
Automatic Search for Linear Trails
of the SPECK Family

Yuan Yao1,2(B), Bin Zhang1, and Wenling Wu1

1 TCA Laboratory, Institute of Software, Chinese Academy of Sciences,
Beijing, China

{yaoyuan,zhangbin,wwl}@tca.iscas.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China

Abstract. SPECK is a lightweight block cipher family designed by the
U.S. National Security Agency and published in 2013. Although several
cryptanalyses have been applied since then, no linear results have been
proposed. In this paper, we apply Wallén’s enumeration algorithm to
Matsui’s branch-and-bound framework and find the best correlations of
SPECK reduced to various rounds, i.e. full rounds of SPECK-32 and
7/ 5/ 4/ 4 rounds of SPECK-48/ 64/ 96/ 128. Since the best 10-round
correlation of SPECK-32 is as small as 2−17 already, SPECK-32 is immune
to the 1-dimensional linear cryptanalysis. Moreover, we present several
distinguishers and key recovery attacks as an application of the linear
trails. Besides the search for linear trails, we also discuss possible imple-
mentations of the Wallén’s algorithm and provide an implementation
which is faster than the straightforward implementations.

Keywords: Automatic search · Linear cryptanalysis · SPECK · Modulo
addition

1 Introduction

The SPECK family [1] is based on a Feistel-like structure and belongs to the
ARX ciphers, i.e. primitives composed of modulo addition, bitwise rotation and
bitwise XOR only. It is designed to provide optimal software performance on
resource constrained devices and is comprised of five variants according to the
block size. Despite of its simple structure, no cryptanalysis has threatened its
security and particularly no linear cryptanalysis has been proposed due to the
intrinsic property of modulo addition. The best previously published attacks are
the improved differential cryptanalysis provided by Dinur at SAC 2014 [4].

Generally, good linear trails/approximations should be found in advance in
order to launch linear attacks. A widely used approach to search for linear trails
of block ciphers is the general framework proposed by Matsui at EUROCRYPT
1994 [8] and it is straightforward to apply as long as the linear approximation

This work is supported by the National Basic Research Program of China (No.
2013CB338002).

c© Springer International Publishing Switzerland 2015
J. Lopez and C.J. Mitchell (Eds.): ISC 2015, LNCS 9290, pp. 158–176, 2015.
DOI: 10.1007/978-3-319-23318-5 9

Automatic Search for Linear Trails of the SPECK Family 159

table (LAT) of sub-components is obtained. However, the complexity to compute
the LAT varies greatly from cipher to cipher. In particular, the time/memory
complexity of addition modulo 2n is O(23n) for a plain enumeration which is
nearly impractical even with n = 16. Whereas the problem exists in the search
for differential trails as well, Biryukov [2] has recently proposed a technique
using partial differential distribution tables, called the threshold search, and suc-
cessfully conquered this problem. Fortunately, Wallén has already provided an
efficient algorithm to enumerate the LAT of modulo addition at FSE 2003 [10],
thus linear approximations could be generated on the fly until it is necessary. The
algorithm is further rediscovered in [9] using another approach and its efficiency
has been proved by the application to SNOW 2.0 [9] and SOSEMANUK [3].
In case of possible confusions, it should be noted that another algorithm which
determines the correlation of a given linear approximation with O(log(n)) time
was presented by Wallén in [10] as well. As the latter algorithm is never used in
this paper, the Wallén’s algorithm in this paper always refers to the algorithm
to enumerate the LAT.

By combining Wallén’s algorithm and Matsui’s branch-and-bound frame-
work, we are able to find the best linear trail of SPECK-32 of full rounds and
the best linear trail of SPECK-48/ 64/ 96/ 128 reduced to 7/ 5/ 4/ 4 rounds
respectively, shown in Tables 1 and 2 where “≥” denotes a lower bound of the best
correlation. Since the data complexity of a 1-dimensional linear cryptanalysis is
inversely proportional to the square of the correlation, the best 10-round corre-
lation in Table 1 suggests that SPECK-32 is secure under this method. Indeed,
the data complexity of a 1-dimensional linear cryptanalysis against SPECK-32
using the 10-round linear trail is 234, greater than the size of the code book which
is 232. Moreover, we provide several distinguishers and key recovery attacks as
an application of the linear trails. Yet, they do not pose a threat to SPECK
and are worse than the differential cryptanalyses of Dinur. After all, this is the
first linear cryptanalysis against the SPECK family, evaluating the security in a
different perspective.

We additionally find a set of necessary conditions for correlations to be non-
zero which allows us to develop an alternative implementation of Wallén’s algo-
rithm. According to experiments, this implementation is faster than straightfor-
ward implementations derived from the Wallén’s theorem and thus useful when
called for a tremendous number of times.

The rest of this paper is organized as follows. Section 2 introduces SPECK,
Matsui’s branch-and-bound framework and the previous Wallén’s results on lin-

Table 1. Best correlations for SPECK-32

Rounds(r) 1 2 3 4 5 6 7 8 9 10 11

|B[r]| 1 1 2−1 2−3 2−5 2−7 2−9 2−12 2−14 2−17 2−19

Rounds(r) 12 13 14 15 16 17 18 19 20 21 22

|B[r]| 2−20 2−22 2−24 2−26 2−28 2−30 2−34 2−36 2−38 2−40 2−42

160 Y. Yao et al.

Table 2. Best correlations for SPECK48/ 64/ 96/ 128 (“≥” indicates a lower bound)

|B[r]| Rounds(r)

1 2 3 4 5 6 7 8 9 10 11 12

Block length 48 1 1 2−1 2−3 2−6 2−8 2−12 ≥ 2−17 ≥ 2−20 ≥ 2−25

64 1 1 2−1 2−3 2−6 ≥ 2−10 ≥ 2−14 ≥ 2−17 ≥ 2−19 ≥ 2−21 ≥ 2−25 ≥ 2−31

96 1 1 2−1 2−3 ≥ 2−6 ≥ 2−11

128 1 1 2−1 2−3 ≥ 2−6 ≥ 2−11

ear approximation of modulo addition. Section 3 describes the search for linear
trails on SPECK and the cryptanalytic results. Section 4 provides the alternative
implementation of Wallén’s algorithm. Finally, Sect. 5 draws conclusions.

2 Preliminaries

2.1 Notions

ai the i-th least-significant bit of word a, i.e. a = (an−1, · · · , a0)
1 the word (1, . . . , 1)
null a special word of length zero, i.e. ()
‖ the concatenation operation
a · b the inner product of a, b
ab the bitwise AND of a, b
�
n

the addition modulo 2n and n is omitted if it is clear from the
context

�
n

the subtraction modulo 2n and n is omitted if it is clear from the
context

PrD (y) the probability to be y given the probability distribution function
D

2.2 Description of SPECK

SPECK is a family of block ciphers containing five variants according to the
block size which can be further divided into ten variants regarding the key size.
Each variant has two constants ς, τ depending on the block size, i.e. ς = 7, τ = 2
for SPECK-32 and ς = 8, τ = 3 otherwise. The i-th round function (Fig. 1) is
defined by

x [i + 1] ← ((x [i] ≫ ς) � y [i]) ⊕ k [i]
y [i + 1] ← (y [i] ≪ τ) ⊕ x [i + 1]

where x[i] and y[i] denote the left and right block of the input respectively, and
k[i] is the round-key. The key schedule algorithm is omitted since it is irrelevant
to the search, but it should be noted that the master key can be recovered with
2×key length/block size successive round-keys. For more details, please refer to [1].

Automatic Search for Linear Trails of the SPECK Family 161

≫ ς

�
⊕

⊕
≪ τ

x[i]

x[i + 1] y[i + 1]

y[i]

k[i]

Fig. 1. The round function of SPECK

2.3 Automatic Search Framework

The following is an introduction to the general branch-and-bound search frame-
work proposed by Matsui at EUROCRYPT 1994 [8] in the language of linear
cryptanalysis.

To find the best correlation of r successive rounds B[r], the framework per-
forms a recursive search from the knowledge of shorter rounds B[1], . . . , B[r − 1]
and an initial estimate B̂[r] such that |B̂[r]| < |B[r]|. In the search phase, an
s-round trail is kept only if

|B[r − s]
s∏

i=1

c[i]| > |B̂[r]|, 1 ≤ s ≤ r

where c[i] denotes the correlation of the i-th round and B[0] is defined to be
1. B̂[r] is updated once the correlation of a r-round trail is better than B̂[r].
Therefore, B[r] = B̂[r] when the search completes. Algorithm 1 is an overview
where Get Mask is a cipher dependent function to extend linear trails.

2.4 Linear Approximation of Modulo Addition

In this subsection, we briefly introduce Wallén’s results on linear approximations
of addition modulo 2n in [10,11].

Definition 1 (Correlation). Let u be the output mask of the modulo addition
and v,w be the input masks. Then the correlation is defined by

c (u,v,w) � 2 Pr (u · (Z1 � Z2) ⊕ v · Z1 ⊕ w · Z2 = 0) − 1

where Z1,Z2 are independent uniform distributed random variables.

162 Y. Yao et al.

Algorithm 1. Matsui Search for The Best Linear Trail
1: function Search(B, T = {}) � T = {T [1], . . . , T [s]} denotes the linear trail
2: r ← Sizeof(B) − 1, s ← Sizeof(T)
3: if s = r then
4: B̂[r] ←∏r

i=1 c[i]
5: else
6: for T ′ in Get Mask(T) do � Extend T to (s + 1)-round linear trails
7: if |B[r − (s + 1)]

∏s+1
i=1 c′[i]| > |B̂[r]| then � c′[i] is the correlation of

T ′[i]
8: Search(B, T ′)
9: else

10: return � Pruning, supposing that T ′s are enumerated in decreasing
order

11: end if
12: end for
13: end if
14: end function

The Enumeration Algorithm.

Theorem 1. [9,11] Let S0(0, 0) � {null}, S0(n, k) = S1(n, k) � ∅ when k < 0
or k ≥ n > 0, and

S0(n, k) �
(
S0(n − 1, k) ‖ {0}) ∪ (

S1(n − 1, k − 1) ‖ {1, 2, 4, 7}) (1)

S1(n, k) �
(
S0(n − 1, k) ‖ {7}) ∪ (

S1(n − 1, k − 1) ‖ {0, 3, 5, 6}) (2)

otherwise, where S� ‖ Ω � {a ‖ b | a ∈ S�, b ∈ Ω}. Then

S(n, k) �
{
(u,v,w) | 4ui + 2vi + wi =si, i = 0, . . . , n − 1,

s ∈ S0(n, k) ∪ S1(n, k)
}

is the set of all masks such that c (u,v,w) = ±2−k.

Example 1. S0(n, 0) = {(0 · · · 0)}, S1(n, 0) = {(0 · · · 07)}, thus S(n, 0) = {((0 · · ·
0), (0 · · · 0), (0 · · · 0)), ((0 · · · 01), (0 · · · 01), (0 · · · 01))} is the set of all masks such
that c (u,v,w) = ±1.

As was pointed out by Wallén, the LAT of addition modulo 2n can be enumerated
using O(n) space via Theorem 1. A trivial implementation, called the top-down
method in this paper, can be deduced as shown in Fig. 2(a) and Appendix A.1.
However, it is inefficient in the sense that the same subtree will be generated
for multiple times. Another possible implementation is the bottom-up method
which is shown in Fig. 2(b) and Appendix A.2, i.e. starting from S0(0, 0) and then
computing S(1, 0) etc. While it also generates duplicate subtrees, surprisingly it
is faster than the top-down method. (See Fig. 5 for the comparison)

Automatic Search for Linear Trails of the SPECK Family 163

Fig. 2. The computational process of S(4, 2)

Common Prefix Mask vs. Correlation. This subsection serves for the alter-
native implementation of the above algorithm and may be skipped safely to
understand the search.

Definition 2 (CPM). Let a, b ∈ F
n
2 . If n = 2, the common prefix mask of a, b

is defined by
cpm2 (a, b) = a1

If n > 2, the common prefix mask of a, b is defined by

cpmn (a, b) = an−1 ‖ cpmn−1

(
(an−2 ⊕ an−1 · bn−2) ‖ a′, 1 ‖ b′)

where a′ = (an−3, . . . , a0) and b′ = (bn−3, . . . , b0).1

Lemma 1. [10] Let u,v,w ∈ F
n
2 be defined as in Definition 1, φ = v ⊕ u,ϕ =

w ⊕ u be the input masks of the carry function, γ = v ⊕ w and δ = cpmn+1(0 ‖
u, (0 ‖ γ) ⊕ 1). Then

c (u,v,w) =

{
(−1)wt(δφϕ) 2−wt(δ), if φ = φδ and ϕ = ϕδ

0, otherwise

where wt is the hamming weight.

Example 2. Suppose u = (1100),v = w = (1000), then φ = ϕ = (0100),
γ = (0000) and δ = (0100). Thus, c(u,v,w) = −2−1.

3 Linear Results on SPECK

3.1 Details of the Search

In this section, we will concentrate on the design of Get Mask which will be used
to extend linear trails by Algorithm 1. Firstly, we recall the linear properties of
branch, bitwise XOR and bitwise rotation.
1 This definition is the method proposed by Wallén to calculate the CPM.

164 Y. Yao et al.

Fig. 3. The spread of linear masks

Property 1. Let Γ 1,Γ 2,Γ 3 be linear masks defined by Fig. 3(a), then the corre-
lation is nonzero if and only if Γ 1 ⊕ Γ 2 ⊕ Γ 3 = 0.

Property 2. Let Γ 1,Γ 2,Γ 3 be linear masks defined by Fig. 3(b) then the corre-
lation is nonzero if and only if Γ 1 = Γ 2 = Γ 3.

Property 3. Let Γ 1,Γ 2 be linear masks defined by Fig. 3(c) then the correlation
is nonzero if and only if Γ 2 = Γ 1 ≪ t.

Let the linear masks of the i-th round be defined in Fig. 4. Accordingly,

u[i] = X[i + 1] ⊕ Y [i + 1]
v[i] = X[i] ≫ ς

w[i] = Y [i] ⊕ (Y [i + 1] ≫ τ)

Thereupon,

u[r] = X[r + 1] ⊕ Y [r + 1]
u[r − 1] = (v[r] ≪ ς) ⊕ w[r] ⊕ (Y [r + 1] ≫ τ)

and

u[i] = (v[i + 1] ≪ ς) ⊕ w[i + 1]⊕
((u[i + 1] ⊕ (v[i + 2] ≪ ς)) ≫ τ), 1 ≤ i ≤ r − 2

If we enumerate X[r+1] and Y [r+1] directly, the complexity is at least 22n and
it is a waste of efforts on masks with insignificant correlations at the initial stage.
Since X[r + 1],Y [r + 1] are uniquely determined by u[r],v[r],w[r],u[r − 1], it
is equivalently and more efficiently to enumerate u[r],v[r],w[r],u[r − 1] using
the Wallén’s algorithm. On the other hand, when 1 ≤ i ≤ r − 2, u[i] can be
deduced from the two following rounds. As a result, we have presented a method
to extend linear trails by appending one round to the front and Algorithm 2 is
the corresponding implementation of Get Mask.

Automatic Search for Linear Trails of the SPECK Family 165

≫ ς

�
⊕

⊕
≪ τ

X[i]

v[i]

u[i]

X[i + 1] Y [i + 1]

Y [i]

w[i]

k[i]

Fig. 4. Masks of the i-th round

Algorithm 2. The Implementation of Get Mask

1: function Generate()
2: for k from 0 to n − 1 do
3: BU Generate(n, 000, k, not used, not used, not used) � bottom-up

generation of S(n, k) (see Appendix A.2) and 000 means totally free
4: end for
5: end function

6: function Generate(u)
7: for k from 0 to n − 1 do
8: BU Generate(n, 100, k, u, not used, not used) � bottom-up generation of

S(n, k) (see Appendix A.2) and 100 means u is supplied and fixed
9: end for

10: end function

11: function Get Mask(T) � T = {T [1], . . . , T [s]} and T [r + 1 − i] = {u[i], v[i],
w[i]}

12: s ← Sizeof(T), curr ← r − s, last ← curr + 1
13: if s < 2 then
14: for tuple in Generate() do
15: if u[r], u[r − 1] don’t equal 0 simultaneously then
16: T [s + 1] ← tuple and yield T
17: end if
18: end for
19: else
20: u[curr] ← (v[last] ≪ ς) ⊕ w[last] ⊕ ((u[last] ⊕ (v[last + 1] ≪ ς)) ≫ τ)
21: for tuple in Generate(u[curr]) do
22: T [s + 1] ← tuple and yield T
23: end for
24: end if
25: end function

166 Y. Yao et al.

3.2 Search Results

The automatic search is applied to variants of all block sizes and the best corre-
lations are presented in Tables 1 and 2. Since the quotient of the best correlations
of successive rounds is quite regular, B̂[r] is set to 2−3B[r − 1] for most of the
cases. However, not all searches can finish in a reasonable time period due to
the huge size of the search space, even with a tight threshold (e.g. B̂[r] ≈ B[r]).
Thus, the “≥” in the Table 2 denotes the best correlation that has been found
in this case, i.e. a lower bound.

3.3 Linear Distinguishers

A Linear Distinguisher identifies the nonuniformity of a cipher and generally
converts to a hypothesis testing problem using statistical tools. In this and sub-
sequent sections, we make the common assumption that the correlation of a
linear approximation can be estimated by the correlation of a significant linear
trail. Moreover, the data complexity to distinguish two probability distributions
D and D0 is estimated by C (D,D0)

−1 (see [5] for example) with the capacity

C (D,D0) � ∑
y∈Y(PrD(y)−PrD0 (y))2/PrD0 (y)

Since

x[i] · X[i] ⊕ y[i] · Y [i] = (((x[i − 1] ≫ ς) � y[i − 1]) ⊕ k[i − 1]) ·
(X[i] ⊕ Y [i]) ⊕ y[i − 1] · (Y [i] ≫ τ)

and k[i − 1] · (X[i] ⊕ Y [i]) is constant, the absolute value of the correlation of

x[2] · X[2] ⊕ y[2] · Y [2] ⊕ x[2 + r] · X[2 + r] ⊕ y[2 + r] · Y [2 + r]

can be calculated from x[1],y[1],x[2+r],y[2+r] without k[1]. In other words, a
r-round linear trail can be transformed into a (r + 1)-round linear distinguisher
by appending one round to the front. Thus, we immediately obtain the results
in Table 3.

Table 3. Linear distinguishers against the SPECK family

Block length Trail length Correlation Rounds Data

32 9 2−14 10 228

48 9 2−20 10 240

64 11 2−25 12 250

64 12 2−31 13 262

96 6 2−11 7 222

128 6 2−11 7 222

Automatic Search for Linear Trails of the SPECK Family 167

3.4 Key Recovery Attacks

For key recovery attacks, we adopt the χ2 extension of Matsui’s Algorithm 2
which was presented by Hermelin et al. in [6] and does not require the distribution
of the linear approximation for the correct key.

Let h(a) denote one plus the position of the most-significant one of a and
a� � 2h(a) − 1. Because

a �
n

b = c ⇒ a �
h(a)

b = ca� ⇒ aa� = ca� �
h(a)

b

y[i] = (x[i + 1] ⊕ y[i + 1]) ≫ τ

guessing k[i]v[i]� is enough to calculate

x[i] · X[i] ⊕ y[i] · Y [i] = (x[i] ≫ ς) · v[i] ⊕ y[i] · Y [i]

=
(
(x[i] ≫ ς)v[i]�

)
· v[i] ⊕ y[i] · Y [i]

=
((

x[i + 1]v[i]� ⊕ k[i]v[i]�
)

�
h(v[i])

y[i]
)

· v[i] ⊕ y[i]·

Y [i]

from x[i + 1],y[i + 1]. Therefore, if m rounds are appended to the back of a
r-round distinguisher, then only

h(v[r + 1]) + (m − 1)n = h((u[r] ⊕ Y [r + 1]) ≫ ς) + (m − 1)n
= h((u[r] ⊕ ((w[r] ⊕ Y [r]) ≪ τ)) ≫ ς) + (m − 1)n
= h((u[r] ⊕ ((w[r] ⊕ (u[r − 1] ⊕ (v[r] ≪ ς))) ≪ τ)) ≫

ς) + (m − 1)n

bits of key need to be guessed, i.e. k[r + 1]v[r + 1]�,k[r + 2], . . . ,k[r + m].
Consequently, we have Table 4 where

Time = Data × 2guessed bits + 2key length × β

Average Time = Time/1−α

and α, β are missing detection and false alarm probabilities respectively. More-
over, the results may be improved by trails of smaller h(v[r + 1]) or vectorial
linear approximations. But it seems unable to be improved by the similar tech-
nique of [4] since the size of the equation derived from a sub-cipher is one bit
instead of 2n bits in the case of 1-dimensional linear cryptanalysis.

4 Another Implementation of Wallén’s Algorithm

In this section, we present another implementation of Wallén’s algorithm, called
the CPM method, and compare the performance of different implementations.
Firstly, a set of necessary conditions for correlations to be non-zero needs to be
proved.

168 Y. Yao et al.

Table 4. Key recovery attacks on the SPECK family

Block/
key
length

Trail
length
(this
paper/
[4])

Rounds
(this
paper/
[4]/Total)

Guessed
bits

α β Data (this
paper/ [4])

Time Average
time (this
paper/
[4])

32/ 64 9/ 10 12/ 14/ 22 13 + 16 2−1 2−6 230.8668/231 260.2164 261.2164/263

48/ 72 9/ 11 11/ 14/ 22 24 2−2 2−7 243.727/241 267.93 268.345/265

48/ 96 9/ 11 12/ 15/ 23 24 + 24 2−2 2−7 243.727/241 291.93 292.345/289

64/ 96 11/ 15 13/ 18/ 26 31 2−2 2−14 254.6279/261 285.7401 286.1551/293

64/ 96 12/ 15 14/ 18/ 26 31 2−1 2−2 262.7302/261 294.8714 295.8714/293

64/ 128 11/ 15 14/ 19/ 27 31 + 32 2−2 2−14 254.8029/261 2117.74 2118.155/2125

64/ 128 12/ 15 15/ 19/ 27 31 + 32 2−1 2−2 262.7302/261 2126.871 2127.871/2125

96/ 96 6/ 14 8/ 16/ 28 47 2−3 2−26 227.6463/285 274.7028 274.8954/285

96/ 144 6/ 14 9/ 17/ 29 47 + 48 2−3 2−26 227.6463/285 2122.703 2122.895/2133

128/ 128 6/ 15 8/ 17/ 32 63 2−5 2−36 228.2959/2113 292.6905 292.7363/2113

128/ 192 6/ 15 9/ 18/ 33 63 + 64 2−5 2−36 228.2959/2113 2156.69 2156.736/2177

128/ 256 6/ 15 7/ 19/ 34 63+2×64 2−5 2−36 228.2959/2113 2220.69 2220.736/2241

Lemma 2. Let u,γ, δ ∈ F
n
2 . Then

δ = cpmn+1 (0 ‖ u, (0 ‖ γ) ⊕ 1) ⇐⇒ δ = (u ⊕ (γ ⊕ 1) δ)
 1

Proof. “=⇒”. From Definition 2, it is clear that δn−1 = 0 and δi = ui+1⊕(γi+1⊕
1)δi+1, i = 0, . . . , n − 2.

“⇐=”. Suppose δ′ = cpmn+1(0 ‖ u, (0 ‖ γ) ⊕ 1), then δ′
i = ui+1 ⊕ (γi+1 ⊕

1)δ′
i+1, i = 0, . . . , n − 2. Thus δi ⊕ δ′

i = (γi+1 ⊕ 1)(δi+1 ⊕ δ′
i+1), i = 0, . . . , n − 2.

Finally, δn−2 = δ′
n−2, . . . , δ0 = δ′

0 following from δn−1 = δ′
n−1 = 0. ��

Theorem 2. Let u,v,w,φ,ϕ, δ ∈ F
n
2 and φ = v ⊕ u,ϕ = w ⊕ u,γ = v ⊕ w.

Then
δ = cpmn+1(0 ‖ u, (0 ‖ γ) ⊕ 1), c(u,v,w) �= 0

if and only if

φ = φδ (3)
ϕ = ϕδ (4)

γ
 1 = ((u ⊕ δ)
 1) ⊕ δ (5)
0 = ((u
 1) ⊕ δ) ((δ ⊕ 1)
 1) (6)
0 = ((v
 1) ⊕ δ) ((δ ⊕ 1)
 1) (7)
0 = ((w
 1) ⊕ δ) ((δ ⊕ 1)
 1) (8)

Automatic Search for Linear Trails of the SPECK Family 169

Proof. Proof of the only-if-part. Since c (u,v,w) �= 0, (3) and (4) follow from
Lemma 1 directly. According to Lemma 2, δ = (u ⊕ (γ ⊕ 1)δ)
 1. Hence,

((u ⊕ δ)
 1) ⊕ δ = ((u ⊕ δ) ⊕ (u ⊕ (γ ⊕ 1) δ))
 1 = (γδ)
 1
= ((φ ⊕ ϕ) δ)
 1 = (φ ⊕ ϕ)
 1 = γ
 1

Accordingly,

0 = γ (δ ⊕ 1) = (γ (δ ⊕ 1))
 1 = (γ
 1) ((δ ⊕ 1)
 1)
= (((u ⊕ δ)
 1) ⊕ δ) ((δ ⊕ 1)
 1)
= ((u
 1) ⊕ δ) ((δ ⊕ 1)
 1) ⊕ ((δ(δ ⊕ 1))
 1)
= ((u
 1) ⊕ δ) ((δ ⊕ 1)
 1)

(3) implies (φ (δ ⊕ 1))
 1 = 0, thus

((v
 1) ⊕ δ) ((δ ⊕ 1)
 1) =
(φ (δ ⊕ 1))
 1 ⊕ ((u
 1) ⊕ δ) ((δ ⊕ 1)
 1) = 0

(8) holds similarly.
Proof of the if-part. From (5),

((u ⊕ δ)
 1) ⊕ δ = γ
 1 = (γδ)
 1 = (u ⊕ γδ ⊕ δ ⊕ δ ⊕ u)
 1
= ((u ⊕ (γ ⊕ 1) δ)
 1) ⊕ ((δ ⊕ u)
 1)

Therefore,

δ = (u ⊕ (γ ⊕ 1) δ)
 1 = cpmn+1 (0 ‖ u, (0 ‖ γ) ⊕ 1)

and the conclusion is derived from Lemma 1. ��
We next discusses details of the CPM method under different scenarios.
Case 1: u is known and fixed. Therefore, δ should satisfy (6) and δi is determined
by δi+1 for 0 ≤ i < n − 1, i.e.

δi =

{
0, 1 if δi+1 = 1
ui+1 otherwise

Recall that δn−1 = 0, thus δ can be resolved bit by bit from left to right. But it
should be noted that δ needs to be enumerated in the order of hamming weight
according to Lemma 1. We adopt a deque (i.e. a data structure supporting push
and pop in both front and back directions) for this purpose, and δ is pushed to
the front whenever δi−1 = 0 and is pushed to the back otherwise. Details are
presented in Algorithm 3.

Given u and δ, the approximation is determined by two of v,w and γ.
Obviously, γ can be obtained from (5) except γ0. Thus, the input masks are

170 Y. Yao et al.

Algorithm 3. Generate δ given u

1: function CPM Generate Delta(u)
2: deque ← {(0, n − 1)}
3: while deque is not empty do
4: (δ, i) ← Pop Front(deque)
5: if i �= 0 then
6: if δi = 1 then
7: Push Front(deque, (δ, i − 1))
8: Push Back(deque, (δ ⊕ (1 � (i − 1)), (i − 1)))
9: else if ui = 1 then

10: Push Back(deque, (δ ⊕ (1 � (i − 1)), (i − 1)))
11: else
12: Push Front(deque, (δ, i − 1))
13: end if
14: else
15: yield δ
16: end if
17: end while
18: end function

known once v or w is generated. Without loss of generality, we choose to generate
v and then calculate w as w = v ⊕ γ. According to (3),

vi = φi ⊕ ui =

{
0, 1 if δi = 1
ui otherwise

for 0 ≤ i < n. Hence, the bits of v where δ equals one need to be traversed
to generate all valid masks. As far as we know, the most efficient method to
generate all tuples is the Gray code strategy [7] which flips one bit only in each
iteration as shown in Appendix B. Also, this step may be customized for special
purpose, e.g. generating the tuples by hamming weight. See Algorithm 4 for
details.
Case 2: v or w is known and fixed. Suppose v is known, then δ should satisfy
(7). Thus, δ can be generated using the procedure CPM Generate Delta with
the parameter v and thereupon u can be determined by (6), i.e.

ui =

{
0, 1 if δi = 1
δi−1 otherwise

for 1 ≤ i ≤ n − 1. Since φ0δ0 = δ0 = φ0 = v0 ⊕ u0 according to (3), u0 = v0 if
δ0 = 0 and u0 ∈ {0, 1} otherwise. Finally, γ and w are determined by (5) and
(4) as in Case 1.
Case 3: u,v or u,w are known and fixed. Suppose u,v are known, so φ = v⊕u
is known as well. And δ should satisfy (3), (6) and (7). Notice that the conditions
may be incompatible and result in zero correlation. Indeed, since δn−1 = 0, δ

Automatic Search for Linear Trails of the SPECK Family 171

Algorithm 4. The case that u is known and fixed
1: function CPM Generate Mask(u, δ)
2: γ ← ((u ⊕ (δ � 1)) ⊕ δ)δ � γ0 ∈ {0, 1} if δ0 = 1 and γ0 ∈ {0} otherwise
3: ones ← {0 ≤ i < n : δi = 1}
4: for v in Gray Visit(δ ⊕ u, ones) do
5: w ← v ⊕ γ
6: yield (u, v, w)
7: if δ0 = 1 then
8: yield (u, v, w ⊕ 1) � Equivalent to flipping γ0

9: end if
10: end for
11: end function

12: function Generate’(u)
13: for δ in CPM Generate Delta(u) do
14: CPM Generate Mask(u, δ)
15: end for
16: end function

exists only if φn−1 = 0. By (3) and (6), we have

δi =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, 1 if δi+1 = 1 and φi = 0
1 if δi+1 = 1 and φi = 1
1 if δi+1 = 0 and ui+1 = 1
0 if δi+1 = 0 and ui+1 = φi = 0
⊥ otherwise

for 0 ≤ i < n − 1 where ⊥ means no solution. Consequently, δ can be solved
using procedure similar to CPM Generate Delta. At last, γ is resolved by (5)
and w = v ⊕ γ.
Case 4: v,w are known. Thus, γ is fixed and δ should satisfy γδ = γ, (7) and
(8). Similar to Case 3, δ exists only if γn−1 = 0, and

δi =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, 1 if δi+1 = 1 and γi = 0
1 if δi+1 = 1 and γi = 1
1 if δi+1 = 0 and vi+1 = 1
0 if δi+1 = 0 and vi+1 = γi = 0
⊥ otherwise

for 0 ≤ i < n − 1. Then, u is calculated by (5) except that u0 needs to satisfy

(u0 ⊕ v0)δ0 = u0 ⊕ v0

(u0 ⊕ v0)δ0 = u0 ⊕ v0

Since γ0 = v0 ⊕ w0 = 1 ⇒ δ0 = 1, then u0 ∈ {0, 1} if δ0 = 1 and u0 = v0 = w0

otherwise.

172 Y. Yao et al.

Case 5: All Masks are Free. In this case, δ is generated first according to its
hamming weight to ensure the order of approximations. Then, u is obtained as
in Case 2 without the constraint on u0. At last, the procedure CPM Generate
Mask takes over. Refer to Algorithm 5 for details.

Algorithm 5. The case that all masks are free
1: function Generate’()
2: for k from 0 to n − 1 do
3: for δ of weight k do
4: ones ← {0 < i < n : δi = 1} ∪ {0}
5: for u in Gray Visit(δ � 1, ones) do
6: CPM Generate Mask(u, δ)
7: end for
8: end for
9: end for

10: end function

Obviously, the CPM method is not as elegant as the top-down/bottom-up
method, but surprisingly it is faster for n ≥ 11 according to Fig. 5 (note that the
labels on y-axis increase exponentially). We believe better direct techniques to
instantiate Theorem 1 exists, but Generate′ is the most effective implementation
we can think of at present and is used to replace Generate in Algorithm 2.

Fig. 5. The performance of generating
⋃n−1

k=0 S(n, k) Platform: 32-bit Win7 with
Visual C++ 2015 CTP optimized by /Ox

Automatic Search for Linear Trails of the SPECK Family 173

5 Conclusions

In this paper, we presented a search for linear trails on the SPECK family
via Wallén’s enumeration algorithm and Matsui’s branch-and-bound framework.
The best correlation of full rounds of SPECK-32 was found as well as reduced
rounds of other variants. According to the best 10-round correlation of SPECK-
32 which is 2−17, SPECK-32 is immune to the 1-dimensional linear cryptanalysis.
We further proposed the first linear distinguishers and key recovery attacks on
the SPECK family which do not threaten the security of SPECK. Finally, a
CPM implementation of the Wallén’s algorithm was presented which seems faster
than the straightforward instantiations, i.e. the top-down and the bottom-up
approaches.

Additional future work items include applying the threshold search [2] on
SPECK, mounting vectorial linear cryptanalyses and implementing the search
on other ARX ciphers.

A Straightforward Implementations of Wallén’s
Algorithm

The mode argument indicates whether u,v,w are fixed and used hereafter.

A.1 The Top-Down Method

1: function TDV(mode, ti+1, ti, i,u,v,w)
2: if u,v,w, ti+1, ti and mode are compatible then
3: modify the i-th bit of u,v,w and yield (u,v,w)
4: end if
5: end function

6: function TDD Generate(N,mode, t, n, rk,u,v,w)
7: if n = 0 then
8: if t = S0 then � S0(0, 0)
9: yield (u,v,w)

10: end if
11: return
12: end if
13: i ← N − n
14: if n �= rk or rk = 0 then
15: if n = N or t = S0 then � S0(n − 1, rk) ← S0(n, rk)
16: for u′,v′,w′ in TDV(mode, S0, S0, i,u,v,w) do
17: TDD Generate(N,mode, S0, n − 1, rk,u′,v′,w′)
18: end for
19: end if
20: if n = N or t = S1 then � S0(n − 1, rk) ← S1(n, rk)
21: for u′,v′,w′ in TDV(mode, S0, S1, i,u,v,w) do

174 Y. Yao et al.

22: TDD Generate(N,mode, S0, n − 1, rk,u′,v′,w′)
23: end for
24: end if
25: end if
26: if rk �= 0 then
27: if n = N or t = S0 then � S1(n − 1, rk − 1) ← S0(n, rk)
28: for u′,v′,w′ in TDV(mode, S1, S0, i,u,v,w) do
29: TDD Generate(N,mode, S1, n − 1, rk − 1,u′,v′,w′)
30: end for
31: end if
32: if n = N or t = S1 then � S1(n − 1, rk − 1) ← S1(n, rk)
33: for u′,v′,w′ in TDV(mode, S1, S1, i,u,v,w) do
34: TDD Generate(N,mode, S1, n − 1, rk − 1,u′,v′,w′)
35: end for
36: end if
37: end if
38: end function

39: function TD Generate(n,mode, k,u,v,w) � generate S(n, k)
40: TDD Generate(n,mode, not used, n, k,u,v,w) � start from S(n, k)
41: end function

A.2 The Bottom-Up Method

1: function BUV(mode, ti, ti−1, i,u,v,w)
2: if u,v,w, ti, ti−1 and mode are compatible then
3: modify the i-th bit of u,v,w and yield (u,v,w)
4: end if
5: end function

6: function BUD Generate(N,mode, t, n, rk,u,v,w)
7: if n = N then � S(N, k)
8: yield (u,v,w) and return
9: end if

10: i ← N − 1 − n
11: if t = S0 then
12: if i = 0 or rk < i then � S0(n, k − rk) → S0(n + 1, k − rk)
13: for u′,v′,w′ in BUV(mode, S0, S0, i,u,v,w) do
14: BUD Generate(N,mode, S0, n + 1, rk,u′,v′,w′)
15: end for
16: end if
17: if i = 0 or rk �= 0 then � S0(n, k − rk) → S1(n + 1, k − rk)
18: for u′,v′,w′ in BUV(mode, S0, S1, i,u,v,w) do
19: BUD Generate(N,mode, S1, n + 1, rk,u′,v′,w′)
20: end for
21: end if

Automatic Search for Linear Trails of the SPECK Family 175

22: else
23: if i = 0 or rk ≤ i then � S1(n, k − rk) → S0(n + 1, k − rk + 1)
24: for u′,v′,w′ in BUV(mode, S1, S0, i,u,v,w) do
25: BUD Generate(N,mode, S0, n + 1, rk − 1,u′,v′,w′)
26: end for
27: end if
28: if i = 0 or rk �= 1 then � S1(n, k − rk) → S1(n + 1, k − rk + 1)
29: for u′,v′,w′ in BUV(mode, S1, S1, i,u,v,w) do
30: BUD Generate(N,mode, S1, n + 1, rk − 1,u′,v′,w′)
31: end for
32: end if
33: end if
34: end function

35: function BU Generate(n,mode, k,u,v,w) � generate S(n, k)
36: BUD Generate(n,mode, S0, 0, k,u,v,w) � start from S0(0, k − k)
37: end function

B The Gray Visit Procedure

1: function Gray Visit(a, set)
2: s ← sizeof(set), buf ← {1, 2, . . . , s + 1}
3: while true do
4: yield a
5: j ← buf [1], buf [1] ← 1
6: if j = s + 1 then
7: return
8: end if
9: i ← j + 1, buf [j] ← buf [i], buf [i] ← i

10: flip a[set[j]]
11: end while
12: end function

References

1. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK families of lightweight block ciphers. Cryptology ePrint
Archive, Report 2013/404 (2013). http://eprint.iacr.org/

2. Biryukov, A., Velichkov, V.: Automatic search for differential trails in ARX ciphers.
In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 227–250. Springer, Hei-
delberg (2014). http://dx.doi.org/10.1007/978-3-319-04852-9 12

3. Cho, J.Y., Hermelin, M.: Improved linear cryptanalysis of SOSEMANUK. In: Lee,
D., Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 101–117. Springer, Heidelberg
(2010). http://dx.doi.org/10.1007/978-3-642-14423-3 8

http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-319-04852-9_12
http://dx.doi.org/10.1007/978-3-642-14423-3_8

176 Y. Yao et al.

4. Dinur, I.: Improved differential cryptanalysis of round-reduced SPECK. Cryptology
ePrint Archive, Report 2014/320 (2014). http://eprint.iacr.org/. Accepted by SAC
2014

5. Hermelin, M.: Multidimensional Linear Cryptanalysis. Ph.D. thesis, Aalto Univer-
sity School of Science and Technology, Faculty of Information and Natural Sciences,
Department of Information and Computer Science (2003). http://lib.tkk.fi/Diss/
2010/isbn9789526031903/isbn9789526031903.pdf

6. Hermelin, M., Cho, J.Y., Nyberg, K.: Multidimensional extension of matsui’s
algorithm 2. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 209–227.
Springer, Heidelberg (2009). http://dx.doi.org/10.1007/978-3-642-03317-9 13

7. Knuth, D.: The Art of Computer Programming: Generating All Tuples and Permu-
tations. Addison-Wesley Series in Computer Science and Information Proceedings,
vol. 4. Addison Wesley Publishing Company Incorporated, Upper Saddle River
(2005)

8. Matsui, M.: On correlation between the order of S-Boxes and the strength of DES.
In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 366–375. Springer,
Heidelberg (1995). http://dx.doi.org/10.1007/BFb0053451

9. Nyberg, K., Wallén, J.: Improved linear distinguishers for SNOW 2.0. In: Robshaw,
M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 144–162. Springer, Heidelberg (2006).
http://dx.doi.org/10.1007/11799313 10

10. Wallén, J.: Linear approximations of addition modulo 2n. In: Johansson, T.
(ed.) FSE 2003. LNCS, vol. 2887, pp. 261–273. Springer, Heidelberg (2003).
http://dx.doi.org/10.1007/978-3-540-39887-5 20

11. Wallén, J.: On the differential and linear properties of addition. Master’s thesis,
Helsinki University of Technology, Department of Computer Science and Engineer-
ing, Laboratory for Theoretical Computer Science (2003). http://www.tcs.hut.fi/
Publications/bibdb/HUT-TCS-A84.pdf

http://eprint.iacr.org/
http://lib.tkk.fi/Diss/2010/isbn9789526031903/isbn9789526031903.pdf
http://lib.tkk.fi/Diss/2010/isbn9789526031903/isbn9789526031903.pdf
http://dx.doi.org/10.1007/978-3-642-03317-9_13
http://dx.doi.org/10.1007/BFb0053451
http://dx.doi.org/10.1007/11799313_10
http://dx.doi.org/10.1007/978-3-540-39887-5_20
http://www.tcs.hut.fi/Publications/bibdb/HUT-TCS-A84.pdf
http://www.tcs.hut.fi/Publications/bibdb/HUT-TCS-A84.pdf

	Automatic Search for Linear Trails of the SPECK Family
	1 Introduction
	2 Preliminaries
	2.1 Notions
	2.2 Description of SPECK
	2.3 Automatic Search Framework
	2.4 Linear Approximation of Modulo Addition

	3 Linear Results on SPECK
	3.1 Details of the Search
	3.2 Search Results
	3.3 Linear Distinguishers
	3.4 Key Recovery Attacks

	4 Another Implementation of Wallén's Algorithm
	5 Conclusions
	A Straightforward Implementations of Wallén's Algorithm
	A.1 The Top-Down Method
	A.2 The Bottom-Up Method

	B The Gray_Visit Procedure
	References

