
Leveled Strongly-Unforgeable Identity-Based
Fully Homomorphic Signatures

Fuqun Wang1,2,3(B), Kunpeng Wang1,2, Bao Li1,2, and Yuanyuan Gao1,2,4

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing, China

{fqwang,kpwang,lb,yygao13}@is.ac.cn
2 Data Assurance and Communication Security Research Center,

Chinese Academy of Sciences, Beijing, China
3 University of Chinese Academy of Sciences, Beijing, China

4 School of Science, Sichuan University of Science and Engineering, Zigong, China

Abstract. Recently, Gorbunov, Vaikuntanathan and Wichs proposed a
new powerful primitive: (fully) homomorphic trapdoor function (HTDF)
based on small integer solution (SIS) problem in standard lattices, from
which they constructed the first leveled existentially-unforgeable fully
homomorphic signature (FHS) schemes.

In this paper, we first extend the notion of HTDF to identity-based
setting with stronger security and better parameters. The stronger secu-
rity requires that the identity-based HTDF (IBHTDF) is not only claw-
free, but also collision-resistant. And the maximum noise comparing to
Gorbunov-Vaikuntanathan-Wichs’ HTDF roughly reduces from O(mdβ)
to O(4dmβ), which will result in polynomial modulus q = poly(λ)
when d = O(log λ), where λ is the security parameter and d is the
depth bound of circuit. We then define and construct the first lev-
eled strongly-unforgeable identity-based fully homomorphic signature
(IBFHS) schemes.

Keywords: Identity-based homomorphic trapdoor function · Identity-
based fully homomorphic signature · Small integer solution · Strong
unforgeability

1 Introduction

Following the fast development of cloud computing, cryptographic schemes with
homomorphic property attract a large number of researchers’ sights. They allow
a client to securely upload his/her encrypted/signed data to a remote server.
Meanwhile they also allow the server to run computation over the data. The
seminal study of fully homomorphic encryption (FHE) [17] demonstrates how

This work is supported in part by the National Nature Science Foundation of China
under award No. 61272040 and No. 61379137, and in part by the National 973
Program of China under award No. 2013CB338001.

c© Springer International Publishing Switzerland 2015
J. Lopez and C.J. Mitchell (Eds.): ISC 2015, LNCS 9290, pp. 42–60, 2015.
DOI: 10.1007/978-3-319-23318-5 3

Leveled Strongly-Unforgeable IBFHS 43

to perform homomorphic computation over encrypted data without the knowl-
edge of secret key. The recent works [6,18,23] of (leveled) fully homomorphic
signatures demonstrate how to perform homomorphic computation on signed
data.

In this work, we focus on the latter question: public authenticity of the result
of homomorphic computation over signed data. In a homomorphic signature
scheme, a client signs some data x = (x1, . . . , xN) using his/her signing key
and outsources the signed data σ = (σ1, . . . , σN) to a remote server. At any
later point, the server can perform homomorphically some operation y = g(x)
over the signed data σ and produce a short signature σg certifying that y is the
correct output of the operation g over the data x. Anyone can verify the tuple
(g, y, σg) using the client’s public verification key and be sure of this fact without
the knowledge of the underlying data x.

Linear Homomorphic Signatures. A number of works discussed signatures
with linear functions [2,4,10,16]. Such linear homomorphic signature schemes
have meaningful applications in network coding and proofs of retrievability.

Somewhat Homomorphic Signatures. Boneh and Freeman [5] were the first
to define and construct homomorphic signature schemes beyond linear functions,
but limited to constant-degree polynomials based on ring SIS assumption in the
random oracle model. Not long ago, Catalano, Fiore and Warinschi [11] gave an
alternative scheme from multi-linear maps in the standard model.

Leveled Fully Homomorphic Signatures. Gorbunov, Vaikuntanathan and
Wichs [18] proposed the first leveled FHS schemes based on SIS assumption.
To this end, they drew on the ideas of constructing attribute-based encryption
from standard lattices [7] and proposed a new primitive: HTDF. They required
that HTDF functions have claw-freeness property, which is sufficient to show
their FHS schemes (constructed directly from the HTDF functions) are exis-
tentially unforgeable in the static chosen-message-attack (EU-sCMA) model.
Additionally, they showed that one can transform an EU-sCMA secure FHS to
an EU-aCMA (existential-unforgeability under adaptive chosen-message-attack)
secure FHS via homomorphic chameleon hash function. Recently, Boyen, Fan
and Shi [6] also proposed EU-aCMA secure FHS schemes using vanishing trap-
door technique [1]. In the meantime, Xie and Xue [23] showed that leveled FHS
schemes can be constructed if indistinguishability obfuscation and injective one
way function exist.

1.1 Motivation

We observe that all schemes with homomorphism above are existentially unforge-
able. In this model, a verifiable forgery (g, y′, σ′) such that g is admissible on
messages x and y′ �= y (y = g(x)) captures two facts. One is that σ′ is a
usual existential-forgery corresponding to the usual notion of signature forgery
if g(x) = πi(x) = xi is a special projection function. The other is that σ′ is a

44 F. Wang et al.

homomorphic existential-forgery if g is a generally admissible function (defined
in Sect. 3.1); in other words, the forgery σ′ authenticates y′ as g(x) but in fact
this is not the case.

However, as is well-known, security of signature schemes without homomor-
phism also can reach up to strong-unforgeability. In the stronger model, a forger
can not give a forgery of message xi, even he has a message-signature pair (xi, σi).
As a matter of course, we have a question: can we define and construct strongly-
unforgeable (IB)FHS?

In this paper, we will give a positive response. Our main observation is
that homomorphic computations on signed data are deterministic in all above
schemes. In this scenario, we can define meaningful strong-unforgeability. In this
model, given message-signature pairs (x,σ), a forger produce a verifiable strong-
forgery (g, y′, σ′) such that y′ = y = g(x) and σ′ �= σg that captures two facts.
One is that σ′ �= σi is a usual strong-forgery corresponding to the usual notion of
strong-forgery if g(x) = πi(x) = xi. The other is that σ′ �= σg is a homomorphic
strong-forgery if g is a generally admissible function; in other words, the forgery
σ′ authenticates y′ as g(x) but in fact any forger can not produce σ′ �= σg.

Furthermore, as we all know, identity-based signature (IBS) is a nontrivial
extension of signature [22]. In an IBS system, in order to verify a signature
σi of a message xi, the verifier requires only the global public parameters and
the target identity id. Therefore, there is no need to issue a verification key
for each user in an IBS system, which greatly simplifies the key management.
Naturally, constructing an IBS with homomorphism is interesting. As far as we
know, there is no construction of identity-based FHS. In fact, we will propose
the first strongly-unforgeable IBFHS as a response to above question.

1.2 Contribution

We define and construct the first leveled strongly-unforgeable IBFHS schemes.
To this end, we extend HTDF, the underlying primitive of FHS, to IBHTDF
with stronger security and better parameters, the underlying primitive of IBFHS
using the trapdoor technique in [1,12,19]. The stronger security requires that
IBHTDFs are not only claw-free, but also collision-resistant to show the strong-
unforgeability of IBFHS. We use Barrington’s theorem to reduce the parameters
as done in FHE world [9]. The maximum noise-level comparing to Gorbunov-
Vaikuntanathan-Wichs’ FHS roughly reduces from O(mdβ) to O(4dmβ), which
will result in polynomial modulus q = poly(λ) when d = O(log λ), where λ is
the security parameter and d is the maximum depth of admissible circuit.

1.3 Paper Organization

In Sect. 2, we give some background on lattices and related tools as used in this
paper. We propose formally the IBHTDF functions in Sect. 3 and demonstrate
how to homomorphically evaluate a permutation branching program in Sect. 4.
In Sect. 5, we define and construct the leveled strongly-unforgeable IBFHS.
Finally, we conclude in Sect. 6.

Leveled Strongly-Unforgeable IBFHS 45

2 Preliminaries

We use the bold upper-case letters (e.g., A,B) to represent matrices and
bold lower-case letters (e.g. a,b) to represent column vectors. Let ‖A‖∞ =
maxi,j {|ai,j |} denote the infinite norm and ai or a[i] represent the i-entry of a.
Let [A||B] denote the concatenation of two matrices and (A,B) = [AT ||BT]T .
We use λ to denote the security parameter and negl(λ) to denote a negligible
function that grows slower than λ−c for any constant c > 0 and any large enough
value of λ.

2.1 Entropy and Statistical Distance

For discrete random variables X ← X , Y ← Y, we define the statistical dis-
tance �(X,Y) � 1

2

∑
ω∈X∪Y |Pr[X = ω] − Pr[Y = ω]|. We say that two

random variables X,Y are statistically indistinguishable, denoted as X ≈s Y ,
if �(X,Y) = negl(λ). The min-entropy of a random variable X, denoted by
H∞(X), is defined as H∞(X) � − log (maxxPr[X = x]). The average min-
entropy of X conditioned on Y , denoted with H̃∞(X|Y), is defined as

˜H∞(X|Y) � − log (Ey←Y [maxxPr[X = x|Y = y]]) = − log (Ey←Y [2−H∞(X|Y =y)]).

The optimal probability of an unbounded attacker surmising X given the cor-
related value Y is 2−˜H∞(X|Y).

Lemma 2.1 ([15]). Let X ← X , Y ← Y be two (correlated) random variables.
It then holds that H̃∞(X|Y) ≥ H∞(X) − log(|Y|).

2.2 Background on Lattices and Hard Problems

Lattices. Lattices-based cryptography usually use so-called q-ary integer lat-
tices, which contain qZm as a sublattice for some modulus q. Let n,m, q be
positive integers. For a matrix A ∈ Z

n×m
q we define the following q-ary integer

lattice:
Λ⊥(A) = {u ∈ Z

m : Au = 0 mod q}.

For a vector v ∈ Z
n
q , we define the coset (or “shifted” lattice):

Λ⊥
v (A) = {u ∈ Z

m : Au = v mod q}.

SIS. Let n,m, q, β be integers. The short integer solution (SISn,m,q,β) problem

is, given a uniformly random matrix A $← Z
n×m
q , to find a nonzero vector u ∈ Z

n
q

with ||u||∞ ≤ β such that Au = 0 (i.e., u ∈ Λ⊥(A)). For q ≥ β · ω(
√

n log n),
solving SISn,m,q,β in the average case is as hard as solving GapSVP

˜O(β·√n) in
the worst case in standard lattices [20,21].

46 F. Wang et al.

Discrete Gaussian Distribution. Let DZm,r be the truncated discrete
Gaussian distribution over Z

m with parameter r. Namely, for u ← DZm,r, if
‖u‖∞ is larger than r · √

m, then the output is replaced by 0. In other words,
‖u‖∞ ≤ r · √

m with probability 1 if u ← DZm,r.

Lattices Trapdoor. Here we recall the MP12-trapdoor generation algorithm
and Gaussian sampling algorithm [19]. We ignore all details of implementation
which are not strictly necessary in this work.

For integers n, q and � = �log q�, let G = In ⊗ gT ∈ Z
n×n�
q , where gT =

(1, 2, 22, . . . , 2�−1) and In denotes the n-dimensional identity matrix.

Lemma 2.2 ([19]). Let n, q, �,m0,m1 be integers such that n = poly(λ), q =

q(n), � = �log q�,m0 = n(� + O(1)), m1 = n�. For A0
$← Z

n×m0
q and H ∈ Z

n×n
q ,

there exists an randomized algorithm TrapGen(A0,H) to generate a matrix A (=
[A0||HG−A0R]) ∈ Z

n×(m0+m1)
q with trapdoor R such that R ← DZm0×m1 ,r for

large enough r (≥ ω(
√

log n)) and A is negl(λ)-far from (V0,V1)
$← Z

n×m0
q ×

Z
n×m1
q . Here, R is called an MP12-trapdoor (or G-trapdoor) of A with tag H.

Furthermore, for any non-zero u = (u0,u1) ∈ Z
m0+m1
q , the average min-

entropy of Ru1 given A0 and A0R is at least Ω(n).

Lemma 2.3 ([19]). Given parameters in above lemma and a uniformly random
vector v ∈ Z

n
q , for some s (≥ O(

√
n log q)) ∈ R and a fixed function ω(

√
log n)

growing asymptotically faster than
√

log n, if the tag matrix H is invertible,
there then exists an efficient algorithm SamplePre(A0,R,H,v, s) that samples
a vector u from DΛ⊥

v (A),s·ω(
√

log n) such that A · u = v. Note that ‖u‖∞ ≤
s
√

m0 + m1 · ω(
√

log n) with probability 1.
Furthermore, for u′ ← D

Zm,s·ω(
√

log n) and v′ = Au′, we have (A,R,u,v) ≈s

(A,R,u′,v′).

Lemma 2.4 ([7,18,19]). Let m = m0 + 2m1 and G̃ = [G‖0] ∈ Z
n×m
q . For any

matrix V ∈ Z
n×m
q there exists deterministic algorithm to output a {0, 1}-matrix

V̂ ∈ Z
m×m
q such that G̃V̂ = V (or denoted by G̃−1(V) = V̂1).

2.3 Permutation Branching Program.

In this section, we define permutation branching program closely following [9]. A
width-w permutation branching program Π of length L with input space {0, 1}t

is a sequence of L tuples of the form (h(k), σk,0, σk,1) where

– h : [L] → [t] is a function associates the k-th tuple with an input bit xh(k).
– σk,0, σk,1 are permutations over [w] = {1, 2, . . . , w}.

1 Here ˜G−1 is not the inverse matrix of ˜G but a deterministic algorithm.

Leveled Strongly-Unforgeable IBFHS 47

A permutation branching program Π performs evaluation on input x =
(x1, x2, . . . , xt) as follows. Let the initial state be η0 = 1 and the k-th state
be ηk ∈ [w]. We compute the state ηk recursively as

ηk = σk,xh(k)(ηk−1).

Finally, after L steps, the end state is ηL. The output of Π is 1 if ηL = 1,
and 0 otherwise.

To slow the growth of noise in homomorphic operations, we represent the
states to bits, as demonstated in [9]. More specially, we replace the state ηk ∈ [w]
with some w-dimensional unit vector vk, e.g., v0 = (1, 0, 0, . . . , 0) institutes for
η0 = 1. The idea is that vk[i] = 1 if and only if σk,xh(k)(ηk−1) = i. A more
important equivalent relation is that vk[i] = 1 if and only if either:

– xh(k) = 1 and vk−1[σ−1
k,1(i)] = 1; or

– xh(k) = 0 and vk−1[σ−1
k,0(i)] = 1.

Hence, for k ∈ [L], i ∈ [w], we have

vk[i] = vk−1[σ−1
k,1(i)] · xh(k) + vk−1[σ−1

k,0(i)] · (1 − xh(k))

= vk−1[γk,i,1] · xh(k) + vk−1[γk,i,0] · (1 − xh(k)) (1)

where γk,i,1 � σ−1
k,1(i) and γk,i,0 � σ−1

k,0(i) are fully determined by the description
of Π and can be computed easily and publicly. Thus, {(h(k), γk,i,0,
γk,i,1)}k∈[L],i∈[w] is an alternative description of a permutation branching pro-
gram and is the form that we will work with under homomorphic computations.

3 Identity-Based Homomorphic Trapdoor Functions

We give the definition, construction and security proof of IBHTDFs in this
section. In next section we will show how to homomorphically compute a circuit.
Looking ahead, we will homomorphically compute a permutation branching pro-
gram instead of a (boolean) circuit to reduce the parameters and increase the
efficiency and security.

3.1 Definition

An identity-based homomorphic trapdoor function (IBHTDF) consists of six
poly-time algorithms (IBHTDF.Setup, IBHTDF.Extract, f, Invert, IBHTDF.Evalin,
IBHTDF.Evalout) with syntax as follows:

– (mpk,msk) ← IBHTDF.Setup(1λ): A master key setup procedure.
The security parameter λ defines the identity space I, the index space X , the
input space U , the output space V and some efficiently samplable input distri-
bution DU over U . We require that elements in I,U ,V or X can be efficiently
certified and that one can efficiently sample elements from V uniformly at
random.

48 F. Wang et al.

– (pkid, skid) ← IBHTDF.Extract(mpk,msk, id): An identity-key extraction pro-
cedure. As a matter of course, we require that pkid can be extracted deter-
ministically from mpk and id ∈ I without using the knowledge of msk.

– fpkid,x : U → V: A deterministic function indexed by pkid and x ∈ X .
– Invertskid,x : V → U : A probabilistic inverter indexed by skid and x ∈ X .
– ug = IBHTDF.Evalin(g, (x1, u1, v1), . . . , (xt, ut, vt)): A deterministic input

homomorphic evaluation algorithm. It takes as input some function g : X t →
X and values {xi ∈ X , ui ∈ U , vi ∈ V}i∈[t] and outputs ug ∈ U .

– vg = IBHTDF.Evalout(g, v1, . . . , vt): A deterministic output homomorphic
evaluation algorithm. It takes as input some function g : X t → X and values
{vi ∈ V}i∈[t] and outputs vg ∈ V.

Correctness of Homomorphic Computation. Let algorithm (pkid, skid) ←
IBHTDF.Extract extracts the identity-key for id. Let g : X t → X be a
function on x1, . . . , xt ∈ X and set y = g(x1, . . . , xt). Let u1, . . . , ut ∈
U and set vi = fpkid,x(ui) for i = 1, . . . , t. Set ug = IBHTDF.Evalin

(g, (x1, u1, v1), . . . , (xt, ut, vt)), vg = IBHTDF.Evalout(g, v1, . . . , vt). We require
that ug ∈ U and fpkid,x(ug) = vg.

Relaxation Correctness of Leveled IBHTDFs. In a leveled IBHTDF, every
input ui ∈ U will carry with noise βi ∈ Z. The initial samples chosen from
the input-distribution DU carry with small noise β0 and the noise βg of the
homomorphically evaulation ug depends on the noise βi of ui, the indices xi and
the function g. In fact, if the noise βg > βmax, where βmax is a threshold of
noise, there is no guarantee of the correctness. Therefore, we should restrict the
class of functions that can be computed. We say a function g is admissible on
indices x1, . . . , xt if βg ≤ βmax whenever ui carries with noise βi ≤ β0.

Distributional Equivalence of Inversion. To show the security of our main
construction IBFHS in next section, we require the following statistical indistin-
guishability:

(pkid, skid, x, u, v) ≈s (pkid, skid, x, u′, v′)

where (pkid, skid) ← IBHTDF.Extract, x ∈ X , u ← DU , v = fpkid,x(u), v′ $←
V, u′ ← Invertskid,x(v′).

IBHTDF Security. Gorbunov et al. [18] required claw-freeness for HTDF
security to provide existential-unforgeability for FHS. Here, we require not only
claw-freeness but also collision-resistance for IBHTDF security to guarantee
strong-unforgeability for IBFHS.

The experiment ExpsID
A,IBHTDF(1

λ) defined in Fig. 1 describes the selective-
identity security, where the adversary has to appoint a target identity id∗ to
attack before seeing the master public-key. Moreover, the adversary can query
identity-keys for all identities except id∗. He is then forced to find u �= u′ ∈
U , x, x′ ∈ X such that fpkid∗ ,x(u) = fpkid∗ ,x′(u′). Remark that if x = x′, then
(u, u′) is a collision, a claw otherwise.

Leveled Strongly-Unforgeable IBFHS 49

Fig. 1. Definition of selective-identity security for IBHTDF

We say that an identity-based homomorphic trapdoor function is selective-
identity secure if Pr[ExpsID

A,IBHTDF(1
λ)] ≤ negl(λ).

In the stronger model of adaptive-identity security, the adversary can not find
u �= u′ ∈ U , x, x′ ∈ X such that fpkid,x(u) = fpkid,x′(u′) for any identity id, for
which he has never queried identity-key skid. We note that one may construct
adaptive-identity secure IBHTDF using the vanishing trapdoor techniques [1,8,
12] in the cost of both efficiency and security.

3.2 Construction: Basic Algorithms and Security

Recall that λ is the security parameter. To describe the IBHTDF functions
succinctly, we give some public parameters as follows.

– Let flexible d be the circuit depth such that d ≤ poly(λ) and set L = 4d.
– Choose an integer n = poly(λ) and a sufficiently large prime q = q(n). Let

� = �log q�, m0 = n(� + O(1)), m1 = n� and m = m0 + 2m1. Set β0 =
O((n log q)3/2), βmax = O(4dmβ0), βSIS = O(m1β0)βmax < q.

– G = In ⊗gT ∈ Z
n×n�
q is the primitive matrix, where gT = (1, 2, 22, . . . , 2�−1).

Set G̃ = [G‖0] ∈ Z
n×m
q be the garget matrix used below.

– We assume that identities are elements in GF(qn), and say H : GF(qn) →
Z

n×n
q is an invertible difference, if H(id1) − H(id2) is invertible for any two

different identities id1, id2 and H is computable in polynomial time in n� (see
an example in [1]).

– Set X = Z2, I = Z
n
q ,V = Z

n×m
q and U = {U ∈ Z

m×m
q : ‖U‖∞ ≤ βmax}.

Define the distribution DU is a truncated discrete Gaussian distribution over
U , so that ‖U‖∞ ≤ β0 if U ← DU .

Now we describe the basic algorithms of IBHTDF function F .

– IBHTDF.Setup(1λ): On input a security parameter λ, set d, L, n,m0,m1,m, q,
β0, βmax, βSIS as specified above. Then do:
1. Choose A0

$← Z
n×m0
q . Run TrapGen(A0,0) to generate a matrix A =

[A0||A1] = [A0|| − A0R] ∈ Z
n×(m0+m1)
q and a trapdoor R such that

R ← D � D
Zm0×m1 ,ω(

√
log n) and A is negl(λ)-far from uniform. Set the

master secret key as msk = R. Note that A · (R, Im1) = 0, namely R is a
G-trapdoor of A with tag 0.

50 F. Wang et al.

2. Choose A2
$← Z

n×m1
q and set the master public key as mpk = {A,A2}.

– IBHTDF.Extract(mpk,R, id): On input a master public key mpk, a master
secret key R and an identity id ∈ I, do:
1. Compute H(id) for id ∈ I and let A′

id = [A0||H(id) · G + A1] (Note that
R is a G-trapdoor of A′

id with tag H(id)). Set user-specific public-key
pkid = Aid = [A′

id||A2].
2. Run algorithm SamplePre(A0,R,H(id),G − A2, O(

√
n log q)) to output

Rid ∈ Z
(m0+m1)×m1 such that A′

id · Rid = G − A2 (Note that Rid is
a G-trapdoor of Aid with tag In). Set secret key skid = Rid.

– fpkid,x(U): On input mpk, id ∈ I, x ∈ X and U ∈ U , do:
1. Compute pkid = Aid = [A0||H(id) · G + A1||A2] as above.
2. For id ∈ I, x ∈ X and U ∈ U , define fpkid,x(U) � Aid · U + x · G̃.

– Invertskid,x(V): On input an identity id ∈ I, an identity-key Rid, an index
x ∈ X and V ∈ V, run SamplePre(A′

id,Rid, In,V−x ·G̃, O(n log q)) to output
U (such that Aid · U = V − x · G̃).

Distributional Equivalence of Inversion. Let x ∈ X and (pkid =
Aid, skid = Rid) ← IBHTDF.Extract(mpk,R, id). Let U ∈ U , V = fpkid,x(U) =

Aid · U + xG̃, V′ $← V, U′ ← SamplePre(A′
id,Rid, In,V′ − xG̃, O(n log q)). By

Lemma 2.3 and the fact that (V′ − xG̃) is uniformly random, using a simple
hybrid argument, we have

(Aid,Rid,U,Aid · U) ≈s (Aid,Rid,U′,V′ − xG̃).

Then, we have

(Aid,Rid, x,U,V = Aid · U + xG̃) ≈s (Aid,Rid, x,U′,V′) (2)

by applying the same function to both sides: put in a x ∈ X and add xG̃ to the
last entry.

IBHTDF Security. We now show that the IBHTDF function F constructed
above is selective-identity secure assuming the SIS assumption.

Theorem 3.1. The function F constructed above is a selective-identity secure
IBHTDF assuming the SISn,m0,q,βSIS

assumption.

Proof. Assume there exists a PPT adversary A that wins the security experiment
ExpsID

A,IBHTDF(1
λ) for F with non-negligible probability δ. We construct a PPT

simulater S that breaks the SISn,m0,q,βSIS
problem for A0

$← Z
n×m0
q .

Let id∗ be the identity that A intends to attack. S will run the simulated
algorithms (IBHTDF.Setup∗, IBHTDF.Extract∗).

– IBHTDF.Setup∗(1λ): On input the same parameters as IBHTDF.Setup(1λ), S
does:

Leveled Strongly-Unforgeable IBFHS 51

1. After receiving target identity id∗ ∈ I and challenge matrix A0 ∈ Z
n×m0
q ,

S runs TrapGen(A0,−H(id∗)) to produce a matrix A = [A0||A1] = [A0||−
H(id∗)G − A0R] ∈ Z

n×(m0+m1)
q and a trapdoor R such that R ← D and

A is negl(λ)-far from uniform. Set msk = R.
2. S samples S ← D and computes A2 = A0S. Set mpk = {A,A2}.

– IBHTDF.Extract∗(mpk,R, id): On input a master public key mpk, a master
secret key R and an identity id ∈ I, do:
1. Compute H(id) for id ∈ I and let A′

id = [A0||H(id) · G + A1] =
[A0||(H(id) − H(id∗))G − A0R] (Note that R is a G-trapdoor of A′

id

with tag H(id) − H(id∗). Set Aid = [A′
id||A2].

2. Recall that (H(id) − H(id∗)) is invertible (by the property of H) if id �=
id∗. Therefore, to respond to an identity-key query for id �= id∗, S can
run SamplePre(A0,R,H(id) − H(id∗),G − A2, O(

√
n log q)) and output

Rid ∈ Z
(m0+m1)×m1 such that A′

id · Rid = G − A2 (Note that Rid is a
G-trapdoor of Aid with tag In). Set pkid = Aid and skid = Rid.

3. However, if id = id∗, then Aid∗ = [A0|| − A0R||A0S] and the trapdoor
disappears. Thus, the simulator S can not generate identity key for id∗.

The views of adversary A between the original experiment and the simu-
lated experiment are indistinguishable by Lemma2.2. Particularly, the winning
probability of A attacking the simulated experiment is at least δ − negl(λ).

Now, we show that an adversary A who wins the simulated experiment
ExpsID

A,IBHTDF(1
λ) can be used to solve the SIS problem. Assume the winning

adversary A outputs values U �= U′ ∈ U , x, x′ ∈ X such that fpkid∗ ,x(U) =
fpkid∗ ,x′(U′). Let U∗ = U − U′ and x∗ = x′ − x. Then,

fpkid∗ ,x(U) = Aid∗U+xG̃ = Aid∗U′+x′G̃ = fpkid∗ ,x′(U′) ⇒ Aid∗U∗ = x∗G̃.
(3)

Recall that Aid∗ = [A0|| − A0R||A0S]. By the right hand side of Eq. (3), it
holds that

A0 · U
 � A0 · ([Im0 || − R||S]U∗) = x∗G̃. (4)

Moreover, since U,U′ ∈ U , we have ‖U‖∞, ‖U′‖∞ ≤ βmax and thus
‖U∗‖∞ ≤ 2βmax. Moveover, since R,S are sampled from D, we also have ‖R‖∞,
‖S‖∞ ≤ O(

√
n log q) and thus ‖U
‖∞ ≤ 2βmax(2m1 · O(

√
n log q) + 1) ≤ βSIS .

To solve the SIS problem defined by A0 ∈ Z
n×m0
q , we discuss the following

two cases:

– x = x′ (collision): In this case, it is sufficed to show that U
 �= 0 except with
negligible probability, since A0U
 = x∗G̃ = (x − x′)G̃ = 0 and ‖U
‖∞ is
small. Let U∗ = (U∗

0,U
∗
1,U

∗
2). Then, we have U
 = U∗

0 − RU∗
1 + SU∗

2. We
split to 2 distinct cases to analyze it.
1. U∗

1 = U∗
2 = 0: In this case, we have U∗

0 �= 0 since U∗ �= 0. So, U
 �= 0.
2. U∗

1 �= 0 or U∗
2 �= 0: Without loss of generalization, we assume U∗

2 �= 0. By
Lemma 2.2, we then have that, even revealing R, the min-entropy of SU∗

2

conditioned on the knowledge of A0 and A0S is at least Ω(n). Particularly,
the probability that U
 = 0 is less than 2−Ω(n) = negl(λ).

52 F. Wang et al.

– x �= x′ (claw): In this case, we show that the simulater S can use the knowledge
of a small U
 �= 0 and some x∗ �= 0 satisfying the Eq. (4) to find a solution of
the SIS problem (similarly as [18]).
Choose t $← {0, 1}m0 and set r � A0t. Compute t′ = G̃−1(r/x∗) ∈ {0, 1}m

such that x∗G̃t′ = r. so,

A0(U
t′ − t) = (A0U
)t′ − A0t = x∗G̃t′ − A0t = r − r = 0.

Setting u � U
t′ − t, we then have A0u = 0 and ‖u‖∞ ≤ (2m + 1)βmax ≤
βSIS . It remains to prove that u �= 0, i.e., t �= U
t′. We prove that it holds
with overwhelming probability over the random t, even given A0,U
, x∗. In
fact, we have

H̃∞(t|t′) ≥ H̃∞(t|A0t) ≥ m0 − n log q = O(n).

where the first inequality follows from the fact that t′ is deterministic by r =
A0t, and the second inequality follows from Lemma2.1. So, Pr[t = U
t′] ≤
2−O(n) = negl(λ).

Therefore, if the adversary A wins the simulated experiment ExpsID
A,IBHTDF(1

λ)
with non-negligible probability δ/2 − negl(λ) in either case, the simulater S then
will produce a valid solution for SIS problem with probability δ/2−negl(λ). This
finishes the proof. �

4 Homomorphic Evaluation and Noise Analysis

Although we can homomorphically compute arithmetic circuit or boolean circuit
similarly as that in [18] with same-level parameters, we show how to do better in
both works in this section based on the fact that the noise growth is asymmetric.

We define deterministic homomorphic addition and multiplication algorithms
in Sect. 4.1. In Sect. 4.2, we show that these algorithms are not used by a naive
combination of addition and multiplication, as in the work [9], but by an elabo-
rate combination form to considerably slowing down the noise growth. The main
difference between this work and [9] is that, to homomorphic evaluate, it requires
us to design correspondingly two deterministic homomorphic algorithms: one for
input and the other for output in this work, while it only requires to design one
randomized homomorphic algorithm over ciphertexts in [9].

4.1 Basic Homomorphic Evaluation

We now define basic homomorphic addition and multiplication algorithms that
will be used in IBHTDFs. These algorithms for IBHTDFs are same as that for
HTDFs in [18] because of the same external structure with or without identity.
Therefore, we can improve the parameters of HTDFs in [18] using asymmet-
ric homomorphic multiplication demonstrated in this section and simplify the
notations (e.g., Addin instead of IBHTDF.Addin). Recall that Vi = AUi + xiG
(i = 1, 2), where we set A = Aid,G = G̃ for simplicity throughout Sect. 4. Let
‖Ui‖∞ ≤ βi and xi ∈ {0, 1}.

Leveled Strongly-Unforgeable IBFHS 53

Homomorphic Addition Algorithms. They are simple modulo-q addition
of the input or output matrices respectively.

– Addin((x1,U1,V1), (x2,U2,V2)) � U1 + U2 mod q
– Addout(V1,V2) � V1 + V2 mod q

The addition-noise is bounded by β1 + β2. The correctness follows by (V1 +
V2) = A(U1 + U2) + (x1 + x2)G.

Homomorphic Multiplication Algorithms. The homomorphic input mul-
tiplication algorithm is asymmetric and involved in whole input, partial output
and index, and the homomorphic output multiplication algorithm is essentially
a multiplicaiton of the output matrices.

– Multiin((x1,U1,V1), (x2,U2,V2)) � x2 · U1 + U2 · V̂1 mod q

– Multiout(V1,V2) � V2 · V̂1 mod q

The multiplication-noise is bounded by |x2|β1 + mβ2 = β1 + mβ2. The cor-
rectness also follows by a simple computation assuming Vi = AUi + xiG.

4.2 The Homomorphic Output and Input Evaluation

Homomorphic Output Evaluation. We define the homomorphic output eval-
uation algorithm

Evalout(Π,V0, {V0,i}i∈[w], {Vj}j∈[t]) → VΠ

for a length-L permutation branching program Π, where V0, {V0,i}i∈[w] will be
assigned in the initialization stage below and Vj is such that Vj = AUj +xjG.
Recall that {(h(k), γk,i,0, γk,i,1)}k∈[L],i∈[w] is a valid description of Π, and that
the initial state vector is set to be the first w-dimensional unit vector v0 =
(1, 0, 0, . . . , 0), and that for k ∈ [L] and i ∈ [w],

vk[i] = vk−1[γk,i,1] · xh(k) + vk−1[γk,i,0] · (1 − xh(k)).

The homomorphic output evaluation algorithm Evalout proceeds as follows.

– Initialization: For k ∈ [L], i ∈ [w], let Vk[i] be an output corresponding to
the state vk[i].

1. Choose V0,i
$← Z

n×m
q uniformly at random and set it be an initial output

corresponding to the initial state v0[i].

2. Choose V0
$← Z

n×m
q uniformly at random and see it be an output corre-

sponding to a constant state 1.
3. Set V̄j � V0 −Vj and see it be an output corresponding to (1−xj), where

Vj (so that Vj = AUj + xjG) is an output corresponding to xj .

54 F. Wang et al.

– Computation: For k = 1, 2, . . . , L, the computation process proceeds induc-
tively as follows. Assume that at step t−1, we have {Vk−1,i}i∈[w]. We compute

Vk,i = Vh(k) · V̂k−1,γk,i,1 + V̄h(k) · V̂k−1,γk,i,0 . (5)

– Final Output : Finally, we have {VL,i}i∈[w] after finishing the computation
process. Output VL,1 as the final output corresponding to vL[1], i.e., VΠ =
VL,1.

Homomorphic Input Evaluation. We define the homomorphic input evalu-
ation algorithm

Evalin(Π, (1,U0,V0), {(v0[i],U0,i,V0,i)}i∈[w], {(xj ,Uj ,Vj)}j∈[t]) → UΠ

for a permutation branching program Π which proceeds as follows.

– Initialization: For k ∈ [L], i ∈ [w], let Uk[i] be an input corresponding to
the state vk[i].
1. Sample U0,i ← DU (such that V0,i = AU0,i + v0[i]G) and see it be an

initial input corresponding to the initial state v0[i].
2. Sample U0 ← DU (such that V0 = AU0 + 1 · G) and see it be an input

corresponding to a constant state 1.
3. Set Ūj � U0 − Uj , where Uj (such that Vj = AUj + xjG) is an input

corresponding to xj and see it be an input corresponding to (1 − xj).
– Computation: For k = 1, 2, . . . , L, the computation process proceeds induc-

tively as follows. Assume that at step t−1, we have {Uk−1,i}i∈[w]. We compute

Uk,i = (xh(k) · Uk−1,γk,i,1 + Uh(k) · V̂k−1,γk,i,1)

+ ((1 − xh(k)) · Uk−1,γk,i,0 + Ūh(k) · V̂k−1,γk,i,0). (6)

– Final Input : Finally, we have {UL,i}i∈[w] after finishing the computation
process. Output UL,1 as the final input corresponding to vL[1], i.e., UΠ =
UL,1.

4.3 Correctness of Homomorphic Evaluation and Noise Analysis

We will prove the correctness of above homomorphic input-output evaluation
algorithms and analyze the noise growth under homomorphic evaluation.

Lemma 4.1. Assuming that Evalout(Π,V0, {V0,i}i∈[w], {Vj}j∈[t]) → VΠ and
Evalin(Π, (1,U0,V0), {(v0[i],U0,i,V0,i)}i∈[w], {(xj ,Uj ,Vj)}j∈[t]) → UΠ are
such that V0 = AU0 + 1 ·G, V0,i = AU0,i + v0[i]G and Vj = AUj + xjG for
i ∈ [w], j ∈ [t]. For all k ∈ [L], i ∈ [w], we then have

Vk,i = AUk,i + vk[i]G.

In particular, we have VL,1 = AUL,1 + vL[1]G.

Leveled Strongly-Unforgeable IBFHS 55

Proof. Given the conditions in this lemma, by formulas (1), (5) and (6), we have

AUk,i + vk[i]G =A ·
[(

xh(k) · Uk−1,γk,i,1 + Uh(k) · V̂k−1,γk,i,1

)

+
(
(1 − xh(k)) · Uk−1,γk,i,0 + Ūh(k) · V̂k−1,γk,i,0

)]

+
(
vk−1[γk,i,1] · xh(k) + vk−1[γk,i,0] · (1 − xh(k))

)
· G

=
(
xh(k) · Vk−1,γk,i,1 − xh(k) · vk−1[γk,i,1] · G

)

+
(
Vh(k) · V̂k−1,γk,i,1 − xh(k) · Vk−1,γk,i,1

)

+
(
(1 − xh(k)) · Vk−1,γk,i,0 − (1 − xh(k)) · vk−1[γk,i,0] · G

)

+
(
V̄h(k) · V̂k−1,γk,i,0 − (1 − xh(k)) · Vk−1,γk,i,0

)

+
(
xh(k) · vk−1[γk,i,1] · G + (1 − xh(k)) · vk−1[γk,i,0] · G

)

=Vh(k) · V̂k−1,γk,i,1 + V̄h(k) · V̂k−1,γk,i,0

=Vk,i

for all k ∈ [L], i ∈ [w]. This finishes the proof. �

Lemma 4.2. Assuming that Evalin(Π, (1,U0,V0), {(v0[i],U0,i,V0,i)}i∈[w],
{(xj ,Uj ,Vj)}j∈[t]) → UΠ is such that all the input-noises are bounded by β,
i.e., ‖U0‖∞, ‖U0,i‖∞, ‖Uj‖∞ ≤ β, it then holds that ‖UΠ‖∞ ≤ 3mLβ + β.

Proof. We will simply show the lemma by inductive method. Namely, we will
show that ‖Uk,i‖∞ ≤ 3kmβ + β for any step k = 0, 1, 2, . . . , L and i ∈ [w].

If k = 0, there is no computation and by initialization it is very easy to see
that all the initial noises are such that ‖U0,i‖∞ ≤ β, i ∈ [w].

Assume that at step k − 1, we have ‖Uk,i‖∞ ≤ 3m(k − 1)β + β. By formula
(6), we obtain that

‖Uk,i‖∞ =‖(xh(k) · Uk−1,γk,i,1 + Uh(k) · ̂Vk−1,γk,i,1)

+ ((1 − xh(k)) · Uk−1,γk,i,0 + Ūh(k) · ̂Vk−1,γk,i,0)‖∞

≤ ‖xh(k) · Uk−1,γk,i,1‖∞ + ‖Uh(k) · ̂Vk−1,γk,i,1‖∞

+ ‖(1 − xh(k)) · Uk−1,γk,i,0‖∞ + ‖Ūh(k) · ̂Vk−1,γk,i,0‖∞

≤xh(k) · (3m(k − 1)β + β) + mβ + (1 − xh(k)) · (3m(k − 1)β + β) + 2mβ

=3mkβ + β

where ‖Ūh(k)‖∞ = ‖U0 − Uh(k)‖∞ ≤ ‖U0‖∞ + ‖Uh(k)‖∞ ≤ β + β = 2β.
By induction, we get ‖UΠ‖∞ = ‖UL,1‖∞ ≤ 3mLβ + β. This finishes the

proof. �

Remark. By Barrington’s theorem [3], a depth-d circuit can be transformed
to a length L = 4d permutation branching program. Therefore, whenever

56 F. Wang et al.

d ≤ poly(λ), the maximum noise comparing to Gorbunov-Vaikuntanathan-
Wichs’ HTDF reduces roughly from O(mdβ) to O(4dmβ). In particular, we
can set polynomial modulus q = poly(λ) > O(4dmβ) when d = O(log λ) which
will result in better security based on GapSVP with polynomial approximation
factors.

5 Strongly-Unforgeable Identity-Based Fully
Homomorphic Signatures

5.1 Definition

A single data-set identity-based homomorphic signature scheme consists of the
following poly-time algorithms (PrmsGen,Setup,Extract,Sign,SignEval,Process,
Verify) with syntax:

– prms ← PrmsGen(1λ, 1N): Take the security parameter λ and the maximum
data-size N . Output public parameters prms. The security parameter also
defines the message space X .

– (mpk,msk) ← Setup(1λ): Take the security parameter λ. Output a master
key pair (mpk,msk).

– (pkid, skid) ← Extract(mpk,msk, id): An identity-key extraction procedure.
– (σ1, . . . , σN) ← Signskid

(prms, x1, . . . , xN): Sign message data (x1, . . . , xN) ∈
X N to id.

– σg = SignEvalprms(g, (x1, σ1), . . . , (xt, σt)): Deterministically and homomor-
phically evaluate a signature σg for some function g over (x1, . . . , xt) ∈ X t.

– vg = Processprms(g): Deterministically and homomorphically evaluate a cer-
tificate vg for the function g from the public parameters prms.

– Verifypkid
(vg, y, σg): Verify that y is the correct output of g by proving σg

corresponding to vg.

Correctness. For prms ← PrmsGen(1λ, 1N), (pkid, skid) ← Extract(mpk,
msk, id), (x1, . . . , xN) ∈ X N , (σ1, . . . , σN) ← Signskid

(prms, x1, . . . , xN), and
g : X N → X , we require that the following equation

Verifypkid
(vg, y = g(x1, . . . , xN), σg) = accept

holds, where vg = Processprms(g) and σg = SignEvalprms(g, (x1, σ1), . . . ,
(xt, σt)).

Relaxation Correctness of Leveled IBFHS. Here, the relaxation correct-
ness of leveled IBFHS follows from that of leveled IBHTDF and hence is omitted.

Security Experiment. The experiment ExpSU-sID-sCMA
A,IBFHS (1λ) defined in Fig. 2

describes the strongly-unforgeable selective-identity static chosen-message-attack
security game, where the adversary has to fix a target identity id∗ to attack
and message data to sign before obtaining the master public-key and public
parameters. Moreover, the adversary can query identity-keys for all identities

Leveled Strongly-Unforgeable IBFHS 57

except id∗. He is then forced to find (g, y′, σ′) such that the winning conditions
(described in the experiment) hold. Remark that we do not require either y = y′

or not. So, if y = y′, then σ′ is a strongly-forgeable signature, otherwise a
existentially-forgeable signature.

Fig. 2. Definition of security for IBFHS with single data-set

We say an IBFHS is strongly-unforgeable selective-identity static chosen-
message-attack (SU-sID-sCMA) secure if Pr[ExpSU-sID-sCMA

A,IBFHS (1λ)] ≤ negl(λ).

5.2 Construction

Let F = (IBHTDF.Setup, IBHTDF.Extract, f, Invert, IBHTDF.Evalin, IBHTDF.
Evalout) be an IBHTDF with identity space I, index space X , input space
U , output space V and some efficiently samplable input distribution DU
over U . We construct an IBFHS scheme S = (PrmsGen,Setup,Extract,Sign,
SignEval,Process,Verify) with message space X as follows.

– prms ← PrmsGen(1λ, 1N): Sample vi
$← V, i ∈ [N] and set public parameters

prms = (v1, . . . , vN).
– (mpk,msk) ← Setup(1λ): Select (mpk′,msk′) ← IBHTDF.Setup(1λ) and set

master-key pair (mpk = mpk′,msk = msk′).
– (pkid, skid) ← Extract(mpk,msk, id): Run IBHTDF.Extract(mpk′,msk′, id) to

get (pk′
id, sk

′
id) and set pkid = pk′

id, skid = sk′
id for id ∈ I.

– (σ1, . . . , σN) ← Signskid
(prms, x1, . . . , xN): Sample ui ← Invertsk′

id,xi
(vi) and

set σi = ui, i ∈ [N].
– σg = SignEvalprms(g, (x1, σ1), . . . , (xt, σt)): Perform deterministic algorithm

IBHTDF.Evalin(g, (x1, u1, v1), . . . , (xt, ut, vt)) to get ug and set σg = ug.
– vg = Processprms(g): Perform IBHTDF.Evalout(g, v1, . . . , vt) and output the

result vg.
– Verifypkid

(vg, y, σg): If fpk′
id,y(σg) = vg accept, else reject.

Correctness. Here, the discussion of the relaxation correctness of the leveled
IBFHS constructed above follows from that of the underlying leveled IBHTDF
in Sect. 3 and hence is omitted.

58 F. Wang et al.

Security. We now show the SU-sID-sCMA security of the leveled IBFHS above.

Theorem 5.1. The leveled IBFHS scheme S constructed above is SU-sID-
sCMA secure assuming that F is a leveled selective-identity secure IBHTDF.

Proof. Assume there exists a PPT adversary A that wins the security experiment
ExpSU-sID-sCMA

A,IBFHS (1λ) of IBFHS with non-negligible probability δ. We construct
a PPT reduction B that breaks the selective-identity security of F .

Let id∗ be the identity that A intends to attack. B will run the changed
algorithms (PrmsGen∗, Setup∗, Extract∗,Sign∗).

– Setup∗(1λ): Run (mpk′,msk′) ← IBHTDF.Setup∗(1λ) and set mpk = mpk′,
msk = msk′.

– Extract∗(mpk,msk, id): Run (pk′
id, sk

′
id) ← IBHTDF.Extract∗(mpk,R, id)

when id �= id∗ and set pkid = pk′
id, skid = sk′

id. However, if id = id∗, then the
trapdoor disappears and B can not generate identity key for id∗.

– PrmsGen∗(1λ, 1N): Choose ui ← DU and compute vi = fpkid∗ ,xi
(ui). Output

prms = (v1, . . . , vN).
– Sign∗(x1, . . . , xN): Set σi = ui and output (σ1, . . . , σN).

The views of adversary A between the original experiment and the changed
experiment are indistinguishable by Distributional Equivalence of Inversion
property of the underlying IBHTDF. In particular, the winning probability of A
attacking the changed experiment is at least δ − negl(λ).

We now show that there exists a PPT reduction B that takes any PPT
adversary A winning the changed experiment with non-negligible advantage δ −
negl(λ), and that breaks the ExpsID

A,IBHTDF(1
λ) security of the underlying F with

probability δ − negl(λ).
The reduction B receives the challenge identity id∗ and message data-set

(x1, . . . , xN), generates (mpk,msk, {σi = ui, vi}i∈[N]) as in the changed exper-
iment and sends (mpk, {σi, vi}i∈[N]) to A. Note that B can respond to the
identity-key query for id �= id∗ using msk. But, B has no valid trapdoor to
generate the identity key for id∗.

Assume the adversary A (winning the changed experiment) outputs values
(g, y′, σ′), where g : X N → X on (x1, . . . , xN) is an admissible function and
σ′ = u′. Let y = g(x1, . . . , xN), ug = σg = SignEvalprms(g, (x1, σ1), . . . , (xt, σt)),
vg = Processprms(g). Thus, on one hand, since the forged signature σ′ verifies,
fpkid∗ ,y′(u′) = vg holds. On the other hand, since g is admissible, fpkid∗ ,y(ug) =
vg also holds by the correctness of homomorphic computation. Therefore, we have
values ug �= u′ ∈ U and y, y′ ∈ X satisfying fpkid∗ ,y(ug) = fpkid∗ ,y′(u′), which
allows B to break ExpsID

A,IBHTDF(1
λ) security of F with probability δ − negl(λ)

whenever A wins the changed experiment with probability δ − negl(λ). �

6 Conclusions

In this work, we defined and constructed the first leveled strongly-unforgeable
IBFHS schemes. To this end, we extended Gorbunov-Vaikuntanathan-Wichs’

Leveled Strongly-Unforgeable IBFHS 59

HTDF, the underlying primitive of FHS, to IBHTDF with stronger security and
better parameters, the underlying primitive of IBFHS. The drawback is that our
scheme is only a leveled IBFHS with large public parameters. It remains open to
Construct a non-leveled IBFHS or a leveled IBFHS with short public parameters.
One way to achieve this would be to draw on the ideas in constructing non-leveled
(IB)FHEs from indistinguishability obfuscation [13,14].

Acknowledgement. We are very grateful to the anonymous ISC reviewers for valu-
able comments and constructive suggestions that helped to improve the presentation
of this work.

References

1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010)

2. Attrapadung, N., Libert, B.: Homomorphic network coding signatures in the stan-
dard model. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011.
LNCS, vol. 6571, pp. 17–34. Springer, Heidelberg (2011)

3. Barrington, D.A.M.: Bounded-width polynomial-size branching programs recog-
nize exactly those languages in NC1. In: STOC 1986, pp. 1–5. ACM (1986)

4. Boneh, D., Freeman, D.M.: Homomorphic signatures for polynomial functions. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 149–168. Springer,
Heidelberg (2011)

5. Boneh, D., Freeman, D.M.: Linearly homomorphic signatures over binary fields
and new tools for lattice-based signatures. In: Catalano, D., Fazio, N., Gennaro,
R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 1–16. Springer, Heidelberg
(2011)

6. Boyen, X., Fan, X., Shi, E.: Adaptively secure fully gomomorphic signatures based
on lattices. http://eprint.iacr.org/2014/916

7. Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G., Vaikun-
tanathan, V., Vinayagamurthy, D.: Fully key-homomorphic encryption, arithmetic
circuit ABE and compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014)

8. Boyen, X.: Lattice mixing and vanishing trapdoors: a framework for fully secure
short signatures and more. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010.
LNCS, vol. 6056, pp. 499–517. Springer, Heidelberg (2010)

9. Brakerski Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE. In: ITCS,
pp. 1–12 (2014)

10. Catalano, D., Fiore, D., Warinschi, B.: Efficient network coding signatures in the
standard model. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012.
LNCS, vol. 7293, pp. 680–696. Springer, Heidelberg (2012)

11. Catalano, D., Fiore, D., Warinschi, B.: Homomorphic signatures with efficient ver-
ification for polynomial functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014, Part I. LNCS, vol. 8616, pp. 371–389. Springer, Heidelberg (2014)

12. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate
a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
523–552. Springer, Heidelberg (2010)

http://eprint.iacr.org/2014/916

60 F. Wang et al.

13. Canetti, R., Lin, H., Tessaro, S., Vaikuntanathan, V.: Obfuscation of probabilistic
circuits and applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II.
LNCS, vol. 9015, pp. 468–497. Springer, Heidelberg (2015)

14. Clear, M., McGoldrick, C.: Bootstrappable identity-based fully homomorphic
encryption. In: Gritzalis, D., Kiayias, A., Askoxylakis, I. (eds.) CANS 2014. LNCS,
vol. 8813, pp. 1–19. Springer, Heidelberg (2014)

15. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate
strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139
(2008)

16. Freeman, D.M.: Improved security for linearly homomorphic signatures: a generic
framework. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 697–714. Springer, Heidelberg (2012)

17. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC 2009, pp.
169–178. ACM (2009)

18. Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic signa-
tures from standard lattices. In: STOC 2015, pp. 469–477. ACM (2015)

19. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 700–718. Springer, Heidelberg (2012)

20. Micciancio, D., Peikert, C.: Hardness of SIS and LWE with small parameters. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 21–39.
Springer, Heidelberg (2013)

21. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian
measures. SIAM J. Comput. 37(1), 267–302 (2007)

22. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

23. Xie, X., Xue, R.: Bounded fully homomorphic signature schemes. http://eprint.
iacr.org/2014/420

http://eprint.iacr.org/2014/420
http://eprint.iacr.org/2014/420

	Leveled Strongly-Unforgeable Identity-Based Fully Homomorphic Signatures
	1 Introduction
	1.1 Motivation
	1.2 Contribution
	1.3 Paper Organization

	2 Preliminaries
	2.1 Entropy and Statistical Distance
	2.2 Background on Lattices and Hard Problems
	2.3 Permutation Branching Program.

	3 Identity-Based Homomorphic Trapdoor Functions
	3.1 Definition
	3.2 Construction: Basic Algorithms and Security

	4 Homomorphic Evaluation and Noise Analysis
	4.1 Basic Homomorphic Evaluation
	4.2 The Homomorphic Output and Input Evaluation
	4.3 Correctness of Homomorphic Evaluation and Noise Analysis

	5 Strongly-Unforgeable Identity-Based Fully Homomorphic Signatures
	5.1 Definition
	5.2 Construction

	6 Conclusions
	References

