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Abstract. In this work we introduce Oblivious Password based Authen-
ticated Key Exchange (O-PAKE) and show how ordinary PAKE pro-
tocols can be transformed into O-PAKE. O-PAKE allows a client that
holds multiple passwords and is registered with one of them at some
server to use any subset of his passwords in a PAKE session with that
server. The term oblivious is used to emphasise that the only informa-
tion leaked to the server is whether the one password used on the server
side matches any of the passwords input by the client. O-PAKE pro-
tocols can be used to improve the overall efficiency of login attempts
using PAKE protocols in scenarios where users are not sure (e.g. no
longer remember) which of their passwords has been used at a particular
web server. Using special processing techniques, our O-PAKE compiler
reaches nearly constant run time on the server side, independent of the
size of the client’s password set; in contrast, a naive approach to run a
new PAKE session for each login attempt would require linear run time
for both parties. We prove security of the O-PAKE compiler under stan-
dard assumptions using the latest game-based PAKE model by Abdalla,
Fouque and Pointcheval (PKC 2005), tailored to our needs. We identify
the requirements that standard PAKE protocols must satisfy in order to
suit our O-PAKE transformation and give two examples.

1 Introduction

Authentication with passwords is the most common (and perhaps most critical)
authentication mechanism on the modern Internet. The dominating approach
today is when clients send passwords (or some function thereof) to the server
over a secure channel (e.g. TLS [18]). This approach requires PKI and its security
relies solely on the secure channel and the client’s ability to correctly verify
the server’s certificate. Any impersonation of the certificate leads to password
exposure. Even if no impersonation takes place, any password input on the client
side is revealed to the server. This creates a different problem based on statistics,
indicating that many users operate with a small set of passwords but often do
not remember their correct mapping to the servers. If a user types in a password
that is not shared with this server but with another one then its exposure may
lead to subsequent impersonation attacks on the client. The studies in [20,21]

c© Springer International Publishing Switzerland 2015
J. Lopez and C.J. Mitchell (Eds.): ISC 2015, LNCS 9290, pp. 191–208, 2015.
DOI: 10.1007/978-3-319-23318-5 11



192 F. Kiefer and M. Manulis

show that every user has 6.5 passwords on average, used on 25 different websites
and that on average 2.4 password trials are required until the user types in the
correct password. These numbers suggest that in case where a server limits a
number of failed attempts to say 3, in the worst case roughly 2 passwords from
the client’s set could potentially be revealed to the server within a single TLS
session — a significant threat for the client. Note that the amount of work for
processing failed login attempts on the server side is negligible since all trials are
performed through the same secure channel.

The notion of Password-based Authenticated Key Exchange (PAKE), intro-
duced by Bellovin and Merritt [8], initially formalised in [6,14], and later explored
in numerous further works [1–5,11,16,22,23,26,27], is considered as a more
secure alternative to the above approach. The standard model of PAKE does not
require any PKI and assumes that only a human-memorable password is shared
between both parties. PAKE protocols solve the problem of potential password
leakage, inherent to the previously described approach. They aim to protect
against offline dictionary attacks but require the same method of protection
against online dictionary attacks as the aforementioned TLS-based approach,
namely by restricting the number of failed password trials. While passwords can
be retransmitted and checked by the server, using the same TLS channel, the
only way for current PAKE protocols to deal with failed password trials is to
repeat the entire protocol. This however implies that the computational costs on
the server side, in particular for (costly) public key-operations that are inherent
to all PAKE protocols, increase linearly with the number of attempts. This can
be seen as a reason for the limited progress on the adoption of PAKE on the
Internet (in addition to unrelated issues such as browser incompatibility, patent
considerations, and the lack of adopted standards).

While handling multiple password trials with PAKE may seem like a pure
implementation problem at first sight, the problem becomes non-trivial if we
want to avoid linear increase of public key operations on the server side. This
seems to be avoidable only if in a single PAKE execution the client can use
several passwords, while the server would use only the one password, shared
with the client. Yet this idea alone is not sufficient for breaking the linear bound
on the server side: for instance, assume that one PAKE execution is built out
of n independent (possibly parallelised) runs of some secure PAKE protocol,
where the client uses a different password in each run but the server uses the
same one in all of them. The amount of work for the server in this case would
still remain O(n). Therefore, something non-trivial must additionally happen in
order to reduce the amount of work on the server side to O(1).

However, we still need to fulfil basic PAKE requirements like addressing the
persistent threat of online dictionary attacks by enforcing that the number of
passwords that can be tested by the client in one session remains below some
threshold, which is set by the server. For the server there is no difference whether
a client is given the opportunity to perform at most c independent PAKE sessions
(password trials) with one input password per session, or only one session but
with at most c input passwords. Finally, we must be able to prevent a possibly
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malicious server from obtaining any password from the set of passwords input
by the client.

1.1 Oblivious PAKE and Our Contributions

We solve the aforementioned problem of efficient handling of password trials on
the server side by proposing a compiler that transforms PAKE protocols in a
black-box way into what we call an Oblivious PAKE (O-PAKE). To describe
and analyse the proposed O-PAKE notion we introduce a new algorithmic way
to model PAKE protocols that also allows for easy compilation as done with
O-PAKE, and real-world implementation.

The functionality of O-PAKE protocols resembles that of PAKE except that
the client inputs a set pw of n ∈ [1, c] passwords while the server’s input is limited
to one password pw. The use of pw does not increase the overall probability for
online dictionary attacks in comparison to running a separate PAKE session for
each tried password because the maximum number of passwords c that the client
can try with O-PAKE is fixed by the server. The client can still input less than c
passwords, i.e. if the client is confident about validity of some particular pw for
a given server then pw can be used as the sole input, in which case O-PAKE is
equivalent to PAKE. In general, O-PAKE protocol execution succeeds if and only
if the server’s password pw is part of the client’s password set pw. We use the
standard (game-based) PAKE model by Bellare, Pointcheval, and Rogaway [6] in
its (stronger) Real-or-Random flavour from [4] and update it to account for the
use of pw as client’s input. In this model passwords are assumed to be distributed
uniformly at random. In practice, the use of passwords with different strengths
in the same O-PAKE session would lower the overall security to the probability
for guessing the weakest password (irrespective of the adopted strength metric).

The crucial idea behind our O-PAKE compiler is to let each client execute
n sessions of secure PAKE protocol in parallel and let the server execute only
one PAKE session. The challenging part is to enable the server to actually iden-
tify the correct PAKE session in which the client used the correct password pw,
while preserving security against offline dictionary attacks for all passwords in
the client’s password set pw. This is the trickiest part of the compiler. Intu-
itively, if the server can recover the messages of the correct PAKE session, it can
answer them according to the specification of the PAKE protocol. By repeating
this approach in each communication round of the given PAKE protocol both
parties will be able to successfully accomplish the protocol. If identification of the
correct PAKE session by the server requires only a constant amount of (costly)
operations, then the total amount of server’s work in the resulting O-PAKE
protocol will also remain constant. The amount on the client side remains lin-
ear in the size n of input passwords. This stems from the obvious fact that the
client has to compute messages for all PAKE sessions without knowing the cor-
rect password. We show how to apply our O-PAKE compiler to two concrete
PAKE protocols: the SPAKE protocol from [5] and the PAKE protocol from
[28] (for space limitations the second construction is given in the full version of
this work [29]).
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2 Oblivious PAKE Model

In this section we recall the PAKE security model from [4], tailored to the
needs of O-PAKE. The security model for O-PAKE protocols is in the multi-user
setting and utilises the Real-or-Random approach for AKE-security from [4,6].
Note that the AKE-security definition addresses the aforementioned security
against malicious servers, trying to retrieve client passwords. A server learning
information about the additional passwords in the client’s password set pw can
easily break AKE-security by using this password in another session with the
same client.

Participants and Passwords. An O-PAKE protocol is executed between two
parties P and P ′, chosen from the universe of participants Ω = S ∪ C, where S
denotes the universe of servers and C the universe of clients, such that if P ∈ C
then P ′ ∈ S, and vice versa. We assume the scenario where every client in C
is registered with every servers from S. For each such pair (P, P ′) ∈ C × S, a
password pwP,P ′ (shared between client P and server P ′) is drawn uniformly
at random from the dictionary D of size |D|. Execution of an oblivious PAKE
protocol between P and P ′ uses pwP,P ′ on the server and a password vector
pwP ⊆ {pwP,P ′

x1
, . . . ,pwP,P ′

xn
} for 1 ≤ n ≤ c and client-server pairs (P, P ′

xi
)

for i ∈ [2, n] on the client side. For the protocol to be successful it is necessary
that pwP,P ′ ∈ pwP . The value c is a global parameter with c ≤ |S|. We will
sometimes write pw and pw instead of pwP and pwP,P ′ when the association
with the participants is clear or if it applies to every participant. We will further
write PAKE for O-PAKE protocols with n = 1, i.e. standard class of PAKE
protocols where the client uses pwP = pwP,P ′ .

Protocol Instances. For i ∈ N, we denote by Pi the i-th instance of P ∈ Ω.
In order to model uniqueness of Pi within the model we use i as a counter. For
each instance Pi we consider further a list of parameters:

– pidi
P is the partner id of Pi, defined upon initialisation, subject to following

restriction: if Pi ∈ C then pidi
P ∈ S, and if Pi ∈ S then pidi

P ∈ C.
– sidi

P is the session id of Pi, modelled as ordered (partial) protocol transcript
[m1

in,m
1
out, . . . ,mr

in,m
r
out] of incoming and outgoing messages of Pi in rounds

1 to r. sidi
P is thus updated on each sent or received protocol message.

– ki
P is the value of the session key of instance Pi, which is initialised to null.

– stateiP is the internal state of instance Pi.
– usediP indicates whether Pi has already been used.
– rolei

P indicates whether Pi acts as a client or a server.

Partnered Instances. Two instances Pi and P ′
j are partnered if all of the

following holds: (i) (P, P ′) ∈ C × S, (ii) pidi
P = P ′ and pidj

P ′ = P , and
(iii) match(sidi

P , sidj
P ′) = 1, where Boolean algorithm match is defined accord-

ing to the matching conversations from [7], i.e. outputs 1 if and only if round
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messages (in temporal order) in sidi
P equal to the corresponding round mes-

sages in sidj
P ′ except for the final round, in which the incoming message of one

instance may differ from the outgoing message of another instance.

Oblivious PAKE. We define O-PAKE using an initialisation algorithm init
and a stateful interactive algorithm next, which handles protocol messages and
eventually outputs the session key.

Definition 1 (Oblivious PAKE). An O-PAKE protocol O-PAKE = (init,
next) over a message space M = (

⋃
r Mr

C) ∪ (
⋃

r Mr
S), where Mr

C resp. Mr
S

denotes the space of outgoing server’s resp. client’s messages in the r-th invoca-
tion of next, a dictionary D, and a key space K consists of two polynomial-time
algorithms:

Pi ← init(pw, role, P ′, par): On input pw, role ∈ {client, server}, P ′ ∈
Ω and the public parameters par, the algorithm initialises a new instance
Pi with the internal O-PAKE state information state, defines the intended
partner id as pidi

P = P ′ and session key ki
P = null, and stores protocol

parameters par. The role indicates whether the participant acts as client
or server.

(mout, ki
P ) ← next(min): On input min ∈ Mr

[S,C]∪∅ with implicit access to inter-
nal state, the algorithm outputs the next protocol message mout ∈ Mr+1

[S,C]∪∅
and updates ki

P with ki
P ∈ K ∪ null ∪ ⊥. As long as the instance has not

terminated the key ki
P is null. If min leads to acceptance then ki

P is from K,
otherwise ki

P = ⊥. We also assume that next implicitly updates the internal
state prior to each output and sets used to true.

Note that M = (
⋃

r Mr
S) ∪ (

⋃
r Mr

C) is the union of outgoing client’s message
spaces Mr

C and server’s message spaces Mr
S over all protocol rounds r. We may

further view each round’s message space Mr
C as a Cartesian product Mr,1

C ×
· · · × Mr,l

C for up to l different classes of message components, e.g. to model
labels, identities, group elements, etc. When clear from the context, we will write
Mr

C instead of Mr,1
C × · · · × Mr,l

C .

Correctness. Let Pi be an instance initialised through init(pwP , client,
P ′, par) and P ′

j be an instance initialised through init(pwP,P ′ , server, P, par)
where P ∈ C, P ′ ∈ S, and pwP,P ′ ∈ pwP . Assume that all outgoing messages,
generated by next are faithfully transmitted between Pi and P ′

j so that the
instances become partnered. An O-PAKE = (init, next) is said to be correct if
for all partnered Pi and P ′

j it holds that ki
P ∈ K and ki

P = kj
P ′ .

Adversary Model. The adversary A is modelled as a probabilistic-polynomial
time (PPT) algorithm, with access to the following oracles:
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mout ← Send(P, i,min): the oracle processes the incoming message min ∈ Mr
[C,S]

for the instance Pi and returns its outgoing message mout ∈ Mr+1
[C,S] ∪ ∅. If

Pi does not exist, a new session is created with P ′ as partner, where P ′ is
given in min.

trans ← Execute(P, P ′): if (P, P ′) ∈ C × S the oracle creates two new instances
Pi and P ′

j via appropriate calls to init and returns the transcript trans
of their protocol execution, obtained through invocations of corresponding
next algorithms and faithful transmission of generated messages amongst
the two instances.

pw ← Corrupt(P, P ′): if P ∈ C and P ′ ∈ S then return pwP,P ′ and mark (P, P ′)
as a corrupted pair.

AKE-Security. The following definition of AKE-security follows the Real-Or-
Random (ROR) approach from [4], which provides the adversary multiple access
to the Test oracle for which the randomly chosen bit b ∈R {0, 1} is fixed in the
beginning of the experiment:
kA ← Testb(P, i), depending on the values of bit b and ki

P , this oracle responds
with key kA defined as follows:

– If, while ki
P = null, either (P, P ′) or (pidi

P , P ) were queried to the Corrupt
oracle for, w.l.o.g., any client-server pair (P, P ′) with pwP,P ′ ∈ pwP , then
abort. Note that this prevents A from obtaining any pwP,P ′ ∈ pw and then
testing new instances of P and P ′, or instances that were still in the process
of establishing session keys when corruption took place.

– If some previous query Test(P ′, j) was asked for an instance P ′
j , which is

partnered with Pi, then return the same response as to that query. Note that
this guarantees consistency of oracle responses.

– If ki
P ∈ K then if b = 1, return ki

P , else if b = 0, return a randomly chosen
element from K and store it for later use.

– Else return ki
P . Note that in this case ki

P is either ⊥ or null.

According to [4] a session is an online session when A queried the Send oracle
on one of the participants.

Definition 2 (AKE-Security). An O-PAKE protocol Π with up to c pass-
words on client side is AKE-secure if for all dictionaries D with corresponding
universe of participants Ω and for all PPT adversaries A using at most t online
sessions there exists a negligible function ε(·) such that:

AdvAKEΠ,A(λ) =
∣
∣
∣
∣Pr[ExpAKEΠ,A(λ) = 1] − 1

2

∣
∣
∣
∣ ≤ c · O(t)

|D| + ε(λ).

ExpAKEΠ,A(λ) : c ∈ N; b ∈R {0, 1};∀(P, P ′) ∈ C × S choose pwP,P ′ ∈R D; b′ ←
ASend,Execute,Corrupt,Testb(λ, c); return b = b′.

The above definition (without Corrupt) reverts to RoR AKE-security from [4] for
c = 1. We have to factor in the maximal size of |pw| = n ≤ c into the original
adversarial advantage bound O(t)/|D| to account for the adversarial possibility
of testing up to c passwords per session in the role of the client.
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PAKEvs.O-PAKE. The actual relation between common PAKE and O-PAKE
security may not be immediately evident. For clarification, we discuss the relation
between O-PAKE and the simple repetition of a PAKE protocol c times, and
the implication of user’s password choice.

The advantage of an adversary that is allowed to query up to c passwords
in one session is not greater than the advantage of an adversary that runs c
online sessions using one password in each of them. The typical advantage of
a PAKE adversary A in an AKE-security experiment, e.g. [4,6], is bounded by
O(t)/|D| + ε(λ). In contrast, we limit the advantage of an O-PAKE adversary
to c · O(t)/|D| + ε′(λ). We give the following lemma to formalise the relation
between the two notions.

Lemma 1. AdvAKEΠc,A ≤ c · AdvAKEΠ,A for O-PAKE protocol Πc allowing up to c
passwords in one session, built from PAKE protocol Π.

Proof. The lemma follows directly from the following observations. O-PAKE can
be realised in the näıve way by running c separate PAKE sessions. That results in
an advantage of at most c · AdvAKEΠ,A = c · O(t)/|D| + ε′(λ). Information gathered
from Send and Execute oracle invocations are the same for the O-PAKE and
PAKE adversary. Corrupt and Testb queries of the O-PAKE adversary return one
password, respectively key, independent from c, while the PAKE adversary gets
c passwords, respectively keys. Thus, the resulting advantage of the O-PAKE
adversary is at most c · O(t)/|D| + ε′(λ), but depending on the implementation
most probably lower. 
�
Assuming malicious servers one may also be concerned about the client’s password
choice considering a client entering passwords with different levels of entropy. Sim-
ilar to the standard PAKE case the weakest password from pw would determine
the security of O-PAKE. However, the used model considers uniformly at random
chosen passwords from one dictionary such that the case of varying password
probabilities can not be adequately addressed in this model (as is also the case
for the models in [4,6]).

3 Transforming PAKE Protocols into O-PAKE

Recall that one may realise O-PAKE in a näıve way by running the input PAKE
protocol n times, which is not efficient on the server side due to the linearly
increasing round complexity. The idea of the O-PAKE compiler is to mix the
n PAKE messages on client side such that the server can extract the “right”
message using the shared password and reply only to that. This, however, is a
non-trivial problem because PAKE messages do not provide information that
would allow the server to check locally whether a given password was used in
their computation; as this would offer the possibility of offline dictionary attacks.
Note that we assume throughout this section that n ≥ 2 and pwP,P ′ ∈ pwP .
Our solution for the identification of the “right” PAKE session is a careful com-
position of two encoding techniques that were introduced in a different context
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yet allow us to generically construct AKE-secure O-PAKE protocols from (suit-
able) AKE-secure PAKE protocols, preserving constant round complexity and
offering nearly constant server load.

Our first building block is Index-Hiding Message Encoding (IHME) [30,31].
An IHME scheme assigns a different index to each given message and encodes the
resulting index-message pairs into a single structure from which messages can be
recovered on the receiver side using the corresponding indices. The IHME struc-
ture hides indices that were used for encoding and therefore all encoded messages
must contain enough entropy to prevent dictionary attacks over the index space.
An IHME scheme consists of two algorithms iEncode and iDecode. The iEncode
algorithm takes as input a set of index-message pairs (ix1,m1), . . . , (ixn,mn) and
outputs a structure S whereas the iDecode algorithm can extract mj , j ∈ [1, n]
from S using the corresponding index ixj . For formal definitions surrounding
IHME we refer to the original work and only mention that the original IHME
construction in [30] assumes (ixj ,mj) ∈ F for a prime-order finite field F and
defines the IHME structure S through coefficients of the interpolated polyno-
mial by treating index-message pairs as its points. There exists a more efficient
IHME version from [31] for longer messages, which uses (ixj ,mj) ∈ F × F

ν and
thus splits mj into ν components each being an element of F. The corresponding
index-hiding property demands that no information about indices ixj is leaked to
the adversary that doesn’t know the corresponding messages mj and is defined
for messages that are chosen uniformly from the IHME message space. For the
aforementioned IHME schemes the message space is given by F (or Fν) and their
index-hiding property is perfect (in the information-theoretic sense). Note that
this approach still allows the server to learn which of the n PAKE sessions is the
correct one without revealing any password to the server.

In order to enable encoding of PAKE messages using IHME with pass-
words as indices we apply our second building block, namely admissible encoding
[13,15,19]. Briefly, a function F : S → R is an ε-admissible encoding for (S,R)
with |S| > |R| when for all uniformly distributed r ∈ R, the distribution of the
inverse transformation IF (r) is ε-statistically indistinguishable from the uniform
distribution over S. We refer to [15,19] for more details. IF enables us to map
PAKE messages into the IHME message space where necessary. In Sect. 3.5 we
will discuss suitable PAKE message spaces and their admissible encodings offer-
ing compatibility with the message space F of the IHME schemes from [30,31].

In the following we describe our compiler that transforms suitable AKE-secure
PAKE protocols into AKE-secure O-PAKE protocols. The intuition behind the
compiler is to let the client run n PAKE sessions, one session for each of the n
input passwords pw, and apply an index-hiding message encoding on each
message-password pair. The server can apply the shared password pw as index
to IHME to extract the “right” PAKE message. For this message the server exe-
cutes the algorithm next of the given PAKE protocol and returns the resulting
PAKE message to the client. As soon as the algorithm next terminates, the
server generates a confirmation message, which is then used by the client to
derive the final session key.
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3.1 Requirements on PAKE

Our O-PAKE compiler can be used to convert any AKE-secure R-round PAKE
protocol Π where in each round r ∈ [1, . . . , R] the client sends messages from Mr

C

that can be processed using a compatible admissible encoding F r : MIHME,r →
Mr

C . In order to guarantee that client messages from Mr
C , when mapped into

MIHME,r using the inverse transformation IF , are uniformly distributed over
MIHME,r, the underlying Π itself must output client messages whose joint distri-
bution over all R rounds remains indistinguishable from a distribution where
for each round r the output client message is chosen uniformly at random
from Mr

C . For this purpose Π must satisfy a stronger notion of AKE secu-
rity that in addition to the indistinguishability of session keys requires indistin-
guishability of client messages. This requirement is formalised in Definition 3
that extends the AKE-security experiment for PAKE from Definition 2, using
Execute,Send,Corrupt and Testb definitions from there. We assume that c = 1
and define two oracles Sendb and Executeb that are parameterised with the bit b
as used in the Testb oracle. Any query Sendb(P, i,min) for a client P ∈ C made
by the adversary A first triggers the invocation of mout ← Send(P, i,min). If A
queried Corrupt(P, pidi

P ) or Corrupt(pidi
P , P ) while ki

P = null or if b = 1 then
mout is returned to A without any modification. The additional condition on the
Corrupt queries prevents A from trivially distinguishing the client messages by
corrupting passwords and then communicating with client instances that were
still in the process of establishing the session keys. If b = 0 then mout is set to a
random message from Mr

C and returned to A. Any Executeb(P, P ′) query first
triggers the invocation of trans ← Execute(P, P ′). If b = 0 then for each round r
the corresponding client’s message in trans is replaced with an independently at
random chosen message from Mr

C , else if b = 1 then trans is forwarded without
any modification. Note that if A mounts an online attack with a correct pass-
word then it can easily distinguish so that the lower bound of O(t)

|D| that accounts
for online dictionary attacks still applies in the definition.

Definition 3 (AKE-Security with Indistinguishable Client Messages).
A PAKE protocol Π is AKE-secure with indistinguishable client messages if for
all dictionaries D with corresponding universe of participants Ω and for all PPT
adversaries A using at most t online sessions there exists a negligible function
ε(·) such that:

AdvAKE-ICMΠ,A (λ) =
∣
∣
∣
∣Pr[ExpAKE-ICMΠ,A (λ) = 1] − 1

2

∣
∣
∣
∣ ≤ O(t)

|D| + ε(λ).

ExpAKEΠ,A(λ) : c = 1; b ∈R {0, 1};∀(P, P ′) ∈ C × S choose pwP,P ′ ;
b′ ← ASendb,Executeb,Corrupt,Testb(λ, c); return b = b′.

The above requirement is stronger than AKE-security. In particular, it cannot
be satisfied by PAKE protocols where client messages depend on those of the
server or where client messages sent in later rounds depend on client messages
that were sent in previous rounds. Nonetheless, there exist efficient AKE-secure
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PAKE protocols with indistinguishable client messages as discussed in Sect. 3.5.
In particular, for AKE-secure one-round PAKE protocols, where the client can
send its message independently of the server’s message the indistinguishability
property can be argued based on the uniformity of the client’s message in the
message space.

3.2 The O-PAKE Compiler

Our compiler takes as input a PAKE protocol Π and outputs its O-PAKE ver-
sion, denoted CΠ . The compiled protocol CΠ follows Definition 1 and consists
of the two algorithms CΠ .init and CΠ .next. For the passwords in pw used as
input to CΠ .init we assume that each pw[i] = (ix, π) ∈ F×DΠ , where ix denotes
an index and π the corresponding password for the underlying PAKE protocol
Π, whereby the distributions of ix and π are independent and no two pairs
(ix1, π1), (ix2, π2) ∈ pw have ix1 = ix2. For each PAKE round r the compiler
uses a corresponding instance IHMEr with message space MIHMEr and a compat-
ible admissible encoding F r : MIHMEr → Mr

C where Mr
C is the space of clients

messages of Π in that round. In the following we assume that the underlying
Π.next algorithm outputs messages that can be seen as one element and thus can
be processed using one instance (F r, IHMEr) in each round. Note that this allows
for a more comprehensible description and is not a restriction of the O-PAKE
compiler. We discuss the case of multi-set messages Mr

C = Mr,1
C × · · · × Mr,l

C

that will require composition of up to l instances of encoding schemes per round
in Sect. 3.6.

The CΠ .next algorithm on the client side computes corresponding PAKE
round messages for all passwords in pw using the original Π.next algorithm
and encodes them with IF r and IHMEr.iEncode prior to transmission to the
server. On the server side CΠ .next decodes the incoming PAKE message using
F r and IHMEr.iDecode (using its input pw[i].ix as index) and replies with the
message output by Π.next. Note that the server only decodes messages but never
encodes them. If pw ∈ pw then at the end of its n PAKE sessions the client
will hold n intermediate PAKE keys, whereas the server holds only one such
key. The additional key confirmation and key derivation steps allow the client to
determine which of its n PAKE session keys matches the one held by the server,
in which case both participants will derive the same session key. In the following
we describe the two algorithms CΠ .init and CΠ .next more in detail.

Algorithm CΠ .init The algorithm makes n calls to Π.init, one for each
password pw[i].π, to generate corresponding state for each of the n PAKE
sessions that are stored in statestatestatei

P . An ith session of Π run by the client using
the corresponding password pw[i].π is denoted by Π[i]. The partner id pidi

P is
set to P ′ and the instance Pi with the given role and a vector of n local states
in statestatestatei

P is established. We require that no two passwords in pw are identical,
which is necessary to ensure the correctness of the IHME step. Note that if
role = server then n = 1, i.e. servers run only one PAKE session (Fig.1).
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a CΠ .next(min) — Client
Input: min

Output: (mout, k)
E = ∅; mout = ∅
for i = 1 . . . n do

if Π[i] has not finished then
(m′

out, Π[i].k) ← Π[i].next(min)
if m′

out �= ∅ then
E = E ∪ {(pw[i].ix, IF r (m′

out))}
else if Π[i].k ∈ KΠ and

min = PRFΠ[i].k(sidi
P ||Pi||pidi

P ||0) then
k = PRFΠ[i].k(sidi

P ||Pi||pidi
P ||1)

else
k = ⊥

if E �= ∅ then
mout = IHMEr.iEncode(E)

return (mout, k)

b CΠ .next(min) — Server
Input: min

Output: (mout, k)
mout = ∅
if Π has not finished then

m ← IHMEr.iDecode(pw.ix, min)
m′ = F r(m)
(mout, Π.k) ← Π.next(m′)

if Π.k ∈ KΠ then
mout = PRFΠ.k(sid

j
P ′ ||pidj

P ′ ||P ′
j ||0)

k = PRFΠ.k(sid
j
P ′ ||pidj

P ′ ||P ′
j ||1)

else
k = ⊥

return (mout, k)

Fig. 1. CΠ .next algorithms

Algorithm CΠ .next We distinguish between CΠ .next specifications for clients
(Algorithm 1a) and servers (Algorithm 1b) as they are significantly different.
We write Π[i].next for the invocation of Π.next for the ith session of Π run by
the client using pw[i].π. On the client side CΠ .next computes messages m′

out for
all running PAKE sessions and encodes them. The server decodes the incoming
IHME structure and computes its response using Π.next. If any PAKE session
Π[i] at the client has finished with Π[i].k ∈ KΠ then the client expects a valid
confirmation message from the server prior to derivation of the resulting session
key k with PRF using Π[i].k. An invalid confirmation message implies that k is
set to ⊥. This confirmation message is generated on the server side using PRF
only if and immediately after Π.next outputs Π[i].k ∈ KΠ ; in which case a valid
resulting session key k is also derived. If, however, Π finishes with Π[i].k = ⊥
then k will also be set to ⊥.

3.3 Relation to LAKE

A Language Authenticated Key Exchange (LAKE) protocol, proposed by
Benhamouda et al. in [10], authenticates two parties, client C and server S hold-
ing each a word in an algebraic languages. In particular, let R : {0, 1}∗×P ×W →
{0, 1} denote a relation and LR(pub, priv) ⊆ W a language with pub ∈ {0, 1}∗

and priv ∈ P . A word w ∈ W is in the language LR iff R(pub, priv, w) = 1. The
client holds a word wc for relation RC and the server holds a word ws for relation
RS . They agree on public parameters pub, exchange ephemeral public keys, and
think of a value priv′

C , resp. priv′
S , they expect to be used by the other party.

To instantiate the LAKE framework it is necessary to specify client and server
languages and according commitments with associated smooth projective hash
functions (SPHF) [17]. We briefly recall how to instantiate LAKE with passwords
from [10, Sect. 6.2], i.e. how to build PAKE protocols in the LAKE framework.
The languages are defined as LC = {wc} for the client and LS = {ws} for the
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server, such that priv′
C = priv′

S = wc = ws is the password and the relations are
RC = RS = (∅, priv, w) = 1 ⇐⇒ priv = w, i.e. equality test for the password.

To instantiate O-PAKE in LAKE we define client relation RC(∅,pw′, pw) =
1 ⇐⇒ pw′ ∈ pw and server relation RS(∅,pw′,pw) = 1 ⇐⇒ pw′ = pw. While
the server relation stays the same as in PAKE, the client language LRC

(∅,pw′) ⊆
{pw1, . . . ,pwn} = pw uses a relation that takes a set of passwords pw and
an expected password pw′ as input, and is fulfilled iff pw′ ∈ pw. Following
[10, Fig. 4] we realise O-PAKE in the LAKE framework as follows: First, the
client (initiator) generates a multiDLCSCom′ commitment (CC , C ′

C) on word
wc, i.e. a multi-commitment to all passwords pw ∈ (pw1, . . . ,pwn), as well as a
Pedersen commitment C ′′

C on C ′
C , and sends (CC , C ′′

C) to the server S. The server
replies with (CS , ε, kpS

, σS), computed as follows: CS is a multi-LCS commit-
ment on ws = pwS ; ε is a challenge vector on CC of length n; kpS

is a projection
key for a suitable SPHF for CC ; and σS is a signature on all flows. In the
final round, the client checks σS before returning (C ′

C , t, kpC
, σC) to the server,

which is computed as follows: (C ′
C , t) is the decommitment to C ′′

C , where t is
the used randomness; kpC

is a projection key for a suitable SPHF for CS ; and
σC is a signature on all flows. After checking all signatures and commitments,
session keys are computed as multiplication of projection and hash function on
ComC = CC · C ′

C
ε and ComS = CS .

So while it seems possible to instantiate O-PAKE in the LAKE framework
(after specifying necessary primitives), the construction is rather inefficient.
In particular, an instantiation of O-PAKE in LAKE needs four rounds, our
O-PAKE compiler adds only one round to the round-complexity of the underly-
ing PAKE, i.e. can be instantiated with three rounds. Further, server-complexity
is linear in the number of client-passwords n. This stems from the observation
that the projection key kpS

, as well as the computation of the hash function,
requires a linear number of public key operations, e.g., exponentiations, in n.
Performance of O-PAKE instantiated in the LAKE framework is therefore not
more efficient than the näıve construction, and in particular does not fulfil our
requirement of nearly constant server performance.

3.4 Security Analysis

AKE-security of the protocol generated with the O-PAKE compiler is established
in Theorem 1.

Theorem 1. If Π is an R-round AKE-secure PAKE protocol with indistinguish-
able client messages in Mr

C for r ∈ [1, . . . , R], F r : MIHMEr → Mr
C is an ε-

admissible encoding, and IHMEr is an index-hiding message encoding, then CΠ

is an R + 1-round AKE-secure O-PAKE protocol.

Proof (sketch). The proof uses a sequence of experiments Expi, i = 1, . . . 4,
where each Expi is based on a small modification of Expi−1. At a high level we
first replace real client messages and session keys of underlying PAKE sessions
Π[i] with random messages and keys while ensuring the consistency against
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an adversary that corrupted passwords and then mounts online attacks. This
modification remains unnoticeable to A if the underlying PAKE protocol Π is
AKE-secure with indistinguishable client messages. Then, we replace the outputs
of the inverse transformations IF r applied in each round r by choosing random
elements from the corresponding round’s IHMEr message space and show that
this remains unnoticeable assuming that F r is an εF r -admissible encoding F r.
Then, we replace each real password index in the IHMEr encoding process with
a random password and show that this remains unnoticeable due to the index-
hiding property of each IHMEr scheme. Finally, we modify the computation of the
server’s confirmation message and of the session keys that are returned in Testb
queries by using random elements from the corresponding spaces. This remains
unnoticeable due to the pseudorandomness of the PRF function that is used to
derive their values. We refer to the full version [29] of this work for the full proof
due to space limitations.

3.5 Oblivious PAKE Instantiation

An AKE-secure PAKE protocol Π is suitable for our O-PAKE transformation
if it is also AKE-ICM-secure and there exist admissible encodings to map those
messages into the message space of the IHME scheme. In the following we list
four sets R with suitable admissible encodings. Thus, any AKE-secure PAKE
protocol whose client messages contain components from these four sets can be
transformed into an O-PAKE protocol using our compiler.

Definition 4 (Admissible Encodings for Client Messages). An admissible
encoding F : {0, 1}�(λ) → R with polynomial 
(λ) exists for any of the following
four sets:

(1) Set R = {0, . . . , N − 1} = ZN of natural numbers, for arbitrary N ∈ N. (cf.
[19, Lemma 13])

(2) The set of quadratic residues modulo safe primes p, i.e. R = QR(p) ⊆ Z
×
p .

(cf. [19, Lemma 13])
(3) Arbitrary subgroups G ⊆ Z

×
p of prime order q. (cf. [19, Lemma 13])

(4) The set R = E(F) of rational points on (certain) elliptic curves, defined over
a finite field (cf. [15]).

Computing Indices. We require that password pw used in O-PAKE consists of
two independent components ix and π. For instance, it is sufficient for the user to
choose π ∈R D and compute the index pw.ix = f(ρ,pw.π) using some fresh ran-
domness ρ and a function f with output independent from π, i.e. the probability
that π was used as input to f to produce ix must remain 1/|D|. Note that this
approach requires a pre-flow to the protocol to exchange randomness ρ, which
can however be easily integrated into the overall login process. Furthermore, it
is crucial that randomness ρ is fresh for every execution of the protocol as any
reuse of ρ would offers an attacker the possibility to distinguish between real
and simulated O-PAKE messages.
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Remark 1. Verifier-based PAKE (VPAKE) protocols, such as [9,12,24,25], where
only some password-dependent verification information (e.g. a randomised pass-
word hash with a random salt) is stored on the server side are not formally
considered in this work. Nonetheless, the techniques underlying our O-PAKE
compiler seem also applicable to VPAKE protocols as long as their messages
satisfy the identified AKE-ICM requirement.

3.6 Processing Multi-Component Messages

In the following we describe how the compiler can handle PAKE protocol mes-
sages consisting of multiple elements, possibly from different sets. We observe
that any such PAKE message can be seen as an element of a combined mes-
sage space that is formed through a Cartesian product of those sets and dis-
tinguish between two types of message components, namely components that
represent constants and components that depend on passwords, including inte-
ger values and group elements. Since constants are password-independent they
do not need to be processed by the compiler and can be communicated directly.
All other message components have to be encoded according to the compiler
specification. In order to encode those components we use ν-fold IHME intro-
duced in [31], which allows to encode a list of ν message components from
the same finite field. The compiler splits message components from different
finite fields into corresponding classes and applies appropriate IHME encoding
to each class separately in order to compute the corresponding IHME struc-
ture. The IHME structures for all message components are then concatenated
and treated as a single compiler message. This processing of multi-component
messages requires existence of admissible encodings and index-hiding message
encodings for each component class mj of m. In order to process the com-
ponents, a loop over m1, . . . ,ml adds (pw[i], IF r,j (mj)) to the input set of
ν−fold−IHMEr

j .iEncode according to their classes (e.g. finite fields). Likewise,
the output message mout of the next algorithm is the concatenation of the
encoded component classes. Upon receiving a client message min, the server has
to decompose it to retrieve the IHME encoded messages. After decoding the mes-
sage parts with mj ← ν−fold−IHMEr

j .iDecode(pwP,P ′ ,m
j
in) the original PAKE

message of Π is reassembled by decoding messages F r,j(mj).
Adopting this approach for multi-component messages, the AKE-security

remains preserved. This is due to the following observation about the proof of
Theorem 1: in the game-hopping sequence the adversary will be provided with l
IHME encoded messages (one for each message element class that requires encod-
ing). The corresponding index-hiding advantage will therefore be multiplied by
l. The remaining parts of the proof remain as is.

4 Concrete Instantiation Examples

In this section we give concrete instantiation of the O-PAKE compiler, using the
random-oracle based SPAKE protocol by Abdalla and Pointcheval [5]. A second
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instantiation using the common-reference-string-model protocol from Katz and
Vaikuntanathan [28] can be found in the full version [29].

4.1 Oblivious SPAKE

We demonstrate how the compiler can be applied to PAKE protocols using
the AKE-secure, random-oracle-based SPAKE protocol from [5]. The resulting
O-SPAKE is specified in Fig. 2 and involves steps of the original SPAKE protocol
from [5, Sect. 5], which is a secure variant of [8], whose security has been proven
in the random oracle model.1 SPAKE uses a prime-order cyclic group G for
which the Computational Diffie-Hellman (CDH) problem is assumed to be hard.
The shared SPAKE password pw is chosen from Zq. Let M,N ∈ G denote two
public group elements. The protocol proceeds in one round, where the client
sends X∗ ← gx · Mpw.π, x ∈R Zq and the server responds with Y ∗ ← gy ·
Npw.π, y ∈R Zq. The actual order of these messages does not matter since they
are independent. The algorithm next computes an intermediate value s and
derives the session key as Π.k ← H(P, P ′,X∗, Y ∗,pw, s). We refer to the original
work [5, Sect. 5] for more details on SPAKE. The SPAKE protocol is a suitable
input PAKE protocol for our O-PAKE compiler since it can be instantiated using
subgroups G ⊆ Z

×
p of prime order q in which the CDH problem is believed to

be hard. We can apply the admissible encodings (3) from [19, Lemma 13] due to
the fact that client’s SPAKE message X∗ = gx · Mpw.π is uniformly distributed
in G, given the uniformity of x ∈ Zq. We formalise this by showing that SPAKE
fulfils our definition of AKE-ICM, before defining suitable admissible encodings,
which concludes the instantiation of O-SPAKE.

Lemma 2 (SPAKE is AKE-ICM Secure). The SPAKE protocol from
[5, Sect. 5] is AKE-ICM secure.

Proof. The initial experiment in the proof for SPAKE security in [5] corresponds
to the AKE-ICM experiment with b = 1. In the following we show that the proof
in [5, Appendix C] can be modified without changing the adversaries advantage
such that the final experiment is equal to the AKE-ICM experiment with b = 0,
which concludes the proof. We first change experiment one by additionally sim-
ulating the Corrupt oracle and using a global bit b in simulating the Test oracle.
This does not change the adversary’s success probability. The second experiment,
aborting on hash collisions, stays unchanged. In the following two experiments
we have to make sure that the adversary does not win trivially by returning the
correct key to Test queries on corrupted sessions and only modify oracle replies
to uncorrupted sessions. While the original proof only changes the calculation
of the session key in passive sessions to a random element in experiment three,
we also change client messages produced in Execute queries to random elements.
Note that this is implicitly already done in the original proof. However, we for-
malise it here again and change experiment three as follows: Invocations of the
1 Note that the very similar SOKE protocol from [1] can also be used in the O-PAKE

compiler following the here given description of O-SPAKE.
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Client (C, S, pw)

for i = 1 to |pw|

x ∈R Zq ; x ∈R Zq

X ← IF (gx · Mpw[i].π)

E = E ∪ {(pw[i].ix, X)}

S ← IHME.iEncode(E)

for i = 1 to |pw|

s = (Y ∗/Npw[i].π)x

Π[i].k ← H(C, S, X∗, Y ∗, pw[i], s)

c′ ← PRFΠ[i].k(S||Y ∗||C||S||0)

if c = c′ then

k ← PRFΠ[i].k(S||Y ∗||C||S||1)

Server (C, S, pw)

y ∈R Zq ; Y ← gy

X∗ ← IHME.iDecode(pw.ix, S)

X∗ ← F (X∗)

Y ∗ ← Y · Npw.π

S ← IHME.iEncode(E)

s ← (X∗/Mpw.π)y

k ← H(C, S, X∗, Y ∗, pw, s)

c ← PRFΠ.k(S||Y ∗||C||S||0)

k ← PRFΠ.k(S||Y ∗||C||S||1)

S

Y ∗, c

Fig. 2. Oblivious SPAKE (O-SPAKE) public input: G, g, p, q,M,N,H, IHME, F

Execute oracle on uncorrupted parties are answered with uniformly at random
chosen messages, i.e. X∗ = Agx and Y ∗ = Bgy with x, y ∈R Zp, for some DH
instance (A,B). Experiment three corresponds now to the AKE-ICM experi-
ment with Send1, Testb and Execute0. The lemma follows by noting that after
our modifications of experiment three the last experiment of the AKE-security
proof of SPAKE in [5, Appendix C] is equivalent to the AKE-ICM experiment
with Execute0, Send0 and Test0, i.e. the adversary only wins by guessing the
correct password. 
�

Admissible Encodings for SPAKE We use admissible encodings (1) and (3) from
[19, Lemma 13] to encode SPAKE client messages. To implement the inverse
encoding of (1) := IF (1) : ZN → {0, 1}�(λ) we use the inverse of encoding (3)
:= IF (1) : G → Z

×
p . This results in a combined inverse encoding of IF (3,1) : G →

Z
×
p → {0, 1}�(λ) with 
(λ) > 2|N | and p = N . Implementation of F (3,1) : Zq′ →

G and IF (3,1) follows the specification from [19, Lemma 12] with prime |q′| =

(λ) > 2|N | to meet IHME requirements.

5 Conclusion

In this paper we addressed the problem of handling multiple password trials
efficiently within the execution of PAKE protocols; in particular, aiming to opti-
mise the amount of work on the server side. The proposed O-PAKE compiler
results in almost constant computational complexity for the server without sig-
nificantly increasing the computation costs on the client side, yet preserving all
security guarantees offered by standard PAKE protocols. It can be used with
PAKE protocols that fulfil our new definition of AKE-ICM security and whose
client messages can be encoded through a suitable admissible encoding scheme.
The security of the compiler has been proven under standard assumptions in
an extension of the widely used PAKE model from [4] and exemplified on the
PAKE protocol and [28].
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