
Extracting Robust Keys from NAND Flash
Physical Unclonable Functions

Shijie Jia1,2,3, Luning Xia1,2(B), Zhan Wang1,2, Jingqiang Lin1,2,
Guozhu Zhang1,2,3, and Yafei Ji1,2,3

1 Data Assurance and Communication Security Research Center,
Chinese Academy of Sciences, Beijing, China

{jiashijie,halk,zwang,linjq,zhangguozhu,jiyafei12}@is.ac.cn
2 State Key Laboratory of Information Security,

Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
3 University of Chinese Academy of Sciences, Beijing, China

Abstract. Physical unclonable functions (PUFs) are innovative primi-
tives to extract secret keys from the unique submicron structure of inte-
grated circuits. PUFs avoid storing the secret key in the nonvolatile
memory directly, providing interesting advantages such as physical unclon-
ability and tamper resistance. In general, Error-Correcting Codes (ECC)
are used to ensure the reliability of the response bits. However, the ECC
techniques have significant power, delay overheads and are subject to infor-
mation leakage. In this paper, we introduce a PUF-based key generator for
NAND Flash memory chips, while requiring no extra custom hardware cir-
cuits. First, we present three methods to extract raw PUF output numbers
from NAND Flash memory chips, namely partial erasure, partial program-
ming and program disturbance, which are all based on the NAND Flash
Physical Unclonable Function (NFPUF). Second, we use a bit-map or a
position-map to select the cells with the most reliable relationship of the
size between raw NFPUF output numbers. Only the selected cells are used
for key generation. Finally, we describe the practical implementations with
multiple off-the-shelf NAND Flash memory chips, and evaluate the reli-
ability and security of the proposed key generator. Experimental results
show that our NFPUF based key generator can generate a cryptographi-
cally secure 128-bit key with a failure rate < 10−6 in 93.83 ms.

Keywords: Physical Unclonable Functions (PUFs) · NAND flash ·
Process variation · Secret keys · Error correction

1 Introduction

As electronic devices have become interconnected and ubiquitous, people are
increasingly depending on electronic devices to perform sensitive tasks and to

This work was partially supported by the National 973 Program of China under
award No. 2013CB338001 and the Strategic Priority Research Program of Chinese
Academy of Sciences under Grant XDA06010702.

c© Springer International Publishing Switzerland 2015
J. Lopez and C.J. Mitchell (Eds.): ISC 2015, LNCS 9290, pp. 437–454, 2015.
DOI: 10.1007/978-3-319-23318-5 24



438 S. Jia et al.

handle sensitive information. As a result of the merits of NAND Flash mem-
ory, such as small size, low power consumption, light weight, high access speed,
shock/temperature resistance and mute characteristics [12], now virtually all
portable electronic devices such as smartphones, SD cards, USB memory sticks
and tablets use NAND Flash memory as nonvolatile storage.

Now many electronic devices of embedded systems have become to con-
tain more confidential information, and many applications need to identify and
authenticate users. Therefore, the secret keys used by the devices and the appli-
cations should be protected to ensure the security of the communication system.
However, in the real world implementations of cryptosystems, the cryptographic
keys are recently revealed from nonvolatile memories by sophisticated tamper-
ing methods [3,9,21,25]. Based on the above situation, we leverage the special
virtue of NAND Flash to avoid storing the secret key in the nonvolatile mem-
ory directly.

In order to prevent both the invasive and noninvasive physical attacks, Physi-
cal Unclonable Functions (PUFs) have been attracting wider attention and stud-
ied intensively in recent years. Due to the advantages of physical unclonability
and tamper proof, PUFs are used to avoid storing actual bits of the secret keys in
the storage memory. Generally, PUFs are engaged in two typical classes of appli-
cations, namely authentication and secret key generation. In the authentication
applications, the responses of the PUFs can be designed to tolerate a certain
amount of errors. While in the secret key generation applications, the responses
of the PUFs need to be consistent [16]. The conventional method to ensure the
robustness and the reliability of the responses is to utilize fuzzy extractors [6,14].
Traditionally, fuzzy extractors employ an Error-Correcting Code (ECC) and a
cryptographic hash function. There have been several state of the art papers cite
the use of ECC with PUFs to generate cryptographic keys [2,10,15,29]. How-
ever, ECC is not viable for resource constrained electronic devices. First, the
error rates for PUFs across environmental variations can be as high as 25 % [5],
making a straightforward use of ECC infeasible [15,24], namely the codeword
sizes required will be too large in practice. Second, ECC is generally performed by
specialised hardware chips, which not only requires tremendous area and power
overheads, but also scales up as the number of bits of correction increases [1].
Third, ECC requires additional helper or syndrome data to be publicly stored
for the regeneration of the key. The helper data of ECC reveals information
about the outputs of the PUFs [23]. Thus, error reduction techniques can be
applied to reduce the cost of ECC and to ensure the reliability and security of
the responses.

In this work, we focus on the NFPUF and the error reduction techniques
to generate cryptographic robust keys. First, we present three methods (partial
erasure, partial programming and program disturbance) to extract raw NFPUF
output numbers from NAND Flash memory chips. Second, we introduce two
methods (the bit-map and position-map) to select the cells with the most reliable
relationship of the size between raw NFPUF output numbers. In other words,
the size relationship of the raw NFPUF output numbers from the selected cell



Extracting Robust Keys from NAND Flash Physical Unclonable Functions 439

pairs is almost constant during the whole lifetime of the NAND Flash chips. At
last, we evaluate the reliability and security of the proposed key generator. The
proposed key generator can get reliable and robust keys for the electronic devices
with limited hardware resources, meanwhile it reduces the implementation costs
and hardware overheads of ECC significantly.

Our Contributions. In this paper we introduce a robust key generator based
on NFPUF for NAND Flash memory chips. The main contributions of this paper
are as follows:

– We present the first implementation of secret key generator from unmodified
commercial NAND Flash memory chips. Most importantly, the proposed key
generator can be applied to any NAND Flash memory chips, extending the
functionality of NAND Flash memory chips, while requiring no extra hardware
circuits overheads.

– We describe three specific methods to extract raw NFPUF output numbers
from NAND Flash memory chips. Particularly, the partial erasure method is
proposed for the first time.

– We present two methods to select the NAND Flash memory cells with the
most reliable relationship of the size between raw NFPUF output numbers.
It reduces the system overheads of ECC significantly, and it is feasible for the
electronic devices even with constrained hardware resources.

– We evaluate the reliability and security of our proposed key generator with
multiple NAND Flash memory chips from different manufacturers by plenty
of experiments.

Organization of the Paper. The organization of the rest of this paper is as
follows. Section 2 introduces the related work. The background is introduced in
Sect. 3. We will present the specific secret key generator in Sect. 4. Implementa-
tion details and evaluations are shown in Sect. 5. Finally, conclusions are given
in Sect. 6.

2 Related Works

Pappu et al. introduced the Physical One-Way Functions (POWFs) in [18]. They
used a transparent optical medium with a three-dimensional micro-structure as
a POWF. The concept of silicon PUFs was introduced in [7,8]. Silicon PUFs
have substantial challenge-response pairs (CRPs) owing to the manufacturing
process variations, so it is impossible for the attacker to clone all the potential
CRPs [13]. Our key generator also takes advantage of the manufacturing process
variations.

Škorić et al. presented a key extraction method from the bit-string extrac-
tion of noisy optical PUFs in [20]. Different PUFs circuit designs based on ring
oscillators were introduced in [13,15,23,29]. The first construction of a PUF
intrinsic based on the power-up state of SRAM memory on current FPGAs was
presented in [10] to solve the IP protection problem. An efficient helper data



440 S. Jia et al.

key extractor technique was introduced to generate secret keys on FPGAs in [2],
which leverages several complicated concatenated codes (repetition code and
ECC) to ensure the reliability of the keys. Our key generator does not require a
power cycle or the special circuit designs that the prior PUFs need, while it can
be done by any electronic devices with commercial off-the-shelf NAND Flash
memory chips as nonvolatile storage.

Xu et al. introduced the sources of variations in Flash memory for PUFs in
[28]. It points out that the uniqueness and robustness of the NFPUF are indeed
universally applicable, rather than just a phenomenon presented in the limited
selection. In general, NFPUF distributions are translated to threshold voltage
distributions via tunneling current during programming and erasing operations
to analyze its physical origins. Our key generator also leverages the threshold
voltage distributions of the NAND Flash memory cell transistors to extract the
raw NFPUF output numbers.

Prabhu et al. evaluated seven techniques to extract unique signatures from
Flash devices based on the observable effects of process variations as device fin-
gerprints [17]. They exploited formal correlation metric (the Pearson correlation)
to distinguish whether the extracted signatures were from the same page or dif-
ferent pages, then they could uniquely identify individual Flash devices. Yang
et al. took advantage of the uncertainty of Random Telegraph Noise (RTN) from
Flash memory to provide two security functions: true random number generation
and digital fingerprinting [27]. As a result of the high uncertainty of the random
numbers and device fingerprints, neither the techniques they proposed could be
used to extract unique and reproduceable secret keys with a tiny bit error rate.
Our key generator leverages the specific physical characteristics of the NAND
Flash memory cells to extract numbers, then we select the cells with the most
reliable relationship of the size between the extracted numbers during the whole
life of the chip for key generation. Our key generator ensures the reproducibility
and the reliability of the key, meanwhile, it avoids the costly overheads of ECC.

3 Background

The secret keys generator that we will describe in Sect. 4 bases on the composi-
tion of NAND Flash memory cells, and how NAND Flash memory chip organize
the cells into memory arrays. The specific NAND Flash memory cell composi-
tion and array organization lead to noises exist in NAND Flash memory cells
universally. This section summarizes the primary characteristics of NAND Flash
memory chips that we rely on for this study.

3.1 Uncertain States of NAND Flash Memory Cells

As Fig. 1(a) shows, a NAND Flash memory cell is based on a floating gate metal
oxide semiconductor (MOS) transistor. There are two gates in a floating gate
transistor. The top one is called control gate, which is capacitive coupled. The
bottom one is the floating gate, which is surrounded by dielectrics. The special



Extracting Robust Keys from NAND Flash Physical Unclonable Functions 441

Fig. 1. (a) NAND flash memory cell structure. (b) Threshold voltage schematic
diagram.

property of dielectrics makes the NAND Flash memory nonvolatile. In general,
a triple layer of oxide-nitride-oxide isolates the two gates. In addition, the thin
oxide between the floating gate and transistor channel is known as tunnel oxide.
The source and drain electrodes are heavy doped, and they are electron-rich
(n-type). While the substrate is less doped, and it is electron-deficient (p-type).

Both programming and erasing operations of common-ground NAND Flash
memory cells are by Fowler-Nordheim (FN) tunneling, which is a quantum-
mechanical tunneling mechanism induced by the electric field [19]. The presence
or absence of trapped charge on the floating gate is expressed as logical state
“0” or logical state “1” respectively.

The trapped charge affects the threshold voltage (Vth) of the transistor [28].
When an electron charge is stored in the floating gate, the threshold voltage
of this transistor increases, and the increase amplitude is proportional to the
stored charge. As illustrated in Fig. 1(b), the charge stored in the floating gate
discourages the presence of current in the transistor channel, then the cell is
sensed and translated into logical state “0”, thus the NAND Flash memory cell
will be in the programmed state. On the contrary, when the floating gate has
no electron charge, then it forms a conductive path between the drain and the
source electrodes, creating a current (IDS) in the transistor channel, and hence
the cell will be sensed and translated into logical state “1”, then the NAND Flash
memory cell will be in the erased state. In conclusion, by applying an appropriate
voltage to the control gate and measuring the current flow through the transistor
channel of the target cell, a NAND Flash memory chip can effectively measure
the threshold voltage of the cells, and determine the logical states of the cells.

However, on account of variations in manufacturing processes, the threshold
voltages of (Vth“1”) and (Vth“0”) vary from cell to cell. When the threshold voltage
is not shifted sufficiently from the programmed state to the erased state, and vice
versa, then the cell will be in an uncertain state. In these cases, the cell can be
expressed as either logic state “0” or logic state “1”. In this paper, we propose
the partial erasure and the partial programming methods, both the methods
exploit the uncertain states of the NAND Flash memory cells to extract raw
NFPUF output numbers.



442 S. Jia et al.

Fig. 2. NAND flash memory array organization.

3.2 Disturbance Related to NAND Flash Memory
Array Organization

As Fig. 2 illustrates, the NAND Flash memory cells are arranged in a coher-
ent and structured manner, normally in arrays, to achieve high density. Due to
the array organisation, each cell can be accessed by its specific row and column
address. In general, the NAND Flash memory cells are grouped into pages (typ-
ically 512 bytes-4 KB) and blocks. A block contains dozens of (typically 32–128)
adjacent pages [22]. Thousands of independent blocks make up a NAND Flash
memory chip. The common drain connection that the rows of cells share is called
a bitline (BL), while the common poly-2 gate connection that the columns of cells
share is called a wordline (WL) [9]. A single wordline connects the gates on all
the transistors in a page or more than one page, and the latter case is particularly
general for multi-level cells (MLC) NAND Flash memory chips. Programming
and reading operations are performed on the unit of a page, whereas erasing
operation must be performed on an entire block. What is more, the pages in a
block must be programmed sequentially. The programmed sequence is designed
to minimize the programming disturbance between the neighboring pages, which
aims to avoid undesired voltage shifts in the pages despite not being selected.

However, although the array organization of the NAND Flash memory is
specially designed, there still exists electrical influence between adjacent NAND
Flash memory cells. During the programming and reading operations, a high
voltage is applied to the wordlines of the selected pages, meanwhile produc-
ing an intermediate gate voltage to the neighbouring wordline. After multiple
repeating operations, the intermediate gate voltage makes the according adja-
cent NAND Flash memory cells flip, which is a process of quantitative change to
qualitative change. In particular, as the result of the capacitive coupling between
the selected wordline and the physically adjacent wordline, the effect of program-
ming operations is much stronger [30]. In this paper, we propose the program
disturbance method, which leverages the effects between the adjacent pages to
extract raw NFPUF output numbers.



Extracting Robust Keys from NAND Flash Physical Unclonable Functions 443

4 Robust Key Generation

As Sect. 3.1 discussed the physical sources of variations in NAND Flash memories
for NFPUF, not only the initial and after-erase voltages, but also the initial and
after-program voltages for a same NAND Flash memory chip may vary from
cell to cell due to the manufacturing process variations. Section 3.2 discussed the
disturbance related to the specific NAND Flash memory array organization. The
repeating programming operations to a same page, resulting in its neighbouring
page unexpected bit variations.

Both the above phenomena are due to the maximum density of NAND Flash
memory cells. Since process variations are beyond the manufacturers’ control,
small variations in tunnel oxide thicknesses and control gate coupling ratio may
make a big difference in the threshold voltage of the floating gate transistor [28].
So even an adversary who has the detail information of the NFPUF principle
still cannot clone the NFPUF.

4.1 Extracting Raw NFPUF Output Numbers

In this paper, we propose three methods to extract raw NFPUF output numbers,
namely partial erasure, partial programming and program disturbance. We will
discuss the details of the three methods in order.

Partial Erasure. This method exploits the feature of NAND Flash memory
chip that the initial and after-erase voltages vary from cell to cell due to the
manufacturing process variations. Algorithm 1 provides the pseudo-code. First,
we erase the selected block (BlockNum), then we program all the cells of the
selected page (PageNum) belonging to the selected block to logic state “0”.
Second, we perform fixed number (PENum) of partial erasure operations to
the selected page. The time of each partial erasure operation (Te) is also fixed.
After each partial erasure operation, some cells in the selected page will have
been erased enough to flip their states from logic state “0” to logic state “1”.
Therefore, we record the number of partial erasure operations that the selected
cells need to flip. Third, after the fixed number of partial erasure operations,
some cells may have not flipped, then the value of PENum plus 1 is assigned
to these cells. At last, we extract the raw NFPUF output numbers by repeating
partial erasure operations from the specific block and page.

Partial Programming. Similar with the partial erasure method, the partial
programming method leverages the feature of NAND Flash memory chip that the
initial and after-program voltages vary from cell to cell due to the manufacturing
process variations. First, we erase the selected block. Second, we perform fixed
number (PPNum) of partial programming operations to the selected page, the
time of each partial programming operation (Tp) is also fixed. After each partial
programming operation, some cells may have been programmed enough to flip
their states from logic state “1” to logic state “0”. Therefore, we record the
number of partial programming operations that the selected cells need to flip.
Third, after the fixed number of partial programming operations, some cells



444 S. Jia et al.

Algorithm 1. Partial erasure: Extract the raw NFPUF output numbers by
repeating partial erasure operations to the specific block and page.
Require:

The number of block to erase (BlockNum);
The number of page to read (PageNum);
The number of cells to record (CellsNum);
The time of each partial erasure operation (Te);
The number of partial erasure operations (PENum);

Ensure:
The number of partial erasure operations of each NAND Flash memory cell need
to reach the erased state (RawPuf [CellsNum]).

1: Erase(BlockNum);
2: Program(PageNum, 0);
3: for i = 1; i <= PENum; i + + do
4: PartiallyErase (Te, BlockNum);
5: Read(PageNum);
6: for All the selected cells to record do
7: if The first observation of the cell flips from 0 to 1 then
8: RawPuf [The Position of the cell in the selected cells ]= i;
9: end if

10: end for
11: end for
12: for The cells have not flipped after PENum partial erasure operations do
13: RawPuf [The Position of the cell in the selected cells]= PENum + 1;
14: end for

may have not flipped, then the value of PPNum plus 1 is assigned to these
cells. At last, we extract the raw NFPUF output numbers by repeating partial
programming operations from the specific block and page.

Program Disturbance. Unlike the above two methods, this method is based
on the disturbance between the adjacent pages due to the specific NAND Flash
memory array organization. The repeating programming operations to a same
page, resulting in its neighbouring page unexpected bit variations. First, we erase
the selected block. Second, we perform fixed number (PDNum) of programming
operations to the selected page. After each programming operation, some cells
in its physically adjacent page will have been programmed enough to flip their
states from logic state “1” to logic state “0”. Therefore, we record the number
of programming operations that the selected cells in its physically adjacent page
need to flip. Third, after the fixed number of programming operations, some cells
may have not flipped, then the value of PDNum plus 1 is assigned to these cells.
At last, we extract the raw NFPUF output numbers by repeating programming
operations from the specific block and pages.



Extracting Robust Keys from NAND Flash Physical Unclonable Functions 445

4.2 Extracting Robust Keys from the Raw NFPUF
Output Numbers

If the PUFs are measured repeatedly, the cell-wise extracted numbers apparently
will have non-negligible fluctuations as a result of noises. Therefore, the raw
PUFs output numbers are not fit as secret key directly [4]. In general, fuzzy
extractors are used to ensure the reliability of the PUFs response outputs. Fuzzy
extractors employ an ECC and a cryptographic hash function. As a result of
the tremendous raw bits and helper data overheads are needed in real system
implementations of ECC, it is expensive to implement in electronic devices with
limited hardware resources [5,24].

In this work, our objective is to extract robust keys from raw NFPUF output
numbers with a tiny bit error rate, meanwhile reducing the costly overheads in
the implementations of ECC. Therefore, it will be feasible for NAND Flash
devices even with constrained hardware resources to generate robust keys.

Due to the layout and spatial variations of NAND Flash memory chips, a
consistent systematic variation exists among the average page NFPUF output
numbers and the average block NFPUF output numbers [28]. Typically NAND
Flash memory can withstand 100,000 program and erase (P/E) cycles for single-
level cell (SLC) type and 10,000 for MLC type [26]. Repetitive P/E cycles can
alter the raw extracted numbers of the cells due to cyclic endurance aging effects
[27]. As Fig. 3(a) illustrates, the raw NFPUF output numbers from the cells of
the same page present an irregular distribution and have great difference. How-
ever, as shown in Fig. 3(b), although the raw NFPUF output numbers slightly
decreased over P/E cycles, the relationship between the size of raw NFPUF out-
put numbers extracted from different cells is relatively stable during the whole
lifetime of the NAND Flash memory chips.

Our key generator is to find the NAND Flash memory cells with the most
reliable and stable relationship between the size of raw NFPUF output numbers.
We translate the size relationship of the raw NFPUF output numbers into binary
numbers as a robust secret key, meanwhile we record the according cell position
information as helper data for key regeneration.

We introduce two methods to extract secret keys by selecting the NAND
Flash memory cells with the most reliable relationship of the size between raw
NFPUF output numbers, namely the bit-map method and position-map method.
Only the selected cells are used for generation of the key.

Figure 4 describes an example of our two key extraction methods. We extract
ten raw NFPUF output numbers (RawPuf) from ten cells, and the position of
the cells starts from 0×0065 to 0×006e (due to the page size of the commercial
off-the-shelf NAND Flash memory chip is from 512 bytes to 4 KB generally, so
we use 16 bits to represent an address of a cell). The specific quantities of the
raw NFPUF output numbers and the according bit number of the extracted key
are related to the bit error rate of the key, which will be discussed in detail in
the experimental section.

Bit-Map Method. First, we compare the adjacent raw NFPUF output num-
bers in pairs and record the absolute values of the corresponding D-values



446 S. Jia et al.

Fig. 3. The distributions of raw NFPUF output numbers.

(ADvalue). Second, we sort the the recorded ADvalues from small to large,
and only a part of the cell pairs with the top largest ADvalues are selected to
generate a key (here three cell pairs are selected). Third, we assign “1” to the
selected cell pairs, and assign “0” to the rest as helper data (BitMap). Fourth,
if the former raw NFPUF output number is bigger than the latter one in the
selected cell pairs, we allocate “1” to the key (Key1), if not, then we allocate
“0” to the key. At last, we obtain the secret key (Key1) and store the BitMap
for regeneration of the key.

Position-Map Method. First, we sort the extracted raw NFPUF output num-
bers from small to large (SortedRawPuf). Second, we select a part of the top
smallest and the top largest cells to make up the selected cell pairs (here both
the cells with the top three smallest and the top three largest raw NFPUF
output numbers are selected). Then we sort the raw NFPUF output numbers
of each cell pairs according to the cell positions (PairRawPuf). Third, we
record the cell position of the selected NAND Flash memory cells as helper
data (PositionMap). Fourth, we compare the raw NFPUF output numbers of
the selected cells. If the former is bigger than the latter one, we allocate “1” to
the key (Key2), if not, we allocate “0” to the key. At last, we obtain the secret
key (Key2) and store the PositionMap for regeneration of the key.

Note that both the BitMap and PositionMap just represent the location
of the selected NAND Flash memory cells, and they have nothing to do with
the relationship of the size between the raw NFPUF output numbers. Therefore,
the helper data carries no information about the polarity of the bits in the key.
Hence the helper data does not leak any information about the key, unless there
is a location-based correlation found in the numbers generated from the NFPUF.
As the proposed key generator is based on the manufacturing process variations,
which is a random process, and hence the polarity of the bits of the key is also
random. Therefore, the helper data of this study is significantly more resilient
to information leakage as compared to the helper data in conventional ECC.



Extracting Robust Keys from NAND Flash Physical Unclonable Functions 447

Fig. 4. Schematic diagram of the two key extraction methods.

5 Implementation and Evaluation

In this section, we present the experimental facilities used in this study, and eval-
uate the primary characteristics of reliability and security of the key generator
based on NFPUF.

5.1 Tested Device

To extract raw NFPUF output numbers from NAND Flash memory chips, we
use a custom PCB test board that contains the STM32F103VCT6 controller,
which has a common ARM Cortex-M3 32-bit RISC core. With the controller,
we can send program, read, and erase operations to the tested NAND Flash
memory chips at will. This common device shows that our robust key generator
can be applied to commercial off-the-shelf NAND Flash memory devices with
no extra integrated circuits.

We evaluate NFPUF with a set of NAND Flash memory chips from different
manufacturers. Table 1 shows the chips we use in this study.

5.2 Experimental Results and Evaluation

In order to evaluate the performance of the proposed key generator based on
NFPUF, we need to analyse the primary characteristics of the security and
reliability of the generated keys, such as speed (for performance), reproducibility
(for reliability), uniqueness (for security), and randomness (for high-entropy).

Speed. Both the generation and regeneration processes of our proposed key
generator need multiple program or erase operations, so the throughput of the



448 S. Jia et al.

Table 1. Tested NAND flash memory chips.

Chip Manufacturer Part number Capacity Quantity Technology

A Samsung K9K8G08U0M 8Gbit 10 90 nm SLC

B Samsung K9F2G08U0B 2Gbit 10 SLC

C Micron MT29F4G08ABA DAWP:D 4Gbit 5 34 nm SLC

D Micron MT29F16G08CB ACAWP:C 16Gbit 5 MLC

E Intel JS29F64G08AAME1 64Gbit 5 MLC

F Hynix HY27UF084G2B 4Gbit 5 SLC

G Numonyx NAND04GW3B2DN6 4Gbit 5 57 nm SLC

proposed key generator varies significantly depending on the program and erase
characteristics of the selected NAND Flash memory chips. Table 2 shows the
parameters of the proposed three raw NFPUF output numbers extraction meth-
ods of the selected NAND Flash memory chips.

First, we find out the typical block erase time (tBERS) and the typical page
program time (tPROG) from the datasheet of each NAND Flash memory chip.
Second, we determine the time of each partial erasure operation (Te) and the time
of each partial programming operation (Tp) by trial and error until we get obvi-
ously diacritical outputs from each cell. The vast experimental results show that
the Te should be about the 1/12 of tBERS , and the Tp should be about the 1/20
of tPROG. To determine the number of partial erasure operations (PENum),
we can partially erase the specific block and page with the selected Te repeat-
edly until 99 % cells are erased in a page. In the same way, we can determine the
number of partial programming operations (PPNum) by repeatedly partial pro-
gramming operations with the determined Tp until 99 % cells are programmed
in a page. At last, we can determine the number of repeated programming oper-
ations (PDNum) by normal programming operations to a specific page until
99 % cells are programmed in its adjacent page.

With the determined parameters in Table 2, we obtain the average through-
put of the raw NFPUF output numbers with the NAND Flash memory chips
from five manufactures, and it is shown in Table 3. The average throughput
ranges from 7.35 Kbits/second to 22.38 Kbits/second. On account of the oper-
ation time, the average throughput of the partial programming method shows
the highest speed, the next one is the partial erasure method, while the program
disturbance method shows the slowest speed comparatively.

To get a 128-bit key with the bit error rate < 10−6, we need 18.28 Kbits raw
NFPUF output numbers for the bit-map method, so we can get a 128-bit key in
816.8 ms to 2.48 s. While we only need 2.1 Kbits raw NFPUF output numbers for
the position-map method, so we can get a 128-bit key in 93.83 ms to 285.7 ms.

In our experiments, the average throughput is largely limited by the timing of
the asynchronous interface, which is controlled by an ARM microcontroller with
CPU frequency of 72 MHz and the 8-bit bus of the NAND Flash memory chips.



Extracting Robust Keys from NAND Flash Physical Unclonable Functions 449

Table 2. Parameters setting of the raw NFPUF output numbers extraction methods.

Chip tBERS(µs) Te(µs) PENum tPROG(µs ) Tp (µs) PPNum PDNum

A 1500 180 250 200 10 245 3912

B 1500 180 250 200 10 245 4002

C 700 85 200 200 11 200 3017

D 700 85 200 200 11 200 3123

E 3000 358 230 1200 58 220 3438

F 1500 179 240 200 10 250 3621

G 1500 181 235 200 11 240 3419

Table 3. The average throughput of the raw NFPUF output numbers(Kbits/second).

Method Sumsung Micron
SLC

Micron MLC Intel MLC Hynix Numonyx

Partial
erasure

14.67 13.92 13.87 12.21 14.52 13.68

Partial
programming

22.38 17.47 16.32 14.45 18.36 17.18

Program
disturbance

9.72
8.78

7.89 7.35 9.74 8.29

The throughput performance can be much higher if the data can be transferred
more quickly through the controller interface.

Reproducibility. In order to indicate the reproducibility of the PUF outputs,
we evaluate the intra-chip variation, namely the number of bits changes when
regenerated from a single PUF with or without environmental changes [23].
Ideally, the intra-chip variation should be 0 %.

To reduce the cost of ECC, we propose the bit-map and position-map meth-
ods to select the NAND Flash memory cells with the most reliable relationship
of the size between raw NFPUF output numbers. For our reference implemen-
tation, we aim to obtain a 128-bit key with intra-chip variation < 10−6, which
means that our proposed key generator is applicable and reliable during the
whole lifetime of the NAND Flash memory chips.

As Fig. 5 illustrates, we evaluate the average intra-chip variation with tem-
perature and aging variations. We extract Y bits key from X raw NFPUF output
numbers. The x-axis represents the ratio of Y in the X (as we use the relation-
ship of the size between two raw NFPUF output numbers to extract a bit for
the key, so the maximum of Y is X/2). The y-axis shows the according average
intra-chip variation of the tested NAND Flash memory chips.

The variations of temperature influence thermal noise amplitude, while RTN
amplitude stays almost the same [27]. Since we extract raw NFPUF output num-



450 S. Jia et al.

bers based on RTN primarily, as Fig. 5(a) and (c) show, there is little difference
across different temperatures.

NAND Flash memory chips wear-out over time due to program/erase (P/E)
operations are performed. The average page NFPUF decreases slightly as P/E
cycles increases [28]. However, we test the chips in Table 1 under different tem-
perature conditions with our test board to verify the relationship of the size
between raw NFPUF output numbers, all the chips show the same result as
Fig. 3(b), namely the relationship of the size between raw NFPUF output num-
bers is rather stable. Therefore, we can see in the Fig. 5(b) and (d), the aging
influence between different P/E cycles is also unconspicuous.

In the bit-map method, the intra-chip variation decreases from 14.42 % to less
than 10−6 as the ratio of Y/X decreases from 0.5 to 0.055. In this case, when
the ratio of Y/X is 0.055, now 2340 NAND Flash memory cells are needed to
generate a 128-bit robust key, and the length of helper data is 2340/2=1.14 Kbits.

In the position-map method, the intra-chip variation decreases from 2.3×10−5

to less than 10−6 as the ratio of Y/X decreases from 0.5 to 0.474. In this case,
when the ratio of Y/X is 0.474, now 270 NAND Flash memory cells are needed to
generate a 128-bit robust key, and the length of helper data is 128×16×2=4Kbits.

In conclusion, to generate a 128-bit key with the bit error rate < 10−6, we can
select 2340 or 270 NAND Flash memory cells for the bit-map method and the
position-map method, respectively. Then we just choose the top 128 cell pairs
with the maximal difference of the raw NFPUF output numbers to generate the
key. Comparatively, the bit-map method needs more NAND Flash memory cells
and less helper data, while the position-map method requires much less cells and
more helper data. Therefore, we can select the appropriate method according to
the specific implementation requirement.

ECC is too complex and expensive to implement for efficient PUF-based key
generation [5,15,24]. To generate a 128-bit key with a targeted key error rate
< 10−6, ECC implementations typically require 3 K-10 K PUF raw response bits
(with bit error rate of 15 %) to generate the key, and the helper data generated
for this case will be typically 3 K-15 K bits [1]. What is more, the error correcting
capability of a specific ECC technology is fixed, if the number of error bits are
beyond its fixed ability, the ECC would be useless. Therefore, our key generator
is much more flexible, and it can achieve a 128-bit key with error rate < 10−6

by using much less overheads compared with ECC.

Uniqueness. Uniqueness is a measure of how uncorrelated the PUFs response
numbers are across different chips [1]. We evaluate the inter-chip variation,
namely the number of bits which are different between two keys extracted from
different PUF numbers. If the PUF produces uniformly distributed and indepen-
dent random bits, the Hamming distance (HD) of a k-bit response from ideally
unique chips should follow a binomial distribution with parameters N = k and
p = 0.5, and the mean of the HD distribution should be equal to k/2, namely
the inter-chip variation should be 50 % on average [1].

The inter-chip variations of the three proposed extraction methods to gen-
erate 128-bit keys are shown in Fig. 6. The x-axis represents the different bit



Extracting Robust Keys from NAND Flash Physical Unclonable Functions 451

Fig. 5. The intra-chip variations with environmental changes.

number of the 128-bit key, and the y-axis represents the according probabil-
ity. Here, the bars (blue) show the experimental results from 10000 pair-wise
comparisons, and the lines (read) show a binomial distribution. As shown in
the Fig. 6, the average different bits out of 128 bits are 63.91, 63.94, and 59.98,
respectively. The average inter-chip variations of the three methods are 49.93 %,
49.95 % and 46.86 % respectively. The results are all pretty close to the ideal
average of 50 %.

Fig. 6. The inter-chip variations of the three proposed extraction methods.



452 S. Jia et al.

Fig. 7. The percentage of bit “1” with temperature changes.

Randomness. To ensure that the generation of the keys does not favor bits
with a certain polarity, we compute the percentage of bit “1” in 10000 groups of
128-bit keys under three temperatures. As Fig. 7 shows, we find that the percent-
age of bit “1” ranges from 46.94 % to 53.62 %, and it is quite close to ideal 50 %
with temperature variations. What’s more, we can just leverage Von Neumann
skew-correction algorithm to generate uniformly random bits, and use a hash
function [11] to ensure the high entropy requirement.

6 Conclusion

In this work, we showed that common NAND Flash memory chips could be
used to generate robust keys based on NFPUF. First, we proposed three meth-
ods to extract raw NFPUF output numbers from NAND Flash memory chips.
Second, we utilized the bit-map or position-map method to select the NAND
Flash memory cells with the most reliable relationship of the size between raw
NFPUF output numbers. Only the selected cells are used for key generation. At
last, we evaluated the primary characteristics of the generated key in various
temperature and aging conditions. To our knowledge, this is the first time that a
key generator based NFPUF implementation has been evaluated. Our key gen-
erator could generate a 128-bit key with a bit error rate < 10−6 in 93.83 ms. The
bit error rate ensures our key generator is reliable during the whole lifetime of
the NAND Flash memory chips. Such low bit error rate is conventionally only
achievable using powerful, but costly, error correction codes (ECC). Our key
generator eschews the costly ECC overheads to generate robust and error-free
keys. This study extends the functionality of NAND Flash memory chips, while
requires no hardware change. Due to the widespread use of NAND Flash mem-
ory chips, the proposed robust key generator is potential to be widely applied to
any electronic encryption devices, as long as the device leverages NAND Flash
memory chip as nonvolatile storage.



Extracting Robust Keys from NAND Flash Physical Unclonable Functions 453

References

1. Bhargava, M., Mai, K.: An efficient reliable PUF-based cryptographic key generator
in 65 nm CMOS. In: Proceedings of the Conference on Design, p. 70. European
Design and Automation Association, Automation and Test in Europe (2014)

2. Bösch, C., Guajardo, J., Sadeghi, A.-R., Shokrollahi, J., Tuyls, P.: Efficient helper
data key extractor on FPGAs. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008.
LNCS, vol. 5154, pp. 181–197. Springer, Heidelberg (2008)

3. Breeuwsma, M., De Jongh, M., Klaver, C., Van Der Knijff, R., Roeloffs, M.: Foren-
sic data recovery from flash memory. Small Scale Digital Device Forensics J. 1(1),
1–17 (2007)

4. Delvaux, J., Verbauwhede, I.: Attacking PUF-based pattern matching key gener-
ators via Helper data manipulation. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS,
vol. 8366, pp. 106–131. Springer, Heidelberg (2014)

5. Devadas, S., Yu, M.: Secure and robust error correction for physical unclonable
functions. IEEE Des. Test Comput. 27(1), 48–65 (2010)

6. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate
strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139
(2008)

7. Gassend, B., Clarke, D., Van Dijk, M., Devadas, S.: Silicon physical random func-
tions. In: Proceedings of the 9th ACM Conference on Computer and Communica-
tions Security, pp. 148–160. ACM (2002)

8. Gassend, B.L.: Physical random functions. Ph.D. thesis, Massachusetts Institute
of Technology (2003)

9. Handschuh, H., Trichina, E.: Securing flash technology. In: Fault Diagnosis and
Tolerance in Cryptography, FDTC 2007, pp. 3–20. IEEE (2007)

10. Guajardo, J., Kumar, S.S., Schrijen, G.-J., Tuyls, P.: FPGA intrinsic PUFs and
their use for IP protection. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007.
LNCS, vol. 4727, pp. 63–80. Springer, Heidelberg (2007)

11. Krawczyk, H.: LFSR-based hashing and authentication. In: Desmedt, Y.G. (ed.)
CRYPTO 1994. LNCS, vol. 839, pp. 129–139. Springer, Heidelberg (1994)

12. Lee, J., Heo, J., Cho, Y., Hong, J., Shin, S.Y.: Secure deletion for nand flash file
system. In: Proceedings of the 2008 ACM Symposium on Applied Computing, pp.
1710–1714. ACM (2008)

13. Lim, D., Lee, J.W., Gassend, B., Suh, G.E., Van Dijk, M., Devadas, S.: Extracting
secret keys from integrated circuits. In: IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 13, no. 10, pp. 1200–1205 (2005)

14. Linnartz, J.P., Tuyls, P.: New shielding functions to enhance privacy and prevent
misuse of biometric templates. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003.
LNCS, vol. 2688, pp. 393–402. Springer, Heidelberg (2003)

15. Maes, R., Van Herrewege, A., Verbauwhede, I.: PUFKY: a fully functional PUF-
based cryptographic key generator. In: Prouff, E., Schaumont, P. (eds.) CHES
2012. LNCS, vol. 7428, pp. 302–319. Springer, Heidelberg (2012)

16. Paral, Z., Devadas, S.: Reliable and efficient PUF-based key generation using pat-
tern matching. In: IEEE International Symposium on Hardware-Oriented Security
and Trust (HOST), pp. 128–133. IEEE (2011)

17. Prabhu, P., Akel, A., Grupp, L.M., Yu, W.-K.S., Suh, G.E., Kan, E., Swanson, S.:
Extracting device fingerprints from flash memory by exploiting physical variations.
In: McCune, J.M., Balacheff, B., Perrig, A., Sadeghi, A.-R., Sasse, A., Beres, Y.
(eds.) Trust 2011. LNCS, vol. 6740, pp. 188–201. Springer, Heidelberg (2011)



454 S. Jia et al.

18. Ravikanth, P.S.: Physical one-way functions. Ph.D. thesis, Massachusetts Institute
of Technology (2001)

19. Selmi, L., Fiegna, C.: Physical aspects of cell operation and reliability. In: Flash
Memories, pp. 153–239. Springer, USA (1999)

20. Škorić, B., Tuyls, P., Ophey, W.: Robust key extraction from physical uncloneable
functions. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS,
vol. 3531, pp. 407–422. Springer, Heidelberg (2005)

21. Skorobogatov, S.: Flash memory ‘Bumping’ attacks. In: Mangard, S., Standaert,
F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 158–172. Springer, Heidelberg (2010)

22. Subha, S.: An algorithm for secure deletion in flash memories. In: 2nd IEEE Inter-
national Conference on Computer Science and Information Technology, ICCSIT
2009, pp. 260–262. IEEE (2009)

23. Suh, G.E., Devadas, S.: Physical unclonable functions for device authentication
and secret key generation. In: Proceedings of the 44th Annual Design Automation
Conference, pp. 9–14. ACM (2007)

24. Suh, G.E., O’Donnell, C.W., Devadas, S.: Aegis: a single-chip secure processor. Inf.
Secur. Tech. Rep. 10(2), 63–73 (2005)

25. Wang, A., Li, Z., Yang, X., Yu, Y.: New attacks and security model of the secure
flash disk. Math. Comput. Model. 57(11), 2605–2612 (2013)

26. Wang, C., Wong, W.F.: Extending the lifetime of nand flash memory by salvaging
bad blocks. In: Proceedings of the Conference on Design, Automation and Test in
Europe, pp. 260–263. EDA Consortium (2012)

27. Wang, Y., Yu, W.k., Wu, S., Malysa, G., Suh, G.E., Kan, E.C.: Flash memory
for ubiquitous hardware security functions: true random number generation and
device fingerprints. In: IEEE Symposium on Security and Privacy (SP), pp. 33–47.
IEEE (2012)

28. Xu, S.Q., Yu, W.k., Suh, G.E., Kan, E.C.: Understanding sources of variations in
flash memory for physical unclonable functions. In: IEEE 6th International Memory
Workshop (IMW), pp. 1–4. IEEE (2014)

29. Yu, M.-D.M., M’Raihi, D., Sowell, R., Devadas, S.: Lightweight and secure PUF
key storage using limits of machine learning. In: Preneel, B., Takagi, T. (eds.)
CHES 2011. LNCS, vol. 6917, pp. 358–373. Springer, Heidelberg (2011)

30. Zambelli, C., Chimenton, A., Olivo, P.: Reliability issues of nand flash memories.
In: Inside NAND Flash Memories, pp. 89–113. Springer, Netherlands (2010)


	Extracting Robust Keys from NAND Flash Physical Unclonable Functions
	1 Introduction
	2 Related Works
	3 Background
	3.1 Uncertain States of NAND Flash Memory Cells
	3.2 Disturbance Related to NAND Flash Memory Array Organization

	4 Robust Key Generation
	4.1 Extracting Raw NFPUF Output Numbers
	4.2 Extracting Robust Keys from the Raw NFPUF Output Numbers

	5 Implementation and Evaluation
	5.1 Tested Device
	5.2 Experimental Results and Evaluation

	6 Conclusion
	References


