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Abstract. The existing network security infrastructure is not ready for
future protocols such as Multipath TCP (MPTCP). The outcome is that
middleboxes are configured to block such protocols. This paper studies
the security risk that arises if future protocols are used over unaware
infrastructures. In particular, the practicality and severity of cross-path
fragmentation attacks utilizing MPTCP against the signature-matching
capability of the Snort intrusion detection system (IDS) is investigated.
Results reveal that the attack is realistic and opens the possibility to
evade any signature-based IDS. To mitigate the attack, a solution is also
proposed in the form of the MPTCP Linker tool. The work outlines the
importance of MPTCP support in future network security middleboxes.
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1 Introduction

The single path nature of traditional TCP1 is arguably its greatest weakness.
Traditional TCP implements connections between two sockets (pairs of host IP
addresses and port numbers) and this 4-tuple needs to remain constant during
the lifetime of the connection. Today, end-hosts are equipped with multiple net-
work interfaces, all of which can have a unique IP address. A traditional TCP
connection from/to such a host will be limited to using only one path (defined
by the two sockets) at a time. Thus, there is a potential and a need to imple-
ment TCP connections between end-hosts that can utilize all possible paths that
the hosts provide. Such connections will provide higher availability and higher
throughput, among many other advantages. They can also solve a number of
existing problems in the Internet of today [11,29].

Multipath TCP (MPTCP2) is an extension to traditional TCP that adds
the missing ability and enables the use of multiple paths between hosts. It is
carefully designed to work on the Internet of today. It also has a fallback mech-
anism that allows it to switch to traditional TCP when MPTCP is not feasible.
The developers of MPTCP have until now specially focused on the feasibility
aspects of the protocol and also ensure that no residual security vulnerabilities
1 Traditional TCP is the same TCP we know and use today.
2 Multipath TCP is also referred to as MPTCP.
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exist in the protocol itself. However, the network security impacts of using the
new MPTCP protocol on the existing infrastructure are yet to be thoroughly
investigated.

1.1 Motivation and Research Questions

Internet hosts a number of middleboxes. These middleboxes are deployed either
in the form of dedicated hardware or software-based solutions. Nevertheless, most
of them are transparent (implicit) with end-hosts unaware of their existence.
These middleboxes are deployed to do more processing than simply forwarding
the packets that pass through. More and more enterprises are implementing and
deploying middleboxes in the form of load balancers, Network Address Transla-
tors (NAT), firewalls and Intrusion Detection and Prevention Systems (IDPS)
to optimize performance and enhance network security. The middleboxes that
are used to improve security perform intrusion detection and prevention. One
widely used technique in such systems is based on pre-defined signatures. The
signatures used for detection have been developed over the years by making a
number of assumptions about the behavior and pattern of the traffic. As revealed
by [23], many of those assumptions may no longer be valid with the advent of
new protocols like MPTCP. In fact, MPTCP opens the possibility of intrusion
detection system (IDS) evasion, where a sender can fragment the data stream
and send the fragments across multiple paths in a way such as to bypass the IDS.

This has left the enterprises with a headache as the middlebox infrastructure
is unaware of MPTCP and allowing such traffic to go through might come at the
cost of degraded security. An increasing number of enterprises have decided not
to take that risk and instead configure their middleboxes to remove the MPTCP
option and force the protocol to fall back to traditional TCP. A few years ago,
Honda et al. [12] found that 14 percent of the tested paths use middleboxes to
eliminate the MPTCP options. This behavior of middleboxes is a stumbling block
in the universal deployment of MPTCP. There is therefore a need to investigate
whether the concerns related to the use of MPTCP are actually true and how
dangerous the potential attacks could be.

IDS evasion using Multipath TCP is possible, as shown in [23], but how do
the current IDS solutions react under such an intrusion attempt? What is the
severity or seriousness of the situation? Is there a solution to the problem? In
this paper, we try to answer these questions. We use Snort [24] as an example of
a popular software-based middlebox and investigate how cross-path data frag-
mentation using MPTCP affects its detection capability. We do so by generating
attack traffic corresponding to the latest Snort rule set using the tools we have
developed. The traffic is fragmented and sent across a varying number of paths
using MPTCP to a server where Snort is running (loaded with the same rule
set) as a middlebox. The number of intrusions detected by Snort is counted and
compared to the benchmark results collected using the same set-up but with
traditional TCP (or a single subflow). The goal is to establish the extent to
which the detection suffers and security degrades as a consequence of cross-path
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fragmentation. Finally, to mitigate the degraded detection, a novel solution is
proposed in the form of the MPTCP Linker tool.

1.2 Contribution

The key contributions of this paper are as follows: (1) A statistical analysis of
the latest Snort rule set (snapshot 2970); (2) Development of novel tools to parse
Snort rules, generate relevant payloads, fragment equally across available paths
and send them to a server using MPTCP; (3) Development and implementation
of a research methodology to test the effects of cross-path data fragmentation
using MPTCP on Snort’s detection engine; and (4) Introduction of a solution in
the form of the MPTCP Linker tool that can be used as an extension to Snort
to mitigate the cross-path fragmentation attack.

1.3 Paper Structure

The rest of the paper is structured as follows. Section 2 summarizes related work.
Section 3 provides some background on MPTCP and Snort, which is relevant for
future sections. Section 4 provides a description of the research methodology
developed to carry out the work and the working of different tools. Section 5
presents a statistical analysis on the Snort rule set. Section 6 shows the results
of the testing and evaluation of Snort. Section 7 describes a solution to mitigate
the attack. Section 8 provides an outlook and, finally, Sect. 9 provides concluding
remarks.

2 Related Work

Much effort has been put into the feasibility and functionality side of MPTCP.
Honda et al. [12] studied the real world feasibility of extending TCP in their
work. They used volunteers across 24 countries to test the traversal of unknown
TCP options through the middleboxes deployed in different access networks. In
total, 142 paths were tested between September 2010 and April 2011. The results
showed that 20 of the 142 paths removed or stripped the unknown MPTCP
options, while the remaining 122 paths passed the options intact. Since most
paths allowed the unknown option, the authors concluded that extending TCP
using new options is feasible as long as the new extension has a fallback mecha-
nism. They also outlined that the paths with middleboxes that strip the options
can easily be configured to allow the unknown options to pass through, provided
that the new options do not introduce a security risk. Lanley [14] also studied
the viability of TCP extensions. The work of both Honda et al. and Lanley has
influenced the design of MPTCP in its current form.

Some focus has also been placed on the inherent threats in the MPTCP pro-
tocol extension. A draft [6] has been proposed to identify potential vulnerabilities
in the MPTCP design. The overall goal is to ensure that MPTCP is no worse
than traditional TCP in terms of security. A number of potential attacks have
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been identified and their possible solutions have been proposed. Such solutions,
if implemented, can help push MPTCP to become a standard.

However, the network security implications of MPTCP have not been stud-
ied very much. The most significant work in this regard was that of Pearce and
Thomas [23]. In their work, they investigated the effects of MPTCP on current
network security and indicated that the existing security infrastructure is not
MPTCP aware. To demonstrate the risk, a tool [28] was developed to show pre-
liminary IDS evasion. Our work will further contribute to this area and highlight
the network security implications of MPTCP using novel tools and will propose
novel solutions.

3 Background

In this section, we discuss some key concepts and information that will be bene-
ficial to comprehend the future sections. First, multipath transfers are discussed
with a focus on MPTCP. Network security implications are then emphasized.
Finally, the Snort IDS is presented.

3.1 Multipath Networking

TCP has enjoyed success for decades and will continue to do so. However, there
have been an ever increasing number of situations where it falls short. The
dependency of a TCP connection on the same pair of IP addresses and port
numbers throughout the life of the connection is becoming an issue for a number
of use cases and applications. Therefore, researchers attempted to address the
issue as early as 1995 in the form of a draft [13]. The draft identified different
cases where the above mentioned dependency is harmful and proposed modifying
TCP and adding a new Protocol Control Block (PCB) parameter. This para-
meter will allow the IP addresses to change during the course of a connection.
Recent efforts have seen the development of the SCTP protocol [26], which has
a great deal of potential but has so far failed to achieve wide-scale deployment.
There are two main reasons behind the failure of such efforts. First is their rev-
olutionary nature, which requires changes in the software and sometimes even
hardware. Second is the feasibility aspect. Any attempt to introduce an almost
completely new protocol on the Internet will most likely fail. Such a protocol will
not be able to traverse far across the Internet because most of the networking
infrastructure on the Internet assumes that TCP and UDP are the only two
transport layer protocols that exist. In addition, the proposed solutions had no
fallback mechanism, which made them a failure.

In this regard, the latest efforts in multipath networking have more of an
evolutionary nature. The feasibility of the solution has been a paramount consid-
eration because, no matter how good a solution is, it is only going to succeed if it
will be feasible to use it on a wide scale. The IETF established a working group
called Multipath TCP in 2010. The group was tasked to develop mechanisms
that can add the capability of multiple paths to the traditional TCP without
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requiring any significant modifications to the existing Internet infrastructure.
The deployability and usability of the solution were also two key goals. The first
draft was put forward by the working group in 2011 in the form of RFC 6824 [9].

Overview of MPTCP. MPTCP is an extension to traditional TCP that
enables a TCP connection to operate across multiple paths simultaneously [9].
This brings the support to a number of use cases, which was not possible before.
It is designed to run on top of today’s Internet infrastructure and has a fallback
mechanism that allows it to be backward compatible. Crudely, an MPTCP con-
nection consists of one or more subflows. Each of these subflows is a proper TCP
connection but with additional MPTCP options that allow every subflow to be
linked to an MPTCP connection. A detailed technical discussion of the protocol
is beyond the scope of this work. Hence, we discuss only some key concepts and
the operation of MPTCP in the subsequent text.

Implementation. MPTCP is realized using the options field available in the
TCP header. IANA has assigned a special TCP option (value 30) to MPTCP.
Individual messages use MPTCP option subtypes. MPTCP implementations are
already available on a number of operating systems. It is available for Linux [20],
BSD [4] and Android [7]. Commercially, Apple has implemented it in iOS7 [5]
and OS X Yosemite [22]. In our work, the Linux kernel implementation [20] of
MPTCP is used.

Initiating an MPTCP Connection. An MPTCP connection uses the same
three-way connection establishment handshake as the traditional TCP but with
an MP CAPABLE option attached to all the exchanged messages. This option
serves two purposes. First, it announces to the remote host that the sender
supports MPTCP. Second, it carries additional information, e.g. random keys,
which can be used in forthcoming exchanges. Figure 1 shows the required inter-
action between a multipath capable client and server to successfully complete
the MPTCP handshake. This initial handshake is also called the MP CAPABLE
handshake.

Addition of a New Subflow. Additional subflows can be added to an estab-
lished MPTCP connection. This is achieved in the same way as initiating a new

Fig. 1. MP CAPABLE handshake. Fig. 2. MP JOIN handshake.
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MPTCP connection but instead making use of the MP JOIN option. This option
uses the keys exchanged in the MP CAPABLE handshake to tell the remote end
that the connection request is not for a new connection but relates to an exist-
ing one. Figure 2 shows the handshake involved. This handshake is also known
as MP JOIN handshake. New subflows can be added or removed at any time
during the lifetime of a connection. For further details, see [9].

Data Transfer using MPTCP. MPTCP ensures reliable and in-order deliv-
ery of the data across all subflows of an MPTCP connection using a Data
Sequence Number (DSN). Every subflow has its own transmission window
(sequence number space), and the DSS option of MPTCP is used to map the
subflow sequence space to the overall MPTCP connection space. This enables
data to be retransmitted on different subflows in the event of failure. On the
receiver side, MPTCP uses a single receive window across all subflows.

The important thing to note is that the proposed MPTCP standard leaves
the exact routing or scheduling of traffic among the subflows up to the implemen-
tation. In a common use case where a higher throughput is desired, all available
paths (subflows) can be used simultaneously [9]. A sender of the data can tell
the receiver how the data are routed among the subflows using the DSS option.
The receiver uses this information to re-order the data received over different
subflows before passing them on to the application layer in the correct order.
Thus, MPTCP enables the sender to choose how to split the input data among
the available subflows.

3.2 Network Security Reflections

MPTCP has a number of network security implications. It affects the expecta-
tions of other entities in the environment where the protocol extension is used.
Network infrastructures can not expect MPTCP to behave in ways similar to
those of the traditional TCP.

In this regard, one such observation that is most relevant for this work is
cross-path data fragmentation. As discussed earlier, MPTCP allows the use of
multiple paths simultaneously. A sender can also distribute the data stream
among the subflows as it wishes. This opens the possibility to perform cross-path
fragmentation attacks. A sender can send a known malicious payload by frag-
menting it across the subflows in a smart way. The activity will not be detectable
by any existing (or non-MPTCP aware) network security middleboxes because,
for all they know, every subflow (path) is an independent TCP connection with
an unknown fragmented payload.

To further exacerbate the situation, this is just a single problem. The fact that
the network paths that are part of the MPTCP connection could be controlled
by different Internet Service Providers (ISPs) implies that there may not be
any single point in the network that can be used to observe the traffic from all
paths. This in turn implies that, even if a middlebox is intelligent enough to
know that different subflows make up one MPTCP connection, it may not be
able to properly aggregate the traffic and inspect, simply because some subflows
may not be visible to it.
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3.3 Snort

In the open source world, Snort [24] is the de facto standard IDPS. Snort is
effective and is available under the GNU General Public License [25], making it
the most widely deployed solution in the world [27].

Snort Operation. Snort provides protection in two ways. It can provide detailed
statistics on traffic that can be used for detection of anomalies. It can also pro-
vide pattern-matching, which can be used for signature detection. Snort utilizes
a rule-based detection approach to perform signature matching on the contents
of traffic and detect a variety of attacks [24]. It can currently analyze packets
belonging to the four protocols TCP, UDP, ICMP and IP. The detection engine
of Snort is configured based on rules. Rules are used to define per packet tests
and actions. Once Snort is running with a set of rules, it analyzes every packet
that passes through and checks whether the specification given in any of the
rules exactly matches the packet. If it detects a match, then it has the possibil-
ity to generate and send real time alerts to the syslog facility, a UNIX socket
or a CSV formatted alert file. The paper by Roesch [24], who is the founder of
Snort, provides more detailed information on it.

Rules. Snort rules are written in a simple and flexible, yet powerful, language.
Basically, every Snort rule can be divided into two logical parts, a rule header
and the rule options. The rule header defines the action of the rule, the protocol
it detects, the pair of source IP address/port number, and the pair of destination
IP address/port number. The rule options consist of the alert message to display
and further information about the processing to perform on the packet as well
as which parts of the packet should be inspected. The following is an example
of a Snort rule.

alert tcp any any -> any any (msg:‘‘Sample alert’’;content:‘‘Hello’’;)

The above rule should trigger on an incoming TCP packet from any source
IP address and port going to any destination IP address and port as long as it
contains the text “Hello” in its payload.

4 Experimental Methodology

This section will provide information about the experimental methodology that
was developed and was used to carry out the testing. Figure 3 shows the overall
set-up. The client and server sides, both, have component modules that work
together to achieve the task. The client and server sides are described in the
forthcoming text.

4.1 Client Side

The client side of the methodology is made up of the latest Snort rule set and
three tools, namely the Rule Analyzer, the Rule Parser and the MPTCP tool.
We will describe all of these components in the forthcoming text.
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Fig. 3. Experimental setup.

Snort Rules. The latest Snort registered user rule snapshot (2970), available
at [27], is used in this work. All the rule files inside the folder (except three3)
are passed on to the Rule Analyzer.

Rule Analyzer. Rule Analyzer performs the following tasks. It reads all input
files one by one, analyzes every single rule and then outputs statistics. The sta-
tistics provide a distribution of rules by protocol, keyword and other parameters
as requested by the user. The Rule Analyzer is used to perform the statistical
analysis on the rules.

Rule Parser. A mechanism to parse every Snort rule and craft a consistent
payload according to the details in the rule was required. A literature review
uncovered tools such as Stick [10], PCP [21] and Mucus [18]. Further investi-
gation found two main drawbacks to these related approaches. First, they are
stateless, which means that they can only handle rules relating to stateless proto-
cols such as ICMP and UDP. TCP, on the other hand, maintains states, and any
tool not supporting it will be limited in its coverage. Secondly, they are at least
ten years old and are thus not compatible with the rule syntax of modern IDSs.
A more recent attempt has been the rule2alert [16] tool which, although it is a
great improvement over other approaches, still lacks some required functionality.
For this work, a further enhancement of [16] was conducted. The tool developed
has been presented at [3]. It is able to translate a large number of Snort rules
into corresponding payloads. Such payloads can later be encapsulated in packets
and used to test the detection accuracy of Snort. This is due to the facts that
the payloads are generated directly from the details in the rule and that Snort
uses the same rules for detection.

The tool developed searches for the content keyword in the option field of
every rule. The keyword content is used to define the signature that Snort should
search for in a packet payload. The signature can be a text sequence, binary
3 Among these three files, one contains old and deleted rules, one is for local rules and

the third is for obsolete X windows rules. All of these were deemed irrelevant.
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data or even a combination of text and binary data. If Snort detects data that
exactly match that given using the content keyword in a packet payload, the
test is successful and the remainder of rule options are checked. The tool uses
regular expressions to find the signatures mentioned in every rule (signatures
follow the content keyword, e.g. content:“Hello”) and extracts them. A payload
is crafted for each rule and sent to the MPTCP tool, which will be described
later.

Snort also supports a number of additional modifier keywords, e.g. dsize,
offset, distance and within in the rule options field. These keywords modify the
semantics of the content keyword. As an example, the offset keyword tells Snort
that, instead of starting pattern matching for a signature at the beginning of
the payload in a packet, Snort should actually start pattern matching from the
given offset value. Hence, if the modifier keywords are ignored when crafting the
payloads, then it is implausible to expect Snort to generate alerts. The Rule
Parser tool developed is smart enough to craft the payload by taking modifier
keywords (if any) into account.

Limitation. It is not currently possible to test all Snort rules. There are a
number of keywords that are more complex and require extra effort to build the
corresponding payload for. That is why Snort rules are classified into testable
and untestable categories when the statistical analysis of the rules is conducted
in Sect. 5.

MPTCP Tool. This is the core tool responsible for generating MPTCP packets
with the given payloads and sending them to the destination server. It runs
in a virtual machine with Ubuntu as the operating system. The Linux kernel
implementation [20] of MPTCP is used, which adds the MPTCP support to the
kernel’s networking subtree. The tool is inspired by the software [28] released by
Pearce et al. [23] with a few improvements.

The tool implements an ad hoc MPTCP scheduler as in [28]. The main
criterion used by the tool to fragment the data stream is that the destination
should be able to correctly reassemble data in the right order. In that sense,
the minimum size of a fragment has to be one byte or two hex digits. The
tool attempts to fragment data equally across all available subflows as much as
possible. This means that, if a way to split the data equally among all available
subflows exists, the tool will do that. However if, for a given set of data, it is not
possible to split it equally using all available subflows, the tool will use a subset
of available subflows. The tool uses the following formula to calculate packet size
for each subflow:

pkt size = ceiling

(
length of data

available subflows

)

As an example, let us consider a data stream, “netmap” or 0x6e65746d6170
in hex, and two available subflows. The data stream will be fragmented in the
following manner. Subflow 1 will be used to send 0x6e6574 and subflow 2 will be
used to send 0x6d6170. If the available subflows are three, then subflow 1 will
send 0x6e65, subflow 2 send 0x746d and finally subflow 3 send 0x6170. However,
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if the available subflows are four, there is no way to divide the data stream
equally using all subflows. Thus, one subflow (subflow 4) will not be used at all.
Regardless of how data are fragmented, it should be noted that the destination
always receives data in a way such that they can be reassembled back to create
the original data stream of 0x6e65746d6170 or “netmap”.

The ad hoc scheduler used might not be representative of the actual intention
of MPTCP developers, but there is nothing to stop an attacker from exploiting
things in a way in which they were not intended to be used. In fact, splitting data
equally among available paths (subflows) might also not be the most effective
way from an attacker’s point of view. There could be smarter ways of fragmenting
data across subflows while still ensuring that the receiver gets the original data
stream. We believe that the scheduler implemented is good enough to show the
scope of the problem. The improved version of our tool can perform the following
tasks:

1. Test the server for MPTCP support.
2. Perform a three-way MPTCP handshake with the MPTCP server.
3. Add the user defined number of subflows to the connection.
4. Send the given payload (can be text, binary or both) to the server using any

specific user defined subflow.
5. Send the given payload (can be text, binary or both) to the server by frag-

menting it equally across all available subflows (using the ad hoc scheduler).
6. Terminate the MPTCP connection.

4.2 Server Side

The server side of our methodology is made up of the Snort IDS, the MPTCP
server, a log file generated by Snort and the Log Analyzer tool. Snort was
described in Sect. 3, and the remaining components are discussed below.

MPTCP Server. A virtual remote machine with Ubuntu and the MPTCP
kernel implementation [20] is used as the server. A simple off-the-shelf server
(http-server [19]) is utilized to listen to incoming connections on port 80. The
server accepts any incoming MPTCP connections on port 80 and receives the
data. It is powerful enough to deal with a high number of simultaneously incom-
ing requests.

Log Analyzer. Manually analyzing the log file generated by an IDS is a hectic
task. Log Analyzer aims to automate this process. Snort writes its alerts to a
CSV formatted log file in real time. Every value is at a fixed position on each
line of the log file and can be extracted. The Log Analyzer reads the CSV file,
parses and extracts the important features and then displays an output table
similar to Table 1. We are thus able to see how many alerts per rule category
exist in the log file.
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Table 1. Output of the Log Analyzer tool.

Index Category Triggered alerts

5 Statistical Analysis of Snort Rules

This section presents the results of a statistical analysis conducted on the latest
Snort rules. The motivation for this study was an investigation of how much of
the Snort rule set might be affected by the cross-path data fragmentation attack
using MPTCP. Thus only the rules relating to the TCP protocol were of interest.
The results are based on Snort registered user rules v2.9 (snapshot 2970). The
Rule Analyzer described in Sect. 4 is used to perform the analysis.

5.1 Results

Table 2 shows the results when the Rule Analyzer tool processes the Snort rules
folder with all the relevant rule files in it. Table 3 shows the breakdown of TCP
rules.

Table 2. Distribution of Snort rules v2.9 (excluding deleted rules).

Protocol TCP UDP ICMP IP Total

Rules 18577 (84.17 %) 3134 (14.20 %) 156 (0.70 %) 203 (0.91 %) 22070

Table 3. Break down of TCP rules.

TCP Rules with content Rules with offset Testable Untestable

18577 18398 (99.03 %) 959 (5.16 %) 9857 (53.06 %) 8720 (46.93 %)

5.2 Trends

To investigate the evolution of Snort rules and any possible trends, the results
obtained can be compared to older rule sets. However, due to licensing issues,
it is not easy to acquire old Snort rules. An old study conducted on Snort rules
v2.4 [17] is nevertheless relevant. In addition, two old rule set versions from
October 2000 and June 2001 were found at [1]. The results of the old study on
rules v2.4 and the breakdown of rules available at [1], performed by the Rule
Analyzer tool that was developed, are shown in Table 4.

On the basis of these results, Fig. 4 shows a comparison chart. The following
observations can be made from the comparison: (1) the total number of rules have
increased significantly over the years (from 422 in October 2000 to 22070 today;
(2) IP rules were non-existent at least until June 2001; (3) ICMP rules have
increased but not considerably (from 47 to 156); (4) UDP rules have increased
by a factor of 47 (from 66 to 3134); (5) TCP rules have increased rapidly by a
factor of 60 (from 309 to 18577); and (6) TCP rules dominate other protocol
rules over the years.
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Table 4. Distribution of Snort rules v2.4, June’01 and Oct’00.

Rule Set TCP UDP ICMP IP Total

v2.4 6494 356 132 39 7021

June 2001 404 86 55 0 545

October 2000 309 66 47 0 422

Fig. 4. Bar chart with a comparison of the number of rules in different rule sets.

6 Evaluation of Snort

This section will discuss the outcome of implementing the methodology discussed
in Sect. 4. The overall operation is described next, and is followed by the results
and a discussion.

6.1 Operation

The experimental methodology (see Fig. 3) discussed in Sect. 4 was put into
operation in the following way. First, every rule category4 file of Snort rules v2.9
is provided to the Rule Analyzer tool, which performs the analysis and classifies
the rules into different protocols. Since UDP and ICMP rules will not be affected
by any change at the transport layer, they are discarded. The remaining TCP
rules are further classified into testable and untestable rules by the Rule Analyzer
depending on whether the Rule Parser tool can create an accurate payload for
them. Next, the testable TCP rules of every category are used as input to the
Rule Parser tool to create a unique payload for each rule. These payloads are
passed on to the MPTCP tool, which acts as a client. It establishes an MPTCP
connection with the server, adds additional subflows to the connection and sends
the payload across by equally fragmenting it among the available subflows. Every
payload is tested using up to five subflows, starting from one subflow (which is
equivalent to traditional TCP).

4 According to the new Snort rule categories.



Multipath TCP IDS Evasion and Mitigation 277

On the server side, a software-based middlebox Snort IDS runs with the
same rules as were used to create the payloads. Every packet received on the
server is logged and analyzed in detail by Snort before its being passed on to the
Multipath TCP capable TCP/IP stack. Ideally, Snort should generate an alert
for every rule due to the fact that all the incoming packets are specially crafted
to trigger an alert. Snort logs its alerts in an alert file that is inspected by the
Log Analyzer to extract the results discussed in the next subsection.

6.2 Results

Table 5 shows the test results for all Snort rule categories. For every category,
an evaluation is conducted five times by changing the number of subflows and
effectively increasing data fragmentation. The results with one subflow can be
considered to be the baseline, since an MPTCP connection with one subflow is
essentially a traditional TCP connection.

6.3 Discussion

The findings in Table 5 are of considerable significance. The results show that
the Rule Parser tool has some inaccuracies. This leads to a lower number of
triggered alerts than expected. Nevertheless, the number of alerts generated by
Snort should be the same for any number of subflows, whether it be one subflow
(equivalent to a traditional TCP session) or five subflows. This is not the case
according to the results5. It can be observed from the results that, in general,
the number of subflows in an MPTCP connection has an inversely proportional
relationship with the detection capability of Snort. As the number of subflows
increase (so does the data fragmentation), the detection of Snort suffers even
more. With the fragmented data, Snort is only able to get partial matches of
the signatures it is looking for in the packets. Snort is still able to detect some
intrusions, even with five subflows. A deep look at those rules reveals a common
characteristic. All such rules that still work search for a very small signature.
Therefore, the MPTCP tool was not able to equally fragment the corresponding
data stream of those rules using all available subflows.

The rationale behind this degraded detection capability of Snort is the lack
of MPTCP awareness. Snort interprets all TCP subflows within an MPTCP
connection as independent TCP connections. It has no awareness that multiple
subflows could actually be components of the same MPTCP connection. Snort
analyzes every TCP subflow in isolation and expects to see all the traffic required
for matching a signature in that TCP session. That is not the case with an
MPTCP connection of multiple subflows. The intrusion data are present in the
overall MPTCP session (fragmented across subflows), and Snort can still not
detect it. This behavior was referred to as single-session bias in a recent IETF
draft [15]. These results confirm the concerns raised by [23]. The lack of MPTCP

5 About one half of the Snort rule set is evaluated, but similar results are expected
from the remaining rules.
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Table 5. Results from all categories.

Index Category Subflows Payloads sent Triggered alerts

1 FILE 1 2064 2018

2 2064 120

3 2064 110

4 2064 98

5 2064 97

2 PROTOCOL 1 151 123

2 151 9

3 151 8

4 151 8

5 151 8

3 POLICY 1 364 340

2 364 31

3 364 28

4 364 27

5 364 25

4 SERVER 1 1753 1475

2 1753 951

3 1753 951

4 1753 935

5 1753 928

5 BROWSER 1 963 946

2 963 8

3 963 5

4 963 4

5 963 4

6 MALWARE 1 2539 1959

2 2539 679

3 2539 565

4 2539 576

5 2539 537

7 OS 1 288 271

2 288 57

3 288 52

4 288 51

5 288 50

8 INDICATOR 1 339 269

2 339 70

3 339 60

4 339 57

5 339 60

9 PUA 1 617 527

2 617 449

3 617 413

4 617 351

5 617 211

10 MISC. 1 779 680

2 779 362

3 779 156

4 779 146

5 779 154
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awareness on the part of middleboxes performing traffic inspection is the primary
reason why they are configured to force MPTCP into using traditional TCP
instead. Essentially, these middleboxes currently see MPTCP traffic as attack
traffic. If they allow it to pass, then the outcome is degraded functionality and
degraded security.

7 Proposed Solution

We introduce the MPTCP Linker, a tool that captures and analyzes MPTCP
packets to link sessions and correlate MPTCP subflows with the goal to mitigate
the above discussed cross-path fragmentation attack. Using the MPTCP options,
TCP flags and a few tricks, it is able to associate MPTCP subflows along with
the data sent on them with the respective MPTCP connections (something Snort
can not do). Figure 5 depicts the higher level concept behind the tool and the
forthcoming subsections discuss the implementation and the validation of the
tool.

7.1 Implementation

MPTCP Linker is implemented as a python script and is available at [2]. It
sniffs the chosen network interface card for MPTCP packets and performs its
processing using few commodity and open source modules. As output, it can
generate TCP based pcap files. A separate pcap file is generated for each MPTCP

Fig. 5. Flow chart for operation of the MPTCP linker
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Table 6. Validation of the MPTCP linker.

Category Subflows Payloads Sent Alerts (before6) Alerts (after7)

PROTOCOL 1 151 123 123

2 151 9 123

3 151 8 123

4 151 8 123

5 151 8 123
6 Snort performed detection directly.
7 Snort performs detection using packets generated by the MPTCP

Linker.

session. Every pcap file contains in-order data from all subflows of that MPTCP
session.

7.2 Validation

We validate the MPTCP Linker under the same attack traffic that was used for
the evaluation of Snort in Sect. 6. Snort has an offline mode where it reads pcap
files and detects intrusions from the packets. This offline mode is utilized for the
validation. MPTCP Linker runs on the server side and performs its processing on
all attack traffic to generate pcap files. The pcap files are then used by Snort in
offline mode to perform intrusion detection. Table 6 shows the evaluation results
from one category (due to space limitations) of Snort rules.

As can be seen in Table 6, the MPTCP Linker mitigates the earlier discussed
cross-path fragmentation attack. The number of intrusions detected by Snort
are consistent (123), irrespective of whether one subflow or up to five subflows
are used to fragment the data stream. The MPTCP Linker correlates MPTCP
subflows, links them to their respective MPTCP sessions and keeps track of the
data on those subflows. Once it detects the termination of a session, it extracts
data from all subflows of that session and reassembles them to recreate the
original data stream in the correct order.

8 Outlook

The ultimate solution to this problem will be the evolution of the network secu-
rity infrastructure to fully support MPTCP. However, there could be interim
solutions that can be employed in the meantime to partially support the protocol
and still ensure security. One such solution has been proposed and implemented
in this work in the form of the MPTCP Linker [2]. There are also suggestions
for developing TCP-MPTCP (and vice versa) proxies or a protocol converter [8].
Such solutions can help in the deployment of MPTCP as well as benefit network
security.
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9 Concluding Remarks

This paper investigated the reasons why existing network security middleboxes
block MPTCP connections. With the help of a systematic experimental method-
ology, it was established that MPTCP could indeed be used by an attacker to
degrade the functionality of existing network security middleboxes. To take a
step towards adding MPTCP support and making security middleboxes MPTCP
aware, a solution was also proposed and evaluated. The solution has been released
under an open-access license for the benefit of the whole community. It also mer-
its mentioning that only one of potentially many issues has been investigated
in this work. Other security issues that arise with the advent of MPTCP, par-
ticularly the common scenario where only partial traffic passes through security
middleboxes, also need to be explored and resolved.
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