [24]. For convenience, we present a
complete proof. We use the inequality 2.q1; q2/Q � kq1k2Q C kq2k2Q. This yields

.z; z/ OK D kM��A�zC I�C�zk2Q � 2.kM��A�zk2Q C kI�C�zk2Q/
� 2.kM��A�zk2Q C kC�zk2Q/ D 2.z; z/K:

This shows the first inequality in (20) and the second follows from

.z; z/K D kM��A�zC I�C�z � I�C�zk2Q C kC�zk2U
D .z; z/ OK C kI�C�zk2Q C kC�zk2U � 2.M��A�zC I�C�z; I�C�z/Q

� 2.z; z/ OK C 3kC�zk2U D 2.z; z/ OK C 3kC�zk2U � .2C 3� OK/.z; z/ OK :

If ..M��A� C 1
2
I�C�/z; I�C�z/Q � 0 then we can improve the first estimate in the

last line to

.z; z/K D .z; z/ OK C kI�C�zk2Q C kC�zk2U � 2.M��A�zC I�C�z; I�C�z/Q

� .z; z/ OK C kC�zk2U � .1C � OK/.z; z/ OK :

ut
As we will see, for parabolic operators there exists an appropriate imbedding
operator J 2 L. OZ;Y/ such that

h.AC CIM/�z; JziY�;Y > 0 8 0 ¤ z 2 OZ: (21)

Then we have the following result that will be helpful to estimate � OK for practical
applications.
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Lemma 4 Let Assumptions 2 and 3 hold and assume that (21) is satisfied with an
imbedding operator J 2 L. OZ;Y/. Then � OK in Lemma 3 can be estimated by

� OK � sup
0¤z2OZ

kC�zk2UkMJzk2Q
.hJz;A�ziY;Y� C .C�z; IMJz/U/2

: (22)

Proof Let 0 ¤ z 2 OZ be arbitrary. Then .A� CM�I�C�/z 2 ran.M�/ and thus

0 < h.A� CM�I�C�/z; JziY�;Y D .M��.A� CM�I�C�/z;MJz/Q

� kM��.A� CM�I�C�/zkQkMJzkQ D .z; z/
1
2

OKkMJzkQ:

Hence, we obtain

� OK D sup
0¤z2OZ

kC�zk2UkMJzk2Q
.z; z/ OKkMJzk2Q

� sup
0¤z2OZ

kC�zk2UkMJzk2Q
.hA�z; JziY�;Y C .C�z; IMJz/U/2

:

ut

2.2 Application to Parabolic Control Problems

We consider a parabolic state equation of the form

yt � r � .�ry/C a1 � ryC a0y D bC Bu on˝T WD .0;T/ 	˝;
y.0; �/ D y0 on˝;

y D 0 on .0;T/ 	 @˝;
(23)

where � 2 L1.˝/, a0 2 L1.˝T/, a1 2 .H1 \ L1/.˝T/
n, � � �0 > 0 and

y0 2 L2.˝/.
We set V D H1

0.˝/, W.0;T/ WD ˚
v 2 L2.0;TIV/ W vt 2 L2.0;TIV�/� and Y WD

W.0;T/. Let Z D Z1 	 Z2 WD L2.0;TIV/ 	 L2.˝/ and assume that b 2 Z�1 and
B 2 L.U;Z�1 /. We work with the usual weak solutions and define the operator
A 2 L.Y;Z�/ by

hAy; .�; �/iZ�;Z D .y.0/; �/L2.˝/ C
Z T

0

�hyt.t/; �.t/iV�;V

C.�ry.t/;r�.t//L2.˝/ C .a1 � ry.t/C a0y.t/; �.t//L2.˝/
	

dt:
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Then the state equation is given by

hAy; .�; �/iZ�;Z D
Z T

0

hb.t/; �.t/iV�;V dtC .y0; �/L2.˝/ 8 .�; �/ 2 Z:

It is well known that A 2 L.Y;Z�/ has a bounded inverse A�1 2 L.Z�;Y/. For
z D .�; �/ 2 W.0;T/ 	 L2.˝T/ we have

hy;A�.�; �/iY;Y� D .y.T/; �.T//L2.˝/ C .y.0/; � � �.0//L2.˝/

C
Z T

0

��hy.t/; �t.t/iV;V� C .�ry.t/;r�.t//L2.˝/
C .a1 � ry.t/C a0y.t/; �.t//L2.˝/

	
dt:

(24)

2.2.1 Tracking Type Functional and Distributed Control

Now consider for example the case

f .y/ D 1
2
ky � ydk2L2.˝T /

; U D L2.˝T/; B D IL2.˝T /;L2.0;TIV�/ (25)

with the natural imbedding IL2.˝T /;L2.0;TIV�/. Then Q D U D L2.˝T/, I D idL2.˝T /,
M D IY;L2.˝T /, M� D IL2.˝T /;Y� , ran M� D L2.˝T/ � Y� and M�� D idL2.˝T /.
Using (24) we see that

OZ D fz 2 Z W A�z 2 L2.˝T/g � f.�; �.0// W � 2 W.0;T/; �.T/ D 0g : (26)

In particular

NZ WD ˚.�; �.0// W � 2 L2.0;TIV \ H2.˝//; �t 2 L2.0;TIL2.˝//; �.T/ D 0�

is a dense subset of OZ (and under additional regularity assumptions on ˝ and the
initial data it coincides with OZ).

In the case without control constraints we have

C D ˛� 1
2 IL2.˝T /;L2.0;TIV�/; C� D ˛� 1

2 IL2.0;TIV/;L2.˝T /

and in the case with control constraints

C D ˛� 1
2 IL2.˝T /;L2.0;TIV�/D; C� D ˛� 1

2 DIL2.0;TIV/;L2.˝T /; (27)

with the multiplication operator Dv D 1Iv and the current estimate I of the inactive
set. For a unified notation we set I D ˝ in the unconstrained case.



Preconditioners Based on “Parareal” Time-Domain Decomposition for Time-. . . 215

The application of the preconditioner in Algorithm 2.1 consists now of the
following steps.

Algorithm 2.2 Preconditioner OK for Parabolic Problems
Input: ` 2 OZ�
Output: Solution z 2 OZ of .z;w/ OK D h`;wi OZ�; OZ8w 2 OZ
1. Compute the solution q 2 Q D L2.˝T/ of

.q;�wt � r � .�rwC a1w/C .a0 C ˛� 1
2 1I/w/L2.˝T / D h`; .w;w.0//i OZ�; OZ

8 .w;w.0// 2 NZ:

Note that we can use the dense subset NZ of OZ as test space.
2. Compute a solution z D .�; �.0//, � 2 W.0;T/, �.T/ D 0 of

� hw; �tiL2.0;TIV/;L2.0;TIV�/ C .�rw;r�/L2.˝T / (28)

C .a1 � rwC .a0 C ˛� 1
2 1I/w; �/L2.˝T / D .q;w/L2.˝T / 8w 2 Y:

Here we have already used the knowledge that the result z 2 Z lives actually in
OZ.

We note that the application of the preconditioner decouples into the solution of two
parabolic problems. Later we will apply the parareal time domain decomposition
method to perform these two solves in parallel.

We obtain the following estimate for the condition number of the system (13)
with preconditioner (18).

Theorem 1 Consider the system (8) written in the form (9) for the linearized state
equation (23) and the objective function (25). Then the condition number � OK of the
operator K in the reduced system (13) relative to the preconditioner OK in (18) is
bounded by

� OK � 4C 6� OK ; � OK �
8
<

:
ecT in the case without control constraints;

ecT

2cP�0˛
1
2

in the case with control constraints;

where cP is a Poincaré constant on˝ and

c D max
n
0; 1

�0
ka1k2L1.˝T /

� 2 essinf˝T a0
o

(29)

In particular in the case a0 � 0, a1 D 0 we have c D 0.
The estimate for the control constrained case applies also to the case U D

L2..0;T/ 	˝c/ with a smaller control domain˝c ¨ ˝ .
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Proof We apply Lemmas 3 and 4, where we choose the operator J 2 L. OZ;Y/ in
Lemma 4 by

J W .�.t/; �/ 7! ect�.t/

with c as in (29). Then we have with z D .�; �.0// 2 OZ

hA�z; JziY�;Y D 1

2

�hA�z; JziY�;Y C hz;AJziZ;Z�

	 D k�.0/k
2
L2 C ecTk�.T/k2L2

2

C
Z T

0

ect
�
.�r�.t/;r�.t//L2 C .a1 � r�.t/C . 12cC a0/�.t/; �.t//L2

	
dt

�
Z T

0

ect
�
�0
2
kr�.t/k2L2 C . 12cC a0 � ka1k

2
L1

2�0
/k�.t/k2L2

	
dt

� �0

2
kect=2r�.t/k2L2.0;TIL2.˝// �

cP�0

2
kMJ

1
2 zk2Q

with a Poincaré constant cP. Using the concrete definition of M and C (22) yields
for the unconstrained case

� OK � sup
0¤z2OZ

kC�zk2UkMJzk2Q
.hJz;A�ziY;Y� C .C�z; IMJz/U/2

� sup
0¤.�;�.0//2OZ

˛�1k�k2L2.˝T /
kect�k2L2.˝T /

. cP�0
2
kect=2�k2L2.˝T /

C ˛� 12 kect=2�k2L2.˝T /
/2

D sup
0¤.�;�.0//2OZ

˛�1ke�ct=2�k2L2.˝T /
kect=2�k2L2.˝T /

. cP�0
2
k�k2L2.˝T /

C ˛� 1
2 k�k2L2.˝T /

/2
� ecT :

In the constrained case we obtain with the inactive set I � ˝T

� OK � sup
0¤z2OZ

kC�zk2UkMJzk2Q
.hJz;A�ziY;Y� C .C�z; IMJz/U/2

� sup
0¤.�;�.0//2OZ

˛�1k�k2L2.I/kect�k2L2.˝T /

. cP�0
2
kect=2�k2L2.˝T /

C ˛� 1
2 kect=2�k2L2.I//2

D sup
0¤.�;�.0//2OZ

˛�1ke�ct=2�k2L2.I/kect=2�k2L2.˝T /

. cP�0
2
k�k2L2.˝T /

C ˛� 1
2 k�k2L2.I//2

� ecT

2cP�0˛
1
2

:
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This estimate case applies also to the case U D L2..0;T/ 	 ˝c/ with a smaller
control domain ˝c ¨ ˝ , since we can choose I D ˝c in the unconstrained case
and I � ˝c in the control constrained case. ut
Now consider the case

f .y/ D 1
2
ky � ydk2L2.˝T /

C 1
2
ky.T/ � yd;Tk2L2.˝/; U D L2.˝T/: (30)

Then Q D L2.˝T/ 	 L2.˝/, I D idL2.˝T /, M W y 2 Y 7! .y; y.T// 2 Q, M�q D
.q1; �/L2.˝T / C .q2; �.T//L2.˝/. Using (24) we see that

OZ D fz 2 Z W A�z 2 ran.M�/g � f.�; �.0// W � 2 W.0;T/g :

In particular

NZ WD ˚.�; �.0// W � 2 L2.0;TIV \ H2.˝//; �t 2 L2.0;TIL2.˝//�

is a dense subset of OZ.

Theorem 2 Under the assumptions of Theorem 1 but with the objective func-
tion (30) the condition number � OK of the operator K in the reduced system (13)
relative to the preconditioner OK in (18) is in the case with and without control
constraints bounded by

� OK � 4C 6� OK; � OK �
ecT

2minf1; cP�0g˛ 1
2

where cP is a Poincaré constant on ˝ and c is given by (29). In particular in the
case a0 � 0, a1 D 0 we have c D 0.

The estimate applies also to the case U D L2..0;T/	˝c/ with a smaller control
domain˝c ¨ ˝ .

Proof We obtain exactly as in the proof of Theorem 1 for z D .�; �.0// 2 OZ

hA�z; JziY�;Y D 1

2

�hA�z; JziY�;Y C hz;AJziZ;Z�

	 D k�.0/k
2
L2 C ecTk�.T/k2L2

2

C
Z T

0

ect
�
.�r�.t/;r�.t//L2 C .a1 � r�.t/C . 12cC a0/�.t/; �.t//L2

	
dt

� k�.0/k
2
L2 C ecTk�.T/k2L2

2
C cP�0

2
kect=2�k2L2 :
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with a Poincaré constant cP. Using the concrete definition of M and C (22) yields
for I D ˝T in the unconstrained case and I � ˝T in the control constrained case

� OK � sup
0¤z2OZ

kC�zk2UkMJzk2Q
.hJz;A�ziY;Y� C .C�z; IMJz/U/2

� sup
0¤.�;�.0//2OZ

˛�1k�k2L2.I/.kect�k2L2.˝T /
C kecT�.T/k2L2.˝//

. ecT

2
k�.T/k2L2.˝/ C cP�0

2
kect=2�k2L2.˝T /

C ˛� 1
2 kect=2�k2L2.I//2

D sup
0¤.�;�.0//2OZ

˛�1ke�ct=2�k2L2.I/.kect=2�k2L2.˝T /
C kecT=2�.T/k2L2.˝//

. 1
2
k�.T/k2L2.˝/ C cP�0

2
k�k2L2.˝T /

C ˛� 1
2 k�k2L2.I//2

� ecT

2minf1; cP�0g˛ 1
2

:

This estimate case applies also to the case U D L2..0;T/ 	 ˝c/ with a smaller
control domain ˝c ¨ ˝ , since we can choose I D ˝c in the unconstrained case
and I � ˝c in the control constrained case. ut

2.2.2 An Improved Estimate of the Condition Number

We will now use regularity theory to improve the condition number estimate for
the preconditioned system further. To this end, we extend the result of Schiela and
Ulbrich [24] for elliptic problems to parabolic problems.

We focus on the state equation (23) with objective function and control operator
according to (25) and the case (27) of control constraints with current inactive set I
or partial control domain I D .0;T/ 	 ˝c with ˝c ¨ ˝ . In this case we have as
above

� OK D sup
0¤z2OZ

kC�zk2L2.˝T /

.z; z/ OK
D sup

0¤.�;�.0//2OZ

k˛� 1
2 1I�k2L2.˝T /

kA�.�; �.0//C ˛� 1
2 1I�k2L2.˝T /

: (31)

We now derive an improved lower bound for kA�.�; �.0//C ˛� 1
2 1I�kL2.˝T /

. We
need the following regularity assumption.

Assumption 4 The operator CIM is a multiplication operator of the form

.CIM/v.t; x/ D �.t; x/v.t; x/; �.t; x/ D �11I.t; x/; .t; x/ 2 ˝T ;

where �1 > 0 is a constant. Assume that I � ˝ and A WD ˝ n I have Lipschitz
boundary.
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Moreover, we assume that OA is cylinder-like, i.e., there exists a bi-Lipschitzian
map .t; x/ 2 ˝T 7! .t; 	.t; x// 2 ˝T with 	.t;A.t// D OA for all t 2 .0;T/,
where A.t/ D fx W .t; x/ 2 Ag, and denote by @A.t/ the boundary of A.t/ relative
to ˝ . Finally, we assume that for any q 2 L2.A/ the solution .�A; �A/ 2
L2.0;TIH1

0.A.�/// 	 L2.A.0// of the problem

hw;A�.�A; �A/iY;Y� D .w; q/L2.A/ 8w 2 WA.0;T/; (32)

where WA.0;T/ D
˚
w 2 L2.0;TIH1

0.A.�/// W wt 2 L2.0;TIH1
0.A.�///�

�
, satisfies

�A 2 WA.0;T/ \ L2.0;TIH3=2C".A.�//// and its normal trace the estimate

k@��A.t/kL2.@A.t// � ctr;1kq.t/kL2.A.t//: (33)

with a constant ctr;1 independent of q and t 2 .0;T/.
We note that for y0; � and A sufficiently regular this follows from parabolic
regularity theory. We believe that also sets A that are not cylinder-like could be
handled but leave this to future work.

Lemma 5 Let J be an open domain with Lipschitz boundary. Then the following
trace estimate holds for all v 2 H1.J / with a constant ctr;2

kvkL2.@J / � ctr;2

q
kvkH1.J /kvkL2.J /:

Proof See [24, Lemma 5]. ut
In the following lemma we will for q 2 L2.˝T/ consider the problem to find

.�; �.0// 2 OZ with

hw;A�.�; �.0//iY;Y� C .w; �1�/L2.I/ D .w; q/L2.˝T / 8w 2 W.0;T/; (34)

which corresponds with �1 D ˛� 1
2 to (19) and its concrete form (28). As observed

in (26), (24) yields �.T/ D 0.

Lemma 6 Consider problem (34) where �1 > 0 and I, A D ˝T n I have the
properties defined in Assumption 4. Assume that q 2 L2.˝T/. Then the solution �
of (34) satisfies

�1kect=2�kL2.I/ � ecT=2

�
kqkL2.I/ C cI�

1
4

1 kqkL2.A/

�
: (35)

Here, c is defined in (29) and cI depends on ctr;1, ctr;2, �0, and the Poincaré constant
cP of ˝ . Note that c D 0 if a0 � 0 and a1 D 0.

Proof As in the proof for the elliptic case [24] we split � into two parts � D �0C�1.
Here, �0 is the extension by zero of the solution �A of the problem (32). Then
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�0jA D �A and �0jI D 0. By using (24), we observe similarly as above
that (24) yields �A.T/ D 0 and �A D �A.0/. Under the regularity asserted by
Assumption 4, (32) reads

� hw; .�A/tiL2.0;TIH1
0 .A.�///;L2.0;TIH1

0 .A.�//�/ C .�rw;r�A/L2.A/ (36)

C .a1 � rwC a0w; �A/L2.A/ D .q;w/L2.A/ 8w 2 WA.0;T/;

where �A.T/ D 0.
By our trace estimate (33) we conclude

k@��A.t/kL2.@A.t// � ctr;1kq.t/kL2.A.t//: (37)

Since �0 is an extension by zero of �A and (36) is only valid for testfunctions
w 2 WA.0;T/, integration by parts on A shows that �0 satisfies

hw;A�.�0; �0.0//iY;Y� �
Z T

0

.w.t/; �@��A.t//L2.@A.t// dt D .w; q/L2.A/ (38)

8w 2 W.0;T/:

Hence, if we define �1 2 W.0;T/ as the solution of the problem

hw;A�.�1; �1.0//iY;Y� C .w; �1�1/L2.I/ C
Z T

0

.w.t/; �@��A.t//L2.@A.t// dt (39)

D .w; q/L2.I/ 8w 2 W.0;T/

we see by adding (38) and (39) that � D �0 C �1 solves the original problem (34)
(note that �0jI D 0).

To obtain an estimate for �1 we test (39) with ect�1.t/, where c is defined in (29).
Then we get as in the proof of Theorem 1

kqkL2.I/kect�1kL2.I/ C
Z T

0

k�@��A.t/kL2.@A.t//kect�1.t/kL2.@A.t// dt

� hect�1;A
�.�1; �1.0//iC C �1kect=2�1k2L2.I/

� �0

2
kect=2r�.t/k2L2.0;TIL2.˝// C �1kect=2�1k2L2.I/

� cP�0

2
kect=2�.t/k2L2.0;TIH1.˝// C �1kect=2�1k2L2.I/:

(40)

By Lemma 5 we obtain

kect�1.t/kL2.@A.t// � ctr;2

q
kect�1.t/kH1.I.t//kect�1.t/kL2.I.t//:
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Division of (40) by the square-root of its right-hand side yields with (37)

�
1
2

1 kect=2�1kL2.I/ �
 
kqkL2.I/kect�1kL2.I/

C
Z T

0

k�@��A.t/kL2.@A.t//ctr;2

q
kect�1.t/kL2.I.t//kect�1.t/kL2.I.t// dt

!
�

�

cP�0

2
kect=2�.t/k2L2.0;TIH1.˝// C �1kect=2�1k2L2.I/

�� 12

� ecT=2

�
kqkL2.I/�

� 12
1 C cIkqkL2.A/�

� 14
1

�
:

Since � D �1 on I we obtain from this the estimate (35). Tracing back the constant
cI , we notice that it depends only on ctr;1, ctr;2, �0, and cP. ut
We obtain the following improved estimate for the condition number of the
system (13) with preconditioner (18).

Theorem 3 Consider the system (8) written in the form (9) for the linearized
state equation (23) and the objective function (25). Assume that I � ˝T satisfies
Assumption 4, where I is either the current estimate of the inactive set for control
constraints or I D .0;T/ 	 ˝c in the case U D L2..0;T/ 	 ˝c/ with a smaller
control domain ˝c ¨ ˝ . Then the condition number � OK of the operator K in the
reduced system (13) relative to the preconditioner OK in (18) is bounded by

� OK � 4C 6� OK ; � OK � ecT=2.1C cI˛�
1
8 /;

where cI is the constant in Lemma 6 and c is defined in (29). In the case a0 � 0,
a1 D 0 we have c D 0.

Remark 1 For the control constrained case or the case of a local control domain
the condition number estimate improves from O.˛� 1

2 / in Theorem 1 to O.˛� 1
4 /.

Hence, the dependence on the regularization parameter is quite week, if the active
set or control set is regular enough.

Proof We apply Lemma 3. For our problem we have by (31)

� OK D sup
0¤.�;�.0//2OZ

k˛� 1
2 1I�k2L2.˝T /

kA�.�; �.0//C ˛� 1
2 1I�k2L2.˝T /

:

Applying Lemma 6 with �1 D ˛� 1
2 and q D A�.�; �.0//C ˛� 1

2 1I� we have

k˛� 1
2 1I�kL2.˝T /

� ˛� 1
2 kect=2�kL2.I/ � ecT=2.1C cI˛�

1
8 /kqkL2.˝T /
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and thus

� OK � ecT.1C cI˛�
1
8 /2:

ut

3 Parareal Time-Domain Decomposition

For parabolic problems, the application of the preconditioner OK in Algorithm 2.2
decouples into two parabolic PDE solves. Therefore, time domain decomposition
techniques are directly applicable within the preconditioner. In the following, we
will use the parareal time-domain decomposition method as approximate solvers
within the preconditioner.

The parareal algorithm was proposed by Lions et al. [18] to speed up the
numerical solution of time dependent partial differential equations by using parallel
computers with a sufficiently large number of processors.

3.1 Description of the Parareal Method

Although the preconditioner requires only the solution of linearized PDEs we
describe the parareal method more generally for nonlinear PDEs. We consider a
time-dependent PDE (or a system) of the general form

yt C F.t; x; y/ D 0; .t; x/ 2 ˝T WD .0;T/ 	˝;
y.0; x/ D y0.x/; x 2 ˝; (41)

where y W Œ0;T� ! V maps time to a Banach space V � L2.˝/, y0 2 V are initial
data and F.t; x; y/ is a possibly time dependent partial differential operator in the
variables x 2 ˝ . The parareal technique, which was originally proposed in [18] and
slightly modified in [1, 2], uses a time-domain decomposition

0 D t0 < t1 < : : : < tN D T; (42)

which is uniform in the sense that

�0
T � tnC1 � tn � 
T; where 
T WD max
0�n<N

tnC1 � tn:
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We assume that on each time domain Œtn; tnC1�, 0 � n < N, there exists a unique
solution propagator

g.tn; �/ W v 2 V 7! g.tn; v/ WD y.tnC1/ 2 V;

where y is the solution of

yt C F.t; x; y/ D 0; .t; x/ 2 .tn; tnC1/ 	˝;
y.tn; x/ D v.x/; x 2 ˝: (43)

Moreover, we assume that we have a coarse grid approximation gc.tn; v/ of the exact
propagator g.tn; v/ available.

Example 1 We will later use a backward Euler step

gc.tn; v/ � v
tnC1 � tn

C F.tnC1; x; gc.tn; v// D 0

as coarse propagator. As we will see the dissipativity of the backward Euler
discretization is useful to stabilize the parareal scheme.

The parareal method uses a multiple shooting reformulation of the initial value
problem (41) corresponding to the time domain decomposition (42). It combines
parallel fine grid propagators with a coarse propagator for the iterative solution of
the multiple shooting reformulation of (41).

More precisely, the parareal algorithm is defined as follows.

Algorithm 3.1 “Parareal” Time Integration Method:
Compute approximations yk

n of yn D y.tn/, 1 � n � N, for the solution y of (41) as
follows.

1. Initialize by coarse scheme: y10 D y0,

y1nC1 D gc.tn; y
1
n/; 0 � n < N:

2. For k D 1; : : : ;K � 1: ykC1
0 D y0

ykC1
nC1 D gc.tn; y

kC1
n /„ ƒ‚ …

predictor

C �g.tn; yk
n/ � gc.tn; y

k
n/
	

„ ƒ‚ …
corrector, computable

in parallel on time slabs

; 0 � n < N: (44)

The predictor step has to be computed sequentially to propagate the new approxima-
tion ykC1

n by the coarse propagator. The error is corrected by using the approximation
yk

n of the previous iteration and can thus be computed in parallel.
It is obvious that the exact solution yn D y.tn/ is a fixed point of the parareal

scheme, since ynC1 D g.tn; yn/. Moreover, after N iterations the exact solution
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is obtained. However, to obtain an efficient scheme, we want to apply only a
few parareal iterations and are interested in the convergence speed of the parareal
method. In practice the exact propagator g.tn; yk

n/ is replaced by an approximation
gf .tn; yk

n/ obtained by a sufficiently accurate fine grid scheme.
The parareal scheme can directly be applied to nonlinear equations and is then

a nonlinear iteration. Thus, user-provided nonlinear fine grid solvers can be used
directly. Besides the fact that nonlinear solvers can be more robust and efficient for
some problems the nonlinear parareal algorithm has the advantage that the state in
the time slabs has not to be stored in contrast to, e.g., a Newton iteration with inner
parareal solver for the linearized equation.

3.2 Convergence Properties of the Parareal Algorithm

In the following, we collect several convergence results for the parareal scheme in
the context of time-dependent PDEs. The first result shows that the parareal after k
iterations can be considered as a scheme of order km provided the solution is smooth
enough and the coarse propagator has order m and is Lipschitz.

Theorem 4 ([1]) Let Vk � Vk�1 � : : : � V0 D V be a scale of Banach spaces.
Assume that

1. (41) is stable in all spaces Vj, 0 � j � k, i.e.

ky.t/kVj
� Ckv0kVj

8 v0 2 Vj; t 2 Œ0;T�:

2. The coarse propagator gc is Lipschitz in the sense that for 0 � j < k

max
0�n<N

kgc.tn; v/ � gc.tn;w/kVj
� .1C C
T/kv � wkVj

8 v;w 2 Vj:

3. The coarse propagator gc has order m in the sense that for 0 � j < k with
ıg.tn; v/ WD g.tn; v/ � gc.tn; v/ the estimate holds

max
0�n<N

kıg.tn; v/ � ıg.tn;w/kVj
� C.
T/mC1kv � wkVjC1

8 v;w 2 VjC1:

Then for initial data y0 2 Vk the parareal scheme after k iterations has an accuracy
of order mk, i.e.,

max
1�n�N

ky.tn/� yk
nkV0
� C.
T/mkky0kVk

with C independent of
T and y0.

Proof See [1, Theorem 1]. Our Assumption 3 is a modification of assumption (H3)
in [1] and is adjusted directly to the proof of Bal [1, Theorem 1]. ut
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The above result requires additional regularity of the solution in order to achieve
order km. By considering dissipative coarse propagators, Bal [1] was able to obtain
an improved result for certain linear partial differential operators by using Fourier
analysis.

Theorem 5 ([1]) Consider a linear Mth order spatial operator F in 1D with
constant coefficients and symbol P.
/ D ˛0 CPM�1

jD1 ˛j

j C j
jM, where ˛j 2 C

and ˛0 � 0 such that P.
/ � 0 or <.P.
// > 0 (e.g., heat equation, advection-
diffusion equation). If for tn D n
T, 
T D T=N, the coarse propagator is given by
the �-scheme

gc.tn; v/ � v

T

C A.�gc.tn; v/C .1 � �/v/ D 0

then for � 2 .1=2; 1� and k D O.1/ the parareal scheme is stable and

max
1�n�N

ky.tn/� yk
nkHs.R/ � C.
T/kkv0kHs.R/:

for all s 2 R. Here, Hs.R/ denotes the usual Sobolev space of order s.

Proof As shown in [1], the result follows from Theorems 2 and 3 in [1]. ut
The convergence behavior with respect to the iteration index k was analyzed in [10],
where in particular the following result was shown.

Theorem 6 Consider the heat equation in 1D, i.e., the spatial operator has the
symbol P.
/ D 
2. If for tn D n
T, 
T D T=N, the coarse propagator is a one-
step method that has a stability function R.z/ such that

�l WD sup
z�0
jez � R.z/j
1 � jR.z/j 2 .0; 1/;

(for example the backward Euler scheme) then the parareal scheme is stable and

max
1�n�N

ky.tn/� yk
nkHs.R/ � � k

l max
1�n�N

ky.tn/� y0nkHs.R/

for all s 2 R.

Proof In [10, Theorem 4.9,Theorem 5.1] the estimate is shown pointwise for the
Fourier transforms. Integration with the appropriate weights yields the estimate in
the Sobolev norms.

The stability function for the backward Euler scheme is R.z/ D 1
1�z and yields

�l D 0:2984256075, see [10]. ut
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3.3 Parareal as Preconditioned Iteration

For our purposes it is useful to note that the parareal scheme can one hand be seen
as a scheme of higher order on the coarse time grid but can on the other hand also be
interpreted as a preconditioned iteration. Consider for simplicity the case that (41)
is linear. Then

g.tn; yn/ D Gnyn C cn; gc.tn; yn/ D Gc;nyn C cc;n:

and the relation ynC1 D g.tn; yn/, 0 � n < N can be written as

My WD

0

BBBBB@

I
�G1 I

�G2 I
: : :

: : :

�GN�1 I

1

CCCCCA

0
B@

y1
:::

yN

1
CA D

0
BBB@

c0 C G0y0
c1
:::

cN�1

1
CCCA DW c:

If we rewrite the parareal scheme (44) as

ykC1
nC1 � gc.tn; y

kC1
n / D yk

nC1 � gc.tn; y
k
n/C g.tn; y

k
n/ � yk

nC1; 0 � n < N;

we see that with the coarse grid approximation Mc of M

Mc D

0
BBBBB@

I
�Gc;1 I

�Gc;2 I
: : :

: : :

�Gc;N�1 I

1
CCCCCA

the parareal scheme (44) can be written as

ykC1 D yk CM�1c .c �Myk/: (45)

Theorems 4 and 5 show that under their assumptions for fixed k the operator I �
M�1c M has for sufficiently large N (i.e.,
T small enough) a condition number
 1.
On the other hand, Theorem 6 shows that for the heat equation we have

kI �M�1c Mkmaxn k.�/nkHs.R/;maxn k.�/nkHs.R/
� �l;

where for example �l D 0:2984256075, if the backward Euler scheme is selected as
coarse propagator.

Hence, we see that under appropriate assumptions M�1c is a good preconditioner
for the operator M.
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In the nonlinear case we introduce the operators

G.y/ D

0
B@

y1 � g.t0; y0/
:::

yN � g.tN�1; yN�1/

1
CA ; Gc.y/ D

0
B@

y1 � gc.t0; y0/
:::

yN � gc.tN�1; yN�1/

1
CA :

Then the parareal scheme can be written as the preconditioned iteration

Gc.y
kC1/ D Gc.y

k/� G.yk/

which is (45) in the linear case. Hence, as already observed in [10] the parareal
scheme can also be seen as a deferred correction method. In [10] it is also shown
that the parareal method can be interpreted as a time-multigrid method.

4 A Parareal-Based Preconditioner for Optimality Systems
and Numerical Results

We use now the parareal method as an inexact implementation of the two PDE
solves in the preconditioner (18), see Algorithms 2.1 and 2.2. As in Sect. 2.2 we
focus on the case of parabolic state equations. In the following we always assume
that the exact propagator g.tn; yn/ is replaced by a fine grid propagator consisting of
a time stepping scheme on a finer time grid within the time slab Œtn; tnC1�.

4.1 Strategies to Combine the Parareal Scheme
and the Preconditioner

There are essentially two different approaches to apply the parareal scheme within
the proposed preconditioner (18):

In the first approach the parareal scheme with a fixed iteration number K is
used as time discretization scheme for the state equation in (1) and also for the
linearized state equation in (3). Then using the same parareal scheme and its adjoint
scheme within the preconditioner (18) in Algorithm 2.2 is just the application of the
preconditioner (18) to the discretized problem.

In the second approach the state equation in (1) and also the linearized state
equation in (3) is discretized by the fine grid propagator and the parareal scheme
with a fixed iteration number K is used within the preconditioner to solve the
corresponding optimality system. The resulting preconditioner is then an inexact
version of the preconditioner (18) in Algorithm 2.2, since the two PDE solves are
approximated by K parareal iterations.

In the following we present numerical results for the second approach.
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4.2 Numerical Results for a Parabolic Optimal Control
Problem

As an example for (3) we consider the problem

min
y2W.0;T/

u2L2..0;T/�˝/

ˇ

2

Z

˝

.y.T/ � yT/
2 dxC 1

2

Z T

0

Z

˝

.y � yd/
2 dx dtC ˛

2

Z T

0

Z

˝

u2 dx dt

s.t. yt �
y D u on .0;T/ 	˝;
yj.0;T/�@˝ D 0;

y.0; �/ D y0 on ˝;

(46)

where ˇ � 0 is a constant. The state and control space are given by

U D L2..0;T/ 	˝/;
Y D W.0;T/ D ˚y W y 2 L2.0;TIH1

0.˝//; yt 2 L2.0;TIH�1.˝//� :

4.2.1 Propagators in the Parareal Scheme

For the implementation of the parareal method we use the equidistant time
decomposition

Tn D n
T; 
T D T

N
:

For the coarse propagator g
.tn; vI u/ we apply one backward Euler step in time and
use a standard 5-point stencil for the Laplacian, i.e., ynC1 D gc.tn; vI u/ is given by

ynC1 � v

T

� AynC1 D un:

To approximate the exact propagator g.tn; vI u/ we apply Nf steps of a Crank-
Nicholson scheme with time step 
t D 
T=Nf and use a standard 5-point stencil
for the Laplacian. Hence, yf

nC1 D gf .tn; vI u/ is given by

v0 D v;
vjC1 � vj


t
� A

vjC1 C vj

2
D un;j; j D 0; : : : ;Nf � 1;

yf
nC1 D vNf :
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Remark 2 For the solution of the time step equations in the propagators, standard
multigrid solvers can directly be used. It would be possible to control the inexactness
of the multigrid solvers by the generalized SQP-methods.

In addition, a coarser space grid could be used for the coarse propagator.

4.2.2 Numerical Results

We consider the specific problem

T D 1; ˝ D .0; 1/2; y0.x/ D 0;
yd.t; x/ D sin.t/ x1x2.1 � x1/.1 � x2/; yT.x/ D yd.T; x/:

For the discretization we use N D 20 time domains, coarse time step 
T D 1
N , fine

time step 
t D 
T
40

and a 100 	 100 equidistant space grid.

Unconstrained Problem

We apply a preconditioned cg method to the discretized version of (13) and use
the preconditioner (18), see Algorithm 2.2, where we replace the exact discrete
PDE-solves on the fine grid by K parareal iterations according to Algorithm 3.1,
where we add a parallel fine grid solve on the time slabs for the final initial data yK

n
obtained from the parareal iterations. Then the costs of the K parareal iterations are
K sequential coarse solves and K parallel fine grid solves on the N time slabs.

The iteration history for different choices of ˛ and ˇ is shown in Table 1 for
K D 2 and K D 3. In both cases the preconditioned cg method is stopped if the
relative residual is � 10�2.

Table 1 Preconditioned
conjugate gradient iterations
for the solution of (13) with
preconditioner (18) for a
relative stopping tolerance
10�2

K D 2 parareal its. K D 3 parareal its.

˛ ˇ pcgits ˛ ˇ pcgits

1e�3 1 15 1e�3 1 8

1e�4 1 7 1e�4 1 6

1e�5 1 4 1e�5 1 4

1e�6 1 5 1e�6 1 5

1e�3 1e�3 3 1e�3 1e�3 3

1e�4 1e�3 3 1e�4 1e�3 3

1e�5 1e�3 3 1e�5 1e�3 3

1e�6 1e�3 2 1e�6 1e�3 2

The two PDE solves within the preconditioner are
approximated by K parareal iterations
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Table 2 Semismooth
Newton method, where the
semismooth Newton system
is solved by a preconditioned
conjugate gradient method
with preconditioner (18)

˛ D 1e�3 ˛ D 1e�4
Residual pcgits Residual pcgits

1.3e+1 5 1.3e+2 5

3.6e�1 6 7.5e+1 3

1.3e�2 4 1.6e+1 6

3.9e�4 5 1.1e�1 8

2.3e�5 4 5.4e�3 5

2.3e�4 4

The two PDE solves within the pre-
conditioner are approximated by three
parareal iterations

In the case K D 2, ˇ D 1e � 3 and ˛ 2 Œ1e � 6; 1e � 3� we obtain with
N D 20 processors we obtain the following time ratio between the time for the
parallel solution of the SQP subproblem and the serial solve of the state equation.

time(parallel SQP solve)

time(serial state solve)
D 3 	 4 	 (20 coarseC 40 fine steps)

800 fine steps
D 0:9:

Control Constrained Problem

We add the control constraint

u � 1

10

and apply a semismooth Newton method. The semismooth Newton system is
reduced to the system (13). As above, we apply a preconditioned cg method to the
discretized version of (13) and use the preconditioner (18), see Algorithm 2.2, where
we replace the exact discrete PDE-solves on the fine grid by K parareal iterations
according to Algorithm 3.1. We set ˇ D 1 and use K D 3 parareal iterations
within the preconditioner. The preconditioned cg method is terminated if the relative
residual is � 10�1.

The iteration history for different choices of ˛ is shown in Table 2.

5 Conclusions

We have proposed a parallel preconditioner for optimality systems or semismooth
Newton systems arising in parabolic optimal control problems without or with
control constraints. The preconditioner is based on [24], see also [21]. We extend
the estimates for the condition number to the case of parabolic optimal control
problems. The estimates show no or only a weak dependence on the regularization
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parameter ˛. Since the preconditioner decouples into two PDE solves, we propose
to obtain a parallel preconditioner by using the parareal method as approximate
PDE solver within the preconditioner. The efficiency and very weak dependence
on the regularization parameter ˛ is confirmed by numerical results. Since the
preconditioner requires only fine and coarse propagators for a slightly modified
forward and backward PDE, it is quite easy to implement. The numerical tests
show that already for 2–3 parareal iterations within the preconditioner the number
of preconditioned cg iterations is very moderate. Hence, the preconditioner has
potential for the parallel solution of large scale optimal control problems.
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Space-Time Discontinuous Galerkin Methods
for Optimal Control Problems Governed by
Time Dependent Diffusion-Convection-Reaction
Equations

Tuğba Akman and Bülent Karasözen

Abstract In this paper, space-time discontinuous Galerkin finite element method
for distributed optimal control problems governed by unsteady diffusion-
convection-reaction equation without control constraints is studied. Time
discretization is performed by discontinuous Galerkin method with piecewise
constant and linear polynomials, while symmetric interior penalty Galerkin with
upwinding is used for space discretization. We present some numerical results in
order to evaluate the performance of the method.

1 Introduction

Optimal control problems (OCPs) governed by diffusion-convection-reaction equa-
tions arise in environmental control problems, optimal control of fluid flow and
in many other applications. It is well known that the standard Galerkin finite
element discretization causes non-physical oscillating solutions when convection
dominates. Stable and accurate numerical solutions can be achieved by various
effective stabilization techniques such as the streamline upwind/Petrov Galerkin
(SUPG) finite element method [10], the local projection stabilization [4], the edge
stabilization [19] for steady state OCPs. Recently, discontinuous Galerkin (dG)
methods gain importance due to their better convergence behaviour, local mass
conservation, flexibility in approximating rough solutions on complicated meshes,
mesh adaptation and weak imposition of the boundary conditions in OCPs (see, e.g.,
[21, 22, 36, 37]).

In the recent years, much effort has been spent on parabolic OCPs (see, e.g.,
[2, 24]). However, there are few publications dealing with OCPs governed by
nonstationary diffusion-convection-reaction equation. In many publications, for
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space discretization, conforming finite elements are used. In [16, 17], a priori
error estimates are derived for the characteristic finite element method, whereas
for time discretization, backward Euler method is used. Crank-Nicolson time
discretization is applied to OCP of diffusion-convection equation in [5]. In the
study of Chrysafinos [7], a priori error estimates for unconstrained parabolic OCP,
where conforming finite elements are combined with dG time discretization, are
presented by decoupling the optimality system. In [17], error analysis concerning
the characteristic finite element solution of the OCP with control constraints is
discussed. The local dG approximation of the OCP which is discretized by backward
Euler in time is derived in [38] and a priori error estimates for semi-discrete OCP are
provided in [30]. We present a priori error analysis for SIPG discretization combined
with backward Euler method in [1].

In this paper, we solve the OCP governed by diffusion-convection-reaction equa-
tion without control constraints by applying symmetric interior penalty Galerkin
(SIPG) method in space and dG discretization in time [14]. We adapt the error
analysis [7] to space-time dG discretization. For this purpose, we divide the error
analysis into three parts as in [17] and use the error estimates for dG bilinear forms.

Discontinuous Galerkin discretization schemes have the pleasant property that
discretization and dualization interchange, i.e. discretization and optimization com-
mute. There are two different approaches for solving OCPs: optimize-then-discretize
(OD) and discretize-then-optimize (DO). In OD approach, first, the infinite dimen-
sional optimality system is derived containing the state and the adjoint equation
and the variational inequality. Then, the optimality system is discretized by using
a suitable discretization method in space and time. In DO approach, the infinite
dimensional OCP is discretized and then the finite-dimensional optimality system is
derived. OD and DO approaches do not commute in general for OCPs governed by
diffusion-convection-reaction equation [10]. However, commutativity is achieved in
the case of SIPG discretization for steady state problems [21, 36]. Recently, dG time
discretization has been applied to PDE constrained optimization problems, which
is solved by the indirect multiple shooting method [18]. The multiple shooting
method was formulated in function spaces and discretized afterwards, where dG
time discretization commutes for both approaches. The spatial mesh was adapted at
each constant time step using a dual weighted residual error estimate.

The rest of the paper is organized as follows. In Sect. 2, we define the model
problem and then derive the optimality system. In Sect. 3, dG discretization and
the semi-discrete optimality system follow. In Sect. 4, the fully discrete optimality
system, which is discretized by space-time dG method and �-scheme, are presented.
Under dG time discretization, we show that OD and DO approaches commute for
time-dependent problems, too. In Sect. 5, some auxiliary results accompanied with
a priori error estimates for the fully discrete optimality system follow. In Sect. 6,
numerical results are shown in order to evaluate the performance of the suggested
method. Additionally, we give some numerical results for �-method and compare
them with the dG time discretization. The paper ends with some conclusions.
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2 The Optimal Control Problem

We consider the following distributed optimal control problem governed by the
unsteady diffusion-convection-reaction equation

minimize
u2L2.0;TIL2.˝//

J.y; u/ WD 1

2

Z T

0

� ky � ydk2L2.˝/ C ˛ kuk2L2.˝/
	

dt;

subject to @ty � �
yC ˇ � ryC ry D f C u .x; t/ 2 ˝ 	 .0;T�; (1)

y.x; t/ D 0 .x; t/ 2 @˝ 	 Œ0;T�;
y.x; 0/ D y0.x/ x 2 ˝:

We adopt the standard notations for Sobolev spaces on computational domains
and their norms. Let˝ be a bounded convex polygonal domain in R

2 with Lipschitz
boundary @˝ . The inner product in L2.˝/ is denoted by .�; �/. The source function
and the desired state are denoted by f 2 L2.0;TIL2.˝// and yd 2 L2.0;TIL2.˝//,
respectively. The initial condition is also defined as y0.x/ 2 H1

0.˝/. The diffusion
and the reaction coefficients are � > 0 and r 2 L1.˝/, respectively. The velocity
field ˇ 2 .W1;1.˝//2 satisfies the incompressibility condition, i.e. r � ˇ D 0.
Furthermore, we assume the existence of the constant C0 such that r � C0 a.e. in˝
so that the well-posedness of the OCP (1) is guaranteed. The trial and the test spaces
are Y D V D H1

0.˝/; 8t 2 .0;T�.
It is well known that the functions .y; u/ 2 H1.0;TIL2.˝// \ L2.0;TIY/ 	

L2.0;TIL2.˝// solve (1) if and only if there is an adjoint p 2 H1.0;TIL2.˝// \
L2.0;TIY/ such that .y; u; p/ is the unique solution of the following optimality
system [23, 32],

.@ty; v/C a.y; v/ D .f C u; v/; 8v 2 V; y.x; 0/ D y0;

�.@tp;  /C a. ; p/ D �.y � yd;  /; 8 2 V; p.x;T/ D 0; (2)
Z T

0

.˛u � p;w� u/ dt D 0; 8w 2 L2.0;TIL2.˝//

with the bilinear form

a.y; v/ D
Z

˝

.�ry � rv C ˇ � ryv C ryv/ dx;

where .�; �/ is the inner product in L2.˝/.
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3 Discontinuous Galerkin Semidiscretization

Let fThgh be a family of shape regular meshes such that ˝ D [K2Th K, Ki \ Kj D
; for Ki;Kj 2 Th, i 6D j. The diameters of elements K are denoted by hK . The
maximum diameter is h D max

K2Th

hK . In addition, the length of an edge E is denoted

by hE.
In this paper, we consider discontinuous piecewise finite element spaces to define

the discrete test, state and control spaces

Vh;p D Yh;p D Uh;p D
˚
y 2 L2.˝/ W y jK2 P

p.K/ 8K 2 Th
�
: (3)

Here, Pp.K/ denotes the set of all polynomials on K 2 Th of degree p.
We split the set of all edges Eh into the set E 0

h of interior edges and the set E @
h of

boundary edges so that Eh D E @
h [E 0h . Let n denote the unit outward normal to @˝ .

We define the inflow boundary

� � D fx 2 @˝ W ˇ � n.x/ < 0g

and the outflow boundary � C D @˝ n � �. The boundary edges are decomposed
into edges E �h D

˚
E 2 E @

h W E � � �� that correspond to inflow boundary and
edges ECh D E @

h n E �h that correspond to outflow boundary. The inflow and outflow
boundaries of an element K 2 Th are defined by

@K� D fx 2 @K W ˇ � nK.x/ < 0g ; @KC D @K n @K�;

where nK is the unit normal vector on the boundary @K of an element K.
Let the edge E be a common edge for two elements K and Ke. For a piecewise

continuous scalar function y, there are two traces of y along E, denoted by yjE from
interior of K and yejE from interior of Ke. Then, the jump and average of y across
the edge E are defined by:

ŒŒy�� D yjEnK C yejEnKe ; ffygg D 1

2

�
yjE C yejE

	
: (4)

Similarly, for a piecewise continuous vector field ry, the jump and average
across an edge E are given by

ŒŒry�� D ryjE � nK CryejE � nKe ; ffrygg D 1

2

�ryjE CryejE
	
: (5)

For a boundary edge E 2 K \ � , we set ffrygg D ry and ŒŒy�� D yn where n is
the outward normal unit vector on � .

The state equation (1) in space for fixed control u is discretized by the symmetric
interior penalty method (SIPG). The convective term is discretized by the upwind
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method [3]. This leads to the following semi-discrete state equation

.@tyh; vh/C as
h.yh; vh/C bh.uh; vh/ D .f ; vh/ 8vh 2 Vh;p; t 2 .0;T�; (6)

with the (bi-)linear forms

ad.y; v/ D
X

K2Th

Z

K

�ry � rv dx

�
X

E2Eh

Z

E

� ff�rygg � ŒŒv��C ff�rvgg � ŒŒy��� �
J� .y;v/‚ …„ ƒ

�

hE
ŒŒy�� � ŒŒv�� 	 ds (7)

and

as
h.y; v/ D ad.y; v/C

X

K2Th

Z

K

�
ˇ � ryv C ryv

	
dx

C
X

K2Th

Z

@K�n� �

ˇ � n.ye � y/v ds �
X

K2Th

Z

@K�\��

ˇ � nyv ds; (8)

bh.u; v/ D �
X

K2Th

Z

K

uv dx: (9)

The penalty parameter � > 0 should be sufficiently large to ensure the stability of
the dG discretization [26, Sect. 2.7.1] with a lower bound depending only on the
polynomial degree.

Let fh; yd
h and y0h be approximations of the source function f , the desired state

function yd and the initial condition y0, respectively. Then, the semi-discrete
approximation of the OCP (2) can be defined as follows:

minimize
uh2L2.0;TIUh;p/

Z T

0

�1
2

X

K2Th

kyh � yd
hk2L2.K/ C

˛

2

X

K2Th

kuhk2L2.K/
	

dt;

subject to .@tyh; vh/C as
h.yh; vh/C bh.uh; vh/ D .fh; vh/; t 2 .0;T�; vh 2 Vh;p

(10)

yh.x; 0/ D y0h:

The semi-discrete optimality system is written as follows:

.@tyh; vh/C as
h.yh; vh/C b.uh; vh/ D .fh; vh/; 8vh 2 Vh;p yh.x; 0/ D y0h;

�.@tph;  h/C aa
h.ph;  h/ D �.yh � yd

h;  h/; 8 h 2 Vh;p; ph.x;T/ D 0; (11)
R T
0
.˛uh � ph;wh � uh/ dt D 0; 8wh 2 L2.0;TIUh;p/;
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where

aa
h.p;  / D

X

K2Th

Z

K

�rp � r dx

�
X

E2Eh

Z

E

� ff�rpgg � ŒŒ ��C ff�r gg � ŒŒp�� � ��
hE
ŒŒp�� � ŒŒ �� 	 ds

C
X

K2Th

Z

K

�� ˇ � rp C rp 
	

dx

�
X

K2Th

Z

@KCn� C

ˇ � n.pe � p/ dsC
X

K2Th

Z

@KC\�C

ˇ � np ds:

4 Time Discretization of the Optimal Control Problem

In this section, we derive the fully-discrete optimality system using �-method and
dG time stepping method [14]. The fully discrete optimality systems are compared
for optimize-then-discretize (OD) and discretize-then-optimize (DO) approaches.

4.1 Time Discretization Using �-Method

Let 0 D t0 < t1 < � � � < tNT D T be a subdivision of I D .0;T/ with time
intervals Im D .tm�1; tm� and time steps km D tm � tm�1 for m D 1; : : : ;NT and
k D max1�m�NT km.

We start with OD approach, so we discretize the semi-discrete optimality
system (11) using �-method as follows:

.yh;mC1 � yh;m; v/C kas
h..1 � �/yh;m C �yh;mC1; v/ D

k..1 � �/fh;m C � fh;mC1/C k..1 � �/uh;m C �uh;mC1; v/; m D 0; � � � ;N � 1;
yh;0.x; 0/ D y0

.ph;m � ph;mC1; q/C kaa
h.�ph;m C .1 � �/ph;mC1; q/ D (12)

�k
�
�.yh;m � yd

h;m; q/C .1 � �/.yh;mC1 � yd
h;mC1; q/

	
; m D N � 1; � � � ; 0;

ph;N D 0;
.˛uh;m � ph;m;w � uh;m/ D 0; m D 0; 1; : : : ;N:



Space-Time Discontinuous Galerkin Methods for Optimal Control Problems 239

In DO approach, the first and the second parts of the cost functional are
discretized by the rectangle rule and the trapezoidal rule, respectively, so that the
value of the adjoint at the final time becomes zero as in [29]. Then, we have the
following fully-discrete OCP:

minimize
k

2

N�1X

mD0
.yh;m � yd

h;m/
TM.yh;m � yd

h;m/

C˛ k

2

 
1

2
uT

h;0Muh;0 C
N�1X

mD1
uT

h;mMuh;m C 1

2
uT

h;NMuh;N

!

subject to

.yh;mC1 � yh;m; v/C kas
h..1 � �/yh;m C �yh;mC1; v/ D

k..1 � �/fh;m C � fh;mC1/C k..1 � �/uh;m C �uh;mC1; v/; m D 0; � � � ;N � 1;
.yh;0; v/ D .y0; v/;

where M is the mass matrix.
Now, we construct the discrete Lagrangian

L .yh;1; : : : ; yh;N ; ph;0; : : : ; ph;N ; uh;0; : : : ; uh;N/

D k

2

N�1X

mD0
.yh;m � yd

h;m/
TM.yh;m � yd

h;m/

C ˛
k

2

 
1

2
uT

h;0Muh;0 C
N�1X

mD1
uT

h;mMuh;m C 1

2
uT

h;NMuh;N

!
C .yh;0 � y0; ph;0/

C
N�1X

mD0
..yh;mC1 � yh;m; ph;mC1/C kas

h..1 � �/yh;m C �yh;mC1; ph;mC1/

� k..1 � �/fh;m C � fh;mC1/C k..1 � �/uh;m C �uh;mC1; ph;mC1//: (13)

By differentiating the Lagrangian (13), we derive the fully-discrete optimality
system

.yh;mC1 � yh;m; v/C kas
h..1 � �/yh;m C �yh;mC1; v/ D

k..1 � �/fh;m C � fh;mC1/C k..1 � �/uh;m C �uh;mC1; v/; m D 0; � � � ;N � 1
yh;0.x; 0/ D y0

.q; ph;N/C kas
h.q; �ph;N/ D 0;

.ph;m � ph;mC1; q/C kas
h.q; �ph;m C .1 � �/ph;mC1/ D (14)
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�k.yh;m � yd
h;m; q/; m D N � 1; : : : ; 1;

.q; ph;0 � ph;1/C kas
h.q; .1 � �/ph;1/ D �k.yh;0 � yd

h;0; q/;

.
˛

2
uh;0 � .1 � �/ph;1;w � uh;0/ D 0;

.˛uh;m � .�ph;m C .1 � �/ph;mC1/;w � uh;m/ D 0; m D 1; : : : ;N � 1;

.
˛

2
uh;N � �ph;N ;w � uh;N/ D 0:

In the case of backward Euler method (� D 1), the value uh;0 is not needed, as
we observe from (14). As we mentioned before, approximating the first integral in
the cost functional by using the rectangle rule leads to ph;N D 0, uh;N D 0, as we
see from (14). Due to SIPG, we obtain as

h. ı; pı/ D aa
h.pı;  ı/ [36]. Therefore,

variational formulations (12) and (14) are the same.
In the case of Crank-Nicolson method (� D 1=2), we observe that some

differences occur in the adjoint equation. In (12), the right-hand side of the adjoint
equation is evaluated at two successive points, while it is evaluated at just one point
in (14). Additional differences are seen in the variational inequalities (12) and (14),
too. Thus, OD and DO approaches lead to different weak forms. Several variants of
Crank-Nicolson method are used for optimal control of heat equation in [2]. For DO
approach, the cost functional is discretized by using the midpoint rule. On the other
hand, for OD approach, the semi-discrete state equation is discretized by using the
midpoint rule and a variant of the trapezoidal rule is applied to the semi-discrete
adjoint equation to obtain the fully-discrete optimality system. Then, the resulting
optimality systems commute.

4.2 Discontinuous Galerkin Time Discretization

We define the space-time finite element space of piecewise discontinuous functions
for test function, state and control as

Vk;q
h;p D Yk;q

h;p D Uk;q
h;p D

˚
v 2 L2.0;TIL2.˝// W vjIm

D
qX

sD0
ts�s; t 2 Im; �s 2 Vh;p;m D 1; : : : ;N

)
:

We define the temporal jump of v 2 Vk;q
h;p as Œv�m D vmC � vm�, where wm

˙ D
lim
"!0˙ v.tm C "/.
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Let fı and yd
ı be approximations of the source function f and the desired state

function yd on each interval Im. Then, the fully-discrete OCP is written as

minimize
uı2U

k;q
h;p

Z T

0

�1
2

X

K2Th

kyı � yd
ık2L2.K/ C

˛

2

X

K2Th

kuık2L2.K/
	

dt;

subject to
NTX

mD1

Z

Im

.@tyı; vı/ dt C
Z T

0

as
h.yı; vı/ dtC

NTX

mD1
.Œyı�m�1; vm�1

ı;C /; (15)

D
Z T

0

.fı C uı; vı/ dt; 8vı 2 Vk;q
h;p ; y0ı;� D .y0/ı:

The OCP (15) has a unique solution .yı; uı/ and that pair .yı; uı/ 2 Vk;q
h;p 	Uk;q

h;p is

the solution of (15) if and only if there is an adjoint pı 2 Vk;q
h;p such that .yı; uı; pı/ 2

Vk;q
h;p 	Uk;q

h;p 	 Vk;q
h;p is the unique solution of the fully-discrete optimality system

NTX

mD1

Z

Im

.@tyı; vı/ dt C
Z T

0

as
h.yı; vı/ dtC

NTX

mD1
.Œyı�m�1; vm�1

ı;C /

D
Z T

0

.fı C uı; vı/ dt;8vı 2 Vk;q
h;p ;

y0ı;� D .y0/ı;
NTX

mD1

Z

Im

.�@tpı;  ı/ dt C
Z T

0

aa
h.pı;  ı/ dt �

NTX

mD1
.Œpı�m;  

m
ı;�/

D �
Z T

0

.yı � yd
ı ;  ı/ dt;8 ı 2 Vk;q

h;p ;

pN
ı;C D 0; (16)

Z T

0

.˛uı � pı;wı � uı/ dt D 0 8wı 2 Uk;q
h;p:

In DO approach, firstly, we construct the discrete Lagrangian

L .yı; uı; pı/ D 1

2

Z T

0

0

@�
X

K2Th

kyı � yd
ık2L2.K/ C ˛

X

K2Th

kuık2L2.K/
	
1

A dt

C
NTX

mD1

� Z

Im

�
.@tyı; pı/C as

h.yı; pı/
	

dtC .Œyı�m�1; pm�1
ı;C /

	

�
NTX

mD1

Z

Im

.fı C uı; pı/ dt
	C ..y0/ı � y0ı;�; p0ı;�/:
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Differentiating L with respect to yı and applying integration by parts, we obtain

NTX

mD1

Z

Im

�
 ı;�@tpı/ C as

h. ı; pı/
	

dtC
NT�1X

mD1
. m

ı;�;�Œpı�m/C .qNT
ı;�; p

NT
ı;�/

D �
NTX

mD1

Z

Im

.yı � yd
ı ;  ı/ dt; 8 ı 2 Vk;q

h;p : (17)

Now, we add and subtract . �ı;NT
; pCı;NT

/ to (17) and obtain

NTX

mD1

Z

Im

� � .@tpı;  ı/ C as
h. ı; pı/

	
dt �

NTX

mD1
.Œpı�m;  

m
ı;�/C . NT

ı;�; p
NT
ı;C/

D �
NTX

mD1

Z

Im

.yı � yd
ı ;  ı/ dt; 8 ı 2 Vk;q

h;p : (18)

On each subinterval Im, the adjoint equation reads as
Z

Im

��.@tpı;  ı/C as
h. ı; pı/

	
dt � .Œpı�m;  m

ı;�/ D �
Z

Im

.yı � yd
ı ;  ı/ dt:

However, .qNT
ı;�; p

NT
ı;C/ does not match the right-hand side of (18), so it is set

to zero, i.e. pN
ı;C D 0. Now, we use as

h. ı; pı/ D aa
h.pı;  ı/. Thus, we arrive

at (16). We note that OD and DO approaches lead to the same optimality conditions,
which can be observed by differentiating the discrete Lagrangian with respect to uı.
Therefore, both approaches commute.

5 Error Estimates

In this section, firstly, we give the norms used in the analysis and mention some
estimates in the literature. Secondly, the discrete characteristic function which
enables us to provide error estimates at arbitrary time points is explained. Then,
we prove some useful lemmas and state the main estimate of this study.

We introduce the L2 inner product on the inflow or outflow boundaries as follows

.w; v/� � D
Z

��

jˇ � njwv ds

with analogous definition of .�; �/�C and associated norms k � k�� and k � k�C .
The broken Sobolev space is defined as

Hk.˝;Th/ D
˚
v W v jK2 Hk.K/ 8K 2 Th

�
;
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with the semi-norm defined by

jvjHk.˝;Th/ D
0

@
X

K2Th

jvj2Hk.K/

1

A
1=2

; v 2 Hk.˝;Th/:

The Bochner space of functions whose kth time derivative is bounded almost
everywhere on .0;T/ with values in X is denoted by Wk;1.0;TIX/. We use the dG
energy norm in [33, Sect. 4]

jjjvjjj2DG D jvj2H1.˝;Th/
C J� .v; v/: (19)

We give the multiplicative trace inequality for all K 2 Th, for all v 2 H1.K/ as
follows:

kvk2L2.@K/ � CM



kvkL2.K/jvjH1.K/ C h�1K kvk2L2.K/

�
; (20)

where CM is a positive constant independent of v; h and K. We refer the reader to
the study [12, Lemma 3.1] for the proof.

In addition, the generalization of Poincaré inequality to the broken Sobolev space
H1.˝;Th/ is given as [26, Sect. 3.1.4]

kvk2L2.˝/ � CS

0

@jvj2H1.˝;Th/
C
X

E2Eh

1

hE
k ŒŒy�� k2L2.E/

1

A : (21)

We proceed with the standard estimates derived for finite element methods [9].
Consider the L2-projection˘h W L2.˝/! Vh;p so that

k˘hv � vkL2.K/ � C˘hpC1jvjHpC1.K/; j˘hv � vjH1.K/ � C˘hpjvjHpC1.K/; (22)

for all v 2 HpC1.K/, K 2 Th where C˘ is a positive constant and independent of v
and h. In addition, as suggested in [33, Sect. 4], using the study [13], the following
estimate holds for all v 2 HpC1.˝;Th/

jjj˘hv � vjjjDG � .2CM C 1/C˘hpjvjHpC1.˝;Th/
; (23)

where CM and C˘ are positive constants from (20) and (22), respectively. In the
following we introduce the parabolic projection for m D 0; : : : ;NT and mention the
properties given in [33]. Suppose that X � L2.˝/ is a Hilbert space. Let us denote
the space of polynomial functions depending on time as follows:

P˛.Im;X/ D
(
v 2 L2.0;TIL2.˝// W v D

X̨

sD0
ts�s;m; t 2 Im; �s;m 2 X

)
:
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A space-time projection � of y 2 C.0;TIH1.˝// into Vk;q
h;p is employed for the

convergence estimates. Time projection P of y 2 C.0;TIH1.˝// is defined as

Py 2 ˚v 2 L2.QT/ W vjIm 2 Pq.Im;L
2.˝//

�
;

Z

Im

.Py � y; tjv/ dt D 0; 8v 2 L2.˝/; j D 0; : : : ; q � 1;

.Py/m� D y.tm/:

In addition, for m D 0; : : : ;NT , with y 2 C.0;TIH1.˝//, �y 2 Vk;q
h;p is defined

as

�y D ˘h.Py/” ..�y/.t/; v/ D ..Py/.t/; v/ ; 8v 2 Vh;p;8t 2 Im;
Z

Im

.�y � y; v/ dt D
Z

Im

..Py; v/ � .y; v// dt D 0; 8v 2 Vk;q�1
h;p ; (24)

..�y/m� � y.tm/; v/ D ...Py/m�; v/ � .y.tm/; v// D 0; 8v 2 Vh;p:

We note that the definition of the projection � is likewise in the study [28].
We give some estimates from [33, Lemmas 4.3, 4.5], which we need in the

proofs.

Lemma 1 Suppose that y 2 WqC1;1.Im;H1.˝// such that y D 0 on @˝ . Then,

ky.t/ � Py.t/k � CPkqC1
m jyjWqC1;1.Im;L2.˝// 8t 2 Im;

jy.t/ � Py.t/jH1.˝/ � CPkqC1
m jyjWqC1;1.Im;H1.˝// 8t 2 Im; (25)

jjjy.t/� Py.t/jjjDG � CPkqC1
m jyjWqC1;1.Im;H1.˝// 8t 2 Im:

Lemma 2 Suppose that y 2 WqC1;1.Im;H1.˝// \ L1.Im;HpC1.˝// such that
y D 0 on @˝ . Then,

ky.t/ � �y.t/k � C�.h
pC1 C kqC1

m /kykR 8t 2 Im;

jjjy.t/� �y.t/jjjDG � C�.h
p C kqC1

m /kykR 8t 2 Im; (26)

where kykR D max.jyjWqC1;1.Im;H1.˝//; jyjL1.Im;HpC1.˝/// and C� is a positive
constant independent of h; km;m and y.

Lemma 3 There exists a positive constant CA which is independent of h; vh;wh; �

such that

ad.y.t/�˘hy.t/; vh/ � CA�h
pky.t/kHpC1.˝/jjjvhjjjDG

a.e. t 2 .0;T/; y 2 L2.0;TIHpC1.˝//; vh 2 Vh;p: (27)
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Proof The proof in [11, Lemma 3.8] is adopted to the bilinear form (7) using the
estimate (23). ut
Remark 1 A similar estimate for the bilinear form arising from the nonsymmetric
interior penalty Galerkin method can be found in [33, Lemma 4.2].

Lemma 4 The bilinear form ad.�; �/ satisfies the coercivity inequality

ad.vh; vh/ � �

2
jjjvhjjj2DG; 8vh 2 Vh;p: (28)

Proof The proof in [11, Corollary 3.10] is adopted to the bilinear form (7) using the
norm (19). ut

5.1 Discrete Characteristic Function

We use the discrete characteristic function in order to provide error estimates at
arbitrary time points as suggested in [8]. We can work on Œ0; k/ instead of Im, since
the construction of the discrete characteristic function is invariant under translation.
We consider polynomials s 2 Pq.0; k/ and the discrete approximation of �Œ0;t/s of
s which is a polynomial

Qs 2 ˚Qs 2Pq.0; k/ W Qs.0/ D s.0/
�

such that
Z k

0

Qsz D
Z t

0

sz; 8z 2Pq�1.0; k/:

This definition can be extended from Pq.0; k/ to Vk;q
h;p . The discrete approxima-

tion of �Œ0;t/v for v 2 Vk;q
h;p is written as Qv D Pq

iD0 Qsi.t/vi. On account of these
inequalities, the following estimate is given in [33]

Z

Im

jjj Qwjjj2DG dt � CD

Z

Im

jjjwjjj2DG dt; CD D CD.q/: (29)

We mention that a suitable discrete approximation �.t;tn �vh must be constructed
for the adjoint problem, as it is noted in the proof of [7, Theorem 3.8]. The discrete
approximation of �.t;t NT �s is a polynomial

Qs 2 fQs 2Pq.t
NT�1; t NT / W Qs.t NT / D s.t NT /g such that

Z t NT

t NT �1

Qsz D
Z t NT

t
sz;

8z 2 Pq�1.t NT�1; t NT /. This definition can be extended from Pq.t NT�1; t NT / to
Vk;q

h;p and the estimates above can be modified for the adjoint [7, Theorem 3.8].
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5.2 A Priori Error Estimates

We proceed with the derivation of the convergence estimates for the optimality
system and its space-time dG approximation. We define the auxiliary state and
adjoint equation which are needed for a priori error analysis

NTX

mD1

Z

Im

.@ty
u
ı ; vı/ dt C

Z T

0

as
h.y

u
ı ; vı/ dtC

NTX

mD1
.Œyu

ı �m�1; vm�1
ı;C /

D
Z T

0

.fı C u; vı/ dt;

yu;0
ı;� D .y0/ı; (30)

NTX

mD1

Z

Im

.�@tp
u
ı ;  ı/ dt C

Z T

0

aa
h.p

u
ı;  ı/ dt �

NTX

mD1
.Œpu

ı �m;  
m
ı;�/

D �
Z T

0

.yu
ı � yd

ı ;  ı/ dt;

pu;N
ı;C D 0:

Following [15], we assume that the reaction term satisfies jrj � Cr a.e. in ˝; the
velocity field is bounded by a constant Cˇ a.e. in ˝ .

We prove some useful lemmas before stating the main theorem of this study.

Lemma 5 Let .yı; pı/ and .yu
ı ; p

u
ı/ be the solutions of (16) and (30), respectively.

Then, there exists a constant C independent of h and k such that

sup
t2In

kyu
ı.t/ � yı.t/k C sup

t2In

kpu
ı.t/ � pı.t/k � C

Z tn

0

ku � uık dt: (31)

Proof Firstly, we study the fully discrete state equation on each subinterval Im. We
subtract (16) from (30) to obtain

Z

Im

.@t�; vı/ dtC .Œ��m�1; vm�1
ı;C /C

Z

Im

as
h.�; vı/ dt D

Z

Im

.u � uı; vı/ dt; (32)

where � D yu
ı � yı. We substitute vı D 2� in (32). Then,

Z

Im

2.@t�; �/ dtC 2.Œ��m�1; �m�1C / D k�m�k2 � k�m�1� k2 C kŒ��m�1k2; (33)

is achieved. For the right-hand side, we employ Cauchy-Schwarz, Young in-
equalities, Poincaré inequality (21) and the definition of dG norm (19). For the
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left-hand side, we use (28) for diffusion term and follow the technique in (see [15,
Theorem 5.1]) for convection and reaction terms. Then, we derive the following
estimate in the middle of (34)

k�m�k2 � k�m�1� k2 C �

2

Z

Im

jjj� jjj2DG dtC 2C0

Z

Im

k�k2 dt

C �

2

Z

Im

0

@
X

K2Th



k�k2@K�\�� C k ŒŒ��� k2@K�n� � C k�k2@KC\�C

�
1

A dt

� k�m�k2 � k�m�1� k2 C �

2

Z

Im

jjj� jjj2DG dtC 2C0

Z

Im

k�k2 dt

C
Z

Im

0

@
X

K2Th



k�k2@K�\�� C k ŒŒ��� k2@K�n� � C k�k2@KC\�C

�
1

A dt

� C
Z

Im

ku � uık2 dt: (34)

We note that the lower bound on the left-hand side of (34) has been added after
deriving the estimate in the middle for the clearance of the proof and will be used
later. Now, we proceed by substituting vı D 2 Q� into (32). We employ the discrete
characteristic function as in the proof of [33, Theorem 5.2] to obtain an estimate at
arbitrary points and use the properties given there. With z D arg supNIm

k�.t/k, the
discrete characteristic function defined in Sect. 5.1 leads to

Z

Im

.@t�; Q�/ dt D
Z z

tm�1

.@t�; �/ dt; Q�m�1C D �m�1C ; Œ Q��m�1 D Œ��m�1; (35)

Z

Im

2.@t�; Q�/ dtC 2.Œ��m�1; Q�m�1C / D k�.z/k2 � k�m�1� k2 C kŒ��m�1k2:: (36)

We use (35) and (36) and the inequality k�m�1� k � supt2Im�1
k�.t/k to bound

the terms arising in the time derivative. We proceed by moving 2
R

Im
ah.�; Q�/ dt

to the right-hand side. We employ (27) for the diffusion term, the proof of [15,
Theorem 5.1] for the convection term. The reaction term and the control on the
right-hand side is bounded by using Cauchy-Schwarz and Young inequalities (21)
and (19) such that k � k2 � Cjjj � jjj2DG is satisfied for a positive constant C. We
eliminate the term jjj Q� jjj2DG on the right-hand side by using (29). Then, we obtain
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the following inequality

sup
t2Im

k�.t/k2 � sup
t2Im�1

k�.t/k2

� Cb

Z

Im

jjj� jjj2DG dtC
Z

Im

X

K2Th



k�k2

@KC\�C C k ŒŒ��� k2@K�n��

�
dt

C C
Z

Im

ku � uık2 dt

� C0b
Z

Im

0

@jjj� jjj2DG C
X

K2Th



k�k2

@KC\�C C k ŒŒ��� k2@K�n� �

�
1

A dt

C C
Z

Im

ku � uık2 dt; (37)

where Cb D C.1CCD/.�CACCS.CrCCˇ//;C0b D maxf1;Cbg. In order to eliminate
the terms � on the right-hand side of (37), we use (34) multiplying it by C00b D 2

�
C0b.

By adding these inequalities and denoting �m D supt2Im
k�.t/k2 C C00bk�m�k2, we

arrive at

�m ��m�1 � C.1C C00b /
Z

Im

ku � uık2 dt: (38)

We sum (38) over m D 1; : : : ; n � NT and use � D 0 at t D 0 to derive the estimate

sup
t2In

k�.t/k2 D sup
t2In

kyu
ı .t/ � yı.t/k2 � C

Z tn

0

ku � uık2 dt: (39)

Secondly, we proceed with the adjoint equation subtracting (16) from (31) and
using � D pu

ı � pı. A discrete approximation to �.t;tm �vh specified for the adjoint
problem must be used, as we discussed in Sect. 5.1. Then, this leads to

Z

Im

2.�@t�; Q�/ dt � 2.Œ��m; Q�m�/ D k�.z/k2 � k�mk2 C kŒ��mk2; (40)

where z D arg supNIm
k�.t/k. In addition, the inequalities k�mk2 � supINT �mC2

k�.t/k2
and k�.z/k2 D supINT �mC1

k�.t/k2 are needed. Then, we follow the same idea used
to derive (39) to reach the inequality

sup
t2INT �mC1

k�.t/k2 � sup
t2INT �mC2

k�.t/k2 � Ckm

Z

t2Im

ku � uık2 dt: (41)
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We sum (41) over m D NT ; : : : ; n � 1 and use � D 0 at t D tNT . The final
result (31) follows from standard algebra, (39) and (41). ut
We proceed with the estimate between the exact and the approximate control.

Lemma 6 Let .y; p; u/ and .yı; pı; uı/ be the solutions of (2) and (16), respectively.
Then, we have

ku � uıkL2.0;TIL2.˝// � 1

˛
kp � pu

ıkL2.0;TIL2.˝//: (42)

Proof We apply the technique used for the steady-state optimal control problem
in [21, Sect. 4.2]. We start using the continuous and the fully-discrete optimality
conditions (3)–(17) to obtain the following equation

˛ku � uık2L2.0;TIL2.˝// D ˛
TZ

0

.u � uı; u � uı/ dt

D
TZ

0

.˛u � p; u � uı/ dt �
TZ

0

.˛uı � pı; u � uı/ dtC
TZ

0

.p � pı; u � uı/ dt

D
TZ

0

.p � pu
ı; u � uı/ dtC

TZ

0

.pu
ı � pı; u � uı/ dt D J1 C J2: (43)

We use Cauchy-Schwarz and Young inequalities to show that

0 � J1 � 1

2˛
kp � pu

ık2L2.0;TIL2.˝// C
˛

2
ku � uık2L2.0;TIL2.˝//: (44)

We proceed with J2 and use the auxiliary state equation (30) to obtain

J2 D
TZ

0

.pu
ı � pı; u � uı/ dt

D
NTX

mD1

Z

Im

.@t.y
u
ı � yı/; p

u
ı � pı/ dtC

TZ

0

as
h.y

u
ı � yı; p

u
ı � pı/ dt

C
NX

mD1

�
Œyu
ı � yı�m�1; .pu

ı � pı/
m�1C

	
:
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We proceed applying integration by parts in time and use the auxiliary adjoint
equation (30) to arrive at

J2 D �
NTX

mD1

Z

Im

�
pu
ı � pı; @t.y

u
ı � yı/

	
dtC

NX

mD1

�
yu
ı � yı; p

u
ı � pı

	jtmtm�1

C
TZ

0

as
h.y

u
ı � yı; p

u
ı � pı/ dtC

NX

mD1

�
Œyu
ı � yı�m�1; .pu

ı � pı/
m�1C

	

D �
NTX

mD1

Z

Im

�
pu
ı � pı; @t.y

u
ı � yı/

	
dtC

TZ

0

as
h.y

u
ı � yı; p

u
ı � pı/ dt

�
NX

mD1

�
.yu
ı � yı/

m�; Œpu
ı � pı�m

	

D �
TZ

0

�
yu
ı � yı; y

u
ı � yı

	
dt � 0: (45)

Then, using (43)–(45), we derive the final result (42). ut
Lemma 7 Let .y; p/ and .yu

ı ; p
u
ı/ be the solutions of (2) and (30), respectively.

Assume that y; p 2 WqC1;1.0;TIH1.˝//\ L1.0;TIHpC1.˝//. Then, there exists
a constant C independent of h and k such that

sup
t2In

ky � yu
ık C sup

t2In

kp � pu
ık � O.hp C kqC1/: (46)

Proof Firstly, we integrate (2) over Im and subtract the result from (30) in order to
obtain the following equation

Z

Im

.@t
; vı/ dtC .Œ
�m�1; vm�1
ı;C /C

Z

Im

as
h.
; vı/ dt

D �
�Z

Im

.@t�; vı/ dtC .Œ��m�1; vm�1
ı;C /

�
�
Z

Im

ah.�; vı/ dt; (47)

where y � yu
ı D .y � �y/C .�y � yu

ı/ D �C 
.
Since we use the same mesh on each time interval, (24) leads to the following

identity.

Z

Im

.@t�; vı/ dtC .Œ��m�1; vm�1
ı;C / D 0; 8vı 2 Vk;q

h : (48)
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We proceed as in the proof of Lemma 5 and the proof of [15, Theorem 5.1] by
inserting the estimate (26) to obtain

Z

Im

.@t
; vı/ dtC .Œ
�m�1; vm�1
ı;C /C

Z

Im

as
h.
; vı/ dt

� �

4

Z

Im

jjjvıjjj2DG dtC C0
2

Z

Im

kvık2 dt

C1
2

Z

Im

X

K2Th

�kvık2@KC\�C C k ŒŒvı�� k2@K�n� �

	
dt

CkmCAC�.h
2p C k2qC2/jyj2R C km2CˇC�CM.h

2pC1 C k2qC2/jyj2R
CkmC�

CˇCr

C0
.h2pC2 C k2qC2/jyj2R; (49)

where jyjR D max.jyjWqC1;1.ImIH1.˝//; jyjL1.ImIHpC1.˝///.
Firstly, we shall substitute vı D 2
 into (49) to obtain

k
m�k2 � k
m�1� k2 C �

2

Z

Im

jjj
jjj2DG dtC C0

Z

Im

k
k2 dt

C
Z

Im

X

K2Th

�
k
k2@K�\�� C 1

2
k ŒŒ
�� k2@K�n� � C 1

2
k
k2

@KC\�C

�
dt

� kmCb.h
2p C h2pC1 C h2pC2 C k2qC2/jyj2R; (50)

where Cb D maxfCAC� ; 2CˇC�CM;C�
CˇCr

C0
g.

Secondly, we substitute vı D 2 Q
 into (49) to obtain

sup
t2Im

k
.t/k2 � sup
t2Im�1

k
.t/k2

� C0b
Z

Im

jjj
jjj2DG dtC
Z

Im

X

K2Th



k ŒŒ
�� k2@K�n�� C k
k2@KC\�C

�
dt

C kmCb.h
2p C h2pC1 C h2pC2 C k2qC2/jyj2R

� C00b
Z

Im

0

@jjj
jjj2DG C
X

K2Th



k ŒŒ
�� k2@K�n� � C k
k2@KC\�C

�
1

A dt

C kmCb.h
2p C h2pC1 C h2pC2 C k2qC2/jyj2R; (51)

where C0b D C.1CCD/.�CACCS.Cˇ CCr//;C00b D maxf1;C0bg. Now, we proceed
as in the proof of Lemma 5. We multiply (50) by C000b D 2

�
C00b in order to eliminate

the terms 
 on the right-hand side of (51). Then, we add it to (51) and denote�m D
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supt2Im
k
.t/k2 C C000b k
m�k2 in order to obtain

�m ��m�1 � km2C000b .h
2p C h2pC1 C h2pC2 C k2qC2/jyj2R: (52)

We sum (52) over m D 1; : : : ; n � NT to obtain

sup
t2In

k
.t/k2 � O.h2p C k2qC2/: (53)

Thirdly, we integrate (2) over Im and subtract it from (31) and denote p � pu
ı D

.p� �p/C .�p � pu
ı/ D ' C �. Then, we use the idea in the proof of (53) in order

to derive

sup
t2IN�mC1

k�.t/k2� sup
t2IN�mC2

k�.t/k2 � Ckm sup
t2Im

k
.t/k2 dtCO.h2pCk2qC2/; (54)

for C > 0. The resulting inequality is summed over m D NT ; : : : ; n � 1. Then, it is
combined with (53) to derive the final result (46). ut
Remark 1 For guaranteeing the assumptions on the exact solution, it is necessary to
require a higher regularity of the data of the problem.

We state the main estimate of this study by combining Lemmas 5, 6, and 7.

Theorem 1 Suppose that .y; p; u/ and .yı; pı; uı/ are the solutions of (2) and (16),
respectively. We assume that all conditions of Lemmas 5, 6 and 7 are satisfied. Then,
there exists a constant C independent of h and k such that

ky�yıkL1.0;TIL2.˝//Ckp�pıkL1.0;TIL2.˝//Cku�uıkL2.0;TIL2.˝// � C
�
hp C kqC1	 :

(55)

In Theorem 1, the error in the state and control is measured with respect
to the norm L1.0;TIL2.˝// and L2.0;TIL2.˝//, respectively. The same norms
are used, for example, in the study of Fu [16], too. The former norm is due
to the discrete characteristic function which is used to provide error estimates
at arbitrary time points. The latter norm arises from the optimality condition
which is shown in Lemma 6. On the other hand, we observe that Theorem 1 is
optimal in time, suboptimal in space in the L1.0;TIL2.˝// norm for the state
and L2.0;TIL2.˝// for the control, i.e. O.hp; kqC1/, using p-degree spatial, q-
degree temporal polynomial approximation. However, for example, optimal spatial
convergence rate for SIPG discretization combined with backward Euler is achieved
using an elliptic projection in [1]. The first reason behind the order reduction in
this study is the estimate (26) for the space-time projection which is employed to
bound the continuity estimate of the bilinear form in Lemma 3. The convection
term also has an influence on the spatial order reduction since we follow the proof
of [15, Theorem 5.1]. After eliminating the effect of the space-time projection in
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the bilinear form of the diffusion term, this suboptimal estimate can be improved as
in [1].

6 Numerical Results

In this section, we present some numerical results. We measure the error in the state
and the control in terms of L1.0; 1IL2.˝// and L2.0; 1IL2.˝// norm, respectively.
We have used discontinuous piecewise linear polynomials in space. In all numerical
examples, we have taken h D k.

We note that, in the case of dG(0) method, the approximating polynomials are
piecewise constant in time and the resulting scheme is a version of the backward
Euler method with a modified right-hand side [31, Chap. 12]:

.M C kAs/yh;m D Myh;m�1 C k

2
.fh;m C fh;m�1/C k

2
M.uh;m C uh;m�1/;

.M C kAa/ph;m�1 D Mph;m � k

2
M.yh;m C yh;m�1/C k

2
.yd

h;m C yd
h;m�1/:

For dG(1) method, we use piecewise linear polynomials in time. The resulting
linear system for the state on each time interval is given as follows [31, Chap. 12]:

 
MC kAs MC k

2
As

k
2
As 1

2
MC k

3
As

! 
Y0
Y1

!
D
 

Myh;m�1 C k
2
.fh;mC fh;m�1/C k

2
M.uh;mC uh;m�1/

k
2
.fh;mCMuh;m/

!
;

(56)

where Asand M are the stiffness and the mass matrices of the state equation,
respectively. We derive the solution at the time step tm as yh;m D Y0 C Y1. For
the adjoint equation, we have the following linear system:

 
MC kAa MC k

2
Aa

k
2
Aa 1

2
MC k

3
Aa

! 
P1
P0

!
D
 

Mph;m � k
2
M.yh;mC yh;m�1/C k

2
.yd

h;mC yd
h;m�1/

� k
2
.Myh;m�1 � yd

h;m�1/

!
;

(57)

where Aa is the stiffness matrix for the adjoint equation. We obtain the adjoint at
the time step tm�1 as ph;m�1 D P0 C P1.

The main drawback of dG time discretization is the solution of large coupled
linear systems in block form. Because we are using constant time steps, the coupled
matrices on the right-hand side of (56) and (57) have to be decomposed (LU block
factorization) at the beginning of the integration. Then, the state and the adjoint
equations are solved at each time step by forward elimination and back substitution
using the block factorized matrices.

Example 1 The first example is a convection dominated OCP with smooth solu-
tions. It is converted to an unconstrained optimal control problem [17, Ex. 1] by
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Table 1 Example 1 by dG(0) and backward Euler(in parenthesis) method

k ky� yık Rate ku� uık Rate
1
5

5.91e�2(4.88e�2) –(–) 3.94e�2(2.41e�2) –(–)
1
10

2.42e�2(1.40e�2) 1.29(1.80) 2.14e�2(8.81e�3) 0.88(1.45)
1
20

1.17e�2(4.01e�3) 1.04(1.80) 1.12e�2(3.68e�3) 0.92(1.26)
1
40

6.01e�3(1.60e�3) 0.96(1.33) 5.81e�3(1.74e�3) 0.95(1.08)
1
80

3.07e�3(7.58e�4) 0.97(1.07) 2.95e�3(8.62e�4) 0.98(1.01)

Table 2 Example 1 by Crank-Nicolson method OD and DO approach(in parenthesis)

k ky� yık Rate ku� uık Rate
1
5

6.79e�2(6.91e�2) –(–) 2.26e�2(2.47e�2) –(–)
1
10

1.86e�2(1.89e�2) 1.86(1.87) 6.69e�3(8.12e�3) 1.76(1.61)
1
20

4.86e�3(4.89e�3) 1.94(1.95) 1.81e�3(3.30e�3) 1.89(1.30)
1
40

1.24e�3(1.24e�3) 1.97(1.98) 4.72e�4(2.19e�3) 1.94(0.59)
1
80

3.13e�4(8.27e�4) 1.99(0.59) 1.16e�4(2.04e�3) 2.02(0.10)

adding the reaction term with

Q D .0; 1� 	˝; ˝ D .0; 1/2; � D 10�5; ˇ D .1; 0/T ; r D 1; ˛ D 1:

The source function f , the desired state yd and the initial condition y0 are computed
from (2) using the following exact solutions of the state and the control, respectively,

y.x1; x2; t/ D exp.�t/ sin.2�x1/ sin.2�x2/;

u.x1; x2; t/ D exp.�t/.1 � t/ sin.2�x1/ sin.2�x2/:

In Table 1, errors and converge rates for dG(0) and backward Euler method are
shown. We observe that the first order convergence rate is achieved in time, due to
the dominance of temporal errors.

In Table 2, errors and converge rates for Crank-Nicolson method obtained
by OD and DO approaches are shown. For Crank-Nicolson method, through
OD approach, the second order convergence rate is achieved. However, for DO
approach, discretization of the right-hand side of the adjoint equation (14) by
one-step method is reflected to the numerical results and the quadratic order of
convergence is not observed.

In Table 3, We present numerical results for dG(1) time discretization. Numerical
results indicate a higher order experimental order of convergence, namely O.h2/,
than the one shown in Theorem 1, which is O.h/ with h D k. The error in the state
is smaller than for Crank-Nicolson method with OD approach, while the error in the
control is close to one for Crank-Nicolson method with OD approach.
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Table 3 Example 1 by dG(1)method

k ky� yık Rate ku� uık Rate
1
5

5.65e�2 – 2.93e�2 –
1
10

1.56e�2 1.86 8.50e�3 1.78
1
20

4.04e�3 1.95 2.28e�3 1.90
1
40

1.03e�3 1.97 5.95e�4 1.93
1
80

2.59e�4 1.99 1.46e�4 2.03

Table 4 Example 2 by Crank-Nicolson method OD and DO approach(in parenthesis)

k ky� yık Rate ku� uık Rate
1
5

1.90(1.90) –(–) 2.06e�1(2.03e�1) –(–)
1
10

1.03(1.03) 0.89(0.89) 3.63e�2(3.63e�2) 2.51(2.49)
1
20

3.62e�1(3.62e�1) 1.50(1.50) 8.23e�3(8.15e�3) 2.12(2.15)
1
40

1.06e�1(1.05e�1) 1.78(1.78) 3.01e�3(6.17e�3) 1.45(0.40)
1
80

2.77e�2(2.71e�2) 1.93(1.95) 9.07e�4(4.95e�3) 1.73(0.32)

Example 2 The second example is a convection dominated OCP adapted from [16,
Ex. 2] with

Q D .0; 1� 	˝; ˝ D .0; 1/2; � D 10�5; ˇ D .0:5; 0:5/T ; r D 3; ˛ D 1:

The source function f , the desired state yd and the initial condition y0 are computed
from (2) using the following exact solutions of the control and state, respectively,

u.x1; x2; t/ D sin.�t/ sin.2�x1/ sin.2�x2/ exp

��1C cos.tx/p
"

�
;

y.x1; x2; t/ D u

�
1

2
p
"

sin.tx/C 8"�2 C
p
"

2
cos.tx/� 1

2
sin2.tx/

�

� � cos.�t/ sin.2�x1/ sin.2�x2/ exp

��1C cos.tx/p
"

�
;

where tx D t� 0:5.x1C x2/: As opposed to the previous example, the exact solution
of the PDE constraint depends on the diffusion explicitly and the problem is highly
convection dominated. This example cannot be solved properly by using dG(0)
and backward Euler method. Therefore, we present numerical results for Crank-
Nicolson method in Table 4, where the differences between OD and DO can be seen
clearly. DO approach causes order reduction in the control. However, due to the
convection dominated nature of the problem, the quadratic convergence rate cannot
be achieved with OD approach in contrast to Example 1. The orders of convergence
correspond to those in [5].
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Table 5 Example 2 by dG(1)
method

k ky� yık Rate ku� uık Rate
1
5

1.70 – 2.03e�1 –
1
10

6.14e�1 1.47 4.35e�2 2.22
1
20

1.50e�1 2.03 1.23e�2 1.83
1
40

3.40e�2 2.15 2.38e�3 2.36
1
80

7.92e�3 2.10 4.77e�4 2.32
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Fig. 1 Example 2: Error at t = 0.5 with Crank-Nicolson(DO approach) h D k D 1=80

In Table 5, we present numerical results for dG(1) discretization. As opposed
to the results in Table 4, the error in the state and the control are smaller than in
the case of Crank-Nicolson. Numerical results indicate a better experimental order
of convergence, namely O.h2/, than the theoretical error estimate in Theorem 1.
Similar observations are made for nonstationary non-linear diffusion-convection
equations for the SIPG spatial discretization in [20]. In Figs. 1 and 2, we present
the error between the exact and the approximate solution at t D 0:5 obtained using
Crank-Nicolson-DO approach and dG(1) discretization. These figures also show
that dG(1) discretization solves the problem well.

7 Conclusion

For dG time discretization, the numerical results show that linear and quadratic
convergence rates are achieved using piecewise discontinuous constant and linear
polynomials in time, respectively, and DO and OD approaches commute. In a future
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Fig. 2 Example 2: Error at t = 0.5 with dG(1) method h D k D 1=80

work, we will study control constrained problem and derive the optimal convergence
rates under lower regularity assumptions.

8 Outlook: Efficient Solvers for DG Time Discretization

Discontinuous Galerkin time stepping is used for solving linear and nonlinear OCPs
by multiple shooting methods in [6, 18] because of the commutativity property of
discretization and optimization. At each subinterval of multiple shooting, a very
large system of linear or nonlinear equations has to be solved, which can be handled
by iterative methods, such as Krylov subspace method. In the references mentioned
above, the first order dG(0) method is used, where for nonlinear problems at each
Newton iteration step, a linear system of equations with the same structure of
implicit Euler method has to be solved. Higher order dG methods lead to coupled
block systems and the number of the unknowns grows linearly with increasing order.
Therefore, for OCPs constrained by linear and nonlinear parabolic PDEs in several
space dimensions, efficient solution techniques are needed. In the following, we
will give an overview of the existing approaches by narrowing our discussion to 2x2
coupled block systems arising from different dG discretizations.

In the last decade, several variational time discretization methods were de-
veloped. The test spaces always consist of piecewise discontinuous polynomials.
When the solution space consists of continuous piecewise polynomials of degree k
and the test functions are piecewise discontinuous polynomials of degree k � 1,
the resulting method is called continuous Galerkin discretization cGP(k). For
discontinuous Galerkin dG(k) method, both test and trial spaces are piecewise dis-
continuous polynomials of degree k. Advantages of variational time discretization
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are stability, convergence, space-time adaptivity. Both continuous and discontinuous
Galerkin methods are A-stable; the discontinuous Galerkin methods are even L-
stable (strongly stable). The convergence order of cGP(k) methods is of one order
higher than the dG(k) methods. Both of these methods are super-convergent at
the nodal points, namely of order 2r C 1, when the order of the method is r and
the solution of the problem is sufficiently regular [31, Chap. 12]. The time-space
adaptivity can be easily implemented, because the time is discretized as the space
with finite elements. Using a posteriori error estimates, adaptive hp time stepping
and dynamic meshes (the use of different spatial discretization for each time step)
can directly be incorporated in the discrete formulation [25]. We want to mention
that dynamic meshes (meshes changing with time) were used by combining dG(0)
time discretization with multiple shooting method for linear and nonlinear OCPs in
[18], whereas Carraro et al. [6] use fixed meshes for all discrete time levels.

As we have mentioned, the main disadvantage of variational time discretization
is the large system of coupled equations as a result of space-time discretization. To
illustrate this, we consider the semilinear parabolic initial value problem

du

du
D AuC f .u/; u.0/ D u0; (58)

where A is a linear second order elliptic differential operator and f .u/ is locally
Lipschitz continuous and monotone.

The 2	2 block system associated to dG discretization of (58) can be written in
the following form:

˛1;1MU1
n C ˛1;2MU2

n C
tˇ1;1F.U1
n/C
tˇ1;2F.U2

n/ D c1MU0 C d1F.U0/;

˛2;1MU1
n C ˛1;2MU2

n C
tˇ2;1F.U1
n/C
tˇ2;2F.U2

n/ D c2MU0 C d2F.U0/;
(59)

where M is the mass matrix and F.�/’s are dGFEM semi-discretized nonlinear terms
of the right hand side of (58).

One step of the Newton iteration for solving the coupled system in (59)
corresponds to solving the following 2 	 2 block system:

�

t˛1;1M C
tˇ1;1 NA 
t˛1;2M C
tˇ1;2 NA

t˛1;2M C
tˇ1;2 NA 
t˛2;2M C
tˇ2;2 NA

��
W1

n

W2
n

�
D
�

R1n
R2n

�
; (60)

where the vectors Wi
n and Ri

n, for i D 1; 2, denote the Newton correction and residual
for a temporal basis function, respectively [25].

In [35], the linear system of equations associated to dG(k) method, derived
from the solution of the linear parabolic equations, are decoupled into complex
valued linear systems having the same structure as the implicit Euler discretization.
Because the existing finite element codes do not support complex arithmetic,
implementation would be difficult and costly. In order to avoid the use of complex
arithmetic, Richter et al. [25] developed an inexact Newton method for solving
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nonlinear parabolic PDEs discretized by dG(k) methods. At each time step, several
linear systems of equations are solved with the same structure as for the implicit
Euler discretization. Weller and Basting [34] suggest a different solution strategy for
linear parabolic PDEs under dG(2) method approximated at Gauss-Radau points.
The essential component U2

n , which is the solution of the problem at the next
time step, can be obtained by an inexact factorization of the Schur complement,
due to the property ˇ1;2 D ˇ2;1 D 0 in (59) and (60). Because the Schur
complement is of the fourth order, the condition number will be worse than the
condition number of the original system. They apply a symmetric preconditioned
conjugate gradient method so that a number of linear systems with the same
structure arising from implicit Euler discretization must be solved at each step. The
nice property of the method is that it can be applied to linear parabolic PDEs with
non-self adjoint operators like diffusion-convection-reaction equation, because the
Schur complement is symmetric. Efficiency of the solution technique for nonlinear
parabolic problems has to be tested. Schieweck [27] introduced a continuous dG
method where the solution space consists piecewise continuous polynomials of
degree k � 1 and test space of piecewise discontinuous polynomials of degree
k� 1 approximated at Gauss-Lobatto nodes. They call this technique discontinuous
Galerkin-Petrov dGP(k) method. Because the time derivative of the discrete solution
is contained in the discrete test space, the method has energy decreasing property
so that it can be applied to gradient systems like Allen-Chan and Chan-Hilliard
equations. Again, the essential unknown is U2

n for dGP(2) method due to ˇ11 D 0

in (59) and (60), and the solution can be determined by fixed point iteration.
However, the linear system which must be solved at each time level consists of
powers of mass and stiffness matrices, which could be difficult to solve. Instead, a
defect correction algorithm was introduced [27], so that at each defect correction
step, linear systems like in the implicit Euler discretization have to be solved again.
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Reducing Memory Requirements in Scientific
Computing and Optimal Control

Sebastian Götschel, Christoph von Tycowicz, Konrad Polthier,
and Martin Weiser

Abstract In high accuracy numerical simulations and optimal control of time-
dependent processes, often both many timesteps and fine spatial discretizations
are needed. Adjoint gradient computation, or post-processing of simulation results,
requires the storage of the solution trajectories over the whole time, if necessary
together with the adaptively refined spatial grids. In this paper we discuss various
techniques to reduce the memory requirements, focusing first on the storage of
the solution data, which are typically double precision floating point values. We
highlight advantages and disadvantages of the different approaches. Moreover, we
present an algorithm for the efficient storage of adaptively refined, hierarchic grids,
and the integration with the compressed storage of solution data.

1 Introduction

The numerical solution and optimal control of time-dependent, nonlinear PDEs
often requires fine discretization both of the time interval Œ0;T] and the—typically
three-dimensional—spatial domain˝ to achieve accurate results. For optimization,
adjoint gradient computation is often used, see e.g. [29]. There, the solution
trajectory over the whole time interval needs to be stored, together with the
adaptively refined spatial grids. To be more precise, consider the abstract optimal
control problem

min
y;u

J.y; u/ s.t. c.y; u/ D 0;
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where the relation between the state y and the control u is governed by the equality
constraint c W Y 	U ! Z?, which, for example, may be a parabolic PDE on Hilbert
spaces Y;U;Z. Under suitable assumptions, and with y D y.u/ the unique solution
of the state equation c.y; u/ D 0, we arrive at the reduced formulation

min
u

j.u/ WD J.y.u/; u/:

The reduced gradient, required for the optimization, is then given by

j0.u/ D Ju.y; u/� cu.y; u/
?�;

where the adjoint variable � fulfills cy.y; u/?� D Jy.y; u/: Partial derivatives
with respect to the variables y; u are denoted by Jy; Ju; : : : . The adjoint equation
is backwards-in-time, and—depending on the objective functional and the state
equation—the solution of the forward state equation is needed for the adjoint
equation, so the state has to be stored at every timestep.

Of course the storage of simulation results is not only important for optimization,
but also for other post-processing algorithms, visualization, archiving of results, and
more.

Not only the mere storage size is important, with the ever-growing speed of
CPUs, memory access time is more and more becoming a bottleneck for large-
scale simulation and optimization. To be able to tackle real-world applications,
compression methods are required in order to reduce the amount of data. In this
paper, we discuss various techniques to reduce the memory requirements, both
in terms of bandwidth and size. An important criterion to judge the quality of
compression methods is the compression factor, which is defined as the ratio
between uncompressed and compressed storage size. Typically—but not in all
cases—a reduction of memory size leads also to a similar reduction of the required
memory bandwidth. Of course when using lossy compression, where parts of the
original information are discarded, the compression factor has to be discussed in
relation with the induced error.

This paper is organized as follows. In Sect. 2, we discuss approaches for general
floating point compression, before we come to methods specialized for optimal
control in Sect. 3. In both sections we mainly focus on the compression of the
solution data. In Sect. 4 we describe an algorithm for the efficient storage of the
adaptively refined spatial grids, and its integration with the lossy compression
approach discussed in Sect. 3.2.

2 General Floating Point Compression

In this section, we discuss approaches for general purpose floating point compres-
sion, both lossless and lossy.
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2.1 Lossless Methods

For lossless methods, the sole criterion for comparison of different approaches is the
compression factor. The comparison depends on the test data sets used, which differ
in the literature. Nevertheless, the reported compression ratios are good indicators
for the quality and applicability of the algorithms to our problem at hand.

FPC In [7], Burtscher and Ratanaworabhan present the lossless, single-pass, linear-
time compression algorithm FPC. It aims at compressing floating-point data with
unknown internal structure, with maximizing throughput, i.e. compression speed,
as the main objective. Sequences of double-precision floating-point values are
processed by predicting a value, determining the prediction error by an XOR
operation, and compressing the result.

As predictors, fcm [57] and dfcm [16] are used, such that prediction is essentially
a hash-table look-up to determine which value followed the last time a given
sequence of values occurred. If the predicted value is close to the true value,
the XOR operation produces many leading zeros. The number of leading zeros is
encoded in a 3-bit value, which is stored together with a bit specifying the chosen
predictor and the remaining non-zero bytes of the prediction error. The reported
compression ratios range between 1:02 and up to 15:05 (for one special test data
set), the geometric mean compression ratio is 1:2–1:9 depending on the size of the
look-up table for the predictors.

fpzip While FPC uses no information about the structure of the data, the algorithm
fpzip by Lindstrom and Isenburg, based on [48], traverses the data in some coherent
order, and uses the Lorenzo predictor [30] to estimate values based on a subset
of the already encoded data. Row-by-row traversal of the data works especially
well for data on structured, cartesian grids. The predicted and true value is mapped
from floating-point to an integer representation. While fpzip is foremost a lossless
compression algorithm, it can be run in a lossy mode. Then, during the mapping
stage, the least significant bits are discarded, reducing the precision to 48, 32 or 16
bits/value, without control of the quantization error. The integer residual is stored
using range coding [49], a variant of arithmetic coding. Lossless compression ratios
of 1:4–2:7 for a double precision test data set are reported in [48], with an average
ratio of approximately 1:6.

2.2 Lossy Methods

As expected, lossless methods cannot reduce the amount of data significantly, due
to many quasi-random least significant bits. To achieve good compression ratios, we
have to resort to lossy compression techniques. Typically, the accuracy is reduced by
quantization of the true values, or of predicted values, which is essentially rounding.
Here, control of the quantization error is of crucial importance.
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Comparison criteria for lossy methods are the compression ratio in relation with
the induced error. The different test data sets given in the literature, together with
the different error norms used to report the quantization errors, makes it difficult to
give a quantitative comparison of the algorithms described below.

Adaptive Coarsening/Sub-sampling This method, presented in [59, 72], is
closely related to adaptive mesh refinement. Starting from simulation results on
some fine, uniform mesh, the mesh is tentatively coarsened. After reconstructing
the solution, grid points are removed where the data is represented on the coarser
mesh with sufficient accuracy. This procedure is carried out recursively on the
new coarser meshes, until no further coarsening is possible without violating the
error bound. The result is an adaptive mesh representing the data up to a specified
accuracy. As no quantization is used, compression is solely achieved by adaptivity.
If the simulations are carried out using standard adaptive mesh refinement during
the solution process, data reduction is only possible, if the necessary accuracy for
solution and post-processing differ, like for adjoint gradient computation. In [72]
the reported compression factors range between 7:44 (3D data) and 25:1 (2D data)
for a pointwise relative `1 error of 10�3.

Graph Decomposition In a recent work, Iverson, Kamath and Karypis [35]
propose a compression algorithm based on the decomposition of the computational
grid into so-called "-bounded sets. The method works on structured and unstructured
meshes, which are modeled via a graph. The nodes of the graph are the grid vertices
for which values are computed. These vertices are partitioned into non-overlapping
sets Vi, such that each set contains only vertices with values differing at most by a
specified ". In each set Vi, the values are replaced by the mean value of the set, such
that the point-wise absolute error is bounded by ". If there is local smoothness in
the data, this substitution increases the redundancy of the data, which is afterwards
compressed using standard lossless compression methods. For a testset consisting
of data on structured and unstructured grids with between 486,015 and 100,663,296
vertices, they report average compression ratios between 20 and 50 for pointwise
relative `1 errors of orders 10�2 to 10�3.

ISABELA Lakshminarasimhan et al. [45, 46] propose a method for “In situ Sort-
And-B-spline Error-bounded Lossy Abatement” (ISABELA), specifically designed
for spatio-temporal scientific data that is inherently noisy and random-like. In the
spatial domain, data is sorted from an irregular signal to a smooth monotonous
curve. Then a B-spline is fitted to the sorted data, the difference between data
and fitted curve is quantized and stored, together with the information necessary
to invert the sorting process. Their experience suggests that the ordering of the
sorted data is similar between adjacent timesteps such that delta-encoding can be
used to compress the ordering information. The accuracy of the reconstructed data
is reported by two quantities, the normalized root mean squared error (NRMSE),
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and Pearson’s correlation coefficient defined by

NRMSE D
�P

i.Di � QDi/
2
	 1
2

max.D/�min.D/
; � D cov.D; QD/

�.D/�. QD/ ;

where D denotes the original data, QD the de-compressed data, and � the standard
deviation. In [46] they report compression factors between 3:8 and 5:6 for error
bounds � > 0:99 and NRMSE < 0:01 and five different data sets.

FEMZIP FEMZIP [67, 68] is a commercial tool for the compression of finite
element solutions created by certain FE-programs. After a quantization step with
prescribed relative or absolute tolerance, a prediction step follows. In space, a
hierarchic approximation of the FE functions is performed, using coarsening of
the computational grid by algebraic multigrid techniques [68]. In time, prediction
based on rigid body movements is used. As a final step, the approximation residual
is compressed using arithmetic encoding. Compression factors of up to 13.3 are
reported [67], but without quantitative specification of the accuracy.

2.3 Geometry Compression

Compression of geometric data is a vital factor in many computer graphics and
visualization applications. Here we will briefly discuss techniques developed for
the compression of polygonal surface meshes. For a more detailed overview and
comparisons of various schemes we refer to the excellent surveys [2, 54].

A wealth of compression schemes have been developed for single-rate coding
(compressing the whole mesh in a region-growing fashion) as well as progressive
coding (encoding the model from coarse to fine). For triangle meshes, the most
prominent single-rate coders are the Edgebreaker [56] and the method of Touma
and Gotsman [69] which both spawned numerous descendants. In particular, the
early-split coder of Isenburg and Snoeyink [33] and the optimized Edgebreaker
encoding of Szymczak [66] are among the best-performing variants and are able
to achieve bit rates well below the Tutte limit [71] of roughly 3.24 bits per vertex.
In addition, many triangle mesh compression schemes have been generalized to
polygonal meshes, such as Martin Isenburg’s method [31] which extends the Touma-
Gotsman coder.

Bits rates can be improved even further by accessing already encoded geometry
data when encoding connectivity and vice versa, hence exploiting the correlation
between connectivity and geometry. Based on this approach, FreeLence [38]
is especially performant in the triangular case, while Angle Analyzer [47] is
optimized for quadrilateral meshes.

Progressive coders follow a different approach: the coder starts from a coarse
mesh and then successively encodes refinement data for finer representations of
the model. This approach allows the application of multiresolution analysis to



268 S. Götschel et al.

decorrelate high- and low-frequency components of the geometry and/or attribute
data such as colors and texture coordinates. Details in the data are thus represented
as wavelet-coefficients which typically feature a smaller entropy than the original
representation.

Wavelet transforms have been presented for both (unstructured) hierarchical and
irregular grids. The latter group employs mesh coarsening methods that progres-
sively remove vertices causing the smallest distortion. Prominent coders in this
category are [1, 32, 73]. The best results for geometry compression however have
been achieved for hierarchical meshes where efficient wavelet transforms have been
derived based on the notion of subdivision. The best known scheme in this group is
the progressive geometry compression (PGC) codec by Khodakovsky et al. [42]
adapting the established zerotree coding scheme [61] from image compression.
Numerous variants have been proposed extending PGC to different types of meshes
[41], resolution scalability [3], and efficient embedded quantization [53]. Using
context-based entropy coding to account for intraband correlations of the wavelet
coefficients, Denis et al. [12] and von Tycowicz et al. [75] are able to further improve
the compression performance. In addition, [75] incorporates strategies to encode
adaptively refined hierarchies independently of the geometry or attribute data. We
utilize these strategies in our coding technique presented in Sect. 4.

In the field of geometry compression the accuracy is typically measured in
terms of the root mean square error as reported by METRO [9] which is based
on a point-to-surface distance and thus neglects tangential errors. For an accuracy
of orders 10�4 to 10�5 w.r.t. the bounding box diameter, FreeLence reports
average compression factors of 21 for irregular triangle meshes whereas [75]
achieves average factors of 29 and 122 for adaptive and uniform hierarchical grids,
respectively.

3 Specialized Methods for Optimization with Differential
Equations

In the remainder of this paper, we focus on methods tailored to the needs of optimal
control problems governed by time-dependent differential equations.

3.1 Checkpointing

So-called “checkpointing methods” are a tool for the computation of the reduced
gradient using the adjoint equation. Instead of keeping track of the whole forward
trajectory, only the solution at some intermediate timesteps is stored. During the
integration of the adjoint equation, the required states are re-computed starting
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from the snapshots. In the analysis of checkpointing methods, fixed spatial grids
are usually considered, such that each checkpoint has the same size.

3.1.1 Fixed Timesteps

During the forward simulation, the algorithm has to decide when to create a
checkpoint. In the simplest setting, the temporal mesh is fixed as well as the
spatial grid, and the checkpoint distribution can be computed beforehand (“offline
checkpointing”). In the following we denote by c the total number of checkpoints,
and by nt the total number of timesteps of the time discretization.

One obvious strategy would be to place checkpoints uniformly over the time
interval, a technique also known as windowing, see e.g. [6]. Recursive application
of this strategy to each group of timesteps between two checkpoints results
in a multilevel checkpointing strategy [6, 22]. Neither technique yields optimal
distributions, i.e. distributions leading to a minimal amount of re-computations.
Binomial checkpointing [20, 21] is based on the fact that the maximal number of
timesteps ˇ.c; r/ that can be reversed fulfills

ˇ.c; r/ D
 

cC r

c

!
;

when c checkpoints and at most r re-computations of each timestep are allowed. Via
dynamic programming one can evaluate the minimal extra number of forward steps
t.nt; c/ necessary to compute the adjoint using c checkpoints as

t.nt; c/ D rnt � ˇ.cC 1; r � 1/;

where r is the unique integer satisfying ˇ.c; r � 1/ < nt � ˇ.c C 1; r � 1/, see
e.g. [21, 22]. An implementation called revolve by Griewank and Walther [21] is
available.

The achieved compression factor for storage space is given by nt=c. However, due
to multiple read- and write-accesses of checkpoints during the re-computations for
the adjoint equation, the reduction in memory bandwidth is significantly smaller. An
evaluation of the number of times a snapshot is written or read can be found in [63].
There Stumm and Walther analyze a multistage approach, where some checkpoints
are kept in RAM, others written to a hard disk or tape. Evaluating the write counts
for instance for nt D 1000 timesteps, and c D 50 checkpoints, i.e. compression
factor 20, shows that only about 5% reduction of memory bandwidth is achieved
for these parameters [78]. In this example we get r D 2, and the computational
overhead amounts to 1; 948 additional forward steps.

Here, we assumed that each timestep has the same computational cost; in case
of non-uniform timestep cost, optimal checkpoint distributions can be evaluated in
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O.cn2t / if the timestep costs are known a priori [76]. Alternatively, heuristics can be
used for checkpoint placement [62].

3.1.2 Adaptive Timesteps

If the number of timesteps is not known beforehand, the optimal checkpoint
distribution cannot be computed. Thus in practical applications, the user has to resort
to “online” placement of checkpoints during the state integration.

An extension of the revolve algorithm, named a-revolve, is proposed in [27, 62],
and applied to optimal control of the Navier-Stokes equations. There, a heuristic
strategy to overwrite the contents of a previously recorded checkpoint is developed,
based on estimates of the computational cost for the current and the updated
snapshot distribution. While the resulting scheme is not proven to be optimal,
numerical experiments indicate that the generated checkpoint distribution is close
to the corresponding offline one.

Other work on online checkpointing was started in [26], with extensions and
theoretical foundations in [64]. The approach presented there is proven to be optimal
in terms of re-computations for repetition number r D 2 and nt � ˇ.c; 2/. For r D 3
and ˇ.c; 2/ < nt � ˇ.c; 3/ optimal checkpoint distributions cannot be computed,
but for a wide range of timesteps nt, the resulting algorithm is close to optimal. The
method works by continuously overwriting certain previously set checkpoints, until
the end of the state integration. For re-computations during the adjoint integration,
intermediate snapshots are stored using optimal offline checkpointing.

A different strategy for choosing which checkpoints to replace is devised in [77].
Although their algorithm, called dynamic checkpointing, works for an arbitrary
number of timesteps nt, the resulting distribution has just an optimal repetition
number r, but is not optimal in terms of the total number of re-computations.

For all three methods the reduction in memory bandwidth is drastically smaller
than the reduction in storage space. In fact, due to the frequent overwriting of
snapshots, it is questionable if a reduction of bandwidth can be achieved at all.

3.1.3 Discussion

Checkpointing is a compression method, which was originally developed for
computation of gradients via the reverse mode of automatic differentiation, where
a huge number nt of arithmetic operations has to be reversed. In that context, two
features are particularly important: checkpointing is lossless, and, for a constant
number of checkpoints c, the additional computational work, governed by the
repetition number r, grows slowly for an increasing number of operations, r �
n1=c

t [22]. For optimization with time-dependent differential equations as constraints,
we are not interested in adjoining every arithmetic operation, but in the solution of
the backward-in-time adjoint PDE. This requires access only to the solution of the
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state equation at every timestep, which is re-computed by solving the state equation
with the closest checkpoint as initial data. As the number of timesteps is typically
small compared to the number of arithmetic operations in automatic differentiation,
the actual additional work—for typical settings two up to four additional solves of
the state equation—carries more weight than the limit behavior for increasing nt.
Moreover, in terms of data transferred, only a small reduction of bandwidth can be
achieved, in particular with online checkpointing.

When using second order optimization methods, like Newton-CG, the state
trajectory is needed in each CG iteration to evaluate Hessian-times-vector products,
leading to higher computational work, as checkpoints are overwritten during adjoint
integration, and thus their original information is lost for the subsequent CG
iterations and has to be re-computed as well.

For non-uniform timestep cost which is not known a-priori, checkpoint distri-
butions have to be chosen heuristically. With adaptive mesh refinement, also the
sizes of the snapshots are unknown a priori. For this case, no optimal checkpoint
distributions are known, not even heuristics.

3.2 Lossy Compression

Checkpointing methods pay for the storage reduction with an increase in runtime,
but reconstruct the solution data exactly. However, due to discretization of the
state equation by finite elements, quadrature, and iterative solution of the resulting
linear equation systems, the solution is inherently inexact. Thus a trade-off between
storage demand and accuracy is natural.

3.2.1 Point-Wise Error Bounds

In [78] we propose using the general principle of transform coding for the
compression of finite element solution trajectories. It consists of a prediction step,
quantization, and entropy coding of the prediction errors, see Fig. 1. To fix the
setting we consider spatial discretization by a nested family T0 � � � � � Tl of
simplicial triangulations, constructed from an initial triangulation T0 of a polygonal
domain ˝ � R

d. This grid hierarchy can be created either by uniform or adaptive
refinement. The set of vertices on level j is denoted by Nj. The time grid for the
time interval Œ0;T� is given by 0 D t0 < � � � < tf D T. For brevity, we restrict the
attention to piecewise linear finite elements.

Quantization For a given accuracy ı > 0 we define the quantization Qı W R! Z

as

Qı.y/ WD
�

yC ı
2ı

�
;
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Encoder

yi

transform

Φ : Rn → R
n

y �→ z

quantization

Qδ : Rn → Z
n

z �→ ξ

entropy coding

c : Zn → {0, 1}Nc

ξ �→ b

bitstream storage

decoding

c−1:{0, 1}Nc → Z
n

b �→ ξ

dequantization

Q†
δ : Zn → R

n

ξ �→ ẑ

inverse transform

Φ−1 : Rn → R
n

ẑ �→ ŷ

ŷi

Decoder

Fig. 1 Principle of transform coding

the reconstruction Q�

ı W Z! R is then given by Q�

ı .
/ WD 2ı
. This guarantees the
quantization error bound

jy � Q�

ı.Qı.y//j � ı:

This implies an `1 error bound of ı on the coefficient vector, and hence an L1
bound on the FE function.

Prediction in Space Values yk associated with coarse level vertices are quantized
directly to 
k D Qı.yk/, yielding a reconstructed value Oyk WD Q�

ı.
k/. For new
vertices xk 2 Nj nNj�1 on level j > 0, we make use of the grid hierarchy and
quantize and store only the deviation of yk from a prediction Pk.Oym W m 2 Nj�1/
obtained from reconstructed values Oym from lower level vertices. There are several
algorithmic choices for the predictor. One possibility is a change of basis from
the nodal basis to the hierarchic basis [79]. This is easily implemented, as it is
essentially the application of prolongation matrices between grid levels, which is
easily accessible in most FE codes.

A priori estimates for the compression factors were derived in [78]. To achieve
L1-interpolation error accuracy for the reconstructed FE function, 2:9 bits/vertex
in 2D and 2:5 bits/vertex in 3D are sufficient. This amounts to compression factors
of 22:1 and 25:6, respectively, compared to storing double precision floating point
values at 64 bits/vertex.

Prediction in Time Additionally, temporal correlations can be used to further
reduce the entropy of the data. If gradient based methods like steepest-descent or
quasi-Newton methods are used, the state solution is only accessed backwards in
time, and no random access is required. Thus, we can use delta-encoding, and store
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for a timestep tn < tf only the difference



k .tn/ D
(

k.tn/� 
k.tnC1/; k 2 �Nj.tn/nNj�1.tn/

	\ �Nj.tnC1/nNj�1.tn/
	


k.tn/; otherwise
:

At the final timestep tf ,



k .tf / D 
k.tf / 8k 2 Nj.tf /nNj�1.tf /:

Delta-encoding the quantized coefficients avoids error accumulation. Of course
higher order prediction can be used instead of the constant predictor described
above, at the expense of keeping more timesteps in RAM.

Entropy Coding The quantized and possibly delta-encoded coefficients 

k are
written to disk using range coding [49]. They are encoded with variable-size
symbols, where fewer bits are assigned to the more frequent coefficients.

More details and numerical examples can be found in [78].

3.2.2 Adaptive Error Control

A crucial algorithmic choice is the quantization tolerance ı. To choose the error
bound as large as possible without impeding the convergence of the optimization
algorithm, we need to estimate the induced error in the reduced gradient j0.u/ D
Ju.y; u/� cu.y; u/?�. Typically, Ju and cu are independent of y, such that the error is
determined by the error of the adjoint. If additionally cy does not depend on the
state, e.g. for linear equations, the error in the adjoint e� satisfies the equation
cy.y; u/?e� D �Jyy.y; u/"y, where "y denotes the error in the reconstructed state
solution. For nonlinear equations, the error additionally depends on cyy.y; u/"y and
the solution of the adjoint equation with inexact data. Computationally available
estimates of the gradient error can be used to determine the quantization tolerance
according to the progress of the optimization procedure. A detailed discussion can
be found in [17].

For second order methods, errors in the reduced Hessian have to be considered
as well. A derivation of error estimates and the influence on a Newton-CG method
can be found in [19] specialized to the application in optimal control of cardiac
defibrillation, and more general in [17].

3.2.3 H�1 Error Bounds

While bounding the pointwise `1 error in the coefficients of the reconstructed
FE solution trajectory is easily implemented and yields good compression factors,
considering other error measures is reasonable in the optimal control setting. In
particular, the reconstructed solution enters into the right-hand side of the adjoint
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equation. Due to smoothing properties of parabolic equations, a quantization
error with high spatial frequency is preferable, such that the H�1-norm is more
appropriate.

Controlling the H�1 error can be achieved by using a wavelet transform to
represent the finite element solution y.x; tn/ at some fixed timestep tn as

y.x; tn/ D
X

k2N0

y0;k�0;k.x/C
l�1X

jD0

X

m2NjC1nNj

zj;m j;m.x/:

For this we assume again a level partitioning of the grid verticesN D N0[� � �[Nl,
and denote by the subscript j; k values belonging to vertex k on grid level j. We use
the abbreviations n.j; k/ D fm 2 NjC1 nNj j m is a child of kg and N.j;m/ D fk 2
Nj j k is a parent of mg. Here, a vertex m 2 NjC1 is a child of k1 2 Nj, if m was
created by splitting an edge Œk1; k2�. The scaling functions �j;k satisfy the refinement
relation

�j;k D �jC1;k C
X

m2n.j;k/

1

2
�jC1;m;

the wavelets are of the form

 j;m D �jC1;m �
X

k2N.j;m/

sj;k;m�j;k:

The lifting coefficients sj;k;m are determined to impose vanishing moments on the
wavelets, see e.g. [8, 65]. In particular, one vanishing moment is easily obtained on
unstructured grids if the mass matrix is available.

The modified coarse grid values y0;k and wavelet coefficients zj;m are computed
using the fast wavelet transform with lifting [58, 65], for grid levels l � 1; : : : ; 0:

zj;m D yjC1;m � 1
2

X

k2N.j;m/

yj;k 8m 2 NjC1 nNj

yj;k D yjC1;k C
X

m2n.j;k/

sj;k;mzj;m 8k 2 Nj:

Norm equivalences, e.g. [11], suggest that the error bound ky � OykH�1 < " holds,
if the wavelet coefficients zj;k are quantized using a level-dependent tolerance ıj �
2j.d=2C1/".

To compare a first, simple implementation of this approach with the hierarchical
basis (HB) prediction of Sect. 3.2.1, we use the three functions

f1.x/ D sin.12.x0 � 0:5/.x1 � 0:5//; x 2 Œ0; 1�2
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Fig. 2 Compression factors for hierarchical basis prediction/point-wise error bounds (HB) and
wavelet-based compression (WLT), for three test functions and different mesh sizes

f2.x/ D sin.50.x0 � 0:5/.x1 � 0:5//; x 2 Œ0; 1�2

f3.x/ D kxk2 C sin.12.x0 � 0:5/.x1 � 0:5//; x 2 Œ0; 1�3:

For the HB approach, quantization tolerances were chosen to achieve L1-interpo-
lation error accuracy. For the wavelet approach the tolerance was set to achieve the
same H�1 error as the corresponding HB result. The resulting compression factors
shown in Fig. 2 indicate that on average a wavelet approach might indeed give better
compression factors when H�1 reconstruction errors are used..

3.2.4 Discussion

The lossy compression technique sketched in this section offers significant reduction
of storage space as well as memory bandwidth, as only the compressed data
is transferred to storage media. The computational cost of the basic method is
negligible: Quantization, delta-encoding in time, and entropy coding consist only
of cheap elementary arithmetic operations; in space, the prediction step amounts
to the computation of products between prolongation matrices and FE coefficient
vectors. Prolongation matrices are often available from multigrid preconditioners,
or can otherwise be computed inexpensively on the fly.

As a downside, information is discarded in the quantization step, and the FE
solution cannot be reconstructed exactly. If used in optimal control of differential
equations, adaptive control of the quantization error ensures that the inexactness
has no influence on the convergence of the optimization. For other post-processing
tasks, like data analysis or visualization, the error norms and tolerances can be
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chosen according to the particular needs of the application, offering a flexible way
to balance data size and accuracy.

3.3 Other Techniques

In this section we briefly discuss two techniques for the solution of optimal control
problems, with memory reduction as a side effect.

3.3.1 Model Reduction

Model reduction techniques focus mainly on the reduction of computational com-
plexity via approximation of large-scale problems by smaller ones. First developed
for handling parameter-dependent differential equations, in the last years this
algorithm class has been applied to optimal control and inverse problems as well.
One popular method for the construction of reduced models is proper orthogonal
decomposition (POD). There, a basis is computed from the solution of the state
equation at a number of given timesteps. For many problems, only a few basis
vectors are necessary to get sufficiently accurate approximations. A detailed analysis
of POD methods for parabolic PDEs can be found in [43], see e.g. [28] for the use
of POD in optimal control. In terms of memory requirements, only the snapshots of
the solution of the large-scale problem need to be stored.

Due to the reduced-order model, only sub-optimal controls can be computed.
To judge the quality of the approximate solution, a-posteriori error estimators
were developed. In [70], such an estimator is derived for the linear-quadratic
case, and extended to semilinear equations in [40]. For the evaluation of the error
estimate, state and adjoint solutions of the full problem are needed, posing the
same requirements for storage space as the original large-scale problem. A different
technique is suggested in [37]: they use the full model to compute the gradient and
only use reduced models to find a suitable steplength for the control update. Again,
no reduction in memory size is achieved. While both methods reduce memory
bandwidth, a combination with lossy trajectory compression for evaluation of error
estimators or gradient computation appears attractive.

3.3.2 Multiple Shooting

Multiple shooting is a well established method for the solution of ODE boundary
value problems. The time interval Œ0;T� is decomposed in a number of sub-intervals,
with auxiliary variables for the interfaces ensuring continuity of the solution. The
resulting cyclic, nonlinear system of equations is typically solved using Newton’s
method. Details and a short overview of the history of shooting methods can be
found in [13], for instance. In the last years, this principle was applied to solve
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optimal control problems governed by time-dependent partial differential equations,
e.g. [10, 23–25]. The decomposition of the time domain leads to optimization
problems on the sub-intervals, where locally state and adjoint are implicit functions
of the control and the auxiliary variables [10]. Sequential solution of the local
problems leads to a storage reduction, as only the trajectory on the respective sub-
interval is needed. The coupling of the sub-problems via the auxiliary variables
(“matching conditions”) avoids the disadvantage of moving horizon techniques,
where only sub-optimal controls can be computed (see e.g. [34]). Combination
with adaptive mesh refinement is discussed e.g. in [24, 25], where a dual weighted
residual (DWR) method [5] is used for error estimation.

Although the resulting algorithms are easily parallelizable due to the splitting
in local sub-problems, significant storage reduction is only achieved in sequential
computations, or if the number of sub-intervals is considerably larger than the
number of CPUs. Each CPU then has to provide storage only for the currently
processed local problem, plus additional storage for the auxiliary variables. Again,
a combination with lossy trajectory storage is an attractive possibility.

4 Compression of Hierarchical, Unstructured Grids

For problems with spatially localized solution features, it is beneficial to use
adaptively refined spatial meshes to reduce the computational cost and memory
demand of simulation and optimization. As a downside, in the context of trajectory
storage discussed here, this incurs the need to store the mesh together with the
trajectory data. For applying our lossy compression approach, we even need the
complete hierarchy, not just the leaf level. In this section we discuss an efficient
algorithm for mesh storage [39, 75], as well as the integration of this method with
the lossy compression approach described above.

4.1 Connectivity Compression

Numerous strategies for the adaptive refinement of grids have been presented in
the literature. Exploiting the particular structure inherent to a given strategy is
paramount in the construction of an efficient compression scheme. Here we present
a method that is tailored to hierarchies based on split operations for which the
resulting grid is independent of the order in which the operations are applied. In
particular, we confine our attention to the well-known and established red–green
refinement [4] on two-dimensional grids. However, the ideas presented here can
also be adapted to refinement schemes for three-dimensional grids and/or other
types of elements. For example, [75] additionally provides results for quadrilateral
hierarchies.
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Typically, the root grid is described by a small, carefully laid out mesh that can
be compressed well using single-rate coders. Explicitly, our implementation uses
FreeLence [38] to losslessly encode the triangular base mesh. Starting from the
root grid, it is sufficient to encode which elements (including those on finer levels)
have been refined to reconstruct the adaptive hierarchy. Thus, the hierarchy can be
represented as a forest where each node corresponds to an element in the grid and
the parent-child relation reflects which triangles resulted through refinement of a
particular coarse one.

We convert this representation into a bit stream by traversing the forest breadth-
first and writing true only if the node has children, i.e., was refined. If a geometric
criterion is used to resolve non-conforming situations between elements of differing
refinement grade, we can uniquely determine the connectivity of the grid from the
root grid together with the bit stream. However, if the conformization is determined
exclusively by local indexing, additional symbols have to be coded whenever there
is freedom of choice, e.g. a coarse triangle with two refined neighbors (see Fig. 3
middle). We entropy code these symbols, but found that they where virtually
incompressible without knowing the exact implementation of the grid manager.

Before compressing the bit stream we remove nodes whose state can be implicitly
reconstructed. In particular, no symbols are written in the following cases:

1-Regularity In balanced grids, neighboring triangles must not differ in more
than one level of refinement to ensure a certain level of shape regularity. Thus,
elements adjacent to coarse green triangles cannot be refined and can therefore
be culled from the bit stream.

Stream Truncation Due to breadth-first traversal, nodes at the finest level are
visited last. The corresponding false symbols can be left from the stream since
they cause no further refinements. In fact, we discard all trailing false entries.

Uniform Refinement We store a separate byte that encodes the degree of uniform
refinement, allowing the coder to skip all nodes on coarser levels.

Overall, for the test set of adaptive hierarchies used in [75], the above steps allow to
nearly halve the number of bits in the binary representation, without even looking
at the characteristics of the particular input grid. However, grids do show certain
characteristics in practice and we use context groups as a simple measure to account
for the conditional entropy (see [60]) of the bit stream. Just like two adjacent pixels
in a digital photograph are likely to be similar, the refinement grades in hierarchical
meshes typically tend to be locally similar. We call two nodes within one level of
the hierarchy adjacent, if their corresponding triangles share an edge. This notion of
locality allows us to define the context of a node based on the refinement status of its

Fig. 3 Red-green
conformizations of
non-conforming
configurations due to adaptive
refinement
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neighbors. Naturally, we may only assume knowledge of neighbors whose status is
also available during decoding. Thus, we define the context of a node by the number
of refined, not refined, and unknown neighbors. The latter category is made up of
nodes whose status cannot be implied and have not been traversed so far. We write
(x; y; z) to denote the context with x refined, y not refined, and z unknown adjacent
triangles. The symbols of different context groups are kept in separate arrays, which
are entropy coded independently. With arithmetic coding, each context group will
then compress to its conditional entropy in the limit, allowing us to exploit the
correlation in the refinement status of adjacent triangles.

However, the mutual information inherent to each context group varies dras-
tically. For example, context (0,0,3) with all neighbors unknown is virtually
incompressible as no advantage can be taken of mutual information. The same holds
for context groups where the extra information is rather ambiguous, for example
(1,1,1), (1,2,0), and (2,1,0). At the contrary, the other context groups perform very
well in the experiments. These observations motivate an optimization of the traversal
scheme used within each level since the iteration of nodes can be arbitrary as long as
encoder and decoder agree on a common one. Instead of iterating each node using a
standard breadth-first in-order traversal of the forest, we determine an ordering that
attempts to maximize the mutual information. The idea is to prioritize each node by
the entropy of its current context. Learning these entropies, however, is expensive
in terms of compression performance as well as computational cost. As shown
in [75], this approach typically leads to a fixed prioritization of context groups
once the learning phase is settled. Therefore, the effects of the learning process
of the contexts’ entropies can be remedied by using fixed priorities. Explicitly,
context groups are assigned higher priorities with decreasing number of unknown
neighbors, where ties are resolved by prioritizing contexts with a higher number of
known refined neighbors. While the (culled) binary representation of the hierarchy
is almost incompressible when entropy coded directly, the proposed context groups
together with the improved traversal reduced the code length by more than 50 % for
the test data in [75].

Furthermore, the proposed context-based coding can easily be extended to time-
varying series. When coding the status of a node in a sequence of frames we can
extend the context groups to account for its status in a previous frame. The previous
state of a node can either be refined, not refined, or it did not exist, hence we triple
each context. If the refinements between frames does not vary much, the contexts
corresponding to previously refined nodes will mainly comprise true symbols
whereas the other contexts will primarily contain false. Therefore, grids which
equal their preceding frame can be stored at no cost (except for a small overhead due
to the increased number of context groups). On the contrary, if there is no correlation
between the frames, the compression will be as good as in the static case since the
entropy of the individual context groups cannot increase.
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4.2 Numerical Example

The lossy compression method discussed in Sect. 3.2 is implemented in the C++
finite element toolbox Kaskade 7 [18]. An implementation of the algorithm for
connectivity compression is available in JavaView [36], a toolkit for mathematical
geometry processing and visualization. Both packages have been combined using
the Java Native Interface to allow a fully adaptive solution of optimal control
problems with compression of both meshes and solution data.

As an illustrative example we use an optimal control problem for the mon-
odomain equations describing the electrical activity in the heart (see e.g. [44, 51])
on a simple 2D unit square domain ˝ D .0; 1/2. As membrane model, we use the
Rogers-McCulloch variant of the Fitzhugh-Nagumo model [55]. The state equations
for the transmembrane voltage v and the gating variable w are given by

vt D r � �rv � gv
�
1 � v

vth

	�
1 � v

vp

	C �1vwC �˝c u.t/

wt D �2
� v
vp
� �3w

	
;

together with homogeneous Neumann boundary conditions, and initial values

v.x; 0/ D
(
101:0 in ˝exi

0 otherwise

w.x; 0/ D 0 in ˝:

Here, ˝exi is a circle with radius 0:04 and midpoint .0:5; 0:5/. The state variable
is y D .v;w/; � W R2 ! R

2�2 and g; �i; vp; vth 2 RC are given parameters. For
details, see e.g. [50]. The control u is spatially constant on the control domain˝c D
Œ0:37; 0:4�	 Œ0:45; 0:55�[ Œ0:6; 0:63�	 Œ0:45; 0:55�. The objective is to dampen out
the excitation wave front induced by the initial values,

J.y; u/ D 1

2
kvk2L2.˝obs�.0;T// C

˛

2
kuk2L2.0;T/ ! min;

where ˝obs D ˝ n �Œ0:35; 0:42� 	 Œ0:43; 0:57� [ Œ0:58; 0:65� 	 Œ0:43; 0:57�	, and
˛ D 3 	 10�6. Optimality conditions and more details can be found in [19].
We use adjoint gradient computation and the BFGS-Quasi-Newton method [52]
for optimization. Spatial adaptivity is performed individually for state and adjoint
using the hierarchical DLY error estimator [15]. For time stepping, a linearly
implicit extrapolated Euler method [14] is used, with fixed timestep sizes for ease
of implementation.

First, we consider just one iteration, i.e. one state and adjoint solve, on the time
interval Œ0; 6� with timestep size 0:04. In space, we restrict the number of vertices
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Fig. 4 Uncontrolled solution v at 1, 3 and 6ms. The adaptively refined meshes have 37,344,
41,729 and 38,346 vertices
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Fig. 5 Compression factor of the state values using lossy compression with ı D 10�2 compared to
double precision floating point values at 64 bits/vertex (left), bits/vertex for connectivity encoding
(right), both with and without delta-encoding between timesteps

Table 1 CPU times (in seconds) for one state and adjoint solve, averaged over five test runs

State values Grid
Solve Setup Encode Decode Encode Decode Transfer

State 3026.2 31.4 11.3 – 90.6 – –

Adjoint 1473.1 31.4 – 3.7 – 59.3 183.6

Times are measured without delta-encoding of trajectory and mesh

to be less than 60,000. We choose a fixed quantization tolerance ı D 10�2, yielding
a relative absolute error bound of 10�4 for v. In Fig. 4 we show the v component
of the state variable at selected times. Compression factors for the state values, and
the number of bits/vertex necessary for connectivity encoding is shown in Fig. 5.
Using delta-encoding in time more than doubles the achieved overall compression
factor for the state values. The bits/vertex for connectivity encoding are reduced to
66 % of the storage size obtained by compressing each timestep separately. Detailed
CPU times are shown in Table 1. solve consists of time for assembly, adaptivity, and
solution of the linear systems using BiCGStab [74] with an ILU preconditioner. For
state value compression, during setup, the prolongation matrices required for the
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spatial prediction are generated, which is more expensive than the actual encoding
and decoding. The overall computational overhead for state value compression
amounts to 1:4% in the state equation, and 2:4% in the adjoint. Encoding and
decoding the mesh take up 3% and 4% in state and adjoint, respectively. As state
and adjoint equations are solved on independently adapted grids, the de-compressed
state trajectory has to be interpolated on the adjoint mesh (last column in Table 1)
which takes up 12:5% CPU time of an adjoint solve; this overhead occurs also if
the trajectory is stored uncompressed. In our current preliminary implementation,
we have to re-create the mesh hierarchy in the Java code for encoding, and in
the C++ code after decoding. Additionally, as different data structures are used in
the two combined software toolboxes, re-assignment of the degrees of freedom is
necessary after the encoding step. This significant overhead is not included in the
CPU times reported here, as it can be avoided by improving the implementation.
For delta-encoding, at each timestep tn, additional work is required for checking if a
vertex k already existed in the previous timestep tn�1, determining its corresponding
quantized residual 
k.tn�1/, and computing the difference 
k.tn�1/ � 
k.tn/. For a
suitable implementation, this increases the computation times for encoding and
decoding by approximately 50 %.

Second, the complete optimization is performed on the time interval Œ0; 4�, with
timestep size 0:04, and a restriction to at most 25,000 vertices in space. Figure 6
shows the progress of the optimization method. For trajectory compression, different
fixed quantization tolerances were used. We estimate the spatial discretization error
in the reduced gradient by using a solution on a finer mesh as a reference. Clearly,
lossy compression has no influence on the optimization progress, up to discretization
error accuracy.

Remark Numerical results are given here for one specific example. The proposed
lossy compression scheme for the state values was applied to several other optimal
control problems, both linear and nonlinear, with comparable results [17, 78]. Good
compression factors are achieved even for highly nonlinear dynamics and adaptively

Fig. 6 Optimization progress
for different quantization
tolerances for the state
trajectory. No delta-encoding
between timesteps was used
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refined grids [19]. Compression of hierarchical meshes yielded excellent results for
a variety of examples [75].

5 Conclusion

To reduce the memory requirements of scientific data, essentially two classes of
algorithms are available: methods like checkpointing, which reduce storage space
at the cost of computation time, and lossy compression techniques, where the
trade-off is between memory requirements and accuracy. While general purpose
floating point compression methods can be used for many different applications,
good compression results can only be achieved with structure-exploiting techniques,
like checkpointing, FEMZIP, or our lossy compression approach.

Optimal control problems pose specific requirements for accuracy, which can
be satisfied using quantitative error estimates to choose suitable quantization
tolerances. The combination of lossy state values compression and compressed
storage of adaptively refined meshes yields significant reduction of storage space,
at small computational cost. As only the compressed data has to be transferred to
and from mass storage, memory bandwidth requirements are reduced by the same
factor.

Acknowledgements The authors gratefully acknowledge support by the DFG Research Center
MATHEON, project F9.
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Optimal Control of Heat and Fluid Flow
for Efficient Energy Utilization

Yosuke Hasegawa

Abstract Application of the optimal control theory to turbulent flows and asso-
ciated transport phenomena opens up a unique possibility of seeking an optimal
set of control inputs (design parameters) without relying on researchers’ subjective
insights. As an example, it is shown that heat transfer enhancement and skin friction
drag reduction is simultaneously achieved in wall turbulence, where it has been
considered to be difficult to achieve such dissimilar heat transfer enhancement due
to the strong similarity in the governing equations of heat and fluid flow. The control
input is assumed to be zero-net-mass-flux wall blowing/suction and its spatio-
temporal distribution is optimized so as to minimize a prescribed cost functional
defined within a finite time horizon. Surprisingly, the resultant control input exhibits
a streamwise traveling wave-like property. Although increase in the time horizon
significantly enhances the resultant control performance, time horizons employed
in previous studies are commonly limited due to the strong nonlinearity of turbulent
flows. Applying a multiple shooting method would be promising to further increase
the time horizon, and thereby improve the resultant control performance.

1 Background

1.1 New Horizon for Optimizing Thermo-Fluids Systems

Towards achieving the future sustainable society, prediction and control of interfa-
cial phenomena play curtail roles. For example, the turbulent momentum transfer at
solid-fluid interfaces governs the energy losses in high-speed transport applications,
such as aircrafts, marine vessels, trains, automobiles, pipelines, ventilation systems,
to name a few. Enhancing heat and mass transfer across solid-fluid or fluid-
fluid interfaces is essential for improving energy efficiencies in air conditioning
systems, heat recovery systems, chemical reactors, and so forth. Optimal design
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of three-dimensional complex porous structure is particularly important to promote
electrochemical reactions in electrodes of solid-oxide fuel cells and lithium ion
batteries. Due to the multi-scale and highly non-linear nature of fluid flow and
associated transport phenomena, however, optimal design of these energy devices
are not trivial. In the present paper, we focus on control of turbulent transport
phenomena as a typical example of non-linear problems.

Conventionally, academic researchers have been extracting essential elements
from practical problems, and trying to understand the underlying physics. It
has been believed that such fundamental knowledge will eventually be useful
for designing innovative thermo-fluids systems. Since the first direct numerical
simulation (DNS) of wall turbulence by Kim et al. [12], with the aid of rapid
development of computational resources, numerical simulation has grown as a
powerful tool alternative to existing experimental techniques in deepening our
understanding and modeling of complex turbulent transport phenomena. Indeed, the
range of application of numerical simulation has been significantly expanded, and
this enables to obtain much more detailed flow statistics which cannot be measured
experimentally. Despite these progresses, optimization of thermo-fluids systems
remain a difficult task. There exists no established approach for predicting how
a finite change in a certain design parameter influences resultant drag, heat/mass
transfer or chemical reactions in thermo-fluid systems, due to their highly non-linear
and multi-scale nature. Optimal control theory opens up a new horizon for seeking
an optimal set of design parameters based on the governing equations of underlying
physics.

1.2 Overview of Turbulence Control Research for Skin
Friction Drag Reduction

During the past several decades, a huge amount of effort of the turbulence research
community has been devoted to advance our understanding of turbulent dynamics
both experimentally and numerically. Based on this knowledge, various types of
control strategies have been proposed. Although flow control has a wide range of
applications, such as modifying momentum/heat/mass transfer, suppressing noise,
enhancing lift and so forth, we hereafter focus on skin friction drag reduction, which
is one of the most active topics in the flow control community.

Existing control schemes are roughly classified into two categories, i.e., active
and passive controls. Passive control typified by a riblet surface is advantageous in
the sense that it does not require additional energy consumption for flow control.
However, their control performance is generally smaller than that of active controls.
In addition, they are effective under limited flow conditions close to a design point.

In contrast, active control is generally more flexible and effective, although
additional energy consumption for driving actuators is required. Active control
is further classified into predetermined and feedback controls. In the former, a
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control input with spatio-temporal coherence is specified a priori and it is applied
without sensing the instantaneous flow field. Starting from spanwise wall oscillation
[9], various types of predetermined control schemes have been developed. They
are, for example, spanwise traveling wave of body force[5], streamwise traveling
wave of wall blowing/suction [14] and deformation [8], standing and traveling
waves of spanwise wall forcing [15, 16]. Although significant drag reduction rate
is achieved in the predetermined controls, they commonly suffer from relative large
energy consumption for applying control. Finding a control input leading to a larger
drag reduction rate with smaller control energy input is a major challenge in the
predetermined control.

The feedback control generally offers better control performance with small
power consumption than the predetermined control. However, it requires a complex
sensor-actuator system, possibly fabricated by Micro Electro Mechanical System
(MEMS) [10] in order to detect an instantaneous flow state, of which signals
are used to trigger actuators. One of the most widely-accepted feed-back control
strategy is the so-called opposition control proposed by Choi et al. [4]. In this
strategy, wall blowing/suction is applied in order to oppose the wall-normal velocity
fluctuation at a certain distance away from the wall. By optimizing the sensing
location, they demonstrated 15–20 % drag reduction in DNS of a low Reynolds
number turbulent flow. In this study, the control input is determined based on the
sensing information inside the fluid domain. In real systems, however, the available
information is considered to be limited to wall quantities. Accordingly, Lee et al.
[13] developed a control algorithm using wall information based on the suboptimal
control theory. In the suboptimal control theory, the control input is optimized so
as to minimized a prescribed cost functional in the next computational time step.
Their algorithm achieves 12 % drag reduction by using the spanwise wall shear
stress or wall pressure. These quantities, however, are in most cases difficult to
measure using small sensors distributed on the wall [10]. Hence, Fukagata and
Kasagi [6] redefined the cost functional based on the near-wall Reynolds shear
stress, and achieve drag reduction by using streamwise wall shear stress, which is
the easiest quantity to measure with a relatively small error. In the above studies,
the control inputs are optimized by taking into account only short-term dynamics
in the suboptimal control framework. The “real” optimal control with a finite, but
non-vanishing time horizon was first conducted by Bewley et al. [3], where more
than 60 % drag reduction is obtained, and an initial turbulent flow is eventually
relaminarized due to the applied control. The significant enhancement of control
performance from suboptimal to optimal controls implies the importance of taking
into account the future dynamics in determining a control input.
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1.3 Dissimilar Control of Momentum and Heat Transfer: Less
Friction and More Heat Transfer

In many practical problems, one often encounters a significant challenge to not only
minimizing drag, but also enhance heat and mass transfer. Indeed, the analysis [2]
based on the second law of thermodynamics shows that one of ultimate goals in
controlling heat and fluid flow is to achieve an infinitely large heat transfer rate with
minimum drag. However, such dissimilar heat transfer enhancement should be a
difficult task due to strong similarity between the governing equations of fluid flow
and heat in most of shear flows. Namely, on the one hand, turbulence has to be
suppressed to reduce drag, but at the same time, mixing has to be promoted in order
to enhance heat/mass transfer.

Recently, Kasagi et al. [11] revisited the governing equations and boundary con-
ditions of heat and fluid flow in order to clarify possible scenarios for dissimilar heat
transfer control. Among these scenarios, a control strategy based on the fundamental
difference between the divergence-free velocity vector and the conservative scalar is
considered to be most promising. Based on this idea, Hasegawa and Kasagi [7] first
demonstrated dissimilar heat transfer enhancement in a fully developed turbulent
channel flow by applying the suboptimal control theory. More recently, Yamamoto
et al. [17] applied the optimal control theory to the same problem and higher
control performance was obtained. Specifically, they first achieved simultaneous
drag reduction and heat transfer enhancement. In the following, we summarize
the recent advancement on dissimilar heat transfer enhancement control in wall
turbulence.

2 Numerical Configurations

2.1 Numerical Schemes and Conditions

We consider a fully developed turbulent flow between two parallel plates as shown
in Fig. 1. The streamwise, wall-normal and spanwise directions are denoted by
x1, x2 and x3, whereas the corresponding velocity components are u1, u2 and u3,
respectively. The origin of x2 is located at the center of the channel so that the
locations of the two walls are x2 D 1 and �1, respectively. The total volume of
the computational domain is V˝ , whereas the domain boundary is expressed by � ,
the subscript of which represents the normal direction. In all cases, the horizontal
channel dimensions are set to 2:5�ı and �ı in x1 and x3 directions, respectively.
These are sufficiently large to reproduce the reliable turbulent statistics in a low
Reynolds number flow considered here.
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Fig. 1 Computational domain and coordinate system

The governing equations of incompressible fluid flow are given by the following
Navier-Stokes and continuity equations:

@ui

@t
C uj

@ui

@xj
D � @p

@xi
C 1

Re

@2ui

@xj@xj
; (1)

@ui

@xi
D 0: (2)

Here, all variables are normalized by the bulk mean velocity Ub defined later in
Eq. (7) and the channel half depth ı, so that the dimensionless channel height is two
(see, Fig. 1), whereas p is the static pressure and t is time. The Reynolds number is
defined as Re D Ubı=�, where � is the kinematic viscosity of fluid.

The temperature is treated as a passive scalar, so that any buoyancy effects do not
arise. Consequently, the transport equation of heat is given by

@�

@t
C uj

@�

@xj
D QC 1

PrRe

@2�

@xj@xj
: (3)

Here, the temperature is also non-dimensionalized by the temperature difference
between the bulk fluid and the wall, �b � �w. The Prandtl number is the ratio of
� and the thermal diffusivity ˛, i.e., Pr D �=˛, whilst the heat source term Q is
generally a function of time and space.

In the present study, the heat source is assumed to be time-independent and
spatially uniform throughout the computational domain, and identical to the mean
pressure gradient:

Q D � @p

@x1
; (4)
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where the over-bar represents averaging in the homogeneous directions, i.e., x1 and
x3, and also time t. In addition, Pr is also set to be unity. This particular condition is
chosen, since it makes the transport equations and boundary conditions for u1 and �
similar, so that the essential difference between the divergence-free velocity vector
and the conservative scalar can be analyzed[7]. We also note that the present ideal
condition is close to the thermal conditions in real heat exchangers[17].

We consider local wall blowing/suction with zero-net-mass-flux as a control
input. For the tangential velocity components and the temperature, we impose
the no-slip and constant-temperature conditions at two walls. The resultant wall
boundary conditions are described as

ui

ˇ̌
ˇ
�2˙

D �ni; (5)

�
ˇ̌
ˇ
�2˙

D 0: (6)

Here, the control input, i.e., the wall-normal velocity component imposed at the
wall, is denoted by �, the sign of which is defined to be positive when the applied
control input is directed to the outer normal vector ni at the boundaries of the
fluid domain. In the horizontal directions x1 and x3, we apply periodic boundary
conditions.

The governing equations (1)–(3) for the velocity and thermal fields are solved
by DNS with a second-order finite volume method. More detailed description of
the numerical scheme can be found in Yamamoto et al. [17]. All calculations
are conducted under a constant bulk mean velocity and the Reynolds number is
mostly set to be Re D 2293. Due to the similarity in the mathematical form
between physical and adjoint problems (see, Eqs. (16) and (23)), the essentially
same numerical method is used for solving the adjoint velocity and thermal fields
introduced later.

2.2 Control Performance Indices

Following Hasegawa and Kasagi [7], the bulk velocity Ub and the bulk temperature
�b are respectively defined as the following cross-sectional average of flow rate and
temperature:

Ub D 1

V˝

Z

˝

u1dV; (7)

�b D 1

V˝

Z

˝

�dV: (8)
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As the indices of heat transfer and pressure loss, the following Stanton number
St and the friction coefficient Cf are defined:

St D qw

Ub.�b ��w/
; (9)

Cf D 	w
1
2
Ub

2
; (10)

where

qw D � 1

PrRe
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@y
n2
ˇ̌
ˇ
�2
; (11)

	w D � 1
Re
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@y

n2
ˇ̌
ˇ
�2

(12)

are the dimensionless wall heat flux and skin friction, respectively.
If the profiles of the averaged streamwise velocity and temperature are similar,

2St is exactly equal to Cf at Pr D 1. Therefore, we define an analogy factor as

A D 2St

Cf
: (13)

Physically, A represents heat transfer per unit pumping power. The main objective
in dissimilar control is to increase A from unity by manipulating turbulence.

2.3 Optimization Procedure

In applying optimal control theory to flow problems, a cost functional is first
defined, and then a control input is iteratively updated so as to minimize the
cost function within a prescribed time horizon. The correction of a control input
in each iteration is obtained by solving the adjoint velocity and thermal fields
backward in time. Ideally, the time horizon should be long enough to cover the
whole life-time of turbulence dynamics, but it is not computationally trackable.
Therefore, it is common to choose an intermediate finite time horizon T as shown
in Fig. 2. Once a control input converges, the time horizon is advanced by Ta,
and then a new optimization procedure in the next time horizon starts. In the
following, we define the cost functional, derive the adjoint equations, and describe
the optimization procedures without getting into the mathematical details, which
can be found in other literatures [1, 3]. In the present study, the time horizon is set to
be T=.ı=Ub/D 10, which is almost identical to the maximal value used in the drag
reduction control by Bewley et al. [3], while Ta D T=10 is employed.
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Fig. 2 Schematic of optimization procedure. In each time horizon, the evolution of velocity and
thermal fields are solved under a preliminary control input as shown by the red arrows, which is
followed by adjoint computation depicted by the blue arrows

2.3.1 Defining the Cost Functional

We define a cost functional as follows:

J D �
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Re
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; (14)

where t D 0 corresponds to the beginning of the time horizon. The first term
represents the cost of control, while the second term is exactly a quantity we
attempt to enhance, i.e., the analogy factor. Hence, under this cost functional, the
control input is optimized so as to maximize A with the least intensity of wall
blowing/suction. Ideally, A has to be determined by the ratio of 2St and Cf integrated
over a sufficiently long period. Since the optimal control theory takes into account
only flow dynamics within a finite time horizon, however, A is approximated by
the integrals within the time horizon as shown in the second line of Eq. (14). The
weight coefficient � corresponds to the relative cost of the control input. In the
present study, � is specified so that the intensity of the control input � is 5 % of the
bulk mean velocity.
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2.3.2 Optimal Control Theory

For ease of notation, the flow state  , the flow perturbation state  0 and the adjoint
state  � are expressed as the following vector forms:
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A ; 0 D
0
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� 0
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0
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��

1

A : (15)

The governing equations (1)–(3) for the velocity and thermal fields can be written
in a functional form as
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Then, we consider the perturbation field 0 of velocity and thermal fields induced
by a small change of a control input �. Following Bewley et al. [3], the perturbation
is defined by the Frechét differential of the original flow state  as

 0 �D lim
�!0

 .� C �0�/ � .�/
�

; (17)

where � is an infinitesimal constant.
Since both the original and perturbed flow states satisfy Eq. (16), the following

linear equations for  0 is obtained:
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where the wall boundary conditions are given by

u0i D ��0ni; �
0 D 0 on �˙2; (19)

u0i D 0; � 0 D 0 at t D 0: (20)
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In Eq. (18), the products between perturbations are all neglected since the pertur-
bation is assumed to be sufficiently small. Although Eqs. (18)–(20) indicate the
linear relationship between �0 and  0, it is not straightforward to derive the explicit
relationship between �0 and the resultant change of the cost functional J0. In order
to overcome this difficulty, the adjoint velocity and thermal fields are introduced.

The flow optimization can generally be viewed as a minimization problem of
a cost functional J under the constraints on the flow states, i.e., the governing
equations and the boundary conditions of flow and thermal fields. This is equivalent
to minimizing the following Hamiltonian H:

H D J � hN. /; �i ; (21)

where the adjoint state  � corresponds to the Lagrangian multiplier.
The Frechét differential of Eq. (21) leads to

DH
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D J0 � ˝ 0;N�. �/˛ � b; (22)

where N� is the adjoint operator of N0. We impose the following relationship for the
adjoint field:
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so that the second term on the right-hand-side of Eq. (22) vanishes. The first term
on the right-hand-side of Eq. (22) is the Frechét differential of the cost functional,
and can be written as
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where S� 2˙ represents the boundary area of �2˙. The third term on the right-hand-
side of Eq. (22) is called a boundary term, since it includes only boundary integrals
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as shown below:
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The terminal and boundary conditions for the adjoint state are given by

 �
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so that the integrand of Eq. (22) is eventually factorized by �0 as follows
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The final form of Eq. (29) guarantees that correcting the control input by �0 D
�.�� � p�/ decreases H. Therefore, after solving the adjoint field, the control input
is updated as follows:

�nC1 D �n � ˇ.��n � p�/; (30)

where the superscript represents the number of iteration, while ˇ is a relaxation
coefficient. In the present study, ˇ is determined so that both j�nC1 � �nj < 3:0 	
10�3. This increases ˇ as the control input converges. Hence, ˇ < 8 is also imposed
throughout the optimization procedure.
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2.3.3 Suboptimal Control Theory

One of major obstacles in applying the optimal control theory to fluid flow and
associated transport phenomena is to solve physical and adjoint problems iteratively
within a time horizon as shown in Fig. 2. In addition, solving the adjoint equations
requires complete information of the physical field during the time horizon (see,
Eq. (23)), so that large memory capacity is needed. In order to mitigate the
computational load, the suboptimal control theory was developed. In the suboptimal
control, a control input minimizing a cost functional within a vanishingly small time
horizon is considered. Neglecting the response of the non-linear terms appearing in
Eqs. (1)–(3) to an infinitesimal change of control input, the short-term response of
the velocity and thermal fields to a control input can be obtained analytically by
taking into account linear processes only.

The suboptimal control input for dissimilar heat transfer enhancement was
derived in Hasegawa and Kasagi [7]. The resultant control inputs at bottom and
top walls are given by
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Here, O� represents Fourier coefficient for a particular combination of the streamwise
and spanwise wave numbers, i.e., kx and kz, and k D p

k2x C k2z . It should be
emphasized that the control inputs (31), (32) are expressed with the information
of the physical field at the same instant. Therefore, the iterative computation of the
adjoint field is not required in the suboptimal control.

The proportional constant � is determined so that the intensity of � is equal to
5 % of the bulk mean velocity as is the case for the optimal control introduced in the
previous subsection.

3 Results

In this section, the control performances achieved by the optimal and suboptimal
control theories are compared. Note that the control performance is generally
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Fig. 3 Time traces of Cf and
St achieved in the optimal and
suboptimal controls
normalized by the values of
the uncontrolled flow

Fig. 4 Time traces of
analogy factor achieved in the
optimal and suboptimal
controls

enhanced with increasing the intensity of the control input. Accordingly, the
intensity of the control input is fixed to 5 % of the bulk mean velocity in both
controls for fair comparison.

In Fig. 3, the time traces of Cf and St obtained in the suboptimal and optimal
controls normalized by the values in the uncontrolled flow are shown. In the case of
the suboptimal control, Cf and St are both increased due to the control. However,
St is enhanced more than Cf . Specifically, St is increased three times from the
uncontrolled value, whereas Cf remains only doubled. In the case of optimal control,
more significant control performance can be confirmed. Namely, St is doubled,
whilst Cf is decreased by 30 % from the uncontrolled value. This is a surprising
result, since 30 % drag reduction rate is larger than that obtained in the opposition
control [4]. In addition, the opposition control causes drag reduction only, but does
not enhance heat transfer. The time trace of the analogy factor A is shown in Fig. 4.
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Fig. 5 Instantaneous
snapshot of the control input
obtained in (a) suboptimal
and (b) optimal control
theories. The flow direction is
from left to right

It is found that A � 1:5 is achieved in the suboptimal control, whereas A reaches as
high as 2.7 in the optimal control.

The top views of the instantaneous control inputs at the bottom wall obtained in
the suboptimal and optimal control theories are shown in Fig. 5. The red and blue
colors correspond to regions of wall blowing and suction, respectively. Interestingly,
both the control inputs are characterized by wavy distributions in the streamwise
direction. In addition, visualization of time traces of these waves (not shown here)
reveals that they travel downstream at a constant phase speed, which is around 20–
30 % of the bulk mean velocity [7, 17]. These results indicate that the streamwise
traveling wave of wall blowing/suction is promising for enhancing heat transfer with
minimum pressure penalty.

4 Discussions: Possible Application of Multiple Shooting
Method

The advantage of applying the optimal control theory to flow problems is that
a control input is optimized based on the governing equations of heat and fluid
flow. As shown in Fig. 5, the present control inputs obtained by the optimal and
suboptimal control theories commonly exhibit a streamwise traveling-wave like
property. Despite their simplicity, it is quite difficult to derive such a control strategy
only from researchers’ physical insight.

It is also interesting to compare the control performances obtained in the subop-
timal and optimal control theories. Obviously, the control performance achieved in
the optimal control theory with a finite time horizon T is better than that achieved in
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the suboptimal control theory, where a vanishingly small time horizon is assumed.
Similar trend is also observed in the drag reduction control by Bewley et al. [3].

Although there is tendency that a larger T results in better control performance
up to T � 10, it is found that further increase of the time horizon makes the adjoint
computation diverge. This could be attributed to the fact that the mathematical
derivation of the optimal control input is based on the linearized perturbation
equation (18), where the perturbation of a flow state induced by a small change
of a control input is assumed to remain sufficiently small during the time horizon,
so that all non-linear terms can be neglected. However, it is well-known that a
small disturbance grows very rapidly in turbulent flow due to its nonlinear nature.
This implies that the perturbation equation (18) is invalid for a large time horizon.
Obviously, a different approach is necessary to extend the time horizon further.
In this respect, a multiple shooting technique would be an interesting option. Its
application to flow problems remains the future work.

5 Summary

Although significant progresses have been made in understanding and modeling
turbulent flows in the last few decades, control of turbulence and associated transport
phenomena remains a challenging task due to their highly nonlinear and multi-scale
nature. The optimal control theory provides a unique opportunity to optimize a con-
trol input without relying on researchers’ subjective insights. In the present article,
we apply two different approaches, i.e., the optimal and suboptimal control theories,
to wall turbulence with heat transfer. In the former, the control input is determined
so as to minimize a prescribed cost functional defined within a finite time horizon,
whereas in the latter, the time horizon is assumed to be infinitesimal, so that the
response of the non-linear terms are all neglected. Although the suboptimal control
theory has advantage that it does not require iterative computations of the physical
and adjoint equations, there exists a general trend that the control performance is
enhanced with increasing the time horizon. This implies significance of taking into
consideration the future dynamics in determining the control input. However, the
time horizons employed in previous studies are commonly limited due to strong
non-linearity of turbulent flows. Applying a multiple shooting method would be
one promising option for further increasing the time horizon, and thereby achieving
higher control performances.
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A Unified Approach to Integration
and Optimization of Parametric Ordinary
Differential Equations

Daniel Kaschek and Jens Timmer

Abstract Parameter estimation in ordinary differential equations, although applied
and refined in various fields of the quantitative sciences, is still confronted with a
variety of difficulties. One major challenge is finding the global optimum of a log-
likelihood function that has several local optima, e.g. in oscillatory systems. In this
publication, we introduce a formulation based on continuation of the log-likelihood
function that allows to restate the parameter estimation problem as a boundary value
problem. By construction, the ordinary differential equations are solved and the
parameters are estimated both in one step. The formulation as a boundary value
problem enables an optimal transfer of information given by the measurement time
courses to the solution of the estimation problem, thus favoring convergence to the
global optimum. This is demonstrated explicitly for the fully as well as the partially
observed Lotka-Volterra system.

1 Introduction

Ordinary differential equation (ODE) models play a key role for understanding and
predicting the behavior of dynamic systems originating from various disciplines
like physics, chemistry or the life sciences. In many cases, these dynamic models
depend on parameters that are not known beforehand but need to be determined
from measurement data by means of statistical methods. Inference of parameters of
dynamic systems from measurement data is commonly realized by optimization of
the likelihood function. Optimization is a broad field and many different algorithms
have come up over the last decades [1, 7, 11, 13, 14], each of them with problem
specific advantages and disadvantages. One characteristic distinction between
optimizers is whether they include stochasticity or not. Stochastic optimizers,
e.g. evolutionary algorithms [6], particle swarms [9, 12] or simulated annealing
[18] are especially valuable for discontinuous likelihood functions where gradient
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information is not available or not defined. On the other hand, many deterministic
optimizers employ information about the differentiable structure of the likelihood,
i.e. gradient and Hessian information. For differentiable likelihood functions this
has the advantage that convergence is achieved much faster. However, this approach
has to struggle with other difficulties. If the likelihood function has local optima,
the outcome of the optimization procedure depends on the starting point. Once the
optimizer is approaching a local optimum, the algorithm will not leave this optimum
disregarding the existence of better optima.

The problem of local optima has been addressed by several approaches. It has
been shown that a combination of deterministic and stochastic optimization can
help escaping local optima and finding the global optimum [15]. Other approaches
modify the dynamic system by homotopy transformations [16] introducing a fac-
tor � that allows for a continuous transition between the modified, convex problem
and the original problem. Hence another approach is the multiple-shooting method
[2]. Most optimizers follow a single-shooting approach, i.e. model trajectories are
computed based on given initial values and the outcome is compared to the data. In
contrast, the multiple-shooting approach introduces a grid of time-points and initial
condition parameters. The optimizer is initialized with discontinuous trajectories
and constraints are defined guaranteeing that all trajectories become continuous in
the course of optimization.

In our work, we present a reformulation of the optimization problem as a
boundary value problem (BVP). The motivation for this approach is twofold.
The first argument follows from the history of gradient-based single-shooting
optimization for parameter estimation in ordinary differential equations. The per-
formance and accuracy of this method has been enormously increased by solving
the ODE together with its’ derivatives with respect to the parameters, i.e. the
sensitivity equations, in one integration run. This augmentation step allows a fast
and accurate computation of the gradient but still evaluation and optimization of the
objective function are separate steps. Our aim is to take the next logical step and
incorporate even optimization into the ODE integration. The second argument takes
up the multiple-shooting idea: the possibility to initialize BVP solvers with prior
knowledge like approximate trajectories from measurement data. If the optimization
problem is equivalently expressed as a boundary value problem then a good
initialization should increase the solver’s ability to find the correct solution.

In the following, we show how both objectives can be matched. Our aug-
mentation of the ODE is based on continuation of the log-likelihood function
to a differentiable function of time. The resulting system constitutes a BVP.
By construction, the solution of this BVP is optimal with respect to the log-
likelihood function and it can be obtained by standard numerical BVP solvers.
The initialization of the BVP solver allows for an efficient transfer of information
provided by the observation data.
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2 Methods

We consider a dynamic system defined by ordinary differential equations (ODE),

d

dt
x D f .x; p/; x.0/ D x0; (1)

with time t, states x 2 �n and parameters p 2 �r. The extension of the system
by d

dt p D 0 transforms the parameters into usual state variables. For the augmented
states 
 D .x; p/, parameter estimation becomes an estimation of initial conditions.
Furthermore, let xobs D .x1; : : : ; xm/, with m � n, be the observed states and let
fxD
1 .tj/; : : : ; x

D
m.tj/gj denote the time-discrete observation data. The observation data

can be approximated by a continuous data function x D
obs.t/ D .xD

1 .t/; : : : ; x
D
m.t//,

e.g. by linear interpolation or spline interpolation. On the other hand, we assume
that measurement events for different time points are statistically independent,
consequently, the likelihood function

L.
0jfx D
obs.tj/gj/ D

Y

j

Lj.
0jx D
obs.tj// (2)

factorizes and the negative log-likelihood

`.
0jfx D
obs.tj/gj/ D

X

j

� log Lj.
0; x
D
obs.tj// (3)

� 1

T

Z T

0

r.
0; t/dt (4)

can be approximated by the integral. Here, r.
0; t/ denotes the continuous approx-
imation of � log Lj.
0; x D

obs.tj//. For standard normally distributed noise, r.
0; t/

becomes
�
xobs.t/�x D

obs.t/
	2

which will be used in the following. The argumentation
also holds for other noise distributions.

An initial condition vector O
0 D .Ox0; Op0/ 2 �nCr is a local optimum if r`. O
0; t D
T/ D 0 vanishes at the latest observed time point T. Since `.
0; t D 0/ D 0 for all
values of 
0 at initial time, the gradient r`. O
0; t D 0/ D 0 vanishes, too. This
observation constitutes the boundary condition that needs to be matched for a local
optimum, i.e.

r`. O
0; 0/ D r`. O
0;T/ D 0: (5)

Each line of Eq. (5) has the potential to determine one parameter value. In order to
include this condition into the dynamic system (1), r` is derived with respect to
time. At this point it is crucial having approximated the negative log-likelihood by
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an integral expression:

d

dt
r`.
0jx D

obs.t// D
1

T

d

dt

Z t

0

rr.
0; 	/d	 (6)

D 1

T
rr.
0; t/ (7)

D 2

T

�
xobs.t/� x D

obs.t/
	�

D
0xobs.t/: (8)

Here, � indicates the transpose and D
0xobs.t/ denotes the Jacobian of xobs.t/ with
respect to the initial conditions 
0, also known as the sensitivities of the solution
trajectory xobs.t/. The sensitivities are determined by an ODE, too, hence the
complete systems reads

d

dt

 D f .
/ (9)

d

dt
D
0
 D D
 f D
0
 (10)

d

dt
r` D 2

T

�
xobs � x D

obs

	�
D
0xobs: (11)

The sensitivity equation (10) have fixed initial conditions, diag.�nCr/, with the
identity matrix �nCr 2 �.nCr/�.nCr/. The gradient equations (11) have both zero
initial and final condition, see Eq. (5), a boundary constraint that fully determines
the initial values of the augmented states in Eq. (9). On the other hand, these are
the parameters and initial conditions we seek to estimate. Hence, the desired values
O
0 optimizing the negative log-likelihood are part of the solution of the two-point
boundary value problem, Eqs. (9)–(11). Compared to gradient based single-shooting
methods, Eq. (11) represents the pivotal difference. It translates optimization into the
ambit of integration. This is the principle behind our optimization approach.

The solution of the two-point boundary value problem is obtained by the
Fortran 77 code TWPBVP [4, 5], available from the Netlib repository. The method
used in TWPBVP is a deferred correction method based on mono-implicit Runge-
Kutta formulas and adaptive mesh refinement. The deferred correction algorithm
uses the trapezoidal rule to obtain a first approximation to the required solution.
Finite difference approximations to the local truncation error are then added onto
this low order solution, increasing the accuracy of the solution repeatedly [3].

3 Example

In the following, we examine the Lotka-Volterra equations [8, 10, 17]. They give
a basic description of the predator and prey population dynamics. The system is
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defined by two differential equations

d

dt
A D A.˛ � ˇB/; (12)

d

dt
B D �B.� � ıA/; (13)

where A and B correspond to prey and predator respectively. The parameters ˛ and
ˇ describe prey reproduction and reduction, � and ı describe predator extinction
and reproduction. For non-zero initial condition, the solution of Eqs. (12)–(13) is a
sustained oscillation.

In the first part of the study, it is assumed that both populations are observed.
Observation data is simulated by numerically integrating the ODE system with
A0 D 1, B0 D 1:2, ˛ D 0:45, ˇ D 0:5, � D 0:3, ı D 0:1 and adding Gaussian
noise with � D 0:15 to the solution. Subsequently, the parameter values are sought
to be recovered from randomly chosen initial parameter guesses. The initialization
of the BVP solver, i.e. the grid of initially assumed values for each of the variables
in Eqs. (9)–(11), is obtained by integrating the sensitivity equation (10) with the
initial parameter guess and the data interpolations as input trajectories. The gradient
is assumed to vanish over the entire range.

Independently of the initial parameter values, the BVP solver converges to the
same solution. The result for one representative data set is shown in Fig. 1. The
States panel shows the solutions of the state variables A and B together with the data
points and error bars. As expected, the predator and prey trajectories hit about 67 %
of the error bars. In the Parameters panel, the solutions of the state variables ˛, ˇ,
� and ı are shown on a logarithmic scale, i.e. the dynamic parameters. The dots
indicate the values that have been used for simulation. The Sensitivities panel shows
the sensitivity trajectories which are typical for oscillating systems, i.e. oscillations
with increasing amplitude. Finally, in the Negative log-likelihood gradient panel,
the gradient solution is plotted. The time scale of gradient changes is determined by
the sampling density of the simulated time course. It hits the ground line in the end
point as desired, guaranteeing an optimum.

The BVP method has been tested systematically against a single-shooting
approach based on the Levenberg-Marquardt algorithm, implemented in the MIN-
PACK Fortran 77 package. For different simulated data sets, both, BVP method
and single-shooting method have been applied to the same random set of initial
parameter guesses. In order to avoid that, by chance, parameter vectors are too
similar, we employed Latin hypercube sampling with a hypercube covering 4 orders
of magnitude around the true parameter values. Both optimization approaches failed
convergence a number of times in which case 106 was assigned as value to the
negative log-likelihood. Figure 2 shows the first 200 sorted negative log-likelihood
values of the total 300 initial guesses for both approaches. The single-shooting
approach gets stuck in different local optima and finds the global optimum only in
4 % of the cases. In contrast, the BVP method proves to be robust against different
initial guesses for the parameter values. The solution converges either to the global



310 D. Kaschek and J. Timmer

Fig. 1 Solution generated by the BVP solver. The four panels show state solutions with simulated
data points, parameter solutions on a logarithmic scale with true values as dots, sensitivity solutions
and the gradient of the negative log-likelihood

minimum or it fails convergence. It is 6 times more efficient in finding the best
optimum. Figure 2 also gives some indication about parameter convergence regions.
For the BVP method, the set of initial parameters that finally converged to the best
parameter value covers almost the total range. However, fewer initial guesses with
˛ and ı larger than 1 lead to a successful reconstruction of the BVP solution. The
broad plateau of local optima for the single-shooting method is reflected in a clear
shift of final parameter values and a certain number of randomly distributed final
parameters.

In a second step, the observation of B is omitted and ˇ is fixed to 1 in order to
keep the system identifiable. Analogously to the fully observed system, data sets
have been simulated and Gaussian noise has been added. The comparison between
the single-shooting method and the BVP method is shown in Fig. 3a. The plots
indicate that the situation becomes more intricate if only one state is observed.
The convergence rate drops below 2 % for both approaches and the BVP method
reconstructs a variety of local optima, each of them with an almost identical negative
log-likelihood value. From the scatter plots in Fig. 3, two conclusions can be drawn
for the BVP method: First, whenever we found the global minimum, the parameters
were initially situated in the negative orthant, and second, the final parameters
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Fig. 2 Comparison of single-shooting and BVP method tested on the fully observed Lotka-
Volterra system. Each method has been applied to simulated data sets and for each data set,
initial parameter vectors have been generated by Latin hypercube sampling covering a range of 4
orders of magnitude around the true parameter values. The resulting negative log-likelihood values
were sorted, normalized by the smallest value and plotted on a logarithmic scale. In the scatter
plots, initial parameter vectors are plotted against final parameter values for each optimization that
resulted in a negative log-likelihood value smaller than 103

corresponding to the local optima form a submanifold with boundary in parameter
space.

Figure 3b shows the same picture for initial guesses starting from the negative
orthant only. In agreement with the expectation, the number of BVP solutions
corresponding to the global optimum increases considerably and exceeds the
success rate of the single-shooting method by a factor of 5.
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Fig. 3 Comparison of single-shooting and BVP method tested on the partially observed Lotka-
Volterra system. Each method has been applied to simulated data sets and for each data set, initial
parameter vectors have been generated by Latin hypercube sampling. Column (a) shows the results
for initial parameter vectors covering a range of 4 orders of magnitude around the true parameter
values. For column (b), initial parameters were restricted to values smaller than 100. In both cases,
the resulting negative log-likelihood values were sorted, normalized by the smallest value and
plotted on a logarithmic scale. In the scatter plots, initial parameter vectors are plotted against final
parameter values for each optimization that resulted in a negative log-likelihood value smaller than
103

4 Conclusion

In case of a partially observed system, the success rate of the BVP method depends
on favorable initial conditions. Whereas the single-shooting algorithm performed
equally badly over the entire parameter space, for the boundary value approach,
it was possible to identify an attractive basin resulting in a considerably increased
convergence rate.

From the fully observed Lotka-Volterra system, we conclude that the bound-
ary value approach is excellently suited as optimization approach if numerous
observables are available. In this case, it clearly outperforms the single-shooting
Levenberg-Marquardt algorithm in terms of convergence to the global optimum.
The strength of the presented optimization approach is its ability to exploit the
measured time courses in a natural way. This favors convergence to the global
optimum. Unlike single-shooting approaches, convergence to local optima or
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false convergence claims are efficiently reduced. On the other hand, the deferred
correction algorithm seemed to be very sensitive to the grid initialization by initial
parameter and state guesses, manifesting in a large number of non-convergent
attempts. This problem increased with the size of the time domain. At this point,
a multiple shooting algorithm, being based on time-domain decomposition, is
expected to be more stable and to provide a higher convergence rate.

In summary, we presented a reformulation of the estimation problem as a
boundary value problem which, in turn, is enabled by continuation of the negative
log-likelihood function to a time-differentiable function. This restatement elegantly
incorporates optimization and ODE solution in one task. By nature of the boundary
value problem, an initial guess for all state variables needs to be presented to the
numerical solver. The initialization by measured time-courses carries exactly the
information that is necessary to make the algorithm converge to the best optimum.
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A Variational Approach for Physically Based
Image Interpolation Across Boundaries

Matthias Klinger

Abstract In this contribution we present an optimal control approach for physics-
based optical flow estimation and image interpolation. The aim of the developed
process is to identify appropriate boundary data of an underlying physical model
describing the transport field, which reason the movement of an initial brightness
distribution. Thereby, the flow field as solution of the time-dependent non-linear
Navier-Stokes equations is coupled to a transport dominant convection-diffusion
equation describing the brightness intensity. Thus, we have to deal with a weakly
coupled PDE system as state equation of a PDE constrained optimisation problem.
The data is given in form of consecutive images, with a sparse temporal resolution,
representing the brightness distribution at different time points. We will present
the mathematical theory of the resulting optimisation problem, which is based on
a Robin-type boundary control. We describe the numerical solution process and
present by means of synthetical test cases the functionality of the method. Finally we
discuss the application of multiple shooting techniques for the considered problem,
since we observed that the employed Newton-type method is very sensitive with
respect to the chosen initial value.

1 Introduction

In many fields of research scientists are interested in fluid motion, e.g. weather
forecast, circulation around obstacles, microfluidic flows. However, to evaluate
accurate flow fields is often a hard task, regardless if we use measurement techniques
to document an observed flow or numerical modelling to simulate a similar flow
situation. A common methodology to document a fluid motion is to observe
the movement of a passive tracer in a given fluid flow by consecutive images.
These images represent a spatial and temporal discretisation of the evolution of
a brightness distribution given by a camera apparatus, which detects light signals
transmitting through the transparent fluid and the light absorbing passive tracer.
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The transport of a brightness value in the image domain is caused by a velocity
field, which is called the optical flow. In some situations the optical flow is closely
connected to the underlying physical flow. Heitz et al. [20] for example mention that
there exists a straightforward connection between the optical flow and the fluid flow
of a laser sheet visualisation of a two dimensional incompressible flow, when the
laser sheet is perfectly aligned with the flow. Thus the optical flow w is proportional
to the velocity u and satisfies a convection-diffusion equation. This connection
between optical flow and fluid flow can also be assumed for the observation of three
dimensional flows by two dimensional images, as long as the flow in z direction is
negligible. However, the optical flow field w serves then only as an approximation
of the planar flow field.

Hence, it is a good opportunity to work with optical flow estimation techniques
to obtain approximations of fluid flow fields. Approaches toward this direction
are already presented in the literature, as for example in the mentioned article of
Heitz et al. [20]. Another approach basing on the reformulation of the optical flow
functional by means of the underlying flow model was considered by Nakajima
et al. [29]. Another promising class of approaches was presented by Ruhnau and
coworkers [35–37], who regularised the classical Horn and Schunck cost functional
(cf. Horn et al. [22]) by applying physical models as PDE side condition in the
optimisation framework.

Especially, for environmental sciences this technique is attractive for the inves-
tigation of local wind systems in areas where a dense grid of measurement stations
is unavailable, but a tracer is transported in the atmosphere, which can be observed
by satellite remote sensing. For example Héas et al. [19] and Papadakis et al. [32]
considered the estimation of wind field information from satellite image sequences
observing cloud formations by image processing approaches. Another example for
environmental fluid flows is the movement of dust aerosols in northern Africa in
the Sahara desert. The measurements of the aerosol density in a certain area on
the earths surface at different time points, obtained by an instrument installed on a
geosynchronous satellite lead to a sequence of brightness distributions of a passive
tracer, the aerosols, which is transported by an optical flow field, which we assume to
be a approximation of the planar flow field in the ground-based atmospheric layers.
First attempts to use this image sequences to obtain these optical flow fields were
presented in the work of Bachl et al. [1, 2].

However, we aim to introduce a novel approach for physical-based fluid flow
estimation from observations of a passive tracer by combining the single features of
the above mentioned techniques in one approach, which place the emphasis on the
coupling of a high fidelity physical flow model, namely the incompressible, non-
linear and time-dependent Navier-Stokes equations, to the optical flow equation
by applying so called boundary controls. Then our focus is on the theoretical
justification and the numerical realisation of the method. Furthermore, we are
interested in the quality of the reconstructed underlying transport field by our
approach. Unfortunately, the mentioned example of a real world application has
too many complications (e.g. measurement errors, model uncertainties, occlusions,
varying illumination in the images) to tackle them all at the same time. Furthermore,
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appropriate reference data for a qualitative comparison of our results are not
available. Hence, we will consider a prototypical example with synthetic images
and some simplifications to present our approach, which employs beside the image
information also informations about the physical flow model and allows also
movement across the image domain boundaries, since images often represent only
an aperture of the real scenery.

Therefore, we assume that we observe a plane motion described by the time-
dependent (Navier-) Stokes equations, which transport a brightness distribution
I.x; t/ due to the following system of equations

@tI � "�I C u � rI D 0;
@tu � ��uC u � ruCrp D f; in ˝ 	 .0;T�;

r � u D 0;
(1)

with appropriate initial and boundary data. The image sequences are then obtained
by setting Ik D I.x; tk/ at discrete times tk.

Figures 1, 2 and 3 show three examples of such artificial image sequences. The
first two sequences are obtained with very simple flow fields but with flow across the
boundaries. In the third test case we observe a flow field which exhibits the time-
dependent character of the system (1). Our aim is then to identify the underlying
flow fields and the movement of the (bulb) signal. For this purpose we present an
optimisation problem with system (1) as PDE constraint. Thus, our methodology
can be interpreted as an optimal control problem with parabolic PDE constraints.
Such parabolic optimal control problems and their numerical treatment are widely

Fig. 1 Left: I1 at t D 0. Middle: I2 at t D 0:1. Right: I3 at t D 0:2. The transport field is given
by u D .2; 0/T

Fig. 2 .Ik/
6
kD1 at the time points tk D 0:04.k � 1/. The transport field is u D �.�y; x/T with

� D 5
2
�
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Fig. 3 .Ik/
6
kD1 at six different time points transported by a time-dependent solution of the Navier-

Stokes equations u.x; t/

discussed in the literature. We will mention a few example which are related to
the presented topics in this article. For example Kolmbauer et al. [26] present an
approach for time-periodic eddy current optimal control problems. Pearson et al.
[33] consider the numerical treatment of optimal control problems constrained by
convection-reaction problems while the article of Stoll et al. [38] considers the time-
dependent Stokes equation as side condition. Finally Gunzburger et al. [18] discuss
the use of space-time adaptive methods for optimal control problems with parabolic
evolution equations as side condition.

The article is organised in the following way. At first we describe variational op-
tical flow estimation techniques for the above mentioned synthetic image sequences.
Furthermore we describe their enhancement to optimal control problems. Then we
enhance the techniques to formulations which can even deal with flows across
the boundaries. Afterwards we discuss the mathematical theory for the presented
approach before we talk about the numerical techniques we need for a solution
of the presented approach. The sixth section is devoted to the presentation of
some numerical results for the mentioned artificial sequences. In the final section
we discuss the reformulation of our abstract problem as temporal boundary value
problem and the possible advantages of applying a multiple shooting method.

2 Physics-Based Optical Flow Equation

In the following˝ � R
2 denotes the image domain, which is in general a rectangle

˝ D .0; a/	 .0; b/. The brightness function is given by

I W ˝ 	 Œ0;T�! R
C; fx; tg 7! I.x; t/:

Our observations, the images, are spatial and temporal discretisations of I.x; t/:

I .i; j; k/ D I.xij; tk/
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on a certain space-time grid. However we assume throughout the article that the
spatial discretisation is fine, while the temporal discretisation is coarse, so that the
data is given by a temporally discrete sequence

.Ik/
N
kD1 D .I.x; tk//NkD1:

We consider throughout the article a two-dimensional incompressible flow with
the field u D .u; v/T . This flow field satisfies the two-dimensional non-stationary
Navier-Stokes equations

@tu � ��uC u � ruCrp D f in ˝ 	 .0;T�
r � u D 0 in ˝ 	 .0;T�

for appropriate initial values and boundary data. Since we do not consider a real
world application we conjecture w D u.

Remark 1 (Relation Between Optical Flow and Fluid Flow) As we already men-
tioned in the introduction their is a close relationship between the optical flow
in an image sequence and the fluid flow, which is documented by these images
observing the movement of a passive tracer. For a detailed description of this
relationship we refer the interested reader to Sect. 2.1 of Heitz et al. [20]. Especially,
for laser sheet visualisation of two-dimensional incompressible flows the connection
between optical and fluid flow is straightforward, as long as the laser sheet is aligned
with the flow field.

The brightness intensity function I.x; t/ fulfills then the physics-based optical flow
equation

@tI C u � rI D "�I in ˝ 	 .0;T�

with certain boundary conditions and an appropriate initial condition.
The coupled system of Eq. (1) describes then the evolution of an initial brightness

distribution I 0.x/. For further considerations we assume that no domain forces
cause the flow in the image domain, which means f D 0. Thus the boundary
conditions describe the flow scenario completely.

The aim of our work is to describe a method which recovers appropriate boundary
conditions for the flow field and the connected brightness function only by the
following available information:

(a) A temporal sparse image sequence: .Ik/
N
kD1,

(b) Model parameters: " and �,
(c) An estimate for the initial flow field: u0.
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3 Optimisation for Physics-Based Optical Flow

The recovering of appropriate boundary conditions is realised by a PDE constrained
optimisation problem. First ideas towards this direction, especially in the image
processing framework, are given in the work of Borzi et al. [8], Chen et al. [13] and
Klinger [25]. We start with the definition of the optimisation problem.

Definition 1 Find qI 2 QI , qu 2 Qu and .u; p; I/ 2 Vu 	 Vp 	 VI so that the
functional

J.fqI;qug; I/ D 1

2

NX

kD1
kI.tk/ �Ikk22 C

˛1

2

Z T

0

kqI.t/k2QI
dtC ˛2

2

Z T

0

kqu.t/k2Qu
dt

is minimised subject to an appropriate weak formulation of system (1), with f D 0,
I.0/ D I1 and u.0/ D u0 and so called control functions qu and qI for I and u on
the boundary.

The choices of Qu, QI and the type of boundary conditions are crucial for the well-
posedness of this optimisation problem as well as for the computational realisation
of the problem. We discuss a promising compromise in the next section.

3.1 Treatment of the Boundary Control Formulation

The first idea is to use Dirichlet controls

I D qI on @˝ 	 .0;T�
u D qu on @˝ 	 .0;T�; (2)

where we have to choose appropriate control spaces QI and Qu. For the existence
theory of solutions of the presented optimisation problem a main ingredient is the
existence theory of the state equation. In our case for the coupled system (1). This
system consists of a convection-diffusion equation, which is weakly coupled to
the incompressible Navier-Stokes equations. Both are parabolic PDEs. The natural
choice of functions to prescribe Dirichlet boundaries for parabolic PDEs is the space
H

1
2 .@˝/. This space is defined in the following way

H
1
2 .@˝/ D f' 2 L2.@˝/ W 9! 2 H1.˝/; ' D !j@˝g;

tributing to the fact, that L2-functions on the boundary exist which have no H1-
extensions to the interior of the domain.
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However, the implementation of an appropriate norm for this space in the cost
functional is complicated. One way of doing this was suggested by Of et al. [31], by
defining the semi-norm:

jqj2
H
1
2 .@˝/

D hS q; qi

with the Steklov-Poincare operator

S W H 1
2 .@˝/! H�

1
2 .@˝/; with q 7! @n!;

where ! is the solution of the elliptic PDE

��! D 0; in ˝; ! D q; on @˝:

Hence for each component controlled via a Dirichlet boundary condition we have
to solve an additional PDE problem, which increases the computational costs
drastically for fine spatial and temporal grids.

Other possibilities of implementing an H
1
2 -norm or an H

1
2 -semi-norm are based

on the calculation of complicated boundary integrals, which can hardly be treated
in the context of optimisation problems.

From the numerical point of view the most attractive choice of the control
space is the L2.@˝/. As mentioned before the theoretical justification for Dirichlet
controls is now cumbersome. However, there is a conceptual access to the problem,
which we want to briefly describe by means of the very simple PDE-constrained
optimisation problem

min
u2V;q2Q J.u; q/ D 1

2
ku � Ouk22 C

˛

2
kqk22

subject to the time-independent Poisson problem

�
u D f in ˝; u D q on @˝:

The idea is now to work with the very weak formulation of the state equation as
constraint (see May et al. [27])

� .u; �'/C hq; @n'i D .f ; '/ 8' 2 H2.˝/\H1
0.˝/;

and the spaces V D L2.˝/ and Q D L2.@˝/. The so formulated problem admits a
unique solution pair .u; q/. Belgacem et al. [7] showed that �-dependent solutions
.u�; q�/ of the optimisation problem

min
u� 2 H1.˝/;

q� 2 L2.@˝/

J.u�; q�/
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subject to

�ru�;r'
	C 1

�

˝
u� � q�; '

˛ D .f ; '/ ; 8' 2 H1.˝/

with � > 0, converge to a solution .u; q/ of the L2-Dirichlet control problem with
the very weak formulation of the Poisson problem as side condition as � tends to
zero.

Remark 2 It was shown by Hou et al. [23] that this concept of approximating
Dirichlet controls by using the penalised Neumann conditions for small choices of
� works also for optimisation problems with the time-independent Navier-Stokes
equations as PDE side condition and a certain choice of the cost functional.

However, for system (1) the presented theoretical background cannot easily be
carried over due to the fact that a very weak solution of the time-dependent Navier-
Stokes equations is only L4-regular in space (see Farwig et al. [16]), which is
neither sufficient for the presented cost functional nor for the existence theory of the
convection-diffusion equation describing the evolution of the brightness function.

We are not limited to use Dirichlet controls. For us the choice of the boundary
conditions is only a tool for the estimation of a reliable flow field which transports
the brightness distribution in an appropriate manner. Thus, we can work with the
above described Robin-type boundary conditions anyway. We state the optimisation
problem after introducing appropriate vector spaces.

Definition 2 (Solenoidal Vector Spaces) We define the following vector spaces

H1
div.˝/

2 WD f' 2 H1.˝/2 W r � ' D 0 in a weak senseg;

L2div.˝/
2 D H1

div.˝/
2
k�k2
:

Definition 3 (Robin-Type Control for Image Interpolation) Find

fu; Ig 2 L2
�
0;TIH1

div.˝/
2
	 	 L2

�
0;TIH1.˝/

	

and

fqu; qIg 2 L2
�
0;TIL2.@˝/2	 	 L2

�
0;TIL2.@˝/	

so that the functional

J.fqI;qug; I/

in Definition 1 is minimised, subject to the following weak formulation of the above
mentioned coupled system of equations.
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Definition 4 (Weak Formulation of the State Equation) For initial values
u0 2 L2div.˝/

2 and I1 2 L2.˝/ find a pair

fu; Ig 2 L2
�
0;TIH1

div.˝/
2
	 	 L2

�
0;TIH1.˝/

	

so that

Z T

0

�� .I; @t /C aI .uI I;  /C bI .uI qII I;  /
	
dt D .I1;  .0//

Z T

0

� � .u; @t'/C au .u/ .'/C bu .quIu/ .'/
	
dt D �u0;'.0/	

(3)

is fulfilled for all test functions

 2
n
 2 L2

�
0;TIH1.˝/

	
and @t 2 L2



0;TI �H1.˝/

	0� o
;

' 2
n
' 2 L2

�
0;TIH1

div.˝/
2
	

and @t' 2 L2


0;TI �H1

div.˝/
2
	0� o

:

(4)

The bi- and semi-linear forms are defined as follows

aI.uI I;  / WD " .rI;r /C .u � rI;  / ;

au .u/ .'/ WD � .ru;r'/C .u � ru;'/ ;

bI.uI qI I I;  / WD 1

�1
hI � qI;  i@˝ �

1

2
h.u � n/ I;  i@˝ ;

bu .quIu/ .'/ WD 1

�2
hu � qu;'i@˝ �

1

2
h.u � n/ u;'i@˝

(5)

Remark 3 (Temporal Regularity) The above formulation has on first glance not
enough regularity for a well-defined cost functional and meaningful initial condi-
tions in I and u. However, assume for a moment enough regularity to achieve the
equivalent weak formulation

.@tI; Q /C aI.uI I; Q /C bI.uI qI I ; Q / D 0 8 Q 2 H1.˝/

after partial integration and using a test function  .x; t/ D N .t/ Q .x/. It is
straightforward to show @tI 2 L2.0;TIH1.˝/0/ for the assumed regularity of I;u
and qI in Definition 3 outgoing from the last equation. Thus, due to the Gelfand
tripel

H1.˝/ � L2.˝/ � H1.˝/0
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we obtain I 2 C
�
Œ0;T�IL2.˝/	 by a standard result (cf. Evans [15]). The same thing

can also be proven for the solenoidal spaces in the Navier-Stokes case (cf. Temam
[39]).

Remark 4 (Strong Formulation of the Boundary Conditions) Under the assumption
of sufficient regularity of the functions we can extract from the above stated weak
formulations the following corresponding Robin boundary conditions:

"@nI D 1

�1
.qI � I/C 1

2
.u � n/ I on @˝ 	 .0;T�;

�@nu � pn D 1

�2
.qu � u/C 1

2
.u � n/ u on @˝ 	 .0;T�:

In the next section we will prove the existence of minimisers of the optimisation
problem in Definition 3.

4 Mathematical Theory of the Optimisation Problem

A first step towards a proof of the existence of minimisers of the optimisation
problem in Definition 3 is to prove unique solvability of the weak formulation in
Definition 4. Therefore, we consider at first the following result:

Theorem 1 For �2 2 .0; 1�, u0 2 L2.˝/2 and a fixed boundary function

qu 2 L2
�
0;TIL2.@˝/2	

the Navier-Stokes system in the second equation of (3) has a unique solution

u 2 L1
�
0;TIL2div.˝/

2
	 \ L2

�
0;TIH1

div.˝/
2
	
:

Proof We can obtain the result by a few simple modifications of the standard
Galerkin technique as presented in Temam [39]. At first we obtain the a-priori bound

Z T

0

�
d

dt
ku.t/k22 C �kru.t/k22 C

1

�2
ku.t/k2L2.@˝/2

�
dt � c

�2

Z T

0

kqu.t/k2L2.˝/2 dt;

(6)
since

.u � ru;u/ D 1

2

Z

@˝

.u � n/u2ds; (7)

in contrast to the usual proof. With inequality (6) we obtain the usual (weak and
strong) convergence properties of a certain subsequence.
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The properties are then used to prove the convergence of the sequence of
approximative solutions um of the Navier-Stokes system. The only difference to
the standard proof is the convergence of the semi-linear boundary form

Z T

0

Z

@˝

..um � n/um � .u � n/u/'dsdt! 0:

Therefore, we set wm D um � u and consider

ˇ̌
ˇ̌
Z T

0

Z

@˝

..wm � n/um C .u � n/wm/'dsdt

ˇ̌
ˇ̌ �

ˇ̌
ˇ̌
Z T

0

h.wm � n/ um;'i@˝ dt

ˇ̌
ˇ̌

C
ˇ̌
ˇ̌
Z T

0

Z

@˝

.u � n/wm'dsdt

ˇ̌
ˇ̌ :

(8)

As test functions ' we choose functions from a subset, which is sufficiently smooth
on the whole boundary and the time interval. The first term of the right hand side
in (8) is transformed in domain integrals by

Z T

0

h.wm � n/ um;'i@˝ dt D
Z T

0

.wm � rum;'/ dtC
Z T

0

.wm � r';um/ dt;

since um and wm are solenoidal. Due to the smoothness of the test function it is easy
to obtain that the terms on the right hand side vanish in the limit, since um converges
strongly in L2.0;TIL2.˝/2/. The second term of the right hand side in (8) can be
estimated

ˇ̌
ˇ̌
Z T

0

Z

@˝

.u � n/wm' dsdt

ˇ̌
ˇ̌ � sup

.x;t/2@˝�Œ0;T�
j'.x; t/j

Z T

0

j hu;wmi@˝ j dt

Weak convergence in L2.0;TIL2.@˝/2/ yields that this term is also vanishing. Thus,
the whole convergence of the Galerkin approximations in the weak formulation can
be obtained by standard continuity arguments.

For the uniqueness we assume the existence of two different solutions for the
same initial and boundary data. The difference is given by wm D u � v and we find
the identity

1

2

d

dt
kwmk22C�krwmk22C

1

�2
kwmk2L2.@˝/2 D �

1

2
..wm � ru;wm/� .wm � rwm;u// ;

after standard manipulations and by using Eq. (7). The Ladyzhenskaya inequality in
two space dimensions

kwmkL4.˝/2 � ckwmk 122 krwmk 122
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is used in combination with Young’s inequality to find

d

dt
kwm.t/k22 � ˇ.t/kkwm.t/k22:

with

ˇ.t/ WD c.�;˝/


ku.t/k2H1.˝/2

C ku.t/k22ku.t/k2H1.˝/2

�

Gronwall’s inequality and wm.0; x/ D 0 yields the uniqueness, since

Z t

0

ˇ.s/ ds � c.�;˝/

 Z t

0

ku.s/k2H1.˝/2
dsC ess sup

s2Œ0;t�
ku.s/k22

Z t

0

ku.s/k2H1.˝/2
ds

!

stays bounded due to u 2 L1
�
0;TIL2div.˝/

2
	 \ L2

�
0;TIH1

div.˝/
2
	
, which was

obtained by the a-priori bound in formula (6). ut
Theorem 2 For fixed parameters �1 and �2 in .0; 1� and boundary functions
qI 2 L2

�
0;TIL2.@˝/	 and qu 2 L2

�
0;TIL2.@˝/2	 there exists a unique solution

pair

fI�;u�g 2 L2.0;TIH1.˝// 	 L2.0;TIH1
div.˝/

2/:

Proof We consider the two aspects existence and uniqueness. We skip the index �i

with i D 1; 2 for abbreviation:

(Existence)

We use the standard Galerkin technique. Since the convection-diffusion equation
for the brightness I is not coupling back to the Navier-Stokes system we can argue
in the following way. By Theorem 1 we have the existence of a unique transport
field

u 2 L1
�
0;TIL2div.˝/

2
	 \ L2

�
0;TIH1

div.˝/
2
	
:

Hence, we find in the standard way the a-priori bound

Z T

0

�
d

dt
kI.t/k22 C "krI.t/k22 C

1

�1
kI.t/k2L2.@˝/

�
dt � c

�1

Z T

0

kqI.t/k2L2.@˝/ dt;

(9)

since

.u � rI; I/ � 1
2
h.u � n/I; Ii@˝ D 0; (10)
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for the transport field u. By the standard Galerkin technique and modifications
mentioned in the proof of Theorem 1 we find easily the existence of the solution
I 2 L2

�
0;TIH1.˝/

	
.

(Uniqueness)

The uniqueness of a solution pair fI;ug can be achieved by assuming as usual the
existence of two solution pairs fI1;u1g and fI2;u2g for the same data and building
the difference for the systems. We use the notation K D I1 � I2 and wm D u1 � u2.
Due to the independence of the Navier-Stokes part of the system from K and the
uniqueness of the Navier Stokes solution we have u1 D u2. Thus, the convection-
diffusion part is a linear equation, since we can use Eq. (10) for I D K. The rest of
the argumentation is standard and yields K D 0 by Gronwall’s lemma. ut
Now we are able to prove the existence of a minimiser of the optimisation problem
in Definition 3.

Theorem 3 (Solution of the Optimisation Problem) For � WD �1 D �2 2 .0; 1�
fixed we have the existence of at least one minimiser

I� 2 L2
�
0;TIH1.˝/

	

u� 2 L2
�
0;TIH1

div.˝/
2
	

qI;� 2 L2
�
0;TIL2.@˝/	

qu;� 2 L2
�
0;TIL2.@˝/2	

of the optimisation problem in Definition 3.

Proof Thanks to the previous theorem we have the existence of solutions of the state
equation and therefore the admissible set is not empty.

We skip the index � for abbreviation, collect the controls in the overall vector
q WD .qI;qu/ 2 L2.@˝/3 and choose then a minimising sequence fI.k/;u.k/;q.k/g in
this set with the property

lim
k!1 J.q.k/; I.k// D inf

fI;qg
J.q; I/ DW �:

By using Young’s inequality we obtain a uniform bound for q:

kq.k/kL2.0;TIL2.@˝/3/ �
1

˛
J.q.k/; I.k//C 1

2
� B:

Thus, the controls qI and qu are bounded in L2
�
0;TIL2.@˝/	 and L2

�
0;TIL2.@˝/2	.

Hence, by the energy estimates (6) and (9) we receive all necessary uniform bounds
for I.k/ and u.k/. Finally we find

I.k/ 2 L1.0;TIL2.˝//\ L2.0;TIH1.˝//\ L2.0;TIL2.@˝// (11)

u.k/ 2 L1.0;TIL2.˝/2/\ L2.0;TIH1
div.˝/

2/ \ L2.0;TIL2.@˝/2/ (12)
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We can then extract the subsequences

weakly in L2.0;TIH1.˝//;

I.k
0/ * I weakly-? in L1.0;TIL2.˝//; as k0 !1;

weakly in L2.0;TIL2.@˝//;

and

weakly in L2.0;TIH1
div.˝/

2/;

u.k
0/ * u weakly-? in L1.0;TIL2.˝/2/; as k0 !1;

weakly in L2.0;TIL2.@˝/2/;

By compactness results we obtain also the strong convergence properties

I.k
0/ ! I in L2.0;TIL2.˝//; u.k

0/ ! u in L2.0;TIL2.˝/2/;

of the subsequences. Thus, passing to the limit in the state equation is a standard
task.

It remains to show that the pair fI;u;qg is in fact a minimum of J.�; �/. We use
the obtained convergence properties to compute

� D lim
k!1 J.I.k/;q.k// D lim

k!1

0

@1
2

NX

jD1
kI.k/.tj/ �Ijk22 C

˛

2

Z T

0

kq.k/.t/k2L2.@˝/3 dt

1

A

D 1

2

NX

jD1
kI.tj/�Ijk22 C lim inf

k!1
˛

2

Z T

0

kq.t/k2L2.@˝/3 dt:

Due to the continuity and convexity of the norm k � kL2.0;TIL2.@˝/3/ the norm is also
weakly lower semicontinuous. Thus, we find

� � 1

2

NX

jD1
kI.tj/ �Ijk22 C

˛

2

Z T

0

kq.t/k2L2.@˝/3 dt D J.I;q/;

which proves the optimality of the pair fI;u;qg. ut
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5 Numerical Solution Process and Further Specifics

5.1 Optimisation Algorithm

We briefly present the optimisation algorithm. All following aspects are very well
summarised in the thesis of Meidner [28]. By Theorem 1 we know that the state
equation of our PDE constrained optimisation problem is uniquely solvable. Hence
we can introduce the solution operator and find fu; Ig D S.qu; qI/. By means of this
operator we can transform the original problem into an unconstrained problem

j. Qq/ D J.S. Qq/; Qq/; with Qq D fqu; qIg:

The first-order necessary condition is then given by

j0.q/.ıq/ D 0 8ıq 2 Q;

where Q denotes the vector space for the controls.
We use now a Newton-type algorithm to find a solution of the last equation.

Therefore we represent the first and second variationals derivative of j.�/ by auxiliary
variables, which have to be evaluated by solving additional PDE problems. The key
for this representation is the identity

j.q/ D J.q;u/ D L .q;u; z/; (13)

where L .�/ denotes the Lagrangian.
The first derivative can be expressed by

j0.q/.ıq/ D L 0q.q;u; z/.ıq/ 8ıq 2 Q:

Therefore we have to compute u and z by solving the primal and the adjoint
equations

L 0z .q;u; z/.'/ D 0 8' 2 V (Primal Eq.);

L 0u.q;u; z/.'/ D 0 8' 2 V (Adjoint Eq.):

The second derivative is given by

j00.q/.ıq;�q/DL 00qq.q;u; z/.ıq;�q/CL 00uq.q;u; z/.ıu;�q/CL 00zq.q;u; z/.ız;�q/:
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Beside the primal and the adjoint solutions u and z we need now two further
variables ıu and ız, which can be obtained by solving the following equations

L 00qz.q;u; z/.ıq;'/CL 00uz.q;u; z/.ıu;'/ D 0 (Tangent Eq.)

L 00qu.q;u; z/.ıq;'/CL 00uu.q;u; z/.ıu;'/

CL 00zu.q;u; z/.ız;'/ D 0 (Additional Adjoint Eq.)

Algorithm 1 summarise theses principles.

Algorithm 1 Newton-CG Algorithm
1: Choose an initial q0 2 Qh, �0 2 R[ fC1g and set k D 0.
2: Solve the State Eq. : L 0

z .q; u; z/.'/ D 0 8' 2 V
3: Evaluate the cost functional J.q; u/
4: Solve the Dual Eq.: L 0

u .q; u; z/.'/ D 0 8' 2 V
5: Evaluate the residual : f WD �j0.qk/.ıqk/

6: If kfk < TOL then STOP
7: Solve the system

j00.q.k//.ıq.k/i ; 	q.k/j / D �j0.q.k//.	q.k/j / (14)

with a CG-method. For each iteration of the CG method we perform

7.1: Solve the Tangent Eq.: L 00
qz.q; u; z/.ıq; '/CL 00

uz.q; u; z/.ıu; '/ D 0.
7.2: Solve the Additional Adjoint Eq.:

L 00

qu.q; u; z/.ıq; '/CL 00

uu.q; u; z/.ıu; '/

CL 00

zu .q; u; z/.ız; '/ D 0

7.3: STOP the CG-method if the residual of the linear system drops below a given tolerance.

8: Update the control

q.kC1/ D q.k/ C �kq.k/;

The relaxation parameter �k is used to globalise the Newton method.
9: Go back to Step 2.

Remark 5 (Application of the CG Method in the Algorithm) The CG-method allows
a matrix-free solution process, which means that we do not have to assemble the
Hessian matrix, which saves computational effort. The desired number of iterations
to solve the system (14) for a given tolerance depends on the condition of the
Hessian matrix. In the case of ill-posed problems the condition number increases,
when the regularisation parameter decreases. The convergence behaviour of the CG-
method is then very bad. Usually we stop the iteration after a certain amount of steps,
unless the threshold for the residuum was reached. Then we work with a so called
inexact Newton method.
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5.2 PDE Subproblems

The PDE subproblems mentioned in Algorithm 1 are solved by a Rothe method,
which means that the problems are first discretised in the time variable and then in
the space variable. We will start with the time discretisation.

5.2.1 Time Discretisation

In the used Software library RoDoBo [6] we have the possibility to use either
a discontinuous Galerkin dG.r/ method or a continuous Galerkin cG.r/ method
for the time discretisation. The use of Galerkin discretisation was preferred by the
authors of the library, since it is necessary to preserve the property that ‘discretise-
then-optimise’ and ‘optimise-then-discretise’ commute.

The cG.r/ method consists of continuous trial functions of degree r and
discontinuous test functions of degree r � 1, while the dG.r/ method is based on
the use of discontinuous trial and test functions of degree r. Using a dG.0/ method,
where all occurring integrals are evaluated with the box rule, leads directly to the
standard backward Euler scheme. The cG.1/ method, where all occurring temporal
integrals are approximated with the trapezoidal rule, generates the Crank-Nicolson
scheme. For the following calculations we use these two methods only.

For the spatial discretisation of the resulting quasi-stationary equations we use
the well-known finite element method.

5.2.2 Spatial Discretisation

To describe the conceptual features of our finite element approach, we consider the
following abstract weak formulation for the quasi-stationary equation:

For a given q, find a suitable u 2 V such that

a.u; '/C b.qI u; '/ D l.'/ 8' 2 V (15)

with the bilinear forms a.u; '/; b.qI u; '/ and the linear form l.'/.
By choosing a conforming ansatz space Vh we derive the following Galerkin

equations:

a.uh; 'h/C b.qI uh; 'h/ D l.'h/ 8'h 2 Vh: (16)

Due to an appropriate choice of the space Vh and the linearity of the forms we end
up with the following system of equations

Ahxh D bh; with uh D
NX

iD1
xh;ie

.i/;
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which is then solved by a multigrid method.
For all our calculations we used the ansatz space Vh containing continuous

functions, which are piecewise bilinear polynomials on a decomposition of the
computational domain into regular quadrilaterals:

OVh WD fuh W N̋ ! R j uh 2 C. N̋ /; uhjT 2 Q1g (17)

For a detailed description of this methodology see the monographs of Braess [9] and
Brenner et al. [10].

Remark 6 (Nonlinear PDEs) In the case of nonlinear PDEs, e.g. the Navier-Stokes
system, we have to linearise the equation. In this case we use also a Newton method
and solve then in each step of the Newton method a PDE which fits in the above
presented setting.

5.3 Comments on Boundary Conditions

Since we consider boundary identification problems a special focus of this work
is on the treatment of boundary conditions. The suggested penalised Neumann
approach depends on the choice of the parameter �. Decreasing the parameter� the
condition of the discrete system is getting worse. A way out of this dilemma was
presented by Juntunen et al. [24] for the Poisson problem. This concept can easily
be carried over to convection-diffusion equations and the Navier-Stokes system.

5.3.1 Convection-Diffusion Equation

We consider the following convection-diffusion-reaction equation

���uC ˇ � ruC cu D f in ˝;

�@nu D 1

�
.qD � u/C 1

2
.ˇ � n/ u on @˝:

(18)

We use the bilinear forms

a.u; '/ WD � .ru;r'/C .ˇ � ru; '/C .cu; '/
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for the domain and

b.qDI u; '/ WD � �ı

�C ı .h@nu; 'i@˝ C hu � qD; @n'i@˝/C
1

�C ı hu � qD; 'i@˝

� ��ı

�C ı h@nu; @n'i@˝ �
�

2.�C ı/ h.ˇ � n/u; 'i@˝

C �ı

2.�C ı/ h.ˇ � n/u; @n'i@˝ ;

(19)

for the boundary to formulate the problem weakly

a.u; '/C b.qDI u; '/ D .f ; '/ 8' 2 V: (20)

Lemma 1 A solution of problem (18) also satisfies Eq. (20).

Proof We integrate the first equation in (18) over the domain after multiplying with
an arbitrary test function ' 2 V . Integration by parts yields

a.u; '/� � h@nu; 'i@˝ D .f ; '/ : (21)

We multiply now the boundary part of Eq. (18) with the same test function and
integrate over the boundary. Then we multiply both sides by �

�Cı and obtain

��

�C ı h@nu; 'i@˝ D
1

�C ı hqD � u; 'i@˝ C
�

2.�C ı/ h.ˇ � n/u; 'i@˝ (22)

Doing the same again with the test function @n' and the factor � ı�

�Cı we get

� ��ı

�C ı h@nu; @n'i@˝ D�
ı

�C ı hqD � u; @n'i@˝

� �ı

2.�C ı/ h.ˇ � n/u; @n'i@˝
(23)

Equation (20) is now the sum of Eqs. (21)–(23). ut
The bilinear form b.qDI u; '/ can even be evaluated for the case � D 0. We obtain
then a Nitsche type formulation (Nitsche [30]) for the convection-diffusion equation

bNi.qDI u; '/ D �� .h@nu; 'i@˝ C hu � qD; @n'i@˝/C
1

ı
hu � qD; 'i@˝ :

(24)
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Remark 7 (Linear Transport Equation) In the case of pure transport, � D 0, the
boundary form b.qDI u; '/ reads

b.qDI u; '/ D 1

�C ı
�
hu � qD; 'i@˝ �

�

2
h.ˇ � n/ u; 'i@˝ C

ı�

2
h.ˇ � n/ u; @n'i@˝

�

For an appropriate choice ı � ı0 > 0 we obtain by setting � D 0 a Nitsche-type
term for the realisation of Dirichlet boundary data for the pure transport equation

b.qDI u; '/ D 1

ı
hu � qD; 'i@˝ :

We are able to set Dirichlet conditions only on the inflow boundary �In, that means
all x 2 @˝ with ˇ � n < 0, in the following way

0 < ı WD � 1

.ˇ � n/ ;

we obtain

b.qDI u; '/ WD � h.ˇ � n/.u � qD/; 'i�In
: (25)

This is consistent with a suggestion for Nitsche-type inflow presented in the work
of Freund et al. [17].

5.3.2 Navier-Stokes System

For V D H1
0.˝/

n the Navier-Stokes system

��
uC u � ruCrp D f in ˝

r � u D 0 in ˝
(26)

can be weakly stated by

� .ru;r'/C .u � ru;'/� .p;r � '/ D .f;'/ 8' 2 V

.r � u;  / D 0 8 2 M
(27)

with M D L2.˝/. In the case V D H1.˝/n the additional boundary bilinear form

b.fu; pg;'/ WD �� h@nu;'i@˝ C hpn;'i@˝ ; (28)
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occurs in the above weak formulation. For the following strongly formulated Robin-
type boundary conditions

�@nu� pn D 1

�
.qD � u/C 1

2
.u � n/ u (29)

we obtain a well posed problem formulation with the boundary semi-linear form

b.qDIu/.'/ WD 1

�
h.u � qD/ ;'i@˝ �

1

2
h.u � n/ u;'i@˝ : (30)

Remark 8 (Nonlinear Term and Solvability Theory) Since

.u � ru;u/ D 1

2
h.u � n/u;ui@˝

we find similar uniform bounds for the Galerkin technique, which is used in the
solvability theory. This justifies the specific form of b.qDI fu; pg/.'/.
Analogously to the convection-diffusion-reaction equation we can formulate a
stabilised semi-linear form by

bı�.qDI fu; pg/.'/ WD � ı

�C ı .h�@nu� pn;'i@˝ C hu � qD; �@n'C  ni@˝/

C 1

�C ı hu� qD;'i@˝ �
�

2.�C ı/ h.u � n/u;'i@˝

� �ı

ı C � h�@nu � pn; �@n'C  ni@˝

C �ı

2.ıC �/ h.u � n/u; �'C  ni@˝

(31)

While b0�.�I �/.�/ corresponds to the penalty formulation the parameter choice� D 0
and ı D �.h/ results in a Nitsche-type formulation for the Navier-Stokes system

b�.h/0 .qDI fu; pg/.'/ WD � h@nu � pn;'i@˝ � hu � qD; @n'C  ni@˝
C 1

�.h/
hu � qD;'i@˝ :

(32)

This form is almost the same as the one proposed in Becker [3].
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Lemma 2 A strong solution pair fu; pg of the Navier Stokes system (26) with the
boundary condition (29) satisfies also the equation

� .ru;r'/C .u � ru;'/C bı�.qDI fu; pg/.'/� .p;r � '/ D .f;'/ 8' 2 V;

.r � u;  / D 0 8 2 M:
(33)

Proof By multiplying the classical Navier-Stokes equations with arbitrary test
functions ' 2 V and  2 M, integrating over the domain ˝ and partial integration
we obtain Eq. (27) with an additional semi-linear form b.qDI fu; pg/.'/ like in
Eq. (30).

By multiplying the boundary condition (29) with ' and integration over the
boundary we obtain after multiplying with �

�Cı

�

�C ı h�@nu � pn;'i@˝ C
1

�C ı hu � qD;'i@˝

� �

2.�C ı/ h.u � n/u;'i@˝ D 0
(34)

Furthermore we multiply the boundary condition with the test function

�@n'C  n;

and integrate again over the boundary. Afterwards we multiply with the factor� �ı

�Cı
and obtain

� �ı

�C ı h�@nu � pn; �@n'C  ni@˝ �
ı

�C ı hu � qD; �@n'C  ni@˝

C �ı

2.�C ı/ h.u � n/u; �@n'C  ni@˝ D 0
(35)

Adding the weak formulation and Eqs. (34) and (35) we obtain directly Eq. (33). ut

5.4 Comments on Stabilisation Techniques

The presented numerical scheme is unstable with respect to two different sources,
namely the convection dominance of the convection-diffusion equation or the
Navier-Stokes system for large Reynolds numbers and the lack of inf-sub stability,
due to the specific choice of the finite element spaces for the velocity and pressure
components in the Navier-Stokes system. We can overcome both issues by using
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the so called local projection stabilisation. We briefly comment on the technique
and cite further literature.

5.4.1 Convection Stabilisation

We use a method for the convection stabilisation, which was introduced by Becker
et al. [5]. For the model problem

.uh; 'h/C ..ˇ � r/ uh; 'h/ D .f ; '/ 8' 2 Vh;

we add hereby the stabilisation term

s.uh; 'h/ D sLPS.uh; 'h/ WD
X

T2Th

ıT .�h .ˇ � ruh/ ; �h .ˇ � r'//:

The operator �h D I �P2h consists of the difference of the identity operator and a
projection operator

P2h W Vh ! V2h

defining a mapping of the current trial function space Vh onto the coarser one V2h.
The so defined mapping measures fluctuation of the convection term. The parameter
ıT is chosen as follows

ıT D ı0 h

k� jˇj :

This stabilisation scheme admits in principle the same properties in terms of stability
and accuracy as the SUPG scheme. An import advantage is that for this scheme
again the principles ‘optimise-then-discretise’ and ’discretise-then-optimise’ are
interchangeable.

5.4.2 Pressure Stabilisation

For computational simplicity we work with bilinear finite elements for both the
pressure and the velocity approximation. That means Vh D OV2

h for the discrete
velocity space and Mh D OVh for the discrete pressure space with OVh defined as
in Eq. (17). It is well known that the inf-sup condition

min
�h2Mh

�
max
'h2Vh

�.�h;r � 'h/

k'hkVhk�hkMh

�
� �h � � > 0

for this particular choice is violated.
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We can also use the mentioned local projection stabilisation technique to stabilise
our approach related to inf-sup-instability as it is presented in the work of Becker
et al. [4].

We add therefore the bilinear form

sLPS.fuh; phg; f'h; �hg/ D
X

T2Th

˛T .r.�hph/;r.�h�h//T

to the left hand side of the divergence equation

.�h;r � uh/ D 0 8�h 2 Mh;

where �h denotes again the fluctuation operator defined as in the case of the
convection stabilisation. The parameter is chosen as suggested in the literature as

˛T D h2T
�
:

6 Numerical Results

We will use a few test cases to exemplify the functionality of the presented method.
Although the theory was already developed for the use of the fully nonlinear
Navier-Stokes equations, we avoid at first to work with high Reynolds-numbers
and suppress the time-dependent character of the flow equations in the first two test
cases. The reason for this is that our main objective is to prove that we can estimate
reliable boundary conditions for the flow field and the intensity function by only
sparsely given data. Afterwards, we will in a third test case apply the method to
identify a fluid flow, which is described by the fully non-linear and time-dependent
Navier-Stokes system, which emphasises especially the usage of the high-fidelity
physical model in the proposed identification method.

In the first two examples we use in principle the same setting. The computational
domain and the time horizon are given by

˝ D .0; 1/	 .0; 1/; T D .0; 0:2�:

Furthermore we set

" D 10�10; and � D 1:

All numerical calculations are performed on a mesh with 289 spatial nodes and 40
time steps.
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6.1 First Test Data Set

The first test data set was already presented in the introduction in Fig. 1. It consists
of three intensity functions I1, I2 and I3 representing a brightness distribution
in form of a bulb signal. The first function shows the bulb signal at the initial time
t D 0, the second function shows the signal after a movement with the constant flow
field ˇ D .0; 2/T at the intermediate time point t D 0:1 and the third function shows
the transported signal at the end time point.

We performed then the approach from the Definitions 3 and 4 for the parameter
choice

�1 D �2 D h

with the cell diameter h.
The method is for small values of the regularisation parameter ˛ very unstable

unless we have a good initial value for the time dependent boundary functions qI and
qu. The reason for this is that we solve in general an inverse problem that requires a
certain regularisation (see Engl et al. [14]).

Thus we use a homotopy method in ˛, by solving the optimisation problem for
a large ˛k and then taking q.k/I and q.k/u as initial values for a further solution of
the optimisation problem with a reduced ˛kC1 D �˛k with � 2 .0; 0:5/. After
a few steps of this technique we obtain the reconstruction Ik;h presented in Fig. 4.
The regularisation parameter was around 10�2 and the final Newton residual was
approximately 10�5.

Fig. 4 From left to right: I.x/, u.x/, v.x/ and p.x/. Top: t D 3T
4

. Bottom: t D T
4

. Regularisation

parameter: � ˛ D 10�2 . kIk;h � OIk2L2.0;TIL2.˝//
D 5:01 � 10�4
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Fig. 5 Top left: ˇ D .0; 2/T . Top right: uh at t D T
4

. Bottom left: uh at t D 3T
4

. Bottom right: uh at
t D T

The bottom row shows the brightness function I, the x- and y-component of the
transport field and the associated pressure function (from left to right) for the time
t D T

4
. The top row shows the same functions for the time t D 3T

4
. We see that the

signal is transported appropriately over the boundary and that within the area, where
the signal is different from zero also the estimation of the flow field seems to be a
good approximation of the expected field (see therefore also Fig. 5).

Furthermore, we compared the computed intensity function to the expected one
in terms of the L2-norm, which is a time continuous version of the data term:

kIk;h � OIk2L2.0;TIL2.˝// D 5:01 � 10�4 .kOIk2
L2.0;TIL2.˝// D 2:48 � 10�1/:

However, this good looking result is only a coincidence, due to the simple
situation of our test case. Since we assumed the underlying transport field to
be constant the special choice of our regularisation term leads to an appropriate
recovering of the time-dependent function I.x; t/. In general there are infinitely
many solenoidal flow fields that generate the three given intensity functions I1, I2

and I3 (e.g. ˇc.x; t/ D sinc
�

t�
T

	
.0; 2/T), which we used as data in the optimisation
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problem. All of these flow fields lead to completely different intensity functions
(e.g. Iˇc.x; t/). Thus, it is impossible to reconstruct a specific flow field, without
introducing further a priori knowledge about the flow field in the optimisation
process. This consideration emphasises again the ill-posed character of the problem
and shows that we have to be careful in trusting the reconstruction of fluid flow
fields, without additional information about this fields.

Nevertheless, we can use the method as an interpolator between discrete intensity
functions as the next test case indicates.

6.2 Second Test Data Set

The second test case was also mentioned in the introduction and consists of the six
brightness functions presented in Fig. 2 at the time points t D 0:04.k � 1/ with
k D 1; : : : ; 6. The underlying transport field for the movement is

ˇ.x; t/ D 5�

2
.�y; x/T :

Obviously the signal is throughout the image sequence transported from the lower
boundary to the left boundary. Thus, we initialise our computational method this
time by the following assumption of the transport field

u0.x/ D .�2; 2/T ;

since this field describes the principle direction of the flow. Afterwards, we solve as
in the first test case the optimisation problem with

�1 D �2 D h:

The result of this calculation is visualised in Fig. 6. We want to emphasise that
we choose time points for the visualisation in which no data is available to
make clear that this method interpolates intermediate brightness distributions. Our
next aim is to compare different parameter choices for the boundary control
formulation. We use therefore four different cases. The first three cases are given
as follows

�1 D �2 D 1; .Case 1/

�1 D �2 D 0:1; .Case 2/

�1 D �2 D h; .Case 3/
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Fig. 6 Calculated solution for ˛ � 10�3. Left column: from bottom to top: I.x; tk/ with tk D kT
8

and k D 1; 3; 5; 7. Middle column: corresponding transport field. Right column: corresponding
pressure function
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Table 1 We indicate the error between the expected brightness function in time and the calculation
by eh;k WD kI � Ih;kk2L2.˝�Œ0;2�/

. The expected brightness function has the following norm

g WD kIk2L2.˝�Œ0;2�/
D 2:454 � 10�1

Case eh;k Rel. Error ( eh;k

g ) (%)

1 1:735 � 10�3 0.71

2 7:976 � 10�4 0.33

3 6:205 � 10�4 0.25

4 5:616 � 10�4 0.23

5 5:346 � 10�4 0.22

for the parameters in the Definitions 3 and 4. For the final test case we want to
set � D 0. Thus, we use instead of the usual boundary bilinear forms in the two
definitions the stabilised ones in Eq. (32) for the Navier-Stokes part and Eq. (25) for
the part of the physic-based optical flow equation

�1 D �2 D 0; Eq. (32) with �.h/ WD h

5
and Eq. (25) .Case 4/:

We want to emphasise that these two conditions implement Dirichlet boundary
controls for which the developed theory could not be applied.

The results of the calculations are shown in Table 1. Here we document the ability
of the method to recover the expected movement of the bulb signal during the whole
time horizon in terms of the L2-error. The table shows that for � D 1 the method
is worse than for small choices of � or even for a implemented weak Dirichlet
condition. The reason for this is that artefacts on the inflow boundary occur for the
recovery of the signal. Thus, it seems to be a good idea to work with the weak
Dirichlet conditions.

Unfortunately, the solution has then another drawback since the transport field
is no longer continuous in time as Fig. 7 indicates. The left column represents the
transport field in the case of the weak Dirichlet controls. As we can see the field is
immediately changing after the time stepping scheme passing a time point, where
a brightness function information is available. Hence, the field has some kind of
jump with respect to the time variable. We want to emphasise that this is nothing
unexpected, since the theory is not working in this case and we cannot expect the
same temporal regularity as in the case of Robin controls.

As a result of the discussion we propose a “trade-off” version of the used
methods. Here we use the Robin-type control for the Navier-Stokes part with
�1 D h and the Dirichlet control in Eq. (25) for the brightness function. This leads to
a method which smoothly transports the signal across the boundary by a temporally
smooth transport field. We document the error of this combination by “Case 5” in
Table 1.

However, the last two examples rely on temporal constant solenoidal fields,
which could also be solutions of the steady Stokes equations. Thus, the spent
effort for interpolating discrete image intensities with our approach basing on a
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Fig. 7 Top: t D 0:04. Bottom: t D 0:0425. Left column: transport field for the weak Dirichlet
boundary control. Right column: transport field for the Robin-type control approach with �1 D
�2 D 0:1. The left transport field is immediately changing and has therefore a kink in the time
variable

regularisation with a fully time-dependent and non-linear physical model for the
fluid flow is questionable. To justify the reliability of our consideration we present
a final test case, which based on observations of a dynamic flow.

6.3 Third Test Data Set

The following example relies on the sequence Ik presented in Fig. 3, which was
obtained after executing a forward calculation of system (1). We will therefore
shortly present the generation of the image sequence. The computational domain
is (Fig. 8)

� D .�0:01m; 0:19m/	 .0; 0:1m/:
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Fig. 8 The image domain
˝ D .0; 0:1m/2 is an
aperture of the original
computational domain
�D .�0:01m; 0:19m/� .0; 0:1m/

The time horizon is .0; 3s�. We prescribe no-slip boundary conditions on the upper
and lower boundary. The left boundary is an inflow boundary, while on the right
boundary the outflow occurs. The inflow is described by the function

u.x; t/ WD .10min.t; 1/max .0; !.x; y// ; 0/T

with

!.x; y/ WD 1

4

�
y �

�
1

4
C 1

5
sin.�t/

��
�
��

3

4
C 1

5
sin.�t/

�
� y

�
m

s
:

Furthermore, we choose a kinematic viscosity � D 0:01m2

s . Finally, the passive
tracer is also introduced by a Dirichlet-type boundary condition on the left side of
the domain �:

I.x; t/ WD max .cos.�t/; 0/ :

For the diffusivity parameter in the convection-diffusion equation of the tracer we
choose " D 1e � 10.

Then we perform a calculation with 60 steps of an implicit Euler method in time
and with a spatial discretisation into 2145 grid points of a regular mesh. Thus, we
obtain the reference solutions ur and Ir. By using Ir.x; tk/ for x 2 ˝ D .0; 0:1m/2

we generate afterwards three different “image sequences” on the aperture domain
˝ . Each sequence represents a different sampling rate for the images:

I .1/ WD Ir.x; tk/; with tk D 0:05k; k D 0; : : : ; 60;
I .2/ WD Ir.x; tk/; with tk D 0:25k; k D 0; : : : ; 12;
I .3/ WD Ir.x; tk/; with tk D 0:5k; k D 0; : : : ; 6:

We have a clear difference between sampling rate and time discretisation in
the sequences I .2/ and I .3/, while for I .1/ the sampling rate and the time
discretisation coincides.
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These sequences are used for the reconstruction of the flow on the aperture
domain ˝ . Therefore, we use our Robin-boundary control approach with the
following settings. From the image sequences we observe a starting phase of the
flow and a movement from left to right of the image patterns. Thus, we set

g.x; t/ WD .min.t; 1/umaxy.1 � y/; 0/T
m

s

and using instead the modified function

Qqu.x; t/ WD qu.x; t/C g.x; t/

in the Robin-boundary formulation [cf. fourth equation in (5)]. The parameter umax

can also be roughly estimated by the given images. We choose umax D 2.
To initialise also the inflow of signals I across the inflow boundary on the left

we choose a linear interpolation between the given discrete image signals of the
sequences on the boundary. We denote this interpolated function by I.I .j//.x; t/
with i D 1; 2; 3 and have thus the modified function

QqI WD I.I .j//.x; t/C qI

in the Robin-boundary formulation [cf. third equation in (5)]. For the parameter in
the Navier-Stokes part we choose this time �1 D 1 and perform a weak Dirichlet
control in the fashion of Eq. (25) as in the test case before for the convection-
diffusion equation part.

This time we will work with two different values for ˛1 and ˛2 in the cost
functional (see Definition 1). The reason for this is that we want to penalise too
big changes of the image function on the boundary since we assume that the linear
interpolated boundary conditions of the image sequence data is already a qualitative
approximation of the effective boundary conditions. Thus, the ˛1-term has more
the character of a correction. However, since we have no clue about the boundary
conditions for the fluid flow we want to choose ˛2 as small as possible. As in the
test cases before we apply therefore a homotopy-type method that stops, when ˛2
drops below a threshold Tol. Our experiences shows that ˛1 D 100 and Tol D 10�3
is an appropriate choice, when we additionally weighting the data term in the cost
functional by a factor 100.

The results for the identification by this settings are presented in Fig. 9 (Mag-
nitude of the flow field) and Fig. 10 (Intensity function) for the time points t1 D
0:75 .Row A/; t2 D 1:5 .Row B/; t3 D 2:25 .Row C/ and t4 D 3 .Row D/. From
left to right we visualise in the both figures the expected solution (Column 1), the
results for sequence I .1/ (Column 2), I .2/ (Column 3) and I .3/ (Column 4). For
a more qualitative comparison we investigate the following quantity of interest

�.t/ WD ku.t/ � rI.t/k22:
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Fig. 9 Comparison of the identified fluid flow in terms of the magnitude of the flow field. Row A
to row D: tk D 0:75k with k D 1; : : : ; 4. Columns from left to right: expected (1), I .1/ (2), I .2/

(3) and I .3/ (4)

This quantity has the feature that it depreciate the recovery in areas where the
intensity is nearly constant. The evolution of the �.t/ across the mentioned time
interval is documented in Fig. 11. The left picture shows the expected curve (blue),
the estimation with the data from sequence I .1/ (green dashed) and the results of
a forward calculation with g.x; t/ and I.I .j// (red dash-dotted). We see a clear
improvement by the usage of our identification process. In the left picture of
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Fig. 10 Comparison of the reconstructed intensity functions. Row A to row D: tk D 0:75k with
k D 1; : : : ; 4. Columns from left to right: expected (1), I .1/ (2), I .2/ (3) and I .3/ (4)

Fig. 11 we compared the quality of the reconstruction in terms of the three data
sequencesI .1/ (green),I .2/ (blue dashed) and I .3/ (red dash-dotted). As expected
we see a clear improvement by using as much data as possible. However, the result
also indicates that we are not able to fit the curve even if we have image data in
every time step of our temporal discretisation. The reason for this is the ill-posed
character of the problem.
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Fig. 11 Recovery of the quantity of interest �.t/ by our approach. Left: comparison of the expected
curve (blue), identification with intensity informations in each time step (green) and a forward
calculation (red). Right: different data sequences: I .1/ (green), I .2/ (blue) and I .3/ (red)

7 Discussion on the Application of Multiple Shooting
Methods

The numerical solution of the presented optimisation problem relies on a Newton-
type method developed by Becker et al. [6] to find a solution of the optimality
system, which can be introduced by means of the Lagrangian [see Eq. (13)].

We observed for all our calculations that the method’s performance is very
sensitive with respect to the choice of the initial values for the control variables
qI , qu, the length of the time horizon and the chosen regularisation parameter.

As mentioned in the last section we used a homotopy method in ˛ to be able to
solve the problem in a stable way for small values of the regularisation parameter.
We want to remark that for each step of the homotopy method a whole optimisation
problem must be solved, which increases the computational costs immensely.

However, the unstable behaviour is probably a result of the structure of the PDE-
constrained optimisation problem. We remember therefore the cost functional in
Definition 1

J.qI;qu; I/

which is minimised with respect to the weak formulation of the state equation in
Definition 4. The latter is now converted into the following abstract form

..@tI;  //C Na.uI I;  /C Nb.qI;  /C .I.0/�I1;  .0// D 0 8 2 XI

..@tu;'//C Nc.u/.'/C Nd.qu;'/C
�
u.0/� u0;'.0/

	 D 0 8' 2 Xu
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with the linear forms Na.�I �; �/, Nb.�; �/, Nc.�/.�/ and Nd.�/.�/ containing the terms of the
forms in Eq. (5) integrated over the time interval Œ0;T�. Here we separated the
control terms from the rest of the equation.

We concretise the Lagrangian

L .qI;qu; I;u;K; z/ WD J.qI;qu; I/C ..@tI;K//C Na.uI I;K/C Nb.qI;K/

C .I.0/�I1;K.0//C ..@tu; z//C Nc.u/.z/C Nd.qu; z/

C �u.0/� u0; z.0/
	
:

With the Lagrangian we can obtain the mentioned optimality system, which consists
of the state equations

LK.qI;qu; I;u;K; z/.ıK/ D 0; 8ıK 2XI ;

Lz.qI;qu; I;u;K; z/.ız/ D 0; 8ız 2Xu;

adjoint equations

LI.qI;qu; I;u;K; z/.ıI/ D 0; 8ıI 2XI ;

Lu.qI;qu; I;u;K; z/.ıu/ D 0; 8ıu 2Xu;

and control equations

LqI .qI;qu; I;u;K; z/.ıqI/ D 0; 8ıqI 2 QI ;

Lqu.qI;qu; I;u;K; z/.ıqu/ D 0; 8ıqu 2 Qu:

The last two conditions can be used to substitute the control variables by the
adjoint variables in the state equation. Collecting afterwards the state and the adjoint
variables by the overall vector x WD fI;u;K; zg we can summarise the optimality
system by the abstract system of equations

@tx.t/ D A .x.t//; 8t 2 Œ0;T�;
Og.x.0/; x.T// W D B0x.0/C BTx.T/ � .I1;u0; I.T/ �IN ; 0/

T D 0
(36)

with

B0 D
�

I 0
0 0

�
; BT D

�
0 0
0 I

�
; and I D

�
1 0

0 1

�
;

and an abstract differential operator A . It is known that the above abstract problem
represents a boundary value problem (BVP) for the state and adjoint variables, with
respect to given values for the state variables I and u at the initial time and for the
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adjoint variables K and z at the end time point (cf. Carraro et al. [12] for optimal
control problems with parabolic PDE constraints).

This is a possible explanation for the instability of our sophisticated PDE-
constrained optimisation problem, especially if we consider long time horizons, as
it was figured out in the article of Weiss [40] for a much simpler configuration. To
follow this argumentation we discretise system (36) on a fixed spatial grid by the
method of lines:

x0h.t/ D Ofh .t; xh.t// ; 8t 2 Œ0;T�;
Ogh .xh.0/; xh.T// D 0:

The resulting system is a classical ODE-based BVP. Weiss showed that for such
problems multiple shooting increases the size of the domain within which we may
choose the initial value for a successful performance of Newton’s method. However,
whether working with multiple shooting is reliable requires a further detailed
mathematical and numerical investigation. First steps towards the application of
multiple shooting methods to parabolic optimal control problems were presented
by Carraro et al. [11, 12], Hesse et al. [21] and Potschka [34].

Since our PDE-constrained optimisation problem could also be interpreted as a
parabolic boundary control problem, it would be an interesting topic for further
research to apply the rather technical multiple shooting method to our highly
complex problems. We conjecture that it is possible, due to the stabilising effect
of the multiple shooting method, to reduce the effort of the homotopy method in ˛.

Another big advantage of multiple shooting methods is that they are well suited
for parallelisation. This could also clearly accelerate the solution process in terms
of needed computational time.

8 Conclusion

In this contribution we suggested a PDE-constrained optimisation problem based
on the estimation of boundary functions, which can be used in a certain physical
setting to evaluate a flow field transporting a passive tracer across the computational
domain boundaries. The only available data is a temporally sparse sequence of
measurements of the intensity function of a passive tracer. The motivation for
the investigation is the increasing use of image processing, especially optical flow
estimation, techniques in fluid flow evaluation.

However our main objective was to formulate a mathematically well-posed
problem, which is also easy to handle from the computational point of view. We
suggested therefore a Robin-type control formulation, since in simple linear settings
a close connection to Dirichlet control problems was observed. Although our Robin-
type approach is well-posed and has a straightforward computational treatment, we
have not enhanced the theory for approximating Dirichlet controls by Robin-type
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controls to our system. On the one hand, it is not necessary to work with Dirichlet
controls for our identification purposes. On the other hand we have no appropriate
very weak formulation of the problem. Here we see a possible direction for further
theoretical research to connect Robin-type and Dirichlet controls also for such
sophisticated coupled systems of equations.

We proved the functionality of the method based on synthetic test cases. We were
able to interpolate a sparsely given image sequence, without the knowledge of the
underlying flow field, even when the information on the intensity function moved
across the boundary. However the examples were too simple to prove the necessity
of using the fully nonlinear Navier-Stokes equations. Applying the method to more
realistic prototypical examples or real world problems would be a further step for
our work.

For all our numerical calculations we enhanced a generalisation for weakly
imposed boundary conditions suggested by Juntunen et al. [24] to the class of PDEs
we have to deal with and used them for our numerical calculations.
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Statistics for Model Calibration

Clemens Kreutz, Andreas Raue, and Jens Timmer

Abstract Mathematical models of dynamic processes contain parameters which
have to be estimated based on time-resolved experimental data. This task is often
approached by optimization of a suitably chosen objective function. Maximization
of the likelihood, i.e. maximum likelihood estimation, has several beneficial theo-
retical properties ensuring efficient and accurate statistical analyses and is therefore
often performed for identification of model parameters.

For nonlinear models, optimization is challenging and advanced numerical
techniques have been established to approach this issue. However, the statistical
methodology typically applied to interpret the optimization outcomes often still rely
on linear approximations of the likelihood.

In this review, we summarize the maximum likelihood methodology and focus
on nonlinear models like ordinary differential equations. The profile likelihood
methodology is utilized to derive confidence intervals and for performing identi-
fiability and observability analyses.

1 Introduction

Establishing a mathematical model of a process of interest typically comprise the
identification of an appropriate model structure as well as calibration of the model’s
parameters. For phenomenological models, the structure of the model is typically
chosen as simple as possible. Often, the models are linear with respect to the
parameters, like in the linear regression case, and in this case there is a well-
established methodology for estimating the parameters as well as for statistical
interpretations.
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In some applications, however, the models are mechanistic, i.e. the variables
and parameters of the model have their counterparts in the process of interest.
In chemical engineering or in systems biology, for example, ordinary differential
equation models are applied to describe chemical or biochemical reactions. Here,
the dynamics is given by chemical rate laws. The dynamic variables typically
represent concentrations of compounds and parameters are used for unknown rate
constants and initial concentrations.

Estimating parameters for such nonlinear models, requires advanced technique
for optimization techniques like trust-region approaches [8, 32] or multiple shooting
[5, 6]. In addition, the methodology required for reliable statistical interpretation of
the optimization result has to be adapted. Confidence intervals, as an example, are,
in general, not appropriately represented by the covariance or Fisher information
matrix. In addition, commonly performed tasks like model predictions or identifi-
ability analyses of parameters are getting more complex to be done appropriately
from the statistical point of view.

2 Measurement Errors

The central limit theorem of statistics [4, 12] states that the distribution of a sum

" D
mX

i

�i (1)

of independent, identically distributed sources of noise �i converges to a normal
distribution " � N.�; �2/ for m ! 1. This theorem holds independent of the
specific form of the distribution �m. It is only required that the distributions of
�1; : : : ; �m have finite expectations and variances. Due to the central limit theorem,
the observational noise " is very commonly assumed as normally distributed or
briefly as Gaussian. Additive noise yields measurements

yi D fi C "i ; "i � N.0; �2/ (2)

where fi denotes the model response, i.e. represents the true values of an underlying
process. The different experimental conditions are labeled by i D 1; : : : ; n. Each
experimental condition i is characterized by the values for all predictor variables in
the model, e.g. time, position, experimental treatment, or the sample entity.

Experimental biomedical research often boils down to quantification of a com-
pound of interest. Typically, an experimental protocol comprises a sequence of steps,
each introducing a measurement error with magnitude relative to the quantity of
interest. In analogy to the central limit theorem, one can show that a sequence

�1 / f�1 (3)

�m / �m�1�m (4)

of relative errors �m � �m�1 rapidly converges to a lognormal distribution.
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Fig. 1 Illustration showing that a sequence of relative errors yield lognormally distributed errors.
The upper row shows histograms, the lower row depicts quantile-quantile plots of the observations
vs. the lognormal distribution (black) and vs. the normal distribution (gray). Step 0 shows the
underlying truth to be measured which has been chosen as 1 in this example. Step 3 already yields
a distribution which is close to a lognormal distribution. For increasing number of relative errors,
the observed distribution converges to a lognormal distribution

In Fig. 1, this is illustrated for uniformly distribution of �i. After around three
steps, the observation �3 has almost lognormal distribution. For �10 there is hardly
a difference to the lognormal distribution. In general, the rate of convergence
of the central limit theorems depends on the shape of �. However, lognormally
distributions are very often observed in practice since (1) often holds for the
individual relative errors. Another hint for lognormally distributed errors is the
fact that raw measurements, i.e. before a background is subtracted, are often
strictly positive. In such cases, normally distributed errors are obtained after a log-
transformation of the data and the transformed data can be analyzed by the classical
statistical methodology established for Gaussian errors.

3 Likelihood

The likelihood is defined as the probability �.yj�/ of the data y for a given model
with parameters � [2]. For independent noise realizations, the probability is a
product

�.yj�/ D
NY

i

�.yij�/ (5)
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of terms �.yij�/ for the individual data points yi. The maximum likelihood estimator

O� D arg max
�

L.yj�/ (6)

is given by the parameters maximizing the likelihood. Maximum likelihood estima-
tion is asymptotically unbiased, i.e. for a sufficiently large number N of data points
y1; : : : ; yN the expectation

lim
N!1E. O�/ D �true (7)

coincides with the true parameters �true. Moreover, the maximum likelihood estima-
tor has the minimal variance within all unbiased estimators [9].

For Gaussian errors, the likelihood is given by

L.yj�/ D
NY

i

1p
2��

exp

�
� .yi � fi/2

2�2

�
(8)

and minus two times the log-likelihood is

� 2LL.yj�/ D
NX

i

.yi � fi/2

�2
C 2N log.�/C N log.2�/ : (9)

Since only the first term depends on the parameters and minimization of (9) is
equivalent to maximization of (8) least-squares estimation

O� D arg min
�
�2LL.yj�/ (10)

is equivalent to maximum likelihood estimation for Gaussian measurement errors
[27].

4 Estimation for Linear Models

The maximum likelihood methodology is very general, i.e. every distributional
assumption for the measurement uncertainty can be considered. In this section, the
discussion will be focused on least-squares estimation, i.e. on maximum likelihood
for the special case of Gaussian measurement errors since due to the central
limit theorems, measurement errors are often Gaussian at the measurement or the
logarithmic scale as argued in Sect. 2.

If the model f is linear with respect to its parameters, it can be written as

f D X � (11)
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Fig. 2 Two examples for design matrices

in matrix notation where the N data points y 2 N 	 1 are given as a vector [29].
The rows of the so-called design matrix X 2 N 	 n� indicate the impact of the
parameter on each single data point. In the Fig. 2, two basic examples are presented
for illustrating the design matrix.

Least-squares estimates for a linear model are obtained via multiplication

b� D X�y (14)

of the data y with the pseudo- or generalized inverse

X� WD �X>X
	�1

X> 2 M.n� 	 N/ (15)

of the design matrix X [12, 28]. For the linear case, the parameter estimates are
normally distributed

b� � N .�;˘/ (16)
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with covariance matrix

˘ D �2.X�X�>/> D �2.X>X/�1 : (17)

The covariance matrix of the parameter estimates O�k yields point-wise confidence
intervals or standard errors

SE. O�k/ D
p
˘ii : (18)

The standard error

SE. O�k/ / � (19)

is proportional to the standard deviation of the measurement error for linear models.
If a set of N measurements is repeated n times, the standard error decreases

SE. O�k/ / 1p
n

(20)

proportional to one over the square root of the number n of repetitions.

4.1 Confidence Intervals

A confidence interval CI represents the uncertainty of an estimate [11]. The
confidence level ˛ controls the probability that the true parameter is inside the
respective confidence intervals. If, as an example, ˛ D 0:95 is chosen, then the
true parameters are expected to be within the confidence interval with a probability
of 95%.

For known �2, the standard score or z-score

z D
O�k

SE. O�k/
� N.�k;true; 1/ (21)

is standard-normally distributed around the true parameter �k;true which can utilized
to define a more general confidence interval

CI O�k
.˛/ D

(
�k j ˛=2 � cdfN.0;1/

 O�k

SE. O�k/
� �k

!
� 1 � ˛=2

)
(22)

for the parameter O�k.
Equation (22) provides confidence intervals for a single parameter. For several

parameters, the multivariate normal distribution MVN can be utilized, i.e. a joint
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confidence interval for several parameter components �k, k 2 K, jKj > 1 is given
by [39]

CI O�k2K
.˛/ D

n
�k2K j ˛=2 � cdfMVN. O�k;˘.K;K//.�k2K/ � 1 � ˛=2

o
: (23)

In the multivariate case, the cumulative density function cdf.�/ � cdf�.�/ of the
probability density � at a point � is defined as the integral

cdf.�/ D
Z

fxj�.x/<�.�/g
�.x0/ d x0 (24)

over the region where the density �.x/ is smaller than �.�/.
Equation (22) is based on knowledge about the distribution of the estimated

parameters. This concept holds true for linear models. For nonlinear models, it
only holds in an asymptotic setting, i.e. for a large number of data points. A more
powerful concept which is also applicable in nonlinear settings is based on the
distribution of the log-likelihood or of differences of the log-likelihood. Figure 3
illustrates this approach. If N data points are simulated with given parameters, the
log-likelihood follows a chi-squared distribution

� 2 LL.yj�/ � �2N (25)

with N degrees of freedom.

Fig. 3 �2 LL in the simulation setting is �2N distributed (1). For linear models, the log-likelihood
is quadratic. Because of measurement errors, the minimum is shifted from the true parameters �
to O� according to a normal distribution (2). Fitting of each model parameter decreases the log-
likelihood by a single degree of freedom, i.e. for n� parameters �2 LL decreases according to the
�2n� distribution (3). Then minimum is then �2N�n� -distributed (4)
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If n� parameters are fitted to such data, the decrease log-likelihood, i.e. the log-
likelihood ratio

� 2 LR. O�; �/ WD �2



LL.yj�/� LL.yj O�/
�

(26)

is again given by the chi-squared distribution

� 2 LR. O�; �/ � �2n� (27)

with n� degrees of freedom. This decrease can be reversed, i.e. the range in the
parameter space where �2LR does not exceed the ˛-quantile of the �2n� -distribution
can be evaluated for defining confidence intervals. The true parameters are expected
to be inside a confidence interval given by

CI O� .˛/ D
n
� j � 2 LR. O�; �// � icdf�2n�

.˛/
o
: (28)

with probability ˛. This equation means, that in �2 LR-“units”, icdf�2n�
.˛/ provides

a threshold for confidence intervals of n� parameters. Equation (25) only holds for
Gaussian errors. In contrast, (27) which is the basis for the so-called likelihood ratio
test, holds under much weaker assumptions as discussed in Sect. 5.

The symbol n� for the number of fitted parameters refers to the effective number
of parameters in terms of degrees of freedom which are specified by the fitting
process. This number can deviate from the dimension of the optimization problem.
For multiple-shooting optimization methods, as an example, the time domain is
decomposed into several intervals and the initial values within each interval are
given by new auxiliary parameters which increase the dimension of the optimization
problem. However, since for each auxiliary parameter a single continuity constraints
is introduced in parallel, this technical reformulation of the optimization problem
has no impact on the estimated parameters and therefore neither contribute to n�
nor enter the statistical interpretations. A second example where n� differ from the
dimension of the optimization problem are redundant parameterizations of models
as discussed in Sect. 4.3. In such circumstances, n� refers to the effective number of
fitted parameters, i.e. redundant or non-identifiable parameters are not counted.

If a confidence intervals for a subset k 2 K of parameters is of interest, then
the likelihood ratios are calculated by optimizing all other parameters. For a single
parameter component, this approach yields the so-called profile likelihood [34]

PLk.p/ D min
�2f� j�kDpg

�2 LR.�; O�/ ; (29)

which is the log-likelihood ratio (26) as a continuous function of a parameter
component �k D p. As depicted in Fig. 4, the confidence interval for a single
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Fig. 4 Applying a threshold
given by the �21-distribution
to the profile likelihood yields
confidence intervals for single
parameter components
indicated by the gray
background color. The
minimum min� �2LL has
been subtracted for
illustration purpose. Since the
profile likelihood is invariant
under nonlinear
transformations of the
parameters, it is also
applicable for nonlinear
models

parameter is given by the region [22]

CIk.˛/ D
n
p j � 2 PLk.p/ � icdf�21.˛/

o
(30)

where the increase of the profile likelihood is smaller than the ˛-quantile of the
�21-distribution.

4.2 Model Discrimination for Known Measurement Errors

Statistical assessment of the agreement of two or several models with experimental
data is termed model discrimination or model selection in literature [1, 7, 37, 38]. We
restrict the discussion on the setting, where one model is a special case, i.e. a valid
simplification of the other, since in this case reliable statistical tests are available.

Let’s assume, there are two linear models

f .1/ D X.1/� .1/ (31)

f .2/ D X.2/� .2/ (32)

with n.1/� and n.2/� parameters.
If the two models are nested, i.e. f .1/ is a special case of f .2/, the null model f .1/ is

obtained by setting some parameters k 2 K of the alternative model f .2/ to specific
values

�
.2/
k D �k for k 2 K : (33)
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In this setting, the likelihood ratio test

pLRT D 1 � cdf�2
n



�2 LR. O�.1/; O�.2//

�
(34)

with the likelihood ratio [10]

LR. O�.1/; O�.2// D LL.yj O�.1// � LL.yj O�.2// (35)

can be applied to statistically assess, whether the larger model f .2/ with 
n D
n�.2/ � n�.1/ more parameters is significantly better than the simplified model f .1/

[9, 23]. Testing a parameter component for being agreement with a specific value is
an example for model discrimination, i.e. statistically testing whether a special case
of a model is in sufficient agreement with available data. If p < 1 � ˛, the smaller
model would be significantly rejected by the test according to a significance level
1 � ˛.

The likelihood ratio test (34) is equivalent to profile likelihood based confidence
intervals (30). In analogy, also Eq. (22) can be utilized to calculate p-values for
statistically testing a specific null hypothesis �k��0. However, since (22) only holds
for linear models, the p-value

p D 2 �min

"
cdfN.0;1/

 O�k

SE. O�k/
� �0

!
; 1 � cdfN.0;1/

 O�k

SE. O�k/
� �0

!#
(36)

based on the cumulative density function of cdfN.0;1/ of the standard normal
distribution are also restricted to the linear setting.

4.3 Identifiability

The rank of X>X determines the number of identifiable parameters, i.e. if X>X has
full rank, it is invertible and there is a unique estimate for all parameters. Then,
standard errors given by (17) and (18) have finite size. Since standard errors for
linear models only depend on the design X, identifiability is independent on the true
underlying parameters � .

For non-identifiable parameters, the profile likelihood, Eq. (29), is entirely flat
and there is no unique estimate for the parameters [17, 30]. The existence of
such non-identifiable parameters is also called confounding for linear models in
the statistical literature. Decreasing the measurement error, e.g. by experimental
repetitions of the same conditions, does not affect the rank of X>X and therefore
does not qualitatively change structural identifiability properties.
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4.4 Heteroscedastic Data

Up to now, a single, known measurement error � was assumed for all data points. If
the data yi have different, known measurement errors, i.e. � ! �i, it is convenient
to account for the magnitude of observational noise by rescaling the measurements

y0i WD
yi

�i
(37)

as well as the model predictions

K � WD X �

�
(38)

i.e. the matrix elements of K are given by

.K/ik D .X/ik
�i

: (39)

Then, equivalently to Eq. (14), least squares parameter estimates are obtained by
multiplication of the rescaled data

b� D K�y 0 (40)

with the pseudo-inverse of K and the covariance matrix (17) is given by

˘ D �K�K�>	> D �K>K
	�1

: (41)

In this so-called heteroscedastic case, only the rescaling Eqs. (37) and (39)
changes, although the structure of Eqs. (40) and (41) remain unchanged compared
to the homoscedastic situation.

4.5 Model Discrimination for Unknown Measurement Error

If there is a single, but unknown variance of the measurement error, �2 has been
estimated from the same data. Then, the ratio

O�k

SE. O�k/
� tdf (42)

is t-distributed with df D N�n� degrees of freedom. In the case of confounding, the
number of parameters n� is replaced by rank.X>X/ for the calculation of the degrees
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of freedom. Note that the maximum likelihood estimate of the measurement error
variance

O�2 D 1

N

NX

iD1



yi � fi. O�/

�2
(43)

is biased in the finite sample case and is replaced by

O�2 D 1

df

NX

iD1



yi � fi. O�/

�2
(44)

to obtain an unbiased estimate. The estimates O� are not affected by the fact that
the sampling variance is unknown and using (44), standard errors are again given
by (18).

The cumulative density function cdftdf.
O�k=SE. O�k/ � �k;true/ of the t-distribution

can be evaluated to test whether a parameter �k is significantly different from a
specific value �k;true. p-value for the two-sided test of the null hypothesis that �kD�k

are given by the extremes of the lower and upper quantiles

p D 2 �min

"
cdftdf

 O�k ��k

SE. O�k/

!
; 1 � cdftdf

 O�k ��k

SE. O�k/

!#
: (45)

More general model discrimination hypotheses can be tested based on the ratio

F D

�
.y�X.1/ O�.1//2

�2
� .y�X.2/ O�.2//2

�2

�
=



n.2/� � n.1/�

�

�
.y�X.2/ O�.2//2

�2

�
=



N � n.2/�

� (46)

which is known to be F-distributed

F � f
n
.2/
� �n

.1/
� ;n

.2/
�

: (47)

Because a possibly unknown sampling variance �2 cancels out, this result is very
useful for an unknown measurement error. F-tests are commonly applied in the
setting of analysis of variances (ANOVA) to test specific null hypothesis. Note,
that the distributional statements in Eqs. (42) and (47) are exact, i.e. they hold for
any number of repetitions and does not require the asymptotic assumption like the
likelihood ratio test. Asymptotically, i.e. for large number of data, both Eqs. (42)
and (47) become equivalent to the �2 and both tests become equivalent to the
likelihood ratio test.
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If the data is heteroscedastic with several unknown measurement errors, so-called
mixed effects models have to be applied for the analysis of the data [25]. This topic,
however, is beyond the scope of this article.

5 Nonlinear Models

For nonlinear models, the log-likelihood can have arbitrarily complex shape [35].
This alters the following aspects which are discussed in the following sections.

1. Least-squares estimation is not possible by generalized matrix inversion,
i.e. minimizing the least-squares objective function has to be performed
numerically. A variety of methods have been developed for performing numerical
optimization in such a setting.

2. The likelihood can exhibit local minima.
3. The parameter estimates are not normally distributed and confidence intervals

are typically not symmetric.
4. A unique maximum likelihood estimates does not guarantee for identifiability

since the confidence intervals can have infinite size. This aspect is called
practical non-identifiability in the literature [30, 31].

5.1 Numerical Optimization

Numerical optimizations techniques are applied if minimization or maximization is
not feasible analytically. For nonlinear systems, the computational efficiency and
the reliability of numerical convergence is problem-dependent, e.g. dependent on
the model and on parameter transformations, and there are no algorithms working in
all circumstances. For statistical analysis, the choice of the numerical optimization
method, e.g. for solving (10) or (29) only has an impact on the computational
efficiency and on robustness of convergence but has no impact on the results because
competing numerical algorithms converge to the same parameters.

There is a huge set of numerical approaches for the solution of nonlinear
optimization problems [27]. For oscillatory models, multiple-shooting approaches
[5, 6] have beneficial performance since the problem of local minima is diminished
by decomposition of the time domain. In addition, multiple-shooting allows the
incorporation of prior knowledge of the dynamics by a reasonable initialization of
multiple-shooting intervals [3]. This leads to a good initial guess as starting point
for optimization which improves the performance of the method. The convergence
of multiple shooting is discussed in more detail in [14, 20, 24].

In contrast, if most dynamic variables are unobserved and there is no reliable
guess for the dynamics of these variables, initialization of the multiple shooting
intervals becomes difficult. This situation occurs, as an example, in systems biology
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applications since many cellular compounds are often not experimentally accessible.
In such applications, the standard single-shooting approaches like the trust-region
[8] or Levenberg-Marquardt approaches [21, 27] can be applied, especially if the
dynamics is expected to be transient.

If optimization is performed based on ordinary differential equation models, the
following aspects should be considered

• Most ordinary differential equations (ODE) can only be solved numerically
with a certain accuracy which is controlled to some extent by the tolerances of
numerical ODE solvers. Calculating derivatives based on difference quotients, is
often not feasible since the integration step control depends on the parameters and
numerical integration errors are inflated by dividing through a small parameter
step size [32]. Then, the ODE system can be augmented by the sensitivity
equations to calculate derivatives with respect to the parameters [19].

• A strategy has to be chosen to deal with potential local minima as discussed in
the following Sect. 5.2.

• Often, optimization problems are numerically more efficiently solved, if the ex-
ponents of parameters are fitted, i.e. if optimization is performed at a logarithmic
scale. This especially holds if parameters are known to be positive like rate
constants or initial concentrations.

5.2 Local Minima

Nonlinearity of a model can yield to local minima of the objective function. For such
cases, stochastic optimization approaches like simulated-annealing [13], particle-
swarm [26], or evolutionary algorithms [18] have been proposed. To mathematically
guarantee convergence, these methods combine exploration of the parameter space
by random sampling with exploitation of the local geometry of the objective
function by approximations of the derivatives of the objective function with respect
to the parameters.

In practice, however, stochastic optimization methods often show slow conver-
gence, especially for larger problems with more than 101–102 parameters [32]. In
addition, stochastic optimization methods have hyper-parameters, e.g. to heuristi-
cally combine the stochastic sampling strategy with the local descent method. An
efficient choice of these hyper-parameters is usually difficult since insights about
the optimization problem are required which are typically not available a priori.

For systems biology applications, the dynamics is typically smooth at the
time scale of the measurements. Then, also the objective function is smooth
and deterministic optimization approaches can be efficiently applied to find local
minima. Since in most dynamic variables are typically not observed, multiple
shooting is difficult to be applied.



Statistics for Model Calibration 369

A combination with a stochastic initialization approach like latin-hypercube sam-
pling works efficiently in a systems biology setting and has been awarded twice as
best performing in systems biology benchmark challenges for parameter estimation
and network reconstruction [36]. In this challenge, the so-called Data2Dynamics
framework [33] was utilized which provides an efficient implementation for fitting
based on the Matlab’s nonlinear least-squares estimation routine ”lsqnonlin“. This
routine, in turn, implements a deterministic trust-region-reflective algorithm of
Gauss-Newton optimization.

5.3 Asymmetry of Confidence Intervals

For linear models with Gaussian measurement errors or for nonlinear models in an
asymptotic setting, the parameter estimates are normally distributed and the log-
likelihood has a quadratic shape as shown in Fig. 5, panel (a). Then, a quadratic
approximation of the likelihood at the maximum likelihood estimates O� as provided
by the observed Fisher-Information

Fij D @2

@�i@�j

��2 LL.yj�/j O�
	

(48)

and the related covariance matrix

˘ D F�1 (49)

of the estimated parameters provides reasonable confidence intervals (see panel (c)).
The effect of a nonlinearity is easily demonstrated by a reparametrization

�nonlinear D log .�linear/ (50)

of a linear parameter �linear. The reparameterization yields an asymmetric distribu-
tion of the parameter estimates (see panel (b)) as well as a distortion of the likelihood
shape as depicted in panel (d).

Profile likelihood based confidence intervals are independent on monotone trans-
formations of the parameters since the region below a threshold is not affected by
distortions in horizontal direction. Therefore, the profile likelihood based confidence
intervals indicated in panels (c) and (d) are equivalent. In addition, existence of
a monotone transformation yielding a quadratic shape of the profile likelihood
is sufficient to guarantee that the threshold can be chosen from the chi-squares
distribution according to Eq. (30). The transformation is only required locally,
i.e. only for the region in the parameter space which is in statistical agreement with
the data. If there are several minima which are in sufficient agreement with the data,
or if the confidence interval cover range a boundary of the parameter space, such a
transformation does not exist and then Eq. (30) only holds asymptotically.
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Fig. 5 Illustration of effect of nonlinearity of a model parameter on the distribution of the
parameter estimates (upper row) and on the shape of the likelihood (lower row). Panel (a) shows
a Gaussian distribution of the maximum likelihood estimates which is obtained for many data
realizations in a linear or asymptotic setting. A nonlinear parameter as shown in panel (b), in
general has an asymmetric distribution in the non-asymptotic case. For this plot, the nonlinear
parameter was defined as � 0 WD exp.�/. In panel (c), the likelihood is plotted for the linear
parameter. If a model has several parameters, the depicted curve corresponds to the profile
likelihood. Panel (d) shows the profile likelihood for the nonlinear parameter � 0. Confidence
intervals are obtained from the curves in (c) and (d) by applying a threshold according to Eq. (30)
as indicated by the dashed lines

5.4 Identifiability Analysis

Non-identifiability refers to situations, where reliable estimation of parameters is
not feasible. In the linear setting discussed in Sect. 4.3, the parameters are either
identifiable or structurally non-identifiable. Structural non-identifiability means that
the likelihood does not attain its global optimum at a unique point. In fact, there is
a manifold where the likelihood is optimal. If the dimension of this manifold is d,
then n� � d parameters are identifiable.
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Fig. 6 Illustration of the three qualitative identifiability scenarios. In the left column, both
parameters �i and �j are identifiable. Here, the log-likelihood ratios �2 LR has a unique minimum
(upper left panel) as indicated by the different colors. Then, the profile likelihood (red line) shown
in the lower left panel exceeds the confidence threshold (green line) in upper and lower directions.
The red and blue lines in the upper left panel are the parameters evaluated for calculating the profile
likelihood of the two shown parameters �i and �j. In the middle, an example for structural non-
identifiability is depicted. Here, there is a flat direction in the likelihood which yields a perfectly
flat profile likelihood for parameter �i (lower panel in the middle). On the right, a practical non-
identifiability is shown. Although the likelihood has a unique minimum, it is flat for large values
of �i. Therefore, the confidence interval for �i is not restricted in upper direction and has infinite
size

For nonlinear models, also several points in the parameter space can have the
same optimal likelihood. As a simple example, let’s consider a case where only �2k
enters the likelihood, then �k and ��k fits the data equally well and if all other
parameters are identifiable, there are exactly two point in the parameter space
maximizing the likelihood.

As an additional scenario for nonlinear models, there could be a unique
maximum, but the confidence interval has infinite size. This happens if the profile
likelihood does not exceed the confidence threshold in lower and/or upper direction.

Figure 6 illustrates the identifiable setting (left column) as well as structural
(middle) and practical non-identifiability (right column). The colors in the upper
panels indicate likelihood ratios and the green lines correspond to point-wise 95%
thresholds.

5.5 Prediction and Observability Analysis

A primary purpose of modeling is prediction, i.e. forecasting a system’s behavior
under specific conditions of interest. A model prediction is any characteristic which
is calculated based on the model. Parameter estimation can be seen as a special case
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of performing a model prediction. Other examples for predictions are extrapolations
of the dynamics like predicting a maximum value, a steady state, or the dynamics of
unobserved components.

The profile likelihood methodology used to calculated confidence intervals for
parameters can be adapted to the more general prediction setting. This can be done
by a reparametrization of the model, i.e. by replacing a parameter by the prediction.
For ODEs, however, this is usually not feasible since integration is not feasible
analytically.

Nevertheless, the likelihood can be maximized in a constrained manner, i.e. a
predicted value is fixed and the parameters are optimized under such a constraint.
Repeating this procedure for continuous variations of the constraint yields an im-
plicit reparametrization and the prediction profile likelihood [16]. As demonstrated
in the next section, the results look similar to the parameter profile likelihood. The
major difference is that the profile likelihood curve is calculated for the prediction
on the horizontal axis. Confidence intervals for the predictions are calculated by the
same thresholds as in the parameter estimation case. The reliability and limitation
of the threshold is discussed in [16]. In the prediction setting, a totally flat profile
likelihood can be interpreted as structural non-observability. A unique prediction
with an infinite size of the confidence interval has been termed as practical non-
observability [16].

6 Example

Let’s assume for the illustration purpose, a small model consisting of two consecu-
tive reactions

A
�1! B

�2! C (51)

between three compounds A, B, and C. Let’s assume further that C.t/ is measured
at t D 0; 10; : : : ; 100. Panel (a) in Fig. 7 shows the dynamics of this system rates
�1 D 0:05; �2 D 0:1 and initial conditions A.0/ D �3 D 1;B.0/ D 0;C.0/ D 0. as
well as a data realization generated with Gaussian noise " � N.0; �2/ with � D 0:1
corresponding to a typical signal-to-noise ratio for applications in cell biology of
around 10%.

Let’s assume, the peak location of B.t/ is intended to be predicted. Fitting the
parameters by the maximum likelihood methodology according to Eq. (10) yields
O�1 D 0:065, O�2 D 0:065, and O�3 D 1:03 and predicts a peak location tpeak D 15:48.
According to Eqs. (18), (48), and (49), the curvature of the likelihood provides a
standard error

SE.tpeak/ D
vuut
 

@2

@t2peak

� 2 LL.yj O�/
!�1
D 1:97 (52)
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A B C
predicted measured

�me �me �me

(A)

Fig. 7 Panel (a) shows the dynamics of the compounds A, B and C as well as the measurements
for C. The goal of our illustration analysis is the prediction of the peak time of B.t/. The prediction
profile likelihood depicted in panel (b) for the peak time is obtained by iteratively fitting the data
for different constraints for the peak position. Panel (c) shows these fits. The colors indicate �2
LR. In the last panel (d), the predictions for B.t/ are plotted indicating that the dynamics of B is
only weakly constrained by the data. The peak times are highlighted as a black line

with a symmetric confidence interval O�peak D 15:46 ˙ 1:97 according to a 68:3%

confidence level and O�peak D 15:46 ˙ 3:86 D Œ11:60; 19:32� according to a more
common confidence level of 95%.

Panel (b) in Fig. 7 shows the prediction profile likelihood for the peak time as
discussed in Sect. 5.5. The colors correspond to the fits shown in panel (c) and the
predictions of B.t/ depicted in panel (d). The profile likelihood accounts for the
nonlinear dependency of the fitted likelihood and the peak time. In this example, the
95% threshold result in an asymmetric confidence interval Œ7:22; 19:92�.

7 Summary

Establishing a mathematical model comprise model discrimination and model cali-
bration. Both, the selection of an appropriate model structure and the identification
of model parameters requires appropriate statistical methodology. Typically, models
are calibrated by fitting of experimental data. Then optimization is required to
perform maximum likelihood estimation which is the most commonly applied fitting
technique. In this review, basic approaches for parameter estimation, confidence
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interval calculation as well as statistical tests based on maximum likelihood have
been presented.

For the maximum likelihood methodology, reliable numerical approaches are
required to maximize the likelihood. The increasing complexity of models ap-
plied in current research challenges the methodology for optimization as well
as for statistical analyses. Although many techniques have been established for
optimization as well as for statistical interpretations and their performance have
been demonstrated, further improvement of the algorithms in terms of efficiency
and robustness especially for large and nonlinear systems is still a topic of current
research. Improvements of both, approaches for optimization and for statistical
interpretations, are highly relevant for applications in current research.
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On Time Discretizations of Fluid-Structure
Interactions

Thomas Richter and Thomas Wick

Abstract In this contribution, time discretizations of fluid-structure interactions are
considered. We explore two specific complexities: first, the stiffness of the coupled
system including different scales of the Navier-Stokes equations of parabolic type
and the structure equation of hyperbolic type and second, the problem of moving
domains that is inherent to fluid-structure interactions.

Typical moving mesh approaches, such as the arbitrary Lagrangian-Eulerian
framework, give rise to nonlinearities and time-derivatives with respect to the mesh-
deformation. We derive different time-stepping techniques of Crank-Nicolson type
and analyse their stability and approximation properties. Further, we closely look
at the dominant time-scales that must be resolved to capture the global dynam-
ics. Moreover, our discussion is supplemented with an analysis of the temporal
discretization of Eulerian fixed-mesh approaches for fluid-structure interactions,
where the interface between fluid and solid will change from time-step to time-
step. Finally, a formulation of parallel multiple shooting methods for fluid-structure
interaction is presented.

1 Introduction

Fluid-structure interactions (fsi) are part of many application problems and appear
in mechanical engineering, aeroelasticity, hemodynamics, or as pore-scale modeling
in porous media flow. Concretely in this work, we consider the interaction of a
laminar, incompressible fluid with an elastic solid governed by the Saint Venant
Kirchhoff material law. While the simulation of both single sub-processes is already
a difficult task, covering their interaction is further complicated by the two-way
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coupling between both systems. In this contribution, we will focus on issues
concerning the time-discretization of fully-coupled fluid-structure interactions by
means of time-stepping schemes. In every time-step, an approximation to the fully
coupled system at a new time-step is to be found. The fully coupled approach is
called monolithic compared to partitioned approaches, where the fluid- and solid-
problem are solved separately and coupled via outer iterations. Monolithic schemes
always belong to strongly coupled methods whereas partitioned schemes can be
either strongly or loosely coupled depending on the number of inner iterations
and the desired accuracy of force balance at the interface. For instance, strongly
coupled schemes are necessary when the added mass effect takes place as in
applications in hemodynamics. On the other hand, partitioned solution schemes
are very efficient for problems with a less stiff coupling, as they are common in
aeroelasticity.

Time discretization of fluid-structure interactions is mainly governed by two
specific complexities. First, the overall stiffness of the coupled problem is by
far greater than that of the sub-problems. This is mainly due to the coupling of
parabolic-type fluid equations with hyperbolic-type solid equations. Second, using
a (most common) moving-mesh approach, time derivatives do not appear separated
from spatial differential operators, but they depend nonlinearly on other solution
variables and their spatial derivatives, giving rise to terms like

det.I Cru/ŒI Cru��1rv@tu;

where v is the unknown velocity and u is the unknown deformation determining
the domain motion. Detailed analysis for fluid flows on moving domains has
been performed by Formaggia and Nobile [15, 16]. These studies already tackle
several important aspects such as stability, order of convergence and the geometric
conservation law. In fluid-structure interaction, the fluid-domain movement is
caused by the solid deformation. Hence, the analysis of fully coupled fluid-structure
interaction is similar but must also include detailed consideration of the solid
discretization. This analysis is not present in literature.

In the following section, we will shortly introduce the governing equations
for the fully coupled fluid-structure interaction problem in Arbitrary Lagrangian
Eulerian (ALE) coordinates. Then, in the central third section, we analyze time-
dependent dynamics of a typical fluid-structure interaction benchmark. In Sect. 4
we present and discuss different time-stepping technique and closely analyze their
accuracy and stability properties. In Sect. 5, we recapitulate the current state-
of-the-art of an alternative (to the ALE approach) monolithic formulation, the
fully Eulerian framework and discuss special aspects with respect to its time-
discretization. The prospective of applying parallel multiple shooting methods to
enhance stability and efficiency is discussed in Sect. 6. Finally, we conclude in
Sect. 7.
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2 Fluid-Structure Interactions

By ˝ � Rd we denote a two or three-dimensional domain that is split into a fluid-
part F and a solid-part S . The splitting is such, that F and S are d-dimensional
domains with a common interface I D @F \ @S . Figure 1 shows a possible
configuration of fluid-structure interactions, where the fluid encloses an obstacle
with elastic beam. By the arising dynamics, the beam will deform and hence, solid
and fluid domain will change such that at time t > 0 it holds ˝.t/ D F .t/ [S .t/
with interface I .t/ D @F .t/ \ @S .t/. In F .t/, fluid’s velocity vf and pressure
pf are governed by the incompressible Navier-Stokes equations, where in S .t/ the
elastic beam’s deformation us and velocity vs is controlled by a St. Venant Kirchhoff
material, see [28].

The coupling between these two sub-problems is controlled by the kinematic
condition that calls for continuity of the velocities on the common interface I .t/
and the dynamic condition that asks for continuity of normal stresses on I .t/.

To cope with the moving fluid-domain, we introduce the Arbitrary Lagrangian
Eulerian (ALE) formulation that maps the domains F .t/ back to the fixed reference
domain F at time t D 0. We introduce by uf the deformation field of the
fluid-domain, that maps every reference point Ox 2 F to a point in the current
configuration x 2 F .t/ via

x 2 F W T.x; t/ D xC uf .x; t/ 2 F .t/:

This mapping is not the physically motivated mapping between Lagrangian and
Eulerian coordinates that follows the path of a particle, but a mapping between a
completely arbitrary reference domain and the current configuration, see [8, 27, 32].
In both subdomains F and S , we denote by F WD ICru the deformation gradient
and by J WD det.F/ its determinant.

On ˝ , F and S we introduce the function spaces

V WD H1
0.˝I� D/d; Lf WD L2.F /; Vf WD H1

0.F I @F /d ; Vs WD L2.S /d;

Fig. 1 Configuration of the fsi3-benchmark problem. Flow around obstacle with elastic beam.
Inflow boundary �in, outflow boundary �out and fluid-solid interface I . The cfd-benchmark is
recovered by omitting the beam
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where by H1.˝I� / we denote the Sobolev space of Lebesgue integrable functions
with the first weak derivative in L2 and trace zero on the boundary � . The full
system of coupled fluid-structure interactions in variational formulation is to find

v D .vf ; vs/ 2 V ; u D .uf ;us/ 2 V ; pf 2 Lf ;

such that


�f J.@tvCrvF�1.v � @tu//; �

�

F
C



J O��� f F�T ;r�
�

F

C


�sdtv; �

�

S
C



F˙̇̇ s;r�
�

S

C



det.JF�1v/; 
f

�

F
C


r���mesh;r f

�

F
C



dtu � v;  s

�

S
D .f ; �/˝;

(1)

for all

� 2 V ; 
f 2 Lf ;  f 2 Vf ;  s 2 Vs:

Here, by f we denote a given volume force, by ˙̇̇ s the 2nd Piola Kirchhoff stress
tensor, which for the St. Venant Kirchhoff material takes the form

˙̇̇ s D 2�Es C �s trace.Es/I; Es WD 1

2
.FTF � I/;

where by �s and �s we indicate the two material parameters. By ��� f we denote the
fluid’s Cauchy stresses expressed in the reference coordinate system

��� f D �f �f .F�1rvf CrvT
f F�T/ � pf I;

and finally, by ���mesh we denote the mesh-moving operator of harmonic, linear-
elastic, or biharmonic type [23, 49, 57].

Kinematic

vf D vs on I .t/;

and dynamic coupling conditions

J��� f F�Tnf D F˙̇̇ sns on I .t/;

are embedded in this formulation, as the velocities v 2 V and test-functions � 2 V
have a well-defined continuous trace on the interface I .

Spatial discretization of this coupled system will be accomplished with conform-
ing finite elements. For details, we refer to [12, 41–43, 45, 57].
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3 Analysis of Two Benchmark Problems: cfd and fsi

We start the discussion on time-discretizations of fluid-structure interaction with
a literature survey on published results for two benchmark problems in fluid-
dynamics: first, the cfd-benchmark Laminar Flow Around a Cylinder as published in
1995 by Schäfer and Turek [46] and called cfd-benchmark in the following. Second
an extension of this benchmark to fluid-structure interactions, the fsi3-benchmark
problem, published in 2006 by Hron and Turek [30] and called fsi3 in the following.
Both problems feature the flow around a circular obstacle. In the fsi3 configuration,
an elastic beam is attached to the rear of the circular obstacle. See Fig. 1 for a sketch
of the configuration. The cfd benchmark is obtained by completely omitting the
beam. Both problems are driven by a time-dependent inflow data v D vD on �in.
The full set of parameters for both problems is given by

�cfd
f D 1; �fsi

f D 103; �cfd/fsi
f D 10�3; vD.0; y/ D 1:5!.t/y.H � y/

.H=2/2
Nv;

where !.t/ D .1 � cos.�t=2//=2 for t < 2 and !.t/ D 1 for t � 2 is used for
regularizing the initial data. As average velocity, Nv D 2 for the fsi3-benchmark and
Nv D 1 for the cfd benchmark was considered. With the radius of the circular obstacle
D D 0:1, the Reynolds number is given by

Recfd D NvD

�
D 100; Refsi D NvD

�
D 200:

The description of the problem is closed by providing the material parameters of the
elastic solid

�fsi
s D 103; �s D 2 � 106; �s D 8 � 106:

As quantity of interest, we consider principal boundary stresses in x- and y-direction
on the obstacle with boundary �obs:

Jdrag.v; p/ D 2

Nv2�f L

Z

�obs

��� f nex do; Jlift.v; p/ D 2

Nv2�f L

Z

�obs

��� f ney do:

By �obs we denote the boundary of the circle with diameter in the case of
the cfd-benchmark and the circle with attached beam in the case of the fsi-
benchmark problem. Efficient ways for evaluating these functionals are shown
in ([5]) and ([43]).

Figure 2 shows the drag-coefficient as function over time I D Œ0; 5� for the two
benchmark problems. To avoid confusion, we note, that Hron and Turek [30] also
published a new fluid dynamics benchmark, the cfd3-benchmark problem, where
the beam was considered as rigid part of the obstacle and the flow was driven
with Reynolds number Re D 200. Here however, we compare the fsi3-benchmark
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problem with the published results of the original cfd-benchmark taken from [46].
Both configurations show a similar behavior with a transient initial phase leading to
a periodic oscillation with dominant frequencies fcfd D 13Hz for the cfd-benchmark
and ffsi � 11Hz for the fsi problem. The first obvious difference is the longer
transient phase for the fsi-benchmark problem. An insight look into the subinterval
I0 D Œ2:5; 3� reveals high frequent oscillations fhigh � 100Hz in the drag-coefficient
with a small amplitude a � 10�4 that is not visible on the large scale. These high
frequent oscillations are no numerical artefacts but remain stable under temporal
and spatial mesh refinement.

Reviewing the results published by many research groups in the two surveys on
the cfd benchmark problem [46] and the fsi3-benchmark [30, 31] a first surprising
observation is the choice of discretization parameters that have been necessary to
obtain approximations with appropriate accuracy: even though more than a decade
lies between both benchmark problems, the dimension of the spatial discretization
is very similar. In both cases, different research groups had to use 20.000 to 200.000
spatial degrees of freedom to generate output values with at least 1 % accuracy.
The large margin stems from different discretization schemes (lowest order finite
element or finite volume schemes, higher order methods) but also from different
triangulations of the geometry. The increased difficulty of the fsi3-benchmark
problem has been accounted for by a general use of higher order finite elements.

However, observing the temporal discretization, it is found, that the fsi bench-
mark asks for significantly finer resolution in time. While less than 10 time-steps
per period of the oscillation were sufficient in the cfd case, accurate results to the fsi
benchmark problem required up to 100 time-steps per period of oscillation resulting
in time-steps as small as 10�3. One explanation for this difference in temporal
discretization can be found in the high frequent oscillations that are present with
small amplitude, see Fig. 2.

Further insight is given by a discrete Fourier analysis of the output functional
Jdrag.t/ as function over time. At very fine temporal resolution (down to k D 10�5),
some complete periods of the fully developed oscillation are analyzed in detail.
Figure 3 reveals several dominant frequencies, at about 100Hz (see also Fig. 2, 500

Fig. 2 Comparison of the
two benchmark problems,
original cfd [46] and
fsi3 [30]. We plot the drag
coefficient as function over
time. For the fsi-problem we
show a detailed view of the
transient oscillations
revealing high frequent
modes
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Fig. 3 Discrete Fourier analysis of the output functional (drag) shows the dominant frequency
ffsi � 11Hz and further important sub-frequencies at about f � 100 and 500Hz as well as 800Hz.
These modes are stable under temporal and spatial mesh refinement

and 800Hz. These modes are stable under mesh refinement and further decrease
of the time step. The results in Fig. 3 are scaled. The modes belonging to higher
frequencies carry less energy. But even though the high frequent contributions take
place on a much smaller scale as the dominant oscillation ffsi � 11Hz, they must
be carefully resolved to capture the overall dynamics of the coupled benchmark
problem. The key question in this respect is the origin of these micro-oscillations.
They are not present in pure fluid-dynamical simulations. Further, they are no
numerical artifact, but stable under discretization of both spatial and temporal
discretization. Instead they stem from the coupling to the hyperbolic structure
equations.
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4 Time-Stepping Schemes for Fluid-Structure Interactions

There is little theoretical background to monolithic time-discretizations of fluid-
structure interactions. The main difficulty stems from the motion of the subdomains,
that must either be modeled explicitly in partitioned approaches or that must be
taken care of by implicit transformations of either the fluid-domain or the solid-
domain. Concentrating first on pure fluid problems on moving domains, some
crucial aspects with respect to stability and order of convergence are already
identified [15, 16]. The equations presented therein can be directly employed in
an implementation. In addition, [14] provided stability analysis of fluid-structure
interaction problems. Several studies with qualitative comparisons of different time-
stepping schemes and their long-time behavior has been reported in [56, 62]. In the
primer study and additionally [57, 61], we provide many details for the practical
realization and implementation of time-stepping schemes for ALE fluid-structure
interaction.

In the following, we focus the attention to the well-established ALE-approach
that results from transformation of the moving fluid-domain to a fixed reference
domain. The domain motion is hidden in the ALE-map Tf .x; t/ and calls for the
discretization of non-standard space-time coupled terms like [see (1)]

.J.u/rvF�1.u/@tu; �/F : (2)

Most approaches for the temporal discretization of this term are ad hoc and based
on the experience with other types of equations as Navier-Stokes of multiphase
fluids, see [29].

Remark 1 An alternative approach to the monolithic formulation of fluid-structure
interactions is given by an implicit transformation of the solid-domain to Eulerian
coordinates resulting in the Fully Eulerian approach [11, 45]. This method of
interface-capturing type must deal with subdomains that move freely through a fixed
background mesh from time-step to time-step. We come back to this procedure in
Sect. 5.

4.1 Derivation of Second Order Time-Stepping Schemes

The derivation of a second order stable time-stepping scheme is not obvious.
Specifically, regarding (2), two immediate reasonable choices for are given by the
secant version

��
J.um�1/rvm�1F�1.um�1/

2
C J.um/rvmF�1.um/

2

�
um � um�1

km
; �

�
;
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and the midpoint-tangent version
�


J. Nu/rNvF�1. Nu/� um � um�1

km
; �

�
; Nu WD um�1 C um

2
; Nv WD vm�1 C vm

2
;

of the trapezoidal rule. This idea is explored in [56, 62]. A third version of a
time-stepping scheme can be derived by using a temporal cG.1/=dG.0/-Galerkin
approach on (2) (see [44]):

��
1

6
J.um�1/rvm�1F�1.um�1/C 2

3
J. Nu/rNvF�1. Nu/

C1
6

J.um/rvmF�1.um/

�
um � um�1

km
; �

�
;

where again by Nu and Nv we denote the average of old and new approximation. Such
a Galerkin-derivation is also possible for more advanced time-stepping schemes like
the fractional step theta method, see [37, 38].

Simple truncation error analysis shows second order convergence for k ! 0 in
all three cases. The leading error constants slightly differ:

C1 � 11

8
; C2 � 3

8
; C3 � 3

4
:

In numerical experiments, it is found, that all these variants show a very similar
performance. Significant differences in temporal accuracy could not be found.

Finally, we point out, that the Crank-Nicolson scheme applied to the elas-
tic structure equation in mixed formulation is closely related to the Newmark
scheme [3], which is one of the most prominent time-discretization techniques in
solid mechanics.

4.2 Temporal Stability

Issues of numerical stability are of utter importance for fluid-structure inter-
action problems, as they consist of the coupled consideration of two differ-
ent types of equations: the incompressible Navier-Stokes equations which is of
parabolic type and that comes with smoothing properties and the hyperelastic
solid equation of hyperbolic type, that calls for good conservation properties
with very little numerical dissipation. By these considerations, the Crank-Nicolson
scheme and its variants like shifted versions [34, 40] or the fractional step theta
scheme [7, 54], appear to be ideal candidates that further show second order
accuracy.
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Fig. 4 Simulation for k D 0:005. Top: undamped Crank-Nicolson scheme develops an instability
after T D 8:5. Bottom: implicitly shifted scheme produces a stable solution on I D Œ0; 10�

Motivated by [16, 26, 34], it is reported in [14, 62], that the discretization
of the domain-motion term (2) introduces further stability issues. To investigate
this stability problem, we again consult the fsi3-benchmark problem introduced
in the previous sections. Figure 4 shows the drag as functional over time for an
unstable pair of spatial and temporal discretization parameters. Further, we also
show the stable simulation using a damped version of the time-stepping scheme,
see Sect. 4.3.

In a first test, we aim at obtaining a stable solution up to T D 10. On a
sequence of uniform meshes, we identify the largest timestep k that is suited to
generate a stable solution. The left part of Table 1 shows the results. Here, we
see, that on the coarsest mesh, the large step size k D 0:02 is sufficient, while
on finer meshes k < 0:004 is required. We however cannot identify a further
relationship between mesh size and time step if we go to an even finer spatial mesh
resolution.
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Table 1 Long-term stability of the Crank-Nicolson scheme

Time step size

Mesh-level 0.025 0.02 0.004 0:00N3 Mesh-level k D 0:005 0:00N3
1 � p p p

1 	 10 	 10

2 � � � p
2 8.48 10.82

3 � � � p
3 6.04 12.54

4 3.84 3.84

Left: combination of time-step k and mesh size h, such that the solution is stable in the interval I D
Œ0; 10�. We cannot find a strict time-step relation k 
 h˛ . Right: maximum interval I D Œ0; Tmax�,
where a solution could be found for k D 0:005 and k D 0:00N3, depending on the mesh-size. Here,
we also cannot identify an obvious relationship

In a second test-case, we consider the (relatively large) step size k D 0:005 and
k D 0:00N3 and determine the point in time Tmax, where the solution gets unstable.
Again, we carry out this test-case on different meshes. At first glance, the results in
the right part of Table 1 for k D 0:005 suggest a stability relationship between time
step and mesh size. The results concerning the second configuration with k D 0:00N3
however does not confirm this conjecture. Here, we can even reach a larger final
point in time Tmax on finer meshes. Further, the simulations on the finest mesh do
not cease due to stability problems but due to early failure of the Newton scheme.
Altogether, it is not possible to numerically certify a strict time-step restriction.
Instead, we find general stability problems for long-term simulation, if we consider
the Crank-Nicolson scheme.

4.3 Stable Time-Discretization and Damping

By analyzing the fsi3-benchmark problem, it seems, that time-step restrictions
due to stability issues are too restrictive and not justified by the needs of ap-
proximation accuracy, see Sects. 4.2 and 4.1. It is therefore nearby to search
for accurate time-discretization schemes with better stability properties. Differ-
ent possibilities are either to resort to A stable time-discretization schemes, or
to apply modifications to the Crank-Nicolson schemes. Here, two possibilities
are often discussed in literature: by slight implicit shifting of the discretiza-
tion

.um � um�1; �/C
�
1

2
C O.k/

�
a.um; �/C

�
1

2
�O.k/

�
a.um�1; �/ D 0;

global stability is recovered, see [25, 26, 34]. This is just sufficient for the
damping of accumulated errors by truncation, quadrature or inexact solution
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of the algebraic systems. If the shift depends on the time-step size, the re-
sulting scheme is still second order accurate in time. Similar results are re-
covered by applying some initial time-steps with the A-stable backward Euler
method, see [40]. If these few (usually two are sufficient) backward Euler steps
are introduced after every fixed time-interval, e.g. at every t D j for j D
0; 1; : : : , we also recover sufficient stability for long term calculations. This
scheme, also referred to as Rannacher time-marching, is second order accu-
rate.

Higher stability, that is also able to cover non-smooth initial data is reached
by applying strongly A-stable time-integration techniques. Here, the fractional-
step theta method appears to be an optimal choice [7]. This time-stepping scheme
consists of three sub-steps, that results in a second order, strongly A-stable scheme
that further has very good dissipation properties. It is highly preferable for flow
problems [54] and also frequently used in the analysis of fluid-structure interactions
problems [29, 55, 56].

An analysis of different damping strategies applied to the fsi-2 benchmark
problem (a slightly more difficult test-case) is given in [62], which we briefly
summarize in the following: There are only minor differences in the drag evalu-
ation computed with the unstabilized Crank-Nicolson scheme using the different
ALE convection term discretizations. Specifically, unstable behavior (blow-up) for
computations over long-term intervals is observed. As expected, the shifted Crank-
Nicolson scheme and the Fractional-Step-� scheme do not show any stability
problems in long-term computations, even for large time steps k D 0:01. This
result indicates that the instabilities induced by the ALE convection term have
minor consequences, and our observation is in agreement with the statement in
[16].

In the following, we compare the three possibilities of a non-damped Crank-
Nicolson scheme, with an implicitly shifted version using 1

2
C k and the Rannacher

time-marching algorithm with two steps of the backward Euler method at times
t D 0, t D 1, t D 2 and so on. In Fig. 5 we compare these three damping strategies.
We show the drag-coefficient (see Figs. 2 or 4 for a global view) in the sub-intervals
t 2 Œ3:5; 4:2�, t 2 Œ7:95; 8:15� and t 2 Œ9:3; 9:6�. While all three versions are stable at
initial time, Rannacher time-marching develops a first instability after two steps
of backward Euler at time t D 4, see the left sketch in Fig. 5. This instability
will stay during the simulation, but it will not be further developed, as can be
seen in the middle and right sketch of the figure. The undamped version of the
Crank-Nicolson scheme delivers stable solutions up to a moderate time of about
t D 5 but develops a strong instability that fill finally lead to a break-down of
the scheme, as can be seen in the middle and right sketch. Finally, the implicitly
shifted version of the Crank-Nicolson scheme gives stable and good result globally
in time.
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Fig. 5 Comparison of different damping strategies: undamped Crank-Nicolson, shifted version
1
2
C k and Rannacher time-marching with two backward Euler steps at every time-unit

5 Alternative Formulation in Fully Eulerian Coordinates

As previously mentioned, an interesting alternative to ALE formulations is the
fully Eulerian framework [11, 45]. Specific extensions are reported in [43, 58]
and combinations with ALE in [59, 60]. Apart from monolithic formulations,
other recent studies (but not tested with the fsi-benchmarks) on fully Eulerian
formulations are known [9, 22, 50, 51, 64]. As discussed in the previous sections,
the ALE formulation of the fluid problems introduced several difficulties for the
analysis as well as the implementation. In fact, all kinds of transformation in the
fluid equations are avoided in a fully Eulerian description of the equations.
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Here, the idea is to have fluid- and solid-problem on the moving domains F .t/
and S .t/. While fluid-system is simply let in Eulerian coordinates, we now need to
transform the solid problem to match the Eulerian coordinate system. An illustration
is given in Fig. 6.

By the simple observation, that the deformation Ous.Ox; t/ D x.Ox; t/ � Ox just maps
between Lagrangian points Ox 2 OS and their Eulerian coordinates x D x.Ox; t/ 2
S .t/, we can defined Eulerian counterparts for deformation us.x; t/ D Ous.Ox; t/ and
velocity vs.x; t/ D Ovs.Ox; t/. Then, following [11, 45], the Eulerian system is similar
to a multiphase flow

�f .@tvf C vf � rvf /� div ��� f D �f f in F .t/;

div vf D 0 in F .t/;

Js�s.@tvs C vs � rvs/� div ��� s D Js�sf in S .t/;

@tus C vs � rus D vs in S .t/;

vf D vs; n � ��� f D n � ��� s on I .t/:

(3)

For the exact form of modeling structural stresses ��� s in Eulerian coordinates, we
refer to the literature [45]. The big advantage of this Eulerian framework is the
avoidance of any kind of unphysical (hence arbitrary) mapping of the systems.
The transformation between Lagrangian and Eulerian coordinates of the structure
system motivated by physical principles and will not be cause for break-down of
the scheme, see e.g. [43]. The obvious drawback of an Eulerian model is the front-
capturing type of this formulation, where the interface I .t/ will move freely in the
domain and through the mesh elements. The ALE technique has a front-tracking
character that allows to resolve the interface at all times with a finite element mesh.

To capture the interface, we need to constantly keep record of its location. One
classical approach is the Level Set techniques [39, 47], where a scalar function  is
introduces, that indicates the signed distance to the interface and that is transported
with the velocity of the interface. Here, we instead use the Initial Point Set [11, 43,
58], a vector field, that transports the complete reference coordinate system. In the
context of fluid-structure interactions, this Initial Point Set is exactly the structure’s
deformation and its extension to the fluid-domain. Another benefit of the Initial
Point Set technique is its ability to depict sharp edges.

As a front-capturing technique, the fully Eulerian formulation is an interface
problem, where some mesh elements are cut by the interface and where different
equations live on the two sides of the interface. Solutions to such interface problems
are usually not regular and standard finite element schemes only give sub-optimal
convergence O.

p
h/ independent of the approximation degree, see the early works

of Babuška [1] or MacKinnon and Carey [35]. Modern techniques to enhance
the interface accuracy are to locally fit the mesh in order to recover the optimal
approximation order [4, 6, 18, 63] or to enhance the finite element space with special
basis functions that can resolve irregularities [2, 20, 21, 36].
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Fig. 6 Comparison of cell occupation and computational domains for two time steps between
the ALE (top and middle) and Eulerian (bottom) method. In ALE, all computations are done
in the same fixed reference domain ˝ (top). In particular, a specific cell remains all times the
same material (here, an elastic structure in red), i.e., ˝f and ˝s are time-independent. The mesh
movement is hidden in the transformation F and J. The physical ALE domain ˝.t/ including the
mesh movement is displayed in the middle. In contrast, the computation with the Eulerian approach
is performed on a fixed (time-independent) mesh ˝E (bottom). However, the two sub-domains for
the structure and the fluid ˝s;E and ˝f ;E change in each time step because the material id of a
cell might change since the elastic structure (red) moves freely through the mesh. Figures partially
taken from [59]

All these techniques are suited to accomplish the problems of limited spatial
accuracy. It then remains to derive efficient time-stepping schemes. This problem
is still not sufficiently solved. To illustrate this problem, we step back from the
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coupled fluid-structure interaction problem and instead discuss a simple parabolic
equation

.@tu; �/CA .u; �/ D 0; A .u; �/ D
(
A1.u; �/ in S .t/

A2.u; �/ in F .t/
;

where A1 and A2 represent two different differential operators and where
the interface between the two subdomains moves from one time-step to the
other. Direct time-stepping approaches result in iterative schemes of the type

.um � um�1; �/C �kA .um; �/C .1 � �/kA .um�1; �/ D 0: (4)

It is now possible, that for a given point x 2 ˝ it holds x 2 ˝1.tm�1/ but
x 2 ˝2.tm/, i.e., that one points belongs to the fluid domain at the old time-step
and the solid-domain at the new time. For such a configuration, the expression
um.x/ � um�1.x/ lacks any physical relevance, as there is not immediate relation
between the two different phases. This problem also appears in the discretization of
multiphase flows, here however it is justifiable to replace the sharp interface by a
smoothed one using harmonic averages of the different parameters, see [48, 53].
Smoothing of two entirely different phases like fluid and solid is however no
option.

If problem (4) is to be discretized with fitted finite elements, where the mesh
locally resolves the interface, or by the extended finite element technique, different
time-steps require difference finite element spaces Vm�1

h and Vm
h . Then, evaluation

of terms like

A .um�1; �m/;

with um�1 2 Vm�1
h and �m 2 Vm

h requires the projection of basis functions from one
mesh to the other and numerical quadrature that carefully resolves all possible areas
of non-smoothness.

The difficulties of deriving adequate time-discretizations for the Fully Eulerian
scheme are even more articulate, if we simply discuss the discretization of the
elastic structure equation in Eulerian coordinates. This relates to solving a partial
differential equation on a moving domain. For simplicity, we simply consider the
parabolic problem:

.@tu; �/˝.t/ C .ru;r�/˝.t/ D 0:

Here, ad hoc time-discretization with the backward Euler method using changing
finite element spaces would results in

.um � um�1; �m/˝.tm/ C k.rum;r�m/˝.tm/ D 0:
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The expression um � um�1 is not valid, as the two functions live on different
domains. Averaging techniques that may work for multiphase flow problem will
not be applicable here.

Efficient and accurate time-discretization schemes for the Eulerian approach will
have to consider the motion of the domain. In the following, we will outline two
basic ideas. For details, we refer to [17]. The first idea is closely related to the ALE
approach flow problems on moving domains and based on old ideas on the method
of characteristics [10]. We start by formulating the problem on the time-dependent
domain

.@tu; �/˝.t/ C .ru;r�/˝.t/ D 0; t 2 .tm�1; tm/: (5)

Then, by Tm.t/ W ˝.tm/! ˝.t/ we denote the transformation between the domains
at time tm and back at time t 2 .tm�1; tm/. In the context of fluid-structure interaction
or solid problems in Eulerian coordinates, such a mapping is implicitly given by
the deformation. By this transformation, we can map Eq. (5) onto the fixed domain
˝.tm/ similar to the ALE approach:

�
det.rTm/.@tu � @tTm � ru/; �

	
˝.tm/
C � det.rTm/rT�1m rurT�T

m ;r�	
˝.tm/

D 0:
(6)

Nonlinearities are introduced, we however shift the motion of the domain into this
implicit mapping such that standard time-stepping schemes can be applied.

An alternative approach is given by formulating (5) as a space-time Galerkin
approach, based on

Z tm

tm�1

n
.@tu.t/; �.t//˝.t/ C .ru.t/;r�.t//˝.t/

o
dt D 0:

Then, following the concepts introduced by Eriksson, Estep, Hansbo, and John-
son [13] and Thomée [52], discrete space-time functions are used to approximate
this equation. We know for instance, that by combining piece-wise linear (in time)
trial functions with piece-wise constant test-functions, we result in a variant of
the Crank-Nicolson scheme. To apply this technique to problems with moving
interface, we must consider space-time meshes that fit to the interface, see Fig. 7.

tm−1

tm

t

x

(t)

Kkh

k

Fig. 7 Triangulation in space and time. The triangulation fits the interface I .t/ in space and time.
By Kkh we denote one space-time element
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A space-time Galerkin approach must now resolve the interface location. To derive
a Crank-Nicolson like scheme, the piece-wise linear trial functions must be linear
along the interface and not necessarily linear in straight t-direction. This causes
an implicit coupling of space- and time-variables. On the element Kkh the space-
time Galerkin approach is simply the space of bilinear elements in space and time
spanf1; x; t; xtg. This coupling of spacial and temporal variables again leads to an
implicit mapping of the space-time slice onto a fixed domain with straight edges
which is equivalent to the mapping-approach described in (6). In [17] this technique
is analyzed for parabolic problems with moving interfaces. By a proper projection
of the old solution to the new finite element space and by applying suitable mapping
between the domains at different time-steps, second order schemes in space and time
can be derived. First results show however, that the error is not clearly separated into
a spatial and a temporal part, but that for elements cut by the interface, simultaneous
refinement in space and time is required.

6 Multiple Shooting as Time-Parallel Time-Integration
for Fluid-Structure Interaction: Concepts and an Outlook

A further possibility to enhance the stability of time-discretization schemes is to
realize them in a time-domain decomposition fashion [19, 33]. Stability issues in the
context of fluid-structure interactions mostly appear due to long-time accumulated
error contributions. The small time-steps that are necessary to efficiently resolve
all these modes are not required for obtaining an adequate accuracy. Here, it might
be an option to employ the multiple shooting method for time-discretization. By
keeping the sub-intervals small, stability will be under control.

In the following, we briefly explain conceptional issues related to fluid-structure
interaction. Once we have set up the basis of a consistent semi-linear form, the
solution of the multiple shooting problem follows standard techniques. Specifically,
a consistent semi-linear form is provided by a monolithic formulation of the ALE
system (1) or the fully Eulerian system (3), respectively.

Find U D fvf ; vs;uf ;us; pf g 2 X WD V 	 V 	L such that

Z

I
A.U/.˚/ D 0 8˚ 2 X

with ˚ D f�; 
f ;  f ;  sg 2 V 	L 	 Vf 	 Vs and

A.U/.˚/ D


�f J.@tvCrvF�1.v � @tu//; �

�

F
C



J O��� f F�T ;r�
�

F

C


�sdtv; �

�

S
C



F˙̇̇ s;r�
�

S
� .f ; �/˝

C



det.JF�1v/; 
f

�

F
C


r���mesh;r f

�

F
C



dtu� v;  s

�

S
:

(7)
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In fully Eulerian coordinates we have: Find U D fvf ; vs;us; pf g 2 X WD V 	Vs	L
such that

Z

I
A.U/.˚/ D 0 8˚ 2 X

with ˚ D f�; 
f ;  f ;  sg 2 V 	L 	 Vf 	 Vs and

A.U/.˚/ D .�f .@tvf C vf � rvf /; �/C .div ��� f ;r�/ � .�f ff ; �/

C.div vf ; 
/

C.Js�s.@tvs C vs � rvs/;  f /C .div ��� s;r f / � .Js�sfs;  f /

C.@tus C vs � rus � vs;  s/

D .�f .@tvf ; �/C .Js�s.@tvs;  f /C .@tus;  s/

.�f vf � rvf ; �/C .div ��� f ;r�/ � .�f ff ; �/

C.div vf ; 
/

C.Js�svs � rvs;  f /C .div ��� s;r f / � .Js�sfs;  f /

C.vs � rus � vs;  s/:

(8)

In order to obtain a standard setting for multiple shooting for PDEs [24], we re-
arranged and separated the time derivatives from the spatial operators in the previous
equation.

In the following, we describe the algorithm for the fully Eulerian case. The
formal description (apart from the specific difficulties as described in the previous
sections) of the ALE system is analogous. Let I D .0;T/ be a decomposition of the
time interval into m (not necessarily of the same length) multiple shooting intervals
Ij WD .tj; tjC1/ with

0 D t0 < t1 < : : : < tm�1 < tm D T:

The multiple shooting formulation asks now for the solution of the matching
conditions at the multiple shooting nodes tj; j D 0; : : : ;m in which we introduce
the multiple shooting variables q j; r j; s j (in some Hilbert space) for vf ; vs; us. The
variables q j; r j; s j serve as initial value for v j

f ; v
j
s ; u

j
s in tj. Then, the multiple

shooting system for the m (separate) interval-wise boundary value problems of fluid-
structure interaction read:

Z

Ij



.�f @tv

j
f ; �/C .Js�s@tv j

s;  f /C .@tu j
s ;  s/C A.U j/.˚/C

.v j
f .tj/� q j; �.tj//C .v j

s.tj/ � r j;  f .tj//C .u j
s.tj/� s j;  s.tj//

�



396 T. Richter and T. Wick

where the semi-linear form of all ‘stationary’ terms is given by

A.U j/.˚/ D .�f vf � rvf ; �/C .div ��� f ;r�/� .�f ff ; �/

C.div vf ; 
/

C.Js�svs � rvs;  f /C .div ��� s;r f /� .Js�sfs;  f /

C.vs � rus � vs;  s/:

(9)

Now, the multiple shooting system is solved by finding q0; : : : ; qm; r0; : : : ; rm;

s0; : : : ; sm such that the matching conditions hold true:

.q0 � v0f ;  / D 0 8 admissible �;

.s jC1 � v j
f .tjC1/;  / D 0 8 admissible �; j D 0; : : : ;m � 1;

.r0 � v0s ;  f / D 0 8 admissible  f ;

.r jC1 � v j
s.tjC1/;  f / D 0 8 admissible  f ; j D 0; : : : ;m � 1;
.s0 � u0s ;  / D 0 8 admissible  s;

.s jC1 � u j
s.tjC1/;  s/ D 0 8 admissible  s; j D 0; : : : ;m � 1;

These matching conditions form a nonlinear system

F.X/ D 0 with X D .q0; : : : ; qm; r0; : : : ; rm; s0; : : : ; sm/;

which can be solved with Newton’s method. Details for the general solution
algorithm are found in [19]. The implementation and analysis for our fluid-structure
interaction systems is planned as next task in our future work. We are specifically
interested in the parallel solution capabilities (the link to the parallel algorithm
[19, 33]) of this approach because we have to solve for, let us say, ten shooting
time intervals for the fsi2-benchmark and m D 100 in the case of fsi3-benchmark.
This leads to a huge Newton system to solve.

7 Conclusion

We have analyzed implicit time-discretizations of fully coupled monolithic fluid-
structure interactions. The difficulties connected to this special application field is
two-fold: first, the implicit handling of the mesh motion, captured by the ALE-
map, leads to non-standard coupling of temporal and spatial derivatives. For such
nonlinear couplings, time discretizations schemes have not been investigated so far.
Further, the motion of the mesh, and the coupling of the incompressible Navier-
Stokes equations with hyperelastic materials gives rise to stability problems that
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play an important role for long-time simulations. By analyzing the fsi benchmark
problems published by Hron & Turek, these difficulties have been investigated
in detail. For running stable long-time simulations, one must either resort to
strongly A-stable time-discretization schemes like the fractional step theta method
or one must modify standard schemes to improve the stability. A further promising
approach to run long-time fluid-structure interaction simulations is the use of
the multiple shooting method as a time domain decomposition scheme. Such an
approach would allow to use efficient standard schemes like the Crank-Nicolson
method by keeping the sub-intervals short.

References

1. Babuška, I.: The finite element method for elliptic equations with discontinuous coefficients.
Computing 5, 207–213 (1970)

2. Babuška, I., Banarjee, U., Osborn, J.E.: Generalized finite element methods: main ideas,
results, and perspective. Int. J. Comput. Methods 1, 67–103 (2004)

3. Bangerth, W., Geiger, M., Rannacher, R.: Adaptive Galerkin finite element methods for the
wave equation. Comput. Methods Appl. Math. 10, 3–48 (2010)

4. Börgers, C.: A triangulation algorithm for fast elliptic solvers based on domain imbedding.
SIAM J. Numer. Anal. 27, 1187–1196 (1990)

5. Braack, M., Richter, T.: Stabilized finite elements for 3-d reactive flows. Int. J. Numer. Math.
Fluids 51, 981–999 (2006)

6. Bramble, J.H., King, J.T.: A finite element method for interface problems in domains with
smooth boundaries and interfaces. Adv. Comput. Math. 6, 109–138 (1996)

7. Bristeau, M.O., Glowinski, R., Periaux, J.: Numerical methods for the Navier-Stokes equations.
Comput. Phys. Rep. 6, 73–187 (1987)

8. Bungartz, H.-J., Schäfer, M. (eds.): Fluid-Structure Interaction II. Modelling, Simulation,
Optimisation. Lecture Notes in Computational Science and Engineering. Springer, Berlin
(2010)

9. Cottet, G.-H., Maitre, E., Mileent, T.: Eulerian formulation and level set models for
incompressible fluid-structure interaction. Math. Model. Numer. Anal. 42, 471–492 (2008)

10. Douglas, J., Russel, T.F.: Numerical methods for convection dominated diffusion problems
based on combining the method of characteristics with finite element or finite difference
procedures. SIAM J. Numer. Anal. 19, 871–885 (1982)

11. Dunne, T.: An Eulerian approach to fluid-structure interaction and goal-oriented mesh
refinement. Int. J. Numer. Math. Fluids 51, 1017–1039 (2006)

12. Dunne, T., Rannacher, R., Richter, T.: Numerical simulation of fluid-structure interaction based
on monolithic variational formulations. In: Galdi, G.P., Rannacher, R. (eds.) Comtemporary
Challenges in Mathematical Fluid Mechanics. World Scientific, Singapore (2010)

13. Eriksson, K., Estep, D., Hansbo, P., Johnson, C.: Introduction to adaptive methods for
differential equations. In: Iserles, A. (ed.) Acta Numerica 1995, pp. 105–158. Cambridge
University Press, Cambridge (1995)

14. Fernández, M.A., Gerbeau, J.-F.: Algorithms for fluid-structure interaction problems. In:
Formaggia, L., Quarteroni, A., Veneziani, A. (eds.) Cardiovascular Mathematics. MS&A,
vol. 1, pp. 307–346. Springer, Milan (2009)

15. Formaggia, L., Nobile, F.: A stability analysis for the arbitrary Lagrangian Eulerian
formulation with finite elements. East-West J. Numer. Math. 7, 105–132 (1999)

16. Formaggia, L., Nobile, F.: Stability analysis of second-order time accurate schemes for ALE-
FEM. Comput. Methods Appl. Mech. Eng. 193(39–41), 4097–4116 (2004)



398 T. Richter and T. Wick

17. Frei, S., Richter, T.: Time-discretization of parabolic problems with moving interfaces. SIAM
J. Numer. Anal. (2015, in preparation)

18. Frei, S., Richter, T.: A locally modified parametric finite element method for interface
problems.SIAM J. Numer. Anal. 52(5), 2315–2334 (2014)

19. Gander, M.J., Vandewalle, S.: Analysis of the parareal time-parallel time-integration method.
SIAM J. Sci. Comput. 29(2), 556–578 (2007)

20. Hansbo, A., Hansbo, P.: An unfitted finite element method, based on Nitsche’s method, for
elliptic interface problems. Comput. Methods Appl. Mech. Eng. 191(47–48), 5537–5552
(2002)

21. Hansbo, A., Hansbo, P.: A finite element method for the simulation of strong and weak
discontinuities in solid mechanics. Comput. Methods Appl. Mech. Eng. 193, 3523–3540
(2004)

22. He, P., Qiao, R.: A full-Eulerian solid level set method for simulation of fluid-structure
interactions. Microfluid Nanofluid 11, 557–567 (2011)

23. Helenbrook, B.T.: Mesh deformation using the biharmonic operator. Int. J. Numer. Methods
Eng. 56(7), 1007–1021 (2003)

24. Hesse, H.K., Kanschat, G.: Mesh adaptive multiple shooting for partial differential equations.
Part I: linear quadratic optimal control problems. J. Numer. Math. 17(3), 195–217 (2009)

25. Heywood, J., Rannacher, R.: Finite element approximation of the nonstationary Navier-Stokes
problem. iii. smoothing property and higher order error estimates for spatial discretization.
SIAM J. Numer. Anal. 25(3), 489–512 (1988)

26. Heywood, J., Rannacher, R.: Finite element approximation of the nonstationary Navier-Stokes
problem. iv. error analysis for second-order time discretization. SIAM J. Numer. Anal. 27(3),
353–384 (1990)

27. Hirt, C.W., Amsden, A.A., Cook, J.L.: An arbitrary lagrangian-eulerian computing method for
all flow speeds. J. Comput. Phys. 14, 227–469 (1974)

28. Holzapfel, G.A.: Nonlinear Solid Mechanics: A Continuum Approach for Engineering. Wiley-
Blackwell, Engelska (2000)

29. Hron, J., Turek, S.: A monolithic FEM/multigrid solver for an ALE formulation of fluid-
structure interaction with applications in biomechanics. In: Bungartz, H.-J., Schäfer, M.
(eds.) Fluid-Structure Interaction: Modeling, Simulation, Optimization. Lecture Notes in
Computational Science and Engineering, pp. 146–170. Springer, Berlin (2006)

30. Hron, J., Turek, S.: Proposal for numerical benchmarking of fluid-structure interaction between
an elastic object and laminar incompressible flow. In: Bungartz, H.-J., Schäfer, M. (eds.) Fluid-
Structure Interaction: Modeling, Simulation, Optimization. Lecture Notes in Computational
Science and Engineering, pp. 371–385. Springer, Berlin (2006)

31. Hron, J., Turek, S., Madlik, M., Razzaq, M., Wobker, H., Acker, J.F.: Numerical simulation
and benchmarking of a monolithic multigrid solver for fluid-structure interaction problems
with application to hemodynamics. In: Bungartz, H.-J., Schäfer, M. (eds.) Fluid-Structure
Interaction II: Modeling, Simulation, Optimization. Lecture Notes in Computational Science
and Engineering, pp. 197–220. Springer, Berlin (2010)

32. Huerta, A., Liu, W.K.: Viscous flow with large free-surface motion. Comput. Methods Appl.
Mech. Eng. 69(3), 277–324 (1988)

33. Lions, J.-L., Mayday, Y., Turinici, G.: A parareal in time-discretization of PDEs. C. R. Acad.
Sci. Paris Sér. I Math. 332, 661–668 (2001)

34. Luskin, M., Rannacher, R.: On the smoothing propoerty of the Crank-Nicholson scheme. Appl.
Anal. 14, 117–135 (1982)

35. MacKinnon, R.J., Carey, G.F.: Treatment of material discontinuities in finite element
computations. Int. J. Numer. Meth. Eng. 24, 393–417 (1987)

36. Moës, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without
remeshing. Int. J. Numer. Meth. Eng. 46, 131–150 (1999)

37. Meidner, D., Richter, T.: A posteriori error estimation for the theta and fractional step theta
time-stepping schemes. Comput. Methods Appl. Math. 14, 203–230 (2014)



On Time Discretizations of Fluid-Structure Interactions 399

38. Meidner, D., Richter, T.:A posteriori error estimation for the fractional step theta discretization
of the incompressible Navier-Stokes equations.Comput. Methods Appl. Mech. Eng. 288, 45–
59 (2015)

39. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Applied
Mathematical Sciences. Springer, Berlin (2003)

40. Rannacher, R.: Finite element solution of diffusion problems with irregular data. Numer. Math.
43, 309–327 (1984)

41. Richter, T.: Fluid-structure interactions in Fully Eulerian coordinates. In: PAMM, 83st Annual
Meeting of the International Association of Applied Mathematics and Mechanics, pp. 827–830
(2012)

42. Richter, T.: Goal oriented error estimation for fluid-structure interaction problems. Comput.
Methods Appl. Mech. Eng. 223–224, 28–42 (2012)

43. Richter, T.: A Fully Eulerian formulation for fluid-structure-interaction problems. J. Comput.
Phys. 233, 227–240 (2013)

44. Richter, T.: Finite Elements for Fluid-Structure Interactions. Lecture Notes in Computational
Science and Engineering. Springer, Berlin (2014, submitted)

45. Richter, T., Wick, T.: Finite elements for fluid-structure interaction in ALE and Fully Eulerian
coordinates. Comput. Methods Appl. Mech. Eng. (2010). doi:10.1016/j.cma.2010.04.016

46. Schäfer, M., Turek, S.: Benchmark computations of laminar flow around a cylinder. (With
support by F. Durst, E. Krause and R. Rannacher). In: Hirschel, E.H. (ed.) Flow Simulation
with High-Performance Computers II. DFG priority research program results 1993–1995.
Notes Numer. Fluid Mech., vol. 52, pp. 547–566. Vieweg, Wiesbaden (1996)

47. Sethian, J.A.: Level Set Methods and Fast Marching Methods Evolving Interfaces in Com-
putational Geometry. Fluid Mechanics, Computer Vision and Material Science. Cambridge
University Press, Cambridge (1999)

48. Shubin, G.R., Bell, J.B.: An analysis of grid orientation effect in numerical simulation of
miscible displacement. Comput. Methods Appl. Mech. Eng. 47, 47–71 (1984)

49. Stein, K., Tezduyar, T., Benney, R.: Mesh moving techniques for fluid-structure interactions
with large displacements. J. Appl. Mech. 70, 58–63 (2003)

50. Sugiyama, K., Li, S., Takeuchi, S., Takagi, S., Matsumato, Y.: A full Eulerian finite difference
approach for solving fluid-structure interacion. J. Comput. Phys. 230, 596–627 (2011)

51. Takagi, S., Sugiyama, K., Matsumato, Y.: A review of full Eulerian mehtods for fluid structure
interaction problems. J. Appl. Mech. 79(1), 010,911 (2012)

52. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer Series in
Computational Mathematics, vol. 25. Springer, Berlin (1997)

53. Tikhonov, A.N., Samarskii, A.A.: Homogeneous difference schemes. USSR Comput. Math.
Math. Phys. 1, 5–67 (1962)

54. Turek, S., Rivkind, L., Hron, J., Glowinski, R.: Numerical analysis of a new time-
stepping theta-scheme for incompressible flow simulations. Ergebnisberichte des Instituts für
Angewandte Mathematik, vol. 282. Technical Report, Fakultät für Mathematik, TU Dortmund
(2005).

55. Turek, S., Hron, J., Razzaq, M., Wobker, H., Schäfer, M.: Numerical benchmarking of
fluid-structure interaction: a comparison of different discretization and solution approaches.
In: Bungartz, H.J., Mehl, M., Schäfer, M. (eds.) Fluid Structure Interaction II: Modeling,
Simulation and Optimization. Springer, Berlin (2010)

56. Wick, T.: Adaptive finite element simulation of fluid-structure interaction with application to
heart-valve dynamics. Ph.D. thesis, Univeristy of Heidelberg (2011). urn:nbn:de:bsz:16-opus-
129926

57. Wick, T.: Fluid-structure interactions using different mesh motion techniques. Comput. Struct.
89(13–14), 1456–1467 (2011)

58. Wick, T.: Coupling of fully Eulerian and arbitrary Lagrangian-Eulerian methods for fluid-
structure interaction computations problems. Comput. Mech. 52(5), 1113–1124 (2013)

59. Wick, T.: Coupling of fully Eulerian and arbitrary Lagrangian-Eulerian methods for fluid-
structure interaction computations. Comput. Mech. 52(5), 1113–1124 (2013)



400 T. Richter and T. Wick

60. Wick, T.: Flapping and contact FSI computations with the fluid—solid Interface-
tracking/Interface-capturing technique and mesh adaptivity. Comput. Mech. 53(1), 29–43
(2014)

61. Wick, T.: Solving monolithic fluid-structure interaction problems in arbitrary Lagrangian
Eulerian coordinates with the deal.ii library. Arch. Numer. Softw. 1, 1–19 (2013)

62. Wick, T.: Stability estimates and numerical comparison of second order time-stepping schemes
for fluid-structure interactions. In: Cangiani, A., Davidchack, R.L., Georgoulis, E., Gorban,
A.N., Levesley, J., Tretyakov, M.V. (eds.) Numerical Mathematics and Advanced Applications
2011, Proceedings of ENUMATH 2011, Leicester, September 2011, pp. 625–632 (2013)

63. Xie, H., Ito, K., Li, Z.-L., Toivanen, J.: A finite element method for interface problems with
locally modified triangulation. Contemp. Math. 466, 179–190 (2008)

64. Zhao, H., Freund, J.B., Moser, R.D.: A fixed-mesh method for incompressible flow-structure
systems with finite solid deformations. J. Comput. Phys. 227(6), 3114–1340 (2008)



Parareal Time-Stepping for Limit-Cycle
Computation of the Incompressible
Navier-Stokes Equations with Uncertain
Periodic Dynamics

Michael Schick

Abstract The computation of limit-cycles in time periodic flow problems plays a
crucial role in quantifying its dynamical characteristics. Since in many applications
model parameters are often subject to uncertainty, the limit-cycle becomes a
stochastic quantity itself. In this work we introduce two types of shooting methods
based on Polynomial Chaos and the stochastic Galerkin projection. Polynomial
Chaos is known to exhibit a convergence breakdown in time, which our proposed
algorithms are able to overcome. The first algorithm is a re-interpretation of a
Newton-Galerkin method as a single shooting approach. The second one extends
this idea using the parareal algorithm on a time domain decomposition. It uses
a fine grid propagator, which can be computed in parallel and a coarse grid
propagator defined by a low order Polynomial Chaos expansion. We evaluate the
convergence properties on a suitable benchmark problem (time periodic vortex
shedding) showing promising results in capturing accurately the periodic dynamics
of the flow.

1 Introduction

Shooting methods are a popular approach for the computation of stable periodic
orbits (limit-cycles), which may arise for example in parabolic type partial dif-
ferential equations. For example, Duguet et al. [3] introduced a Newton method
for determining stable limit-cycles of the unsteady incompressible Navier-Stokes
equations, which can be interpreted as a single shooting approach. However, in
many fluid flow problems parameters like the kinematic viscosity, boundary and
initial conditions as well as forcing terms might be uncertain, for example due
to measurement or calibration errors. These uncertainty result in an uncertain
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limit-cycle, or equivalently in an almost surely time-periodic flow characterized by
a tuple of some non-unique uncertain initial condition and corresponding uncertain
period.

In the recent decade, Polynomial Chaos (PC) expansions [6, 23] became increas-
ingly popular to model the dependency of the flow profile on the uncertainty. A
finite series of multivariate orthogonal polynomials is used in terms of a vector of
independent random variables. It is widely employed if the flow profile is assumed
to be square-integrable with respect to the probability space (finite variance) and
if no information about the probability distribution of the flow is known a priori.
There exist various numerical methods for determining the coefficients in the PC
expansion, such as Monte-Carlo or collocation approaches [1, 17]. Alternatively,
the stochastic Galerkin projection [6, 14] allows for a best-approximation property
in the L2-sense. However, in time-dependent problems, PC expansions are known
to exhibit a convergence breakdown in the presence of oscillatory dynamics [8, 15]
making the determination of stochastic limit-cycles a difficult task. The reason for
this is that the trajectories corresponding to sample realizations of the uncertainty
exhibit a phase-drift. This necessitates a growing polynomial degree in time to
maintain accuracy in the approximation, which quickly can become too costly from
the numerical point of view. Several methods exist, which allow to extend the point
of convergence breakdown in time, see for example [2, 8, 12, 13]. However, non of
these address the central difficulty regarding the phase-drift problem.

In this work, we introduce two types of shooting methods for the determination of
stochastic limit-cycles of the incompressible Navier-Stokes equations with uncertain
parameters. The first approach is a single shooting method based on the develop-
ments in our preliminary work [20]. Here, a Newton-Galerkin method was defined in
order to compute a tuple of stochastic initial condition and a stochastic period such
that each stochastic sample follows a time-periodic trajectory. This was achieved by
introduction of an optimality criteria, which stabilizes the phase-drift mentioned
earlier. The second approach extends this idea towards multiple shooting/time
domain decomposition. It is based on the parareal time integration method [5, 16]
adapted to the stochastic computational domain. The parareal algorithm can be
obtained by approximating the Jacobian arising in the multiple shooting method
by a finite difference scheme on a coarse grid allowing for a parallel computation
on fine grid domains. In its classical framework, a coarse grid propagator is defined
as an approximation to the fine grid propagator by using either larger time step
sizes or lower order time integration methods. In this work, we investigate the use
of a coarse propagator based on a low order PC expansion to give a prediction on
the limit-cycle, which afterwards is corrected in parallel by a solution obtained by
using a higher order PC expansion. Both the single and multiple shooting approach
require multiple solves of the (stochastic) Navier-Stokes equations by means of
the Finite-Element method. For an overview on existing Finite-Element solvers
for the deterministic Navier-Stokes equations see e.g. [4, 7, 22]. For solving and
preconditioning the stochastic case using the stochastic Galerkin projection see e.g.
[9–11, 18, 19].
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This work is structured as follows. Section 2 introduces the unsteady stochastic
incompressible Navier-Stokes equations along with the problem definition of
finding almost surely time-periodic solutions. Section 3 describes a single shooting
approach to compute a tuple of an initial condition and the period. In Sect. 4 we
introduce an extension using a parareal time integration method. The convergence
properties of the algorithm are evaluated on a benchmark problem in Sect. 5. Finally,
Sect. 6 provides a short summary and conclusions.

2 Problem Formulation

2.1 The Incompressible Navier-Stokes Equations with
Uncertain Parameters

We consider the unsteady incompressible Navier-Stokes equations in their primitive
velocity/pressure .u; p/ formulation subject to an uncertain boundary g and initial
condition U0, which we will abbreviate by SNSE:

@tu.x; t; 
/C .u.x; t; 
/ � r/u.x; t; 
/
��.
/
u.x; t; 
/Crp.x; t; 
/ D 0; in D ; (1)

r � u.x; t; 
/ D 0; in D ; (2)

u.x; t; 
/ D g.x; t; 
/; on �; (3)

u.x; t D 0I 
/ D U0.x; 
/; in D ; (4)

for t > 0 almost surely in ˝ . Here, ˝ denotes a sample set belonging to some
probability space and 
 W ˝ ! R

M denotes a random vector of dimension M with
independent components (parametrization of uncertainty). Note that throughout this
work we assume the probability distribution for 
 to be given.

The equations are posed on a computational domain denoted by D�Rd; dD 2; 3
with Dirichlet boundary � � @D . In general the kinematic viscosity � is also
allowed to be uncertain, i.e., � D �.
/.

Note that u D u.x; tI 
/ is a random field due to the explicit dependency on the
random vector 
 through the partial differential equations. We employ the Spectral-
Stochastic-Finite-Element-Method for discretization of the SNSE (see e.g. [9–11]
and references in [14]). To this end, we need to assume that u and p satisfy the
following regularity requirements:

u 2 V ˝S ; p 2 W ˝S ;

where for the remainder of this work we define:

S WD L2.˝/; V WD H1.D/; V0 WD H1
0.D/; W WD L2.D/:
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The weak form of the SNSE with respect to the spatial part in D reads:

.@tu; �/C ..u � r/u; �/C �.ru;r�/� .p;r � �/ D 0; 8� 2 V0; (5)

.q;r � u/ D 0; 8q 2 W; (6)

u.x; t; 
/ D g.x; t; 
/; on �; (7)

u.x; t D 0I 
/ D U0.x; 
/; in D ; (8)

for t � 0 almost surely in˝ . Here, .�; �/ denotes the inner-product on W. In addition
Eqs. (5)–(8) need to be approximated in the stochastic domain ˝ . Therefore, we
employ a p-th order PC expansion of the velocity and pressure variable:

Œu.x; tI 
/; p.x; tI 
/� D
PX

iD0
Œui.x; t/; pi.x; t/� i.
/:

The truncation parameter P satisfies .P C 1/ D .pCM/Š=pŠMŠ, where p 2 N

denotes the maximum total polynomial degree of the normalized Chaos Polynomials
 i, i D 0; 1; 2; : : :. Their choice is determined by an orthogonality condition with
respect to the probability distribution of 
, i.e.,

h i;  ji WD E. i j/ D
Z

RM
 i.
/ j.
/w.
/ d
 D ıij:

Here, w denotes the probability density function of 
 and ıij denotes the Kronecker
symbol. For example, a Gaussian distribution of 
 corresponds to Hermite polyno-
mials, a Uniform distribution corresponds to Legendre polynomials. We refer the
reader to [24] for more details on generalized PC expansions.

We shall denoteS P the subspace of S spanned by the PC basis. For deriving the
stochastic Galerkin projection of the SNSE, we multiply (5)–(8) by a test function
 k and integrate with respect to the probability space:

.@tuk; �/C
PX

i;jD0
..ui � r/uj; �/h i j;  ki

Ch�;  ki.ruk;r�/� .pk;r � �/ D 0; 8� 2 V0; (9)

.q;r � uk/ D 0; 8q 2 W; (10)

uk D hg;  ki; on �; (11)

uk D hU0;  ki; in D ; (12)

for k D 0; : : : ;P. In the following, we refer to (9)–(12) as the standard weak
formulation of the SNSE.
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2.2 Periodic Orbits (Limit-Cycles)

A stable periodic orbit (limit-cycle) can be characterized by a tuple .U0;T/ of a
stochastic initial condition U0 D U0.x; 
/, x 2 D and a corresponding stochastic
period T D T.
/. In general, the trajectories can be computed as a limit of straight
forward time integration. However, if the governing equations do not converge
towards a stable steady state solution, it is known that a PC expansion can exhibit
a convergence breakdown in time, i.e., an increasing order in the PC expansion is
required to accurately capture the dynamics of the flow. This is due to a phase-
drift of the trajectories in the limit-cycle, since the initial condition U0 is not
uniquely defined. More specifically, for each stochastic realization of the random
input 
, every point on the corresponding deterministic limit-cycle trajectory can
serve as another initial condition on that trajectory, requiring a large degree in the
PC expansion.

Maintaining high accuracies in time by using low order PC expansions especially
for parabolic partial differential equations is still an active field of research. In this
work, we address this difficulty by introducing additional constraints to the SNSE,
which allow a direct computation of a characteristic tuple .U0;T/ from which the
limit-cycle can be reconstructed.

For the remainder of this work we need to assume the following:

Assumption 1 There exists a solution .u; p/ to (5)–(8), u.�; t; �/ 2 V˝S , p.�; t; �/ 2
W ˝S for t � 0, and a bounded period T 2 S with ˛ � T < 1 a.s. for some
˛ > 0, such that for t � 0:

u.x; tC T.
/I 
/ D u.x; tI 
/; 8x 2 D ; a:s:

p.x; tC T.
/I 
/ D p.x; tI 
/; 8x 2 D ; a:s:

The SNSE have to be integrated to a final state at time t D T.
/, which
is unknown. The normalization approach outlined in the following introduces an
additional random variable to the governing equations by mapping the uncertain
time domain to a deterministic reference interval. Therefore, the trajectories cor-
responding to different realizations of the random input can be compared to each
other on the same deterministic reference interval Œ0; 1�, allowing the use of a
deterministic time-stepping methods.

We introduce a scaled time variable � D �.t; 
/:

�.t; 
/ WD t

T.
/
; (13)

pointwise in˝ and t � 0. Note that � is a random process and �.t; �/ 2 S for t � 0
provided that the period T satisfies Assumption 1.
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We define:

Qu.x; t=T.
/; 
/ WD u.x; t; 
/; Qp.x; t=T.
/; 
/ WD T.
/p.x; t; 
/:

Applying the stochastic Galerkin projection after introducing the mapping
t ! �.t; �/ into (5)–(8) results in a scaled version of the unsteady stochastic
incompressible Navier-Stokes equations for � > 0, which we will abbreviate by
S-SNSE:

.@� Quk; �/C
PX

i;jD0
.Qui � r/Quj; �/c.T/ijk

C
PX

iD0
.rQui; �/�.T/ik � .Qpk;r � �/ D 0; 8� 2 V0; (14)

.q;r � Quk/ D 0; 8q 2 W; (15)

Quk D hg;  ki; on �; (16)

Quk D hU0;  ki; in D ; (17)

for � > 0 and k D 0; : : : ;P. The 3rd and 2nd order tensors c.T/ and �.T/ are
defined by:

c.T/ijk WD
QX

lD0
Tih i j l;  ki; �.T/ik WD

QX

lD0
Tih� l i;  ki;

for i; j; k D 0; : : : ;P. The period T is approximated by means of a qth order PC
expansion, such that

T.
/ D
QX

iD0
Ti i.
/; QC 1 D .qCM/Š

qŠMŠ
:

We denote consistently S Q the corresponding subspace of S .
In the definition of c.T/ we need to evaluate multiple integrals of products of four

polynomials. However, since many of these products are equal to zero, the number
of coupling terms in (14) is not that large as the size of the tensor suggests.

In the following the tilde notation for Qu and Qp will be dropped for notational
convenience.
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2.3 Characterization of a Limit-Cycle

We define the operator U to track the velocity as a function of the scaled time
variable � � 0 subject to some period T and initial condition U0:

U .U0;T; �/ WD U0 C
Z �

0

@�u.� D �/ d�; (18)

where u satisfies (14)–(17). U represents the velocity at time � starting from the
initial condition U0.

The problem of computing limit-cycles of the S-SNSE can be stated in the
following way:

Find some U0 2 S P ˝ V , whose PC coefficients satisfy (15) and (16), and a
corresponding T as in Assumption 1, such that

kU .U0;T; 1/ �U0k2 D 0; (19)

where here and for the rest of this work k � k WD k � kS˝W .

3 A Single Shooting Method

In the following we re-interpret an iterative Newton-Galerkin method in the context
of single shooting methods, which originally was introduced in our preliminary
work [20].

For � � 0 and some initial condition U0 we define a distance vector D by:

D.U0;T; �/ WD U0 �U .U0;T; �/:

Therefore, kDk measures the distance between an initial condition U0 and its
resulting velocity U .U0;T; �/ at time �. The goal of the iterative method is to
obtain convergence such that:

kD.Uk
0;T

k; �/k ! 0 as k!1:

3.1 A Simplified Algorithm

We start by choosing some appropriate initial guesses U0
0 D

PP
iD0 U0

0;i i and T0 DPQ
iD0 T0i  i for the initial condition and period, respectively. As an initial guess for

U0
0 and corresponding T0 we suggest to use a fully developed deterministic flow, i.e.,

U0
0;i D 0 and T0i D 0 for i > 0, which can be computed a priori by integration of



408 M. Schick

the deterministic Navier-Stokes equations parametrized by the mean of the random
input. Afterwards, for � > 0 we perform iterations in the following sense (k denotes
the iteration index):

1. Compute a new period iterate TkC1 (see Sect. 3.2).
2. Compute distance ı WD kD.Uk

0;T
kC1; 1/k.

3. If ı < � or k > kmax STOP, else set
ukC1 WD U .Uk

0;T
kC1; 1/; k kC 1 and GOTO 1.

Note that for simplicity, the terminal condition U .Uk
0;T

kC1; 1/ is taken as a new
iterate for the initial condition. In case that the periodic orbit is stable, it is known
that this approach converges as it corresponds to integrating the governing equations
in time. However, to speed up convergence, the update of the initial condition in
step no. 3 can be performed by employing Newton’s method, which is equivalent to
a single shooting approach with adapted period values in each Newton iteration. In
Sect. 3.3 we provide a description of the single shooting variant.

3.2 Computing the Period Update

We define an optimization problem, which ensures that the distance between the
initial condition and its corresponding terminal state remains minimal in an L2-
sense. Therefore, given the kth iterates Uk

0 and Tk, we correct the period Tk by:

TkC1 D .1C d�/Tk �
QX

mD0
TkC1

m  m; (20)

TkC1
m D Tk

m C
QX

iD0

QX

jD0
d�iT

k
j h i j;  mi; m D 0; : : : ;Q; (21)

resulting from a Galerkin projection using the PC expansion of d� 2 S Q. Here, d�
is a solution of the minimization problem:

min
d�2S Q

kUk
0 �U .Uk

0;T
k; 1C d�/k2: (22)

To simplify problem (22), we approximate U .Uk
0;T

k; 1C d�/ by its first order
Taylor series representation around � D 1, i.e.

U .Uk
0;T

k; 1C d�/ � U .Uk
0;T

k; 1/C @�U .Uk
0;T

k; 1/d�: (23)
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Inserting (23) in (22) results in a linearized stochastic optimization problem for
the correction term d�:

min
d�2S kD.U

k
0;T

k; 1/� @�U .Uk
0;T

k; 1/d�k2: (24)

The corresponding optimality condition reads:

2
˝�

D.Uk
0;T

k; 1/� @�U .Uk
0;T

k; 1/d�; @�U .Uk
0;T

k; 1/d�
	˛ D 0; 8d� 2 S Q:

(25)

Introducing the PC expansions of the various stochastic quantities into (25) we
arrive at the discrete optimality condition for the PC modes d� D Œd�0; : : : ; d�Q�

t 2
R

QC1:

A d� D b; (26)

where A 2 R
QC1;QC1 and b 2 R

QC1 are defined by:

Aml WD
PX

i;jD0
h i j l;  mi.@�U k

i ; @�U
k

j /; bm WD
PX

i;jD0
h i j;  mi.Dk

i ; @�U
k

j /;

for m; l D 0; : : : ;Q. The corresponding Polynomial Chaos coefficients of @�U and
D are given by:

@�U
k

i D h@�U .Uk
0;T

k; 1/;  ii; Dk
i D hD.Uk

0;T
k; 1/;  ii;

for i D 0; : : : ;P. In [20] we have shown that this minimization problem is convex.

3.3 A Single Shooting Approach

In this section we employ Newton’s method for updating the initial condition iterate.
To this end, recapitulate the problem definition:

Find a tuple .U0;T/ such that

D.U0;T; 1/ WD U0 �U .U0;T; 1/ D 0: (27)

Clearly, this system is underdetermined due to the two unknowns U0 and T.
However, using the constraint on the period computation as introduced in Sect. 3.2
we can apply Newton’s method with respect to the initial condition U0:

UkC1
0 D Uk

0 C duk

�Jkduk D D.Uk
0;T

kC1; 1/:
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with iteration index k D 0; 1; 2; : : :. Here, Jk denotes the Jacobian of D with respect
to U0 at .Uk

0;T
kC1/.

This results in the following iterative scheme:

1. Compute period TkC1 by (21).
2. Compute Newton correction duk by: �Jkduk D D.Uk

0;T
kC1; 1/.

3. Update initial condition UkC1
0 D Uk

0 C duk.
4. GOTO 1. until convergence.

As an initial guess for U0
0 and T0 we suggest to use a fully developed deterministic

flow with U0
0;i D 0 and T0i D 0 for i > 0.

3.3.1 Solving the Newton Step

Note that by definition of D the application of the Jacobian Jk to some duk can be
simplified:

Jkduk D duk � Jk
NSduk;

where Jk
NS denotes the Jacobian of U .Uk

0;T
kC1; 1/. In [20] we have shown, that

computing Jk
NSduk corresponds to a time integration of the linearized Navier-Stokes

equations up to the time � D 1:

@�v C TkC1.v � r/uk C TkC1.uk � r/v
��TkC1
v Crq D 0; in D ; (28)

r � v D 0; in D ; (29)

v.x; �; 
/ D 0; on �; (30)

v.x; � D 0; 
/ D duk.x; 
/; in D ; (31)

such that Œv; q� D Jk
NSduk. Note, that for computing a solution to the Jacobian in

the Newton step usually some iterative solver can be applied. Each iteration of
this solver requires an evaluation of Jk

NSduk at a given iterate duk and therefore
the integration of the linearized equations. Alternatively, it is also possible to
approximate the Jacobian in terms of Finite-Differences in each solver iteration,
i.e.,

Jk
NSduk � U .Uk

0 C �duk;Tk; 1/�U .Uk
0;T

k; 1/

�
;

for some � > 0. However, this approach requires the solution of the full nonlinear
equations.
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3.3.2 Additional Phase Control

In general, the initial condition U0 is not uniquely defined with respect to the
stochastic time scaling through �. Indeed, if U0 is a valid initial condition then
U .U0;T.
/; ˇ.
// is another valid initial condition, 8ˇ.
/ > 0. This can cause a
phase-drift of the trajectories associated to each realization of 
, which needs to be
controlled in an appropriate way (cf. Fig. 1).

The phase-drift can be measured as an angle between the time tangential of a
reference trajectory @� Ou and its distance to the stochastic velocity field u at time �,
i.e.,

˙.�; 
/ WD .u � Ou; @� Ou/
.@� Ou; @� Ou/1=2 :

As a reference, we take Ou to be the stochastic velocity evaluated at the mean of 
,
i.e.,

Ou.x; �/ WD u.x; �; 
/j
DE.
/:

Note that .@� Ou; @� Ou/ > 0 in an almost surely unsteady flow.
We introduce a stochastic rescaling of � by:

	.t; 
/ WD �.t; 
/

�t.
/
;

where we choose �t to be constant in each time step satisfying

�t.
/ < 1; if ˙ > 0; (slow down);

�t.
/ > 1; if ˙ < 0; (speed up):

Fig. 1 Illustration of a phase-drift. Fixing an initial condition on each trajectory results in some
interpolation between these points, which degree of nonlinearity depends their choice
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As a simple heuristic we define in each time step

�t.
/ WD .1C � 1


�
.@�u; @�u/˙.�; 
//;

where � > 0 is some prescribed control parameter and 
� > 0 denotes the time
stepping size. If the trajectories are in-phase � equals to 1 by definition. In the phase-
control step, the governing equations (14)–(17) are adapted to the new time scale 	 .
The resulting rescaled initial condition U0 can afterwards be reused in the overall
single shooting algorithm:

1. Compute flow trajectories starting from Uk�1
0 with phase-drift control 	 . Choose

new initial condition Uk
0 with minimal drift along the computed trajectories.

2. Compute period TkC1 by (21) and (22).
3. Compute Newton correction duk by: �Jkduk D D.Uk

0;T
kC1; 1/.

4. Update initial condition UkC1
0 D Uk

0 C duk.
5. GOTO 1. until convergence.

For the control parameter � we suggest to use � WD kD.Uk
0;T

k; 1/k2. A small
distance suggests that the trajectories should be close to in-phase requiring no
additional phase control.

4 Time Domain Decomposition

4.1 Multiple Shooting

In the following we investigate the possibility of extending the single shooting
method with respect to a decomposition of the time scale for �. To this end, we
follow the general procedure of defining a multiple shooting approach for which we
assume the period to be given. We define a partitioning of the time interval Œ0; 1� by
using N C 1 deterministic �i ¤ �i.
/ such that 0 D �0 < �1 < : : : < �N�1 <
�N D 1. Furthermore, by Un.Un;T; �/ we denote the velocity at time � obtained by
time integration of the S-SNSE starting from the initial condition Un.

Given a period T, the problem formulation of computing periodic orbits can be
stated as follows:

Find U0;U1; : : : ;UN such that:

U1 �U0.U0;T; �1/ D 0
U2 �U1.U1;T; �2/ D 0

:::

UN �UN�1.UN�1;T; �N/ D 0
UN �U0 D 0:
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This nonlinear system, compactly denoted by F.U0;U1; : : : ;UN ;T/ D 0, can be
solved by Newton’s method resulting in the following iterative procedure:

For k D 0; : : : ; kmax do

�JkCk D Fk (32)

UkC1 D Uk C Ck; (33)

where we define

Fk WD F.Uk
0;U

k
1; : : : ;U

k
N ;T/;

uk WD ŒUk
0;U

k
1; : : : ;U

k
N �

t;

ck WD ŒCk
0;C

k
1; : : : ;C

k
N �

t;

where Jk denotes the Jacobian of Fk. The resulting system of equations in each
Newton step can be written as:

�

2
66666664

� @U k
0

@U0
I 0 � � � 0

0 � @U k
1

@U1
I 0 0

:::
: : :

: : :
: : :

:::

0 � � � � � � � @U k
N�1

@UN�1
I

�I 0 � � � 0 I

3
77777775

2

666664

Ck
0

Ck
1
:::

Ck
N�1
Ck

N

3

777775
D

2

666664

Uk
1 �U k

0

Uk
2 �U k

1
:::

Uk
N �U k

N�1
Uk

N �Uk
0

3

777775
; (34)

where I denotes the identity operator. Usually the assembly of the complete Jacobian
matrix is numerically too expensive. Therefore, our goal is to adapt the framework
of parareal time integration [5, 16] with respect to the stochastic space, which will
be elaborated on in the following section.

4.2 Parareal Time Algorithm

In its standard definition the parareal algorithm approximates the derivatives @Un
@Un

,
n D 0; : : : ;N � 1 by a coarse time grid. We transfer this idea towards the stochastic
space, for which we will employ lower order PC expansions as a “coarse” grid.

First, observe that the system in (34) can be denoted by:

Ck
n D UkC1

n �Uk
n

�Ck
nC1 C

@U k
n

@Un
Ck

n D Uk
nC1 �U k

n

Ck
0 � Ck

N D Uk
N �Uk

0;
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for n D 0; : : : ;N � 1. Rearranging the equations leads to the following iterative
scheme:

UkC1
0 D U k

N�1 C
@U k

N�1
@UN�1

.UkC1
N�1 �Uk

N�1/; (35)

UkC1
nC1 D U k

n C
@U k

n

@Un
.UkC1

n �Uk
n/; n D 0; : : : ;N � 2: (36)

In [5] Gander et al. introduced a relaxation of Eq. (35) neglecting the computation
of the derivative, which results in

UkC1
0 D Uk

N ; (37)

UkC1
nC1 D U k

n C
@U k

n

@Un
.UkC1

n � Uk
n/; n D 0; : : : ;N � 1: (38)

Computing the derivative @U k
n

@Un
, n D 0; : : : ;N � 1 can be very expensive from a

computational point of view. The classical parareal algorithm approximates it on a
coarse time grid by:

@U k
n

@Un
.UkC1

n � Uk
n/ � G.UkC1

n / �G.Uk
n/;

where G denotes some coarse grid approximation to U , e.g., by using lower order
in time or larger time steps or a combination of both. The corresponding iterative
scheme reads:

UkC1
0 D Uk

N ; (39)

UkC1
nC1 D U k

n C G.UkC1
n /� G.Uk

n/; n D 0; : : : ;N � 1: (40)

Although a coarse time approximation could accelerate the computation of stochas-
tic periodic orbits as well, in this work we only consider evaluating a coarse
approximation with respect to the stochastic space. Specifically, we take a PC
expansion of degree pfine for the fine propagator U resulting in Pfine C 1 D .pfine C
M/Š=.pfineŠMŠ/ PC modes. Furthermore, we define G.Un/ DW vn; n D 0; : : : ;N � 1
as the solution v of the S-SNSE at time � D �nC1 starting from the initial condition
Un and using a lower order PC expansion with degree plow � pfine:

.@�vk; �/C
PX

i;jD0
.vi � r/vj; �/c.T/ijk

C
PX

iD0
.rvi; �/�.T/ik � .pk;r � �/ D 0; 8� 2 V0; (41)
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.q;r � vk/ D 0; 8q 2 W; (42)

vk D hg;  ki; on �; (43)

vk D hUn;  ki; in D ; (44)

for � 2 Œ�n; �nC1� and k D 0; : : : ;Plow. Here, Plow C 1 D .plow CM/Š=.plowŠMŠ/.
Note that we assume the same time and spatial grid both forU and G. The benefit

of this approach is that the fine propagator U can be computed in parallel, while
only a lower order PC expansion needs to be computed sequentially in time.

The parareal iteration (39) and (40) is understood by means of a stochastic
Galerkin projection:

hUkC1
0 ;  ii D hUk

N ;  ii; (45)

hUkC1
nC1;  ii D hU k

n ;  ii C h.G.UkC1
n /� G.Uk

n//;  ii; n D 0; : : : ;N � 1; (46)

for i D 0; : : : ;Pfine.
At the beginning of this section, we assumed the period T to be given. In

general, T is not known such that an additional constraint needs to be defined for its
determination. In a similar way as described in Sect. 3.2, the period iterate TkC1 can
be computed for given Uk

0;U
k
1; : : : ;U

k
N . However, the period approximation in each

iteration will introduce an increase in phase-drift, which necessitates appropriate
control similar as in Sect. 3.3.2. This difficulty will be investigated in detail in future
work.

5 Numerical Results

5.1 Benchmark Problem

We consider a flow in a channel around a circular domain in two spatial dimensions
(cf. Fig. 2) as a benchmark problem. In the following, we use a vector notation u WD
.u; v/ for the velocity with components u and v in x- and y- direction, respectively.

Fig. 2 Geometry of
benchmark problem. Flow is
considered from left to right
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We impose no-slip boundary conditions at the boundary �w, i.e., u D 0. At the
inflow �i we use a parabolic flow profile with uncertain magnitude, i.e.,

u.x D 0; y; 
/ WD 4um.
/y.H � y/=H2;

v.x D 0; y; 
/ WD 0;

for y 2 Œ0; 0:4� where um.
/ WD 1:5 C 0:15
 with a uniformly distributed 
 �
U.�1; 1/ and H D 0:4 denotes the channel width. At the outflow �o we impose
natural “do-nothing” boundary conditions, i.e.,

h
Z

�o

ru � n � pn dy;  ii D 0; i D 0; 1; 2; 3; : : :

where n denotes the outward unit normal vector on �o. We assume a deterministic
kinematic viscosity � WD 0:001. The Reynoldsnumber depends on 
 and is defined
as:

Re.
/ WD 2um.
/D

3�
;

where D D 0:1 denotes the diameter of the circular domain. For this problem setup
the mean of the Reynoldsnumber corresponds to E.Re/ D 100. In this regime, a
laminar time-periodic solution (periodic vortex shedding after circular domain) can
be expected.

The spatial part is discretized using the Finite-Element-Method with continuous
Lagrange elements of degree 2 for the velocity and degree 1 for the pressure
variable (stable Taylor-Hood elements [21]). The mesh (not shown) consists of 3215
triangles resulting in 15045 degrees of freedom for each mode in the PC expansion.
For time discretization we employ the Crank-Nicolson scheme (implicit, order 2)
with homogeneous time step size 
t D 0:01. The corresponding time step size

� > 0 for the scaled time variable � is defined by:


� WD 
t

T.
 D 0/ :

5.2 Single Shooting

We employ the single shooting algorithm as described in Sect. 3.3. For the PC
expansion of the velocity, pressure and period variables we employ a third order
Legendre Chaos expansion due to the Uniform distribution of 
. As initial guesses
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Fig. 3 Convergence properties of the singe shooting approach. (a) Evolution of relative distance
between terminal state and initial condition. (b) Converged velocity trajectories evaluated from the
PC expansion a posteriori for different values of 
. 34 time steps with markers at � D 0

for the shooting method we use a fully developed purely deterministic flow, which
was obtained by time integration of the deterministic Navier-Stokes equations
parametrized by the mean inflow and a corresponding rough deterministic estimate
of the period (obtained from time integration of the deterministic equations).

Figure 3 depicts the convergence properties of the single shooting approach.
Figure 3a shows the decay of the relative error with respect to the number of
iterations up to machine precision. The relative error is measured by evaluating the
L2—norm of the distance between terminal and initial state, i.e.,

rel. error.U0;T/ WD kU0 �U .U0;T; 1/k
kU .U0;T; 1/k :

In Fig. 3b the PC expansion of the velocity is evaluated a posteriori at the coordinates
.0:35; 0:2/ (middle of channel, one diameter downstream after circular domain)
for different values of 
. These results have been verified by deterministic sample
computations (not shown here, we refer the reader to our preliminary work [20]
for more details). Overall the algorithm is capable of approximating the limit-
cycle with high accuracy. The single shooting approach, however, can only be
computed in a sequential way, although parallel solvers for the S-SNSE (e.g. domain
decomposition) can be used to speed up the computation of solutions to the S-SNSE
in each iteration.
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5.3 Parareal Approach

We evaluate the feasibility of the parareal algorithm as described in Sect. 4.2 for
computing the same limit-cycle as in the previous section. Therefore, we again
use a purely deterministic fully developed flow as initial guess for U0. We take
the period from the previous section, since we do not consider period corrections
in this algorithm. As a fine grid propagator we rely on the third order Legendre
expansion of the velocity and pressure variable (as in the previous section). For the
coarse propagator we solve the S-SNSE by means of lower order expansions using
polynomial degrees of p D 0; 1; 2. Since we do not employ a period correction, we
compare the obtained results to a straight forward time integration of the S-SNSE
(case p D 3).

Due to the time step size 
t D 0:01 it took 34 time steps to complete one
cycle. Figure 4 depicts the evolution of the relative distance error with respect to
the iteration number. As can be observed, all errors begin to stagnate after some
iteration. Indeed, they are decreasing very slowly since the initial condition is not
updated by a Newton step. The coarse propagator with degree p D 0 performs
poorly, its error stagnates at the order of O.10�3/. It also decreases eventually, but
it takes a large number of iterations (not shown here). The other coarse propagators
exhibit a more robust convergence behaviour. Figure 5 shows the evolution of their
corresponding trajectories at iterations 0; 5 and 10. They look quite similar, but
exhibit deviations especially at the “turn-around” points. After 10 iterations all
trajectories for p D 1; 2; 3 reflect the trajectories of the single shooting approach

Fig. 4 Evolution of relative
distance error for different
coarse propagator degrees
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Fig. 5 Evolution of velocity trajectories for different iterations (left to right) and different coarse
grid propagators (top to bottom). Markers at � D 0. (a) Iteration 0, p D 1. (b) Iteration 5, p D 1.
(c) Iteration 10, p D 1. (d) Iteration 0, p D 2. (e) Iteration 5, p D 2. (f) Iteration 10, p D 2.
(g) Iteration 0, p D 3. (h) Iteration 5, p D 3. (i) Iteration 10, p D 3

(cf. Fig. 3b) with high accuracy. This suggests, that the relative error in the distance
between initial condition and terminal state does not need to be computed up to
machine precision to reach high accuracy in approximating the limit-cycle. For
p D 0 the behaviour is different. It takes significantly more iterations (about 150)
to reach a comparable accuracy as depicted in Fig. 6. However, the numerical cost
of computing the coarse propagator equals the cost of solving purely deterministic
equations.
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Fig. 6 Evolution of velocity trajectories for different iterations and the coarse grid propagator
with polynomial degree p D 0. Markers at � D 0. (a) Iteration 0, p D 0. (b) Iteration 50, p D 0.
(c) Iteration 100, p D 0. (d) Iteration 150, pD 0

6 Conclusions

Polynomial Chaos expansions are known to exhibit a convergence breakdown in
case of for example oscillatory dynamics. Therefore, in time a growing polynomial
degree is required to maintain accuracy. In this work, we introduced two types of
shooting methods, which are able to overcome this difficulty for the incompressible
Navier-Stokes equations with random parameters based on the Spectral-Stochastic-
Finite-Element-Method. We re-interpreted a Newton-Galerkin approach originally
introduced in [20] as a single shooting method and extended its definition with
respect to multiple shooting. Specifically, we adapted the parareal time integration
method (resulting from multiple shooting) to compute a stochastic initial condition
corresponding to a given stochastic period. Its attractive feature is that solutions
corresponding to a fine propagator can be computed in parallel. We evaluated
numerically its convergence properties on a benchmark problem computing a time
periodic vortex shedding flow.

We observed that coarse propagators using low order PC expansions (down to
degree p equal to 0) were able to capture the trajectories of the flow accurately.
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Except for p D 0, the trajectories converged in few iterations. The case p D 0

converged eventually, however, only after a significantly larger number of iterations.
The convergence measured by evaluating the norm of the distance of initial
condition and corresponding terminal state after one cycle shows a very slow error
decay. This is mainly due to the fact that the initial condition is not updated by
a Newton method, instead using a relaxation, the terminal state of the previous
parareal iterate is used as a new iterate for the initial condition.

Current work is focused on extending the parareal approach to allow for an
adaptive period computation, similar as in the single shooting context. In addition,
more sophisticated update schemes for the initial condition will be analysed and
numerically evaluated on more complex benchmark problems involving larger
number of random variables.
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