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Preface

The Information Security Conference (ISC) is an annual international conference
dedicated to research on the theory and applications of information security. It started
as a workshop in 1997, changed to a conference in 2001, and has been held on five
different continents. ISC 2015, the 18th in the series, was held in the delightful and
historic city of Trondheim in Norway, September 9–11, 2015. The conference was
organized by Colin Boyd and Danilo Grigoroski of the Norwegian University of
Science and Technology (NTNU) in Trondheim.

This year we received 103 submissions with authors from 35 different countries.
Each submission was reviewed by at least two and in almost all cases by three or even
four Program Committee members, and the review process was conducted in a
‘double-blind’ fashion. After detailed and careful discussions, the committee decided to
accept 30 papers, yielding an acceptance rate of 29%. The conference program also
included two fascinating invited keynote talks, given by Professors Tor Helleseth
(“Sequences, Codes and Cryptography”) and Kenny Paterson (“Authenticated
Encryption and Secure Channels: There and Back Again”).

The success of ISC 2015 depended critically on the help and hard work of many
people, whose assistance we gratefully acknowledge.

First, we would like to thank all the authors for submitting their papers to us. We
further thank the authors of accepted papers for revising papers according to the various
reviewer suggestions and for returning the source files in good time. The revised
versions were not checked by the Program Committee, and so authors bear final
responsibility for their contents.

We heartily thank the 54 members of the Program Committee (from 19 different
countries) and the 84 external reviewers, listed on the following pages, for their careful
and thorough reviews. Thanks must also go to the hard-working shepherds for their
guidance in improving a number of papers.

Huge thanks are due to Colin Boyd and Danilo Grigoroski for acting as general
chairs, and taking care of every detail, large and small. We are grateful to the ISC
Steering Committee for their advice and support. The local administrator was Mona
Nordaune; this conference would not have been successful without her vital assistance
with a multitude of details. We are also very grateful to Prof. Yuming Jiang for his
generous advice regarding many administrative and organizational matters. We must
also warmly thank Carmen Fernandez-Gago for getting the word out, and enabling us
to have such a healthy number of submissions. In our expressions of gratitude we must
not forget Slartibartfast, the planetary coastline designer who was responsible for the
fjords of Norway including, of course, Trondheimsfjord.

ISC 2015 benefited from generous financial support from our three sponsors. We are
very grateful to the Forum for Research and Innovation in Security and Communica-
tions (frisc.no) who particularly supported our invited speakers; to Springer for
sponsorship of two best paper prizes; and to the Faculty of Information Technology,



Mathematics and Electrical Engineering of NTNU for financial underwriting of the
conference.

Last, but not least, we would like to thank EasyChair for providing the user-friendly
management system we used for managing the submission and review phases, and
Springer for, as always, providing a meticulous service for the timely production of the
proceedings.

September 2015 Javier Lopez
Chris J. Mitchell
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Black-Box Separations on Fiat-Shamir-Type
Signatures in the Non-Programmable Random

Oracle Model

Masayuki Fukumitsu1(B) and Shingo Hasegawa2

1 Faculty of Information Media, Hokkaido Information University, Nishi-Nopporo
59-2, Ebetsu, Hokkaido 069-8585, Japan

fukumitsu@do-johodai.ac.jp
2 Graduate School of Information Sciences, Tohoku University, 41 Kawauchi,

Aoba-ku, Sendai, Miyagi 980–8576, Japan
hasegawa@cite.tohoku.ac.jp

Abstract. In recent years, Fischlin and Fleischhacker showed the
impossibility of proving the security of specific types of FS-type sig-
natures, the signatures constructed by the Fiat-Shamir transformation,
via a single-instance reduction in the non-programmable random oracle
model (NPROM, for short).

In this paper, we pose a question whether or not the impossibility
of proving the security of any FS-type signature can be shown in the
NPROM. For this question, we show that each FS-type signature cannot
be proven to be secure via a key-preserving reduction in the NPROM
from the security against the impersonation of the underlying identifica-
tion scheme under the passive attack, as long as the identification scheme
is secure against the impersonation under the active attack.

We also show the security incompatibility between the discrete loga-
rithm assumption and the security of the Schnorr signature via a single-
instance key-preserving reduction, whereas Fischlin and Fleischhacker
showed that such an incompatibility cannot be proven via a non-key-
preserving reduction.

Keywords: Fiat-Shamir transformation · The Schnorr signature ·
Non-programmable random oracle model · Meta-reduction

1 Introduction

The Fiat-Shamir (FS, for short) transformation [18] is a general method to con-
struct secure and efficient signature schemes from identification (ID, for short)
schemes. It is known that there are many FS-type signatures which are signa-
tures derived by using this method. For example, the Schnorr signature [37] and
the Guillou-Quisquater (GQ, for short) signature [27] are constructed by using
the FS transformation.

c© Springer International Publishing Switzerland 2015
J. Lopez and C.J. Mitchell (Eds.): ISC 2015, LNCS 9290, pp. 3–20, 2015.
DOI: 10.1007/978-3-319-23318-5 1



4 M. Fukumitsu and S. Hasegawa

The security of FS-type signatures is discussed in several literature.
Pointcheval and Stern [36] first showed that an FS-type signature is existen-
tial unforgeable against the chosen-message attack (EUF-CMA, for short) in
the random oracle model (ROM, for short) if the underlying ID scheme is an
honest-verifier zero-knowledge proof of knowledge. By employing their result,
in the ROM, one can show that the Schnorr signature is proven to be EUF-
CMA from the discrete logarithm (DL, for short) assumption, and the GQ
signature is proven to be EUF-CMA from the RSA assumption, respectively.
Subsequently, Abdalla, An, Bellare and Namprempre [1] relaxed the condition
of the honest-verifier zero-knowledge proof of knowledge. More precisely, they
proved the equivalence between the EUF-CMA security of an FS-type signature
and the security of the underlying ID scheme against the impersonation under
the passive attack (imp-pa security, for short) in the ROM. This result indicates
that the imp-pa security of the underlying ID schemes is essential for proving
the security of FS-type signatures in the ROM.

On the other hand, Paillier and Vergnaud [34] gave a negative circumstantial
evidence on proving the security of FS-type signatures in the standard model.
More specifically, they showed that the Schnorr signature cannot be proven to
be EUF-CMA via an algebraic reduction from the DL assumption, as long as the
One-More DL (OM-DL, for short) assumption [4] holds. In a similar manner to
the Schnorr signature, they also showed the impossibility of proving the security
of the GQ signature in the standard model.

The security of FS-type signatures can be proven in the ROM, whereas it
may not be proven in the standard model. The main reason is the program-
mable property of the random oracle. Informally, this property allows a reduc-
tion, which aims to prove the security of the designated cryptographic scheme,
to program outputs of the random oracle. Although the programmable property
is valuable, it is known that this property is strong. This is because concrete
hash functions in the standard model seem not to satisfy such a property com-
pletely. As an intermediate model between the ROM and the standard model,
the non-programmable random oracle model (NPROM, for short) was proposed.
The concept of the NPROM was formalized by Nielsen [31]. Subsequently, the
NPROM was first applied to a security proof in [20]. In the NPROM, the random
oracle outputs a random value as in the ROM, but it is dealt with an indepen-
dent party in the security proof. Namely, the reduction is prohibited to program
outputs of the random oracle in the NPROM.

Recently, Fischlin and Fleischhacker [19] showed that the Schnorr signature
cannot be proven to be EUF-CMA via a single-instance reduction in the NPROM
from the DL assumption as long as the OM-DL assumption holds. Such a single-
instance reduction would invoke a forger against the Schnorr signature only
once, but it is allowed to rewind the forger many times. They mentioned that
this impossibility result can be extended to cover any FS-type signature satisfy-
ing the following two conditions: Its secret key consists of one component, and
the one-more assumption related to the cryptographic assumption from which
the security of the signature is proven in the ROM holds. Therefore, their impos-
sibility result seems not to be applied to the other FS-type signatures such as
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the signatures derived from the Okamoto ID [32] and the standard protocol for
proving equality of DLs [11,12,25] by using the FS transformation.

1.1 Our Results

In this paper, we pose a question whether or not the impossibility of proving
the security of any FS-type signature can be shown in the NPROM. In order to
apply their result to other FS-type signatures, one strategy is to find concrete
conditions corresponding to the target signatures. Indeed, Fischlin and Fleis-
chhacker [19] showed their impossibility of proving the security of the Schnorr
signature by employing such a strategy. Another one is to consider abstract con-
ditions which can apply to any FS-type signatures. In this paper, we employ the
latter strategy. As a candidate of such abstract conditions, we consider the secu-
rity property of the underlying ID scheme and the type of the security reductions.
More precisely, we show that any FS-type signature cannot be proven to be exis-
tential unforgeable against even the key-only attack (EUF-KOA, for short) via a
key-preserving reduction in the NPROM from the imp-pa security of the under-
lying ID scheme, as long as the ID scheme is secure against the impersonation
under the active attack (imp-aa secure, for short).

Our result is proven by employing the meta-reduction technique. This tech-
nique was often used to give impossibility results on the security proofs includ-
ing FS-type signatures and on relationships among cryptographic assumptions
[2,3,8–10,13–17,19,21–24,28–30,33–35,38–40].

As the first condition employed in our result, we restrict the reduction to
being key-preserving. The key-preserving reduction means that a reduction is
limited to invoke a forger with the same public key as the public key given to the
reduction [35]. This setting was introduced by Paillier and Villar [35] to give an
impossibility of proving the security of factoring-based encryptions in the stan-
dard model. Subsequently, the key-preserving property was considered to discuss
the provable security of the full domain hash [14,29] and the other cryptographic
schemes [10,16,17] and to investigate the strength of security models [30].

On the other hands, Fischlin and Fleischhacker [19] restricted the reduction
to being group-preserving implicitly. This means that the reduction R invokes
the forger with a public key which contains the same group description as that
input to R. Comparing the key-preserving setting and the group-preserving one,
the key-preserving setting is stronger in a sense that the entire components of
a public key are preserved in the key-preserving reduction, whereas the par-
tial ones are only preserved in the group-preserving reduction. Nevertheless, we
should note that the key-preserving property seems not to be unreasonable.
This is because the security of many cryptographic schemes including FS-type
signatures in the ROM [1,36] is proven via a key-preserving reduction. In par-
ticular, one can employ the forking technique [36], which was utilized to prove
the security of FS-type signatures in the ROM, under even such a setting.

As the second condition, we also require the imp-aa security of the ID scheme
in our impossibility result. This requirement is likely to be reasonable, because
ID schemes were generally proved to satisfy the security stronger than the imp-
aa security, namely the security against the impersonation under the concurrent
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attack (imp-ca security, for short) [6]. In fact, many ID schemes including the
Schnorr ID, the GQ ID and the Okamoto ID were proven to be imp-ca secure,
and hence imp-aa secure, respectively [6,32].

By the above observations, our result indicates that the security of FS-type
signatures may not be proven from the imp-pa security of the underlying ID
schemes by employing ordinary proof techniques in the NPROM. Note that we
do not rule out the possibility that the security of FS-type signatures other
than ones to which the Fischlin-Fleischhacker’s result can be applied is proven
from the imp-pa security of the underlying ID schemes via a non-key-preserving
reduction in the NPROM.

We also consider the question whether or not the security incompatibility
between the DL assumption and the security of the Schnorr signature can be
proven in the NPROM. The security incompatibility means that the security of
the Schnorr signature in the NPROM is not compatible with the DL assumption.
This question was first discussed by Fischlin and Fleischhacker [19]. They showed
that this incompatibility cannot be proven via a non-key-preserving reduction.
On the other hand, in this paper, we give such an incompatibility via a reduc-
tion that is different from the non-key-preserving one. More precisely, we show
that the Schnorr signature cannot be proven to be EUF-CMA via a single-
instance key-preserving reduction in the NPROM from the DL assumption as
long as the DL assumption holds. Our incompatibility result means that the
EUF-CMA security of the Schnorr signature is proven from the DL assumption
via a single-instance key-preserving reduction in the NPROM if and only if the
DL assumption does not hold.

Recall that the Schnorr signature cannot be proven to be EUF-CMA via a
single-instance reduction in the NPROM from the DL assumption, as long as the
OM-DL assumption holds [19]. Therefore, it is not known whether or not this
impossibility holds in the case where the OM-DL assumption does not holds.
On the other hand, our incompatibility result implies that such an impossibil-
ity via a single-instance key-preserving reduction holds even when the OM-DL
assumption does not hold, but the DL assumption remains to hold.

Our incompatibility result is proven by employing the invoking twin reduc-
tions technique proposed in [19]. It should be noted that our result does not
contradict the one in [19], because the reduction concerned in our result differs
from theirs. In [19], the non-key-preserving reduction is concerned, whereas we
consider the single-instance key-preserving one. Note also that the single-instance
property is used in the ordinary security proofs as well as the key-preserving one.

2 Preliminaries

In this section, we introduce some notions and notations used in this paper. Let
λ denote the empty string. We denote by x ∈U D that the element x is chosen
uniformly at random from the finite set D. By x := y, we mean that x is defined
or substituted by y. For any algorithm A, y ← A (x) indicates that the algorithm
A outputs y on input x. Note that when A is a probabilistic algorithm, y ← A (x)
is a shorten notation of y ← A (x; r) with a randomly chosen random coins r,
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Fig. 1. The description of the EF-ATK game

and y is distributed according to such random coins. A function ν(k) is negligible
if for any polynomial μ, there exists a constant k0 such that ν(k) < 1/μ(k) for
any k ≥ k0. Let negl denote a negligible function. We use k to denote a security
parameter.

2.1 Digital Signature Scheme

A signature scheme SIG consists of the following three polynomial-time algo-
rithms (KGen,Sign,Ver). KGen is a probabilistic polynomial-time (PPT, for
short) key generation algorithm that on input 1k, generates a public key pk
and the corresponding secret key sk. Sign is a PPT signing algorithm that on
input (pk, sk,m), issues a signature σ on the message m. Ver is a deterministic
verification algorithm that on input (pk,m, σ), outputs 1 if σ is a signature on
the message M under the public key pk, or 0 otherwise.

We consider the EUF-KOA security and the EUF-CMA security, respectively
[26]. Let ATK ∈ {KOA,CMA}. We depict in Fig. 1 the descriptions of both the
existentially forgeable game against the key only attack (EF-KOA game, for
short) and the existentially forgeable game against the chosen message attack
(EF-CMA game, for short). Note that when ATK = KOA, C outputs 1 in the
Challenge phase if and only if Ver (pk,m∗, σ∗) = 1. Then the forger F is said to
win the EF-ATK game if the challenger C finally outputs 1 in the corresponding
game. A signature scheme SIG = (KGen,Sign,Ver) is EUF-ATK if for any forger
F , F wins the EF-ATK game of SIG with at most negligible probability in k.
The probability is taken over the coin flips of C and F .

2.2 Canonical Identification Scheme

A canonical identification scheme ID (ID scheme, for short) [1,36] consists of
(K, CH, P1, P2, V ). K is a PPT key generator that on input 1k, issues a pair
(pk, sk) of a public key and the corresponding secret key. CH := {CHpk}pk is a
polynomial-time samplable family indexed by public keys of sets, namely given
a public key pk generated by K

(
1k

)
, one can sample an element uniformly at

random from the set CHpk in PPT. (P1, P2) are prover algorithms. Specifically,
P1 outputs a pair (st, cmt) of a state and a commitment in PPT on input (pk, sk),
and P2 outputs a response res on input a key pair (pk, sk), a pair (st, cmt)
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Fig. 2. ID scheme

and a challenge cha ∈ CHpk. V is a deterministic polynomial-time verification
algorithm that outputs either 0 or 1 on input (pk, cmt, cha, res). The protocol
between a prover and a verifier is described as in Fig. 2.

We now define the imp-pa security and the imp-aa security, respectively
[1,5,6]. Let atk ∈ {pa, aa}. These are formalized by the imp-atk game depicted
in Fig. 3. These games represent the situation where an impersonator I aims to
impersonate a honest prover, namely I tries to find a commitment ˆcmt and a
response ˆres in the Challenge phase such that V

(
pk, ˆcmt, ˆcha, ˆres

)
= 1 holds

for a challenge ˆcha given by C. For this purpose, I is given an oracle access in the
Oracle Query phase as a hint. In the case where atk = pa, I can adaptively
obtain transcriptions (cmt, cha, res) of conversations between a honest prover and
a honest verifier. On the other hand, I is allowed to obtain such transcripts by

Fig. 3. Description of the imp-atk game
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directly interacting with honest provers when atk is aa. In this case, I plays the
role of a verifier. Note that I is prohibited to move to the Oracle Query phase
once I is in the Challenge phase. An impersonator I wins the imp-atk game if
C outputs 1 in the imp-atk game. Then, an ID scheme ID = (K, CH, P1, P2, V ) is
imp-atk secure if for any PPT impersonator I, I wins the imp-atk game against
ID with at most negligible probability in k. The probability is taken over the
coin flips of C and I.

Note that we define the game-based imp-pa security (imp-aa security, resp.),
whereas it was given in [6] is experiment-based. Observe that the game-based
definition is equivalent to the experiment-based one.

2.3 Fiat-Shamir Transformation

Let ID = (K, CH, P1, P2, V ) be an ID scheme, and let PKk denote the set of all
public keys which could be generated by KGen

(
1k

)
for each k. We denote by{

Hpk : {0, 1}∗ → CHpk

}
k,pk∈PKk

a family of hash functions indexed by security
parameters k and public keys pk ∈ PKk. Then, the signature FS-Sig is given by
the Fiat-Shamir transformation [18] as in Fig. 4. We call the signatures derived
from the Fiat-Shamir transformation FS-type signatures. For the security of each
FS-type signature, it is known that the signature FS-Sig is EUF-CMA in the
ROM if and only if ID is imp-pa secure [1].

3 Impossibility of Proving the Security of FS-Type
Signatures in the NPROM

In this section, we show that an FS-type signature cannot be proven to be EUF-
KOA via a key-preserving reduction in the NPROM from the imp-pa security
of the underlying ID scheme. We fix an ID scheme ID = (K, CH, P1, P2, V ), and
the FS-type signature FS-Sig = (KGen,Sign,Ver) derived by ID. We first describe
the situation where FS-Sig is proven to be EUF-KOA from the imp-pa security
of ID. This is formalized by the contrapositive setting as in [19,34]. Namely, this
statement holds if there exists a black-box reduction R that wins the imp-pa
game against ID with at least non-negligible probability by black-box access to
any forger F which wins the EF-KOA game against FS-Sig. Through the black-
box access, R would play the EF-KOA game with a forger F in which R is
placed at the challenger’s position.

Let pk be a public key given by the imp-pa challenger C to R. Then, the imp-
pa impersonator R aims to impersonate a honest prover without the secret key
sk corresponding to the public key pk. Namely R attempts in the Challenge
phase of the imp-pa game to find a commitment ˆcmt and a response ˆres such
that V

(
pk, ˆcmt, ˆcha, ˆres

)
= 1 holds for a challenge ˆcha given by C. Here, the

imp-pa impersonator R is allowed to adaptively query to the transcript oracle
TrIDpk,sk to obtain a valid transcript (cmtt, chat, rest). Moreover, R is also able to
invoke the winning EF-KOA forger F polynomially many times. More precisely,
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Fig. 4. Fiat-Shamir transformation

R can obtain a message/signature pair (mi, σi) with non-negligible probability
by handing an i-th public key pki to F . R eventually sends a commitment ˆcmt
to C. After receiving a challenge ˆcha from C, R finally outputs a response ˆres.
For the transcript

(
ˆcmt, ˆcha, ˆres

)
, the probability that V

(
pk, ˆcmt, ˆcha, ˆres

)
= 1

would be non-negligible in k.
We force the reduction R to be key-preserving. Namely, each public key

pki fed by R is always pk which is given by the imp-pa challenger C. In the
NPROM, R obtains a hash value of Hpk from an external random oracle, whereas
R simulates the random oracle in the ROM. F invoked by R is also allowed to
make random oracle queries. On a random oracle query from F , R replies a hash
value to F by forwarding its query to own random oracle. Here R is prohibited
to simulate a random oracle for F , although it allows to observe any query given
from F . This rule captures that one cannot adopt the programming techniques
used in [1,7,36] in the NPROM.

Theorem 1. Assume that FS-Sig is proven to be EUF-KOA via a key-preserving
reduction in the NPROM from the imp-pa security of ID. Then, ID is not imp-aa
secure.

Proof (Sketch). Assume that FS-Sig is proven to be EUF-KOA via a key-
preserving reduction in the NPROM from the imp-pa security of ID. Then there
exists a PPT reduction algorithm R that is key-preserving and wins the imp-pa
game with at least non-negligible probability ε by black-box access to any forger
F which wins the EF-KOA game with non-negligible probability in the NPROM.

We shall construct a meta-reduction M that wins the imp-aa game against
ID with the reduction R. Recall that R can impersonate a honest prover in
the imp-pa game if a winning EF-KOA forger F and a valid transcript oracle
TrIDpk,sk are provided for R. Below, we first describe a hypothetical and specific
unbounded EF-KOA forger F̃ . Note that the reduction R should win the imp-pa
game with probability at least ε even when such a forger F̃ is provided. Next, we
give the description of M. M executes R with the simulations of F̃ and TrIDpk,sk
for R. We also show that M succeeds in such simulations in polynomial time.
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Fig. 5. The description of an (unbounded) EF-KOA forger ˜F

Description of Unbounded Forger F̃ We depict in Fig. 5 the unbounded EF-
KOA forger F̃ , where ski denotes the secret key corresponding to the public
key pki given to F̃ . We should note that the processes (F-1) and (F-4) are
not necessarily done in polynomial time here. However, we will construct an
imp-aa impersonator M that can simulate F̃ in polynomial time under the key-
preserving property of R. Moreover, F̃ computes Hpki

(cmti,mi) in the NPROM
by querying (cmti,mi) to the random oracle. Since the tuple (cmti, chai, resi)
is issued through the same processes of Sign (pki, ski,mi) as in Fig. 4, the tuple
(mi, (cmti, resi)) output by F̃ always satisfies that Ver (pki,mi, (cmti, resi)) = 1.

Description of Meta-Reduction M In Fig. 6, we depict the meta-reduction M
which wins the imp-aa game, where I denotes the upper bound of the total
number of invoking an EF-KOA forger by R and rewinding it, and q denotes
the upper bound of the number of queries to TrIDpk,sk, respectively.

We show that M wins the imp-aa game with probability at least ε in PPT.
In (M-5), M just intermediates between C and R. This implies that M can
impersonate a honest prover in the imp-aa game with probability at least ε
without the secret key sk corresponding to the public key pk given to M if
R impersonates the honest prover in the imp-pa game. On the other hand, as
mentioned above, R can impersonate the honest prover in the imp-pa game with
probability at least ε when M succeeds in the simulations of the forger F̃ and
the transcript oracle TrIDpk,sk for R. For the simulations in (M-4), the following
claims hold. Here, we show that M perfectly simulates these in (M-4).

Claim 2. M perfectly simulates F̃ in the R’s viewpoint.

Proof. We fix an i-th invocation of the EF-KOA forger by R. R would invoke
such a forger on an i-th public key pki in (M-4). It should be noted that pki

always coincides with the public key pk. This is because R is supposed to be
key-preserving. On the i-th public key pk by R, M queries the pair (cmti,mi) to
the random oracle and then returns the message/signature pair (mi, (cmti, resi))
in (M-4). The pair (mi, (cmti, resi)) is issued in (M-1). Therefore, it suffices that
M issues such a pair (mi, (cmti, resi)) in (M-1) in the same way as F̃ .

In (a), the imp-aa impersonator M obtains the i-th commitment cmti ←
P1 (pk, sk) by querying to the prover oracle provided by the imp-aa challenger
C. It follows from pk = pki that cmti is issued as in (F-1). The processes (b)
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Fig. 6. Configuration of M

and (c) are identical to (F-2) and (F-3), respectively. This is because both M
and F̃ obtain the i-th challenge chai by choosing mi at random, and then
querying the pair (cmti,mi) to the random oracle. In (d), M obtains the i-
th response resi by querying (i, chai) to the prover oracle. Since C answers
resi ← P2 (pk, sk, sti, cmti, chai) and pki = pk, resi is also issued in the same
way as (F-4). Thus M perfectly simulates F̃ . ��

In a similar manner to Claim 2, the following claim is proven.

Claim 3. M perfectly simulates TrIDpk,sk in the R’s viewpoint.
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Proof. We fix a t-th R’s query to the transcript oracle. On the t-th query by R,
M returns the transcript (cmtt, chat, rest) in (M-4). This transcript is issued in
(M-2). Therefore, it suffices that M issues such a transcript (cmtt, chat, rest) in
(M-2) in the same way as the transcript oracle TrIDpk,sk under the pair (pk, sk) of
the public key pk given to R and the corresponding secret key sk.

In (a), the imp-aa impersonator M obtains the t-th commitment cmtt ←
P1 (pk, sk) by querying to the prover oracle provided by the imp-aa challenger
C. Since C generates this commitment cmtt under the public key pk given to R,
cmtt is issued in the same way as in (Tr-1) in the R’s viewpoint. The process
(b) is identical to (Tr-2), because both M and TrIDpk,sk choose the t-th challenge
chat ∈U CHpk in (b) and in (Tr-2), respectively. In (c), M obtains the t-th
response rest by querying (I + t, chat) to the prover oracle. Since C answers
rest ← P2 (pk, sk, stt, cmtt, chat), rest is also issued in the same way as (Tr-3).
Thus M perfectly simulates TrIDpk,sk. ��

We need to consider the case where R rewinds the EF-KOA forger during an
i-th invocation. We now show that such a rewind can be replaced with the newly
invocation of the forger. Since M simulates the specific forger F̃ , it returns the
final output (mi, (cmti, resi)) soon after R gives the hash value of the random
oracle query (cmti,mi). Therefore, R would rewind the forger soon after M
makes a random oracle query. Recall that the key-preserving reduction R always
feeds the same public key pki as the public key pk given to R. In this case, M
aborts the i-th simulation of F̃ , and then it starts the simulation of the (i + 1)-th
invocation. Then M hands the random oracle query (cmti+1,mi+1) to R, and
then it proceeds to the simulation as in Fig. 6. In the R’s viewpoint, an EF-KOA
forger makes a new random oracle query soon after R rewinds the forger.

We evaluate the running time of M. M only chooses polynomially many
messages and challenges in (M-1) and (M-2), respectively, and M makes queries
to the prover oracle and the random oracle, and invokes R once. Therefore,
M runs in polynomial time. By the correctness of the simulations, it follows
that with probability at least ε, R can find

(
ˆcmt, ˆres

)
in (M-5) such that

Fig. 7. The Schnorr signature
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V
(

ˆcmt, ˆcha, ˆres
)

= 1. Thus M can win the imp-aa game with probability at
least ε, and hence ID is not imp-aa secure. ��

4 Security Incompatibility Between the DL Assumption
and the EUF-CMA Security of the Schnorr Signature
in the NPROM

In this section, we show the security incompatibility between the DL assump-
tion and the EUF-CMA security of the Schnorr signature via the single-instance
key-preserving reduction, whereas Fischlin and Fleischhacker [19] showed that
one cannot prove such an incompatibility via the non-key-preserving reduction.
More specifically, we show that the DL assumption does not hold if the Schnorr
signature is proven to be EUF-CMA via a single-instance key-preserving reduc-
tion in the NPROM from the DL assumption. Our incompatibility result can be
applied to any FS-type signature whose security proof in the ROM is given from
a non-interactive cryptographic assumption, such as the GQ signature [27].

Let G be a group of prime order p with a generator g. For any natural number
N , we use ZN to stand for the residue ring Z/NZ. We denote by IGen the DL
instance generator. On input 1k, IGen generates a pair (Y, x) of an instance
Y := (G, p, g, y) and the solution x corresponding to Y , where G denotes the
description of a group, p is a polynomial-length prime in k which represents
the order of G, g is a generator of G, y = gx and x ∈U Zp. An algorithm
R is said to solve the DL problem if R outputs the solution x on input Y ,
where (Y, x) ← IGen

(
1k

)
for some k. The DL assumption holds if for any PPT

algorithm R, R solves the DL problem with at most negligible probability. The
probability is taken over the coin flips of IGen and R. The Schnorr signature [37]
consists as in Fig. 7.

As in the previous section, we formalize the situation where the Schnorr sig-
nature is proven to be EUF-CMA via a single-instance key-preserving reduction
in the NPROM from the DL assumption. Namely this situation holds if there

Fig. 8. The description of a hypothetical forger FR,Y,(m,r)
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exists a single-instance key-preserving reduction R that solves the DL prob-
lem with at least non-negligible probability by black-box access to a forger F
that wins the EF-CMA game against the Schnorr signature with non-negligible
probability in the NPROM. The reduction R is forced to be single-instance in
addition to the key-preserving property. The single-instance reduction means
that R is limited to invoke F only once, but it is allowed to rewind F many
times [19]. Another different point from the previous section is that R needs to
simulate the signing oracle for the EF-CMA forger F . As the condition implicitly
considered in [19], the reduction R is supposed to succeed in such a simulation
with at most negligible error probability. Most reduction given in security proofs
such as [1,19,36] satisfies this condition.

Theorem 4. Assume that the Schnorr signature can be proven to be EUF-
CMA via a single-instance key-preserving reduction in the NPROM from the
DL assumption. Then the DL assumption does not hold.

Proof (Sketch). We assume that there exists a single-instance key-preserving
reduction R that solves the DL problem with black-box access to any EF-CMA
forger against the Schnorr signature in the NPROM. Then we shall construct
a meta-reduction M that solves the DL problem. On any DL instance Y =
(G, p, g, y), R would find the solution x with probability at least ε if an EF-
CMA forger against the Schnorr signature is provided for R. We first describe
a hypothetical and specific forger FR,Y,(m,r). It depends on the reduction R,
the DL instance Y given to R, a message m and random coins r. FR,Y,(m,r)

exploits a clone R∗ of the reduction R on input Y with the random coins r. In a
similar manner to Theorem 1, the reduction R should solve the DL problem with
probability at least ε even when such a forger FR,Y,(m,r) is provided. Next, we
construct M that solves the DL problem by utilizing R with a simulation of such
a forger FR,Y,(m,r). We also show that M perfectly simulates the hypothetical
forger FR,Y,(m,r) in the view of the single-instance key-preserving reduction R.

Description of FR,Y,(m,r) Let F be a set of pairs (m, r) of a message m and
random coins r. For the reduction R, the DL instance Y and each (m, r) ∈ F ,
we depict a hypothetical forger FR,Y,(m,r) in Fig. 8.

We show a fact that for each (m, r) ∈ F , if pk = pk∗, then FR,Y,(m,r) wins the
EF-CMA game of the Schnorr signature between the challenger C and FR,Y,(m,r)

with at least the probability that the clone reduction R∗ correctly answers a
signature σ = (cmt, res) on (pk∗,m). Assume that pk = pk∗. In order to show this
fact, it suffices that FR,Y,(m,r) wins the EF-CMA game of the Schnorr signature
when R∗ correctly answers a signature σ = (cmt, res) on (pk∗,m). Therefore, we
assume that R∗ correctly answers a signature σ = (cmt, res) on (pk∗,m). Since
FR,Y,(m,r) makes no query in the Signing oracle phase of the EF-CMA game
between C and it, it wins this game if it merely returns a pair (m,σ) such that
Ver (pk,m, σ) = 1 on the public key pk given to FR,Y,(m,r). The assumption on
R∗ implies that σ satisfies that Ver (pk∗,m, σ) = 1. Note that FR,Y,(m,r) queries
the pair (cmt,m) to the external random oracle in order to obtain the hash
value of (cmt,m) in the verification in (F-3). In addition, FR,Y,(m,r) also asks
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all random oracle queries made by R∗ to the external random oracle. It follows
from pk = pk∗ that Ver (pk,m, σ) = Ver (pk∗,m, σ) = 1. Thus, FR,Y,(m,r) wins
the EF-CMA game of the Schnorr signature with at least the probability that
the clone reduction R∗ correctly answers a signature σ = (cmt, res) on (pk∗,m).
Note that we will show that the condition pk = pk∗ is guaranteed under a
key-preserving reduction in Claim 5.

Description of M We depict in Fig. 9 the description of M that solves the DL
problem. Note that M just outputs x once R∗ outputs the solution x without
the invocation of an EF-CMA forger. Hereafter, we only consider the other case.
The following claim can be shown.

Claim 5. M perfectly simulates FR,Y,(m,r) in the R’s viewpoint.

Proof. We show that M behaves in (M-2) in the same way as FR,Y,(m,r). On
a public key pk fed by R, M executes a clone R∗ of R on the DL instance Y
given to M with the random coins r in (a) as in (F-1). In the same manner to
(F-2), M obtains a signature σ = (cmt, res) on the message m under the public
key pk∗ given by R∗ in (b). As the behavior of FR,Y,(m,r), M asks (cmt,m) and
a sequence Q of all random oracle queries made by R∗ to the random oracle

Fig. 9. Configuration of M
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provided by R in (c). In (d), M aborts own if Ver (pk∗,m, σ) = 0. It should be
noted that pk = pk∗ = Y . This is because the key-preserving property of R leads
that any public key fed by R always coincides with the DL instance Y input to
R. This implies that the process (d) is identical to (F-3). M eventually returns
the pair (m,σ) to R in (e). Therefore, M indeed behaves in the same way as
FR,Y,(m,r).

We also show that the pair (m,σ) returned by M satisfies that
Ver (pk,m, σ) = 1 when R∗ correctly answers a signature σ on (pk∗,m) in (b).
Assume that R∗ correctly answers a valid signature σ = (cmt, res) on (pk∗,m). R
can know the same input/output pairs of hash values which are issued from R∗,
because M asks the pair (cmt,m) and the sequence Q to the random oracle pro-
vided by R in (d). It follows from pk = pk∗ that R can ensure that gres = cmt·yc

for c = Hpk (cmt,m) on pk = (G, p, g, y), and hence Ver (pk,m, (cmt, res)) = 1.
Thus M perfectly simulates FR,Y,(m,r) in the R’s viewpoint. ��
It should be noted that R may rewind the forger FR,Y,(m,r). Since the single-

instance reduction R is limited to invoke the forger only once, the rewind would
be occurred during its invocation. Observe that the behavior of FR,Y,(m,r) is
deterministic for the reduction R, the DL instance Y given to M and the pair
(m, r) which is fixed by M. Therefore, rewinding FR,Y,(m,r) does not affect the
simulation of FR,Y,(m,r).

We evaluate that M runs in polynomial time, because M just chooses a
polynomial-length message and polynomial-length random coins in (M-2), makes
at most polynomially many queries to the random oracle, and M invokes R and
R∗ once. Moreover, we show that M can output the correct solution x of the
DL instance Y with probability at least ε − negl(k). Recall that R invoked by
M would output the solution x with probability at least ε if a winning EF-
CMA forger F is provided for R. On the other hand, as shown in Claim 5,
M indeed simulates the EF-CMA forger FR,Y,(m,r) for R. Note that M aborts
with negligible probability in (d) of (M-2). This is because the reduction R∗ is
supposed to simulate the signing oracle with negligible error probability. These
imply that M can solve the DL problem with at least ε − negl(k), and hence
the DL assumption does not hold. ��
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Abstract. Aggregate signature system allows a collection of signatures
can be compressed into one short signature. Identity-based signature
schemes (IBS) allow a signer to sign a message, in which the signature can
be verified by his identity. The notion of identity-based aggregate signa-
tures (IBAS) were formally introduced by Gentry and Ramzan (PKC’06).
Over the past decade, several constructions of IBAS have been proposed,
which are restricted to share a common token or require sequential addi-
tions. The problem about how to achieve IBAS from standard signatures
still is not resolved.

In this work, we present a generic transformation that yields IBAS
schemes starting with standard signature schemes. Specifically, we pro-
vide a generic construction of an n-bounded IBAS scheme that can be
proven selectively secure in the standard model from any secure signa-
ture scheme by using indistinguishability obfuscation and selective one-
time universal parameters scheme. The complexity leveraging requires
sub-exponential hardness assumption of indistinguishability obfuscation,
puncturable PRF and one-way functions.

Keywords: Aggregate signature · Identity-based signature · Identity-
based aggregate signature · Indistinguishability obfuscation · Universal
parameters.

1 Introduction

Aggregate signatures, as introduced by Boneh et al. [2], are digital signa-
tures that allow n users (whose verification and secret signing key pair is
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{(vki, ski)}i∈[n]) of a given group of potential signers to sign n different mes-
sages {mi}i∈[n] respectively, and all the signatures of those users on those mes-
sages can be aggregated into a single short signature σ. This single signature σ
and the n original verification key/message pairs {(vki,mi)}i∈[n] are enough to
convince the verifier that the n signers did indeed sign the n original messages
mi respectively. Aggregate signatures are useful in many real-world applications
where one needs to simultaneously verify several signatures from different signers
on different messages in environments with communication or storage resource
constraints, such as secure route attestation.

Identity-Based Aggregate Signatures. In 1984, Shamir proposed a new
model for public key cryptography, the identity-based cryptography and con-
structed an identity-based signature scheme (IBS) [11]. The idea of identity
based cryptography is to simplify the public key of the user by using user’s
identity, which uniquely defines the user. In an identity based signature scheme,
each user is provided with a secret signing key corresponding to his identity and
he/she signs their messages using the secret signing key. The signature can be
verified by using the identity of the signer and public parameters of the system.

The features of an identity-based signature scheme make it particularly
appealing for use in conjunction with aggregate signature schemes. Gentry and
Ramzan first formally introduced the notion of identity-based aggregate signa-
tures (IBAS) and corresponding security model [7]. In an identity-based aggre-
gate signature scheme, a trusted private key generator generates a private signing
key skid corresponding to user’s identity id. Using private signing key skid user
can obtain a signature σid for message corresponding to identity id. Furthermore
a signature σ1 on identity/message pair (id1,m1) can be combined with a signa-
ture σ2 on (id2,m2) to produce a new signature σ̃ on the set {id1,m1), (id2,m2)}.
Crucially, the size of aggregated signature σ̃ should be independent of the num-
ber of signatures aggregated. The aggregated signature σ̃ can be verified by using
the identity/message pair of the signer and public parameters of the system. The
system will be secure in the sense that it is hard to produce an aggregate sig-
nature on a identity/message list L that contains some (idi,mi) never queried
before — i.e., for all the adversary’s queries L′, (idi,mi) /∈ L′.

Current State of the Art. Standard signatures imply identity-based signa-
tures following the “certification paradigm”, e.g. [6] , i.e. by simply attaching
signer’s public key and certificate to each signature. However, it is not clear
how to convert standard signatures into identity-based aggregate signatures.
Although over the past decade many identity-based aggregate signature schemes
have been proposed [3,4,7,10], all of these constructions are restricted to share
a common token [7] (e.g., where a set of signatures can only be aggregated if
they were created with the same common token) or require sequential additions
[3] (e.g., where a group of signers sequentially form an aggregate by each adding
their own signature to the aggregate-so-far).

In 2013, Hohenberger, Sahai and Waters [10] implemented the Full Domain
Hash with a Naor-Reingold-type structure that is publicly computable by using
leveled multilinear maps. And departing from this result they constructed the
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first identity-based aggregate signature scheme that admits unrestricted aggrega-
tion. However, since their solution to identity-based aggregate signature scheme
is firstly to build a BLS type-signature that admit unrestricted aggregation, the
problem about how to achieve identity-based aggregate signatures from standard
signatures still is not resolved.

Our Results in a Nutshell. In this work, we present a generic transformation
that yields identity-based aggregate signature schemes based on standard sig-
nature schemes. Specifically, we provide a generic construction of an n-bounded
identity-based aggregate signature scheme that can be proven selectively secure
in the standard model from any secure signature scheme by using indistinguisha-
bility obfuscation and selective one-time universal parameters scheme. Although
our IBAS scheme requires an a-priori bound n on the number of signatures that
can be aggregated, the size of the public parameters and aggregated signatures
are independent of it.

Before we describe our construction we briefly overview the underlying prim-
itive: universal parameters scheme. Intuitively, a universal parameters (UP)
scheme allows multiple paries to sample a consistent elements from arbitrary
distributions while insuring that an adversary cannot learn the randomness that
yields this element. In UP there is a universal parameter generation algorithm,
UniversalGen, which takes as input a security parameter and output “univer-
sal parameters” U . In addition, there is a second algorithm InduceGen which
takes as input universal parameters U and a distribution specified by a circuit
d, and outputs the induced parameters d(z) for hidden random coins z that are
pseudorandomly derived from U and d. The security definition states that it
is computationally difficult to distinguish an honest execution of U from that
generated by a simulator SimUGen that has access to the parameters oracle.

To transform standard signature scheme into identity-based aggregate sig-
nature, we proceed in two steps. In the first step, we show how to obtain
IBS from standard signature scheme (SIG). The basic idea is to use one sig-
nature instance for each identity id of IBS by universal parameter, which
is inspired by the application of universal parameter for transforming pub-
lic key encryption (PKE) into identity-based encryption (IBE) [8]. Precisely,
choose a universal parameter U and a key pair (pkPKE, skPKE) of PKE. Let
Prog

{
pkPKE

}
be a circuit that taking a random string r = r1‖r2 as input, first

samples (vkSIG, skSIG) ← SIG.Setup(1λ; r1), then encrypts skSIG under pkPKE via
c′ ← PKE.Enc(pkPKE, skSIG; r2), and finally outputs (vkSIG, c′). Here we view
pkPKE as a constant hardwired into the circuit Prog

{
pkPKE

}
and r = r1‖r2 as

input, where we make the random coins of the SIG.Setup and PKE.Enc explicit.
For identity id we compute (vkid, c

′
id) ← InduceGen(U,Prog

{
pkPKE

}‖id). This
way, we can use skPKE as a master trapdoor to extract the signing key skid from
c′
id and thus obtain individual user secret signing key for identity id. Using that

secret signing key skid corresponding to id, user can sign their messages.
The second step is to make this IBS support aggregation. Our main solution

idea departs fundamentally from Hohenberger, Koppula and Waters’s method
of aggregating signatures using indistinguishability obfuscation [9]. Basing on
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their idea we provide an approach to make this IBS support aggregation.
Our construction relies on the puncturable PRF and additively homomorphic
encryption HE.

Our IBAS scheme is setup as follows. Randomly choose a key K of punc-
turable PRF and a key pair (pkHE, skHE) of HE and obtain n encryption of 0
under pkHE, e.g. cti ← HE.Enc(pkHE, 0). Create program Prog

{
K, ct1, . . . , ctn

}

which taking as inputs {vkidi
, (idi,mi), σi}i∈[n], firstly verifies (mi, σi) is valid

under verification key vkidi
, then computes t = σ1 · ct1 + . . . + σn · ctn and

si = F (K, vkidi
‖idi‖mi‖i‖t), and finally outputs σagg = (t,⊕isi). In addi-

tion, create program Prog
{
K

}
that taking as inputs {vkidi

, (idi,mi)}i and
σagg = (t, s), computes s′ = ⊕iF (K, vkidi

‖idi‖mi‖i‖t) and outputs 1 if s′ = s,
else outputs 0. Set obfuscated programs P1 = iO(

Prog
{
K, ct1, . . . , ctn

})
and

P2 = iO(Prog
{
K

}
) as public parameters. To aggregate the signatures σi of

identity/message pair (idi,mi) for all i ∈ [n], firstly obtain verification key
vkidi

corresponding identity idi by universal parameter U and run program
P1

({vkidi
, (idi,mi), σi}i

)
to get σagg = (t, s). To verify an aggregate signa-

ture, σagg = (t, s), on {(idi,mi)}i∈[n], firstly obtain verification key vkidi
cor-

responding identity idi by universal parameter U and return the output of
P2({vkidi

, (idi,mi)}i, σagg).
We prove the selective security where the attacker declares before see-

ing the public parameters a idenntity/message pair (id∗,m∗) by performing
a sequence of games. In game 1 challenger first guesses an index i∗ (incur-
ring a 1/n loss) where the forgery occurs. In game 2, we change cti∗ to
be an encryption of 1. This causes an honestly computed value t to be an
encryption of the i∗-th signature that we will eventually use for extraction.
In game 3 we use the programmed generated algorithm SimUGen to produce
U such that (vkidi∗ , cidi∗ ) ← InduceGen(U,Prog

{
pkPKE

}‖idi∗) where cidi∗ =
PKE.Enc(pkPKE, skidi∗ ). In game 4 we replace cidi∗ with an encryption of 1λ.
At this time the simulator cannot answer the KeyGen(msk, ·) and Sign(·, ·)
queries, since it cannot decrypt the ciphertext cidi

. We overcome this obstacle
by employing a wCCA-secure PKE that requires that the attacker has access
to decryption oracle only after seeing the challenge ciphertext. When using
wCCA-secure PKE, simulator can use the wCCA decryption oracle to answer
KeyGen(msk, ·) and Sign(·, ·) queries. For forgery σ∗

agg = (t∗, s∗), since t∗ is
an encryption of σi∗ under skHE, if SIG.Vefy(vkidi∗ ,mi∗ ,HE.Dec(skHE, t∗)) =
1, then (mi∗ ,HE.Dec(skHE, t∗)) is a forgery for basic signature scheme
SIG, which contradicts with the existential unforgeability of SIG. There-
fore when SIG.Vefy(vkidi∗ ,mi∗ ,HE.Dec(skHE, t∗)) = 0, we can use the punc-
tured key K{y} at punctured point y = vkidi∗ ‖idi∗‖mi∗‖i∗‖t∗ to replace
program Prog

{
K, ct1, . . . , ctn

}
with Prog

{
K{y}, ct1, . . . , ctn

}
. In addition, we

replace iO(
Prog

{
K

})
with iO(

Prog{y, z = F (K, y),K{y}}), where program
Prog{y, z = F (K, y),K{y}} employs an one-way function to check the correct-
ness for F (K, vkidi∗ ‖idi∗‖mi∗‖i∗‖t∗) and F (K{y}, vkidi∗ ‖idi∗‖mi∗‖i∗‖t) that
in turn can be computed by ⊕i�=i∗F (K{y}, vkidi

‖idi‖mi‖i‖t) ⊕ s. By the
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pseudorandomness property of puncturable PRF we replace F (K, y) with a ran-
dom strings z. This perfectly simulates the game.

Since there will be an exponential number of intermediate hybrid games, we
will be using stronger security for the indistinguishability obfuscation, the punc-
turable PRF and the one way function, which requires sub-exponential hardness
assumption.

Organization. The rest of this paper is organized as follows. In Sect. 2 we
describe the basic tools which will be used in our construction. In Sect. 3 we
introduce the notions of identity-based aggregate signatures that are considered
in this work. In Sect. 4 we present our generic transformation to build IBAS from
standard signature scheme and prove the security of our IBAS scheme.

2 Preliminaries

In this section, we give the definitions of cryptographic primitives that will be
used in our constructions. Below, we recall the notions of indistinguishability
obfuscation, puncturable pseudorandom functions and universal parameters.

2.1 Indistinguishability Obfuscation

Here we recall the notion of indistinguishability obfuscation which was originally
proposed by Barak et al. [1]. The formal definition we present below is from [5].

Definition 1 (Indistinguishability Obfuscation [5]). A PPT algorithm iO
is said to be an indistinguishability obfuscator for a circuits class {Cλ}, if the
following conditions are satisfied:

– For all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs x, we have
that

Pr[C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1.

– For any (not necessarily uniform) PPT adversaries (Samp,D), there exists
a negligible function negl(·) such that the following holds: if Pr[∀x,C0(x) =
C1(x) : (C0, C1, σ) ← Samp(1λ)] > 1 − negl(λ), then we have:

∣
∣Pr[D(σ, iO(λ,C0)) = 1 : (C0, C1, σ) ← Samp(1λ)]

−Pr[D(σ, iO(λ,C1)) = 1 : (C0, C1, σ) ← Samp(1λ)]
∣
∣ ≤ negl(λ).

In a recent work, Garg et al. [5] gave the first candidate construction of indistin-
guishability obfuscator iO for all polynomial size circuits under novel algebraic
hardness assumptions. In this paper, we will take advantage of such indistin-
guishability obfuscators for all polynomial size circuits.
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2.2 Puncturable PRFs

Puncturable PRFs, as introduced by Sahai and Waters [12], are PRFs that a
punctured key can be derived to allow evaluation of the PRF on all inputs, except
for any polynomial-size set of inputs. The definition is formulated as in [12].

Definition 2. A puncturable family of PRFs F mapping is given by a triple
of Turing Machines (KeyF , PunctureF , and EvalF ), and a pair of computable
functions τ1(·) and τ2(·), satisfying the following conditions:

– [Functionality preserved under puncturing]. For every PPT adversary
A such that A(1λ) outputs a set S ⊆ {0, 1}τ1(λ), then for all x ∈ {0, 1}τ1(λ)

where x /∈ S, we have that:

Pr[EvalF (K,x)=EvalF (KS , x) : K ← KeyF (1λ),KS=PunctureF (K,S)]=1

– [Pseudorandom at punctured points]. For every PPT adversary (A1,A2)
such that A1(1λ) outputs a set S ⊆ {0, 1}τ1(λ) and state σ, consider an exper-
iment where K ← KeyF (1λ) and KS = PunctureF (K,S). Then we have
∣

∣Pr[A2(σ, KS , S,EvalF (K, S)) = 1]− Pr[A2(σ, KS , S, Uτ2(λ)·|S|) = 1]
∣

∣ = negl(λ),

where EvalF (K,S) denotes the concatenation of EvalF (K,x1), . . . ,EvalF (K,xk)
where S = {x1, . . . , xk} is the enumeration of the elements of S in lexicographic
order, negl(·) is a negligible function, and Uτ2(λ)·|S| denotes the uniform distri-
bution over τ2(λ) · |S| bits.

Theorem 1 [12]. If one-way functions exist, then for all efficiently computable
functions τ1(λ) and τ2(λ), there exists a puncturable PRFs family that maps
τ1(λ) bits to τ2(λ) bits.

2.3 Universal Parameters

In a recent work, Hofheinz et al. [8] introduced the notion of universal parame-
ters. A universal parameters scheme UP, parameterized by polynomials �ckt, �inp
and �out, consists of algorithms UniversalGen and InduceGen defined below.

– UniversalGen(1λ) takes as input the security parameter λ and outputs the
universal parameters U .

– InduceGen(U, d) takes as input the universal parameters U and a circuit d
which takes as input �inp bits and outputs �out bits. The size of circuit d is at
most �ckt bits.

Definition 3 (Selectively-Secure One-Time Universal Parameters
Scheme). Let �ckt, �inp, �out be efficiently computable polynomials. A pair of
efficient algorithms (UniversalGen, InduceGen) is a selectively-secure one-time
universal parameters scheme if there exists an efficient algorithm SimUGen such
that:
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– There exists a negligible function negl(·) such that for all circuits d of length
�ckt, taking �inp bits of input, and outputting �out bits, and for all strings pd ∈
{0, 1}k, we have that:

Pr[InduceGen(SimUGen(1λ, d, pd), d) = pd] = 1 − negl(λ).

– For every efficient adversary A = (A1,A2), where A2 outputs one bit, there
exists a negligible function negl(·) such that the following holds. Consider the
following two experiments:

The experiment Real(1λ) is as follows:

1. (d∗, σ) ← A1(1λ)

2. Output A2(UniversalGen(1λ), σ).

The experiment Ideal(1λ) is as follows:
1. (d∗, σ) ← A1(1λ)
2. Choose r uniformly from {0, 1}�inp .
3. Let pd = d∗(r).
4. Output A2(SimUGen(1λ, d∗, pd), σ).

Then we have:
∣
∣Pr[Real(1λ) = 1] − Pr[Ideal(1λ) = 1]

∣
∣ = negl(λ).

Hofheinz et al. [9] construct a selectively secure one-time universal parameters
scheme, assuming a secure indistinguishability obfuscator and a selectively secure
puncturable PRF.

3 Identity-Based Aggregate Signatures

Syntax. An identity-based aggregate signatures (IBAS) scheme can be described
as a tuple of polynomial time algorithms IBAS = (Setup,KeyGen,Sign,Aggregate,
Verify) as follows:

– Setup(1λ) The setup algorithm takes as input the security parameter and
outputs the public parameters PP of the scheme and master secret key msk.

– KeyGen(msk, id ∈ {0, 1}�id) The key generation algorithm run by the master
entity, takes as input the master secret key msk and an identity id, and outputs
a secret signing key skid corresponding to id.

– Sign(skid,m ∈ {0, 1}�msg) The signing algorithm takes as input a secret signing
key skid as well as a message m ∈ {0, 1}�msg), and outputs a signature σ ∈ �sig
for identity id on m.

– Aggregate(PP, {(idi,mi), σi}t
i=1) The aggregation algorithm takes as input t

tuples {(idi,mi), σi} (for some arbitrary t) where each tuple is (�id, �msg, �sig)-
length. It outputs an aggregate signature σagg whose length is polynomial in
λ, but independent of t.

– Verify(PP, {(idi,mi)}t
i=1, σagg) The verification algorithm takes as input the

public parameters PP, t tuples {(idi,mi)} that are (�id, �msg)-length, and an
aggregate signature σagg. It outputs 0 or 1 to indicate whether verification
succeeded.
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Correctness. For all λ, n ∈ N, (PP,msk) ← Setup(1λ, n), t tuples {(idi,mi)}
that are (�id, �msg)-length, for all i ∈ [t], skidi

← KeyGen(msk, idi), σi ←
Sign(skidi

,mi), and σagg ← Aggregate(PP, {(idi,mi), σi}t
i=1), we require that

Verify(PP, {(idi,mi)}t
i=1, σagg) = 1.

Selective Security. We consider a weaker attack (selective in both the
identity and the message) where a forger is challenged on a given iden-
tity/message pair (id∗,m∗) chosen by the adversary before receiving the
public parameters. More formally, the selective experiment Expsel-uf

IBAS,A(λ)
between a challenger and an adversary A with respect to scheme IBAS =
(Setup,KeyGen,Sign,Aggregate,Verify) is defined as follows:

Experiment Expsel-uf
IBAS,A(λ)

1. (id∗,m∗) ← A(PP);
2. (PP,msk) ← Setup(1λ);
3. (L∗ = {(idi,mi)}t

i=1, σ
∗
agg) ← AKeyGen(msk,·),Sign(·,·)(PP);

– KeyGen(msk, ·) oracle: on input an identity id, returns secret keys for arbi-
trary identities.

– Sign(·, ·) oracle: on input an identity id and a message m, sets skid ←
KeyGen(msk, id) and returns Sign(skid,m).

4. The adversary A wins or the output of this experiment is 1 if the following
hold true:
(a) Verify(PP, {(idi,mi)}t

i=1, σ
∗
agg)=1,

(b) ∃i∗ ∈ [t] such that
i. (id∗,m∗) = (idi∗ ,mi∗) ∈ L∗,
ii. id∗ has not been asked to the KeyGen(msk, ·) oracle,
iii. (id∗,m∗) has not been submitted to the Sign(·, ·) oracle.

The advantage of an adversary A in the above game is defined to be

Advsel-ufIBAS,A = Pr[Expsel-uf
IBAS,A(λ) = 1],

where the probability is taken over all coin tosses of the Setup, KeyGen, and Sign
algorithm and of A.

Definition 4 (Selective Unforgeability). An identity-based aggregate signature
scheme IBAS is existentially unforgeable with respect to selectively chosen iden-
tiry/message pair attacks if for all probabilistic polynomial time adversaries A,
the advantage Advsel-ufIBAS,A in the experiment Expsel-uf

IBAS,A(λ) is negligible in λ.

In our setting, we define an n-bounded identity-based aggregate signatures
scheme, which means that at most n signatures can be aggregated.

Definition 5. An n-bounded identity-based aggregate signatures scheme
IBAS=(Setup, KeyGen, Sign, Aggregate,Verify) is an IBAS in which Setup algo-
rithm takes an additional input 1n and Aggregate algorithm takes in t tuples
{(idi,mi), σi}i∈[t] satisfying t ≤ n. The public parameters output by Setup have
size bounded by some polynomial in λ and n. However, the aggregated signature
has size bounded by a polynomial in λ, but is independent of n.
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Comparison to Previous Definitions. Our definition of IBAS make the
requirement that there is an a-priori bound n on the number of signatures that
can be aggregated. It is different from the definition described in [10], which
allows any two aggregate signatures can be combined into a new aggregate
signature.

4 Generic Construction of Identity-Based
Aggregate Signatures

In this section, we present our generic transformation to build n-bounded IBAS
from length-bounded signature scheme, which can be proven selectively secure
in the standard model. Besides indistinguishability obfuscator iO, we will use
the following primitives.

– A selectively one-time secure (�ckt, �inp, �out) universal parameter scheme
UP=(UniversalGen,InduceGen).

– A wCCA-secure public-key encryption scheme PKEwCCA = (PKE.SetupwCCA,
PKE.EncwCCA, PKE.DecwCCA). Let the randomness space of PKE.EncwCCA be
{0, 1}�inp/2. We give a formal definition of wCCA-secure PKE scheme in
Appendix 1.

– A (�vk, �msg, �sig)-length signature scheme SIG = (SIG.Setup,SIG.Sign,SIG.Vefy)
that the verification keys output by SIG.Setup have length at most �vk(λ),
SIG.Sign takes as input messages of length at most �msg(λ) and outputs signa-
tures of length bounded by �sig(λ). Let the randomness space of SIG.Setup be
{0, 1}�inp/2. We give a formal definition of signature scheme in Appendix 2.

– An additively homomorphic encryption scheme HE=(HE.Setup,
HE.Enc,HE.Dec, HE.Add) with message space Fp for some prime p > 2�sig and
ciphertext space CHE, where each ciphertext in CHE can be represented using
�HEct bits. We give a formal definition of additively homomorphic encryption
scheme in Appendix 3.

– A puncturable PRF F with key space K, input space {0, 1}�vk+�id+�msg+log n+�HEct

and range {0, 1}�.
– An injective one-way function f : {0, 1}� → {0, 1}2�.

Our n-bounded identity-based aggregate signature scheme consists of algorithms
IBAS.Setup, IBAS.KeyGen, IBAS.Sign, IBAS.Aggregate and IBAS.Verify described
below.

IBAS.Setup(1λ, n): On input 1λ, the IBAS.Setup algorithm works as follows.
1. It runs (pkHE, skHE) ← HE.Setup(1λ) and computes ciphertext cti ←

HE.Enc(pkHE, 0) for all i ∈ [n].
2. It runs (pkwCCA, skwCCA) ← PKE.SetupwCCA(1λ) to generate a key pair for

PKEwCCA.
3. Then it creates a program Prog{pkwCCA} which is defined below as Fig. 1.
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4. Choose a puncturable PRF key K, create programs Prog
{
K, ct1, . . . , ctn

}

and Prog{K} described below as Figs. 2 and 3 respectively, and set P1 =
iO(

Prog
{
K, ct1, . . . , ctn

})
and P2 = iO(

Prog{K}).
5. Finally it computes U ← UniversalGen(1λ).

The public parameters PP is (pkHE, U,Prog{pkwCCA}, P1, P2) and the master
secret key msk is skwCCA.

IBAS.KeyGen(msk, id) : On input the master secret key msk and id ∈ {0, 1}�id ,
it computes (vkid, cid) ← InduceGen(U,Prog{pkwCCA}‖id) and returns skid ←
PKE.DecwCCA(msk, cid).

Remark. For any program Prog{pkwCCA}, we let Prog{pkwCCA}‖id denote
the program Prog{pkwCCA} extended with an additional string id ∈ {0, 1}�id .
Although their description is different, program Prog{pkwCCA}‖id has the
same functionality as program Prog{pkwCCA}. We require that this exten-
sion is performed in some standard and deterministic way, for instance by
always adding the id string at the end of the code.

IBAS.Sign(skid,m): On input a secret signing key skid and a message m ∈
{0, 1}�msg , it runs σ ← SIG.Sign(skid,m) and returns σ.

IBAS.Aggregate(PP, {(idi,mi), σi}i): On input public parameters PP and
tuples {(idi,mi), σi}i, if tuples {(idi,mi), σi} are not distinct, the algorithm
outputs ⊥. Else, it computes (vkidi

, cid) ← InduceGen(U,Prog{pkwCCA}‖idi)
and outputs P1

({vkidi
, (idi,mi), σi}i

)
.

IBAS.Verify(PP, {(idi,mi)}i, σagg = (t, s)): The verification algorithm checks
if the tuples {(idi,mi)}i are distinct. If not, it outputs 0. Else, it
computes (vkidi

, cid) ← InduceGen(U, Prog{pkwCCA}‖idi), and outputs
P2

({(vkidi
, idi,mi)}i, σagg = (t, s)

)
.

Fig. 1. Program Prog{pkwCCA}.

The correctness of this scheme follows immediately from the correctness of
SIG, PKEwCCA, HE and (UniversalGen, InduceGen).

Remark. The setup algorithm is parameterized by a polynominal n that gives
an a-priori bound on the number of signatures that can be aggregated. The size
of the parameters and aggregate signatures are independent of it.
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Fig. 2. Program Prog{K, ct1, . . . , ctn}.

Fig. 3. Program Prog{K}.

Theorem 2. Let A be any PPT adversary, and SIG a (�vk, �msg, �sig)-length
secure signature scheme. Let Advsel-ufIBAS,A denote the advantage of A in the identity-
based aggregate signatures. Let AdvUP, AdvSIG, AdvHE, AdvPKEwCCA

, AdviO, AdvPRF
and Advf denote the maximum advantage of a PPT adversary against universal
parameters scheme UP, signature scheme SIG, additively homomorphic encryp-
tion scheme HE, wCCA secure public key encryption PKEwCCA, indistinguisha-
bility obfuscator iO, selectively secure puncturable PRF F and one way function
f respectively. Then,

Advsel-ufIBAS,A ≤ n
(
AdvHE + AdvUP + AdvPKEwCCA

+ 2�HEct(6AdviO + 2AdvPRF + Advf )

+ AdvSIG
)

where �HEct is the length of ciphertexts in CHE.

We now prove via a sequence of exponential number hybrid games Game 0,
Game 1, Game 2, Game 3, Game 4, Game 5,0, Game 5,0-1, Game 5,0-2,. . ., Game
5,0-6, Game 5,1, Game 5,1-1, Game 5,1-2,. . ., Game 5,1-6, Game 5,2,. . ., Game
5,2�HEct , each of which we prove to be indistinguishable from the previous one.

Sequence of Games.

Game 0. This game is the original selective security game Expsel-uf
IBAS,A(λ) in

Sect. 3 instantiated by our construction.
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1. A first choose a challenge (id∗,m∗).
2. The challenger chooses (pkHE, skHE), (pkwCCA, skwCCA), U ← UniversalGen(1λ)

and K ← PRF.Setup(1λ). Compute cti ← HE.Enc(pkHE, 0) for all i ∈ [n],
P1 ← iO(

Prog
{
K, ct1, . . . , ctn

})
and P2 ← iO(

Prog{K}). Let Prog{pkwCCA}
be circuit as defined in the Fig. 1. Set PP = (pkHE, U,Prog{pkwCCA}, P1, P2)
and msk = skwCCA, and send PP to A.

3. On attacker’s KeyGen(msk, ·) queries and Sign(·, ·) queries, the challenger
responds as follows:
– On KeyGen(msk, ·) query for id, the challenger computes (vkid, cid)

← InduceGen(U,Prog{pkwCCA}‖id) and returns skid ← PKE.DecwCCA
(msk, cid).

– On Sign(·, ·) query for identity id and message m, the challenger first runs
skid ← KeyGen(msk, id) and then returns σ ← SIG.Sign(skid,m).

4. Finally the adversary outputs (L∗ = {(idi,mi)}i, σ
∗
agg). The adversary A wins

or the output of this experiment is 1 if the following hold true:
(a) IBAS.Verify(PP, L∗ = {(idi,mi)}i, σ

∗
agg) = 1,

(b) ∃i∗ such that
i. (id∗,m∗) = (idi∗ ,mi∗) ∈ L∗,
ii. id∗ has not been asked to the KeyGen(msk, ·) oracle,
iii. (id∗,m∗) has not been submitted to the Sign(·, ·) oracle.

Game 1. This game is exactly similar to the previous one, except that the
challenger guesses a position i∗ ← [n], and the attacker wins if id∗ = idi∗ and
m∗ = mi∗ .

Game 2. This game is similar to the previous one, except that cti∗ is an encryp-
tion of 1 under pkHE, instead of 0. That is, compute cti ← HE.Enc(pkHE, 0) for
all i ∈ [n] and i �= i∗, and cti∗ ← HE.Enc(pkHE, 1).

Game 3. This game is identical to Game 2, except for the following. The exper-
iment generates parameters as U ← SimUGen(1λ,Prog{pkwCCA}‖idi∗ , (vkidi∗ ,
cidi∗ )), where (vkidi∗ , cidi∗ ) ← Prog{pkwCCA}‖idi∗(r) for uniformly random r ∈
{0, 1}�inp . And on attacker’s KeyGen(msk, ·) query for id, the challenger com-
putes (vkid, cid) ← InduceGen(U,Prog{pkwCCA}‖id), where U ← SimUGen(1λ,
Prog{pkwCCA}‖idi∗ , (vkidi∗ , cidi∗ )), and returns skid ← PKE.DecwCCA(msk, cid).

Game 4. The only difference between this game and the previous one is
in the behavior of evaluation on the didi∗ = Prog{pkwCCA}‖idi∗ . In Game
3, the entry corresponding to didi∗ is of the form (didi∗ , (vkidi∗ , cidi∗ )) where
r = r0‖r1 ∈ {0, 1}�inp , (vkidi∗ , skidi∗ ) ← SIG.Setup(1λ; r0) and cidi∗ ←
PKE.EncwCCA(pkwCCA, skidi∗ ; r1). In this game, the entry corresponding to didi∗
is (didi∗ , (vkidi∗ , cidi∗ )), where cidi∗ ← PKE.EncwCCA(pkwCCA, 1λ; r1).
We will now describe an exponential number of hybrid experiments Game 5,j
for j ≤ 2�HEct . Let us define some notations. Recall Prog{K} takes as input tuples
of the form ({(vkidi

, idi,mi)}i, (t, s)). We say tuple
({(vkidi

, idi,mi)}i, (t, s)
)

is
(i∗, skHE)-rejecting if SIG. Vefy(vkidi∗ ,mi∗ ,HE.Dec(skHE, t)) = 0.
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Game 5, j. In this game, the adversary does not win if the forgery input
({(vkidi

, idi,mi)}i, (t∗, s∗)) is (i∗, skHE)-rejecting and t∗ ≤ j. That is, finally
the adversary A outputs (L∗ = {(idi,mi)}i, σ

∗
agg = (t∗, s∗)), and A wins if the

following hold true:

1. IBAS.Verify(PP, L∗ = {(idi,mi)}i, σ
∗
agg) = 1,

2. ({(vkidi
, idi,mi)}i, (t∗, s∗)) is not (i∗, skHE)-rejecting or t∗ > j,

3. idi∗ has not been asked to the KeyGen(msk, ·) oracle,
4. (idi∗ ,mi∗) has not been submitted to the Sign(·, ·) oracle.

Game 5, j-1. In this game, the challenger replace P2 with obfuscation of pro-
gram Prog-1{K} instead of Prog{K}. That is P2 = iO(Prog-1{K}). In program
Prog-1{K} as described in Fig. 4, instead of checking whether s = ⊕isi, it uses
an injective one way function f to check if f(s ⊕ (⊕i�=i∗si)) = f(si∗).

Fig. 4. Program Prog-1{K}.

Game 5, j-2. In this game, Prog
{
K, ct1, . . . , ctn

}
and Prog-1{K} are replaced

by Prog-1
{
K{y}, ct1, . . . , ctn

}
(described in Fig. 5) and Prog-2{y, z,K{y}}

(described in Fig. 6) respectively. Both the replaced programs use the punc-
tured key at punctured point y = vkidi∗ ‖idi∗‖mi∗‖i∗‖(j + 1). More pre-
cisely, the challenger computes y = vkidi∗ ‖idi∗‖mi∗‖i∗‖(j + 1), K{y} ←
PRF.Puncture(K, y) and z = f(F (K, y)). Let P1 = iO(Prog-1

{
K, ct1, . . . , ctn

}
)

and P2 = iO(Prog-2{K}).
Game 5, j-3. This game is similar to the previous one, except that z is a uni-
formly random string. That is, the challenger randomly chooses z′, and computes
z = f(z′).
Game 5, j-4. In this game, the challenger modifies the winning condition. That
is,

({(vkidi
, idi, mi)}i, (t∗, s∗)

)
is not (i∗, skHE)-rejecting or t∗ > j + 1.

Game 5, j-5. In this game, the challenger sets z = f(F (K, y)) as in Game 4-j-2.
Game 5, j-6. In this game, the challenger changes program Prog-1

{
K, ct1, . . . ,

ctn
}

and program Prog-2{K} back to Prog
{
K, ct1, . . . , ctn

}
and Prog-1{K}

respectively.

Game 6. This game is identical to Game 5, 2�HEct .
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Fig. 5. Program Prog-1{K{y}, ct1, . . . , ctn}.

Fig. 6. Program Prog-2{y, z, K{y}}.

Analysis. Let Advi
A denote the advantage of adversary A in Game i. We now

establish the difference of the attacker’s advantage between each adjacent game
via a sequence of lemmas.

Lemma 1. For any adversary A, Adv1A = Adv0A/n.

Proof. This follows from the definitions of Game 0 and Game 1. The only dif-
ference between the two experiments is the change in winning condition, which
now includes the guess i∗. This guess is correct with probability 1/n.

Lemma 2. For any PPT adversary A, Adv1A − Adv2A ≤ AdvHE(λ).

Proof. Suppose there exists an adversary A such that Adv1A −Adv2A = ε. We will
construct a PPT algorithm B that breaks the semantic security of HE scheme
using A.

B receives the public key pkHE. It sends 0, 1 as challenge messages to
the HE challenger, and receives ct in response. On receiving (id∗,m∗) from
A, B chooses i∗ ← [n], (pkwCCA, skwCCA), U ← UniversalGen(1λ) and com-
putes ciphertext cti ← HE.Enc(pkHE, 0) for all i �= i∗. It sets cti∗ = ct. Let
Prog{pkwCCA} be circuit as defined in the Fig. 1. It chooses K ← PRF.Setup(1λ)
and computes P1 = iO(

Prog
{
K, ct1, . . . , ctn

})
and P2 = iO(Prog{K}). B sends

PP =
(
pkHE, U, P1, P2,Prog{pkwCCA})

to A.
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A then asks for KeyGen(msk, ·), Sign(·, ·) queries, which B can simulate per-
fectly. Finally, A outputs a forgery σ∗

agg = (t∗, s∗) and tuples {(idi,mi)}i. If A
wins as per the winning conditions (which are the same in both Games 1 and
2), output 0, else output 1.

Clearly, if ct is an encryption of 0, then this corresponds to Game 1, else it
corresponds to Game 2. This completes our proof.

Lemma 3. For any PPT adversary A, Adv2A − Adv3A ≤ AdvUP(λ).

Proof. Suppose there exists a PPT adversary A such that Adv2A − Adv3A = ε.
We will construct a PPT algorithm B such that

∣
∣Pr[RealB(1λ) = 1] −

Pr[IdealBSimUGen(1
λ) = 1]

∣
∣ = ε.

B interacts with A and participates in either the Real or Ideal game. On receiv-
ing (id∗,m∗) from A, B chooses i∗ ← [n], and sets didi∗ = Prog{pkwCCA}‖idi∗ . B
sends didi∗ to the challenger of universal parameters UP . The challenger of uni-
versal parameters UP computes (vkidi∗ , cidi∗ ) ← didi∗ (r) for uniformly random
r = r0‖r1 ∈ {0, 1}�inp , where (vkidi∗ , skidi∗ ) ← SIG.Setup(1λ; r0) and cidi∗ ←
PKE.EncwCCA(pkwCCA, skidi∗ ; r1). B receives U from the challenger of universal
parameters. B then chooses (pkwCCA, skwCCA), (pkHE, skHE) and compute cipher-
text cti ← HE.Enc(pkHE, 0) for all i ∈ [n] and i �= i∗, cti∗ ← HE.Enc(pkHE, 1). Let
Prog{pkwCCA} be circuit as defined in the Fig. 1. It chooses K ← PRF.Setup(1λ)
and computes P1 = iO(Prog

{
K, ct1, . . . , ctn

}
) and P2 = iO(Prog{K}). B sends

PP = (pkHE, U,Prog{pkwCCA}, P1, P2) to A.
For the KeyGen(msk, ·) and Sign(·, ·) queries, B computes (vkid, cid) ←

InduceGen(U, did), where did = Prog{pkwCCA}‖id, and returns skid ←
PKE.DecwCCA(skwCCA, cid) by using skwCCA. Finally, it receives a forgery σ∗

agg =
(t∗, s∗) and tuples {(idi,mi)}i. Note that since there is no Honest Parameter
Violation, InduceGen(U,Prog{pkwCCA}‖idi∗) = (vkidi∗ , cidi∗ ). Therefore, Game 2
corresponds to RealB(1λ) experiment, while Game 3 corresponds to IdealBSimUGen.
Hence,

∣
∣Pr[RealB(1λ) = 1] − Pr[IdealBSimUGen(1

λ) = 1]
∣
∣ = ε.

Lemma 4. For any PPT adversary A, Adv3A − Adv4A ≤ AdvPKEwCCA
(λ).

Proof. Note that the only difference between Games 3 and 4 is in the behavior of
evaluation on the didi∗ = Prog{pkwCCA}‖idi∗ . Suppose there exists an adversary
A such that Adv3A −Adv4A = ε. We will construct a PPT algorithm B that breaks
the wCCA security of PKEwCCA scheme using A.

B receives the public key pkwCCA. On receiving (id∗,m∗) from A, B chooses
i∗ ← [n], (pkHE, skHE) and compute ciphertext cti ← HE.Enc(pkHE, 0) for
all i ∈ [n] and i �= i∗, cti∗ ← HE.Enc(pkHE, 1). Let Prog{pkwCCA} be cir-
cuit as defined in the Fig. 1. It chooses K ← PRF.Setup(1λ) and computes
P1 = iO(Prog

{
K, ct1, . . . , ctn

}
) and P2 = iO(Prog{K}).

B chooses r = r0‖r1 ∈ {0, 1}�inp and computes (vkidi∗ , skidi∗ ) ←
SIG.Setup(1λ; r0). B sends skidi∗ , 1λ as the challenge messages to the wCCA chal-
lenger. It receives in response a ciphertext ct∗wCCA. Let didi∗ (r) = (vkidi∗ , ct∗wCCA),
where didi∗ = Prog{pkwCCA}‖idi∗ . Then B compute U ← SimUGen(1λ) and sends
PP = (pkHE, U,Prog{pkwCCA}, P1, P2) to A.
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On receiving KeyGen(msk, ·) query for id, B computes (vkid, cid) ←
InduceGen(U, did), where did = Prog{pkwCCA}‖id, then submits a decryp-
tion query to oracle PKE.DecwCCA(skwCCA, ·) for cid, and returns whatever
PKE.DecwCCA(skwCCA, ·) returns. Finally, A outputs a forgery σ∗

agg = (t∗, s∗) and
tuples {(idi,mi)}i. If A wins as per the winning conditions (which are the same
in both Games 3 and 4), output 0, else output 1.

If ct∗wCCA is an encryption of skidi∗ , then this is a perfect simulation of Game
3, while if ct∗wCCA is an encryption of 1λ, then this is a perfect simulation of Game
4. This completes our proof.

Observation 1. For any PPT adversary A, Adv4A = Adv5,0
A .

Lemma 5. For any j, any PPT adversary A, Adv5,j
A − Adv5,j-1

A ≤ AdviO(λ).

Proof. To prove this lemma, we need to show that the programs Prog{K} and
Prog-1{K} are functionally identical. This follows from the observation that f
is an injective function, and hence, for any t, s,

s = ⊕iF (K, vkidi‖idi‖mi‖i‖t) = ⊕i�=i∗F (K, vkidi‖idi‖mi‖i‖t) ⊕ F (K, vkidi∗ ‖idi∗‖mi∗‖i∗‖t)
⇐⇒ ⊕i�=i∗F (K, vkidi‖idi‖mi‖i‖t) ⊕ s = F (K, vkidi∗ ‖idi∗‖mi∗‖i∗‖t)
⇐⇒ f(⊕i�=i∗F (K, vkidi‖idi‖mi‖i‖t) ⊕ s) = f(F (K, vkidi∗ ‖idi∗‖mi∗‖i∗‖t)).

Lemma 6. For any j, any PPT adversary A, Adv5,j-1
A −Adv5,j-2

A ≤ 2AdviO(λ).

Proof. Let K ← PRF.Setup(1λ), y = vkidi∗ ‖idi∗‖mi∗‖i∗‖(j + 1), K{y} ←
PRF.Puncture(K, y) and z = f(F (K, y)). As in the previous proof, it suf-
fices to show that Prog

{
K, ct1, . . . , ctn

}
and Prog-1

{
K{y}, ct1, . . . , ctn

}
have

identical functionality, and Prog-1{K} and Prog-2{y, z, K{y}} have identical
functionality.

Let us first consider Prog
{
K, ct1, . . . , ctn

}
and Prog-1

{
K{y}, ct1, . . . , ctn

}
.

Consider input {vkidi
, (idi,mi), σi}i. Let t = σ1 · ct1 + . . . + σn · ctn.

From the correctness property of puncturable PRFs, it follows that the
only case in which Prog

{
K, ct1, . . . , ctn

}
and Prog-1

{
K{y}, ct1, . . . , ctn

}

can possibly differ is when SIG.Vefy(vkidi
,mi, σi)=1 for all i ∈ [n],

and id∗=idi∗ , m∗=mi∗ and t=j + 1. But this case is not possible,
since SIG.Vefy(vkidi∗ ,mi∗ ,HE.Dec(skHE, t))=SIG.Vefy(vkidi∗ ,mi∗ , σi∗)=1, while
SIG.Vefy(vkidi∗ , mi∗ ,HE.Dec(skHE, j + 1))=0.

Next, let us consider the programs Prog-1{K} and Prog-2{y, z,K{y}}. Both
programs have identical functionality, because z = f(F (K, y)) and for all y′ �= y,
F (K, y′) = F.eval(K{y}, y′). This concludes our proof.

Lemma 7. For any j, any PPT adversary A, Adv5,j-2
A −Adv5,j-3

A ≤ AdvPRF(λ).

Proof. We will construct a PPT algorithm B such that AdvB
PRF = Adv5,j-2

A −
Adv5,j-3

A . On receiving (id∗,m∗) from A, B chooses i∗ ← [n], (pkwCCA, skwCCA),
(pkHE, skHE) and compute ciphertext cti ← HE.Enc(pkHE, 0) for all i ∈ [n] and
i �= i∗, cti∗ ← HE.Enc(pkHE, 1). Let Prog{pkwCCA} be circuit as defined in the
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Fig. 1. It chooses K ← PRF.Setup(1λ), and let y = vkidi∗ ‖idi∗‖mi∗‖i∗‖(j +
1). B sends y to the PRF challenger, and receives K{y}, z′, where
either z′ = F (K, y) or z′ ← {0, 1}�. It computes z = f(z′), P1 =
iO(Prog

{
K{y}, ct1, . . . , ctn

}
) and P2 = iO(Prog{y, z,K{y}}). B com-

putes (vkidi∗ , cidi∗ ) ← Prog{pkwCCA‖idi∗(r) for uniformly random r =
r0‖r1 ∈ {0, 1}�inp , where (vkidi∗ , skidi∗ ) ← SIG.Setup(1λ; r0) and cidi∗ ←
PKE.EncwCCA(pkwCCA, 1λ; r1). Then B compute U ← SimUGen(1λ) and sends
PP =

(
pkHE, U, Prog{pkwCCA}, P1, P2

)
to A.

A then asks for KeyGen(msk, ·), Sign(·, ·) queries, which B can simulate per-
fectly by using skwCCA. Finally, A outputs a forgery σ∗

agg = (t∗, s∗) and tuples
{(idi,mi)}i. If A wins as per the winning conditions (which are the same in both
Game 5, j-2 and Game 5, j-3), output 0, else output 1.

Clearly, if z′ = F (K, y), then this corresponds to Game 5, j-2; if z′ ← {0, 1}�,
it corresponds to Game 5, j-3. This completes our proof.

Lemma 8. For any j, any PPT adversary A, Adv5,j-3
A − Adv5,j-4

A ≤ Advf (λ).

Proof. Suppose there exists a PPT adversary A such that Adv5,j-3
A −Adv5,j-4

A = ε.
We will construct a PPT algorithm B that inverts the one way function f
using A.

Note that the only way an adversary can distinguish between Game 5, j-3
and Game 5, j-4 is by submitting a forgery σ∗

agg = (t∗ = j + 1, s∗) and tuples
{(idi,mi)}i such that

({(vkidi
, idi,mi)}i, (t∗ = j + 1, s∗)

)
is (i∗, skHE)-rejecting

and Prog-2
{
y, z,K{y}}({(vkidi

, idi, mi)}i, (t∗ = j + 1, s∗)) = 1. From the def-
inition of Prog-2

{
y, z,K{y}}, it follows that f(⊕i�=i∗F (K, vkidi

‖idi‖mi‖i‖t) ⊕
s∗)=z.

B receives z from the OWF challenger. On receiving (id∗,m∗) from A,
B chooses i∗ ← [n], (pkwCCA, skwCCA), (pkHE, skHE) and compute ciphertext
cti ← HE.Enc(pkHE, 0) for all i ∈ [n] and i �= i∗, cti∗ ← HE.Enc(pkHE, 1). Let
Prog{pkwCCA} be circuit as defined in the Fig. 1. It chooses K ← PRF.Setup(1λ),
and let y = vkidi∗ ‖idi∗‖mi∗‖i∗‖(j + 1), K{y} ← F.Puncture(K, y). It com-
putes P1 = iO(Prog

{
K{y}, ct1, . . . , ctn

}
) and P2 = iO(Prog{y, z,K{y}}). B

computes (vkidi∗ , cidi∗ ) ← Prog{pkwCCA‖idi∗(r) for uniformly random r =
r0‖r1 ∈ {0, 1}�inp , where (vkidi∗ , skidi∗ ) ← SIG.Setup(1λ; r0) and cidi∗ ←
PKE.EncwCCA(pkwCCA, 1λ; r1). Then B compute U ← SimUGen(1λ) and sends
PP =

(
pkHE, U,Prog{pkwCCA}, P1, P2

)
to A.

A then asks for KeyGen(msk, ·), Sign(·, ·) queries, which B can simulate per-
fectly by using skwCCA. Finally, A outputs a forgery σ∗

agg = (t∗ = j + 1, s∗) and
tuples {(idi,mi)}i. B sends ⊕i�=i∗F (K, vkidi

‖idi‖mi‖i‖t) ⊕ s∗ as inverse of z to
the OWF challenger, and clearly, B wins if A wins. This completes our proof.

Lemma 9. For any j, any PPT adversary A, Adv5,j-4
A − Adv5,j-5

A ≤ AdvPRF(λ).

Proof. Similar to the proof of Lemma 7.

Lemma 10. For any j, any PPT adversary A, Adv5,j-5
A −Adv5,j-6

A ≤ 2AdviO(λ).
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Proof. Similar to the proof of Lemma 6.

Lemma 11. For any j, any PPT adversary A, Adv5,j-6
A − Adv

5,(j+1)
A ≤

AdviO(λ).

Proof. Similar to the proof of Lemma 5.

Lemma 12. For any PPT adversary A, Adv6A ≤ AdvSIG(λ).

Proof. Suppose Adv6A = ε. We will construct a PPT algorithm B that breaks the
security of SIG with advantage ε.

B receives vk from the challenger of signature scheme SIG. On receiving
(id∗,m∗) from A, B chooses i∗ ← [n], (pkwCCA, skwCCA), (pkHE, skHE) and com-
pute ciphertext cti ← HE.Enc(pkHE, 0) for all i ∈ [n] and i �= i∗, cti∗ ←
HE.Enc(pkHE, 1). Let Prog{pkwCCA} be circuit as defined in the Fig. 1. It chooses
K ← PRF.Setup(1λ) and computes P1 = iO(Prog

{
K, ct1, . . . , ctn

}
) and P2 =

iO(Prog{K}). B computes cidi∗ ← PKE.EncwCCA(pkwCCA, 1λ; r1) for uniformly
random r = r0‖r1 ∈ {0, 1}�inp and sets Prog{pkwCCA‖idi∗(r) = (vk, cidi∗ ). Then
B compute U ← SimUGen(1λ) and sends PP =

(
pkHE, U,Prog{pkwCCA}, P1, P2

)

to A.
A then asks for KeyGen(msk, ·) queries for id �= idi∗ , which B can simulate

perfectly by using skwCCA. On A’s Sign(·, ·) queries, if id = idi∗ AND m �= mi∗ , B
forwards m to the signing oracle of signature scheme SIG, and receives σ, which
is sent to A as response; if id �= idi∗ , B generates the signature of m by using
skid ← PKE.DecwCCA(skwCCA, cid).

Finally, A outputs a forgery σ∗
agg = (t∗, s∗) and tuples {(idi,mi)}i. A wins

if id∗ has not been asked to the KeyGen(msk, ·) oracle, (id∗,m∗) has not been
submitted to the Sign(·, ·) oracle, and SIG.Vefy(vk,m∗,HE.Dec(skHE, t∗)) = 1. It
sends (m∗,HE.Dec(skHE, t∗)) as forgery. Note that B wins the signature game if
A wins Game 6. This concludes our proof.

5 Conclusions

In this work, we consider n-bounded identity-based aggregate signatures (IBAS),
which requires at most n signatures can be aggregated. We also provide a generic
transformation to build n-bounded IBAS scheme from any secure signature
scheme by using indistinguishability obfuscation and selective one-time universal
parameters scheme. Based on the sub-exponential hardness of indistinguishabil-
ity obfuscation, puncturable PRF and one-way functions, we prove that our
n-bounded IBAS scheme is selectively secure in the standard model.

A Appendix

1 Public Key Encryption

Definition 6. A public-key encryption scheme (PKE) consists of PPT algo-
rithms PKE = (PKE.Setup,PKE.Enc,PKE.Dec).
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– Key Generation. PKE.Setup takes as input security parameter 1λ and
returns a key pair (pk, sk).

– Encryption. PKE.Enc takes as input public key pk and message m, and
returns a ciphertext c ← PKE.Enc(pk,m).

– Decryption. PKE.Dec takes as input secret key sk and ciphertext c, and
returns a message m ← PKE.Dec(sk, c).

Correctness. For all λ ∈ N, (pk, sk) ← PKE.Setup(1λ), messages m ∈ M(λ),
we require that PKE.Dec(sk,PKE.Enc(pk,m)) = m.
We say that public-key encryption scheme PKE is wCCA secure, if

∣
∣Pr[ExpwCCA-0PKE,A (λ) = 1] − Pr[ExpwCCA-1PKE,A (λ) = 1]

∣
∣ ≤ negl(λ)

for some negligible function negl and for all PPT attackers A, where
ExpwCCA-bPKE,A (λ) is the following experiment with scheme PKE and attacker A:

1. (pk, sk) ← PKE.Setup(1λ).
2. (m0,m1) ← A(1λ, pk).
3. b ← {0, 1} and compute c∗ ← PKE.Enc(pk,mb).
4. b′ ← AOwCCA(1λ, c∗).

Here OwCCA is an oracle that on input c returns PKE.Dec(sk, c) for all c �= c∗.

Note that this is a weakened version of standard IND-CCA security, because the
attacker has access to OwCCA only after seeing the challenge ciphertext.

2 Signature Schemes

Definition 7. A signature scheme with message space M(λ), signature key
space SK(λ) and verification key space VK(λ) consists of PPT algorithms
SIG = (SIG.Setup,SIG.Sign,SIG.Vefy):

– Key Generation. SIG.Setup is a randomized algorithm that takes as input
security parameter 1λ and outputs signing key sk ∈ SK and verification key
vk ∈ VK.

– Signature Generation. SIG.Sign takes as input the signing key sk ∈ SK and
a message m ∈ M and outputs a signature σ.

– Verification. SIG.Vefy takes as input a verification key vk ∈ VK, message
m ∈ M and signature σ and outputs either 0 or 1.

Correctness. For all λ ∈ N, (vk, sk) ← SIG.Setup(1λ), messages m ∈ M(λ), we
require that SIG.Vefy(vk,SIG.Sign(sk,m)) = 1.
We say that signature scheme SIG = (SIG.Setup,SIG.Sign,SIG.Vefy) is existen-
tially unforgeable under a chosen message attack if

Pr[Expuf-cma0
SIG,A (λ) = 1] ≤ negl(λ)

for some negligible function negl and for all PPT attackers A, where Expuf-cma
SIG,A (λ)

is the following experiment with scheme SIG and attacker A:

1. (vk, sk) ← SIG.Setup(1λ).
2. (m,σ) ← ASign(sk,·)(1λ, pk).

If SIG.Vefy(vk,m, σ) = 1 and m was not queried to Sign(sk, ·) oracle
Then return 1 else return 0.
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3 Additively Homomorphic Encryption

Definition 8. An additively homomorphic encryption scheme with message
space Fp and ciphertext space CHE consists of PPT algorithms HE=(HE.Setup,
HE.Enc,HE.Dec, HE.Add).

– HE.Setup(1λ) takes the security parameter 1λ as input and outputs public key
pk, secret key sk.

– HE.Enc(pk,m) takes as input a public key pk and message m ∈ Fp and outputs
a ciphertext ct ∈ CHE.

– HE.Dec(sk, ct) takes as input a secret key sk, a ciphertext ct ∈ CHE and either
outputs an element in Fp or ⊥.

– HE.Add(pk, ct1, ct2) takes as input a public key pk and two ciphertexts
ct1, ct2 ∈ CHE and outputs a ciphertext ct.

Correctness. Let p be any prime and q any polynomial in λ. For all λ ∈ N,
(pk, sk) ← HE.Setup(1λ), q messages m1, . . . , mq ∈ Fp, the following holds

HE.Dec(sk,HE.Enc(pk,m1) + . . . + HE.Enc(pk,mq)) = m1 + . . . + mq.

We say that additively homomorphic encryption scheme HE is IND-CPA
secure, if

∣
∣Pr[ExpCPA-0HE,A (λ) = 1] − Pr[ExpCPA-1HE,A (λ) = 1]

∣
∣ ≤ negl(λ)

for some negligible function negl and for all PPT attackers A, where ExpCPA-bHE,A (λ)
is the following experiment with scheme HE and attacker A:

1. (pk, sk) ← HE.Setup(1λ).
2. (m0,m1) ← A(1λ, pk).
3. b ← {0, 1} and compute c∗ ← HE.Enc(pk,mb).
4. b′ ← A(1λ, c∗).
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Abstract. Recently, Gorbunov, Vaikuntanathan and Wichs proposed a
new powerful primitive: (fully) homomorphic trapdoor function (HTDF)
based on small integer solution (SIS) problem in standard lattices, from
which they constructed the first leveled existentially-unforgeable fully
homomorphic signature (FHS) schemes.

In this paper, we first extend the notion of HTDF to identity-based
setting with stronger security and better parameters. The stronger secu-
rity requires that the identity-based HTDF (IBHTDF) is not only claw-
free, but also collision-resistant. And the maximum noise comparing to
Gorbunov-Vaikuntanathan-Wichs’ HTDF roughly reduces from O(mdβ)
to O(4dmβ), which will result in polynomial modulus q = poly(λ)
when d = O(log λ), where λ is the security parameter and d is the
depth bound of circuit. We then define and construct the first lev-
eled strongly-unforgeable identity-based fully homomorphic signature
(IBFHS) schemes.

Keywords: Identity-based homomorphic trapdoor function · Identity-
based fully homomorphic signature · Small integer solution · Strong
unforgeability

1 Introduction

Following the fast development of cloud computing, cryptographic schemes with
homomorphic property attract a large number of researchers’ sights. They allow
a client to securely upload his/her encrypted/signed data to a remote server.
Meanwhile they also allow the server to run computation over the data. The
seminal study of fully homomorphic encryption (FHE) [17] demonstrates how
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to perform homomorphic computation over encrypted data without the knowl-
edge of secret key. The recent works [6,18,23] of (leveled) fully homomorphic
signatures demonstrate how to perform homomorphic computation on signed
data.

In this work, we focus on the latter question: public authenticity of the result
of homomorphic computation over signed data. In a homomorphic signature
scheme, a client signs some data x = (x1, . . . , xN ) using his/her signing key
and outsources the signed data σ = (σ1, . . . , σN ) to a remote server. At any
later point, the server can perform homomorphically some operation y = g(x)
over the signed data σ and produce a short signature σg certifying that y is the
correct output of the operation g over the data x. Anyone can verify the tuple
(g, y, σg) using the client’s public verification key and be sure of this fact without
the knowledge of the underlying data x.

Linear Homomorphic Signatures. A number of works discussed signatures
with linear functions [2,4,10,16]. Such linear homomorphic signature schemes
have meaningful applications in network coding and proofs of retrievability.

Somewhat Homomorphic Signatures. Boneh and Freeman [5] were the first
to define and construct homomorphic signature schemes beyond linear functions,
but limited to constant-degree polynomials based on ring SIS assumption in the
random oracle model. Not long ago, Catalano, Fiore and Warinschi [11] gave an
alternative scheme from multi-linear maps in the standard model.

Leveled Fully Homomorphic Signatures. Gorbunov, Vaikuntanathan and
Wichs [18] proposed the first leveled FHS schemes based on SIS assumption.
To this end, they drew on the ideas of constructing attribute-based encryption
from standard lattices [7] and proposed a new primitive: HTDF. They required
that HTDF functions have claw-freeness property, which is sufficient to show
their FHS schemes (constructed directly from the HTDF functions) are exis-
tentially unforgeable in the static chosen-message-attack (EU-sCMA) model.
Additionally, they showed that one can transform an EU-sCMA secure FHS to
an EU-aCMA (existential-unforgeability under adaptive chosen-message-attack)
secure FHS via homomorphic chameleon hash function. Recently, Boyen, Fan
and Shi [6] also proposed EU-aCMA secure FHS schemes using vanishing trap-
door technique [1]. In the meantime, Xie and Xue [23] showed that leveled FHS
schemes can be constructed if indistinguishability obfuscation and injective one
way function exist.

1.1 Motivation

We observe that all schemes with homomorphism above are existentially unforge-
able. In this model, a verifiable forgery (g, y′, σ′) such that g is admissible on
messages x and y′ �= y (y = g(x)) captures two facts. One is that σ′ is a
usual existential-forgery corresponding to the usual notion of signature forgery
if g(x) = πi(x) = xi is a special projection function. The other is that σ′ is a
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homomorphic existential-forgery if g is a generally admissible function (defined
in Sect. 3.1); in other words, the forgery σ′ authenticates y′ as g(x) but in fact
this is not the case.

However, as is well-known, security of signature schemes without homomor-
phism also can reach up to strong-unforgeability. In the stronger model, a forger
can not give a forgery of message xi, even he has a message-signature pair (xi, σi).
As a matter of course, we have a question: can we define and construct strongly-
unforgeable (IB)FHS?

In this paper, we will give a positive response. Our main observation is
that homomorphic computations on signed data are deterministic in all above
schemes. In this scenario, we can define meaningful strong-unforgeability. In this
model, given message-signature pairs (x,σ), a forger produce a verifiable strong-
forgery (g, y′, σ′) such that y′ = y = g(x) and σ′ �= σg that captures two facts.
One is that σ′ �= σi is a usual strong-forgery corresponding to the usual notion of
strong-forgery if g(x) = πi(x) = xi. The other is that σ′ �= σg is a homomorphic
strong-forgery if g is a generally admissible function; in other words, the forgery
σ′ authenticates y′ as g(x) but in fact any forger can not produce σ′ �= σg.

Furthermore, as we all know, identity-based signature (IBS) is a nontrivial
extension of signature [22]. In an IBS system, in order to verify a signature
σi of a message xi, the verifier requires only the global public parameters and
the target identity id. Therefore, there is no need to issue a verification key
for each user in an IBS system, which greatly simplifies the key management.
Naturally, constructing an IBS with homomorphism is interesting. As far as we
know, there is no construction of identity-based FHS. In fact, we will propose
the first strongly-unforgeable IBFHS as a response to above question.

1.2 Contribution

We define and construct the first leveled strongly-unforgeable IBFHS schemes.
To this end, we extend HTDF, the underlying primitive of FHS, to IBHTDF
with stronger security and better parameters, the underlying primitive of IBFHS
using the trapdoor technique in [1,12,19]. The stronger security requires that
IBHTDFs are not only claw-free, but also collision-resistant to show the strong-
unforgeability of IBFHS. We use Barrington’s theorem to reduce the parameters
as done in FHE world [9]. The maximum noise-level comparing to Gorbunov-
Vaikuntanathan-Wichs’ FHS roughly reduces from O(mdβ) to O(4dmβ), which
will result in polynomial modulus q = poly(λ) when d = O(log λ), where λ is
the security parameter and d is the maximum depth of admissible circuit.

1.3 Paper Organization

In Sect. 2, we give some background on lattices and related tools as used in this
paper. We propose formally the IBHTDF functions in Sect. 3 and demonstrate
how to homomorphically evaluate a permutation branching program in Sect. 4.
In Sect. 5, we define and construct the leveled strongly-unforgeable IBFHS.
Finally, we conclude in Sect. 6.
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2 Preliminaries

We use the bold upper-case letters (e.g., A,B) to represent matrices and
bold lower-case letters (e.g. a,b) to represent column vectors. Let ‖A‖∞ =
maxi,j {|ai,j |} denote the infinite norm and ai or a[i] represent the i-entry of a.
Let [A||B] denote the concatenation of two matrices and (A,B) = [AT ||BT ]T .
We use λ to denote the security parameter and negl(λ) to denote a negligible
function that grows slower than λ−c for any constant c > 0 and any large enough
value of λ.

2.1 Entropy and Statistical Distance

For discrete random variables X ← X , Y ← Y, we define the statistical dis-
tance �(X,Y ) � 1

2

∑
ω∈X∪Y |Pr[X = ω] − Pr[Y = ω]|. We say that two

random variables X,Y are statistically indistinguishable, denoted as X ≈s Y ,
if �(X,Y ) = negl(λ). The min-entropy of a random variable X, denoted by
H∞(X), is defined as H∞(X) � − log (maxxPr[X = x]). The average min-
entropy of X conditioned on Y , denoted with H̃∞(X|Y ), is defined as

˜H∞(X|Y ) � − log (Ey←Y [maxxPr[X = x|Y = y]]) = − log (Ey←Y [2−H∞(X|Y =y)]).

The optimal probability of an unbounded attacker surmising X given the cor-
related value Y is 2−˜H∞(X|Y ).

Lemma 2.1 ([15]). Let X ← X , Y ← Y be two (correlated) random variables.
It then holds that H̃∞(X|Y ) ≥ H∞(X) − log(|Y|).

2.2 Background on Lattices and Hard Problems

Lattices. Lattices-based cryptography usually use so-called q-ary integer lat-
tices, which contain qZm as a sublattice for some modulus q. Let n,m, q be
positive integers. For a matrix A ∈ Z

n×m
q we define the following q-ary integer

lattice:
Λ⊥(A) = {u ∈ Z

m : Au = 0 mod q}.

For a vector v ∈ Z
n
q , we define the coset (or “shifted” lattice):

Λ⊥
v (A) = {u ∈ Z

m : Au = v mod q}.

SIS. Let n,m, q, β be integers. The short integer solution (SISn,m,q,β) problem

is, given a uniformly random matrix A $← Z
n×m
q , to find a nonzero vector u ∈ Z

n
q

with ||u||∞ ≤ β such that Au = 0 (i.e., u ∈ Λ⊥(A)). For q ≥ β · ω(
√

n log n),
solving SISn,m,q,β in the average case is as hard as solving GapSVP

˜O(β·√n) in
the worst case in standard lattices [20,21].
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Discrete Gaussian Distribution. Let DZm,r be the truncated discrete
Gaussian distribution over Z

m with parameter r. Namely, for u ← DZm,r, if
‖u‖∞ is larger than r · √

m, then the output is replaced by 0. In other words,
‖u‖∞ ≤ r · √

m with probability 1 if u ← DZm,r.

Lattices Trapdoor. Here we recall the MP12-trapdoor generation algorithm
and Gaussian sampling algorithm [19]. We ignore all details of implementation
which are not strictly necessary in this work.

For integers n, q and � = �log q�, let G = In ⊗ gT ∈ Z
n×n�
q , where gT =

(1, 2, 22, . . . , 2�−1) and In denotes the n-dimensional identity matrix.

Lemma 2.2 ([19]). Let n, q, �,m0,m1 be integers such that n = poly(λ), q =

q(n), � = �log q�,m0 = n(� + O(1)), m1 = n�. For A0
$← Z

n×m0
q and H ∈ Z

n×n
q ,

there exists an randomized algorithm TrapGen(A0,H) to generate a matrix A (=
[A0||HG−A0R]) ∈ Z

n×(m0+m1)
q with trapdoor R such that R ← DZm0×m1 ,r for

large enough r (≥ ω(
√

log n)) and A is negl(λ)-far from (V0,V1)
$← Z

n×m0
q ×

Z
n×m1
q . Here, R is called an MP12-trapdoor (or G-trapdoor) of A with tag H.

Furthermore, for any non-zero u = (u0,u1) ∈ Z
m0+m1
q , the average min-

entropy of Ru1 given A0 and A0R is at least Ω(n).

Lemma 2.3 ([19]). Given parameters in above lemma and a uniformly random
vector v ∈ Z

n
q , for some s (≥ O(

√
n log q)) ∈ R and a fixed function ω(

√
log n)

growing asymptotically faster than
√

log n, if the tag matrix H is invertible,
there then exists an efficient algorithm SamplePre(A0,R,H,v, s) that samples
a vector u from DΛ⊥

v (A),s·ω(
√

log n) such that A · u = v. Note that ‖u‖∞ ≤
s
√

m0 + m1 · ω(
√

log n) with probability 1.
Furthermore, for u′ ← D

Zm,s·ω(
√

log n) and v′ = Au′, we have (A,R,u,v) ≈s

(A,R,u′,v′).

Lemma 2.4 ([7,18,19]). Let m = m0 + 2m1 and G̃ = [G‖0] ∈ Z
n×m
q . For any

matrix V ∈ Z
n×m
q there exists deterministic algorithm to output a {0, 1}-matrix

V̂ ∈ Z
m×m
q such that G̃V̂ = V (or denoted by G̃−1(V) = V̂1).

2.3 Permutation Branching Program.

In this section, we define permutation branching program closely following [9]. A
width-w permutation branching program Π of length L with input space {0, 1}t

is a sequence of L tuples of the form (h(k), σk,0, σk,1) where

– h : [L] → [t] is a function associates the k-th tuple with an input bit xh(k).
– σk,0, σk,1 are permutations over [w] = {1, 2, . . . , w}.

1 Here ˜G−1 is not the inverse matrix of ˜G but a deterministic algorithm.
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A permutation branching program Π performs evaluation on input x =
(x1, x2, . . . , xt) as follows. Let the initial state be η0 = 1 and the k-th state
be ηk ∈ [w]. We compute the state ηk recursively as

ηk = σk,xh(k)(ηk−1).

Finally, after L steps, the end state is ηL. The output of Π is 1 if ηL = 1,
and 0 otherwise.

To slow the growth of noise in homomorphic operations, we represent the
states to bits, as demonstated in [9]. More specially, we replace the state ηk ∈ [w]
with some w-dimensional unit vector vk, e.g., v0 = (1, 0, 0, . . . , 0) institutes for
η0 = 1. The idea is that vk[i] = 1 if and only if σk,xh(k)(ηk−1) = i. A more
important equivalent relation is that vk[i] = 1 if and only if either:

– xh(k) = 1 and vk−1[σ−1
k,1(i)] = 1; or

– xh(k) = 0 and vk−1[σ−1
k,0(i)] = 1.

Hence, for k ∈ [L], i ∈ [w], we have

vk[i] = vk−1[σ−1
k,1(i)] · xh(k) + vk−1[σ−1

k,0(i)] · (1 − xh(k))

= vk−1[γk,i,1] · xh(k) + vk−1[γk,i,0] · (1 − xh(k)) (1)

where γk,i,1 � σ−1
k,1(i) and γk,i,0 � σ−1

k,0(i) are fully determined by the description
of Π and can be computed easily and publicly. Thus, {(h(k), γk,i,0,
γk,i,1)}k∈[L],i∈[w] is an alternative description of a permutation branching pro-
gram and is the form that we will work with under homomorphic computations.

3 Identity-Based Homomorphic Trapdoor Functions

We give the definition, construction and security proof of IBHTDFs in this
section. In next section we will show how to homomorphically compute a circuit.
Looking ahead, we will homomorphically compute a permutation branching pro-
gram instead of a (boolean) circuit to reduce the parameters and increase the
efficiency and security.

3.1 Definition

An identity-based homomorphic trapdoor function (IBHTDF) consists of six
poly-time algorithms (IBHTDF.Setup, IBHTDF.Extract, f, Invert, IBHTDF.Evalin,
IBHTDF.Evalout) with syntax as follows:

– (mpk,msk) ← IBHTDF.Setup(1λ): A master key setup procedure.
The security parameter λ defines the identity space I, the index space X , the
input space U , the output space V and some efficiently samplable input distri-
bution DU over U . We require that elements in I,U ,V or X can be efficiently
certified and that one can efficiently sample elements from V uniformly at
random.
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– (pkid, skid) ← IBHTDF.Extract(mpk,msk, id): An identity-key extraction pro-
cedure. As a matter of course, we require that pkid can be extracted deter-
ministically from mpk and id ∈ I without using the knowledge of msk.

– fpkid,x : U → V: A deterministic function indexed by pkid and x ∈ X .
– Invertskid,x : V → U : A probabilistic inverter indexed by skid and x ∈ X .
– ug = IBHTDF.Evalin(g, (x1, u1, v1), . . . , (xt, ut, vt)): A deterministic input

homomorphic evaluation algorithm. It takes as input some function g : X t →
X and values {xi ∈ X , ui ∈ U , vi ∈ V}i∈[t] and outputs ug ∈ U .

– vg = IBHTDF.Evalout(g, v1, . . . , vt): A deterministic output homomorphic
evaluation algorithm. It takes as input some function g : X t → X and values
{vi ∈ V}i∈[t] and outputs vg ∈ V.

Correctness of Homomorphic Computation. Let algorithm (pkid, skid) ←
IBHTDF.Extract extracts the identity-key for id. Let g : X t → X be a
function on x1, . . . , xt ∈ X and set y = g(x1, . . . , xt). Let u1, . . . , ut ∈
U and set vi = fpkid,x(ui) for i = 1, . . . , t. Set ug = IBHTDF.Evalin

(g, (x1, u1, v1), . . . , (xt, ut, vt)), vg = IBHTDF.Evalout(g, v1, . . . , vt). We require
that ug ∈ U and fpkid,x(ug) = vg.

Relaxation Correctness of Leveled IBHTDFs. In a leveled IBHTDF, every
input ui ∈ U will carry with noise βi ∈ Z. The initial samples chosen from
the input-distribution DU carry with small noise β0 and the noise βg of the
homomorphically evaulation ug depends on the noise βi of ui, the indices xi and
the function g. In fact, if the noise βg > βmax, where βmax is a threshold of
noise, there is no guarantee of the correctness. Therefore, we should restrict the
class of functions that can be computed. We say a function g is admissible on
indices x1, . . . , xt if βg ≤ βmax whenever ui carries with noise βi ≤ β0.

Distributional Equivalence of Inversion. To show the security of our main
construction IBFHS in next section, we require the following statistical indistin-
guishability:

(pkid, skid, x, u, v) ≈s (pkid, skid, x, u′, v′)

where (pkid, skid) ← IBHTDF.Extract, x ∈ X , u ← DU , v = fpkid,x(u), v′ $←
V, u′ ← Invertskid,x(v′).

IBHTDF Security. Gorbunov et al. [18] required claw-freeness for HTDF
security to provide existential-unforgeability for FHS. Here, we require not only
claw-freeness but also collision-resistance for IBHTDF security to guarantee
strong-unforgeability for IBFHS.

The experiment ExpsID
A,IBHTDF(1

λ) defined in Fig. 1 describes the selective-
identity security, where the adversary has to appoint a target identity id∗ to
attack before seeing the master public-key. Moreover, the adversary can query
identity-keys for all identities except id∗. He is then forced to find u �= u′ ∈
U , x, x′ ∈ X such that fpkid∗ ,x(u) = fpkid∗ ,x′(u′). Remark that if x = x′, then
(u, u′) is a collision, a claw otherwise.
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Fig. 1. Definition of selective-identity security for IBHTDF

We say that an identity-based homomorphic trapdoor function is selective-
identity secure if Pr[ExpsID

A,IBHTDF(1
λ)] ≤ negl(λ).

In the stronger model of adaptive-identity security, the adversary can not find
u �= u′ ∈ U , x, x′ ∈ X such that fpkid,x(u) = fpkid,x′(u′) for any identity id, for
which he has never queried identity-key skid. We note that one may construct
adaptive-identity secure IBHTDF using the vanishing trapdoor techniques [1,8,
12] in the cost of both efficiency and security.

3.2 Construction: Basic Algorithms and Security

Recall that λ is the security parameter. To describe the IBHTDF functions
succinctly, we give some public parameters as follows.

– Let flexible d be the circuit depth such that d ≤ poly(λ) and set L = 4d.
– Choose an integer n = poly(λ) and a sufficiently large prime q = q(n). Let

� = �log q�, m0 = n(� + O(1)), m1 = n� and m = m0 + 2m1. Set β0 =
O((n log q)3/2), βmax = O(4dmβ0), βSIS = O(m1β0)βmax < q.

– G = In ⊗gT ∈ Z
n×n�
q is the primitive matrix, where gT = (1, 2, 22, . . . , 2�−1).

Set G̃ = [G‖0] ∈ Z
n×m
q be the garget matrix used below.

– We assume that identities are elements in GF(qn), and say H : GF(qn) →
Z

n×n
q is an invertible difference, if H(id1) − H(id2) is invertible for any two

different identities id1, id2 and H is computable in polynomial time in n� (see
an example in [1]).

– Set X = Z2, I = Z
n
q ,V = Z

n×m
q and U = {U ∈ Z

m×m
q : ‖U‖∞ ≤ βmax}.

Define the distribution DU is a truncated discrete Gaussian distribution over
U , so that ‖U‖∞ ≤ β0 if U ← DU .

Now we describe the basic algorithms of IBHTDF function F .

– IBHTDF.Setup(1λ): On input a security parameter λ, set d, L, n,m0,m1,m, q,
β0, βmax, βSIS as specified above. Then do:
1. Choose A0

$← Z
n×m0
q . Run TrapGen(A0,0) to generate a matrix A =

[A0||A1] = [A0|| − A0R] ∈ Z
n×(m0+m1)
q and a trapdoor R such that

R ← D � D
Zm0×m1 ,ω(

√
log n) and A is negl(λ)-far from uniform. Set the

master secret key as msk = R. Note that A · (R, Im1) = 0, namely R is a
G-trapdoor of A with tag 0.
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2. Choose A2
$← Z

n×m1
q and set the master public key as mpk = {A,A2}.

– IBHTDF.Extract(mpk,R, id): On input a master public key mpk, a master
secret key R and an identity id ∈ I, do:
1. Compute H(id) for id ∈ I and let A′

id = [A0||H(id) · G + A1] (Note that
R is a G-trapdoor of A′

id with tag H(id)). Set user-specific public-key
pkid = Aid = [A′

id||A2].
2. Run algorithm SamplePre(A0,R,H(id),G − A2, O(

√
n log q)) to output

Rid ∈ Z
(m0+m1)×m1 such that A′

id · Rid = G − A2 (Note that Rid is
a G-trapdoor of Aid with tag In). Set secret key skid = Rid.

– fpkid,x(U): On input mpk, id ∈ I, x ∈ X and U ∈ U , do:
1. Compute pkid = Aid = [A0||H(id) · G + A1||A2] as above.
2. For id ∈ I, x ∈ X and U ∈ U , define fpkid,x(U) � Aid · U + x · G̃.

– Invertskid,x(V): On input an identity id ∈ I, an identity-key Rid, an index
x ∈ X and V ∈ V, run SamplePre(A′

id,Rid, In,V−x ·G̃, O(n log q)) to output
U (such that Aid · U = V − x · G̃).

Distributional Equivalence of Inversion. Let x ∈ X and (pkid =
Aid, skid = Rid) ← IBHTDF.Extract(mpk,R, id). Let U ∈ U , V = fpkid,x(U) =

Aid · U + xG̃, V′ $← V, U′ ← SamplePre(A′
id,Rid, In,V′ − xG̃, O(n log q)). By

Lemma 2.3 and the fact that (V′ − xG̃) is uniformly random, using a simple
hybrid argument, we have

(Aid,Rid,U,Aid · U) ≈s (Aid,Rid,U′,V′ − xG̃).

Then, we have

(Aid,Rid, x,U,V = Aid · U + xG̃) ≈s (Aid,Rid, x,U′,V′) (2)

by applying the same function to both sides: put in a x ∈ X and add xG̃ to the
last entry.

IBHTDF Security. We now show that the IBHTDF function F constructed
above is selective-identity secure assuming the SIS assumption.

Theorem 3.1. The function F constructed above is a selective-identity secure
IBHTDF assuming the SISn,m0,q,βSIS

assumption.

Proof. Assume there exists a PPT adversary A that wins the security experiment
ExpsID

A,IBHTDF(1
λ) for F with non-negligible probability δ. We construct a PPT

simulater S that breaks the SISn,m0,q,βSIS
problem for A0

$← Z
n×m0
q .

Let id∗ be the identity that A intends to attack. S will run the simulated
algorithms (IBHTDF.Setup∗, IBHTDF.Extract∗).

– IBHTDF.Setup∗(1λ): On input the same parameters as IBHTDF.Setup(1λ), S
does:
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1. After receiving target identity id∗ ∈ I and challenge matrix A0 ∈ Z
n×m0
q ,

S runs TrapGen(A0,−H(id∗)) to produce a matrix A = [A0||A1] = [A0||−
H(id∗)G − A0R] ∈ Z

n×(m0+m1)
q and a trapdoor R such that R ← D and

A is negl(λ)-far from uniform. Set msk = R.
2. S samples S ← D and computes A2 = A0S. Set mpk = {A,A2}.

– IBHTDF.Extract∗(mpk,R, id): On input a master public key mpk, a master
secret key R and an identity id ∈ I, do:
1. Compute H(id) for id ∈ I and let A′

id = [A0||H(id) · G + A1] =
[A0||(H(id) − H(id∗))G − A0R] (Note that R is a G-trapdoor of A′

id

with tag H(id) − H(id∗). Set Aid = [A′
id||A2].

2. Recall that (H(id) − H(id∗)) is invertible (by the property of H) if id �=
id∗. Therefore, to respond to an identity-key query for id �= id∗, S can
run SamplePre(A0,R,H(id) − H(id∗),G − A2, O(

√
n log q)) and output

Rid ∈ Z
(m0+m1)×m1 such that A′

id · Rid = G − A2 (Note that Rid is a
G-trapdoor of Aid with tag In). Set pkid = Aid and skid = Rid.

3. However, if id = id∗, then Aid∗ = [A0|| − A0R||A0S] and the trapdoor
disappears. Thus, the simulator S can not generate identity key for id∗.

The views of adversary A between the original experiment and the simu-
lated experiment are indistinguishable by Lemma2.2. Particularly, the winning
probability of A attacking the simulated experiment is at least δ − negl(λ).

Now, we show that an adversary A who wins the simulated experiment
ExpsID

A,IBHTDF(1
λ) can be used to solve the SIS problem. Assume the winning

adversary A outputs values U �= U′ ∈ U , x, x′ ∈ X such that fpkid∗ ,x(U) =
fpkid∗ ,x′(U′). Let U∗ = U − U′ and x∗ = x′ − x. Then,

fpkid∗ ,x(U) = Aid∗U+xG̃ = Aid∗U′+x′G̃ = fpkid∗ ,x′(U′) ⇒ Aid∗U∗ = x∗G̃.
(3)

Recall that Aid∗ = [A0|| − A0R||A0S]. By the right hand side of Eq. (3), it
holds that

A0 · U
 � A0 · ([Im0 || − R||S]U∗) = x∗G̃. (4)

Moreover, since U,U′ ∈ U , we have ‖U‖∞, ‖U′‖∞ ≤ βmax and thus
‖U∗‖∞ ≤ 2βmax. Moveover, since R,S are sampled from D, we also have ‖R‖∞,
‖S‖∞ ≤ O(

√
n log q) and thus ‖U
‖∞ ≤ 2βmax(2m1 · O(

√
n log q) + 1) ≤ βSIS .

To solve the SIS problem defined by A0 ∈ Z
n×m0
q , we discuss the following

two cases:

– x = x′ (collision): In this case, it is sufficed to show that U
 �= 0 except with
negligible probability, since A0U
 = x∗G̃ = (x − x′)G̃ = 0 and ‖U
‖∞ is
small. Let U∗ = (U∗

0,U
∗
1,U

∗
2). Then, we have U
 = U∗

0 − RU∗
1 + SU∗

2. We
split to 2 distinct cases to analyze it.
1. U∗

1 = U∗
2 = 0: In this case, we have U∗

0 �= 0 since U∗ �= 0. So, U
 �= 0.
2. U∗

1 �= 0 or U∗
2 �= 0: Without loss of generalization, we assume U∗

2 �= 0. By
Lemma 2.2, we then have that, even revealing R, the min-entropy of SU∗

2

conditioned on the knowledge of A0 and A0S is at least Ω(n). Particularly,
the probability that U
 = 0 is less than 2−Ω(n) = negl(λ).
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– x �= x′ (claw): In this case, we show that the simulater S can use the knowledge
of a small U
 �= 0 and some x∗ �= 0 satisfying the Eq. (4) to find a solution of
the SIS problem (similarly as [18]).
Choose t $← {0, 1}m0 and set r � A0t. Compute t′ = G̃−1(r/x∗) ∈ {0, 1}m

such that x∗G̃t′ = r. so,

A0(U
t′ − t) = (A0U
)t′ − A0t = x∗G̃t′ − A0t = r − r = 0.

Setting u � U
t′ − t, we then have A0u = 0 and ‖u‖∞ ≤ (2m + 1)βmax ≤
βSIS . It remains to prove that u �= 0, i.e., t �= U
t′. We prove that it holds
with overwhelming probability over the random t, even given A0,U
, x∗. In
fact, we have

H̃∞(t|t′) ≥ H̃∞(t|A0t) ≥ m0 − n log q = O(n).

where the first inequality follows from the fact that t′ is deterministic by r =
A0t, and the second inequality follows from Lemma2.1. So, Pr[t = U
t′] ≤
2−O(n) = negl(λ).

Therefore, if the adversary A wins the simulated experiment ExpsID
A,IBHTDF(1

λ)
with non-negligible probability δ/2 − negl(λ) in either case, the simulater S then
will produce a valid solution for SIS problem with probability δ/2−negl(λ). This
finishes the proof. �

4 Homomorphic Evaluation and Noise Analysis

Although we can homomorphically compute arithmetic circuit or boolean circuit
similarly as that in [18] with same-level parameters, we show how to do better in
both works in this section based on the fact that the noise growth is asymmetric.

We define deterministic homomorphic addition and multiplication algorithms
in Sect. 4.1. In Sect. 4.2, we show that these algorithms are not used by a naive
combination of addition and multiplication, as in the work [9], but by an elabo-
rate combination form to considerably slowing down the noise growth. The main
difference between this work and [9] is that, to homomorphic evaluate, it requires
us to design correspondingly two deterministic homomorphic algorithms: one for
input and the other for output in this work, while it only requires to design one
randomized homomorphic algorithm over ciphertexts in [9].

4.1 Basic Homomorphic Evaluation

We now define basic homomorphic addition and multiplication algorithms that
will be used in IBHTDFs. These algorithms for IBHTDFs are same as that for
HTDFs in [18] because of the same external structure with or without identity.
Therefore, we can improve the parameters of HTDFs in [18] using asymmet-
ric homomorphic multiplication demonstrated in this section and simplify the
notations (e.g., Addin instead of IBHTDF.Addin). Recall that Vi = AUi + xiG
(i = 1, 2), where we set A = Aid,G = G̃ for simplicity throughout Sect. 4. Let
‖Ui‖∞ ≤ βi and xi ∈ {0, 1}.
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Homomorphic Addition Algorithms. They are simple modulo-q addition
of the input or output matrices respectively.

– Addin((x1,U1,V1), (x2,U2,V2)) � U1 + U2 mod q
– Addout(V1,V2) � V1 + V2 mod q

The addition-noise is bounded by β1 + β2. The correctness follows by (V1 +
V2) = A(U1 + U2) + (x1 + x2)G.

Homomorphic Multiplication Algorithms. The homomorphic input mul-
tiplication algorithm is asymmetric and involved in whole input, partial output
and index, and the homomorphic output multiplication algorithm is essentially
a multiplicaiton of the output matrices.

– Multiin((x1,U1,V1), (x2,U2,V2)) � x2 · U1 + U2 · V̂1 mod q

– Multiout(V1,V2) � V2 · V̂1 mod q

The multiplication-noise is bounded by |x2|β1 + mβ2 = β1 + mβ2. The cor-
rectness also follows by a simple computation assuming Vi = AUi + xiG.

4.2 The Homomorphic Output and Input Evaluation

Homomorphic Output Evaluation. We define the homomorphic output eval-
uation algorithm

Evalout(Π,V0, {V0,i}i∈[w], {Vj}j∈[t]) → VΠ

for a length-L permutation branching program Π, where V0, {V0,i}i∈[w] will be
assigned in the initialization stage below and Vj is such that Vj = AUj +xjG.
Recall that {(h(k), γk,i,0, γk,i,1)}k∈[L],i∈[w] is a valid description of Π, and that
the initial state vector is set to be the first w-dimensional unit vector v0 =
(1, 0, 0, . . . , 0), and that for k ∈ [L] and i ∈ [w],

vk[i] = vk−1[γk,i,1] · xh(k) + vk−1[γk,i,0] · (1 − xh(k)).

The homomorphic output evaluation algorithm Evalout proceeds as follows.

– Initialization: For k ∈ [L], i ∈ [w], let Vk[i] be an output corresponding to
the state vk[i].

1. Choose V0,i
$← Z

n×m
q uniformly at random and set it be an initial output

corresponding to the initial state v0[i].

2. Choose V0
$← Z

n×m
q uniformly at random and see it be an output corre-

sponding to a constant state 1.
3. Set V̄j � V0 −Vj and see it be an output corresponding to (1−xj), where

Vj (so that Vj = AUj + xjG) is an output corresponding to xj .
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– Computation: For k = 1, 2, . . . , L, the computation process proceeds induc-
tively as follows. Assume that at step t−1, we have {Vk−1,i}i∈[w]. We compute

Vk,i = Vh(k) · V̂k−1,γk,i,1 + V̄h(k) · V̂k−1,γk,i,0 . (5)

– Final Output : Finally, we have {VL,i}i∈[w] after finishing the computation
process. Output VL,1 as the final output corresponding to vL[1], i.e., VΠ =
VL,1.

Homomorphic Input Evaluation. We define the homomorphic input evalu-
ation algorithm

Evalin(Π, (1,U0,V0), {(v0[i],U0,i,V0,i)}i∈[w], {(xj ,Uj ,Vj)}j∈[t]) → UΠ

for a permutation branching program Π which proceeds as follows.

– Initialization: For k ∈ [L], i ∈ [w], let Uk[i] be an input corresponding to
the state vk[i].
1. Sample U0,i ← DU (such that V0,i = AU0,i + v0[i]G) and see it be an

initial input corresponding to the initial state v0[i].
2. Sample U0 ← DU (such that V0 = AU0 + 1 · G) and see it be an input

corresponding to a constant state 1.
3. Set Ūj � U0 − Uj , where Uj (such that Vj = AUj + xjG) is an input

corresponding to xj and see it be an input corresponding to (1 − xj).
– Computation: For k = 1, 2, . . . , L, the computation process proceeds induc-

tively as follows. Assume that at step t−1, we have {Uk−1,i}i∈[w]. We compute

Uk,i = (xh(k) · Uk−1,γk,i,1 + Uh(k) · V̂k−1,γk,i,1)

+ ((1 − xh(k)) · Uk−1,γk,i,0 + Ūh(k) · V̂k−1,γk,i,0). (6)

– Final Input : Finally, we have {UL,i}i∈[w] after finishing the computation
process. Output UL,1 as the final input corresponding to vL[1], i.e., UΠ =
UL,1.

4.3 Correctness of Homomorphic Evaluation and Noise Analysis

We will prove the correctness of above homomorphic input-output evaluation
algorithms and analyze the noise growth under homomorphic evaluation.

Lemma 4.1. Assuming that Evalout(Π,V0, {V0,i}i∈[w], {Vj}j∈[t]) → VΠ and
Evalin(Π, (1,U0,V0), {(v0[i],U0,i,V0,i)}i∈[w], {(xj ,Uj ,Vj)}j∈[t]) → UΠ are
such that V0 = AU0 + 1 ·G, V0,i = AU0,i + v0[i]G and Vj = AUj + xjG for
i ∈ [w], j ∈ [t]. For all k ∈ [L], i ∈ [w], we then have

Vk,i = AUk,i + vk[i]G.

In particular, we have VL,1 = AUL,1 + vL[1]G.
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Proof. Given the conditions in this lemma, by formulas (1), (5) and (6), we have

AUk,i + vk[i]G =A ·
[(

xh(k) · Uk−1,γk,i,1 + Uh(k) · V̂k−1,γk,i,1

)

+
(
(1 − xh(k)) · Uk−1,γk,i,0 + Ūh(k) · V̂k−1,γk,i,0

)]

+
(
vk−1[γk,i,1] · xh(k) + vk−1[γk,i,0] · (1 − xh(k))

)
· G

=
(
xh(k) · Vk−1,γk,i,1 − xh(k) · vk−1[γk,i,1] · G

)

+
(
Vh(k) · V̂k−1,γk,i,1 − xh(k) · Vk−1,γk,i,1

)

+
(
(1 − xh(k)) · Vk−1,γk,i,0 − (1 − xh(k)) · vk−1[γk,i,0] · G

)

+
(
V̄h(k) · V̂k−1,γk,i,0 − (1 − xh(k)) · Vk−1,γk,i,0

)

+
(
xh(k) · vk−1[γk,i,1] · G + (1 − xh(k)) · vk−1[γk,i,0] · G

)

=Vh(k) · V̂k−1,γk,i,1 + V̄h(k) · V̂k−1,γk,i,0

=Vk,i

for all k ∈ [L], i ∈ [w]. This finishes the proof. �

Lemma 4.2. Assuming that Evalin(Π, ( 1,U0,V0 ), {(v0[i],U0,i,V0,i )}i∈[w],
{(xj ,Uj ,Vj)}j∈[t]) → UΠ is such that all the input-noises are bounded by β,
i.e., ‖U0‖∞, ‖U0,i‖∞, ‖Uj‖∞ ≤ β, it then holds that ‖UΠ‖∞ ≤ 3mLβ + β.

Proof. We will simply show the lemma by inductive method. Namely, we will
show that ‖Uk,i‖∞ ≤ 3kmβ + β for any step k = 0, 1, 2, . . . , L and i ∈ [w].

If k = 0, there is no computation and by initialization it is very easy to see
that all the initial noises are such that ‖U0,i‖∞ ≤ β, i ∈ [w].

Assume that at step k − 1, we have ‖Uk,i‖∞ ≤ 3m(k − 1)β + β. By formula
(6), we obtain that

‖Uk,i‖∞ =‖(xh(k) · Uk−1,γk,i,1 + Uh(k) · ̂Vk−1,γk,i,1)

+ ((1 − xh(k)) · Uk−1,γk,i,0 + Ūh(k) · ̂Vk−1,γk,i,0)‖∞

≤ ‖xh(k) · Uk−1,γk,i,1‖∞ + ‖Uh(k) · ̂Vk−1,γk,i,1‖∞

+ ‖(1 − xh(k)) · Uk−1,γk,i,0‖∞ + ‖Ūh(k) · ̂Vk−1,γk,i,0‖∞

≤xh(k) · (3m(k − 1)β + β) + mβ + (1 − xh(k)) · (3m(k − 1)β + β) + 2mβ

=3mkβ + β

where ‖Ūh(k)‖∞ = ‖U0 − Uh(k)‖∞ ≤ ‖U0‖∞ + ‖Uh(k)‖∞ ≤ β + β = 2β.
By induction, we get ‖UΠ‖∞ = ‖UL,1‖∞ ≤ 3mLβ + β. This finishes the

proof. �

Remark. By Barrington’s theorem [3], a depth-d circuit can be transformed
to a length L = 4d permutation branching program. Therefore, whenever
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d ≤ poly(λ), the maximum noise comparing to Gorbunov-Vaikuntanathan-
Wichs’ HTDF reduces roughly from O(mdβ) to O(4dmβ). In particular, we
can set polynomial modulus q = poly(λ) > O(4dmβ) when d = O(log λ) which
will result in better security based on GapSVP with polynomial approximation
factors.

5 Strongly-Unforgeable Identity-Based Fully
Homomorphic Signatures

5.1 Definition

A single data-set identity-based homomorphic signature scheme consists of the
following poly-time algorithms (PrmsGen,Setup,Extract,Sign,SignEval,Process,
Verify) with syntax:

– prms ← PrmsGen(1λ, 1N ): Take the security parameter λ and the maximum
data-size N . Output public parameters prms. The security parameter also
defines the message space X .

– (mpk,msk) ← Setup(1λ): Take the security parameter λ. Output a master
key pair (mpk,msk).

– (pkid, skid) ← Extract(mpk,msk, id): An identity-key extraction procedure.
– (σ1, . . . , σN ) ← Signskid

(prms, x1, . . . , xN ): Sign message data (x1, . . . , xN ) ∈
X N to id.

– σg = SignEvalprms(g, (x1, σ1), . . . , (xt, σt)): Deterministically and homomor-
phically evaluate a signature σg for some function g over (x1, . . . , xt) ∈ X t.

– vg = Processprms(g): Deterministically and homomorphically evaluate a cer-
tificate vg for the function g from the public parameters prms.

– Verifypkid
(vg, y, σg): Verify that y is the correct output of g by proving σg

corresponding to vg.

Correctness. For prms ← PrmsGen(1λ, 1N ), (pkid, skid) ← Extract(mpk,
msk, id), (x1, . . . , xN ) ∈ X N , (σ1, . . . , σN ) ← Signskid

(prms, x1, . . . , xN ), and
g : X N → X , we require that the following equation

Verifypkid
(vg, y = g(x1, . . . , xN ), σg) = accept

holds, where vg = Processprms(g) and σg = SignEvalprms(g, (x1, σ1), . . . ,
(xt, σt)).

Relaxation Correctness of Leveled IBFHS. Here, the relaxation correct-
ness of leveled IBFHS follows from that of leveled IBHTDF and hence is omitted.

Security Experiment. The experiment ExpSU-sID-sCMA
A,IBFHS (1λ) defined in Fig. 2

describes the strongly-unforgeable selective-identity static chosen-message-attack
security game, where the adversary has to fix a target identity id∗ to attack
and message data to sign before obtaining the master public-key and public
parameters. Moreover, the adversary can query identity-keys for all identities
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except id∗. He is then forced to find (g, y′, σ′) such that the winning conditions
(described in the experiment) hold. Remark that we do not require either y = y′

or not. So, if y = y′, then σ′ is a strongly-forgeable signature, otherwise a
existentially-forgeable signature.

Fig. 2. Definition of security for IBFHS with single data-set

We say an IBFHS is strongly-unforgeable selective-identity static chosen-
message-attack (SU-sID-sCMA) secure if Pr[ExpSU-sID-sCMA

A,IBFHS (1λ)] ≤ negl(λ).

5.2 Construction

Let F = (IBHTDF.Setup, IBHTDF.Extract, f, Invert, IBHTDF.Evalin, IBHTDF.
Evalout) be an IBHTDF with identity space I, index space X , input space
U , output space V and some efficiently samplable input distribution DU
over U . We construct an IBFHS scheme S = (PrmsGen,Setup,Extract,Sign,
SignEval,Process,Verify) with message space X as follows.

– prms ← PrmsGen(1λ, 1N ): Sample vi
$← V, i ∈ [N ] and set public parameters

prms = (v1, . . . , vN ).
– (mpk,msk) ← Setup(1λ): Select (mpk′,msk′) ← IBHTDF.Setup(1λ) and set

master-key pair (mpk = mpk′,msk = msk′).
– (pkid, skid) ← Extract(mpk,msk, id): Run IBHTDF.Extract(mpk′,msk′, id) to

get (pk′
id, sk

′
id) and set pkid = pk′

id, skid = sk′
id for id ∈ I.

– (σ1, . . . , σN ) ← Signskid
(prms, x1, . . . , xN ): Sample ui ← Invertsk′

id,xi
(vi) and

set σi = ui, i ∈ [N ].
– σg = SignEvalprms(g, (x1, σ1), . . . , (xt, σt)): Perform deterministic algorithm

IBHTDF.Evalin(g, (x1, u1, v1), . . . , (xt, ut, vt)) to get ug and set σg = ug.
– vg = Processprms(g): Perform IBHTDF.Evalout(g, v1, . . . , vt) and output the

result vg.
– Verifypkid

(vg, y, σg): If fpk′
id,y(σg) = vg accept, else reject.

Correctness. Here, the discussion of the relaxation correctness of the leveled
IBFHS constructed above follows from that of the underlying leveled IBHTDF
in Sect. 3 and hence is omitted.
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Security. We now show the SU-sID-sCMA security of the leveled IBFHS above.

Theorem 5.1. The leveled IBFHS scheme S constructed above is SU-sID-
sCMA secure assuming that F is a leveled selective-identity secure IBHTDF.

Proof. Assume there exists a PPT adversary A that wins the security experiment
ExpSU-sID-sCMA

A,IBFHS (1λ) of IBFHS with non-negligible probability δ. We construct
a PPT reduction B that breaks the selective-identity security of F .

Let id∗ be the identity that A intends to attack. B will run the changed
algorithms (PrmsGen∗, Setup∗, Extract∗,Sign∗).

– Setup∗(1λ): Run (mpk′,msk′) ← IBHTDF.Setup∗(1λ) and set mpk = mpk′,
msk = msk′.

– Extract∗(mpk,msk, id): Run (pk′
id, sk

′
id) ← IBHTDF.Extract∗(mpk,R, id)

when id �= id∗ and set pkid = pk′
id, skid = sk′

id. However, if id = id∗, then the
trapdoor disappears and B can not generate identity key for id∗.

– PrmsGen∗(1λ, 1N ): Choose ui ← DU and compute vi = fpkid∗ ,xi
(ui). Output

prms = (v1, . . . , vN ).
– Sign∗(x1, . . . , xN ): Set σi = ui and output (σ1, . . . , σN ).

The views of adversary A between the original experiment and the changed
experiment are indistinguishable by Distributional Equivalence of Inversion
property of the underlying IBHTDF. In particular, the winning probability of A
attacking the changed experiment is at least δ − negl(λ).

We now show that there exists a PPT reduction B that takes any PPT
adversary A winning the changed experiment with non-negligible advantage δ −
negl(λ), and that breaks the ExpsID

A,IBHTDF(1
λ) security of the underlying F with

probability δ − negl(λ).
The reduction B receives the challenge identity id∗ and message data-set

(x1, . . . , xN ), generates (mpk,msk, {σi = ui, vi}i∈[N ]) as in the changed exper-
iment and sends (mpk, {σi, vi}i∈[N ]) to A. Note that B can respond to the
identity-key query for id �= id∗ using msk. But, B has no valid trapdoor to
generate the identity key for id∗.

Assume the adversary A (winning the changed experiment) outputs values
(g, y′, σ′), where g : X N → X on (x1, . . . , xN ) is an admissible function and
σ′ = u′. Let y = g(x1, . . . , xN ), ug = σg = SignEvalprms(g, (x1, σ1), . . . , (xt, σt)),
vg = Processprms(g). Thus, on one hand, since the forged signature σ′ verifies,
fpkid∗ ,y′(u′) = vg holds. On the other hand, since g is admissible, fpkid∗ ,y(ug) =
vg also holds by the correctness of homomorphic computation. Therefore, we have
values ug �= u′ ∈ U and y, y′ ∈ X satisfying fpkid∗ ,y(ug) = fpkid∗ ,y′(u′), which
allows B to break ExpsID

A,IBHTDF(1
λ) security of F with probability δ − negl(λ)

whenever A wins the changed experiment with probability δ − negl(λ). �

6 Conclusions

In this work, we defined and constructed the first leveled strongly-unforgeable
IBFHS schemes. To this end, we extended Gorbunov-Vaikuntanathan-Wichs’
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HTDF, the underlying primitive of FHS, to IBHTDF with stronger security and
better parameters, the underlying primitive of IBFHS. The drawback is that our
scheme is only a leveled IBFHS with large public parameters. It remains open to
Construct a non-leveled IBFHS or a leveled IBFHS with short public parameters.
One way to achieve this would be to draw on the ideas in constructing non-leveled
(IB)FHEs from indistinguishability obfuscation [13,14].

Acknowledgement. We are very grateful to the anonymous ISC reviewers for valu-
able comments and constructive suggestions that helped to improve the presentation
of this work.
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Abstract. Motivated by the application of anonymous petitions, we for-
malize a new primitive called “graded signatures”, which enables a user
to consolidate a set of signatures on a message m originating from l dif-
ferent signers that are members of a PKI. We call the value l ∈ N, the
grade of the consolidated signature. The resulting consolidated signature
object on m reveals nothing more than the grade and the validity of the
original signatures without leaking the identity of the signers. Further,
we require that the signature consolidation is taken place in an unlink-
able fashion so that neither the signer nor the CA of the PKI can tell
whether a signature is used in a consolidation action. Beyond petitions,
we demonstrate the usefulness of the new primitive by providing sev-
eral other applications including delegation of signing rights adhering to
dynamic threshold policies and issuing graded certificates in a multi-CA
PKI setting.

We present an efficient construction for graded signatures that relies
on Groth-Sahai proofs and efficient arguments for showing that an inte-
ger belongs to a specified range. We achieve a linear in the grade signa-
ture size and verification time in this setting. Besides, we propose some
extension that can support the certificate revocation by utilizing efficient
non-membership proofs.

1 Introduction

In a petition system, a group of participants would like to send a formal request
to an organization via a representative (petitioner) that helps them to express
their opinions about an issue. There are several important criteria that a petition
system has to satisfy: (1) the number of participants supporting the petition
should be indicated; (2) the participants may prefer to remain anonymous in
many scenarios, e.g., when these relate to political or religious issues; (3) the
petitioner should not be able to make a false claim that the claimed number of
participants is more than their actual number, e.g., duplicate participants should
be removed without revealing any identities etc.

To address the above problem, we introduce a new primitive, which we call
graded signature1, that is applicable to an efficient privacy-preserving digital
1 It is actually quite surprising that many seemingly related notions exist, however

none of them satisfy all the natural requirements; we elaborate more on this below.
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petition system. In a graded signature scheme a user collects signatures from
registered signers in a PKI. The primitive enables the consolidation of an arbi-
trary number of signatures (say l) originating from a subset of l distinct signers
on the same message m. The resulting signature object, σ(l), convinces the veri-
fier that at least l signers indeed signed on m without revealing the identities of
signers. We call l, the grade of the signature. Note that l can range from 1 to n,
where n is the total number of currently registered signers in the PKI. There is
no need to pre-determine the value of l before the signature collecting procedure.

Applications of Graded Signatures. The new primitive can be useful in a
number of applications that we discuss below.

Anonymous Petitions: In an anonymous petition, the petitioner aims at con-
vincing an organization that a certain number of people have a consensus on
one issue, and it is desired that the identity of each participant remains hidden.
Our graded signature immediately solves this problem. Suppose every valid voter
has a registered public key, and the one who initiates a petition on a message
m, tries to get as much support (signatures) on m as she can. At the end, she
consolidates all the signatures into one, and presents to the organization the
message, the graded signature and the corresponding grade l. The privacy of all
signers will be preserved, and the grade precisely reflects how many signatures
the consolidator collected. The organization can verify that indeed l different
signers are needed to produce the l-grade signature using the PKI parameters.

Anonymous Delegation of Signing Rights adhering to Threshold Policies: Con-
sider an organization whose members are in a PKI and wish to authorize in
anonymous fashion a certain individual to execute certain tasks without neces-
sarily revealing their names. The authorization requires a certain quorum that, if
reached, it should be universally accepted. For instance, suppose that the mem-
bers of the board of trustees of a listed company would like to authorize the CEO
to take certain decisions on behalf of them. Such authorization may require the
agreement of the majority (or other suitable percentage) of the trustees. Using
graded-signatures the CEO can obtain the signature of a suitable number of
trustees on her public-key and then consolidate those to demonstrate the fact
that a suitable number of trustees endorse her actions.

Graded Certificates for multi-CA PKI’s: As a number of incidents have shown,
certification authorities (CA) can be corrupted (e.g., see [21]) and in this way
the security of critical Internet protocols such as TLS can be jeopardized. In a
multi-CA setting a user may obtain certificates from multiple PKI’s tying her
identity to her public-key. Assuming the CA’s themselves can be certified by
an acceptable top-level CA, a user can form a “graded certificate” by consoli-
dating her distinct certificates coming from different CA’s into a single graded
signature. The grade will reflect the number of certificates that the user has
collected on her identity. Using graded signatures it is thus possible to enable a
certificate negotiation step between two communicating parties that (1) provides
sufficient assurance on their identities (by requiring a minimum signature grade
for both sides) and (2) maintains their privacy in terms of their CA choices as the
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anonymity of the graded signature reveals only the grade but not the individual
entities that have provided certificates.

Related Works. There exist many variants of PKI oriented signatures that
provide anonymity, e.g., ring signatures [26] is a prominent example. Moreover
there are aggregate signatures [9] and threshold signatures [15,28] which provide
a form of a consolidation operation aimed at combining signatures into a single
object. In some sense, a graded signature is a new primitive that brings together
these lines of work. We will carefully compare our graded signature with existing
related primitives below.

In a ring signature [26], the signer can anonymously sign a message on behalf
of a group formed in an ad-hoc manner. Using the terminology of our paper,
every ring signature will have a fixed grade 1, i.e., one of the signers signed
the message. To form a graded signature with the grade k, for instance, the
combiner can collect k ring signature on the message from k different signers.
However, a regular ring signature scheme does not enable the receiver to check if
there are two signatures produces by the same signer, which we need in graded
signatures. To this aim, the notion of linkable ring signature [13,23], that enables
one to detect whether two signatures were generated by the same signer, seems
sufficient to get a graded signature scheme at first glance. However, even if we
use short ring signatures [2,29], it still results in quadratic verification time since
the verifier should check every pair of signatures. On the other hand, a (t, n)-
threshold ring signature scheme [11] will convince the verifier that t signers agree
on the message without leaking their identities. Similar to ring signatures, any
(t, n)-threshold ring signature will have a fixed grade t. While we also require
anonymity in a graded signature in a similar sense, in contrast to these previous
primitives, our graded signature should enable one to produce a signature, with
an arbitrary grade, solely depending on how many signers agree to sign on the
message; furthermore our constructions can even allow the grade to be upgraded
if the user can get more signatures from additional signers on the message.

Regarding our second application of delegation of signing rights, one may
think of proxy signature [7,24], in which a proxy can sign documents on behalf
of the delegator if it is granted the signing rights from the owner by running a
delegation protocol. Also, other variants of proxy signatures exist, e.g., anony-
mous proxy signature [16] provides anonymity for the intermediate proxies if
there is a chain of delegatees; and threshold proxy signature [30] in which one
key owner delegates his signing rights to a bunch of proxies, but only when
the total number of proxies is above the threshold, a valid proxy signature can
be produced. The notion of functional signatures was also studied in [10]. It
enables the key owner to delegate the signing rights according to a fine-grained
policy f , such that the delegatee can only sign messages in the range of f . Our
notion of graded signature is different than the above in the sense that there
are multiple key owners to delegate their signing rights to one “proxy”, so that
the “proxy signature” can be verified according to the number of delegators (its
grade) without leaking the delegators’ identities.
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In a threshold signature scheme [15,28] and its distributive variants [14,25],
when the number of signers is below the threshold, they can not jointly produce
a signature that convinces the verifier. However, if the signers are above the
threshold, the signatures will look the same to the verifier. Although the signers
may be allowed to change [17], normally the value of the threshold needs to be
fixed during the system setup. Furthermore, they either require a fully trusted
dealer to distribute signing keys, or when the number of signers is bigger than
the threshold, they can recover all the secret key data. In contrast to that, in a
graded signature, each consolidated signature is assigned a grade – the number
of signers, and this number is not pre-determined, and it can vary from 1 to the
total number of the signers which is n. Also, it can be deployed in a standard
PKI setting without a trusted setup. No collusion of signers is able to produce
a signature with grade larger than the size of the collusion.

The closest to our work is the notion of signature of reputation [5], which
focuses only on the application of reputation systems and allows a user, as the
combiner in our scheme, to consolidate all the upvotes for him as his reputa-
tion. Their construction is built on a general framework of NIZK proof systems
that the user commits to each upvote and prove in zero-knowledge that each of
the commitment contains a valid upvote. Note that a straigtforward application
of such general framework would yield a signature of reputation with size that
grows at least quadratically to the number of votes (even with the most efficient
NIZK proof technique). The user has to provide a NIZK proof for each pair of
commitments that they are from different identities. They resolve this problem
via a clever use of the “linkability” of each commitment that the same random-
ness is used across all commitments of the votes, and each vote is essentially a
unique signature. The verifier thus can check that each pair of commitments con-
tain different votes which must come from different identities. However, this trick
inherently incurs a quadratic (to the number of votes–grade in our terminology)
verification time. Instead of only focusing on the application of reputation sys-
tems, our graded signature schemes aim at broader applications and we consider
the notion as a more fundamental cryptographic primitive. Furthermore, since
a signature might be verified many times, verification time is considered to be
one of the most important efficiency metrics. Moreover, we want to remove the
restriction that only unique signature schemes can be used for graded signatures.
We propose a new way of using the general commit and prove framework in our
construction that brings down the verification time to linear while still keeps the
signature size linear to the grade, for a broader class of signature schemes.

Another closely related work is graded encryption [22], which is a gener-
alization of identity based encryption (IBE). The primitive enables the user to
sequentially upgrade the level of his key so that the secret key of an identity with
level k can decrypt all the ciphertexts sent for the identity with level k′ ≤ k.
Since IBE implies a signature scheme a graded encryption scheme also implies
a graded signature scheme in the sense that the consolidation has to happen
in a sequential fashion. While our graded signature scheme does not have this
restriction, the signatures can be collected in an arbitrary order from signers.



Graded Signatures 65

It would be an interesting open question to consider graded encryption in the
setting that the upgrading procedure is flexible like in graded signatures, i.e.,
only depending on how many secret keys received.

Besides those privacy preserving signature schemes, multi-signatures [3], and
more generally, aggregate signatures [9] provide mechanisms for one to com-
pactly represent signatures from different parties, some recent work [20] even
shows that one may aggregate any type of signature from obfuscation tech-
niques [20,27]. However, the identities (public keys) of the signers will have to
be explicitly given out for the verification. Contrary to that, a graded signa-
ture will keep the identities hidden, while reveal to the verifier only the grade
of the signature. One may wonder whether adding some kind of anonymity to
the signer to aggregate signatures will give us a graded signature. Specifically,
if we have a trusted registration authority to issue certificates for public keys
in a way that the identities are not revealed, the anonymity of the signers will
be achieved. However, graded signature schemes also require the distinctness
of the signers to be validated. Besides, according to the application scenarios
e.g., that of an anonymous petition, the definition of anonymity has to be very
strong so that even the registration authority (which might be the adversary in
some settings) is allowed to be corrupted. Actually this anonymity requirement
is a crucial difference between aggregate signatures and graded signatures that
makes them incomparable. On one hand, there is no clear mechanism from aggre-
gate signatures that can provide us strong anonymity together with the proof of
distinctness of signers; on the other hand, our strong anonymity precludes the
possibility for the verifier to identify the exact source of the signature.

Our Results. We first introduce formal definitions for graded signatures, includ-
ing their correctness and security properties: unforgeability and anonymity.
Every signer has his own key pair that is certified by the certificate author-
ity. For correctness, when a signature is consolidated from � different signatures,
the consolidator should be able to convince the verifier that the signature is
of grade �′ as long as � ≥ �′. This allows us to define unforgeability focusing
only at the attack scenario when the adversary produces a signature with grade
one more than she is supposed to be able to produce. Regarding anonymity, we
define it in a very strong sense: even if all parties, including the signers and the
certification authority, are corrupted the consolidated signature should not leak
the set of signers whose signatures were included in the consolidation process.

We provide an efficient construction for graded signatures. which (Sect. 3)
achieves a constant verification and secret key size while both the graded sig-
nature size and the verification time are linear in the grade of the signature.
This construction follows a “commit and prove” approach. Note that simply
committing the signatures and showing that they originate from certified sign-
ers is insufficient: this is subject to a trivial attack where the consolidator uses
the same signature over and over to increase the grade. In order to prevent this
attack, an assurance of signature distinctness should be included in the proof
that, if straightforwardly implemented, leads to a quadratic size or verification
overhead. We go around this by introducing an order among signer public keys,
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and design the protocol in a way that it is compatible with the recent results of
very efficient range proofs that were developed in [12]. Note that since each sign-
ing key is independent, the verification key of each signer who contributes to the
graded signature should be somehow involved in the signature object generation
in order for the verification of the consolidated signature to take place correctly.
Thus, if we view graded signature with grade l as a “proof of knowledge” of l sig-
natures it follows that the length of the underlying consolidated signature must
be at least linear in l since it is supposed to carry information for l independent
originating signers. Besides, this proof should also include an argument which
shows that l distinct certified signers were involved in its construction.

2 Definitions and Security Modeling

In a graded signature scheme, there is a set of signers who register their public
key with a certification authority, as in a traditional PKI setting, and there is a
procedure which enables a privacy preserving signature combining functionality.
Specifically, from several signatures on a message m originating from different
signers, one can produce a “signature object” which convinces any verifier that
at least “l distinct signers” signed on the message m without leaking the identity
of any of them (beyond that they are members of the PKI of course). The grade
l can vary from 1 to n where n is the total number of the registered signers in the
system. For the ease of presentation, we differentiate the real grade � which is
the actual number of signatures used to consolidate the graded signature and the
claimed grade �′ which is sent together with the graded signature for verification.
Verification algorithm will accept if �′ ≤ �. The detailed definition of a graded
signature is as follows:

– Setup: This algorithm takes the security parameter as an input, and outputs
a master key pair (gsk, gpk).

– Register: This algorithm takes the master secret key gsk, a signer verification
key vki as inputs and outputs a certificate certi = Sign(gsk, vki||i) for the
registered signer. The index i ∈ {1, . . . , n} corresponds to a unique signer.

– Sign: This algorithm takes a key pair (ski, vki) and a message m as inputs,
and outputs a signature σi on m.

– Combine: This algorithm takes as inputs the global public parameters gpk,
a message m and a set of signatures {σi1 , . . . , σil} on m from different signers
and a set of verification keys {vki1 , . . . , vkil} and the corresponding certifica-
tions {certi1 , ..., certil}. It outputs a “consolidated” signature σ(�) and its real
grade �.

– Verify: This algorithm inputs the global public gpk, a message signature pair
(m,σ(�)) and the claimed grade �′ of the signatur, and outputs 0 or 1.

Security Model for Graded Signatures. The Correctness of a graded sig-
nature scheme requires that if � valid signatures under � different certified ver-
ification keys are used to produce the graded signature, then as long as the
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claimed grade is no bigger than �, the verification should always output 1, i.e.,
if (m,σ(�)) = Combine(m, {(vki, certi, σi)}i=i1,...,il), and for each i, (m,σi) is a
valid message-signature pair under vki, and (vki, certi) is valid under gpk, then
Verify(�′,m, σ, gpk)=1 as long as �′ ≤ �.

Next, we will define the security requirements of a graded signature. There are
two major security concerns in a graded signature, unforgeability and anonymity.
Unforgeability in this setting means one can not produce a graded signature with
a higher grade (≥ �) than that she is supposed to be capable of, i.e., she may
register new users, corrupt existing users, and receive some signatures on a target
message, but the numbers add up to at most � − 1. For anonymity, we require
it in a very strong sense that any two graded signatures with a same grade will
look indistinguishable (even to the CA and the signers who contribute one of
the signatures).

Unforgeability of Graded Signatures: In order to capture all the possible attacks
that the adversary A may try, we make explicit all kinds queries2 including
registration queries which ask the CA to certify some public keys provided by A,
the corruption queries which enables A to learn the secret key of known, certified
public keys, and the signature query for uncorrupted public keys. Consider the
following game between an adversary A and a challenger C.

– A receives the master public key gpk.
– A is allowed to make registration queries, and gets certifications for the public

keys that are generated by A.
– A is also allowed to make corrupt queries, and gets secret keys for some

existing certifications. (Note that all existing certifications and public keys
together with the corresponding indices are available to the adversary.)

– A also adaptively chooses messages to ask C for signing queries from signers
that are not queried for the secret key or the certification, and receives the
corresponding signatures on those messages.

– A outputs a message m∗ and signature with grade l.

Definition 1. Let AdvA
GS be the advantage of A in the game under the condition

that A has asked at most l−1 = q1 +q2 +q3 queries where q1 is the total number
of the secret key queries, q2 is the total number of the certification queries, and
q3 is the total number of signature queries for m∗. We say the graded signature is
existentially unforgeable under adaptive corruption attack if AdvA

GS ≤ negl(λ).

Remark that in our definition of unforgeability, we did not explicitly consider
the attack that the adversary outputs a graded signature with � + t for t > 0.
However, from our definition of correctness, it is straightforward that if adversary
is able to do so, she will be also capable of amounting an effective attack on our
definition directly, as a forged signature with grade �+t is also a forged signature
2 It is possible that we may simplify the model by categorizing some of the queries

into one, and argue the equivalence. Due to lack of space, we do not discuss this
improvement and refer to the full version.
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with grade �. We may also consider weaker models such as selective corruption,
and we omit the discussion of details of these weaker variants.

Anonymity of Graded Signatures: We require a strong type of anonymity for a
graded signature: two graded signatures can not be distinguished with respect
to any characteristic except their grade. In the anonymity definition, even the
certification authority and signers will not be able to link two graded signatures
for an adversarially chosen message with a same grade. Consider the following
game between an adversary A and a challenger C.

– A receives the master public key gpk.
– A makes queries for the secret keys of signers. Note that the adversary here

is allowed to corrupt all signers, even the certification authority.
– A also selects a grade l, a message m, and two sets of signers S0, S1 with

size l such that S0 �= S1. The adversary then produces two sets of tuples
D0 = {certi, σi, vki} and D1 = {certj , σj , vkj} where i ∈ S0 and j ∈ S1.
Thus, A sends all sets S0, S1,D0,D1 and message m together with l to C.3

– The challenger C randomly flips a coin b ∈ {0, 1}, and sends A a graded
signature σ(�) with grade l which is produced from l signatures on m from the
set Db.

– Finally, A output a guess b′.

Definition 2. We say a graded signature is fully anonymous if the probability
of guessing the bit correctly is negligibly close to 1

2 , i.e., |Pr[b = b′] − 1
2 | ≤ ε,

where ε is a negligible function.

3 Graded Signatures with Linear Signature Size
and Verification Time

In this section, we present an existentially unforgeable graded signature scheme
with both linear in the grade verification time and signature size. The construc-
tion relies on involved mechanisms that are compatible with a constant size
NIZK range proof together with a constant size NIZK proof of consistency of
committed verification and signatures.

In order to motivate our construction recall the following generic solution
for a graded signature: the user runs the aggregation algorithm of an aggregate
signature scheme (or multi-signature with non-interactive signing).

On input vki1 , . . . , vkit ,m, σ, and commits to all the verification keys, and
produces a non-interactive zero-knowledge proof for the following statements: 1.
σ is an aggregate signature on m under the committed verification keys; 2. all
committed verification keys are certified; 3. each of the committed verification
keys are different. The straightforward way of proving the third condition in zero-
knowledge would be to prove that the verification-keys are pairwise different.
Even with the most efficient NIZK proof of inequality, this step brings a cost at
3 In order to simplify the game definition, we assume the sets S0, S1 differ only by one

index, i.e., S0 \ S1 = i0 and S1 \ S0 = i1.
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least quadratic in the grade of the signature (the number of signer public keys)
that we want to avoid. We may use SNARK [4] to construct efficient graded
signature schemes as the final proof size could be as short as poly(λ) where λ
is the security parameter. However, we aim to get an efficient graded signature
without applying knowledge assumptions, thus we will focus on using standard
building blocks as Groth-Sahai proofs [18] below.

Besides, designing a linear size signature from standard assumptions was
also the main technical work of signature of reputation [5]. Unfortunately their
technique inherently relies on certain kind of “linkability” among commitments
and “uniqueness” of the signature scheme. They incur quadratic verification time
and restrict the class of signature schemes that can be used to produce a graded
signature.

We go around these problems by introducing a new technique that we assign an
index from {1, ..., n} as a part of public key of the signer where n is the maximum
level. We then utilize an efficient non-interactive range proof so that we can sort
the indices and sequentially prove a “larger than” statement to show that indices
from which the graded signature is produced are different. In this way we can bring
down the complexity from (at least) quadratic to linear. Specifically, when a signer
registers his verification key, the CA will choose an index for him and sign the index
together with his verification key to produce the certificate for that signer. After
collecting signatures (m, vki1 , σi1 , certi1), . . . , (m, vkit , σit , certit), the Combine
algorithm commits to all the verification keys, all the certificates, and all the
corresponding signatures. Then, the Combine algorithm will produce a proof
that each committed signature is valid under the corresponding committed ver-
ification key; second, a proof that each certificate is valid under the public key
of the certification authority; third, the algorithm will sort the indices of the
verification-keys in a decreasing order and establish that each index belongs
to range [1, n]. Due to the additive homomorphic property of the commitment
scheme we use, the Combine algorithm will be also capable to produce a proof
that Com(ij −ij−1) is a commitment to an integer which also falls in range [1, n].
So it follows that this value is bigger than 0, and hence the difference of any two
neighboring indices is strict. In this fashion the algorithm will establish a proof
showing that there are l valid signatures from l different certified signers on m.
This completes the high level overview of the construction. What remains is how
to get a constant size NIZK proof for each of the above statements. Thanks to
the flexibility of this construction methodology we can choose any appropriate
signature scheme as long as it can be paired with efficient NIZK proofs. We
instantiate the scheme using automorphic signatures [1] together with a Groth-
Sahai proof of validity of committed signatures [19], and also an efficient range
proof of committed values. In this way we can see that verification only has to do
a sequential scanning instead of pair-wise comparison as in [5]; furthermore, the
signature size is still linear in the grade as each component only cost a constant
number of group elements.

Suppose we have two signature schemes Sig, Sig′, an additively homomorphic
commitment scheme Com. The scheme is formally presented as follows:
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– Setup: The algorithm runs the key generation of Sig, and generates a key
pair (msk,mpk). It also generates global parameters param including the
CRS string for the commitment scheme and the NIZK proof system, and the
total number n of allowed signers in the system. It outputs the global key pair
(gsk, gpk) where gsk = msk, and gpk = (mpk, param).

– Register: This is a protocol between signer and CA. Signer first runs the key
generation of sig′ to get his signing key pair (vk, sk), and submits vk to the
CA. The CA first checks whether this signer is already registered, if not, he
chooses an index i, runs the signing algorithm of Sig on (vk, i), and returns
the signer certi, where certi = Sig(msk, (vk, i)).

– Sign: This algorithm receives as input a signer’s secret key ski, a message m
and runs the Sig′ algorithm to get a signature σi on m, and it outputs σi,
signer’s index i and certi.

– Combine: This algorithm takes as inputs a message m, a sequence of sig-
natures (σi1 , . . . , σil) for the message m under vki1 , . . . , vkil with the corre-
sponding certificates (certi1 , . . . , certil), from l different signers. It first checks
the validity of the signatures and the certificates, and determines the grade
l. Suppose the sequence is in a decreasing order according to the indices, i.e.,
i1 > i2 . . . > il. It computes the commitments to all those values and gets
c1ij = Com(σij ) for the signatures, c2ij = Com(vkij ) for the signers’ verifi-
cation keys, c3ij = Com(certij ) for the certificates, and c4ij = Com(ij) for
the signers’ indices. Using the signatures as witnesses, it constructs 4l − 1
NIZK proofs. For each j ∈ {1, . . . , l}, the proof π1

ij
establishes that c1ij com-

mits to a valid signature on m under the verification key contained in c2ij ;
π2

ij
proves that c3ij commits to a valid signature under mpk on the message

pair contained in c2ij and c4ij ; π3
ij

proves c4ij commits to a value which belongs
to {1, . . . , n}; π4

ij
proves that c4ij+1

/c4ij = Com(ij+1 − ij) also commits to a
value ranging in {1, . . . , n}. It outputs the message m and signature object as
{c1i,j , c

2
ij

, c3ij , c
4
ij

, π1
i,j , π

2
ij

, π3
ij

, π4
ij

}j=1,...,l, together with its grade l.

– Verify: The verifier takes global public key gpk, a message m, and a graded
signature {c1i,j , c

2
ij

, c3ij , c
4
ij

, π1
i,j , π

2
ij

, π3
ij

, π4
ij

}j=1,...,l with grade l as inputs, it
first parses the signature, and for j = 1, . . . , l, it checks the validity of the
proofs π1

i,j , π
2
ij

, π3
ij

, and for j = 1, . . . , l − 1, it checks the validity of π4
i,j ; if all

checks pass, it outputs 1, otherwise 0.

Correctness: The correctness of our scheme trivially follows the correctness of
the signature schemes Sig and Sig’, and the completeness of the NIZK proof
systems. Briefly, if the user has � signatures (σij , vkij , certi,j) for a message m
collected from different signers such that each σij is a valid signature on m
under vkij , and each certij is valid signature on (pkij , ij) under mpk, and if the
� tuples (σij , vkij , certi,j) are sorted in decreasing order, and all indices ij and
all ij+1 − ij are in the range [1, n]. Then from the completeness of NIZK proof
systems, the Verify algorithm accepts the signature σ(�) on m constructed as

σ(�) = {c1i,j , c
2
ij , c

3
ij , c

4
ij , π

1
i,j , π

2
ij , π

3
ij , π

4
ij}j∈[�] = Combine(m, (σij , vkij , certij )j∈[l]).
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Security Analysis: Security follows quite easily from the properties of the zero-
knowledge proofs and the commitment schemes. For unforgeability, suppose the
adversary only gets t signatures on a message m by corrupting signers or asking
signing queries, and he is able to produce a signature on m with grade t + 1.
According to the soundness of the NIZK proof system, there must be t + 1 valid
signatures under t + 1 different verification keys committed by the adversary.
Note that because of the extractability property of the commitment scheme,
at the beginning, the simulator can produce a simulated crs which contains an
opening trapdoor for the commitment scheme, and thus the simulator can open
these commitments to retrieve the t+1 tuple of signatures, verification keys, and
certificates. If the verification keys are all certified by the CA, then the adversary
must have forged one new signature against an honest signer; alternatively, the
adversary could have forged a certificate for an unregistered verification key. The
simulator can examine these cases and break the unforgeability of either Sig′

or Sig.
Regarding anonymity, suppose the adversary submits m, l, S0, S1,D0,D1 as

the challenge. Suppose, for simplicity, that S0\S1 contains only one index i0 and
similarly S1 \ S0 contains only one index i1. The simulator can use signatures
σi0 , σi1 on m under pki0 , pki1 to ask as a challenge in a plaintext indistinguisha-
bility game of the underlying commitment scheme; after receiving Com(σib), the
simulator will create a graded signature by computing the commitments to all
other signatures on m and simulate all the proofs (the latter part following from
the zero-knowledge property). In this way, the simulator can use the adversary’s
ability in breaking anonymity to break the hiding property of the commitment
scheme in a straightforward fashion.

Theorem 1. The scheme is existentially unforgeable under adaptive corrup-
tion attacks if Sig, Sig′ are unforgeable digital signatures, Com is a binding
(extractable) commitment scheme, and the proof system is sound.

Proof: We show the security by a sequence of games. We start with the orig-
inal game Game0, and prove that a polynomial time attacker’s advantage of
distinguishing any successive games is negligible.

Game0 :

– The simulator runs the key generation of Sig, and generates a key pair
(msk,mpk). It also runs the key generation algorithm of Sig′ to generate
the signing key-verification pairs. Then for each verification key vk, it picks a
random integer i ∈ [n], generates the certification of the corresponding verifi-
cation key using MS.Sign algorithm on (vk, i), and forms a set S that contains
all certifications and corresponding indices. Besides, it generates the global
parameters param including the crs strings for the commitment scheme and
the NIZK proof system, and the total number n of allowed signers in the sys-
tem. The simulator keeps gsk, and gives gpk = (mpk, param) and S to the
adversary.
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– For each register query; the adversary A generates a fresh key pair (sk, vk) ←
S.Setup, and gives vk to the simulator. The simulator selects a random inte-
ger i from [n] − S as the index of vk (The challenger keeps a list T for regis-
tered indices. If i ∈ T ∪ S, the simulator reselects it) and computes certi =
MS.Sign(msk, (vki, i)). C sends certi to A and writes (i, vk, certi) to T.

– For each signing key query of an index j ∈ S; the simulator gives the corre-
sponding signing key skj to the adversary. The simulator also keeps a list C
for corrupted indices.

– For each signature query on the message m with index k ∈ [n] − T ; the
simulator computes σ = S.Sign(skk,m), and gives it to A.

– A submits a forgery σ(�) with grade � > |C| + |T | + q for m∗ where q is
the number of signature queries on m∗. If Verify(σ(�), �,m∗, gpk) = 1, the
adversary wins the game.

Game1 : Same as Game0, except we substitute Setup algorithm of the commit-
ment scheme with Extractable Setup algorithm which generates the crs string
of the commitment scheme together with the extraction key ek.

Game2 : Same as Game1, except we require that for each commitment cu
ij

=
Com(crd, (Xu

ij
, α)) and associated proof πu

i,j ← Prove(crs, V eru
ij

, (Xu
ij

, α)) gen-
erated by the adversary in the challenge phase, V er(crd,Eu

ij
, cu

ij
, πu

i,j) = 1 where
Eu

ij
is the corresponding verification equation.

Claim: Assuming the NIZK proof systems has two types of common reference
strings (hiding and binding) which are computationally indistinguishable, for
any PPT adversary A,

|Adv
(0)
A − Adv

(1)
A | ≤ negl(λ).

P roof. Suppose there exists a PPT adversary A such that the difference the
advantages of the adversary between both games is non negligible, then we can
construct a PPT algorithm B that use A to distinguish two types of CRS with
non negligible advantage. �
Claim: Assuming the NIZK proof systems are sound, for any PPT A,

|Adv
(1)
A − Adv

(2)
A | ≤ negl(λ).

P roof. Suppose there exists a PPT adversary A such that the difference the
advantages of A between both games is non negligible, then we will construct a
PPT algorithm B that uses A to break the soundness of the proof systems.

B gets the crs of the commitments from the challenger of the NIZK proof
system. It then computes (msk,mpk) ← MS.Setup(λ) and gives the gsk, gpk
to the adversary. B can simulate the corrupt queries, the registration queries,
and the signature queries as in Game1 and Game2. The only difference between
two games is that, the adversary can prove a false statement with non-negligible
probability in Game1. If the algorithm B is dealing with the proofs of false
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statements, then it corresponds to Game1; otherwise it corresponds to Game2.
Thus, B can break the soundness of the underlying proof systems with non-
negligible probability. �	
Claim: Assuming Sig and Sig′ are existentially unforgeable, and the commit-
ment scheme is perfectly binding, for any PPT A,

Adv
(2)
A ≤ negl(λ).

P roof. Suppose there exists a PPT adversary A such that the difference the
advantages of A between both games is non negligible, then we will construct a
PPT algorithm B that uses A to break the unforgeability of Sig or Sig′.

B gets mpk from the challenger of Sig and vk from the challenger of Sig′,
and requests a certification for vk. B also generates some signing key-verification
key pairs, and requests the certifications for those verification keys. It then forms
the set S that contains all certifications and corresponding indices. Besides, B
generates the global parameters param that includes the extractable crs strings
for the commitment scheme with the extraction key ek and the NIZK proofs
system, and the total number n of the allowed signers in the system. B keeps
ek, and gives (mpk, params) to the adversary.

For each register query that the adversary makes, B gets the corresponding
certification from the challenger of Sig; for each signing key query that the
adversary makes, if the corresponding verification key is vk, B aborts, otherwise
gives the corresponding signing to the adversary; for each signature query on
a message m, if the adversary requests a signature for vk, B asks a signature
on m from the challenger of Sig′, otherwise produces the signature using the
corresponding signing key.

When the adversary submits a valid forgery σ(k) on a message m∗ with the
grade �, B extracts all tuples {(vki, certi, σi)}i∈[�] uniquely from σ(k) using ek
since the commitment scheme is perfectly binding (extractable). Since the number
of registration queries and the corruption queries add up to be less than �, there
should be one tuple (vki, certi, σi) such that either σi is a valid forgery on m∗

under vki, or certi is a valid forgery on (vki, i) under mpk. If σi is a valid forgery
on m∗, since the probability of vki = vk is 1/|S|, B can use this forgery to break
the unforgeability of Sig. If certi is a valid forgery on (vki, i), then B can use the
pair to break the unforgeability of Sig′. This concludes the proof. �	
Theorem 2. The scheme satisfies full anonymity, if Com is computationally
hiding and the proof system is zero-knowledge.

Proof: We show the security by a sequence of hybrid experiments. We start with
the original experiment Game0, and prove that any polynomial time attacker’s
advantage of distinguishing any successive experiments is negligible.

Game0 :

– The challenger runs the key generation of Sig, and generates a key pair
(msk,mpk). It also generates global parameters param including the crs
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strings for the commitment scheme and the NIZK proof system, and the
total number n of allowed signers in the system. The challenger gives gpk =
(mpk, param) and gsk to the adversary.

– The adversary selects two sets S1 and S0 of indexes such that |S0| = |S1| = k,
S1 \S0 = {i0}, and S0 \S1 = {j0}. It first runs S.Setup algorithm to generate
signing key-public key pair (sk, pk) for each index, then computes a certifi-
cation certi for each public key vki of the index i using gsk. The adversary
also produces signatures σi on same message m under each public key pki. It
finally gives the index k as the level, the message m, two sets of indexes S0,
S1, and two sets of tuples D0 = {certi, σi, pki}, D1 = {certj .σj , pkj} where
i ∈ S0 and j ∈ S1.

– The challenger sets b = 0, produces a graded signature σ(k) on m using the
tuples Db, and gives σ(k) to the adversary.

– The adversary gives a guess b′ to the challenger, and wins the game if b = b′.

Game1 : Same as Game0, except we substitute Setup algorithm of the commit-
ment scheme with SimSetup algorithm which generates the simulable crs string
of the commitment schemes and proofs.

Game2 : Same as Game1, except the challenger changes the proofs (π1
i,0, π

2
i0

, π3
i0

,

π4
i0

) of index i0 from σ(k) with the simulated proofs (π
′1
i0

, π
′2
i0

, π
′3
i0

, π
′4
i0

).

Game3 : Same as Game2, except the challenger changes the commitments
(c1i,0, c

2
i0

, c3i0 , c
4
i0

) of index i0 ∈ S0 from σ(k) with (c1j,0, c
2
j0

, c3j0 , c
4
j0

) of the index
j0 ∈ S1.

Game4 : Same as Game3, except the challenger changes the simulated proofs
(π

′1
i0

, π
′2
i0

, π
′3
i0

, π
′4
i0

) from σ(k) with the proofs (π1
j0

, π2
j0

, π3
j0

, π4
j0

). Thus, in the final
game, the challenger generates the graded signature σ(k) using the tuples from
the set D1.

Claim: Assuming the proof systems are zero-knowledge, for any PPT A,

|Adv
(0)
A − Adv

(1)
A | ≤ negl(λ).

P roof. Suppose there exists a PPT adversary A such that the difference of the
advantages of the adversary between both games is non negligible, then we can
construct a PPT algorithm B that use A to break the zero knowledge property
of the proof systems. �
Claim: Assuming the proof systems are zero-knowledge, for any PPT A,

|Adv
(1)
A − Adv

(2)
A | ≤ negl(λ).

P roof. Suppose there exists a PPT adversary A such that the difference of the
advantages of the adversary between both games is non negligible, then we will
construct a PPT algorithm B that use A to break the zero knowledge property
of the proof systems.
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B generates (gsk, gpk) and gives them to the adversary as in Game1 and
Game2. After getting it, the simulator gives the challenge tuple (vki0 , certi0 , σi0)
to the challenger of the proof system, and gets the corresponding commitments
comi0 and proofs π

(b)
i0

. B then simulates all other commitments and proofs and
gives the final signature to the adversary. If b = 0, then it corresponds to Game1,
otherwise it corresponds to Game2. Thus, if the difference of the advantages of
the adversary between both games is non negligible, then B can use A to break
the zero knowledge of the proof system. �
Claim: Assuming the commitment scheme is computationally hiding, for any
PPT adversary A,

|Adv
(2)
A − Adv

(3)
A | ≤ negl(λ).

P roof. Suppose there exists a PPT adversary A such that the difference of
the advantages of the adversary between both games is non negligible, then we
will construct a PPT algorithm B that use A to break hiding property of the
commitment scheme.

B generates (gsk, gpk) and gives them to the adversary as in Game2 and
Game3. After getting it, the simulator gives the challenge tuples (vki0 , certi0 , σi0)
and (vkj0 , certj0 , σj0) to the challenger of the commitment scheme, and gets the
challenge commitments (c1b , c

2
b , c

3
b , c

4
b). B also simulates all other commitments

and corresponding proofs, and gives the final signature to the adversary. If b =
i0, then it corresponds to Game2, otherwise it corresponds to Game3. Thus, if
the difference of the advantages of the adversary between both games is non
negligible, then B can use A to break the hiding property of the commitment
scheme. �
Claim: Assuming the proof systems are zero-knowledge, for any PPT A,

|Adv
(3)
A − Adv

(4)
A | ≤ negl(λ).

P roof. Suppose there exists a PPT adversary A such that the difference of the
advantages of the adversary between both games is non negligible, then we will
construct a PPT algorithm B that use A to break the zero knowledge property
of the proof systems.

B generates (gsk, gpk) and gives them to the adversary as in Game3 and
Game4. After getting it, the simulator gives the challenge tuple (vkj0 , certj0 , σj0)
to the challenger of the proof system, and gets the corresponding commitments
comj0 and proofs π

(b)
j0

. B then simulates all other commitments and proofs and
gives the final signature to the adversary. If b = 0, then it corresponds to Game3,
otherwise it corresponds to Game4. Thus, if the difference of the advantages of
the adversary between both games is non negligible, then B can use A to break
the zero knowledge of the proof system.

In conclusion, since any PPT attacker’s advantage of distinguishing any suc-
cessive games is negligible, the adversary cannot distinguish two graded signa-
tures with the same grade. Hence, the scheme is fully anonymous. �	
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An Efficient Instantiation. In order to get a graded signature with size linear
in the grade, we need to make all the NIZK proofs π1

ij
, π2

ij
, π3

ij
, π4

ij
to be constant

size. One natural approach, that also yields a standard model construction, is
to instantiate the scheme with signature schemes which are compatible with the
Groth-Sahai proof system [19]. Note that a structure preserving signature or
automorphic signature [1] satisfies exactly our needs – both the verification key
and the signature belong to the same group, and the verification are conjunctions
of pairing product equations; furthermore, this signature scheme allows signing
on a pair of messages as well. For Sig, the CA needs to sign on pk and index
i; we instantiate this with an automorphic signature on (gx, gi), where pk = gx;
for Sig′, in order to sign a message m ∈ Zp, we instantiate the algorithm via
the same signature scheme operating on a single group element equal to gm. It
is straightforward to obtain constant size proofs realizing π1

i , π2
i by applying the

Groth-Sahai framework.
For π3

i , π4
i , we use the constant size non-interactive range proof for range

[0,H] proposed in [12]4. First, we apply the range proof for the range [1, n] in
order to establish the “larger than” statement. Relying on the additive homomor-
phic property of the commitment scheme, we can do a straightforward “shift”
in the protocol of [12], in order to prove x ∈ [1, n], where x is committed in
Com(x). Specifically the prover executes the proof with respect to the commit-
ment ψ = Com(x)/Com(1; 0) where Com(x; r) denotes the commitment on x
with randomness r, thus establishing that x− 1 ∈ [0,H]. With this construction
at hand, it follows that the proofs π3

i , π4
i are also constant size.

Now the only problem left is to show the index committed for π1
i , π2

i is con-
sistent with the value committed for π3

i , π4
i . We observe that the commitment

schemes used in the range proof include a BBS encryption type of commit-
ment, which is compatible with Groth-Sahai proof system and this proof can be
constructed easily. Specifically, the NIZK proof establishes that the two commit-
ments c1, c2 belong to the language:

L = {(c1, c2)|∃x, r1, r2, s1, s2, s.t, c1 = (gx+r1+r2 , fr1 , hr2) ∧ c2 = (gxus1
1 us2

2 )},

where g, f, h, u1, u2 are all contained in CRS.

Graded Signatures Supporting Revocation. Since our notion of graded
signature is directly built upon the PKI, it would be nice if we can support
certificate revocation as well due to the same reasons as in the regular PKI
setting, e.g., some signing key might get compromised. A common method for
revocation in the PKI setting is that the CA publishes a revocation list that
maintains all the revoked certificates, and every user can check it.

In our construction of the graded signature scheme, in order to guarantee
that the signatures are all from the valid signers and their privacy is preserved,
4 Using different instantiations of parameters, they obtain suitable communication

and verification complexity for different scenarios. In our case, adding CRS with
O(log1+εn)-length to the public parameters will be enough to achieve constant size
range proof and verification time.
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we have one important step that the user commits to the certificates and the
public keys and proves that the public keys are certified, i.e., the certificates
contained in the commitments are valid signatures under the master public key
of the CA. We can see that in principle, it would not be very difficult to extend
our construction to support revocation as we can simply let the user to add one
more proof that the certificates committed are not in the public revocation list.5

The challenging task is that how we can maintain the signature size still to be
linear in the grade, which means we need to keep each non-membership proof to
be constant!6

Fortunately, Blazy et al. [6] propose an efficient NIZK proof system to prove
an exclusive statement, i.e., the statement does not belong to a language L. We
can instantiate their proof system to prove that a committed value does not
belong to a given set S. The main idea of their technique is that the user first
generates a “proof” π̃ showing that the statement belongs to L, and it can not
pass the verification (as he does not have the witness), then he proves using
another π̃′ that π̃ is generated honestly, i.e., it is indeed computed following the
regular prover algorithm. In this way, π̃, π̃′ together convince the verifier about
the negation, as if not, the prover can not generate π̃, π̃′ simultaneously. For
details of the technique, we refer to [6]. Now to instantiate the non-membership
proof, we can start with the membership proof we use [6] to generate π̃ which is
constant size and we then prove each component of π̃ is generated honestly. Since
[6] is compatible with Groth-Sahai [18], the validity of the components can be
again proven efficiently using the Groth-Sahai proof. Thus, we can conclude that
we can extend our graded signature to support certificate revocation by adding
the above non-membership proof for each committed certificates. Furthermore,
each pair of such non-membership proof is with constant size, thus the total
signature size is still linear in the number of grade.

Acknowledgment. The first author was supported by the ERC project CODAMODA
and the project FINER of the Greek Secretariat of Research and Technology.

A Preliminaries

Non-Interactive Zero-Knowledge (NIZK) Proof: Let R = {(x,w)} be an
efficiently computational binary relation, where we call x the statement and w
the witness. Let L be the language which consists of the statements from R.
A non-interactive argument for a relation R consists of a key generation algo-
rithm G, which creates a common reference string crs, a prover P and a verifier
V . The prover generates a non-interactive argument π for an input (crs, x, w).
The verifier outputs 1 if the proof is valid; otherwise, outputs 0. Suppose ε1, ε2
are negligible functions,
5 Instead of certifications, it would be enough to keep only the indices of the revoked

signers in the revocation list.
6 A straightforward way to show that the committed value does not equal to any of

the set element is highly inefficient due to the inequality proof and the AND proof.
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– A non-interactive argument (G,P, V ) is perfectly complete if:

Pr[crs ← G,∀(x,w) ∈ R, V (crs, x, P (crs, x, w))] = 1.

– We say (G,P, V ) is sound, if ∀A,

Pr[crs ← G; (x, π) ← A(crs), x �∈ L ∧ V (crs, x, π) = 1] ≤ ε.

– (G,P, V ) is zero knowledge, if there exists a simulator (S1, S2) such that for
all non-uniform ppt adversaries A, ∀(x,w) ∈ R

| Pr[crs ← G, AP (crs,x,w)(crs) = 1] − Pr[(crs, t) ← S1, AS2(crs,t,x)(crs) = 1]| < ε

Extractable Commitments: An extractable commitment scheme consists of
five algorithms: Setup, Com, ExtGen, Ext. Gen algorithm outputs a commit-
ment key ck, and ExtGen outputs (ck′, td), where ck′ is indistinguishable with
ck, and td is an extraction key. Com outputs a commitment c on ck, a message
m, and randomness r.

– It is perfectly binding if for any commitment c there exists exactly one m
satisfying c = Com(ck,m, r) for some r, further, Ext(td, c) = m.

– It is computationally hiding if for any messages m,m′, Com(ck,m, r) is indis-
tinguishable with Com(ck,m′, r′).

Automorphic Signatures: An automorphic signature over a bilinear group is
an existentially unforgeable signature scheme whose verification keys lie in the
same space with message, and the verification predicate is conjunction of pairing-
product equations over the verification key, the message and the signature [1].
We can apply Groth-Sahai proof to such signature scheme to instantiate efficient
NIZK proofs. Furthermore, their construction enables signing on message vectors
as well which we will use for the Register algorithm to sign on (pk, i).

Constant Size Range Proof: A prover with the range proof given by [12]
convinces a verifier that a number in a commitment belongs to the interval [0, k].
Setup algorithm just outputs a common reference string crs for the commitment
and the public parameters for BBS encryption [8]. The common input for the
range proof consists of a BBS encryption (Ag, Af , Ah) = (gr+i

1 , fr1 , hr2) and a
commitment (Ac, Âc) = (gr

1g
a
11, ĝ1

r ˆg11a) where r = r1 + r2. They propose an
efficient NIZK argument which convinces a verifier that the key committed in
(Ac, Âc) and encrypted as Ag belongs to [0,H]. We leave the details to the paper
[12]. Also, note that BBS encryption type of commitment is compatible with
Groth-Sahai proof.
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Abstract. Physical isolation provides tenants in a cloud with strong
security guarantees, yet dedicating entire machines to tenants would go
against cloud computing’s tenet of consolidation. A fine-grained isolation
model allowing tenants to request fractions of dedicated hardware can
provide similar guarantees at a lower cost.

In this work, we investigate the dynamic provisioning of isolation at
various levels of a system’s architecture, primarily at the core, cache, and
machine level, as well as their virtualised equivalents. We evaluate recent
technological developments, including post-copy VM migration and OS
containers, and show how they assist in improving reconfiguration times
and utilisation. We incorporate these concepts into a unified framework,
dubbed SafeHaven, and apply it to two case studies, showing its efficacy
both in a reactive, as well as an anticipatory role. Specifically, we describe
its use in detecting and foiling a system-wide covert channel in a matter of
seconds, and in implementing a multi-level moving target defence policy.

Keywords: Side channels · Covert channels · Migration · Isolation

1 Introduction

The growing use of shared public computational infrastructures, most notably
in the form of cloud computing, has raised concerns over side channel and covert
channel attacks (collectively termed illicit channels). These are formed using
unconventional and often discreet means that circumvent current security mea-
sures. This gives an attacker an edge over conventional attacks, which, while often
effective, are well-characterised, conspicuous, and actively guarded against. To
date, demonstrations of illicit channels have remained largely academic, with
occasional influences on mainstream security practices. Nevertheless, the threat
of such channels continues to grow as knowledge on the subject increases.

Hardware illicit channels are fundamentally the product of the unregulated
sharing of locality, be it spatial or temporal. Side channels occur when a process
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inadvertently leaks its internal state, whereas covert channels are built by con-
spiring processes that actively leak state in an effort to transmit information.
To break hardware locality, processes must be confined through what has been
termed soft or hard isolation [38]. Hard isolation involves giving a process exclu-
sive access to hardware, preventing illicit channels by removing their prerequisite
of co-location. This approach is limited by the physical hardware available, yet it
offers the strongest level of isolation. In contrast, soft isolation allows hardware
to be shared but attempts to mask its characteristics.

Soft isolation often incurs an ongoing performance overhead, with some frac-
tion of the machine’s capacity committed to maintaining the isolation. Hard
isolation does not typically incur a maintenance cost, but it can lead to under-
utilised hardware [26]. Nevertheless, underused capacity is not truly lost, and can
potentially be used to perform functionally useful computations. Conversely, the
maintenance costs of soft isolation consume resources.

The viability of hard isolation as a general mitigation technique depends
on three factors, namely the availability of hardware, the degree of utilisation
supported and the cost of reconfiguration. Modern architectures are hierarchical
and vast, with different regions of their hierarchy offering varying granularities of
isolation. Isolated resources can thus be provisioned at a finer granularity than
dedicating machines to each tenant, which enables higher rates of utilisation. The
cost of reconfiguration depends on the type of isolation being provisioned. Cheap
reconfiguration allows isolation to be procured temporarily and on-demand, fur-
ther improving utilisation rates by minimising the duration for which resources
are reserved, which translates into lowered operating costs for tenants requesting
isolation

This work presents the following contributions:

– an investigation into the types of hard isolations present within modern hierar-
chical computer architectures, and the types of migration mechanisms avail-
able at each level, namely at the core, cache, and machine level, and their
virtualised equivalents,

– the creation of a framework, dubbed SafeHaven, to orchestrate migration
and distributed monitoring,

– an evaluation of the use of a series of maturing technologies, namely post-
copy live VM migration, OS-level containers and hardware counters, and their
application in improving a mitigation’s agility and utilisation, and finally,

– an application of SafeHaven in mitigating a system-wide covert channel, in
implementing a multi-level moving target defence, and in measuring the cost
of migration at each level of the hierarchy.

2 Background and Related Work

The issue of isolating processes has been historically described as the confine-
ment problem [25]. The following is an overview of the various ways in which
confinements can be broken and upheld.
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Attacks. Confinements can be broken at different levels of a system architec-
ture, such as the cache level (L1 [32], L2 [41] and L3 [42]), virtual machine
level [33], system level [4,40], or network level [10], through various forms of
attack. Attacks are characterised by type (side or covert), scope (socket, sys-
tem or network-wide), bandwidth and feasibility. Illicit channels can be broadly
categorised as being time-driven, trace-driven or access-driven [38]. Time-driven
attacks rely on measuring variations in the aggregate execution time of opera-
tions. Trace-driven cache attacks are based on analysing an operation’s evolu-
tion over time. Access-driven attacks allow an attacker to correlate effects of the
underlying system’s internal state to that of a co-located victim.

Covert channels are generally simpler to construct due to the involved parties
cooperating. Fast channels have been shown at the L2 cache level [41], which in
a virtualised environment would require VCPUs to share related cores, as well
as across virtual machines [40]. Scheduling algorithms can also be leveraged to
form a channel by modulating the time for which a VM [30] or process [20] is
scheduled.

Defences. Mitigations can broadly be categorised as being passive, reactive or
architectural. Passive countermeasures attempt to preserve isolations through
an indiscriminate process. For example, disabling hardware threads will elimi-
nate a class of attacks [32] at the cost of performance. Alternatively, one can
use a scheduling policy that only co-schedules entities belonging to the same
process [24,39] or coalition of virtual machines [34]. Policies can also be altered to
limit their preemption rate, restricting the granularity of cache-level attacks [38].
Other countermeasures include periodically flushing caches [45], changing event
release rates [6], and intercepting potentially dangerous operations [35].

Reactive countermeasures attempt to detect and mitigate attacks at runtime.
Frameworks for distributed event monitoring [28] can be fed events generated
via introspection [14], or can enforce a defined information flow policy [34].

Architectural mitigations are changes in hardware or to the way in which it is
used. One example is Intel’s introduction of specialised AES instructions, which
insulate the operations’ internal state from external caches [18]. Other solu-
tions include randomly permuting memory placement [39], rewriting programs
to remove timing variations [5,13], reducing the precision of system clocks [19,32]
or normalising timings [26], cache colouring [24] and managing virtual machines
entirely in hardware [23].

3 Isolation and Co-Location

We briefly introduce the fundamental notions of co-location and migration using
a simple graph model, with which the relationship between different forms of
isolation can be represented.

3.1 Locality

A confinement delineates a boundary within which entities can potentially share
state. Entities are themselves confinements, leading to a hierarchy.
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Definition 1 (Locality). A confinement (or locality) with a name N, a type
Γ , a set of capabilities C, and a set of sub-localities Sb is denoted by Γ :N(C)Sb.

Capabilities regulate how confinements can modify each other, with operations
on confinements only being allowed when they share a capability. We denote a
locality X as being a sub-locality of D using X∈D. This is extended to the notion
of transitive containment X∈+ D, where X∈+ D

def= X∈D ∨ ∃X’∈D. X∈+ X’.

Example 1 (Cache Hierarchy). Intel CPUs often implement simultaneous multi-
threading, with two hardware threads (C) sharing an L1 cache. A dual-core
system with per-core L2 caches and a common L3 cache can be described as:

L3:0() [L2:0() [L1:0() [C:0() [] ,C:1() []]] ,L2:1() [L1:1() [C:2() [] ,C:3() []]]]

Definition 2 (Co-Location). Two localities X and Y are co-located within D
(denoted by X

D←→ Y) if X∈D ∧ Y∈D. The localities are transitively co-located
in D (denoted by X

D⇐⇒ Y) if X∈+ D ∧ Y∈+ D.

We denote the movement of a locality X to a parent confinement D as X � D.

Example 2 (Cache Co-Location). For the hierarchy defined in Example 1, given
that a process Pi executes on a hardware thread C:i, process P0 is transitively
co-located with (i) P1 via L1:0, L2:0 and L3:0, and (ii) P2 via L3:0.

3.2 Confinements

Figure 1a lists the primary types of isolations with which this work is con-
cerned, which are broadly categorised as being static or dynamic. The former
are architectural elements such as caches and networks, which, while offering
some degree of configuration, exist at fixed locations in relation to each other.
The latter are isolations that can be created, destroyed or otherwise moved
around. Figure 1b is an example of a containment graph, with possible migra-
tion paths depicted through arrows 1–7, where paths denote how an isolation’s
parent can be changed. The mechanisms implementing each path will be detailed
in Sect. 4.2.

An additional form of confinement is that produced by soft isolation [38],
which attempts to decrease the amount of information that can be inferred from
shared state, simulating a plurality of disjoint isolations. This often incurs an
ongoing overhead, the severity of which varies depending on the technique being
used [38]. For example, the clflush instruction, which flushes all cached versions
of a given cache line, has been shown as an effective enabler of side-channel
attacks [42,44]. Disabling the instruction would impede attacks. While clflush
is an unprivileged instruction that does not generate a hardware trap [44], closer
inspection of its semantics shows that its execution depends upon a clflush flag
within the machine’s cpuid register being asserted [22]. This register is generally
immutable, yet virtualisation can mask it [3]. Unfortunately, hardware-assisted
virtualisation, such as that used by KVM, bypasses the virtualised cpuid register,
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Static Confinements

Type Description Can Contain

Net Network Net, M
M Machine L3, OS
L3 L3 Cache L2
L2 L2 Cache L1
L1 L1 Cache C
C Physical core VC, PE, Con, VM
OS Operating Sys. PE, Con, VM

Dynamic Confinements

Type Description Can Contain

VC Virt. CPU VC, PE, Con, VM
VM Virt. machine VC, OS
PE Control group Con, P
Con Container P
P Process -

(a) Confinement types

Net:192.168.0.0/24

M:Intel2

L3:0

L2:1

L1:1

C:HT3

VC:V1

PE:PE1

C:HT2

VC:V0

PE:PE0

L2:0

L1:0

C:HT1

VC:V1

PE:PE1

P:P3

C:HT0

VC:V0

PE:PE0

M:Intel1

L3:0

L2:1

L1:1

C:HT3

VC:V3

PE:PE3

P:P2

C:HT2

VC:V2

PE:PE2

L2:0

L1:0

C:HT1

VC:V1

PE:PE1

P:P1

C:HT0

VC:V0

PE:PE0

P:P0

vm0 vm1 vm2

3 4

1 2 6 5

7

(b) Graph of 2 × M, 3 × VM. Edges denote con-
tainment. 1-7 denote migration paths.

Fig. 1. Example of a containment hierarchy, and various confinement types.

limiting one to using an emulated VCPU such as QEMU. While we found this to
be effective in disabling clflush (an invalid opcode exception was thrown on
its invocation), a QEMU VCPU is substantially slower than its KVM equivalent,
leading to a continuous overhead.

4 SafeHaven

With the basic terminology and notation required to model locality and co-
location introduced, we now describe SafeHaven, a framework designed to
facilitate the creation, deployment and evaluation of isolation properties.

4.1 Overview

SafeHaven is a framework that assists in creating and deploying a network of
communicating probe and agent processes. Sophisticated system-wide detectors
can be built by cascading events from various probes at different system levels.
A crucial aspect of this model is that detectors can be both anticipatory as well
as reactive, meaning that they can either trigger isolations as a precaution or as
a countermeasure to a detected attack.

SafeHaven is implemented in Erlang [16] due to its language-level support
for many of the framework’s requirements, with probes and agents as long-lived
distributed actor processes communicating their stimuli through message pass-
ing. Other innate language features include robust process discovery and commu-
nication mechanisms and extensive support for node monitoring and error report-
ing. SafeHaven was developed in lieu of adapting existing cloud-management
suites such as OpenStack [31] so as to focus on the event signalling and migra-
tion aspects of the approach. Erlang’s functional nature, defined communication
semantics and use of generic process behaviours help to simplify the automatic
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generation and verification of policy enforcement code, paving the way for future
formal analysis.

Probes and Agents. A probe is an abstraction for an event source, typically
implemented in SafeHaven as an Erlang server process. Agents are manage-
ment probes that can modify one or more confinements.

Algorithm 1.

Capabilities. An agent can create, destroy or migrate a locality if it owns its
associated capability. Capabilities serve to describe the extent of an agent’s influ-
ence. To exert influence on locations outside its scope, an agent must proxy its
requests through an external agent that controls the target scope. For example, a
probe within a tenant’s virtual machine may ask an agent within the underlying
cloud provider for an isolated VC, which then changes the VC to C mappings.

Communication. Communication within SafeHaven is carried out using
Erlang’s message passing facilities. Processes can only message others that share
a token (a magic cookie [16]) that serves as a communication capability.

Confinement Discovery. The view of an arbitrary agent within a cloud is
generally limited to its immediate environment and that of other agents with
which it is co-operating. For example, a tenant’s agents will be restricted to the
processes and structures of their OS environment. Similarly, the cloud provider
views VMs as black boxes. Knowledge of their internal structures is limited to
what is exposed by the tenants’ agents, bar the use of introspection or disassem-
bly mechanisms.

To facilitate the creation of dynamic policies, SafeHaven provides a series of
reconnaissance (or recon) functions that query the underlying system at runtime
and build a partial model of the infrastructure, translating it into a graph of first-
class Erlang objects. Algorithm 1 demonstrates an agent’s use of SafeHaven’s
recon functions. Handles to the system’s running processes (Line 1) and available
CPU cores (Line 2) are loaded into lists of locality structures that can be
manipulated programmatically. This example describes a simple property that
partitions processes to different Cs based on their user ID (Lines 5–9). The
procedure for pinning (or migrating) processes (Line 10) will be described in the
next section.
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4.2 Migrating Confinements

An agent’s core isolation operator is migration. Agents perform both objec-
tive and subjective moves [11], as they can migrate confinements to which they
belong as well as external confinements. The following section describes methods
with which one can migrate system structures, namely VCPUs, process groups,
processes, containers and virtual machines.

Virtual CPUs (VC). Virtual CPUs in KVM [2] can be pinned to different sets
of CPUs by means of a mask, set through libvirt [3]. VCs can only be migrated
to cores to which the parent VM has been assigned.

Process/Control Groups (PE). Pinning processes to CPUs via affinities has a
drawback in that unprivileged processes can change their own mappings at will,
subverting their confinement. Instead, control groups (managed via cpusets)
[27] are used to define a hierarchy of C partitions. Assigning processes to a par-
tition confines their execution to that C group, which cannot be exited through
sched setaffinity. All processes are initially placed within a default root con-
trol group. Control groups can be created, remapped or destroyed dynamically.
Destroying a group will not automatically kill its constituent processes, rather
they will revert to that group’s parent.

Processes and Containers (P, Con). Process migration moves a process from
one PE to another, using mechanisms that vary based on the level at which
the control groups are co-located. Arbitrary processes can be moved directly
amongst PE groups within the same OS using cpusets, which is fast and can
be performed in bulk. Conversely, if the target PE exists within a different OS,
additional mechanisms must be used to translate the process’ data structures
across system boundaries. In SafeHaven, this is handled using criu [1], which
enables process checkpoint and restore from within user-space. Recent versions of
the Linux kernel (3.11 onwards) have built-in support for the constructs required
by criu. Migration preserves a process’ PE containment structure.

Cross-OS process migration comes with some limitations. Trivially, processes
that are critical to their parent OS cannot be migrated away. Other restrictions
stem from a process’ use of shared resources. For instance, the use of interprocess
communication may result in unsafe migrations, as the process will be discon-
nected from its endpoints. Similarly, a process cannot be migrated if it would
cause a conflict at the destination, such as in the case of overlapping process
IDs or changing directory structures. This problem is addressed by launching a
process with its own namespaces, or more generally, by using a container such as
LXC or Docker [1]. Live migration for LXC containers is still under active devel-
opment. An alternative stop-gap measure is to perform checkpoint and restore,
transferring the frozen image in a separate step [37].

Virtual Machines (VM). SafeHaven uses KVM for virtualisation, managed
via libvirt. In the case of a cloud infrastructure, the provider’s agents exist within
the base OS, running alongside a tenant’s VM. The framework can easily be
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retargeted to Xen-like architectures, with hypervisor-level agents residing within
dom0. The choice of hypervisor largely determines what type of instrumentation
can be made available to probes.

Similarly to process migration, VMs can be migrated locally (changing C
pinnings) using PE groups, or at the global level (changing OS). The latter
is performed using live migration , backed by a Network File System (NFS)
server storing VM images. Recently, experimental patches have been released
that enable post-copy migration through libvirt, which also requires patching the
kernel and QEMU1. Using post-copy migration, a virtual machine is immediately
migrated to its destination, and pages are retrieved from the original machine on
demand. The drawback of post-copy migration is that a network failure can cor-
rupt the VM, as its state is split across machines. Hybrid migration reduces this
risk by initially using standard pre-copy and switching to post-copy migration if
the system determines that the transfer will not converge, which would happen
when memory pages are being modified faster than they can be transferred.

Other Operations. In addition to being migrated, VM, P and Con isola-
tions can be paused in memory, which can serve as a temporary compromise in
cases where an imminent threat cannot be mitigated quickly enough through
migration.

4.3 Allocation

To determine a destination for a confinement that must be migrated, an agent
broadcasts an isolation request to its known agents. If one of these agents finds
that it can serve the request whilst maintaining its existent isolation commit-
ments, it authorises the migration. The problem of placement is equivalent to
the bin-packing problem [7], and a greedy allocation policy will not produce an
optimal allocation. Nevertheless, our scheme is sufficiently general so as to allow
different allocation strategies. For example, targets can be prioritised based on
their physical distance. Prioritisation can also be used in hybrid infrastructures,
where certain targets may be more effective at breaking specific types of co-
locations than others. For example, a cloud provider can opt to mix in a number
of machines with various hardware confinements and lease them on demand.

5 Case Studies

The previous section detailed the architecture of SafeHaven and the migra-
tion techniques it employs. The following section describes the application and
evaluation of these methods in the context of illicit-channel mitigation. All exper-
iments were carried out on two Intel i7-4790 machines (4 cores × 2 hardware
threads) with 8 GB RAM. VMs were allocated 2 VCs and 2 GB of RAM, and
had 40 GB images. A third computer acted as an NFS server hosting the virtual

1 https://git.cs.umu.se/cklein/libvirt.

https://git.cs.umu.se/cklein/libvirt
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machines’ images (average measured sequential speeds: 54 MB/s read, 70 MB/s
write), and all machines were connected together via a consumer-grade gigabit
switch. VMs were connected to the network through a bridged interface. All sys-
tems were running Ubuntu 14.04 LTS with the 3.19.0-rc2+ kernel and libvirtd
version 1.2.11, patched to enable post-copy support (Sect. 4.2).

5.1 Case 1: System-Wide Covert Channel

The following section describes the use of SafeHaven as an active countermea-
sure to thwart a system-wide covert-channel.

Overview. Wu et al. [40] demonstrated that performing an atomic operation
spanning across a misaligned memory boundary will lock the memory bus of
certain architectures, inducing a system-wide slowdown in memory access times.
This effect was then used to implement a cross-VM covert channel.

Detection. Detecting the channel’s reader process is difficult, as it mostly per-
forms low-key memory and timing operations, and would execute in a co-located
VM, placing it outside the victim tenant’s scope. Conversely, writer processes
are relatively conspicuous, in that they perform memory operations that are
atomic and misaligned. Atomic instructions are used in very restricted contexts,
and compilers generally align a program’s memory locations to the architec-
ture’s native width. Having both simultaneously can thus be taken as a strong
indication that a program is misbehaving.

Although an attack can be detected by replicating a reader process, a much
more direct, precise and efficient method is to use hardware event counters [21]
to measure the occurrence of misaligned atomic accesses. Recent versions of
KVM virtualise a system’s performance monitoring unit, allowing VMs to count
events within their domain [15]. One limitation of hardware counters is that
their implementation is not uniform across vendors, complicating their use in
heterogeneous systems. In addition, while event counters are confined to their
VM and can only be used by privileged users, one must ensure that they do not
themselves enable attacks (for instance, by exposing a high resolution timer).

Policy. Algorithm 2 outlines the behaviour of the agents participating in the
mitigation. Each agent takes two arguments, namely the isolation that they are
monitoring and a list of additional cooperating agents. When a probe detects
that a process P is emitting events at a rate exceeding a threshold ε, it notifies its
local agent. If the environment is not already isolated, then the agent attempts
to locate an isolated resource amongst its own existing tenants. Failing this,
the cloud provider is co-opted into finding an isolated machine and resolving
the request at the virtual machine level. If a process is mobile, then the cloud
provider can opt to create a new isolated VM to which the process can be
migrated, rather than migrating the source machine.



92 K. Falzon and E. Bodden

Algorithm 2.

The degree of isolation required is regulated by the isolD(X) predicate,
which checks whether X is isolated within D. Evaluating this accurately from
within the tenant’s scope requires additional information from the cloud agent
regarding its neighbours. The strictest interpretation of isolation would be to
allocate a physical machine to each VM requesting isolation. Another approach
is to stratify isolation into different classes determined by user access lists [12],
or to only allow a tenant’s isolated VMs to be co-located with each other.

If an isolated destination cannot be found immediately, then soft isolation
must be used as a fallback strategy. Note that soft isolation only has to disrupt
the channel until hard isolation is achieved. For example, rather than migrating
the locality requesting isolation, one can evict its co-residents, applying soft iso-
lation during their eviction. A simple, general but intrusive method would be to
pause the process until isolation is obtained. This should be reserved for creating
temporary isolations during fast migration operations. A more targeted mitiga-
tion may attempt to degrade the attacker’s signal-to-noise ratio by flooding the
memory bus with its own misaligned atomic memory accesses. Finally, one may
deploy a system such as BusMonitor [35] on a number of machines and migrate
VMs requesting isolation to them. The problem with the latter solutions is that
they must be changed with each discovered attack, whereas a migration-based
approach would only require a change in the detector.

Implementation and Evaluation. The policy was implemented in Safe-
Haven as a network of Erlang server processes, with the detector running as a
separate process and taking two parameters, namely (i) a set of system processes→
P to be scanned, and (ii) a duration τ within which the scan must be performed.
Hardware counters were accessed using the Performance Application Program-
ming Interface (PAPI) [29] library, with calls proxied through an Erlang mod-
ule using Native Implemented Functions (NIF) [16]. The test machines exposed
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Fig. 2. Detector overhead and reaction times.

a native event type that counts misaligned atomic accesses (LOCK CYCLES:
SPLIT LOCK UC LOCK DURATION [21]). Conversely, another machine to
which we had access, namely an AMD Phenom II X6, was found to lack such a
combined event type. In this case, one would have to measure misaligned accesses
and atomic operations independently, which can lead to more false positives.

The procedure for measuring a process’ event emission rate is to attach a
counter to it, sleep for a sample time φ, and read the number of events generated
over that period of time. This is repeated for each process in

→
P. The choice of

φ will affect the detector’s duty cycle. Setting φ = τ/|→P| guarantees that each
process will have been sampled once within each τ period, but the sampling
window will become narrower as the number of processes increases, raising the
frequency of library calls and consequently CPU usage. Setting a fixed φ produces
an even CPU usage, but leads to an unbounded reaction time.

We tested our hypothesis regarding the infrequency of misaligned atomic
accesses by sampling each process in a virtualised and non-virtualised environ-
ment over a minute during normal execution. Most processes produced no events
of the type under consideration, with the exception of certain graphical appli-
cations such as VNC, which produced spikes on the order of a few hundreds per
second during use. We then measured the emission rate of the attack’s sender
process using the reference implementation of Wu et al. [40], compiled with its
defaults. This was found to emit ≈ 1.4 × 106 events per second in both environ-
ments, with attacks for 64-byte transmissions lasting 6 ± 2 s.

Figure 2a shows the detector’s CPU usage (measured directly using top)
against varying φ on shifting the detector’s logic into a compiled C probe and
enumerating processes directly from /proc/. To fully encompass the detector’s
overhead, we pinned the virtual machine to a single VCPU. At φ = 10 ms, over-
head peaked at a measured 0.3 %. This was confirmed by executing the CPU-
intensive blackscholes computation from the PARSEC benchmark suite [8] in
parallel with the detector, and observing a speed-up proportional to φ. Figure 2b
describes how reaction time varied against the number of processes being moni-
tored, where reaction time was measured as the time elapsed between the start of
an attack and its detection. The reaction time was measured for 133 ≤ |→P| ≤ 200.
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Fig. 3. Comparison of pre-copy, hybrid and post-copy migration.

The size of
→
P was raised by spawning additional processes that periodically wrote

to an array. The attack was started at random points in time.

Mitigation. Once a potential attack is detected, it must be isolated. The per-
formance of process migration will be discussed in further detail in Sect. 5.2. For
now, we will focus on the different modes of VM migration.

Table 1. Summary of detection and mitigation times (s).

Phase Parameters Min Max Geometric mean Arithmetic mean

Detect τ = 1 s 0.0148 3.16 0.54 0.72

τ = 2.5 s 0.0272 2.69 1.20 1.46

Migrate Post-copy 1.2813 2.13 1.47 1.48

Detect & Post-copy & τ = 1 s 1.296 5.29 2.01 2.20

Migrate Post-copy & τ = 2.5 1.309 4.82 2.67 2.93

Figure 3 illustrates the worst case times taken to perform a single VM live
migration using pre-copy, hybrid and post-copy while it executed various work-
loads from the PARSEC suite. Migrations were triggered at random points
during the benchmark’s execution, with 6 readings per benchmark and migra-
tion mode. The host machines were left idle to reduce additional noise. Solid bars
represent the time taken for the VM to resume execution at the target machine,
and the shaded area denotes the time spent copying over the remainder of the
VM’s memory pages after it has been moved.

Pre-copy’s performance was significantly affected by the workload being exe-
cuted, with canneal never converging. Hybrid migration fared better as it always
converged and generated less traffic. Post-copy exhibited the most consistent
behaviour, both in terms of migration time as well as generated traffic. During the
course of our experiments, we found that attempting to start a migration imme-
diately in post-copy mode would occasionally trigger a race condition. This was
remedied by adding a one second delay before switching to post-copy. Neverthe-
less, VMs migrated using post-copy resumed execution at the target in at most
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2.13 s, and 1.51 s on average, which includes the delay. Total migration time and
data transferred were also consistently low, averaging 20 s and 2 GB, respectively.

Table 1 summarises the results. Based on the detector’s reaction times and
post-copy’s switching time, and assuming that a target machine has already been
identified, a channel can be mitigated in around 1.3 s under ideal conditions, 5.3 s
in the worst case, and in just under 3 s on average.

Conclusion. We have shown how hardware event counters can be used to detect
an attack efficiently, quickly and precisely, and how post-copy migration con-
siderably narrows an attack’s time window. Additional improvements can be
obtained by integrating event counting with the scheduling policy, where the
event monitor’s targets are changed on context switching. This would eliminate
the need to sweep through processes and avoids missing events.

5.2 Case 2: Moving Target Defence

The following describes the use of SafeHaven in implementing a passive and
preventive mitigation, specifically, a moving target defence.

Overview. The moving target defence [46] is based on the premise that an
attacker co-located with a victim within a confinement D requires a minimum
amount of time α(D) to set up and perform its attack. Attacks can thus be
foiled by limiting continuous co-location with every other process to at most
α(D). The defence is notable in that it does not attempt to identify a specific
attacker, being driven entirely on the basis of co-location.

Policy. Algorithm 3 describes the moving target defence as a generalisation of
the formulation given by Zhang et al. [46]. The policy assumes the existence of
three predicates, namely: (i) H(T), the time required to migrate a locality of type
T, (ii) α(D), the time required to attack a process through D, and (iii) τ(P), the
duration for which a supplied predicate P holds. The following section attempts
to establish practical approximations for the aforementioned predicates.

Algorithm 3.

Defining H ().H() must be able to predict the cost of a future migration. In
addition, H() varies based on the destination of a migration, thus requiring that
the predicate be refined. We estimate the next value of H() using an exponential
average [36], expressed as the following recurrence relation:

Hn+1(T � D) = hηn(T � D) + (1 − h)Hn(T � D)

where ηn() is the measured duration of a migration, and 0 ≤ h ≤ 1 biases
predictions towards historical or current migration times. We take h = 0.5.
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Defining α(). A precise predicate for α() is difficult to define, as it would
require a complete characterisation of the potential attacks that a system can
face, with knowledge of the state of the art at most bounding the predicate. In
the absence of a perfect model, we adopt a pragmatic approach, whereby the
duration of co-locations (and, by association, the migration rate) is determined
by the overhead that a tenant will bear, as this is ultimately the limiting factor.

Defining τ ( ⇐⇒ ). A tenant can determine the co-location times for processes
within its domain, but is otherwise oblivious to other tenants’ processes. In the
absence of additional isolation guarantees from the cloud provider, τ( ⇐⇒ ) must
be taken as the total time spent at a location, timed from the point of entry.

Propagating Resets. The hierarchical nature of confinements can be lever-
aged to improve the moving target defence. Migrations at higher levels will
break co-locations in their constituents. Thus, following a migration, an agent
can propagate a directive to its sub-localities, resetting their τ( ⇐⇒ ) predicates.
Propagation must be selective. For example, while process migration to another
machine will break locality at the OS and C level, VM migration only breaks
cache and machine-wide locality, and leaves the OS hierarchy intact. Similarly,
a lower locality can request isolation from a higher-level parent to trigger a bulk
migration action, which can resolve multiple lower-level migration deadlines.

Implementation and Evaluation. Similarly to the previous case study, a
two-tiered system of agents is used. Agents are given a set of distinct locations
which are guaranteed to be disjoint, which is necessary for the mitigation to
work, as otherwise migrations would not break co-location.

Table 2. Migration times for different isolation types and paths (ms).

Table 2 lists the migration times measured when migrating containers and
VMs through each migration path (paths 1–7 in Fig. 1b) whilst executing var-
ious benchmarks from PARSEC, with the hosts being otherwise idle. Given
its consistent behaviour, we only considered post-copy migration when mov-
ing VMs. The timings for Con migration were broken down into its phases.
To keep Con migration independent from the cloud provider, container images
were transferred to their target using rsync. This was by far the dominant factor
in Con migration times, and can largely be eliminated through shared storage.
The initial value of H0() for each path was derived from the geometric mean of
the migration times.
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Fig. 4. Predictions of H() against measured migration times.

We evaluated the relationship between performance and migration frequency
on the system running at capacity. On the first machine, three VMs were
assigned benchmarks to execute. A fourth was set as a migrating tenant, running
each benchmark listed in Table 2. A fifth VMs for cross-VM process migration,
and was kept idle. The second machine ws configured with three tenants run-
ning benchmarks and two idle VMs. Table 3 in Appendix A lists the geometric
means of the benchmarks’ running times, with the All column denoting the time
required for all of the migrating tenant’s benchmarks to complete. Figure 4 shows
the predicted and actual migration times for the first migration operations, using
the H0() values derived previously. Network effects and thrashing on the NFS
server introduced a significant degree of variability. In summary, we found that
migration operations generally had no discernible effect on the neighbouring
tenants, although we posit that this would not hold for oversubscribed systems.
Migrations at the C and VC level had no significant effect on performance. Con
and VM migration did not appear to affect neighbouring tenants, but clearly
affected their own execution. Migrating the VM every 30 s more than doubled
its benchmark’s running time (note that at this migration frequency, the VM
was involved in a migration operation for two-thirds of its running time).

Conclusion. We have investigated the core components of a multi-level mov-
ing target defence, and examined the cost of migration at each level. Lower-level
migrations can be performed at high frequency, but break the fewest co-locations,
whereas the opposite holds at higher levels. Restricting the moving target defence
to a single level limits its ability to break co-location. For example, while VM
migration will break co-locations with other tenants, it cannot break the OS-
level co-locations formed within it. Process and container migration can break
co-location through every level, yet offline migration results in a significant down-
time, rendering its application to a moving target defence limited. The advent
of live process migration will thus help in making this mitigation pathway more
viable.
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5.3 Other Policies

HomeAlone. HomeAlone [43] uses a Prime-Probe attack to monitor cache
utilisation, and a trained classifier to recognize patterns indicative of shared
locality. This can be used to implement a hypervisor-independent version of the
isol() predicate described in Sect. 5.1, or to detect adversarial behaviour.

Network Isolation. Networks can harbour illicit channels [9,10]. Isolation at
this level can be achieved via a combination of soft and hard isolation, with
trusted machines sharing network segments and traffic normalisers [17] monitor-
ing communication at the edges.

6 Conclusion

In this work, we examined the use of migration, in its many forms, to dynami-
cally reconfigure a system at runtime. Through the SafeHaven framework, we
described and evaluated the use of migration to implement an efficient and timely
mitigation against a system-wide covert-channel attack. We also demonstrated
how a moving target defence can be enhanced by considering multiple levels and
granularities of isolation, examining the costs associated with migrating entities
at each level, and showing how performance and granularity are correlated.

A Appendix: Migration Frequency and Performance

Table 3. Effect of migration frequency on performance when running at capacity.
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Abstract. To what extent do investments in secure software engineer-
ing pay off? Right now, many development companies are trying to
answer this important question. A change to a secure development lifecy-
cle can pay off if it decreases significantly the time, and therefore the cost
required to find, fix and address security vulnerabilities. But what are
the factors involved and what influence do they have? This paper reports
about a qualitative study conducted at SAP to identify the factors that
impact the vulnerability fix time. The study involves interviews with 12
security experts. Through these interviews, we identified 65 factors that
fall into classes which include, beside the vulnerabilities characteristics,
the structure of the software involved, the diversity of the used tech-
nologies, the smoothness of the communication and collaboration, the
availability and quality of information and documentation, the expertise
and knowledge of developers, and the quality of the code analysis tools.
These results will be an input to a planned quantitative study to evalu-
ate and predict how changes to the secure software development lifecycle
will likely impact the effort to fix security vulnerabilities.

Keywords: Human factors · Secure software · Vulnerability fix time

1 Introduction

Despite heavy investments into software security [1], security experts and attack-
ers continue to discover code vulnerabilities in software systems on a regu-
lar basis, including buffer overflows, SQL injections, and unauthorized proce-
dure calls. While some attack vectors relate to mis-designed software architec-
tures, many exploit code-level vulnerabilities in the application code [2]. Major
software-development companies, including SAP, embed in their development
process activities (e.g., dynamic and static security testing [3]) to identify vul-
nerabilities early during the development of their software system. Nevertheless,
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their security development lifecycle (see, e.g., [4] for Microsoft’s security devel-
opment lifecycle) includes also a process for addressing vulnerabilities identified
after the software is released.

Analyzing and fixing security vulnerabilities is a costly undertaking. Surely
it impacts a software’s time to market and increases its overall development
and maintenance cost. But by how much? To answer this question directly, one
would need to trace all the effort of the different actions that the developers
undertake to address a security issue: initial triage, communication, implemen-
tation, verification, porting, deployment and validation of a fix. Unfortunately,
such a direct accountability of the individual efforts associated with these action
items is impossible to achieve, last but not least due to legal constraints that for-
bid any monitoring of the workforce. One must therefore opt for indirect means
to relate quantitative, measurable data, such as the vulnerability type, the chan-
nel through which it was reported, or the component in which it resides, to soft
human factors that correlate with the time it takes to fix the related vulnerabil-
ities. But, which factors impact this fixing effort positively or negatively?

This paper aims to identify the factors that impact the vulnerability fix
time in SAP software. (We use vulnerability fix time and vulnerability fix effort
interchangeably.) For this work we interviewed 12 experts who contribute to
addressing security vulnerabilities at SAP, one of the largest software vendors
worldwide, and the largest in Germany. The study comprises teams located in
different countries, developing diversified products. The work led to the discov-
ery of 65 factors impacting the vulnerabilities fix time, which we classified into
8 categories. The factors could be used to estimate the required effort to fix
vulnerabilities and to improve the secure development activities.

This paper is organized as follows. First, we give an overview of related work
(Sect. 2) and discuss secure software development at SAP (Sect. 3). Next, we
describe the research approach that we use in this work (Sect. 4), report about
our findings (Sect. 5) and discuss the impact and the limitations of the study
(Sect. 6). Subsequently, we discuss some of the lessons we learned from the study
(Sect. 7) and conclude in Sect. 8.

2 Related Work

Several pieces of research investigate the time it takes to fix software defects [5,6].
For instance, Hewett and Kijsanayothin applied machine-learning algorithms to
defect data collected from the development of a large medical-record system
to predict the duration between the time of identification of the defect and the
validation of the appropriate fix [6].1 Opposed to this previous work, we (1) focus
on security vulnerabilities, not functionality errors, and (2) include in our model
“human factors” such as organizational issues that cannot directly be derived
from automatically collected data. In this work, as a first step, we determine the
relevant factors.
1 Among other things, the duration includes the time the defect is in the repair queue

after being assigned to a developer.
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Table 1. Examples of time required for fixing vulnerabilities [7].

Vulnerability type Average fix time (min)

Dead code (unused methods) 2.6

Lack of authorization check 6.9

Unsafe threading 8.5

XSS (stored) 9.6

SQL injection 97.5

Software defects have been found to be correlated with software complex-
ity [8], which is measured, e.g., using the size of the code and the density of its
control instructions. There is a general hypothesis that software complexity is
also correlated with the existence of vulnerabilities e.g., [2]. This hypothesis is
often false. For example, Shin et al. [9] and Chowdhury et al. [10] found that the
complexity metrics of open-source software such as Firefox only weakly corre-
late with the existence of vulnerabilities in those systems. Thus, the factors (e.g.,
code complexity) that apply to software-defects based models do not necessarily
apply to vulnerabilities based models.

The only work we know that evaluates vulnerability fix time was performed
by Cornell, who measured the time the developers spent fixing security vulnera-
bilities in 14 applications [7]. Table 1 shows the average time the developers take
to fix vulnerabilities for several vulnerability types. The measured time comprises
only the fix-execution phase, which includes the environment setup, implemen-
tation, validation, and deployment of the fix. Cornell found that the percentage
of this time spent on the implementation of the fix is only between 29 % and
37 % of the time spent in the execution phase. The author was unable to mea-
sure the time spent on the inception (including risk assessment) and planning
phases because the collected data were too inconclusive. Cornell found also that
there are vulnerability types that are easy to fix, such as dead code, vulnerabil-
ity types that require applying prepared solutions, such as lack of authorization,
and vulnerability types that, although simple conceptually, may require a long
time to fix for complex cases, such as SQL injection.

The vulnerability type is thus one of the factors that indicate the vulner-
ability fix time but is certainly not the only one. This paper aims to identify
as many factors as possible that will likely impact the vulnerability fix time,
factors that could be collected automatically but also factors that can only be
inferred indirectly by observing how human analysts and developers go about
fixing vulnerabilities.

3 Secure Software Development at SAP

SAP has a very diverse product portfolio: for example, a SAP product might
be a small mobile application or an enterprise resource planning (ERP) system.
Similarly, a large number of different programming languages and frameworks
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Fig. 1. High-level overview of the SAP security development lifecycle (S2DL)

are used during their development and many different environments (e.g., web
browsers, operating systems) are supported. Moreover, SAP develops also frame-
works, such as SAP Netweaver, that are both offered to customers and used
to build other SAP products. Finally, SAP product portfolio ranges from on-
premise products to cloud offerings (including private clouds, public clouds, and
hybrid clouds).

To ensure a secure software development, SAP follows the SAP Security
Development Lifecycle (S2DL). Figure 1 illustrates the main steps in this process
which is split into four phases: preparation, development, transition, and utiliza-
tion. For our work, the second half of the S2DL is important:

– during the actual software development (in the steps secure development and
security testing) vulnerabilities are detected, e.g., by using static and dynamic
application security testing tools [3,11];

– security validation is an independent quality control that acts as “first cus-
tomer” during the transition from software development to release, i.e., secu-
rity validation finds vulnerabilities after the code freeze, (called correction
close) and the actual release;

– security response handles vulnerabilities reported after the release of the prod-
uct, e.g., by external security researchers or customers.

To allow the necessary flexibility to adapt this process to the various applica-
tion types developed by SAP as well as the different software development styles
and cultural differences in a worldwide distributed organisation, SAP follows a
two-staged security expert model:

1. a central security team defines the security global processes (such as the
S2DL), provides security trainings, risk identification methods, offers security
testing tools, or defines and implements the security response process;

2. local security experts in each development area/team are supporting the
developers, architects, and product owners in implementing the S2DL and
its supporting processes.

If a vulnerability is detected, developers and their local security experts follow
a four step process: (1) analyze the vulnerability, (2) design or select a recom-
mended solution, (3) implement and test a fix, and (4) validate and release this
fix. In the security testing process, a security expert is expected to inspect the
analysis results of any utilized testing tool and determine for each of the reported
findings whether it is exploitable, and consequently requires fixing. The vulnera-
bility then gets assigned to a developer who implements the suggested solution.
The fix is verified by a retest of the code with the same testing rules. The fix is
considered to be successful when the test passes.



106 L. ben Othmane et al.

While this process is the same, regardless if the vulnerability is in released
code or current development code, certain administrative steps exist prior to
the first step but the steps necessary to release a fix and the involved parties
differ. For vulnerabilities in not yet released code, the process is locally defined
by the development team and, usually, very lightweight. For vulnerabilities in
released software, the security response team, developers and security experts
are mainly involved in the first three fixing phases and the maintenance team
(called IMS) is mainly involved in the last phase. Fixes of released code are
reviewed and validated by the central security team. These fixes are shipped in
security notes or support packages for customers to download. Security notes are
patches included in support packages. Support packages are functional updates
that also contain the latest security notes.

4 Research Approach

We conducted a qualitative case study to identify the factors that impact the vul-
nerability fix time for vulnerabilities reported to or within SAP. A case study is
an empirical inquiry that investigates a phenomenon in its real-life context [12].
This study uses expert interviews as data source; that is, interview of secu-
rity experts, coordinators, and developers who contribute to fixing vulnerabili-
ties. The aim of the interviews is to use the experiences of the interviewees to
identify the factors that impact the time they spend in contributing to fixing
vulnerabilities.

(2) Select the 
participants

(1) Prepare the 
questions

(3) Conduct of the 
Interviews

(4) Transcribe the 
interviews

(5) Code the 
interviews

(6) Consolidate 
the data

(7) Analyze the 
results

Preparation of 
the study

Data collection 

Data analysis

Fig. 2. The steps of the case study.
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Figure 2 depicts the study process. It has three phases: study preparation,
data collection, and data analysis. The description of the three phases follows.

Preparation of the Study. Initially we reviewed a set of documents that
describe the processes of fixing vulnerabilities and discussed these processes with
SAP security experts. We used the knowledge to develop a set of interview ques-
tions. Then, we met three security experts in pre-interviews to learn the fixing
process further and to check the questions that we developed. We summarized
the questions (Step 1 of Fig. 2) in an interview protocol. An interview proto-
col describes the procedural and the main questions that should be used in the
interviews [13]. We choose semi-structured questions, which allowed us to cap-
ture similar type of data (e.g., roles, pinpoints, and recommendations) across all
the interviews while being flexible to explore reported content.

Fixing vulnerabilities at SAP requires collaboration of people having different
roles, who could be located in different cities and countries. We considered this
contextual factor and invited representatives (Step 2 of Fig. 2) of the different
roles located in several offices to participate in the study. Twelve participants
accepted: nine were from Germany and three were from India. The participants
were NetWeaver experts, application-layer experts, and experts in developing
customer specific applications. Their roles were security experts, developers,
coordinators, and project leads. This method of selecting participants complies
with the maximum-variation-sampling approach [14]–a preferred participants
sampling method.

We scheduled one hour for each interview. We sent the participants the inter-
view protocol so they could prepare for the interview; e.g., prepare examples.

Table 2. Interview questions.

Question Targeted information

1. What is your role in fixing
vulnerabilities?

The role of the participant

2. How do you get the information
about security vulnerabilities? And
what do you do with the
information?

The source of information about
vulnerabilities, the steps performed by
the interviewee in fixing vulnerabilities,
and the tools used by the interviewee to
fix the vulnerabilities

3. What are the worst and best cases
of vulnerabilities you worked on?
And how did do you address them?

The factors that impact the vulnerability fix
time

4. How much time did you spend on
[..]? Why did [it] take that long?

The factors that impact the vulnerability-fix
time

5. How would we improve the way you
work?

The factors that impact the vulnerability-fix
time

Data Collection. We conducted the 11 interviews (Step 3 of Fig. 2) within
one week (One of the interviews was conducted for 2 h with 2 interviewees as
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Table 3. Used coding schema.

Code class Description

Meta The role of the interviewee and their experience with SAP
products and with fixing vulnerabilities

Used tools The tools used in fixing the security vulnerabilities

Process
participants

The roles and teams that the interviewee collaborated with in
fixing the vulnerabilities they worked on

Process activities The activities that the interviewee performs when fixing security
vulnerabilities, which are classified into pre-analysis or risk
assessment, analysis, design, implementation, test, release
activities

Information for
activities

The information used for analysis including risk assessment
analysis, design, implementation, test, and release activities

Factors The factors affecting vulnerability fix time for the case of generic
solutions (a generic solution is a way to address all the
instances of a specific vulnerability type, e.g., XML code
injection) and also the case of specific solutions

Complementary
information

This includes generic comments, comments related to
vulnerability fix time, pain points (issues), and improvement
recommendations

they requested.) and initially used the questions that we prepared in the inter-
view protocol. We let the interviewee lead and we probe issues in depth, when
needed, using questions such as “Could you provide an example?” Nevertheless,
we realized shortly that it was difficult for the interviewee to provide us with the
maximum information related to our research goal. We adapted the questions
of the interview protocol to the ones provided in Table 2. The adaptation is dis-
cussed in Sect. 7. Also, some interviewees provided us with tool demonstrations
since they were aware about the interview protocol.

Next, we transcribed the interviews (Step 4 of Fig. 2) using the tool F4.2

Data Analysis. Subsequently, we proceeded to coding the interviews (Step 5
of Fig. 2); that is, identifying from each transcript the codes, i.e., themes and
abstract concepts (e.g., code the text “I have been fixing these issues for 5 years”
as “experience in fixing vulnerabilities”).3 In this step, two of the authors coded
successively 3 sample interviews using the Atlas.ti tool,4 discussed the code pat-
terns they found, and agreed on a coding schema for the study, which is shown
in Table 3. (The coding schema allows grouping the codes extracted from the
interview in classes that together answer the main research question [14]). Both
researchers coded each of the 11 interviews using the selected coding schema and
2 https://www.audiotranskription.de/english/f4.htm.
3 A code is a short phrase that assigns a summative, essence-capturing, and/or evoca-

tive attribute for a portion of text [15].
4 http://atlasti.com/.

https://www.audiotranskription.de/english/f4.htm
http://atlasti.com/
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merged their reports in summary reports.5 Then, we sent to each interviewee
the summary report of their interview and asked them to verify the report and
answer some clarification questions. The validation helps in obtaining objective
results but was also important to allow the interviewee to remove any infor-
mation they did not want to be processed. We ensured the anonymity of the
interviewees to promote free and open discussions.

Afterwards, we merged the codes of the verified coded reports (Step 6 of
Fig. 2) considering the semantic similarities between the codes extracted from
different transcripts. In addition, we computed the frequency of each code in
the class “Factors,” that is, the number of interviewees mentioning the code.
We were reluctant to generalize the factors because we did not want to bias the
results with the researcher’ opinions.

Thereafter, we presented the findings to the experts and the interviewees
in a public meeting (Step 7 of Fig. 2). We used the frequencies of the codes as
indicators (but not assertive) of the factors’ importance.6

5 Study Results

This section presents the results of the interviews. It discusses the vulnerability-
fixing process identified at SAP and the factors that impact vulnerability-fixing
time along with their classification.

5.1 Vulnerability-Fixing Process

Each interviewee described a set of activities that they perform to fix vulner-
abilities. The activities described by the different interviewees were sometimes
incoherent–Sect. 7 discusses the challenges. However, in many ways the intervie-
wees follow a high-level vulnerability-fixing process, which is depicted by Fig. 3.
The process starts when a security expert gets notified about vulnerabilities,
e.g., from customers and researchers, or when a developer identifies a vulnera-
bility using, e.g., a code-analysis tool. The vulnerability is initially pre-analyzed,
e.g., to assess its exploitability, its risk and the availability of knowledge and
information to fix it. This results in three cases.

Case 1. If the type of the vulnerability is known and documented, the devel-
oper proceeds to analyze the code related to the vulnerability, to design and
implement a solution, and then to test it—using the technique that was used to
identify it.

Case 2. If the vulnerability type is known and documented by the central
security team but the development teams (e.g., cloud applications, mobile appli-
cations, etc.) did not encounter such vulnerability before, this team collaborates

5 The merge involves also discussing coding mismatches related to the difference in
understanding the interviewee.

6 Recall that data extracted from interviews could not be used to derive statistical
assurance of the conclusions since the collected information is descriptive.
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Pre-analysis

Analysis and 
design of a 

generic solution

Analysis and 
design of a team 

solution

Analysis and 
design of a 

specific solution

Test Release

Test

Release

Implemen-
tation

Implemen-
tation

Fig. 3. High-level vulnerability-fixing process (simplified).

with the central security team to analyze the identified vulnerability and design
a solution that applies to the product area as such.

Case 3. If the vulnerability type is not known before, the central security
team collaborates with the experts and developers from the different areas to
develop a generic solution for the vulnerability. A generic solution considers
the different product areas, the different used technologies, and the different
applicable programming languages. In addition, the security experts collaborate
with the framework experts to implement libraries that the developers can use
to avoid the vulnerability in the future, e.g., by using data-validation methods
to avoid SQL injections; and also develop guidelines that the developers can use
to address vulnerabilities of such type.

5.2 Factors that Impact the Vulnerability-Fix Time

We identified 65 factors that impact the vulnerability-fix time, each was reported
by at least one interviewee. We categorized the factors based on common themes,
and those that did not belong to these themes into the category “other.” These
categories may be generalized or consolidated further, however, we expect that
such activity may be influenced by the researchers’ opinions. Table 4 lists the
categories, along with the number of factors that belong to each category and
the number of interviewees who mentioned one or many of these factors. Table 6
of Appendix A provides the complete list of the factors that we identified.
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Table 4. Classification of the factors that impact the vulnerability fix time.

Factor Categories Number Frequency

of factors

Vulnerabilities characteristics 6 9

Software structure 19 10

Technology diversification 3 5

Communication and collaboration 7 8

Availability and quality of information and documentation 9 9

Experience and knowledge 12 11

Code analysis tool 4 4

Other 4 4

We next discuss the categories in details. To preserve the anonymity of the
interviewees we identify them using identifiers, without descriptive information.

Vulnerabilities Characteristics. This category includes 6 factors that are
exclusively related to the type of vulnerability. These factors are reported in 9
(about 82 % of the) interviews. For example, P01 believes that vulnerability types
do not indicate the fixing time but later in the interview they find that “code
injection” vulnerabilities are difficult to fix. Thus, vulnerability characteristics
are commonly considered when discussing vulnerability fix time (e.g.,in [7]) and
our results enforce the position.

Software Structure. This category includes 19 factors that are related to the
code associated with the given vulnerability. These factors are reported in 10
(about 91 % of the) interviews. For example, P02 finds that “if the function
module is the same in all these 12 or 20 releases then [..] I just have to do one
correction.” Generally, the interviewees find that software structure impacts the
easiness to address vulnerabilities. This can also be observed from Table 1, where
SQL injection vulnerability takes the most time to fix while it is conceptually
easy to fix. The reason is that the complexity of the code that generates the
query makes it difficult to identify the cause of the vulnerability and to fix the
issue while not breaking the functional tests.

Technology Diversification. This category includes 3 factors that are related
to the technologies and libraries supported by the components associated with
the given vulnerability. These factors are reported in 5 (about 45 % of the)
interviews. For example, P03 had to develop several solutions for a vulnerability
related to random-number generation, “one for Java, one for ABAP, one for C,
C++.” Thus, since SAP products support different browsers, languages, and use
diverse libraries, such as XML parsers, vulnerability fixes need to support these
technologies as well, increasing the overall time and effort required.

Communication and Collaboration. This category includes 7 factors that
are related to the communication and collaboration in fixing vulnerabilities.
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These factors are reported in 8 (about 73 % of the) interviews. For example,
P04 finds that “even for one team there are multiple locations and multiple
responsibilities and the team at [..] is not aware” and finds that “the local teams
are very smooth.” Developing software at SAP involves teams located in different
locations. Thus, the smoothness of the communication and collaboration between
the stakeholders impacts the time spent to fix the vulnerabilities.

Availability and Quality of Information and Documentation. This cat-
egory includes 9 factors that are related to the availability and the quality of
information (e.g., contact information of the security experts, and uses of com-
ponents) and guidelines to address vulnerabilities. These factors are reported
in 9 (in 82 % of the) interviews. For example, P05 claims that a lot of time is
spent on collecting information. They state:“it was taking a long time because
we need to find out what are the different frameworks, what are the different
applications [..] and once we had this information, we were able to use it.”

Experience and Knowledge. This category includes 12 factors that are
related to the experience and knowledge about the given vulnerability and the
related code. It is reported in all the interviews. For example, P01 finds that
“colleagues who have some background in security are able to fix them faster
than the developer who is fixing the security issues for maybe the first or second
time.” This category of factors is often ignored in existing studies because those
studies rely on data archives which do not include such human factors.

Code Analysis Tool. This category includes 4 factors that are related to the
use of code analysis tools. This category of factors is reported in 4 (36 % of the)
interviews. P13 for example says “what you are doing is to find out if the tool
was not able to find out where is the source, where is the data coming from so
find out if there is external input in this where clause or in parts of external
inputs.” This implies that developers spend less time to fix a given vulnerability
if the tool is accurate in providing the information related to the causes of
the vulnerabilities. This category of factors is often neglected because it is not
common that organizations use several code-analysis tools, so their impact on
the fixing time cannot be compared.

Other. This category includes 4 factors that we were not able to classify in the
above 7 categories and which do not belong to a common theme. These factors
are reported in 4 (36 % of the) interviews.

We note that the number of factors that belong to a given category does not
assert the importance of this category but could be informative. The reason is
that the descriptive nature of the interviews does not support such assertion.

5.3 Discussion

When developing the factor categories, we did not differentiate the factors based
on whether the given vulnerability is generic or specific. It is true that generic vul-
nerabilities, i.e., vulnerabilities that are identified for the first time but apply to
several products, are often addressed with generic solutions designed by the cen-
tral security team. Vulnerability analysis, solution design, documentations and
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the provisioning of guidelines are time consuming and addressing such vulner-
abilities may take years. In contrast, specific vulnerabilities, i.e., vulnerabilities
that are known and apply to one product, are mostly addressed by developers in
collaboration with the development team’s security expert. The reason for not
considering this is that most of the factors apply to both generic and specific
vulnerabilities—with some exceptions.

As a second note, the positive or negative influence of each of the identified 65
factors that impact the vulnerability-fix time were not identified in the interviews
and may depend, e.g., on the product. In fact, the developers gave contradicting
perceptions on the influence of some factors, such as the factor risk exposure
level. Also, the number of interviewees who mentioned each of the factors does
not indicate the influence of the factor. We will evaluate the concrete influence
of each factor in the next stage of the project.

6 Impacts and Limitations of the Study

This section discusses the impacts of the study w.r.t the state of the art and the
study validity; that is, to what extent the results are objective and sound [16].

6.1 Impacts of the Study

Previous work used the attributes of collected data as factors for analyzing facts
about vulnerabilities. The results of this work show that in practice there are
numerous factors that impact the vulnerability fix time that should be consid-
ered. A comprehensive model for predicting the vulnerability-fix time should
consider these potential factors and not only rely on the ones that are readily
available in mass-collected data.

The identified vulnerabilities fixing process (Fig. 3) and the 8 factor categories
may be “expected,” especially from a big company like SAP. The study confirms
this expectation; it makes these expectations facts that could be used for fur-
ther work. The 8 factor categories indicate areas for improvement to reduce the
vulnerability fix time. For example, the software structure (e.g., the dynamic
construction of code and data, the cross-stack interdependency) and the use
of external technologies, could be partly monitored and controlled to predict
and/or reduce the vulnerability fix time, and thus, the cost of fixing vulnera-
bilities. In addition, experience and knowledge can be addressed with specific
trainings; effectiveness of code analysis tools could be improved by enhancing
the vulnerability checks, in particular their precision, and by enhancing the tool’
functionalities; issues related to the availability and quality of information and
documentation can also be improved by using easily accessible documentation.

In addition, we found in this study that the developers cannot identify the
vulnerability fixing factors by themselves easily, except e.g., vulnerability type,
which we discuss in Sect. 7. Though, they recognize the factors if extracted from
their interviews. Thus, the results are not “explicit” knowledge to developers.
This paper makes the information common knowledge.
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6.2 Limitations of the Study

We discuss now the limitations of the study according to the commonly used
validity aspects [16].

Construct Validity. We took several measures to ensure a valid relation
between the performed study and the goal of the study. First, we performed
three interview tests to test the interview questions. In addition, we adjusted
the interview questions after the initial interviews to be more efficient in get-
ting information. Second, we collected the information from twelve interviewees,
who are located in different cities/countries and have different roles. Third, we
avoided to use the researcher’ opinions in working with the data, e.g., we avoided
generalizing the factors extracted from the interviews.

The study has two limitations w.r.t. construct validity. First, we provided
the participants with the main interview questions so they could prepare for
their interviews. Thus, some participants may have prepared replies that may
influence the study results. (We believe that the advantages of the measure are
higher than the risk it created to the study.) Second, we used only one method
to collect the data, that is, interview domain experts. Other methods that could
be used to cross-validate the results include to use of data collected from the
development process. Nevertheless, we observed that the attributes of collected
data are among the identified factors.

Internal Validity. We took two measures to ensure a causal relationship
between the study and the results of the analysis. First, we tell the intervie-
wees at the opening of the interviews that the goal is to identify the factors that
impact the vulnerability fix time.7 Second, we did not offer any compensation
to the participants, which, if done, may affect the results.

The study has two limitations w.r.t. internal validity. First, we were able
to only interview two developers who currently fix vulnerabilities. The other
participants have other roles in fixing vulnerabilities but most of them have
developed vulnerability fixes previously.8 Second, we did not take measures to
prevent the participants from imitating each others in the response, though we
believe that the participants did not talk to each other about the interviews.

Conclusion Validity. We took several measures to ensure the ability to draw
correct conclusions about the relationship between the study and the results of
the analysis. First, we sent each interviewee a short report about the data we
extracted from the interview we conducted with them to ensure that we have
a common understanding; that is, we performed member checking [17]. Second,
two researchers coded each interview and we merged the collected data [14]. The
measure should reduce the subjectivity of the results.

External Validity. This validity concerns the conditions to the generalization
of the results. The study was conducted in the same company and was related
to one vulnerability fixing process. However, given the diversity of the products
7 This mitigates the threat ambiguity of the direction of the causality relationship.
8 The limitation is related to the selection of participants.
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Table 5. Summary of the interview protocol.

Opening Thank the interviewee for accepting to participate and request for
permission to record the interview

Questions 1. What are the steps that, in general, you follow to fix security
vulnerabilities?

2. What is the distribution of your time among planning, meeting, and
implementing vulnerability fixes for the last week? Did you have any
other major activity in fixing vulnerabilities?

3. What are the major characteristics of complex vulnerabilities that
you fixed last week? Are there other challenges that make simple
vulnerabilities time consuming?

4. What are the factors that quantify these characteristics?

5. How can we improve and ease the fixing process?

Closing Thank the interviewee for sharing his/her experience and knowledge
and inform him/her about the next steps for the study

(and their respective domains, e.g., mobile, cloud.) being developed at SAP and
the diversity of the developers’ cultures and countries of residences. We believe
that the results of the study could be generalized, especially within SAP, without
high risk.

7 Lessons Learned

This section describes the lessons we learned from the case study with respect to
formulating interview questions, conducting interviews, and analyzing software
development processes of a big software organization.

Interview Protocol and Questions. We produced an interview protocol,
summarized in Table 5. The first interviews showed that the interviewees had,
in general, difficulties in answering questions 3 and 4, initially developed as
main questions to achieve the study goal. This was due to the “what” type
of asked questions (i.e., “what are the factors?”) that require enumeration of
elements while we should be limited to “how” and “why” type of questions.9

To enhance the communication we transformed the questions accordingly (see
question 3 and 4 of Table 2) and encouraged the participants to tell us their
own stories [13] about complicated and easy vulnerabilities they addressed and
the challenges they faced. Thus, with indirect questions we derive the factors
that impact the fix development time from the reasons that make fixing a given
vulnerability complicated, the challenges that the interviewees faced herein, and
their improvement recommendations (question 5 in both tables).

Interview Conduct. We learned that some participants in interviews con-
ducted in organizations mainly participate to deliver a message or impact the
9 “What” type of questions are easy to answer when the purpose is to describe a

concept/object.
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study results. We learned to encourage the participants to talk freely for some
time to build up a trust relationship, since the information they provide when
getting into a flow may be important. The risk herein was the limited interview
time and thereby the challenge to change the discussion smoothly such that
they answer the interview questions and do not use the interview to talk about
subjects not related to the research goal.

Analysis of the Software Development Processes. The intuitive approach
to identify the vulnerability fix time is to define the fixing process and its phases.
Following this approach, our initial attempt was to identify the different roles
of the participants in the process, the activities performed in the phases and
the information created and consumed by each role. We derived inconsistent
models with a big variety of cases. This is due to the different perspectives of
the interviewees; they work with different programming languages and tooling,
have different (and multiple) roles, have expertise in different product areas,
are members of different teams, and use their own internal social network to
simplify the work. In addition, there were process improvements and each of the
interviewees reported about the process versions that they worked with. The
open structure of the interviews and the participation of long time employees
made it difficult to identify a consistent fixing process. Therefore, we focused on
the identification of the factors independent of the phases.

8 Conclusions

This paper reports about a case study we conducted at SAP SE to identify
the factors that impact the vulnerability fix time. The study found that, for
big development organizations such as SAP, there are numerous factors that
impact the vulnerability fix time. We identified 65 factors, which we grouped
into 8 categories: vulnerabilities characteristics, software structure, diversity of
the used technology, communication and collaboration smoothness, availability
and quality of the information and documentation, expertise and knowledge of
developers, efficiency of the static analysis tool, and other.

The study was conducted at one organization, SAP SE, which may limit the
generalization of the results. We believe that the limitation is weak because SAP
development groups simulate different organizations, each has independence and
specificities such as location, used programming language, and products area.

The common approach in investigating vulnerability fix time (and other facts
related to vulnerabilities) is to apply machine-learning techniques on historical
data related to open-source software. This work shows the limitation of this
approach since it is constrained by a limited number of data attributes while the
factors that potentially influence these facts are numerous.

The results of this work are being used to improve the vulnerability fixing
process and to develop a model for predicting the cost of fixing vulnerabilities.

Acknowledgments. This work was supported by SAP SE, the BMBF within EC
SPRIDE, and a Fraunhofer Attract grant. The authors thank the participants in the
study.
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Appendix A: Factors that Impact the Vulnerability Fix
Time
Table 6. Factors that impact the vulnerability fix time. (The column “Freq.” indicates
the number of interviews–out of 11–where the given factor is mentioned.)

Continued on next page
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Table 6. (Continued)
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Abstract. Software security is about building software that will be
secure even when it is attacked. This paper presents results from a survey
evaluating software security practices in software development lifecycles
in 20 public organisations in Norway using the practices and activities
of the Building Security In Maturity Model (BSIMM). The findings sug-
gest that public organisations in Norway excel at Compliance and Policy
activities when developing their own code, but that there is a large poten-
tial for improvement with respect to Metrics, Penetration testing, and
Training of developers in secure software development.

Keywords: Software security · Secure software engineering · Maturity ·
BSIMM

1 Introduction

Society is increasingly dependent on information and communication technology
(ICT). Traditionally, ICT security has primarily been about implementing secu-
rity mechanisms on the system or network level. In recent times, it has become
clear that it is equally important to ensure that all mechanisms of the software
is secure including the code itself, i.e., develop software from scratch so that it
is secure against attack [1]. This is what we call software security.

Numerous guidelines and best-practices exist, which outline processes and
methodologies that can be adopted to achieve better software security. However,
in practice these are only used to a limited extent and the problem of insecure
software is bigger than ever [2]. We argue that organisations learn best by com-
paring themselves to other organisations that tackle similar challenges, rather
than comparing themselves to abstract theoretical models of ideal practices for
software security.

The Building Security In Maturity Model (BSIMM) [3] is a study of real-
world software security initiatives that is organised so that an organisation can
c© Springer International Publishing Switzerland 2015
J. Lopez and C.J. Mitchell (Eds.): ISC 2015, LNCS 9290, pp. 120–138, 2015.
DOI: 10.1007/978-3-319-23318-5 7
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use it to determine where they stand with their software security initiative.
BSIMM provides an overview over the security of software by mapping how it
was built, what kind of activities that were carried out while it was built and
by measuring a number of artefacts that were created when it was developed.
BSIMM can also be used to measure how an organisation’s software security
efforts evolve over time.

The BSIMM study is dominated by large American companies, and the aver-
age number of developers in the studied organisations exceeds 4000. We were
therefore curious to see how applicable the BSIMM activities were to smaller,
non-commercial organisations in Europe, and if we could identify any discrepan-
cies and obvious areas for improvement of the current practices in these organi-
sations.

This paper reports on a software security maturity study in 20 Norwegian
public organisations, based on the BSIMM framework. The organisations that
we have studied are all part of or owned by the government or municipalities in
Norway.

Both on a European and a national level there is a push towards a more effi-
cient public sector through use of eGovernment services. eGovernment consists
mainly of the digital interactions between a citizen and their government (C2G),
between governments and government agencies (G2G) and between government
and citizens (G2C) and between government and businesses/commerce (G2B).
The move towards eGovernment, also means a move towards a more digitalized
society; a society relying heavily on ICT and software-based services to function.
Thus, security becomes a major concern.

The Cyber Security Strategy for Norway [4] describes current and future
security challenges and points to where efforts should be focused in order to meet
those challenges. The strategy, and it’s accompanying action plan, suggests that a
center of competence for information security in the public sector is needed. This
study is part of the work done to collect information and knowledge, needed to
be able to focus the work of this competence center. The study provides valuable
insight, and acts as a benchmark study. The intention is to repeat the study, at
intervals yet to be determined, to assess the effect of efforts to improve software
security in the public sector.

The remainder of this paper is organised as follows: In Sect. 2 we present the
theoretical background for the study, and in Sect. 3 we elaborate on the method
employed. The results are described in Sect. 4, and discussed in Sect. 5. Section 6
concludes the paper and outlines further work. The questionnaire that was used
in the study is presented in AppendixA.

2 Background

There are two well-known maturity models for software security; BSIMM [3] and
OpenSAMM [5]. Both have a common origin, and have many similarities.

BSIMM and OpenSAMM are organised in a similar fashion, and contain
many similar topics and activities. Both divide the software security practices
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into three main areas with twelve practices in total, and place the practices
into three maturity levels. However, their content and fundamental idea differ.
BSIMM is based on real-world data and only includes activities that are done
by real companies. As such it does not aim to tell what activities should be
performed, but rather what activities are actually performed by companies today.
OpenSAMM is not based on real-world data directly, but rather on experience on
what activities will improve software security, and that thus should be performed.
But where BSIMM is based on practices of relatively large organisations that
are in the forefront regarding software security, and may thus be most relevant
for that type of organisations, the description of OpenSAMM clearly states that
it was designed with flexibility in mind, and should thus be useful for any type
of organisation, big or small.

We chose to base our study on BSIMM rather than OpenSAMM for two
reasons: we were more familiar with BSIMM; and BSIMM is a more descriptive
methodology that basically is designed to measure, while OpenSAMM has a
stronger prescriptive focus, i.e., to define “the right way to do it”.

2.1 OpenSAMM

The Software Assurance Maturity Model (SAMM or OpenSAMM) is an open
software security framework divided into four business functions: Governance,
Construction, Verification and Deployment. Each business function is composed
of three security practices, as shown below:

Governance: Strategy & Metrics; Policy & Compliance; Education & Guid-
ance.

Construction: Threat Assessment; Security Requirements; Secure Architec-
ture.

Verification: Design Review; Code Review; Security Testing.
Deployment: Vulnerability Management; Environment Hardening; Opera-

tional Enablement.

Each practice is assessed at a maturity level from 1 to 3 (plus 0 for “no
maturity”), and for each maturity level there is an objective and two activities
that have to be fulfilled to achieve that level.

2.2 BSIMM

The Building Security In Maturity Model (BSIMM) measures which software
security activities are included in an organisation’s overall Secure Software Devel-
opment Lifecycle (SSDL). A central concept in BSIMM is the Software Security
Group (SSG), which is the person (or persons) responsible for software security
in an organisation. The SSG can be as small as a single person, it need not
be a formal role, and need not be a full-time position. In addition, there is the
concept of “the satellite”; a more or less well-defined group of developers who
are not part of the SSG, but still have a special interest in and knowledge of
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software security, and thus can operate as the extended arm of the SSG in many
contexts.

The purpose of BSIMM is to quantify the software security activities per-
formed in real software development projects in real organisations. As these
projects and organisations use different methodologies and different terminol-
ogy, it is necessary to use a framework that allows describing all initiatives in
a unified manner. The BSIMM framework consists of twelve practices organised
into four domains; Governance, Intelligence, SSDL Touchpoints and Deployment
(see Table 1). Each practice has a number of activities on three levels, with level
1 being the lowest maturity and level 3 is the highest. For example, for practice
Strategy and Metrics, SM1.4 is an activity on level 1, SM 2.5 is an activity on
level 2, and SM 3.2 is an activity on level 3.

Table 1. The BSIMM software security framework

Governance Intelligence SSDL touchpoints Deployment

Strategy and
metrics

Attack models Architecture analysis Penetration testing

Compliance and
policy

Security features
and design

Code review Software
environment

Training Standards and
requirements

Security testing Configuration
management and
vulnerability
management

The starting point for the first BSIMM survey in 2008 [3] was to study
the software security activities performed by nine selected companies. The nine
companies were presumably far ahead in software security, and the activities that
were observed here formed the basis of the framework in Table 1. Representatives
from Cigital1 physically visited each company, and these first surveys were done
by Gary McGraw and Sammy Migues personally, using a whole day for each
company.

3 Method

In this work we have performed a survey using a questionnaire with individ-
ual follow-up interviews [6]. The questionnaire (see AppendixA) is based on the
BSIMM software security framework as documented in the BSIMM V report [3].
The main function of BSIMM is to serve as a yardstick to determine where an
organisation stands compared with other organisations [3]. The questionnaire
tells us what activities the organisation has in place, and based on how well
they cover the various practices, we can determine the maturity level of each
1 http://www.cigital.com.

http://www.cigital.com
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organisation. BSIMM contends that a radar chart according to the high water-
mark method (based on three levels per practice) is sufficient to give a rough,
overall picture of maturity. We have chosen to also develop two complementary
maturity measures that can provide a more balanced view of maturity. The three
maturity measures we use are thus:

Conservative maturity (Scale 0–3): Here an organisation is approved at a
maturity level only if all the activities in the level are met (“Yes”), provided
all the activities on the lower level are also fulfilled. If the organisation per-
forms some (but not all) activities at a level this is indicated with a “+”,
i.e., if you have 3 of 5 activities on the first level, the result is 0+; if all the
activities at level 1 are fulfilled, and 2 out of 4 activities at level 2 are ful-
filled, the result is 1+, etc. In connection with calculating the average value,
a “+” is counted as 0.5. As will be seen in Sect. 4, since few organisations in
our study do all the activities at level 1, many end up in the category 0+.

Weighted maturity (Scale 0–6): This value gives a greater emphasis for
activities at a high level, even if the lower level activities are not fully imple-
mented. The value is calculated using the following formula:

3∑

i=1

Observed activities at level i
Total number of activities at level i

× i

High Watermark Maturity (Scale 0–3): This value is calculated in the
same manner as in BSIMM [3]; if the organisation has at least one activity
at level 3, it gets the maturity level 3. The high watermark maturity level
therefore only says something about what is the level of the highest rated
activity they perform. In contrast to the conservative maturity level, it is
therefore easier to reach a level 2 or 3 high watermark maturity level.

In our study it will be of most interest to compare the two first maturity
measures (conservative and weighted) from a given organisation with the average
values of all the studied organisations to see how they compare, as we have done
in the radar diagrams in Fig. 1.

We distributed the questionnaire in AppendixA in January 2015 via email to
32 Norwegian public organisations which we had reason to believe had ongoing
software development activities. 20 of these organisations returned fully filled-out
questionnaires. For seven of the responses, the questionnaire had been filled out
in cooperation by representatives involved in software development and in gen-
eral IT security work. In the other cases, the response was made either by people
working on information security or on IT in general (six responses), by people
working on software development (five responses), or the main responsibility
of the respondent was unclear based on the job title (two responses). In most
cases, at least one of the respondents had a managing role in the organisation,
e.g., information security manager, IT manager, group leader or architect. In
order to verify the answers and to clarify possible misunderstandings, we organ-
ised follow-up interviews with all the involved organisations during which their
answers were scrutinised and corrected whenever needed. The results were then
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Fig. 1. Comparing an imaginary organisation with average of all organisations
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compiled and the conservative, weighted and high watermark maturity measures
were computed and analysed.

4 Results

In this section we present a selected set of the results from the study. For the
full results, the reader is referred to the report [7].

The organisations with the lowest maturity level declared that it performed
9 activities of 112, while the organisation with the highest level of maturity
performed 87 activities. Based on the boxplot chart in Fig. 2, we see that most
of the organisations come halfway up the scale; they perform on average 39 % of
the activities.
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Fig. 2. The distribution of the total number of activities for all the organisations

The total number of activities for each of the organisations is shown in Fig. 3.
This figure shows the “raw score” for each organisation that participated in the
study.

4.1 Practices with a High Degree of Maturity

As can be seen in Fig. 4 and Table 2, we found the highest degree of maturity
among the surveyed organisations (“Observed Difi”) within the practice Com-
pliance and Policy (“Guidelines and compliance with laws and regulations”);
more than 80 % of the respondents answered yes to most of the activities in
this area. The result is not surprising, since it concerns public organisations in
Norway, which usually are accustomed to adhere to standards and government
requirements. It is apparent that there is better adherence to these practices
among Norwegian public organisations than the average from the official BSIMM
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Fig. 3. The total number of activities (“raw score”) for each of the organisations

Table 2. High-level results

Areas Observed Difi Observed BSIMM

Strategy and metrics 33 % 45 %

Compliance and policy 66 % 43 %

Training 27 % 24 %

Attack models 25 % 29 %

Security features and design 45 % 41 %

Standards and requirements 48 % 40 %

Architecture analysis 39 % 35 %

Code review 35 % 28 %

Security testing 32 % 30 %

Configuration management and
vulnerability management

46 % 43 %

Software environment 41 % 42 %

Penetration testing 36 % 49 %
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Fig. 4. High-level results illustrated

study [3] (“Observed BSIMM”). It is also important to see the positive maturity
values in this area in the context of how businesses are organised. Many public
organisations have their own lawyers who handle compliance, and have a good
overview of the requirements of laws and regulations. However, it is not thus
given that this expertise is applicable in software development projects. In many
cases there might be quite a long distance (physically and organisationally) from
the internal expertise related to laws and regulations to the developers or the
hired consultants that are central to software development.

Three other practices that received high maturity are Construction and intel-
ligence, Security features and design, and Standards and Requirements). 80 % of
the organisations say they do SFD1.2 (“Security is a regular part of our organ-
isation’s software architecture discussion”) and 80 % say that they do SR 2.3
(“We use a limited number of standard technology stacks”). Regarding the lat-
ter, in most cases this meant that the organisation uses only Microsoft products
(Microsoft Active Directory, Microsoft Internet Information Services, etc.) in
their software development and production processes.

In the practice Configuration Management and Vulnerability Management,
85 % of the organisations said that they satisfy CMVM1.1 (“The software secu-
rity group has procedures for incident response, in collaboration with the incident
response team (if it exists)”). They also claim that they do CMVM 2.2 (“We
track software DEFECTS found during operations until they are closed”), but it
seems as though many people equate this with their internal bug tracking system
that often does not take particular account of security flaws. In such cases it is
necessary that the security flaws are prioritized high enough that they must be
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handled; if not, there is no guarantee that they actually closed within a reason-
able time. It is also unclear to what extent there are procedures for cooperation
during security incidents, but respondents says that developers will be able to
get involved when needed.

Finally, 90 % of the organisations said that they meet SE1.2 (“We use
accepted good practice mechanisms for host/network security”), but this is not
so surprising since this is strictly not about software security. Security seems
to have a relatively large focus amongst the people involved with the network,
operations and infrastructure. There are indications, however, that there is a dis-
tinction between the developers and the “security people” in the organisations.
One respondent stated that security can be perceived as an obstacle among their
developers, since those who work with security might restrict too much traffic
through firewalls etc. There is a different culture among those who work with
infrastructure than among those who are involved in the software development.

4.2 Practices with a Low Degree of Maturity

According to our results, the area with the lowest maturity is Attack models,
followed closely by Strategy and Metrics. Regarding attack models, 80 % stated
that they do AM1.5 (“The software security group keeps up to date by learning
about new types of attacks/vulnerabilities”), and 55 % said they do AM 1.6
(“Build an internal forum to discuss attacks”) but all the other activities in the
AM practice are performed by fewer than 25 % of the organisations.

One reason that these activities are performed only to a small extent may
be that these are activities that are very specifically related to security and
therefore come in addition to, or on top of, all the other activities that are being
done in the development process. During the follow-up interviews, several of the
organisations said they are fully aware that these are areas where they have a
potential for improvement. Regarding the two activities mentioned above that
relatively many do, several of the respondents indicated that these are largely
done outside the development environments. Those who work with operations
and infrastructure often get alerts or information on new attacks, and these are
discussed as needed. Respondents assume then that developers will be notified
of things that are relevant to them, but there seems to be little systematic effort
on monitoring attacks in the development environment. Several respondents said
that individual developers are adept at keeping up to date also in the security
field, for example, to gain knowledge about issues related to components they
use themselves, but this work seems to be relatively unstructured and largely
depends on the individual developer.

When it comes to work with strategy, there are some organisations that
have started some activities related to this, but few organisations currently have
a strategic and systematic approach to software security, where they clearly
assign responsibility, make plans and strategies, and follow up the implementa-
tion and effectiveness. This could relate to the fact that few companies have a
clear answer to the question of who are the SSG. All the organisations do some
activities related to software security, and some do many, but since this is not
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done systematically, it is difficult to say something about the effect of the work
done in organisations today related to this. On the basis of this investigation,
we can not say anything about the reasons for this, but some statements in the
interviews indicate that there is little awareness of the importance of software
security within the management. As an example, in one interview it was stated
that risk at the enterprise level was not relevant to software development.

4.3 Result Summary

To summarize, there is considerable variation in the maturity of the various
organisations in the study. As can be seen in Fig. 2, the most mature organi-
sation has implemented 87 of the 112 activities, and the least mature has only
implemented 9. The average of the 20 businesses is about 44 of 112. If we look
at the three most mature businesses as illustrated in Fig. 5, we notice that, even
though the conservative maturity level for the practice Strategy and Metrics is
consistently low amongst all the top three organisations, there is an extreme
variation in the practice Code Review (ranging from 0.5 to 3).

5 Discussion

As became apparent during the follow-up interviews, the organisations that par-
ticipated in the study vary as to how much development they perform themselves,
and to what extent they use external consultants. A few rely solely on external
consultants, while many operate with a mix of internal and external developers.
Some largely purchase solutions from system vendors, and make adjustments
internally, while others develop the bulk of the solutions themselves. This affects
how they work with security, and also the extent to which they have an overview
of and control over their software security activities. Some of the respondents
had acquired input from their vendors on the questionnaire. Others had little
overview of what the vendors did in terms of activities related to information
security. This uncertainty applies both to training related to contractor devel-
opers as well as to what activities are performed in the development process.
The answers to the survey did not indicate that there are any differences in the
maturity levels that are due to how the software development teams are organ-
ised. However, it is clear that some of the organisations who participated in the
study have relatively high levels of expertise, resources and experience related
to software development in general, while others have less experience with this.
At the same time, our results also show that there are many good practices also
among those who do not have a large number of developers. The two organisa-
tions that received the highest maturity scores (weighted maturity) have 10 to
20 developers in total (internal and contracted).

The BSIMM framework is based on the idea that there is a formally defined
software security group (SSG), and the activities are centered around this group.
Few of the surveyed organisations had such a formally defined group. Several
organisations have a manager with more or less explicit responsibility for software
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Fig. 5. Conservative and weighted maturity for the three most mature organisations

security, but then usually as part of an overall security responsibility in the
organisation.

The method used in our study can be characterized as “assisted self-
evaluation”; the respondents from the various organisations indicated in a ques-
tionnaire which software security activities that they do, and then they partic-
ipated in a follow-up interview with the purpose of clarifying uncertainties and
correcting possible errors in the questionnaire. During the interviews, many of
the respondents mentioned that they found it difficult to answer some of the
questions in the questionnaire. In some cases this was because they did not
understand what certain activities entailed, for example because they were not
familiar with the concepts and terminology that were used. In other cases, they
lacked knowledge about the practices in their own organisation or among their
consultants and vendors. In several cases, however, the uncertainty was linked
to the challenge of responding a simple “yes” or “no” to whether they perform a
certain activity. These cases were discussed in depth in the follow-up interviews,
aiming to reach a most equal assessment of the various organisations. In most
cases the follow-up interviews resulted in some changes to the original answers in
the questionnaire. It is also important to point out that some of the respondents
seemed to have different attitudes to the study. Some appeared keen to put for-
ward as much as possible of what they do in order to get a good score, while
others were more modest on their own behalf; feeling uncomfortable about the
possibility that they might claim to do an activity that they did not implement
to the full extent.

Another uncertainty factor in our study is that the follow-up interviews were
conducted by three different researchers. However, they did synchronize their
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assessment criteria, both before and during the interview phase, in order to
ensure that they had an as similar as possible perception of what is required to
receive a “yes” for the various activities in the questionnaire. However, it is still
possible that researchers may have made different assessments related to what
should be approved as an activity.

Since the study is based largely on self-evaluation, there is reason to believe
that the resulting “BSIMM-score” in our study is higher than it would be with a
review in line with the one made by Cigital in the original BSIMM study [8], since
we have not been in a position to verify the claims made by each organisation.
In concrete terms, this implies that we must assume that it has been easier
for the organisations to get an activity “approved” in our study than it would
be if Cigital had done the survey in accordance with its usual practice. This
means that although our results provide some indications of the maturity level
of the evaluated organisations, none of the organisations in our study can claim
that they have established their “BSIMM Score”. It would also be misleading
to compare their results directly with the official BSIMM reports. On the other
hand, the validity of the answers in our study were increased because of the
follow-up interviews, compared with the results from a pure survey. Furthermore,
using a questionnaire approach significantly lowers the threshold for initiating a
software security maturity study, and we maintain that it is a useful exercise for
determining a baseline.

BSIMM claims to be descriptive rather than normative, but by ranking activ-
ities in maturity levels, there is an implicit statement that some activities are
“better” (or more mature) than others. However, a given organisation may have
good reasons for not doing a certain activity, but this will not be reflected in
the results from our study. Sometimes checklists have an option to specify “Not
relevant” to a given question, and it could be worth considering adding this to
the BSIMM yardstick as well.

6 Conclusion and Further Work

This study shows that the public organisations that we have studied are doing a
number of activities that contribute to security in the software they are develop-
ing. However, it is clear that few are working strategically with software security,
where they have a comprehensive and systematic approach and follow up using
metrics to evaluate the effectiveness of the various activities. Many of the organ-
isations are very dependent on the interest, competence and initiative of indi-
vidual developers when it comes to keeping up to date on software security and
ensuring that security is not forgotten in the development lifecycle. This stands
in contrast to the operations or network side of organisations, where security
seems to have a clear priority.

Most of the organisations that participated in our study seemed to be very
interested in the topic of software security, but many point out that they have
limited resources and this is also reflected in the results. Some stated clearly that
they have prioritized other areas in their effort to improve security, however, they
all seem to realise the importance of addressing software security as well.
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In order to put public organisations in a position to work strategically and
systematically with software security, it is important to implement training activ-
ities on this topic. Thus far, software security seems to be a very small part of
efforts to increase knowledge and awareness of information security in the various
organisations.

Several respondents commented that they found many of the governance-
related activities more difficult to perform when using an agile development
method. This would indicate that there is a need for further study on how to
ensure software security in an agile environment. It would also be interesting
to compare our results with a similar study on private sector organisations in
Norway, which is something we hope to be able to initiate later this year.

Acknowledgment. The research reported in this paper was commissioned by the
Norwegian Agency for Public Management and eGovernment (Difi), and partially
funded by the EU FP7 project OPTET, grant number 317631.

A Questionnaire

The questionnaire is taken from the BSIMM activity descriptions [3], with only
minor textual modifications. Note that the official BSIMM study does not rely
on questionnaires. As mentioned before, BSIMM ranks activities on three levels,
but we decided not to show this to the respondents; we also re-arranged some
activities, placing variations on the same activity together even though they are
on different levels in the BSIMM description.

A.1 Governance

Strategy and Metrics

– We publish our process for addressing software security; containing goals,
roles, responsibilities and activities.

– We have a secure software evangelist role to promote software security inter-
nally.

– We educate our executives about the consequences of inadequate software
security.

– We have identified gate locations in our secure software development process
where we make go/no go decisions with respect to software security.

– We enforce the identified gate locations in our secure software development
process where we make go/no go decisions with respect to software security,
and track exceptions.

– We have a process of accepting security risk and documenting accountability.
In this process we assign a responsible manager for signing off on the state of
all software prior to release.

– The software security group publishes data internally on the state of software
security within the organisation.
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– In addition to the software security group, we have also identified members of
the development teams that have a special interest in software security, and
have a process for involving them in the software security work.

– We have identified metrics that measure software security initiative progress
and success.

– The software security group has a centralized tracking application to chart
the progress of all software.

– The software security group advertises the software security initiative outside
the organization (for example by writing articles, holding talks in conferences,
etc.).

Policy and Compliance

– The software security group has an overview of the regulations that our soft-
ware has to comply with.

– We have a software security policy to meet regulatory needs and customer
demands.

– The software security group is responsible for identifying all legislation related
to personally identifiable information (for example personopplysningsloven).

– We have identified all the personally identifiable information stored by each
of our systems and data repositories.

– All identified risks have to be mitigated or accepted by a responsible manager.
– We can demonstrate compliance with regulations that we have to comply

with.
– We make sure that all vendor contracts are compatible with our software

security policy.
– We promote executive awareness of compliance and privacy obligations.
– We have all the documentation necessary for demonstrating the organisation’s

compliance with regulations we have to comply with (for ex. written policy,
lists of controls, artifacts from software development).

– When managing our third party vendors, we impose our software security
policies on them.

– Information from the secure software development process is routinely fed
back into the policy creation process.

Education and Guidance

– We have a security awareness training program.
– We offer role-specific security courses (for example on specific tools, technology

stacks, bug parade).
– The security awareness training content/material is tailored to our history of

security incidents.
– We deliver on-demand individual security training.
– We encourage security learning outside of the software security group by offer-

ing specific training and events.
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– We provide security training for new employees to enhance the security cul-
ture.

– We use the security training to identify individuals that have a particular
interest in security.

– We have a reward system for encouraging learning about security.
– We provide security training for vendors and/or outsourced workers.
– We host external software security events.
– We require an annual software security refresher course.
– The software security group has defined office hours for helping the rest of the

organization.

A.2 Construction/Intelligence

Attack Models

– We build and maintain a top N possible attacks list.
– We have a data classification scheme and an inventory of attacks so we can

prioritize applications by the data handled by them.
– We maintain a list of likely attacker profiles.
– We collect and publish attack stories.
– The software security group keeps up to date by learning about new types of

attacks/vulnerabilities.
– We have an internal forum to discuss attacks.
– We link abuse cases to each attacker profile.
– We have a list of technology-specific abuse cases.
– We have an engineering team that develops new attack methods.
– We have automated the attack methods developed by our engineers.

Security Features and Design

– Our software security group builds and publishes a library of security features.
– Security is a regular part of our organization’s software architecture discussion.
– The software security group facilitates the use of secure-by-design middleware

frameworks/common libraries.
– The software security group is directly involved in the design of security solu-

tions.
– We have a review board to approve and maintain secure design patterns.
– We require the use of approved security features and frameworks.
– We find and publish mature design patterns from the organization.

Standards and Requirements

– The software security group create standards that explain the accepted way
to carry out specific security centric operations.

– We have a portal where all security related documents are easily accessible.
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– The software security group assists the software development team in trans-
lating compliance constraints (for instance from legislation) into application
specific security requirements.

– We use secure coding standards in our software development.
– We have a standards review board to formalize the process used to develop

security standards.
– We use a limited number of standard technology stacks.
– We have a template SLA text for use in contracts with vendors and providers,

to help prevent compliance and privacy problems.
– We have procedures to communicate and promote our security standards to

vendors.
– We have a list of all open source components used in our software.
– We manage the risks related to using open source components.

A.3 Verification/Touchpoints

Design Review/Architecture Analysis

– We perform security feature review.
– We perform design review for high-risk applications.
– We have a software security group that leads review efforts.
– We use a risk questionnaire to rank applications in terms of the risk they are

exposed to.
– We have a defined process to do architecture analysis.
– We have a standardized format for describring architecture that also covers

data flow.
– The software security group is available to support architecture analysis when

needed.
– The software architects lead design review efforts to detect and correct security

flaws.
– Failures identified during architecture analysis are used to update the standard

architecture patterns.

Code Review

– We create a list with top N software security defects list.
– The software security group does ad-hoc code reviews.
– We use automated tools (such as static analysis) along with manual review to

detect software security defects.
– We make code review mandatory for all projects before release.
– The software security defects found during code review are tracked in a cen-

tralized repository.
– We enforce coding standards to improve software security.
– We have mentors for code review tools for making most efficient use of the

tools.
– We use automated tools with tailored rules to improve efficiency and reduce

false positives.
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– We combine assessment results so that multiple analysis techniques feed into
one reporting and remediation process.

– When a software defect is found we have tools to search for that defect also
in the whole codebase.

– We perform automated code review on all code to detect malicious code.

Security Testing

– We perform adversarial tests with edge and boundary values.
– We create our tests based on existing security requirements and security fea-

tures.
– We integrate black box security tools into the testing process (including pro-

tocol fuzzing).
– We share security test results with QA.
– We include security tests in QA automation.
– We perform fuzz testing customized to application APIs.
– We base the security tests on the security risks analysis.
– We use code coverage tools to ensure that security tests cover all parts of the

code.
– We write tests cases based on abuse cases provided by the software security

group.

A.4 Deployment

Configuration and Vulnerability Management

– The software security group has procedures for incident response, in collabo-
ration with the incident response team (if it exists).

– We are able to make quick changes in the software when under attack.
– We perform drills to ensure that incident response capabilities minimize the

impact of an attack.
– We identify software defects found in operations (for ex. by intrusion detection

systems) and feed back to development.
– We track software defects found during operations until they are closed.
– We maintain a matrix of all installed applications in order to identify all places

that need to be updated when a piece of code needs to be changed.
– When a software defect is found in a piece of code during operations we have

a process to search for that defect also in the whole codebase.
– We do software security process improvement based on the analysis of cause

of software defects found in operations.
– We have a system for paying rewards to individuals who report security flaws

in our software.
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Software Environment

– We monitor the input to software we run in order to spot attacks on our
software.

– We use accepted good practice mechanisms for host/network security.
– The software security group creates and publishes installation guides to ensure

that our software is configured securely.
– We create digital signatures for all binaries that we deliver.
– We use code protection such as obfuscation to make reverse engineering

harder.
– We monitor the behavior of our software looking for misbehavior and signs of

attacks.

Penetration Testing

– We use external penetration testers on our software.
– Defects found in penetration testing are inserted in our bug tracking system

and flagged as security defects.
– We use penetration testing tools internally.
– The penetration testers have access to all available information about our soft-

ware (for example: the source code, design documents, architecture analysis
results and code review results).

– We periodically perform penetration tests on all our software.
– We use external penetration testers to do deep-dive analysis for critical

projects to complement internal competence.
– The software security group has created customized penetration testing tools

and scripts for our organization.
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Abstract. We focus on extending the applicability of the mixed-integer
programming (MIP) based method in differential cryptanalysis such that
more work can be done automatically. Firstly, we show how to use the
MIP-based technique to obtain almost all high probability 2-round iter-
ative related-key differential characteristics of PRIDE (a block cipher

proposed in CRYPTO 2014) automatically by treating the g
(j)
i (·) func-

tion with a special kind of modulo addition operations in the key sched-
ule algorithm of PRIDE as an 8 × 8 S-box and partially modelling its
differential behavior with linear inequalities. Note that some of the char-
acteristics presented in this paper has not been found before, and all the
characteristics we found can be used to attack the full-round PRIDE in
the related-key model. Secondly, we show how to construct MIP models
whose feasible regions are exactly the sets of all possible differential char-
acteristics of SIMON (a family of lightweight block ciphers designed by
the U.S. National Security Agency). With this method, there is no need
to filter out invalid characteristics due to the dependent inputs of the
AND operations. Finally, we present an MIP-based method which can
be used to automatically analyze how the differences at the beginning
and end of a differential distinguisher propagate upwards and downward.
Note that how the differences at the ends of a differential distinguisher
propagate, together with the probability of the differential distinguisher,
determine how many outer rounds can be added to the distinguisher,
which key bits can be recovered without exhaustive search, and how to
identify wrong pairs in the filtering process. We think this work serves
to further strengthens the position of the MIP as a promising tool in
automatic differential cryptanalysis.
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1 Introduction

Block ciphers are probably the most widely used cryptographic algorithms today
for data encryption. With the ever increasing cryptographic complexity and
demand for new block ciphers which can be deployed in a diverse computing
environment, it is imperative to develop tools for automatic block cipher crypt-
analysis.

Differential cryptanalysis [2], introduced by Eli Biham and Adi Shamir in the
late 1980s, is one of the most effective and well understood attacks on modern
block ciphers. Providing a convincing security argument with respect to the
differential attack have become one of the most import aspects for the design
of block ciphers. Accordingly, tools for (partially) automatic differential analysis
have attracted a lot of attention from the cryptographic community.

Matsui’s algorithm [8] is probably the most widely used (partially) automatic
method for finding good differential characteristics. Several papers were devoted
to improving the efficiency of Matsui’s algorithm. In [6], the concept of search
pattern was introduced to reduce the search complexity of Matsui’s algorithm by
detecting unnecessary search candidates. Further improvements were obtained
in [5] and [21]. In [1], Biryukov et al. extended Matsui’s algorithm by using the
partial (rather than the full) difference distribution table (pDDT) to prevent
the number of examined candidates from exploding and at the same time keep
the total probability of the resulting characteristic high. These methods have
been employed to evaluate the security of many block ciphers with respect to
the differential attack.

Automatic differential analysis is also studied under the framework of con-
straint programming. In recent years, there has been an increasing interest in
this line of research. Compared with other methods, these methods are easier
to implement and more flexible. In [9,18,19], SAT or SMT solvers are employed
to find differential characteristics of Salsa and other ciphers. Mouha et al. [10],
Wu et al. [14], and Sun et al. [15] converted the problem of counting the min-
imum number of differentially active S-boxes into an MIP problem which can
be solved automatically with open source or commercially available optimizers.
These methods have been applied in evaluating the security against (related-
key) differential attacks of many block ciphers. However, these tools cannot be
used to find the actual differential characteristics directly. In Asiacrypt 2014, two
systematic methods for generating linear inequalities describing the differential
properties of an arbitrary S-box were given in [17]. With these inequalities, the
authors of [17] were able to construct an MIP model whose feasible region is a
more accurate description of the differential behavior of a given cipher. Based
on such MIP models, the authors of [16] proposed a heuristic algorithm for find-
ing actual (related-key) differential characteristics, which is applicable to a wide
range of block ciphers. In [16], Sun et al. get rid of the heuristic argument in [17]
by constructing MIP models whose feasible regions are exactly the sets of all
(related-key) differential characteristics. However, the method presented in [16]
still has some important limitations. Firstly, it can not be applied to ciphers with
modulo additions. Secondly, for the case of SIMON (a lightweight block cipher
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designed by the U.S. National Security Agency), the method proposed in [16] is
not exact anymore. That is, the feasible region of the MIP model constructed for
SIMON contains invalid differential characteristics due to the dependent input
bits of the AND operations, and these invalid characteristics must be filtered
out by other methods. This is a very inconvenient process and reduces the level
of automation of the framework of MIP based automatic differential analysis.
Finally, it does not support any subsequent analysis of the differential attack
after finding good differentials.

Our Contribution. In this work, we mainly focus on the MIP-based method
for automatic differential analysis. We do not try to improve specific results in
cryptanalysis, but attempt to use the MIP-based method in a clever way such
that more work in differential analysis can be done automatically.

So far, the MIP-based method has not been applied to ciphers with modulo
addition operations, which is one of the limitations of the MIP-based method
discussed in [16]. In this work, we show how a special case of modulo addition can
be dealt with MIP method. To be more specific, we treat the modulo addition
in the key schedule algorithm of PRIDE as an 8 × 8 S-box and partially model
its differential behavior with MIP method. With this approach, we show how to
enumerate almost all high probability 2-round iterative related-key differential
characteristics of PRIDE automatically. We present some iterative related-key
characteristics for the full PRIDE which have never been found before, and all
the characteristics we found are of high probability such that they can be used
to attack the full-round PRIDE.

Moreover, by using constraints from the H-representation of a specific convex
hull, we give a method for constructing MIP models whose feasible regions are
exactly the sets of all possible differential characteristics for SIMON (a family of
lightweight block ciphers designed by the U.S. National Security Agency). Note
that the feasible region of the MIP model constructed by the method presented in
[16] for SIMON contains invalid differential characteristics due to the dependent
input bits of the AND operations, and these invalid characteristics must be
filtered out by other methods. This is a very inconvenient process and reduces
the level of automation of the framework of MIP based automatic differential
analysis.

In addition, currently the MIP-based method does not support any subsequent
analysis in differential attack except finding good (related-key) differentials.
After finding a good differential and building a distinguisher, the cryptanalyst
needs to add several rounds at the end (or the beginning) of the distinguisher
and try to mount a key recovery attack. How many rounds can be appended,
which key bits can be recovered without exhaustive search, and how to filter
wrong pairs are all determined by how the output difference of the distinguisher
propagate through the added rounds. Typically, this analysis is done manually
or by another computer program in a trial-and-error style. In this paper, we
show how this error-prone process can be done automatically. This method can
be integrated into the MIP framework for finding high probability differentials.
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Thus the cryptanalyst using this tool can quickly examine how a differential
propagate upward and downward at the beginning and end of a differential
distinguisher. Although this approach is of no theoretical interest, it has been
proved in our daily work that such tool is very convenient and more reliable than
other methods.

Organization. In Sect. 2 we give a brief introduction of the MIP-based method
for automatic differential analysis. In Sect. 3, We show how to enumerate high
probability 2-round iterative related-key differential characteristics of PRIDE
whose key schedule algorithm containing modulo addition operations. In Sect. 4,
we show how to construct MIP models whose feasible regions are exactly the
sets of all possible differential characteristics of SIMON. An MIP-based method
for automating the analysis of the propagation of the differences at the ends of
a differential distinguisher is presented in Sects. 5 and 6 is the conclusion.

2 MIP-based Automatic Differential Analysis

The MIP-based method for automatic differential analysis [16] can be applied
to ciphers involving the following three operations:

– bitwise XOR;
– bitwise permutation L which permutes the bit positions of an n dimensional

vector in F
n
2 ;

– S-box, S : Fω
2 → F

ν
2 .

Note that a general linear transformation T : Fn
2 → F

m
2 can be treated as

some XOR summations and bitwise permutations of the input bits. In [16], a
new variable xi is introduced for every input and output bit-level differences,
where xi = 1 means the XOR difference at this position is 1 and xi = 0 if there
is no difference. Also, for every S-box involved in the cipher, introduce a new
0–1 variable Aj such that

Aj =
{

1, if the input word of the Sbox is nonzero,
0, otherwise.

Now, we can describe the MIP-based method [16] by clarifying the objective
function and constraints in the MIP model. Note that we assume all variables
involved are 0–1 variables.

Objective Function. The objective function is to minimize the sum of all
variables Aj indicating the activities of the S-boxes:

∑
j Aj .

Constraints. Firstly, for every XOR operation a ⊕ b = c ∈ {0, 1}, include the
following constraints ⎧

⎨

⎩

a + b + c ≥ 2d⊕
a + b + c ≤ 2
d⊕ ≥ a, d⊕ ≥ b, d⊕ ≥ c

(1)
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where d⊕ is a dummy variable.
Assuming (xi0 , . . . , xiω−1) and (yi0 , . . . , yiν−1) are the input and output dif-

ferences of an ω × ν S-box marked by At, we have
⎧
⎨

⎩

At − xik
≥ 0, k ∈ {0, . . . , ω − 1}

−At +
ω−1∑

j=0

xij
≥ 0 (2)

and ⎧
⎪⎪⎨

⎪⎪⎩

ω−1∑

k=0

xik
+

ν−1∑

k=0

yjk
≥ BSdS

dS ≥ xik
, 0 ≤ k ≤ ω − 1

dS ≥ yjk
, 0 ≤ k ≤ ν − 1

(3)

where dS is a dummy variable, and the branch number BS of an S-box S, is
defined as mina�=b{wt((a ⊕ b)||(S(a) ⊕ S(b)) : a, b ∈ F

ω
2 }. For an bijective S-box

we have ⎧
⎪⎪⎨

⎪⎪⎩

ω
ν−1∑

k=0

yjk
−

ω−1∑

k=0

xik
≥ 0

ν
ω−1∑

k=0

xik
−

ν−1∑

k=0

yjk
≥ 0

(4)

Then, treat every possible input-output differential pattern (x0, . . . , xω−1) →
(y0, . . . , yν−1) of an ω × ν S-box as an (ω + ν)-dimensional vector (x0, . . . , xω−1,
y0, . . . , yν−1) ∈ {0, 1}ω+ν ⊆ R

ω+ν , and compute the H-representation of the
convex hull of all possible input-output differential patterns of the S-box. From
the H-representation we can extract the critical set with the method presented
in [16]. The critical set contains a small number of linear inequalities which can
be used to exactly describe the differential behavior of the S-box. Finally, relate
the input and output variables of the S-box using the inequalities in the critical
set. Now, if we require that all the variables involved are 0–1 variables, then the
feasible region of the resulting MIP model is exactly the set of all differential
characteristics. By solving this kind of MIP models, we can find good differential
characteristics or enumerate all characteristics with some predefined properties.

3 Automatic Search for Related-Key Differential
Characteristics of PRIDE

The block cipher PRIDE [7] is one of the vast number of newly designed light-
weight block ciphers. One of the novelties of PRIDE is that its linear layer is
constructed according to a general methodology for constructing good, some-
times optimal linear layers allowing for a large variety of trade-offs between
security and efficiency. Although PRIDE is optimized for software implementa-
tion on 8-bit micro-controllers, it is also efficient in hardware. After its publi-
cation, PRIDE has receive several cryptanalysis [3,4,12]. Very recently, Dai et
al. presented several related-key differential attacks on the full PRIDE with the
help of 16 2-round iterative related-key differential characteristics obtained by
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some ad-hoc method [20]. In this section, we show how to enumerate almost
all high probability 2-round iterative related-key differential characteristics of
PRIDE automatically by using the MIP technique.

3.1 Description of PRIDE

PRIDE [7] is a block cipher based on FX-construction whose block size and key
size are 64-bit and 128-bit respectively. It consists of 20 rounds of iterations of
which the first 19 rounds are identical, and the overall structure of PRIDE is
depicted in Fig. 1.

The round function R of PRIDE is an SPN structure: the state is XORed with
the round key fi(k1) permuted with a bit permutation P−1, fed into 16 parallel
4-bit S-boxes and then processed by the linear layer involving bit permutations
and linear transformations (see Fig. 2).

The 128-bit master key of PRIDE is divided into to 64-bit words k0 and k1,
and k0 is used as the pre- and post-whitening keys. The subkey fi(k1) of the ith
round of PRIDE is defined as follows

fi(k1) = k1,0||g(0)i (k1,1)||k1,2||g(1)i (k1,3)||k1,4||g(2)i (k1,5)||k1,6||g(3)i (k1,7)

where k1,i is the ith nibble of k1 and g
(j)
i (·)’s are defined as follows

g
(0)
i (x) = (x + 193i) mod 256, g

(1)
i (x) = (x + 165i) mod 256

g
(2)
i (x) = (x + 81i) mod 256, g

(3)
i (x) = (x + 197i) mod 256

For a more detailed description of PRIDE, we refer the reader to [7].

Fig. 1. The overall structure of the PRIDE

3.2 Modelling the Differential Behavior of g
(j)
i (·) with Linear

Inequalities

Typically, to enumerate the iterative related-key differential characteristics of a
block cipher with the MIP-based method, we need to construct an MIP model
for the cipher in the related-key setting whose feasible region is exactly the set
of all related-key differential characteristics of the target cipher. However, the
key schedule algorithm (KSA) of PRIDE contains modulo addition operations,
and it seems that there is no existing technique which can be used to generate
practically solvable MIP models describing the differential behavior of ciphers
involving modulo additions.
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Fig. 2. The round function R of PRIDE

Whereas the modulo additions appearing in the KSA of PRIDE is very spe-
cial. Taking the function g

(0)
i (·) for example, one of its operands is 193i which

is a constant for a given i. Hence, g
(0)
i : x �→ (x + 193i) mod 256 can be treated

as an 8× 8 S-box whose differential behavior can be modeled by the convex hull
computation method presented in [16]. But, it is still very difficult to compute
the convex hull of all differential patterns of an 8×8 S-box. In fact, in the original
papers [16,17] proposing the MIP-based method for finding good characteristics,
no cipher with an 8×8 S-box has been analyzed since computing the convex hull
of a subset of R8+8 with a reasonable size can be a difficult task. In particular,
for the AES S-box, we are failed to get the convex hull of all the differential
patterns of the AES S-box after 3 h of computation on a PC. Therefore, we take
the following strategy to deal with the g

(j)
i (·) function in the KSA of PRIDE. For

the sake of simplicity, we demonstrate our method on g
(0)
1 (·). For other functions

it can be analyzed in the same way.
Firstly, compute the differential distribution table (DDT) of g

(0)
1 (·). Secondly,

from the DDT, select a set H of differential patterns (x0, · · · , x7, y0, · · · , y7) ∈
{0, 1}16 ⊆ R

16 such that the probability of the differential (x0, · · · , x7) →
(y0, · · · , y7) is greater than 240

256 . The differential patterns contained in the set H
are listed below

00000000 --> 00000000 : (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
00100000 --> 00100000 : (0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0)
01000000 --> 11000000 : (0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0)
01100000 --> 11100000 : (0,1,1,0,0,0,0,0,1,1,1,0,0,0,0,0)
10000000 --> 10000000 : (1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0)
10100000 --> 10100000 : (1,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0)
11000000 --> 01000000 : (1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0)
11100000 --> 01100000 : (1,1,1,0,0,0,0,0,0,1,1,0,0,0,0,0)

Thirdly, using the method presented in [16], we compute the H-representation
of the convex hull of H, from which we can derive the critical set OH which is
an exact linear inequality description of the differential patterns contained in H.
This is, the set of 0–1 solutions of the system of linear inequalities OH is exactly
H, where OH is given below
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⎧
⎪⎪⎨

⎪⎪⎩

−x0 + x1 + y0 ≥ 0
−x0 − x1 − y0 ≥ −2

x0 − x1 + y0 ≥ 0
x0 + x1 − y0 ≥ 0

(5)

By using the above constraints to describe the differential behavior of g
(0)
1 (·)

in an MIP model, the feasible region of this MIP model will not contain any
differential pattern (x0, · · · , x7, y0, · · · , y7) of g

(0)
1 (·) such that the probability of

the differential (x0, · · · , x7) → (y0, · · · , y7) is less than or equal to 240
256 .

At this point, we can construct an MIP model partially describing the dif-
ferential behavior of PRIDE in the related-key model by using the constraints
for g

(j)
i (·) generated in the above method. Note that for different i and j, a dif-

ferent set of constraints is generated. With this approach, we construct an MIP
model for PRIDE in the related-key setting and enumerate its 2-round iterative
related-key differential characteristics with probability 2−4 by using the method
presented in [16]. We obtain 42 characteristics and they are listed in Tables 1, 2,
3 and 4 of AppendixA, where we use ΔI to denote the input difference of one
round R (see Fig. 1) and Δk to denote the output difference of P−1(f(k1)).

Since for every characteristic we found, we can construct an 18-round related-
key differential of the PRIDE (19-round in total) with probability at least
(2−4)18/2 = 2−36, any one of the characteristics we found can be used to attack
the full PRIDE. Also note that the set of all characteristics found in [20] is only a
subset of the characteristics we found. Hence, using the characteristics we found
will produce attacks on full PRIDE at least as good as that presented in [20].
However, we do not take the effort to improve the attack since this is not the
focus of this paper.

4 Constructing MIP Models Whose Feasible Regions
are Exactly the Sets of All Differential Characteristics
of SIMON

In [16], a method for constructing mixed-integer programming models whose
feasible regions are exactly the sets of all possible differential (or linear) char-
acteristics for a wide range of block ciphers is presented. These models can be
used to search for or enumerate differential and linear characteristics of a block
cipher automatically. However, for the case of SIMON (a lightweight block cipher
designed by the U.S. National Security Agency), the method proposed in [16] is
not exact anymore. That is, the feasible region of the MIP model constructed for
SIMON contains invalid differential characteristics due to the dependent input
bits of the AND operations, and these invalid characteristics must be filtered
out by other methods. This is a very inconvenient process and reduces the level
of automation of the framework of MIP-based automatic differential analysis. In
the following, by using constraints from the H-representation of a specific convex
hull, we give a method for constructing MIP models whose feasible regions are
exactly the sets of all possible differential characteristics for SIMON.
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We will focus on the case of SIMON32 [13] with block size 32 bits, for other
cases the method is similar. The nonlinear layer of SIMON32 can be described
by a non-linear function F : F16

2 → F
16
2 , such that

F (x) = (x <<< 1) · (x <<< 8), x = (x0, · · · , x15) ∈ F
16
2 .

where · is the bitwise AND operation.
Let Δ = (Δ0, · · · ,Δ15) ∈ F

16
2 , and δ = (δ0, · · · , δ15) ∈ F

16
2 , then the dif-

ferential Δ → δ is valid for F if and only if there exists x ∈ F
16
2 such that

F (x) + F (x + Δ) = δ, that is ((x + Δ) <<< 1) · ((x + Δ) <<< 8) = δ.
Writing it bitwisely, the differential Δ → δ is valid if and only if the following

system of equations of xi has a solution
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ0 = Δ1 · x8 + Δ8 · x1

δ1 = Δ2 · x9 + Δ9 · x2

δ2 = Δ3 · x10 + Δ10 · x3

δ3 = Δ4 · x11 + Δ11 · x4

δ4 = Δ5 · x12 + Δ12 · x5

δ5 = Δ6 · x13 + Δ13 · x6

δ6 = Δ7 · x14 + Δ14 · x7

δ7 = Δ8 · x15 + Δ15 · x8

δ8 = Δ9 · x0 + Δ0 · x9

δ9 = Δ10 · x1 + Δ1 · x10

δ10 = Δ11 · x2 + Δ2 · x11

δ11 = Δ12 · x3 + Δ3 · x12

δ12 = Δ13 · x4 + Δ4 · x13

δ13 = Δ14 · x5 + Δ5 · x14

δ14 = Δ15 · x6 + Δ6 · x15

δ15 = Δ0 · x7 + Δ7 · x0

(6)

In the work of [16], the MILP models generated for SIMON only have vari-
ables for the differences (δi and Δi) and the variables marking the activities of
the AND operations. To generate exact models for SIMON, we need to introduce
a new set of variables (xi, 0 ≤ i ≤ 15) for every round of SIMON, and include
the constraints which dictating that the system of equations listed in (6) has
a solution. In the following, we show how to convert the constraints presented
in (6) into a set of linear (in)equalities by the convex hull computation technique
presented in [16].

Taking the first equation δ0 = Δ1 · x8 + Δ8 · x1 in (6) for example, let
Sol(δ0 = Δ1 ·x8 +Δ8 ·x1) be the set of all 0–1 solutions for this equation. Then

Sol(δ0 = Δ1 · x8 + Δ8 · x1)

can be treated as a subset of {0, 1}5 ⊆ R
5. The vectors (δ0,Δ1, x8,Δ8, x1) in

Sol(δ0 = Δ1 · x8 + Δ8 · x1) are given below

(0, 0, 0, 0, 0) (0, 0, 0, 0, 1) (0, 0, 0, 1, 0) (0, 0, 1, 0, 0)

(0, 0, 1, 0, 1) (0, 0, 1, 1, 0) (0, 1, 0, 0, 0) (0, 1, 0, 0, 1)
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(0, 1, 0, 1, 0) (0, 1, 1, 1, 1) (1, 0, 0, 1, 1) (1, 0, 1, 1, 1)

(1, 1, 0, 1, 1) (1, 1, 1, 0, 0) (1, 1, 1, 0, 1) (1, 1, 1, 1, 0)

Now, we can compute the critical set O of the H-representation of the con-
vex hull of Sol(δ0 = Δ1 · x8 + Δ8 · x1). We refer the reader to [16] for more
information about how to compute the critical set and H-representation. The
H-representation of the convex hull of Sol(δ0 = Δ1 · x8 + Δ8 · x1) is given below

( 0, -1, 0, 0, 0, 1 ) ( 0, 0, -1, 0, 0, 1 ) ( 0, 0, 0, -1, 0, 1 )

(-1, 1, 0, 0, 1, 0 ) (-1, 0, 1, 0, 1, 0 ) (-1, 0, 0, 0, 0, 1 )

( 0, 0, 0, 0, 1, 0 ) ( 1, -1, -1, 0, 1, 1 ) ( 0, 1, 0, 0, 0, 0 )

( 0, 0, 0, 0, -1, 1 ) (-1, 1, 0, 1, 0, 0 ) ( 1, 0, 0, 0, 0, 0 )

(-1, 0, 1, 1, 0, 0 ) ( 0, 0, 0, 1, 0, 0 ) ( 1, 0, 1, -1, -1, 1 )

( 0, 0, 1, 0, 0, 0 ) ( 1, -1, -1, 1, 0, 1 ) ( 1, 1, 0, -1, -1, 1 )

(-1, -1, -1, -1, -1, 4 )

where a 6-dimensional vector (λ0, · · · , λ4, γ) denotes the linear inequality

λ0δ0 + λ1Δ1 + λ2x8 + λ3Δ8 + λ4x1 + γ ≥ 0.

From the H-representation we can derive the critical set O, which is listed in
the following

(-1, 0, 1, 0, 1, 0) (-1, 1, 0, 1, 0, 0) ( 1, -1, -1, 1, 0, 1)

( 1, 1, 0, -1, -1, 1) ( 1, 0, 1, -1, -1, 1) (-1, -1, -1, -1, -1, 4)

(-1, 1, 0, 0, 1, 0) (-1, 0, 1, 1, 0, 0) ( 1, -1, -1, 0, 1, 1)

O is a set of 9 linear inequalities involving the 5 variables: δ0,Δ1, x8,Δ8, x1.
For every equation in (6), we can derive a corresponding critical set. Then we
can add all these sets of linear constraints into the overall MIP model. Now, we
come to an MIP model for SIMON whose feasible region is exactly the set of
all differential characteristics for SIMON since every feasible solution of the new
model will make the system of equations (6) have at least one solution.

Compared with the models generated in [16], the new models contain more
variables and constraints which will make them more difficult to solve. So, we
suggest that we should first try to find a good differential characteristic by the
method presented in [16]. According to our experimental experience, we will get
a valid characteristic with a very high chance. Then when we want to enumerate
the characteristics in the differential α → β, we fix the variables in the MIP
model according to the input and output differences and limit the number of
active AND operations, and add the new constraints described in this paper to
the MIP model. Now, we can enumerate all differential characteristics of this
differential with the predefined properties by finding all solutions of the MIP
model.

Using the above method, we enumerate all single-key differential characteris-
tics with NA (50 ≤ NA ≤ 300) active AND operations for 16-round SIMON with
input difference (800000, 220082) and output difference (800000, 220000). Note
that this differential whose probability is 2−44.65 has been used in [11] to attack
23-round SIMON48. Finally, we obtain 877231 differential characteristics in no
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more than 3 days on a PC, and the differential probability of the differential is
at least 2−44.26. While in [16], only 3822 characteristics were found. This result
can be used directly to improve the currently known best differential attack on
23-round SIMON48 presented in [11].

5 Automatic Analysis of the Propagation of Differences

In a typical differential attack, after a good differential has been identified and
therefore a distinguisher is built, the attacker then attempts to recover some
secret key bits from the outer rounds of the distinguisher. To accomplish this,
the attacker must analyze how the differences at the two ends of the distinguisher
evolve through the outer rounds of the cipher under consideration (for simplicity,
here we only focus on the last rounds). This is a trivial yet tedious, error-prone,
and important process.

Firstly, if the difference propagates in such a way that some specific bits of
the ciphertext difference must be 0 or 1 for any key, the attacker can determine
in some situation that a pair could not possibly be a right pair just by looking
at the ciphertext pair and discard it immediately. That is, how the difference
propagate affects the filtering process of differential analysis which is essential for
the success of a differential attack, since a good filtering technique will increase
the signal to noise ratio.

Secondly, how the difference evolve in the outer rounds of the differential
distinguisher affects which key bits can be recovered without a brute force search
(we refer such key bits as the target key bits here after) in the attack and how
many rounds can be added to the two ends of the distinguisher. To a large extend,
the number of key bits can be recovered without a brute force search together
with the probability of the distinguisher determine the overall complexity of the
differential attack.

All in all, we stress once again that analysis of how the differences evolve
in the outer rounds is of great importance to differential attack even though
it is trivial. In this section we propose an MIP-based method for analyzing
the propagation of difference automatically. For the sake of simplicity, we will
describe our method by a simple example depicted in Fig. 3. Assume an attacker
has built a differential distinguisher whose input and output differences are α ∈
{0, 1}n and β ∈ {0, 1}n respectively. Then the attacker appends 3 more rounds
at the end of the distinguisher and tries to recover key material involved in these
rounds. To identify the target key bits and the filtering strategy in the differential
attack, the attacker must determine first what kind of difference patterns will
β1, β2, and β3 take. The steps to accomplish this task under the MIP framework
are listed as follows.

Step 1. Construct an MIP model describing the differential behavior of the
round function R1 using the method given in [16], and set its objective function
to be any constant.

Step 2. Add the bit-level constraints (a set of equalities) which dictating that
the input difference pattern to the round function R1 is β.
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Fig. 3. Append 3 more rounds at the end of the distinguisher

Step 3. Based on the MIP model built by Step 1 and Step 2, generate n different
MIP models M0, . . . ,Mn−1 such that in the ith model we add one more constraint
which dictates that the ith bit of the output difference β1 of R1 is 1.

Step 4. For i ∈ {0, . . . , n − 1}, solve Mi. If Mi is infeasible, we claim that
the ith bit of β1 must be 0; If Mi is feasible, we change its constraint which
dictates that the ith bit of the output difference of R1 is 1 to the constraint
which dictates that the ith bit of the output difference of R1 is 1 and solve the
updated model Mi again. If it is infeasible, we claim that the ith bit of β1 must
be 1; If it is feasible, we claim that the ith bit of β1 can be any value which is
denoted by a “*” or “?” typically.

Using a similar method, we can also automatically deduce the difference
patterns of β2 and β3. For example, after the above steps, we know that β1 is
of the form β1,j0 = 0, · · · , β1,jsr

= 0; β1,jsr+1 = 1, · · · , β1,jst
= 1; β1,jst+1 =

∗, · · · , β1,jn−1 = ∗, where β1,k is the kth bit of β1. Then, to get the difference
pattern of β2, we can proceed in the same manner described in the above steps,
except in step 2 we only need to add these constraints: β1,j0 = 0, · · · , β1,jsr

= 0;
β1,jsr+1 = 1, · · · , β1,jst

= 1.
By using the above method, we produce the same results of Table 4 in [12],

Tables 7 and 8 in [20] automatically. At first glance, our approach seems to be
a overkill since it converts a simple task which can be done manually into a
task of solving many small MIP instances. But as has long been recognized by
the programming and computer engineering community, we support the Rule of
Economy which states that programmer time is expensive; conserve it in pref-
erence to machine time. The advantage of the method presented in this section
is that it can be integrated into the MIP framework for automatic differential
analysis [16], therefore reduce the burden of cryptanalyst significantly (Table 5).

6 Conclusion and Discussion

This work makes some contribution to the MIP-based method for automatic dif-
ferential analysis. Firstly, the MIP-based method is applied to the cipher PRIDE
in the related-key model by partially modelling the differential behavior of the
modulo additions involved in the key schedule algorithm of PRIDE. To the best
of our knowledge, it is the first time that the MIP-based method is used to
analyze a cryptographic algorithm involving the modulo addition operations.
Secondly, by using constraints from the H-representation of a specific convex
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hull, we give a method for constructing MIP models whose feasible regions are
exactly the sets of all possible differential characteristics for SIMON (a fam-
ily of lightweight block ciphers designed by the U.S. National Security Agency).
Thirdly, we show how to use the MIP-based method in a clever way to automati-
cally analyze the propagation of the differences, which is an important step in the
differential cryptanalysis. We think this work further strengthens the position of
the MIP as a promising tool in automatic differential cryptanalysis.

Finally, we note that a future study investigating how to use the MIP-based
method to analyze ciphers involving ordinary additions mod 2n would be very
interesting. Unlike the case of PRIDE where one operand of the modulo addition
operation is a constant, an ordinary addition modulo 2n can not be treated as an
n × n S-box, and modelling its differential behavior will be much more difficult.
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A 2-round Iterative Related-key Differential
Characteristics with Probability 2−4 for PRIDE

Table 1. 6 characteristics with ΔI = 0, two active S-boxes in the first round and zero
active S-box in the second round, and the differential pattern used by the active S-box
is 1000 → 1000

1 ΔI 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

Δk 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

2 ΔI 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

Δk 0000 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

3 ΔI 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

Δk 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000

4 ΔI 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

Δk 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 0000

5 ΔI 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

Δk 0000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000

6 ΔI 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

Δk 1000 0000 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000
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Table 2. 6 characteristics with zero active S-box in the first round and two active
S-box in the second round, and the differential pattern used by the active S-boxes is
1000 → 1000

1 ΔI 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

Δk 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

2 ΔI 0000 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

Δk 0000 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

3 ΔI 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000

Δk 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000

4 ΔI 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 0000

Δk 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 0000

5 ΔI 0000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000

Δk 0000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000

6 ΔI 1000 0000 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000

Δk 1000 0000 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000

Table 3. 12 characteristics with one active S-box in the first round and one active
S-box in the second round, and the differential pattern used by the active S-boxes is
1000 → 1000

1 ΔI 1000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000

Δk 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

2 ΔI 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000

Δk 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

3 ΔI 0000 1000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000

Δk 0000 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

4 ΔI 0000 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 1000 0000 0000

Δk 0000 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

5 ΔI 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000

Δk 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000

6 ΔI 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 1000 0000

Δk 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000

7 ΔI 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 0000

Δk 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 0000

8 ΔI 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 1000

Δk 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 0000

9 ΔI 1000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000

Δk 0000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000

10 ΔI 0000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000

Δk 0000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000

11 ΔI 1000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000

Δk 1000 0000 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000

12 ΔI 1000 0000 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000

Δk 1000 0000 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000
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Table 4. 10 characteristics with one active S-box in the first round and two active
S-box in the second round, and the differential patterns used by the active S-boxes
are 1011 → 0010, 1000 → 0010, 1011 → 0011, 1000 → 0011, 0110 → 0001, 0111 →
0001, 0100 → 0001, 0101 → 0001, 0110 → 0100, and 0001 → 0100 respectively; the
characteristics marked by a “*” are also 1-round iterative characteristics

1 ΔI 0010 0000 0000 0000 0000 0000 0000 0010 0010 0000 0000 0000 0000 0000 0000 0000

∗ Δk 0010 0000 0000 0000 1011 0000 0000 0010 0010 0000 0000 0000 0000 0000 0000 0000

2 ΔI 0010 0000 0000 0000 0000 0000 0000 0010 0010 0000 0000 0000 0000 0000 0000 0000

∗ Δk 0010 0000 0000 0000 1000 0000 0000 0010 0010 0000 0000 0000 0000 0000 0000 0000

3 ΔI 0011 0000 0000 0000 0001 0000 0000 0010 0011 0000 0000 0000 0000 0000 0000 0000

Δk 0011 0000 0000 0000 1010 0000 0000 0010 0011 0000 0000 0000 0000 0000 0000 0000

4 ΔI 0011 0000 0000 0000 0001 0000 0000 0010 0011 0000 0000 0000 0000 0000 0000 0000

Δk 0011 0000 0000 0000 1001 0000 0000 0010 0011 0000 0000 0000 0000 0000 0000 0000

5 ΔI 0001 0000 0000 0000 0001 0000 0000 0000 0001 0000 0000 0000 0000 0000 0000 0000

Δk 0001 0000 0000 0000 0111 0000 0000 0000 0001 0000 0000 0000 0000 0000 0000 0000

6 ΔI 0001 0000 0000 0000 0001 0000 0000 0000 0001 0000 0000 0000 0000 0000 0000 0000

Δk 0001 0000 0000 0000 0110 0000 0000 0000 0001 0000 0000 0000 0000 0000 0000 0000

7 ΔI 0001 0000 0000 0000 0001 0000 0000 0000 0001 0000 0000 0000 0000 0000 0000 0000

Δk 0001 0000 0000 0000 0101 0000 0000 0000 0001 0000 0000 0000 0000 0000 0000 0000

8 ΔI 0001 0000 0000 0000 0001 0000 0000 0000 0001 0000 0000 0000 0000 0000 0000 0000

Δk 0001 0000 0000 0000 0100 0000 0000 0000 0001 0000 0000 0000 0000 0000 0000 0000

9 ΔI 0100 0000 0000 0000 0000 0000 0000 0100 0100 0000 0000 0000 0000 0000 0000 0000

Δk 0010 0000 0000 0000 0000 0000 0000 0100 0100 0000 0000 0000 0000 0000 0000 0000

10 ΔI 0100 0000 0000 0000 0000 0000 0000 0100 0100 0000 0000 0000 0000 0000 0000 0000

Δk 0101 0000 0000 0000 0000 0000 0000 0100 0100 0000 0000 0000 0000 0000 0000 0000

Table 5. 8 characteristics which require the output difference of g
(1)
i (·) is 0x20

1 ΔI 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 1000 0000 0000 1000 0000 0000

Δk 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000 0000 0000

2 ΔI 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000 0000 0000

Δk 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000 0000 0000

3 ΔI 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000

Δk 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000 0000 0000

4 ΔI 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

Δk 0000 0000 1000 0000 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000 0000 0000

5 ΔI 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 1000 0000

Δk 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000

6 ΔI 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000

Δk 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000

7 ΔI 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

Δk 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000

8 ΔI 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000

Δk 0000 0000 0000 0000 0000 0000 1000 0000 0000 0000 1000 0000 0000 0000 0000 0000



156 S. Sun et al.

References

1. Biryukov, A., Velichkov, V.: Automatic search for differential trails in ARX ciphers.
In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 227–250. Springer,
Heidelberg (2014)

2. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems.
J. Cryptology 4(1), 3–72 (1991)

3. Dinur, I.: Cryptanalytic Time-Memory-Data Tradeoffs for FX-Constructions with
Applications to PRINCE and PRIDE. Cryptology ePrint Archive, Report 2014/656
(2014). http://eprint.iacr.org/2014/656

4. Zhao, J., Wang, X., Wang, M., Dong, X.: Differential Analysis on Block Cipher
PRIDE. IACR Cryptology ePrint Archive, Report 2014/525 (2014). http://eprint.
iacr.org/2014/525

5. Aoki, K., Kobayashi, K., Moriai, S.: Best differential characteristic search of FEAL.
In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 41–53. Springer, Heidelberg
(1997)

6. Ohta, K., Moriai, S., Aoki, K.: Improving the search algorithm for the best linear
expression. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 157–170.
Springer, Heidelberg (1995)

7. Albrecht, M.R., Driessen, B., Kavun, E.B., Leander, G., Paar, C., Yalçın, T.: Block
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Abstract. SPECK is a lightweight block cipher family designed by the
U.S. National Security Agency and published in 2013. Although several
cryptanalyses have been applied since then, no linear results have been
proposed. In this paper, we apply Wallén’s enumeration algorithm to
Matsui’s branch-and-bound framework and find the best correlations of
SPECK reduced to various rounds, i.e. full rounds of SPECK-32 and
7/ 5/ 4/ 4 rounds of SPECK-48/ 64/ 96/ 128. Since the best 10-round
correlation of SPECK-32 is as small as 2−17 already, SPECK-32 is immune
to the 1-dimensional linear cryptanalysis. Moreover, we present several
distinguishers and key recovery attacks as an application of the linear
trails. Besides the search for linear trails, we also discuss possible imple-
mentations of the Wallén’s algorithm and provide an implementation
which is faster than the straightforward implementations.

Keywords: Automatic search · Linear cryptanalysis · SPECK · Modulo
addition

1 Introduction

The SPECK family [1] is based on a Feistel-like structure and belongs to the
ARX ciphers, i.e. primitives composed of modulo addition, bitwise rotation and
bitwise XOR only. It is designed to provide optimal software performance on
resource constrained devices and is comprised of five variants according to the
block size. Despite of its simple structure, no cryptanalysis has threatened its
security and particularly no linear cryptanalysis has been proposed due to the
intrinsic property of modulo addition. The best previously published attacks are
the improved differential cryptanalysis provided by Dinur at SAC 2014 [4].

Generally, good linear trails/approximations should be found in advance in
order to launch linear attacks. A widely used approach to search for linear trails
of block ciphers is the general framework proposed by Matsui at EUROCRYPT
1994 [8] and it is straightforward to apply as long as the linear approximation
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table (LAT) of sub-components is obtained. However, the complexity to compute
the LAT varies greatly from cipher to cipher. In particular, the time/memory
complexity of addition modulo 2n is O(23n) for a plain enumeration which is
nearly impractical even with n = 16. Whereas the problem exists in the search
for differential trails as well, Biryukov [2] has recently proposed a technique
using partial differential distribution tables, called the threshold search, and suc-
cessfully conquered this problem. Fortunately, Wallén has already provided an
efficient algorithm to enumerate the LAT of modulo addition at FSE 2003 [10],
thus linear approximations could be generated on the fly until it is necessary. The
algorithm is further rediscovered in [9] using another approach and its efficiency
has been proved by the application to SNOW 2.0 [9] and SOSEMANUK [3].
In case of possible confusions, it should be noted that another algorithm which
determines the correlation of a given linear approximation with O(log(n)) time
was presented by Wallén in [10] as well. As the latter algorithm is never used in
this paper, the Wallén’s algorithm in this paper always refers to the algorithm
to enumerate the LAT.

By combining Wallén’s algorithm and Matsui’s branch-and-bound frame-
work, we are able to find the best linear trail of SPECK-32 of full rounds and
the best linear trail of SPECK-48/ 64/ 96/ 128 reduced to 7/ 5/ 4/ 4 rounds
respectively, shown in Tables 1 and 2 where “≥” denotes a lower bound of the best
correlation. Since the data complexity of a 1-dimensional linear cryptanalysis is
inversely proportional to the square of the correlation, the best 10-round corre-
lation in Table 1 suggests that SPECK-32 is secure under this method. Indeed,
the data complexity of a 1-dimensional linear cryptanalysis against SPECK-32
using the 10-round linear trail is 234, greater than the size of the code book which
is 232. Moreover, we provide several distinguishers and key recovery attacks as
an application of the linear trails. Yet, they do not pose a threat to SPECK
and are worse than the differential cryptanalyses of Dinur. After all, this is the
first linear cryptanalysis against the SPECK family, evaluating the security in a
different perspective.

We additionally find a set of necessary conditions for correlations to be non-
zero which allows us to develop an alternative implementation of Wallén’s algo-
rithm. According to experiments, this implementation is faster than straightfor-
ward implementations derived from the Wallén’s theorem and thus useful when
called for a tremendous number of times.

The rest of this paper is organized as follows. Section 2 introduces SPECK,
Matsui’s branch-and-bound framework and the previous Wallén’s results on lin-

Table 1. Best correlations for SPECK-32

Rounds(r) 1 2 3 4 5 6 7 8 9 10 11

|B[r]| 1 1 2−1 2−3 2−5 2−7 2−9 2−12 2−14 2−17 2−19

Rounds(r) 12 13 14 15 16 17 18 19 20 21 22

|B[r]| 2−20 2−22 2−24 2−26 2−28 2−30 2−34 2−36 2−38 2−40 2−42
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Table 2. Best correlations for SPECK48/ 64/ 96/ 128 (“≥” indicates a lower bound)

|B[r]| Rounds(r)

1 2 3 4 5 6 7 8 9 10 11 12

Block length 48 1 1 2−1 2−3 2−6 2−8 2−12 ≥ 2−17 ≥ 2−20 ≥ 2−25

64 1 1 2−1 2−3 2−6 ≥ 2−10 ≥ 2−14 ≥ 2−17 ≥ 2−19 ≥ 2−21 ≥ 2−25 ≥ 2−31

96 1 1 2−1 2−3 ≥ 2−6 ≥ 2−11

128 1 1 2−1 2−3 ≥ 2−6 ≥ 2−11

ear approximation of modulo addition. Section 3 describes the search for linear
trails on SPECK and the cryptanalytic results. Section 4 provides the alternative
implementation of Wallén’s algorithm. Finally, Sect. 5 draws conclusions.

2 Preliminaries

2.1 Notions

ai the i-th least-significant bit of word a, i.e. a = (an−1, · · · , a0)
1 the word (1, . . . , 1)
null a special word of length zero, i.e. ( )
‖ the concatenation operation
a · b the inner product of a, b
ab the bitwise AND of a, b
�
n

the addition modulo 2n and n is omitted if it is clear from the
context

�
n

the subtraction modulo 2n and n is omitted if it is clear from the
context

PrD (y) the probability to be y given the probability distribution function
D

2.2 Description of SPECK

SPECK is a family of block ciphers containing five variants according to the
block size which can be further divided into ten variants regarding the key size.
Each variant has two constants ς, τ depending on the block size, i.e. ς = 7, τ = 2
for SPECK-32 and ς = 8, τ = 3 otherwise. The i-th round function (Fig. 1) is
defined by

x [i + 1] ← ((x [i] ≫ ς) � y [i]) ⊕ k [i]
y [i + 1] ← (y [i] ≪ τ) ⊕ x [i + 1]

where x[i] and y[i] denote the left and right block of the input respectively, and
k[i] is the round-key. The key schedule algorithm is omitted since it is irrelevant
to the search, but it should be noted that the master key can be recovered with
2×key length/block size successive round-keys. For more details, please refer to [1].
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≫ ς

�
⊕

⊕
≪ τ

x[i]

x[i + 1] y[i + 1]

y[i]

k[i]

Fig. 1. The round function of SPECK

2.3 Automatic Search Framework

The following is an introduction to the general branch-and-bound search frame-
work proposed by Matsui at EUROCRYPT 1994 [8] in the language of linear
cryptanalysis.

To find the best correlation of r successive rounds B[r], the framework per-
forms a recursive search from the knowledge of shorter rounds B[1], . . . , B[r − 1]
and an initial estimate B̂[r] such that |B̂[r]| < |B[r]|. In the search phase, an
s-round trail is kept only if

|B[r − s]
s∏

i=1

c[i]| > |B̂[r]|, 1 ≤ s ≤ r

where c[i] denotes the correlation of the i-th round and B[0] is defined to be
1. B̂[r] is updated once the correlation of a r-round trail is better than B̂[r].
Therefore, B[r] = B̂[r] when the search completes. Algorithm 1 is an overview
where Get Mask is a cipher dependent function to extend linear trails.

2.4 Linear Approximation of Modulo Addition

In this subsection, we briefly introduce Wallén’s results on linear approximations
of addition modulo 2n in [10,11].

Definition 1 (Correlation). Let u be the output mask of the modulo addition
and v,w be the input masks. Then the correlation is defined by

c (u,v,w) � 2 Pr (u · (Z1 � Z2) ⊕ v · Z1 ⊕ w · Z2 = 0) − 1

where Z1,Z2 are independent uniform distributed random variables.
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Algorithm 1. Matsui Search for The Best Linear Trail
1: function Search(B, T = {}) � T = {T [1], . . . , T [s]} denotes the linear trail
2: r ← Sizeof(B) − 1, s ← Sizeof(T )
3: if s = r then
4: B̂[r] ←∏r

i=1 c[i]
5: else
6: for T ′ in Get Mask(T ) do � Extend T to (s + 1)-round linear trails
7: if |B[r − (s + 1)]

∏s+1
i=1 c′[i]| > |B̂[r]| then � c′[i] is the correlation of

T ′[i]
8: Search(B, T ′)
9: else

10: return � Pruning, supposing that T ′s are enumerated in decreasing
order

11: end if
12: end for
13: end if
14: end function

The Enumeration Algorithm.

Theorem 1. [9,11] Let S0(0, 0) � {null}, S0(n, k) = S1(n, k) � ∅ when k < 0
or k ≥ n > 0, and

S0(n, k) �
(
S0(n − 1, k) ‖ {0}) ∪ (

S1(n − 1, k − 1) ‖ {1, 2, 4, 7}) (1)

S1(n, k) �
(
S0(n − 1, k) ‖ {7}) ∪ (

S1(n − 1, k − 1) ‖ {0, 3, 5, 6}) (2)

otherwise, where S� ‖ Ω � {a ‖ b | a ∈ S�, b ∈ Ω}. Then

S(n, k) �
{
(u,v,w) | 4ui + 2vi + wi =si, i = 0, . . . , n − 1,

s ∈ S0(n, k) ∪ S1(n, k)
}

is the set of all masks such that c (u,v,w) = ±2−k.

Example 1. S0(n, 0) = {(0 · · · 0)}, S1(n, 0) = {(0 · · · 07)}, thus S(n, 0) = {((0 · · ·
0), (0 · · · 0), (0 · · · 0)), ((0 · · · 01), (0 · · · 01), (0 · · · 01))} is the set of all masks such
that c (u,v,w) = ±1.

As was pointed out by Wallén, the LAT of addition modulo 2n can be enumerated
using O(n) space via Theorem 1. A trivial implementation, called the top-down
method in this paper, can be deduced as shown in Fig. 2(a) and Appendix A.1.
However, it is inefficient in the sense that the same subtree will be generated
for multiple times. Another possible implementation is the bottom-up method
which is shown in Fig. 2(b) and Appendix A.2, i.e. starting from S0(0, 0) and then
computing S(1, 0) etc. While it also generates duplicate subtrees, surprisingly it
is faster than the top-down method. (See Fig. 5 for the comparison)
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Fig. 2. The computational process of S(4, 2)

Common Prefix Mask vs. Correlation. This subsection serves for the alter-
native implementation of the above algorithm and may be skipped safely to
understand the search.

Definition 2 (CPM). Let a, b ∈ F
n
2 . If n = 2, the common prefix mask of a, b

is defined by
cpm2 (a, b) = a1

If n > 2, the common prefix mask of a, b is defined by

cpmn (a, b) = an−1 ‖ cpmn−1

(
(an−2 ⊕ an−1 · bn−2) ‖ a′, 1 ‖ b′)

where a′ = (an−3, . . . , a0) and b′ = (bn−3, . . . , b0).1

Lemma 1. [10] Let u,v,w ∈ F
n
2 be defined as in Definition 1, φ = v ⊕ u,ϕ =

w ⊕ u be the input masks of the carry function, γ = v ⊕ w and δ = cpmn+1(0 ‖
u, (0 ‖ γ) ⊕ 1). Then

c (u,v,w) =

{
(−1)wt(δφϕ) 2−wt(δ), if φ = φδ and ϕ = ϕδ

0, otherwise

where wt is the hamming weight.

Example 2. Suppose u = (1100),v = w = (1000), then φ = ϕ = (0100),
γ = (0000) and δ = (0100). Thus, c(u,v,w) = −2−1.

3 Linear Results on SPECK

3.1 Details of the Search

In this section, we will concentrate on the design of Get Mask which will be used
to extend linear trails by Algorithm 1. Firstly, we recall the linear properties of
branch, bitwise XOR and bitwise rotation.
1 This definition is the method proposed by Wallén to calculate the CPM.
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Fig. 3. The spread of linear masks

Property 1. Let Γ 1,Γ 2,Γ 3 be linear masks defined by Fig. 3(a), then the corre-
lation is nonzero if and only if Γ 1 ⊕ Γ 2 ⊕ Γ 3 = 0.

Property 2. Let Γ 1,Γ 2,Γ 3 be linear masks defined by Fig. 3(b) then the corre-
lation is nonzero if and only if Γ 1 = Γ 2 = Γ 3.

Property 3. Let Γ 1,Γ 2 be linear masks defined by Fig. 3(c) then the correlation
is nonzero if and only if Γ 2 = Γ 1 ≪ t.

Let the linear masks of the i-th round be defined in Fig. 4. Accordingly,

u[i] = X[i + 1] ⊕ Y [i + 1]
v[i] = X[i] ≫ ς

w[i] = Y [i] ⊕ (Y [i + 1] ≫ τ)

Thereupon,

u[r] = X[r + 1] ⊕ Y [r + 1]
u[r − 1] = (v[r] ≪ ς) ⊕ w[r] ⊕ (Y [r + 1] ≫ τ)

and

u[i] = (v[i + 1] ≪ ς) ⊕ w[i + 1]⊕
((u[i + 1] ⊕ (v[i + 2] ≪ ς)) ≫ τ), 1 ≤ i ≤ r − 2

If we enumerate X[r+1] and Y [r+1] directly, the complexity is at least 22n and
it is a waste of efforts on masks with insignificant correlations at the initial stage.
Since X[r + 1],Y [r + 1] are uniquely determined by u[r],v[r],w[r],u[r − 1], it
is equivalently and more efficiently to enumerate u[r],v[r],w[r],u[r − 1] using
the Wallén’s algorithm. On the other hand, when 1 ≤ i ≤ r − 2, u[i] can be
deduced from the two following rounds. As a result, we have presented a method
to extend linear trails by appending one round to the front and Algorithm 2 is
the corresponding implementation of Get Mask.
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≫ ς

�
⊕

⊕
≪ τ

X[i]

v[i]

u[i]

X[i + 1] Y [i + 1]

Y [i]

w[i]

k[i]

Fig. 4. Masks of the i-th round

Algorithm 2. The Implementation of Get Mask

1: function Generate()
2: for k from 0 to n − 1 do
3: BU Generate(n, 000, k, not used, not used, not used) � bottom-up

generation of S(n, k) (see Appendix A.2) and 000 means totally free
4: end for
5: end function

6: function Generate(u)
7: for k from 0 to n − 1 do
8: BU Generate(n, 100, k, u, not used, not used) � bottom-up generation of

S(n, k) (see Appendix A.2) and 100 means u is supplied and fixed
9: end for

10: end function

11: function Get Mask(T ) � T = {T [1], . . . , T [s]} and T [r + 1 − i] = {u[i], v[i],
w[i]}

12: s ← Sizeof(T ), curr ← r − s, last ← curr + 1
13: if s < 2 then
14: for tuple in Generate() do
15: if u[r], u[r − 1] don’t equal 0 simultaneously then
16: T [s + 1] ← tuple and yield T
17: end if
18: end for
19: else
20: u[curr] ← (v[last] ≪ ς) ⊕ w[last] ⊕ ((u[last] ⊕ (v[last + 1] ≪ ς)) ≫ τ)
21: for tuple in Generate(u[curr]) do
22: T [s + 1] ← tuple and yield T
23: end for
24: end if
25: end function
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3.2 Search Results

The automatic search is applied to variants of all block sizes and the best corre-
lations are presented in Tables 1 and 2. Since the quotient of the best correlations
of successive rounds is quite regular, B̂[r] is set to 2−3B[r − 1] for most of the
cases. However, not all searches can finish in a reasonable time period due to
the huge size of the search space, even with a tight threshold (e.g. B̂[r] ≈ B[r]).
Thus, the “≥” in the Table 2 denotes the best correlation that has been found
in this case, i.e. a lower bound.

3.3 Linear Distinguishers

A Linear Distinguisher identifies the nonuniformity of a cipher and generally
converts to a hypothesis testing problem using statistical tools. In this and sub-
sequent sections, we make the common assumption that the correlation of a
linear approximation can be estimated by the correlation of a significant linear
trail. Moreover, the data complexity to distinguish two probability distributions
D and D0 is estimated by C (D,D0)

−1 (see [5] for example) with the capacity

C (D,D0) � ∑

y∈Y(PrD(y)−PrD0 (y))2/PrD0 (y)

Since

x[i] · X[i] ⊕ y[i] · Y [i] = (((x[i − 1] ≫ ς) � y[i − 1]) ⊕ k[i − 1]) ·
(X[i] ⊕ Y [i]) ⊕ y[i − 1] · (Y [i] ≫ τ)

and k[i − 1] · (X[i] ⊕ Y [i]) is constant, the absolute value of the correlation of

x[2] · X[2] ⊕ y[2] · Y [2] ⊕ x[2 + r] · X[2 + r] ⊕ y[2 + r] · Y [2 + r]

can be calculated from x[1],y[1],x[2+r],y[2+r] without k[1]. In other words, a
r-round linear trail can be transformed into a (r + 1)-round linear distinguisher
by appending one round to the front. Thus, we immediately obtain the results
in Table 3.

Table 3. Linear distinguishers against the SPECK family

Block length Trail length Correlation Rounds Data

32 9 2−14 10 228

48 9 2−20 10 240

64 11 2−25 12 250

64 12 2−31 13 262

96 6 2−11 7 222

128 6 2−11 7 222
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3.4 Key Recovery Attacks

For key recovery attacks, we adopt the χ2 extension of Matsui’s Algorithm 2
which was presented by Hermelin et al. in [6] and does not require the distribution
of the linear approximation for the correct key.

Let h(a) denote one plus the position of the most-significant one of a and
a� � 2h(a) − 1. Because

a �
n

b = c ⇒ a �
h(a)

b = ca� ⇒ aa� = ca� �
h(a)

b

y[i] = (x[i + 1] ⊕ y[i + 1]) ≫ τ

guessing k[i]v[i]� is enough to calculate

x[i] · X[i] ⊕ y[i] · Y [i] = (x[i] ≫ ς) · v[i] ⊕ y[i] · Y [i]

=
(
(x[i] ≫ ς)v[i]�

)
· v[i] ⊕ y[i] · Y [i]

=
((

x[i + 1]v[i]� ⊕ k[i]v[i]�
)

�
h(v[i])

y[i]
)

· v[i] ⊕ y[i]·

Y [i]

from x[i + 1],y[i + 1]. Therefore, if m rounds are appended to the back of a
r-round distinguisher, then only

h(v[r + 1]) + (m − 1)n = h((u[r] ⊕ Y [r + 1]) ≫ ς) + (m − 1)n
= h((u[r] ⊕ ((w[r] ⊕ Y [r]) ≪ τ)) ≫ ς) + (m − 1)n
= h((u[r] ⊕ ((w[r] ⊕ (u[r − 1] ⊕ (v[r] ≪ ς))) ≪ τ)) ≫

ς) + (m − 1)n

bits of key need to be guessed, i.e. k[r + 1]v[r + 1]�,k[r + 2], . . . ,k[r + m].
Consequently, we have Table 4 where

Time = Data × 2guessed bits + 2key length × β

Average Time = Time/1−α

and α, β are missing detection and false alarm probabilities respectively. More-
over, the results may be improved by trails of smaller h(v[r + 1]) or vectorial
linear approximations. But it seems unable to be improved by the similar tech-
nique of [4] since the size of the equation derived from a sub-cipher is one bit
instead of 2n bits in the case of 1-dimensional linear cryptanalysis.

4 Another Implementation of Wallén’s Algorithm

In this section, we present another implementation of Wallén’s algorithm, called
the CPM method, and compare the performance of different implementations.
Firstly, a set of necessary conditions for correlations to be non-zero needs to be
proved.
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Table 4. Key recovery attacks on the SPECK family

Block/
key
length

Trail
length
(this
paper/
[4])

Rounds
(this
paper/
[4]/Total)

Guessed
bits

α β Data (this
paper/ [4])

Time Average
time (this
paper/
[4])

32/ 64 9/ 10 12/ 14/ 22 13 + 16 2−1 2−6 230.8668/231 260.2164 261.2164/263

48/ 72 9/ 11 11/ 14/ 22 24 2−2 2−7 243.727/241 267.93 268.345/265

48/ 96 9/ 11 12/ 15/ 23 24 + 24 2−2 2−7 243.727/241 291.93 292.345/289

64/ 96 11/ 15 13/ 18/ 26 31 2−2 2−14 254.6279/261 285.7401 286.1551/293

64/ 96 12/ 15 14/ 18/ 26 31 2−1 2−2 262.7302/261 294.8714 295.8714/293

64/ 128 11/ 15 14/ 19/ 27 31 + 32 2−2 2−14 254.8029/261 2117.74 2118.155/2125

64/ 128 12/ 15 15/ 19/ 27 31 + 32 2−1 2−2 262.7302/261 2126.871 2127.871/2125

96/ 96 6/ 14 8/ 16/ 28 47 2−3 2−26 227.6463/285 274.7028 274.8954/285

96/ 144 6/ 14 9/ 17/ 29 47 + 48 2−3 2−26 227.6463/285 2122.703 2122.895/2133

128/ 128 6/ 15 8/ 17/ 32 63 2−5 2−36 228.2959/2113 292.6905 292.7363/2113

128/ 192 6/ 15 9/ 18/ 33 63 + 64 2−5 2−36 228.2959/2113 2156.69 2156.736/2177

128/ 256 6/ 15 7/ 19/ 34 63+2×64 2−5 2−36 228.2959/2113 2220.69 2220.736/2241

Lemma 2. Let u,γ, δ ∈ F
n
2 . Then

δ = cpmn+1 (0 ‖ u, (0 ‖ γ) ⊕ 1) ⇐⇒ δ = (u ⊕ (γ ⊕ 1) δ)  1

Proof. “=⇒”. From Definition 2, it is clear that δn−1 = 0 and δi = ui+1⊕(γi+1⊕
1)δi+1, i = 0, . . . , n − 2.

“⇐=”. Suppose δ′ = cpmn+1(0 ‖ u, (0 ‖ γ) ⊕ 1), then δ′
i = ui+1 ⊕ (γi+1 ⊕

1)δ′
i+1, i = 0, . . . , n − 2. Thus δi ⊕ δ′

i = (γi+1 ⊕ 1)(δi+1 ⊕ δ′
i+1), i = 0, . . . , n − 2.

Finally, δn−2 = δ′
n−2, . . . , δ0 = δ′

0 following from δn−1 = δ′
n−1 = 0. ��

Theorem 2. Let u,v,w,φ,ϕ, δ ∈ F
n
2 and φ = v ⊕ u,ϕ = w ⊕ u,γ = v ⊕ w.

Then
δ = cpmn+1(0 ‖ u, (0 ‖ γ) ⊕ 1), c(u,v,w) �= 0

if and only if

φ = φδ (3)
ϕ = ϕδ (4)

γ  1 = ((u ⊕ δ)  1) ⊕ δ (5)
0 = ((u  1) ⊕ δ) ((δ ⊕ 1)  1) (6)
0 = ((v  1) ⊕ δ) ((δ ⊕ 1)  1) (7)
0 = ((w  1) ⊕ δ) ((δ ⊕ 1)  1) (8)
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Proof. Proof of the only-if-part. Since c (u,v,w) �= 0, (3) and (4) follow from
Lemma 1 directly. According to Lemma 2, δ = (u ⊕ (γ ⊕ 1)δ)  1. Hence,

((u ⊕ δ)  1) ⊕ δ = ((u ⊕ δ) ⊕ (u ⊕ (γ ⊕ 1) δ))  1 = (γδ)  1
= ((φ ⊕ ϕ) δ)  1 = (φ ⊕ ϕ)  1 = γ  1

Accordingly,

0 = γ (δ ⊕ 1) = (γ (δ ⊕ 1))  1 = (γ  1) ((δ ⊕ 1)  1)
= (((u ⊕ δ)  1) ⊕ δ) ((δ ⊕ 1)  1)
= ((u  1) ⊕ δ) ((δ ⊕ 1)  1) ⊕ ((δ(δ ⊕ 1))  1)
= ((u  1) ⊕ δ) ((δ ⊕ 1)  1)

(3) implies (φ (δ ⊕ 1))  1 = 0, thus

((v  1) ⊕ δ) ((δ ⊕ 1)  1) =
(φ (δ ⊕ 1))  1 ⊕ ((u  1) ⊕ δ) ((δ ⊕ 1)  1) = 0

(8) holds similarly.
Proof of the if-part. From (5),

((u ⊕ δ)  1) ⊕ δ = γ  1 = (γδ)  1 = (u ⊕ γδ ⊕ δ ⊕ δ ⊕ u)  1
= ((u ⊕ (γ ⊕ 1) δ)  1) ⊕ ((δ ⊕ u)  1)

Therefore,

δ = (u ⊕ (γ ⊕ 1) δ)  1 = cpmn+1 (0 ‖ u, (0 ‖ γ) ⊕ 1)

and the conclusion is derived from Lemma 1. ��
We next discusses details of the CPM method under different scenarios.
Case 1: u is known and fixed. Therefore, δ should satisfy (6) and δi is determined
by δi+1 for 0 ≤ i < n − 1, i.e.

δi =

{
0, 1 if δi+1 = 1
ui+1 otherwise

Recall that δn−1 = 0, thus δ can be resolved bit by bit from left to right. But it
should be noted that δ needs to be enumerated in the order of hamming weight
according to Lemma 1. We adopt a deque (i.e. a data structure supporting push
and pop in both front and back directions) for this purpose, and δ is pushed to
the front whenever δi−1 = 0 and is pushed to the back otherwise. Details are
presented in Algorithm 3.

Given u and δ, the approximation is determined by two of v,w and γ.
Obviously, γ can be obtained from (5) except γ0. Thus, the input masks are
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Algorithm 3. Generate δ given u

1: function CPM Generate Delta(u)
2: deque ← {(0, n − 1)}
3: while deque is not empty do
4: (δ, i) ← Pop Front(deque)
5: if i �= 0 then
6: if δi = 1 then
7: Push Front(deque, (δ, i − 1))
8: Push Back(deque, (δ ⊕ (1 � (i − 1)), (i − 1)))
9: else if ui = 1 then

10: Push Back(deque, (δ ⊕ (1 � (i − 1)), (i − 1)))
11: else
12: Push Front(deque, (δ, i − 1))
13: end if
14: else
15: yield δ
16: end if
17: end while
18: end function

known once v or w is generated. Without loss of generality, we choose to generate
v and then calculate w as w = v ⊕ γ. According to (3),

vi = φi ⊕ ui =

{
0, 1 if δi = 1
ui otherwise

for 0 ≤ i < n. Hence, the bits of v where δ equals one need to be traversed
to generate all valid masks. As far as we know, the most efficient method to
generate all tuples is the Gray code strategy [7] which flips one bit only in each
iteration as shown in Appendix B. Also, this step may be customized for special
purpose, e.g. generating the tuples by hamming weight. See Algorithm 4 for
details.
Case 2: v or w is known and fixed. Suppose v is known, then δ should satisfy
(7). Thus, δ can be generated using the procedure CPM Generate Delta with
the parameter v and thereupon u can be determined by (6), i.e.

ui =

{
0, 1 if δi = 1
δi−1 otherwise

for 1 ≤ i ≤ n − 1. Since φ0δ0 = δ0 = φ0 = v0 ⊕ u0 according to (3), u0 = v0 if
δ0 = 0 and u0 ∈ {0, 1} otherwise. Finally, γ and w are determined by (5) and
(4) as in Case 1.
Case 3: u,v or u,w are known and fixed. Suppose u,v are known, so φ = v⊕u
is known as well. And δ should satisfy (3), (6) and (7). Notice that the conditions
may be incompatible and result in zero correlation. Indeed, since δn−1 = 0, δ
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Algorithm 4. The case that u is known and fixed
1: function CPM Generate Mask(u, δ)
2: γ ← ((u ⊕ (δ � 1)) ⊕ δ)δ � γ0 ∈ {0, 1} if δ0 = 1 and γ0 ∈ {0} otherwise
3: ones ← {0 ≤ i < n : δi = 1}
4: for v in Gray Visit(δ ⊕ u, ones) do
5: w ← v ⊕ γ
6: yield (u, v, w)
7: if δ0 = 1 then
8: yield (u, v, w ⊕ 1) � Equivalent to flipping γ0

9: end if
10: end for
11: end function

12: function Generate’(u)
13: for δ in CPM Generate Delta(u) do
14: CPM Generate Mask(u, δ)
15: end for
16: end function

exists only if φn−1 = 0. By (3) and (6), we have

δi =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, 1 if δi+1 = 1 and φi = 0
1 if δi+1 = 1 and φi = 1
1 if δi+1 = 0 and ui+1 = 1
0 if δi+1 = 0 and ui+1 = φi = 0
⊥ otherwise

for 0 ≤ i < n − 1 where ⊥ means no solution. Consequently, δ can be solved
using procedure similar to CPM Generate Delta. At last, γ is resolved by (5)
and w = v ⊕ γ.
Case 4: v,w are known. Thus, γ is fixed and δ should satisfy γδ = γ, (7) and
(8). Similar to Case 3, δ exists only if γn−1 = 0, and

δi =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, 1 if δi+1 = 1 and γi = 0
1 if δi+1 = 1 and γi = 1
1 if δi+1 = 0 and vi+1 = 1
0 if δi+1 = 0 and vi+1 = γi = 0
⊥ otherwise

for 0 ≤ i < n − 1. Then, u is calculated by (5) except that u0 needs to satisfy

(u0 ⊕ v0)δ0 = u0 ⊕ v0

(u0 ⊕ v0)δ0 = u0 ⊕ v0

Since γ0 = v0 ⊕ w0 = 1 ⇒ δ0 = 1, then u0 ∈ {0, 1} if δ0 = 1 and u0 = v0 = w0

otherwise.
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Case 5: All Masks are Free. In this case, δ is generated first according to its
hamming weight to ensure the order of approximations. Then, u is obtained as
in Case 2 without the constraint on u0. At last, the procedure CPM Generate
Mask takes over. Refer to Algorithm 5 for details.

Algorithm 5. The case that all masks are free
1: function Generate’()
2: for k from 0 to n − 1 do
3: for δ of weight k do
4: ones ← {0 < i < n : δi = 1} ∪ {0}
5: for u in Gray Visit(δ � 1, ones) do
6: CPM Generate Mask(u, δ)
7: end for
8: end for
9: end for

10: end function

Obviously, the CPM method is not as elegant as the top-down/bottom-up
method, but surprisingly it is faster for n ≥ 11 according to Fig. 5 (note that the
labels on y-axis increase exponentially). We believe better direct techniques to
instantiate Theorem 1 exists, but Generate′ is the most effective implementation
we can think of at present and is used to replace Generate in Algorithm 2.

Fig. 5. The performance of generating
⋃n−1

k=0 S(n, k) Platform: 32-bit Win7 with
Visual C++ 2015 CTP optimized by /Ox
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5 Conclusions

In this paper, we presented a search for linear trails on the SPECK family
via Wallén’s enumeration algorithm and Matsui’s branch-and-bound framework.
The best correlation of full rounds of SPECK-32 was found as well as reduced
rounds of other variants. According to the best 10-round correlation of SPECK-
32 which is 2−17, SPECK-32 is immune to the 1-dimensional linear cryptanalysis.
We further proposed the first linear distinguishers and key recovery attacks on
the SPECK family which do not threaten the security of SPECK. Finally, a
CPM implementation of the Wallén’s algorithm was presented which seems faster
than the straightforward instantiations, i.e. the top-down and the bottom-up
approaches.

Additional future work items include applying the threshold search [2] on
SPECK, mounting vectorial linear cryptanalyses and implementing the search
on other ARX ciphers.

A Straightforward Implementations of Wallén’s
Algorithm

The mode argument indicates whether u,v,w are fixed and used hereafter.

A.1 The Top-Down Method

1: function TDV(mode, ti+1, ti, i,u,v,w)
2: if u,v,w, ti+1, ti and mode are compatible then
3: modify the i-th bit of u,v,w and yield (u,v,w)
4: end if
5: end function

6: function TDD Generate(N,mode, t, n, rk,u,v,w)
7: if n = 0 then
8: if t = S0 then � S0(0, 0)
9: yield (u,v,w)

10: end if
11: return
12: end if
13: i ← N − n
14: if n �= rk or rk = 0 then
15: if n = N or t = S0 then � S0(n − 1, rk) ← S0(n, rk)
16: for u′,v′,w′ in TDV(mode, S0, S0, i,u,v,w) do
17: TDD Generate(N,mode, S0, n − 1, rk,u′,v′,w′)
18: end for
19: end if
20: if n = N or t = S1 then � S0(n − 1, rk) ← S1(n, rk)
21: for u′,v′,w′ in TDV(mode, S0, S1, i,u,v,w) do
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22: TDD Generate(N,mode, S0, n − 1, rk,u′,v′,w′)
23: end for
24: end if
25: end if
26: if rk �= 0 then
27: if n = N or t = S0 then � S1(n − 1, rk − 1) ← S0(n, rk)
28: for u′,v′,w′ in TDV(mode, S1, S0, i,u,v,w) do
29: TDD Generate(N,mode, S1, n − 1, rk − 1,u′,v′,w′)
30: end for
31: end if
32: if n = N or t = S1 then � S1(n − 1, rk − 1) ← S1(n, rk)
33: for u′,v′,w′ in TDV(mode, S1, S1, i,u,v,w) do
34: TDD Generate(N,mode, S1, n − 1, rk − 1,u′,v′,w′)
35: end for
36: end if
37: end if
38: end function

39: function TD Generate(n,mode, k,u,v,w) � generate S(n, k)
40: TDD Generate(n,mode, not used, n, k,u,v,w) � start from S(n, k)
41: end function

A.2 The Bottom-Up Method

1: function BUV(mode, ti, ti−1, i,u,v,w)
2: if u,v,w, ti, ti−1 and mode are compatible then
3: modify the i-th bit of u,v,w and yield (u,v,w)
4: end if
5: end function

6: function BUD Generate(N,mode, t, n, rk,u,v,w)
7: if n = N then � S(N, k)
8: yield (u,v,w) and return
9: end if

10: i ← N − 1 − n
11: if t = S0 then
12: if i = 0 or rk < i then � S0(n, k − rk) → S0(n + 1, k − rk)
13: for u′,v′,w′ in BUV(mode, S0, S0, i,u,v,w) do
14: BUD Generate(N,mode, S0, n + 1, rk,u′,v′,w′)
15: end for
16: end if
17: if i = 0 or rk �= 0 then � S0(n, k − rk) → S1(n + 1, k − rk)
18: for u′,v′,w′ in BUV(mode, S0, S1, i,u,v,w) do
19: BUD Generate(N,mode, S1, n + 1, rk,u′,v′,w′)
20: end for
21: end if
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22: else
23: if i = 0 or rk ≤ i then � S1(n, k − rk) → S0(n + 1, k − rk + 1)
24: for u′,v′,w′ in BUV(mode, S1, S0, i,u,v,w) do
25: BUD Generate(N,mode, S0, n + 1, rk − 1,u′,v′,w′)
26: end for
27: end if
28: if i = 0 or rk �= 1 then � S1(n, k − rk) → S1(n + 1, k − rk + 1)
29: for u′,v′,w′ in BUV(mode, S1, S1, i,u,v,w) do
30: BUD Generate(N,mode, S1, n + 1, rk − 1,u′,v′,w′)
31: end for
32: end if
33: end if
34: end function

35: function BU Generate(n,mode, k,u,v,w) � generate S(n, k)
36: BUD Generate(n,mode, S0, 0, k,u,v,w) � start from S0(0, k − k)
37: end function

B The Gray Visit Procedure

1: function Gray Visit(a, set)
2: s ← sizeof(set), buf ← {1, 2, . . . , s + 1}
3: while true do
4: yield a
5: j ← buf [1], buf [1] ← 1
6: if j = s + 1 then
7: return
8: end if
9: i ← j + 1, buf [j] ← buf [i], buf [i] ← i

10: flip a[set[j]]
11: end while
12: end function
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Abstract. We show that a distinguishing attack in the related key
model on an Even-Mansour block cipher can readily be converted into
an extremely efficient key recovery attack. Concerned ciphers include in
particular all iterated Even-Mansour schemes with independent keys. We
apply this observation to the Caesar candidate Prøst-OTR and are
able to recover the whole key with a number of requests linear in its size.
This improves on recent forgery attacks in a similar setting.

Keywords: Even-Mansour · Related-key attacks · Prøst-OTR

1 Introduction

The Even-Mansour scheme is arguably the simplest way to construct a block
cipher from publicly available components. It defines the encryption E((k1, k0), p)
of the plaintext p under the (possibly equal) keys k0 and k1 as P(p ⊕ k0) ⊕ k1,
where P is a public permutation. Even and Mansour proved in 1991 that for a
permutation of size n, the probability of recovering the keys is upper-bounded
by O(DT · 2−n) when the attacker considers the permutation as a black box,
where D is the data complexity and T is the time complexity of the attack [7].
Although of considerable interest, this bound also shows at the same time that
the construction is not ideal, as one gets security only up to O(2

n
2 ) queries,

which is less than the O(2n) one would expect for an n-bit block cipher. For
this reason, much later work investigated the security of variants of the Even-
Mansour cipher. A simple one is the iterated Even-Mansour scheme with inde-
pendent keys and independent permutations, with its r-round version defined
as IEMr((kr, kr−1, . . . , k0), p) := Pr−1(Pr−2(. . . P0(p ⊕ k0)⊕ k1) . . .)⊕ kr, and it
has been established that this construction is secure up to O(2

rn
r+1 ) queries [3].

On the other hand, in a related-key model, the same construction lends itself
to trivial distinguishing attacks, and one must consider alternatives if security
in this model is necessary. Yet until the recent work of Cogliati and Seurin [4]
and Farshim and Procter [8], no variant of the Even-Mansour construction was
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proved to be secure in the related-key model. This is not the case anymore and
it has now been proven that one can reach a non-trivial level of related-key secu-
rity for IEMr starting from r = 3 when using keys linearly derived from a single
master key (instead of using independent keys), or even when r = 1 when this
derivation is non-linear and meets some conditions. While related-key analysis
obviously gives much more power to the attacker than the single-key setting, it
is a widely accepted model that may provide useful results on primitives stud-
ied in a general context, especially as related keys may naturally arise in some
protocols.

Our Contribution. We show that the distinguishing attacks on Even-Mansour
ciphers in a related-key model can be extended to much more powerful key-
recovery attacks by considering modular additive differences instead of XOR dif-
ferences. This applies both to the trivial distinguishers on iterated Even-Mansour
with independent keys and to the more complex distinguisher of Cogliati and
Seurin for 2-round Even-Mansour with a linear key-schedule. While these obser-
vations are somewhat elementary, they eventually lead to a key-recovery attack
on the authenticated-encryption scheme and Caesar candidate Prøst-OTR
in a related-key model. This improves on the recent work from FSE 2015 of
Dobraunig, Eichlseder and Mendel who use similar methods but only produce
forgeries [5].

2 Notation

We use || to denote string concatenation, αi with i an integer to denote the
string made of the concatenation of i copies of the character α, and α∗ to denote
any string of the set {αi, i ∈ N}, α0 denoting the empty string ε. For any string
s, we use s[i] to denote its ith element (starting from zero).

We also use Δn
i to denote the string 0n−i−1||1||0i−1. The superscript n will

always be clear from the context and therefore omitted.
Finally, we identify strings of length n over the binary alphabet {0, 1} with

elements of the vector-space F
n
2 and with the binary representation of elements

of the group Z/2n
Z. The addition operation on these structures are respectively

denoted by ⊕ (bitwise exclusive or (XOR)) and + (modular addition).

3 Generic Related-Key Key-Recovery
Attacks on Even-Mansour Ciphers

Since the work of Bellare and Kohno [1], it is well known that no block cipher
can resist related-key attacks (RKA) when an attacker may request encryptions
under related keys using two relation classes. A simple example showing why this
cannot be the case is to consider the classes φ⊕(k) and φ+(k) of keys related
to k by the XOR and the modular addition of any constant chosen by the
attacker respectively. If we have access to (related-key) encryption oracles E(k, ·),



From Distinguishers to Key Recovery: Improved Related-Key Attacks 179

E(φ⊕(k), ·) and E(φ+(k), ·) for the block cipher E with κ-bit keys, we can easily
learn the value of the bit k[i] of k by comparing the results of the queries E(k +
Δi, p) and E(k ⊕ Δi, p). For i < κ − 1, the plaintext p is encrypted under the
same key if k[i] = 0, then resulting in the same ciphertext, and is encrypted
under different keys if k[i] = 1, then resulting in different ciphertexts with an
overwhelming probability. Doing this test for every bit of k thus allows to recover
the whole key with a complexity linear in κ, except its most significant bit.
Indeed, the carry of a modular addition on this bit never propagates and thus
there will never be a difference between the related keys. This key bit can of
course easily be recovered once all the others have been determined.

In the same paper, Bellare and Kohno also show that no such trivial generic
attack exists when the attacker is restricted to using only one of the two classes
φ⊕ or φ+, and they prove that an ideal cipher is in this case resistant to RKA.
Taken together, these results mean in essence that a related-key attack on a
block cipher E using both classes φ⊕(k) and φ+(k) does not say much on E , as
nearly all ciphers fall to an attack in the same model. On the other hand, an
attack using either of φ⊕ or φ+ is meaningful, because an ideal cipher is secure
in that case.

3.1 Key-Recovery Attacks on r-round IEM with Independent Keys

Going back to Even-Mansour ciphers, we explicit the trivial related-key distin-
guishers mentioned in the introduction. These distinguishers exist for r-round
iterated Even-Mansour block ciphers with independent keys, for any value of r.
As they only use keys related with, say, the φ⊕ class, they are therefore mean-
ingful when considering the related-key security of IEM.

From the very definition of IEMr, it is obvious to see that the two values
E((kr−1, kr−2, . . . , k0), p) and E((kr−1, kr−2, . . . , k0 ⊕ δ), p ⊕ δ) are equal for any
difference δ when E = IEMr and that this equality does not hold in general,
thence allowing to distinguish IEMr from an ideal cipher.

We now show how these distinguishers can be combined with the two-class
attack of Bellare and Kohno in order to extend it to a very efficient key-recovery
attack. We give a description in the case of one-round Even-Mansour, but it can
easily be extended to an arbitrary r. The attack is very simple and works as
follows: consider again E((k1, k0), p) = P(p ⊕ k0) ⊕ k1; one can learn the value
of the bit k0[i] by querying E((k1, k0), p) and E((k1, k0 + Δi), p ⊕ Δi) and by
comparing their values. These differ with overwhelming probability if k0[i] = 1
and are equal otherwise.

A similar attack works on the variant of the (iterated) Even-Mansour cipher
that uses modular addition instead of XOR for the combination of the key
with the plaintext. This variant was first analyzed by Dunkelman, Keller and
Shamir [6] and offers the same security bounds as the original Even-Mansour
cipher. An attack in that case works similarly by querying e.g. E((k1, k0),Δi)
and E((k1, k0 ⊕ Δi), 0κ).

Both attacks use a single difference class for the related keys (either φ⊕

or φ+), and they are therefore meaningful as related-key attacks. They simply
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emulate the attack that uses both classes simultaneously by taking advantage of
the fact that the usage of key material is very simple in Even-Mansour ciphers.
Finally, we can see that in the particular case of a one-round construction, the
attack still works if one chooses the keys k1 and k0 to be equal.

3.2 Extension to 2-Round Even-Mansour with a Linear
Key Schedule

As has been shown by Cogliati and Seurin [4], it is also possible to very efficiently
distinguish the 2-round Even-Mansour with related keys, even when the keys are
equal or derived from a master key by a linear key schedule. Similarly as for IEM,
we can adapt the distinguisher and transform it into a key-recovery attack. The
idea remains the same: one replaces the φ⊕ class of the original distinguisher with
φ+, which makes its success conditioned on the value of a few key bits, hence
allowing their recovery. We give the description of our modified distinguisher for
E(k, p) := P(P(k ⊕ p) ⊕ k) ⊕ k:

1. Query y1 := E(k + Δ1, x1)
2. Set x2 to x1 ⊕ Δ1 ⊕ Δ2 and query y2 := E(k + Δ2, x2)
3. Set y3 to y1 ⊕ Δ1 ⊕ Δ3 and query x3 := E−1(k + Δ3, y3)
4. Set y4 to y2 ⊕ Δ1 ⊕ Δ3 and query x4 := E−1(k + (Δ1 ⊕ Δ2 ⊕ Δ3), y4)
5. Test if x4 = x3 ⊕ Δ1 ⊕ Δ2

If the test is successful, it means that with overwhelming probability the key
bits at the positions of the differences Δ1, Δ2, Δ3 are all zero, as in that case
k + Δi = k ⊕ Δi and the distinguisher works “as intended”, and as otherwise
at least one uncontrolled difference goes through P or P−1. It is possible to
restrict oneself to using differences in only two bits for the Δis, and as soon as
two such zero bits have been found (which happens after an expected four trials
for random keys), the rest of the key bits can be tested one by one.

We conclude this short section by showing why the test of line 5 is successful
when k+Δi = k⊕Δi, but refer to Cogliati and Seurin for a complete description
of their distinguisher, including the general case of distinct permutations and
keys linearly derived from a master key (this only requires slight modifications
to our simplified formulation).

For the sake of clarity, we write k ⊕ Δi for k + Δi, as they are equal by
hypothesis. By definition, y1 = P(P(x1 ⊕ k ⊕ Δ1) ⊕ k ⊕ Δ1) ⊕ k ⊕ Δ1 and
y3 = P(P(x1 ⊕ k ⊕ Δ1) ⊕ k ⊕ Δ1) ⊕ k ⊕ Δ1 ⊕ Δ1 ⊕ Δ3 which simplifies to
P(P(x1 ⊕k⊕Δ1)⊕k⊕Δ1)⊕k⊕Δ3. This yields the following expression for x3:

x3 = P−1(P−1(P(P(x1 ⊕ k ⊕ Δ1) ⊕ k ⊕ Δ1) ⊕ k ⊕ Δ3 ⊕ k ⊕ Δ3)
⊕ k ⊕ Δ3) ⊕ k ⊕ Δ3

= P−1(P−1(P(P(x1 ⊕ k ⊕ Δ1) ⊕ k ⊕ Δ1)) ⊕ k ⊕ Δ3) ⊕ k ⊕ Δ3

= P−1(P(x1 ⊕ k ⊕ Δ1) ⊕ k ⊕ Δ1 ⊕ k ⊕ Δ3) ⊕ k ⊕ Δ3

= P−1(P(x1 ⊕ k ⊕ Δ1) ⊕ Δ1 ⊕ Δ3) ⊕ k ⊕ Δ3
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Similarly, y2 = P(P(x1 ⊕ k ⊕ Δ1) ⊕ k ⊕ Δ2) ⊕ k ⊕ Δ2 and y4 = P(P(x1 ⊕ k ⊕
Δ1) ⊕ k ⊕ Δ2) ⊕ k ⊕ Δ2 ⊕ Δ1 ⊕ Δ3, which yields the following expression for x4:

x4 = P−1(P−1(P(P(x1 ⊕ k ⊕ Δ1) ⊕ k ⊕ Δ2) ⊕ k ⊕ Δ2 ⊕ Δ1 ⊕ Δ3

⊕ k ⊕ Δ1 ⊕ Δ2 ⊕ Δ3) ⊕ k ⊕ Δ1 ⊕ Δ2 ⊕ Δ3) ⊕ k ⊕ Δ1 ⊕ Δ2 ⊕ Δ3

= P−1(P−1(P( P(x1 ⊕ k ⊕ Δ1) ⊕ k ⊕ Δ2)) ⊕ k ⊕ Δ1 ⊕ Δ2 ⊕ Δ3)
⊕ k ⊕ Δ1 ⊕ Δ2 ⊕ Δ3

= P−1(P(x1 ⊕ k ⊕ Δ1) ⊕ k ⊕ Δ2 ⊕ k ⊕ Δ1 ⊕ Δ2 ⊕ Δ3)
⊕ k ⊕ Δ1 ⊕ Δ2 ⊕ Δ3

= P−1(P(x1 ⊕ k ⊕ Δ1) ⊕ Δ1 ⊕ Δ3) ⊕ k ⊕ Δ1 ⊕ Δ2 ⊕ Δ3

From the final expressions of x3 and x4, we see that their XOR difference is
indeed Δ1 ⊕ Δ2.

4 Application to Prøst-OTR

We apply the simple generic key-recovery attack to the Caesar candidate
Prøst-OTR, which is an authenticated-encryption scheme member of the
Prøst family [10]. This family is based on the Prøst permutation and defines
three schemes instantiating as many modes of operation, namely COPA, OTR
and APE. Only the latter can readily be instantiated with a permutation, and
both COPA and OTR rely on a keyed primitive. For that purpose they use a
block cipher defined as a one-round Even-Mansour cipher with identical keys
E(k, p) := P(p ⊕ k) ⊕ k with the Prøst permutation as P. We will denote this
cipher as Prøst/SEM.

Although the attack of Sect. 3 could readily be applied to Prøst/SEM, this
cipher is only meant to be embedded into a specific instantiation of a mode such
as OTR, and attacking it out of context may not be relevant to its intended use.
Hence we must be able to mount an attack on Prøst-COPA or Prøst-OTR
as a whole for it to be really significant, which is precisely what we describe now
for the latter.

Because our attack solely relies on the Even-Mansour structure of the cipher,
we refer the interested reader to the submission document of Prøst for the
definition of its permutation. The same goes for the OTR mode [12], as we
only need to focus on a small part to describe the attack. Consequently, we
just describe how the encryption of the first block of plaintext is performed in
Prøst-OTR.

The mode of operation OTR is nonce-based; it takes as input a key k, a nonce
n, a message m, (possibly empty) associated data a, and produces a ciphertext c
corresponding to the encryption of the message with k, and a tag t authenticating
m and a together with the key k. It is important for the security of the mode
to ensure that one cannot encrypt twice using the same nonce. However, there
are no specific restriction as to their value, and we consider throughout that one
can freely choose them.
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EK

m1

⊕
�′

m2

⊕

EK⊕
�′

�

⊕

c1 c2

Fig. 1. The encryption of the first two blocks of message in Prøst-OTR.

The encryption of the first block of ciphertext c1 by Prøst-OTR is defined
as a function F(k, n,m1,m2) of k, n, and the first two blocks of plaintext m1 and
m2: let � := E(k, n||10∗) be the encryption of the padded nonce and �′ := π(�),
with π a linear permutation (the multiplication by 4 in some finite field), then
c1 is simply equal to E(k, �′ ⊕ m1) ⊕ m2. We show this schematically along with
the encryption of the second block in Fig. 1. Let us now apply the attack from
Sect. 3.

Step 1: Recovering the Most Significant Half of the Key. It is straight-
forward to see that one can recover the value of the bit k[i] by performing only
two queries with related keys and different nonces and messages. One just has to
compare c1 = F(k, n,m1,m2) and ĉ1 = F(k +Δi, n⊕Δi,m1 ⊕Δi ⊕π(Δi),m2).
Indeed, if k[i] = 0, then the value �̂ obtained in the computation of ĉ1 is equal
to � ⊕ Δi and �̂′ = �′ ⊕ π(Δi), hence ĉ1 = c1 ⊕ Δi. If k[i] = 1, the latter equality
does not hold with overwhelming probability.

Yet this does not allow to recover the whole key because the nonce in Prøst-
OTR is restricted to a length half of the width of the block cipher E (or equiva-
lently of the underlying Prøst permutation), i.e. κ

2 . It is then possible to recover
only half of the bits of k using this procedure, as one cannot introduce appropri-
ate differences in the computation of � for the other half. The targeted security
of the whole primitive being precisely κ

2 because of the generic single key attacks
on Even-Mansour, one does not make a significant gain by recovering only half
of the key. Even though, it should still be noted that this yields an attack with
very little data requirements and with the same time complexity as the best
point on the tradeoff curve of generic attacks, which in that case has a much
higher data complexity of 2

κ
2 .

Step 2: Recovering the Least Significant Half of the Key. Even though
the generic attack in its most simple form does not allow to recover the full key



From Distinguishers to Key Recovery: Improved Related-Key Attacks 183

of Prøst-OTR, we can use the fact that the padding of the nonce is done on the
least significant bits to our advantage, and by slightly adapting the procedure
we can iteratively recover the value of the least significant half of the key with
no more effort than for the most significant half.

Let us first show how we can recover the most significant bit of the least
significant half of the key k[κ/2 − 1] (i.e. the first bit for which we cannot use
the procedure of Step 1) after a single encryption by E .

We note kMSB the (by now known) most significant half of the key k. To
mount the attack, one queries E(k−kMSB +Δκ/2−1, p ⊕Δκ/2) and E(k−kMSB −
Δκ/2−1, p). We can see that the inputs to P in these two cases are equal iff
k[κ/2 − 1] = 1. Indeed, in that case, the carry in the addition (k−kMSB)+Δκ/2−1

propagates by exactly one position and is “cancelled” by the difference in p, and
there is no carry propagation in (k − kMSB) − Δκ/2−1. The result of the two
queries are therefore equal to C ⊕ (k − kMSB + Δκ/2−1) = C ⊕ (k ⊕ kMSB ⊕
Δκ/2−1 ⊕ Δκ/2) and C ⊕ (k − kMSB − Δκ/2−1) = C ⊕ (k ⊕ kMSB ⊕ Δκ/2−1) with
C = P(p⊕ (k −kMSB −Δκ/2−1)). Consequently, the XOR difference between the
two results is known and equal to Δκ/2. If on the other hand k[κ/2 − 1] = 0, the
carry in (k − kMSB) − Δκ/2−1) propagates all the way to the most significant bit
of k, whereas only two differences are introduced in the input to P in the first
query. This allows to distinguish between the two cases and thus to recover the
value of this key bit.

Once the value of k[κ/2 − 1] has been learned, one can iterate the process
to recover the remaining bits of k. The only subtlety is that we want to ensure
that if there is a carry propagation in (k −kMSB)+Δκ/2−1−i (resp. (k −kMSB)−
Δκ/2−1−i), it should propagate up to kκ/2, the position where we cancel it with
an XOR difference (resp. up to the most significant bit); this can easily be
achieved by adding two terms to both keys. Let us define γi as the value of the key
k only on positions κ/2 − 1 . . . κ/2 − i, completed with zeros left and right; that
is γi[j] = k[j] if κ/2 − 1 ≥ j ≥ κ/2−i, and γi[j] = 0 otherwise. Let us also define
γ̃i as the binary complement of γi on its non-zero support; that is γ̃i[j] = k̃[j] if
κ/2 − 1 ≥ j ≥ κ/2−i, and γ̃i[j] = 0 otherwise. The modified queries then become
E(k − kMSB + Δκ/2−1−i + γ̃i, p ⊕ Δκ/2) and E(k − kMSB − Δκ/2−1−i − γi, p), for
which the propagation of the carries is ensured. Note that the difference between
the results of these two queries when k[κ/2 − 1 − i] = 1 is independent of i and
always equal to Δκ/2.

We conclude by showing how to apply this procedure to Prøst-OTR. For the
sake of readability, let us denote by Δ+

i and Δ−
i the complete modular differences

used to recover one less significant bit k[i]. We then simply perform the two
queries F(k+Δ+

i , n⊕Δκ/2,m1⊕Δκ/2,m2) and F(k+Δ−
i , n,m1⊕π(Δκ/2),m2),

which differ by Δκ/2 iff ki is one, with overwhelming probability.
All in all, one can retrieve the whole key of size κ using only 2κ related-key

encryption requests, ignoring everything in the output (including the tag) apart
from the value of the first block of ciphertext. We give the entire procedure to
do so in Algorithm1. Note that it makes use of a procedure Refresh which
picks fresh values for two message words and (most importantly) for the nonce.
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Because the attack is entirely practical, it can easily be tested. We give an
implementation of the attack for a 64-bit toy cipher in the AppendixA1.

Algorithm 1. Related-key key recovery for Prøst-OTR

Input: Oracle access to F(k, ·, ·, ·) and F(φ+(k), ·, ·, ·) for a fixed (unknown)
key k of even length κ

Output: Two candidates for the key k
1 k′ := 0κ

2 for i := κ − 2 to κ/2 do
3 Refresh(n, m1, m2)
4 x := F(k, n, m1, m2)
5 y := F(k + Δi, n ⊕ Δi, m1 ⊕ Δi ⊕ π(Δi), m2)
6 if x = y ⊕ Δi then
7 k′[i] := 0

8 else
9 k′[i] := 1

10 for i := κ/2 − 1 to 0 do
11 Refresh(n, m1, m2)

12 x := F(k + Δ+
i , n ⊕ Δκ/2, m1 ⊕ Δκ/2, m2)

13 y := F(k + Δ−
i , n, m1 ⊕ π(Δκ/2), m2)

14 if x = y ⊕ Δκ/2 then
15 k′[i] := 1

16 else
17 k′[i] := 0

18 k′′ := k′

19 k′′[κ − 1] := 1
20 return (k′, k′′)

Remark. If the padding of the nonce in Prøst-OTR were done on the most
significant bits, no attack similar to Step 2 could recover the corresponding key
bits: the modular addition is a triangular function (meaning that the result of
a + b on a bit i only depends on the value of bits of position less than i in a and
b), and therefore no XOR in the nonce in the less significant bits could control
modular differences introduced in the padding in the more significant bits. An
attack in that case would thus most likely be applicable to general ciphers when
using only the φ+ class, and it is proven that no such attack is efficient. However,
one could always imagine using a related-key class using an addition operation
reading the bits in reverse. While admittedly unorthodox, this would not result
in a stronger model than using φ+, strictly speaking.

1 The code is also available at https://github.com/P1K/EMRKA.

https://github.com/P1K/EMRKA
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Discussion. In a recent independent work, Dobraunig, Eichlseder and Mendel
use similar methods to produce forgeries for Prøst-OTR by considering related
keys with XOR differences [5]. On the one hand, one could argue that the class
φ⊕ is more natural than φ+ and more likely to arise in actual protocols, which
would make their attack more applicable than ours. On the other hand, an ideal
cipher is expected to give a similar security against RKA using either class, which
means that our model is not theoretically stronger than the one of Dobraunig et
al., while resulting in a much more powerful key recovery attack.

5 Conclusion

We made a simple observation that allows to convert related-key distinguishing
attacks on some Even-Mansour ciphers into much more powerful key-recovery
attacks, and we used this observation to derive an extremely efficient key-recovery
attack on the Prøst-OTR Caesar candidate.

Primitives based on the Even-Mansour construction are quite common, and it
is natural to wonder if we could mount similar attacks on other ciphers. A natural
first target would be Prøst-COPA which is also based on the Prøst/SEM
cipher. However, in this mode, encryption and tag generation depend on the
encryption of a fixed plaintext � = E(k, 0) which is different for different keys
with overwhelming probability and makes our attack fail. The forgery attacks
of Dobraunig et al. seem to fail in that case for the same reason. Keeping with
Caesar candidates, another good target would be Minalpher [14], which also
uses a one-round Even-Mansour block cipher as one of its components. The
attack also fails in this case, though, because the masking key used in the Even-
Mansour cipher is derived from the master key in a highly non-linear way. In
fact, Mennink recently proved that both ciphers are resistant to related-key
attacks [11]. Finally, leaving aside authentication and going back to traditional
block ciphers, we could consider designs such as LED [9]. The attack also fails
in that case, however, because the cipher uses an iterated construction with at
least 8 rounds and only one (or two) keys.

This lack of other results is not very surprising, as we only improve existing
distinguishing attacks, and this improvement cannot be used without a distin-
guisher as its basis. Therefore, any primitive for which resistance to related-key
attacks is important should already be resistant to the distinguishing attacks
and thus to ours. Yet it would be reasonable to allow the presence of a simple
related-key distinguisher when designing a primitive, as this a very weak type
of attack (in fact, this is for instance the approach taken by PRINCE, among
others [2], which admits a trivial distinguisher due to its FX construction). What
we have shown is that one must be extremely careful when contemplating such
a decision for Even-Mansour ciphers, as in that case it is actually equivalent to
allowing key recovery, the most powerful of all attacks.

Acknowledgements. I am grateful to Jérémy Jean, Brice Minaud and the anonymous
reviewers for their comments on this work.
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A Proof-of-concept Implementation for a 64-Bit
Permutation

We give the source of a C program that recovers a 64-bit key from a design
similar to Prøst-OTR where the permutation has been replaced by a small
ARX, for compactness. For the sake of simplicity, we do not ensure that the
nonce does not repeat in the queries.
This code is also available at https://github.com/P1K/EMRKA.

#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>

#define ROL32(x,r) (((x) << (r)) ^ ((x) >> (32 - (r))))
#define MIX(hi,lo,r) { (hi) += (lo); (lo) = ROL32((lo),(r)) ; (lo) ^= (hi)

; }

#define TIMES2(x) ((x & 0x8000000000000000ULL) ? ((x) << 1ULL) ^
0x000000000000001BULL : (x << 1ULL))

#define TIMES4(x) TIMES2(TIMES2((x)))

#define DELTA(x) (1ULL << (x))
#define MSB(x) ((x) & 0xFFFFFFFF00000000ULL)
#define LSB(x) ((x) & 0x00000000FFFFFFFFULL)

/* Replace arc4random () by your favourite PRNG */

/* 64-bit permutation using Skein ’s MIX */
uint64_t p64(uint64_t x)
{

uint32_t hi = x >> 32;
uint32_t lo = LSB(x);
unsigned rcon [8] = {1, 29, 4, 8, 17, 12, 3, 14};

for (int i = 0; i < 32; i++)
{

MIX(hi , lo , rcon[i
lo += i;

}

return (((( uint64_t)hi) << 32) ^ lo);
}

uint64_t em64(uint64_t k, uint64_t p)
{

return p64(k ^ p) ^ k;
}

uint64_t potr_1(uint64_t k, uint64_t n, uint64_t m1 , uint64_t m2)
{

uint64_t l, c;

l = TIMES4(em64(k, n));
c = em64(k, l ^ m1) ^ m2;

return c;
}

uint64_t recover_hi(uint64_t secret_key)
{

uint64_t kk = 0;

for (int i = 62; i >= 32; i--)
{

uint64_t m1 , m2 , c11 , c12 , n;

https://github.com/P1K/EMRKA
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m1 = ((( uint64_t)arc4random ()) << 32) ^ arc4random ();
m2 = ((( uint64_t)arc4random ()) << 32) ^ arc4random ();
n = ((( uint64_t)arc4random ()) << 32) ^ 0x80000000ULL;
c11 = potr_1(secret_key , n, m1 , m2);
c12 = potr_1(secret_key + DELTA(i), n ^ DELTA(i), m1 ^ DELTA(i) ^

TIMES4(DELTA(i)), m2);

if (c11 != (c12 ^ DELTA(i)))
kk |= DELTA(i);

}

return kk;
}

uint64_t recover_lo(uint64_t secret_key , uint64_t hi_key)
{

uint64_t kk = hi_key;

for (int i = 31; i >= 0; i--)
{

uint64_t m1 , m2 , c11 , c12 , n;
uint64_t delta_p , delta_m;

m1 = ((( uint64_t)arc4random ()) << 32) ^ arc4random ();
m2 = ((( uint64_t)arc4random ()) << 32) ^ arc4random ();
n = ((( uint64_t)arc4random ()) << 32) ^ 0x80000000ULL;

delta_p = DELTA(i) - MSB(kk) + (((LSB(~kk)) >> (i + 1)) << (i + 1)
);

delta_m = DELTA(i) + MSB(kk) + LSB(kk);
c11 = potr_1(secret_key + delta_p , n ^ DELTA (32), m1 ^ DELTA (32),

m2);
c12 = potr_1(secret_key - delta_m , n, m1 ^ TIMES4(DELTA (32)), m2);

if (c11 == (c12 ^ DELTA (32)))
kk |= DELTA(i);

}

return kk;
}

int main()
{

uint64_t secret_key = ((( uint64_t)arc4random ()) << 32) ^ arc4random ();
uint64_t kk1 = recover_lo(secret_key , recover_hi(secret_key));
uint64_t kk2 = kk1 ^ 0x8000000000000000ULL ;

printf("The real key is %016llx , the key candidates are %016llx , %016
llx ", secret_key , kk1 , kk2);

if ((kk1 == secret_key) || (kk2 == secret_key))
printf("SUCCESS !\n");

else
printf("FAILURE !\n");

return 0;
}
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Abstract. In this work we introduce Oblivious Password based Authen-
ticated Key Exchange (O-PAKE) and show how ordinary PAKE pro-
tocols can be transformed into O-PAKE. O-PAKE allows a client that
holds multiple passwords and is registered with one of them at some
server to use any subset of his passwords in a PAKE session with that
server. The term oblivious is used to emphasise that the only informa-
tion leaked to the server is whether the one password used on the server
side matches any of the passwords input by the client. O-PAKE pro-
tocols can be used to improve the overall efficiency of login attempts
using PAKE protocols in scenarios where users are not sure (e.g. no
longer remember) which of their passwords has been used at a particular
web server. Using special processing techniques, our O-PAKE compiler
reaches nearly constant run time on the server side, independent of the
size of the client’s password set; in contrast, a naive approach to run a
new PAKE session for each login attempt would require linear run time
for both parties. We prove security of the O-PAKE compiler under stan-
dard assumptions using the latest game-based PAKE model by Abdalla,
Fouque and Pointcheval (PKC 2005), tailored to our needs. We identify
the requirements that standard PAKE protocols must satisfy in order to
suit our O-PAKE transformation and give two examples.

1 Introduction

Authentication with passwords is the most common (and perhaps most critical)
authentication mechanism on the modern Internet. The dominating approach
today is when clients send passwords (or some function thereof) to the server
over a secure channel (e.g. TLS [18]). This approach requires PKI and its security
relies solely on the secure channel and the client’s ability to correctly verify
the server’s certificate. Any impersonation of the certificate leads to password
exposure. Even if no impersonation takes place, any password input on the client
side is revealed to the server. This creates a different problem based on statistics,
indicating that many users operate with a small set of passwords but often do
not remember their correct mapping to the servers. If a user types in a password
that is not shared with this server but with another one then its exposure may
lead to subsequent impersonation attacks on the client. The studies in [20,21]
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show that every user has 6.5 passwords on average, used on 25 different websites
and that on average 2.4 password trials are required until the user types in the
correct password. These numbers suggest that in case where a server limits a
number of failed attempts to say 3, in the worst case roughly 2 passwords from
the client’s set could potentially be revealed to the server within a single TLS
session — a significant threat for the client. Note that the amount of work for
processing failed login attempts on the server side is negligible since all trials are
performed through the same secure channel.

The notion of Password-based Authenticated Key Exchange (PAKE), intro-
duced by Bellovin and Merritt [8], initially formalised in [6,14], and later explored
in numerous further works [1–5,11,16,22,23,26,27], is considered as a more
secure alternative to the above approach. The standard model of PAKE does not
require any PKI and assumes that only a human-memorable password is shared
between both parties. PAKE protocols solve the problem of potential password
leakage, inherent to the previously described approach. They aim to protect
against offline dictionary attacks but require the same method of protection
against online dictionary attacks as the aforementioned TLS-based approach,
namely by restricting the number of failed password trials. While passwords can
be retransmitted and checked by the server, using the same TLS channel, the
only way for current PAKE protocols to deal with failed password trials is to
repeat the entire protocol. This however implies that the computational costs on
the server side, in particular for (costly) public key-operations that are inherent
to all PAKE protocols, increase linearly with the number of attempts. This can
be seen as a reason for the limited progress on the adoption of PAKE on the
Internet (in addition to unrelated issues such as browser incompatibility, patent
considerations, and the lack of adopted standards).

While handling multiple password trials with PAKE may seem like a pure
implementation problem at first sight, the problem becomes non-trivial if we
want to avoid linear increase of public key operations on the server side. This
seems to be avoidable only if in a single PAKE execution the client can use
several passwords, while the server would use only the one password, shared
with the client. Yet this idea alone is not sufficient for breaking the linear bound
on the server side: for instance, assume that one PAKE execution is built out
of n independent (possibly parallelised) runs of some secure PAKE protocol,
where the client uses a different password in each run but the server uses the
same one in all of them. The amount of work for the server in this case would
still remain O(n). Therefore, something non-trivial must additionally happen in
order to reduce the amount of work on the server side to O(1).

However, we still need to fulfil basic PAKE requirements like addressing the
persistent threat of online dictionary attacks by enforcing that the number of
passwords that can be tested by the client in one session remains below some
threshold, which is set by the server. For the server there is no difference whether
a client is given the opportunity to perform at most c independent PAKE sessions
(password trials) with one input password per session, or only one session but
with at most c input passwords. Finally, we must be able to prevent a possibly
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malicious server from obtaining any password from the set of passwords input
by the client.

1.1 Oblivious PAKE and Our Contributions

We solve the aforementioned problem of efficient handling of password trials on
the server side by proposing a compiler that transforms PAKE protocols in a
black-box way into what we call an Oblivious PAKE (O-PAKE). To describe
and analyse the proposed O-PAKE notion we introduce a new algorithmic way
to model PAKE protocols that also allows for easy compilation as done with
O-PAKE, and real-world implementation.

The functionality of O-PAKE protocols resembles that of PAKE except that
the client inputs a set pw of n ∈ [1, c] passwords while the server’s input is limited
to one password pw. The use of pw does not increase the overall probability for
online dictionary attacks in comparison to running a separate PAKE session for
each tried password because the maximum number of passwords c that the client
can try with O-PAKE is fixed by the server. The client can still input less than c
passwords, i.e. if the client is confident about validity of some particular pw for
a given server then pw can be used as the sole input, in which case O-PAKE is
equivalent to PAKE. In general, O-PAKE protocol execution succeeds if and only
if the server’s password pw is part of the client’s password set pw. We use the
standard (game-based) PAKE model by Bellare, Pointcheval, and Rogaway [6] in
its (stronger) Real-or-Random flavour from [4] and update it to account for the
use of pw as client’s input. In this model passwords are assumed to be distributed
uniformly at random. In practice, the use of passwords with different strengths
in the same O-PAKE session would lower the overall security to the probability
for guessing the weakest password (irrespective of the adopted strength metric).

The crucial idea behind our O-PAKE compiler is to let each client execute
n sessions of secure PAKE protocol in parallel and let the server execute only
one PAKE session. The challenging part is to enable the server to actually iden-
tify the correct PAKE session in which the client used the correct password pw,
while preserving security against offline dictionary attacks for all passwords in
the client’s password set pw. This is the trickiest part of the compiler. Intu-
itively, if the server can recover the messages of the correct PAKE session, it can
answer them according to the specification of the PAKE protocol. By repeating
this approach in each communication round of the given PAKE protocol both
parties will be able to successfully accomplish the protocol. If identification of the
correct PAKE session by the server requires only a constant amount of (costly)
operations, then the total amount of server’s work in the resulting O-PAKE
protocol will also remain constant. The amount on the client side remains lin-
ear in the size n of input passwords. This stems from the obvious fact that the
client has to compute messages for all PAKE sessions without knowing the cor-
rect password. We show how to apply our O-PAKE compiler to two concrete
PAKE protocols: the SPAKE protocol from [5] and the PAKE protocol from
[28] (for space limitations the second construction is given in the full version of
this work [29]).
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2 Oblivious PAKE Model

In this section we recall the PAKE security model from [4], tailored to the
needs of O-PAKE. The security model for O-PAKE protocols is in the multi-user
setting and utilises the Real-or-Random approach for AKE-security from [4,6].
Note that the AKE-security definition addresses the aforementioned security
against malicious servers, trying to retrieve client passwords. A server learning
information about the additional passwords in the client’s password set pw can
easily break AKE-security by using this password in another session with the
same client.

Participants and Passwords. An O-PAKE protocol is executed between two
parties P and P ′, chosen from the universe of participants Ω = S ∪ C, where S
denotes the universe of servers and C the universe of clients, such that if P ∈ C
then P ′ ∈ S, and vice versa. We assume the scenario where every client in C
is registered with every servers from S. For each such pair (P, P ′) ∈ C × S, a
password pwP,P ′ (shared between client P and server P ′) is drawn uniformly
at random from the dictionary D of size |D|. Execution of an oblivious PAKE
protocol between P and P ′ uses pwP,P ′ on the server and a password vector
pwP ⊆ {pwP,P ′

x1
, . . . ,pwP,P ′

xn
} for 1 ≤ n ≤ c and client-server pairs (P, P ′

xi
)

for i ∈ [2, n] on the client side. For the protocol to be successful it is necessary
that pwP,P ′ ∈ pwP . The value c is a global parameter with c ≤ |S|. We will
sometimes write pw and pw instead of pwP and pwP,P ′ when the association
with the participants is clear or if it applies to every participant. We will further
write PAKE for O-PAKE protocols with n = 1, i.e. standard class of PAKE
protocols where the client uses pwP = pwP,P ′ .

Protocol Instances. For i ∈ N, we denote by Pi the i-th instance of P ∈ Ω.
In order to model uniqueness of Pi within the model we use i as a counter. For
each instance Pi we consider further a list of parameters:

– pidi
P is the partner id of Pi, defined upon initialisation, subject to following

restriction: if Pi ∈ C then pidi
P ∈ S, and if Pi ∈ S then pidi

P ∈ C.
– sidi

P is the session id of Pi, modelled as ordered (partial) protocol transcript
[m1

in,m
1
out, . . . , mr

in,m
r
out] of incoming and outgoing messages of Pi in rounds

1 to r. sidi
P is thus updated on each sent or received protocol message.

– ki
P is the value of the session key of instance Pi, which is initialised to null.

– stateiP is the internal state of instance Pi.
– usediP indicates whether Pi has already been used.
– rolei

P indicates whether Pi acts as a client or a server.

Partnered Instances. Two instances Pi and P ′
j are partnered if all of the

following holds: (i) (P, P ′) ∈ C × S, (ii) pidi
P = P ′ and pidj

P ′ = P , and
(iii) match(sidi

P , sidj
P ′) = 1, where Boolean algorithm match is defined accord-

ing to the matching conversations from [7], i.e. outputs 1 if and only if round



Oblivious PAKE: Efficient Handling of Password Trials 195

messages (in temporal order) in sidi
P equal to the corresponding round mes-

sages in sidj
P ′ except for the final round, in which the incoming message of one

instance may differ from the outgoing message of another instance.

Oblivious PAKE. We define O-PAKE using an initialisation algorithm init
and a stateful interactive algorithm next, which handles protocol messages and
eventually outputs the session key.

Definition 1 (Oblivious PAKE). An O-PAKE protocol O-PAKE = (init,
next) over a message space M = (

⋃
r Mr

C) ∪ (
⋃

r Mr
S), where Mr

C resp. Mr
S

denotes the space of outgoing server’s resp. client’s messages in the r-th invoca-
tion of next, a dictionary D, and a key space K consists of two polynomial-time
algorithms:

Pi ← init(pw, role, P ′, par): On input pw, role ∈ {client, server}, P ′ ∈
Ω and the public parameters par, the algorithm initialises a new instance
Pi with the internal O-PAKE state information state, defines the intended
partner id as pidi

P = P ′ and session key ki
P = null, and stores protocol

parameters par. The role indicates whether the participant acts as client
or server.

(mout, ki
P ) ← next(min): On input min ∈ Mr

[S,C]∪∅ with implicit access to inter-
nal state, the algorithm outputs the next protocol message mout ∈ Mr+1

[S,C]∪∅
and updates ki

P with ki
P ∈ K ∪ null ∪ ⊥. As long as the instance has not

terminated the key ki
P is null. If min leads to acceptance then ki

P is from K,
otherwise ki

P = ⊥. We also assume that next implicitly updates the internal
state prior to each output and sets used to true.

Note that M = (
⋃

r Mr
S) ∪ (

⋃
r Mr

C) is the union of outgoing client’s message
spaces Mr

C and server’s message spaces Mr
S over all protocol rounds r. We may

further view each round’s message space Mr
C as a Cartesian product Mr,1

C ×
· · · × Mr,l

C for up to l different classes of message components, e.g. to model
labels, identities, group elements, etc. When clear from the context, we will write
Mr

C instead of Mr,1
C × · · · × Mr,l

C .

Correctness. Let Pi be an instance initialised through init(pwP , client,
P ′, par) and P ′

j be an instance initialised through init(pwP,P ′ , server, P, par)
where P ∈ C, P ′ ∈ S, and pwP,P ′ ∈ pwP . Assume that all outgoing messages,
generated by next are faithfully transmitted between Pi and P ′

j so that the
instances become partnered. An O-PAKE = (init, next) is said to be correct if
for all partnered Pi and P ′

j it holds that ki
P ∈ K and ki

P = kj
P ′ .

Adversary Model. The adversary A is modelled as a probabilistic-polynomial
time (PPT) algorithm, with access to the following oracles:
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mout ← Send(P, i,min): the oracle processes the incoming message min ∈ Mr
[C,S]

for the instance Pi and returns its outgoing message mout ∈ Mr+1
[C,S] ∪ ∅. If

Pi does not exist, a new session is created with P ′ as partner, where P ′ is
given in min.

trans ← Execute(P, P ′): if (P, P ′) ∈ C × S the oracle creates two new instances
Pi and P ′

j via appropriate calls to init and returns the transcript trans
of their protocol execution, obtained through invocations of corresponding
next algorithms and faithful transmission of generated messages amongst
the two instances.

pw ← Corrupt(P, P ′): if P ∈ C and P ′ ∈ S then return pwP,P ′ and mark (P, P ′)
as a corrupted pair.

AKE-Security. The following definition of AKE-security follows the Real-Or-
Random (ROR) approach from [4], which provides the adversary multiple access
to the Test oracle for which the randomly chosen bit b ∈R {0, 1} is fixed in the
beginning of the experiment:
kA ← Testb(P, i), depending on the values of bit b and ki

P , this oracle responds
with key kA defined as follows:

– If, while ki
P = null, either (P, P ′) or (pidi

P , P ) were queried to the Corrupt
oracle for, w.l.o.g., any client-server pair (P, P ′) with pwP,P ′ ∈ pwP , then
abort. Note that this prevents A from obtaining any pwP,P ′ ∈ pw and then
testing new instances of P and P ′, or instances that were still in the process
of establishing session keys when corruption took place.

– If some previous query Test(P ′, j) was asked for an instance P ′
j , which is

partnered with Pi, then return the same response as to that query. Note that
this guarantees consistency of oracle responses.

– If ki
P ∈ K then if b = 1, return ki

P , else if b = 0, return a randomly chosen
element from K and store it for later use.

– Else return ki
P . Note that in this case ki

P is either ⊥ or null.

According to [4] a session is an online session when A queried the Send oracle
on one of the participants.

Definition 2 (AKE-Security). An O-PAKE protocol Π with up to c pass-
words on client side is AKE-secure if for all dictionaries D with corresponding
universe of participants Ω and for all PPT adversaries A using at most t online
sessions there exists a negligible function ε(·) such that:

AdvAKEΠ,A(λ) =
∣
∣
∣
∣Pr[ExpAKEΠ,A(λ) = 1] − 1

2

∣
∣
∣
∣ ≤ c · O(t)

|D| + ε(λ).

ExpAKEΠ,A(λ) : c ∈ N; b ∈R {0, 1};∀(P, P ′) ∈ C × S choose pwP,P ′ ∈R D; b′ ←
ASend,Execute,Corrupt,Testb(λ, c); return b = b′.

The above definition (without Corrupt) reverts to RoR AKE-security from [4] for
c = 1. We have to factor in the maximal size of |pw| = n ≤ c into the original
adversarial advantage bound O(t)/|D| to account for the adversarial possibility
of testing up to c passwords per session in the role of the client.
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PAKEvs.O-PAKE. The actual relation between common PAKE and O-PAKE
security may not be immediately evident. For clarification, we discuss the relation
between O-PAKE and the simple repetition of a PAKE protocol c times, and
the implication of user’s password choice.

The advantage of an adversary that is allowed to query up to c passwords
in one session is not greater than the advantage of an adversary that runs c
online sessions using one password in each of them. The typical advantage of
a PAKE adversary A in an AKE-security experiment, e.g. [4,6], is bounded by
O(t)/|D| + ε(λ). In contrast, we limit the advantage of an O-PAKE adversary
to c · O(t)/|D| + ε′(λ). We give the following lemma to formalise the relation
between the two notions.

Lemma 1. AdvAKEΠc,A ≤ c · AdvAKEΠ,A for O-PAKE protocol Πc allowing up to c
passwords in one session, built from PAKE protocol Π.

Proof. The lemma follows directly from the following observations. O-PAKE can
be realised in the näıve way by running c separate PAKE sessions. That results in
an advantage of at most c · AdvAKEΠ,A = c · O(t)/|D| + ε′(λ). Information gathered
from Send and Execute oracle invocations are the same for the O-PAKE and
PAKE adversary. Corrupt and Testb queries of the O-PAKE adversary return one
password, respectively key, independent from c, while the PAKE adversary gets
c passwords, respectively keys. Thus, the resulting advantage of the O-PAKE
adversary is at most c · O(t)/|D| + ε′(λ), but depending on the implementation
most probably lower. 
�
Assuming malicious servers one may also be concerned about the client’s password
choice considering a client entering passwords with different levels of entropy. Sim-
ilar to the standard PAKE case the weakest password from pw would determine
the security of O-PAKE. However, the used model considers uniformly at random
chosen passwords from one dictionary such that the case of varying password
probabilities can not be adequately addressed in this model (as is also the case
for the models in [4,6]).

3 Transforming PAKE Protocols into O-PAKE

Recall that one may realise O-PAKE in a näıve way by running the input PAKE
protocol n times, which is not efficient on the server side due to the linearly
increasing round complexity. The idea of the O-PAKE compiler is to mix the
n PAKE messages on client side such that the server can extract the “right”
message using the shared password and reply only to that. This, however, is a
non-trivial problem because PAKE messages do not provide information that
would allow the server to check locally whether a given password was used in
their computation; as this would offer the possibility of offline dictionary attacks.
Note that we assume throughout this section that n ≥ 2 and pwP,P ′ ∈ pwP .
Our solution for the identification of the “right” PAKE session is a careful com-
position of two encoding techniques that were introduced in a different context
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yet allow us to generically construct AKE-secure O-PAKE protocols from (suit-
able) AKE-secure PAKE protocols, preserving constant round complexity and
offering nearly constant server load.

Our first building block is Index-Hiding Message Encoding (IHME) [30,31].
An IHME scheme assigns a different index to each given message and encodes the
resulting index-message pairs into a single structure from which messages can be
recovered on the receiver side using the corresponding indices. The IHME struc-
ture hides indices that were used for encoding and therefore all encoded messages
must contain enough entropy to prevent dictionary attacks over the index space.
An IHME scheme consists of two algorithms iEncode and iDecode. The iEncode
algorithm takes as input a set of index-message pairs (ix1,m1), . . . , (ixn,mn) and
outputs a structure S whereas the iDecode algorithm can extract mj , j ∈ [1, n]
from S using the corresponding index ixj . For formal definitions surrounding
IHME we refer to the original work and only mention that the original IHME
construction in [30] assumes (ixj ,mj) ∈ F for a prime-order finite field F and
defines the IHME structure S through coefficients of the interpolated polyno-
mial by treating index-message pairs as its points. There exists a more efficient
IHME version from [31] for longer messages, which uses (ixj ,mj) ∈ F × F

ν and
thus splits mj into ν components each being an element of F. The corresponding
index-hiding property demands that no information about indices ixj is leaked to
the adversary that doesn’t know the corresponding messages mj and is defined
for messages that are chosen uniformly from the IHME message space. For the
aforementioned IHME schemes the message space is given by F (or Fν) and their
index-hiding property is perfect (in the information-theoretic sense). Note that
this approach still allows the server to learn which of the n PAKE sessions is the
correct one without revealing any password to the server.

In order to enable encoding of PAKE messages using IHME with pass-
words as indices we apply our second building block, namely admissible encoding
[13,15,19]. Briefly, a function F : S → R is an ε-admissible encoding for (S,R)
with |S| > |R| when for all uniformly distributed r ∈ R, the distribution of the
inverse transformation IF (r) is ε-statistically indistinguishable from the uniform
distribution over S. We refer to [15,19] for more details. IF enables us to map
PAKE messages into the IHME message space where necessary. In Sect. 3.5 we
will discuss suitable PAKE message spaces and their admissible encodings offer-
ing compatibility with the message space F of the IHME schemes from [30,31].

In the following we describe our compiler that transforms suitable AKE-secure
PAKE protocols into AKE-secure O-PAKE protocols. The intuition behind the
compiler is to let the client run n PAKE sessions, one session for each of the n
input passwords pw, and apply an index-hiding message encoding on each
message-password pair. The server can apply the shared password pw as index
to IHME to extract the “right” PAKE message. For this message the server exe-
cutes the algorithm next of the given PAKE protocol and returns the resulting
PAKE message to the client. As soon as the algorithm next terminates, the
server generates a confirmation message, which is then used by the client to
derive the final session key.
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3.1 Requirements on PAKE

Our O-PAKE compiler can be used to convert any AKE-secure R-round PAKE
protocol Π where in each round r ∈ [1, . . . , R] the client sends messages from Mr

C

that can be processed using a compatible admissible encoding F r : MIHME,r →
Mr

C . In order to guarantee that client messages from Mr
C , when mapped into

MIHME,r using the inverse transformation IF , are uniformly distributed over
MIHME,r, the underlying Π itself must output client messages whose joint distri-
bution over all R rounds remains indistinguishable from a distribution where
for each round r the output client message is chosen uniformly at random
from Mr

C . For this purpose Π must satisfy a stronger notion of AKE secu-
rity that in addition to the indistinguishability of session keys requires indistin-
guishability of client messages. This requirement is formalised in Definition 3
that extends the AKE-security experiment for PAKE from Definition 2, using
Execute,Send,Corrupt and Testb definitions from there. We assume that c = 1
and define two oracles Sendb and Executeb that are parameterised with the bit b
as used in the Testb oracle. Any query Sendb(P, i,min) for a client P ∈ C made
by the adversary A first triggers the invocation of mout ← Send(P, i,min). If A
queried Corrupt(P, pidi

P ) or Corrupt(pidi
P , P ) while ki

P = null or if b = 1 then
mout is returned to A without any modification. The additional condition on the
Corrupt queries prevents A from trivially distinguishing the client messages by
corrupting passwords and then communicating with client instances that were
still in the process of establishing the session keys. If b = 0 then mout is set to a
random message from Mr

C and returned to A. Any Executeb(P, P ′) query first
triggers the invocation of trans ← Execute(P, P ′). If b = 0 then for each round r
the corresponding client’s message in trans is replaced with an independently at
random chosen message from Mr

C , else if b = 1 then trans is forwarded without
any modification. Note that if A mounts an online attack with a correct pass-
word then it can easily distinguish so that the lower bound of O(t)

|D| that accounts
for online dictionary attacks still applies in the definition.

Definition 3 (AKE-Security with Indistinguishable Client Messages).
A PAKE protocol Π is AKE-secure with indistinguishable client messages if for
all dictionaries D with corresponding universe of participants Ω and for all PPT
adversaries A using at most t online sessions there exists a negligible function
ε(·) such that:

AdvAKE-ICMΠ,A (λ) =
∣
∣
∣
∣Pr[ExpAKE-ICMΠ,A (λ) = 1] − 1

2

∣
∣
∣
∣ ≤ O(t)

|D| + ε(λ).

ExpAKEΠ,A(λ) : c = 1; b ∈R {0, 1};∀(P, P ′) ∈ C × S choose pwP,P ′ ;
b′ ← ASendb,Executeb,Corrupt,Testb(λ, c); return b = b′.

The above requirement is stronger than AKE-security. In particular, it cannot
be satisfied by PAKE protocols where client messages depend on those of the
server or where client messages sent in later rounds depend on client messages
that were sent in previous rounds. Nonetheless, there exist efficient AKE-secure



200 F. Kiefer and M. Manulis

PAKE protocols with indistinguishable client messages as discussed in Sect. 3.5.
In particular, for AKE-secure one-round PAKE protocols, where the client can
send its message independently of the server’s message the indistinguishability
property can be argued based on the uniformity of the client’s message in the
message space.

3.2 The O-PAKE Compiler

Our compiler takes as input a PAKE protocol Π and outputs its O-PAKE ver-
sion, denoted CΠ . The compiled protocol CΠ follows Definition 1 and consists
of the two algorithms CΠ .init and CΠ .next. For the passwords in pw used as
input to CΠ .init we assume that each pw[i] = (ix, π) ∈ F×DΠ , where ix denotes
an index and π the corresponding password for the underlying PAKE protocol
Π, whereby the distributions of ix and π are independent and no two pairs
(ix1, π1), (ix2, π2) ∈ pw have ix1 = ix2. For each PAKE round r the compiler
uses a corresponding instance IHMEr with message space MIHMEr and a compat-
ible admissible encoding F r : MIHMEr → Mr

C where Mr
C is the space of clients

messages of Π in that round. In the following we assume that the underlying
Π.next algorithm outputs messages that can be seen as one element and thus can
be processed using one instance (F r, IHMEr) in each round. Note that this allows
for a more comprehensible description and is not a restriction of the O-PAKE
compiler. We discuss the case of multi-set messages Mr

C = Mr,1
C × · · · × Mr,l

C

that will require composition of up to l instances of encoding schemes per round
in Sect. 3.6.

The CΠ .next algorithm on the client side computes corresponding PAKE
round messages for all passwords in pw using the original Π.next algorithm
and encodes them with IF r and IHMEr.iEncode prior to transmission to the
server. On the server side CΠ .next decodes the incoming PAKE message using
F r and IHMEr.iDecode (using its input pw[i].ix as index) and replies with the
message output by Π.next. Note that the server only decodes messages but never
encodes them. If pw ∈ pw then at the end of its n PAKE sessions the client
will hold n intermediate PAKE keys, whereas the server holds only one such
key. The additional key confirmation and key derivation steps allow the client to
determine which of its n PAKE session keys matches the one held by the server,
in which case both participants will derive the same session key. In the following
we describe the two algorithms CΠ .init and CΠ .next more in detail.

Algorithm CΠ .init The algorithm makes n calls to Π.init, one for each
password pw[i].π, to generate corresponding state for each of the n PAKE
sessions that are stored in statestatestatei

P . An ith session of Π run by the client using
the corresponding password pw[i].π is denoted by Π[i]. The partner id pidi

P is
set to P ′ and the instance Pi with the given role and a vector of n local states
in statestatestatei

P is established. We require that no two passwords in pw are identical,
which is necessary to ensure the correctness of the IHME step. Note that if
role = server then n = 1, i.e. servers run only one PAKE session (Fig.1).
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a CΠ .next(min) — Client
Input: min

Output: (mout, k)
E = ∅; mout = ∅
for i = 1 . . . n do

if Π[i] has not finished then
(m′

out, Π[i].k) ← Π[i].next(min)
if m′

out �= ∅ then
E = E ∪ {(pw[i].ix, IF r (m′

out))}
else if Π[i].k ∈ KΠ and

min = PRFΠ[i].k(sid
i
P ||Pi||pidi

P ||0) then

k = PRFΠ[i].k(sid
i
P ||Pi||pidi

P ||1)
else

k = ⊥
if E �= ∅ then

mout = IHMEr.iEncode(E)
return (mout, k)

b CΠ .next(min) — Server
Input: min

Output: (mout, k)
mout = ∅
if Π has not finished then

m ← IHMEr.iDecode(pw.ix, min)
m′ = F r(m)
(mout, Π.k) ← Π.next(m′)

if Π.k ∈ KΠ then
mout = PRFΠ.k(sid

j
P ′ ||pidj

P ′ ||P ′
j ||0)

k = PRFΠ.k(sid
j
P ′ ||pidj

P ′ ||P ′
j ||1)

else
k = ⊥

return (mout, k)

Fig. 1. CΠ .next algorithms

Algorithm CΠ .next We distinguish between CΠ .next specifications for clients
(Algorithm 1a) and servers (Algorithm 1b) as they are significantly different.
We write Π[i].next for the invocation of Π.next for the ith session of Π run by
the client using pw[i].π. On the client side CΠ .next computes messages m′

out for
all running PAKE sessions and encodes them. The server decodes the incoming
IHME structure and computes its response using Π.next. If any PAKE session
Π[i] at the client has finished with Π[i].k ∈ KΠ then the client expects a valid
confirmation message from the server prior to derivation of the resulting session
key k with PRF using Π[i].k. An invalid confirmation message implies that k is
set to ⊥. This confirmation message is generated on the server side using PRF
only if and immediately after Π.next outputs Π[i].k ∈ KΠ ; in which case a valid
resulting session key k is also derived. If, however, Π finishes with Π[i].k = ⊥
then k will also be set to ⊥.

3.3 Relation to LAKE

A Language Authenticated Key Exchange (LAKE) protocol, proposed by
Benhamouda et al. in [10], authenticates two parties, client C and server S hold-
ing each a word in an algebraic languages. In particular, let R : {0, 1}∗×P ×W →
{0, 1} denote a relation and LR(pub, priv) ⊆ W a language with pub ∈ {0, 1}∗

and priv ∈ P . A word w ∈ W is in the language LR iff R(pub, priv, w) = 1. The
client holds a word wc for relation RC and the server holds a word ws for relation
RS . They agree on public parameters pub, exchange ephemeral public keys, and
think of a value priv′

C , resp. priv′
S , they expect to be used by the other party.

To instantiate the LAKE framework it is necessary to specify client and server
languages and according commitments with associated smooth projective hash
functions (SPHF) [17]. We briefly recall how to instantiate LAKE with passwords
from [10, Sect. 6.2], i.e. how to build PAKE protocols in the LAKE framework.
The languages are defined as LC = {wc} for the client and LS = {ws} for the
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server, such that priv′
C = priv′

S = wc = ws is the password and the relations are
RC = RS = (∅, priv, w) = 1 ⇐⇒ priv = w, i.e. equality test for the password.

To instantiate O-PAKE in LAKE we define client relation RC(∅,pw′, pw) =
1 ⇐⇒ pw′ ∈ pw and server relation RS(∅,pw′,pw) = 1 ⇐⇒ pw′ = pw. While
the server relation stays the same as in PAKE, the client language LRC

(∅,pw′) ⊆
{pw1, . . . ,pwn} = pw uses a relation that takes a set of passwords pw and
an expected password pw′ as input, and is fulfilled iff pw′ ∈ pw. Following
[10, Fig. 4] we realise O-PAKE in the LAKE framework as follows: First, the
client (initiator) generates a multiDLCSCom′ commitment (CC , C ′

C) on word
wc, i.e. a multi-commitment to all passwords pw ∈ (pw1, . . . ,pwn), as well as a
Pedersen commitment C ′′

C on C ′
C , and sends (CC , C ′′

C) to the server S. The server
replies with (CS , ε, kpS

, σS), computed as follows: CS is a multi-LCS commit-
ment on ws = pwS ; ε is a challenge vector on CC of length n; kpS

is a projection
key for a suitable SPHF for CC ; and σS is a signature on all flows. In the
final round, the client checks σS before returning (C ′

C , t, kpC
, σC) to the server,

which is computed as follows: (C ′
C , t) is the decommitment to C ′′

C , where t is
the used randomness; kpC

is a projection key for a suitable SPHF for CS ; and
σC is a signature on all flows. After checking all signatures and commitments,
session keys are computed as multiplication of projection and hash function on
ComC = CC · C ′

C
ε and ComS = CS .

So while it seems possible to instantiate O-PAKE in the LAKE framework
(after specifying necessary primitives), the construction is rather inefficient.
In particular, an instantiation of O-PAKE in LAKE needs four rounds, our
O-PAKE compiler adds only one round to the round-complexity of the underly-
ing PAKE, i.e. can be instantiated with three rounds. Further, server-complexity
is linear in the number of client-passwords n. This stems from the observation
that the projection key kpS

, as well as the computation of the hash function,
requires a linear number of public key operations, e.g., exponentiations, in n.
Performance of O-PAKE instantiated in the LAKE framework is therefore not
more efficient than the näıve construction, and in particular does not fulfil our
requirement of nearly constant server performance.

3.4 Security Analysis

AKE-security of the protocol generated with the O-PAKE compiler is established
in Theorem 1.

Theorem 1. If Π is an R-round AKE-secure PAKE protocol with indistinguish-
able client messages in Mr

C for r ∈ [1, . . . , R], F r : MIHMEr → Mr
C is an ε-

admissible encoding, and IHMEr is an index-hiding message encoding, then CΠ

is an R + 1-round AKE-secure O-PAKE protocol.

Proof (sketch). The proof uses a sequence of experiments Expi, i = 1, . . . 4,
where each Expi is based on a small modification of Expi−1. At a high level we
first replace real client messages and session keys of underlying PAKE sessions
Π[i] with random messages and keys while ensuring the consistency against
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an adversary that corrupted passwords and then mounts online attacks. This
modification remains unnoticeable to A if the underlying PAKE protocol Π is
AKE-secure with indistinguishable client messages. Then, we replace the outputs
of the inverse transformations IF r applied in each round r by choosing random
elements from the corresponding round’s IHMEr message space and show that
this remains unnoticeable assuming that F r is an εF r -admissible encoding F r.
Then, we replace each real password index in the IHMEr encoding process with
a random password and show that this remains unnoticeable due to the index-
hiding property of each IHMEr scheme. Finally, we modify the computation of the
server’s confirmation message and of the session keys that are returned in Testb
queries by using random elements from the corresponding spaces. This remains
unnoticeable due to the pseudorandomness of the PRF function that is used to
derive their values. We refer to the full version [29] of this work for the full proof
due to space limitations.

3.5 Oblivious PAKE Instantiation

An AKE-secure PAKE protocol Π is suitable for our O-PAKE transformation
if it is also AKE-ICM-secure and there exist admissible encodings to map those
messages into the message space of the IHME scheme. In the following we list
four sets R with suitable admissible encodings. Thus, any AKE-secure PAKE
protocol whose client messages contain components from these four sets can be
transformed into an O-PAKE protocol using our compiler.

Definition 4 (Admissible Encodings for Client Messages). An admissible
encoding F : {0, 1}�(λ) → R with polynomial 
(λ) exists for any of the following
four sets:

(1) Set R = {0, . . . , N − 1} = ZN of natural numbers, for arbitrary N ∈ N. (cf.
[19, Lemma 13])

(2) The set of quadratic residues modulo safe primes p, i.e. R = QR(p) ⊆ Z
×
p .

(cf. [19, Lemma 13])
(3) Arbitrary subgroups G ⊆ Z

×
p of prime order q. (cf. [19, Lemma 13])

(4) The set R = E(F) of rational points on (certain) elliptic curves, defined over
a finite field (cf. [15]).

Computing Indices. We require that password pw used in O-PAKE consists of
two independent components ix and π. For instance, it is sufficient for the user to
choose π ∈R D and compute the index pw.ix = f(ρ,pw.π) using some fresh ran-
domness ρ and a function f with output independent from π, i.e. the probability
that π was used as input to f to produce ix must remain 1/|D|. Note that this
approach requires a pre-flow to the protocol to exchange randomness ρ, which
can however be easily integrated into the overall login process. Furthermore, it
is crucial that randomness ρ is fresh for every execution of the protocol as any
reuse of ρ would offers an attacker the possibility to distinguish between real
and simulated O-PAKE messages.
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Remark 1. Verifier-based PAKE (VPAKE) protocols, such as [9,12,24,25], where
only some password-dependent verification information (e.g. a randomised pass-
word hash with a random salt) is stored on the server side are not formally
considered in this work. Nonetheless, the techniques underlying our O-PAKE
compiler seem also applicable to VPAKE protocols as long as their messages
satisfy the identified AKE-ICM requirement.

3.6 Processing Multi-Component Messages

In the following we describe how the compiler can handle PAKE protocol mes-
sages consisting of multiple elements, possibly from different sets. We observe
that any such PAKE message can be seen as an element of a combined mes-
sage space that is formed through a Cartesian product of those sets and dis-
tinguish between two types of message components, namely components that
represent constants and components that depend on passwords, including inte-
ger values and group elements. Since constants are password-independent they
do not need to be processed by the compiler and can be communicated directly.
All other message components have to be encoded according to the compiler
specification. In order to encode those components we use ν-fold IHME intro-
duced in [31], which allows to encode a list of ν message components from
the same finite field. The compiler splits message components from different
finite fields into corresponding classes and applies appropriate IHME encoding
to each class separately in order to compute the corresponding IHME struc-
ture. The IHME structures for all message components are then concatenated
and treated as a single compiler message. This processing of multi-component
messages requires existence of admissible encodings and index-hiding message
encodings for each component class mj of m. In order to process the com-
ponents, a loop over m1, . . . , ml adds (pw[i], IF r,j (mj)) to the input set of
ν−fold−IHMEr

j .iEncode according to their classes (e.g. finite fields). Likewise,
the output message mout of the next algorithm is the concatenation of the
encoded component classes. Upon receiving a client message min, the server has
to decompose it to retrieve the IHME encoded messages. After decoding the mes-
sage parts with mj ← ν−fold−IHMEr

j .iDecode(pwP,P ′ ,m
j
in) the original PAKE

message of Π is reassembled by decoding messages F r,j(mj).
Adopting this approach for multi-component messages, the AKE-security

remains preserved. This is due to the following observation about the proof of
Theorem 1: in the game-hopping sequence the adversary will be provided with l
IHME encoded messages (one for each message element class that requires encod-
ing). The corresponding index-hiding advantage will therefore be multiplied by
l. The remaining parts of the proof remain as is.

4 Concrete Instantiation Examples

In this section we give concrete instantiation of the O-PAKE compiler, using the
random-oracle based SPAKE protocol by Abdalla and Pointcheval [5]. A second
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instantiation using the common-reference-string-model protocol from Katz and
Vaikuntanathan [28] can be found in the full version [29].

4.1 Oblivious SPAKE

We demonstrate how the compiler can be applied to PAKE protocols using
the AKE-secure, random-oracle-based SPAKE protocol from [5]. The resulting
O-SPAKE is specified in Fig. 2 and involves steps of the original SPAKE protocol
from [5, Sect. 5], which is a secure variant of [8], whose security has been proven
in the random oracle model.1 SPAKE uses a prime-order cyclic group G for
which the Computational Diffie-Hellman (CDH) problem is assumed to be hard.
The shared SPAKE password pw is chosen from Zq. Let M,N ∈ G denote two
public group elements. The protocol proceeds in one round, where the client
sends X∗ ← gx · Mpw.π, x ∈R Zq and the server responds with Y ∗ ← gy ·
Npw.π, y ∈R Zq. The actual order of these messages does not matter since they
are independent. The algorithm next computes an intermediate value s and
derives the session key as Π.k ← H(P, P ′,X∗, Y ∗,pw, s). We refer to the original
work [5, Sect. 5] for more details on SPAKE. The SPAKE protocol is a suitable
input PAKE protocol for our O-PAKE compiler since it can be instantiated using
subgroups G ⊆ Z

×
p of prime order q in which the CDH problem is believed to

be hard. We can apply the admissible encodings (3) from [19, Lemma 13] due to
the fact that client’s SPAKE message X∗ = gx · Mpw.π is uniformly distributed
in G, given the uniformity of x ∈ Zq. We formalise this by showing that SPAKE
fulfils our definition of AKE-ICM, before defining suitable admissible encodings,
which concludes the instantiation of O-SPAKE.

Lemma 2 (SPAKE is AKE-ICM Secure). The SPAKE protocol from
[5, Sect. 5] is AKE-ICM secure.

Proof. The initial experiment in the proof for SPAKE security in [5] corresponds
to the AKE-ICM experiment with b = 1. In the following we show that the proof
in [5, Appendix C] can be modified without changing the adversaries advantage
such that the final experiment is equal to the AKE-ICM experiment with b = 0,
which concludes the proof. We first change experiment one by additionally sim-
ulating the Corrupt oracle and using a global bit b in simulating the Test oracle.
This does not change the adversary’s success probability. The second experiment,
aborting on hash collisions, stays unchanged. In the following two experiments
we have to make sure that the adversary does not win trivially by returning the
correct key to Test queries on corrupted sessions and only modify oracle replies
to uncorrupted sessions. While the original proof only changes the calculation
of the session key in passive sessions to a random element in experiment three,
we also change client messages produced in Execute queries to random elements.
Note that this is implicitly already done in the original proof. However, we for-
malise it here again and change experiment three as follows: Invocations of the
1 Note that the very similar SOKE protocol from [1] can also be used in the O-PAKE

compiler following the here given description of O-SPAKE.
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Client (C, S, pw)

for i = 1 to |pw|

x ∈R Zq ; x ∈R Zq

X ← IF (gx · Mpw[i].π)

E = E ∪ {(pw[i].ix, X)}

S ← IHME.iEncode(E)

for i = 1 to |pw|

s = (Y ∗/Npw[i].π)x

Π[i].k ← H(C, S, X∗, Y ∗, pw[i], s)

c′ ← PRFΠ[i].k(S||Y ∗||C||S||0)

if c = c′ then

k ← PRFΠ[i].k(S||Y ∗||C||S||1)

Server (C, S, pw)

y ∈R Zq ; Y ← gy

X∗ ← IHME.iDecode(pw.ix, S)

X∗ ← F (X∗)

Y ∗ ← Y · Npw.π

S ← IHME.iEncode(E)

s ← (X∗/Mpw.π)y

k ← H(C, S, X∗, Y ∗, pw, s)

c ← PRFΠ.k(S||Y ∗||C||S||0)

k ← PRFΠ.k(S||Y ∗||C||S||1)

S

Y ∗, c

Fig. 2. Oblivious SPAKE (O-SPAKE) public input: G, g, p, q,M,N,H, IHME, F

Execute oracle on uncorrupted parties are answered with uniformly at random
chosen messages, i.e. X∗ = Agx and Y ∗ = Bgy with x, y ∈R Zp, for some DH
instance (A,B). Experiment three corresponds now to the AKE-ICM experi-
ment with Send1, Testb and Execute0. The lemma follows by noting that after
our modifications of experiment three the last experiment of the AKE-security
proof of SPAKE in [5, Appendix C] is equivalent to the AKE-ICM experiment
with Execute0, Send0 and Test0, i.e. the adversary only wins by guessing the
correct password. 
�

Admissible Encodings for SPAKE We use admissible encodings (1) and (3) from
[19, Lemma 13] to encode SPAKE client messages. To implement the inverse
encoding of (1) := IF (1) : ZN → {0, 1}�(λ) we use the inverse of encoding (3)
:= IF (1) : G → Z

×
p . This results in a combined inverse encoding of IF (3,1) : G →

Z
×
p → {0, 1}�(λ) with 
(λ) > 2|N | and p = N . Implementation of F (3,1) : Zq′ →

G and IF (3,1) follows the specification from [19, Lemma 12] with prime |q′| =

(λ) > 2|N | to meet IHME requirements.

5 Conclusion

In this paper we addressed the problem of handling multiple password trials
efficiently within the execution of PAKE protocols; in particular, aiming to opti-
mise the amount of work on the server side. The proposed O-PAKE compiler
results in almost constant computational complexity for the server without sig-
nificantly increasing the computation costs on the client side, yet preserving all
security guarantees offered by standard PAKE protocols. It can be used with
PAKE protocols that fulfil our new definition of AKE-ICM security and whose
client messages can be encoded through a suitable admissible encoding scheme.
The security of the compiler has been proven under standard assumptions in
an extension of the widely used PAKE model from [4] and exemplified on the
PAKE protocol and [28].
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Abstract. We first present a Private Set Intersection Cardinality (PSI-
CA) protocol followed by its authorized variant, APSI-CA, utilizing
Bloom filter (BF). We further extend these to PSI and APSI proto-
cols. All the constructions are proven to be secure in standard model
with linear complexities. Moreover, our protocols hide the size of the
client’s private set which may be sensitive in application specific scenar-
ios. The proposed PSI-CA and APSI-CA are the first to achieve security
in standard model under the Quadratic Residuosity (QR) assumption
with linear complexities.

Keywords: (A)PSI-CA · (A)PSI · Semi-honest adversary · Malicious
adversary · Privacy · Bloom filter

1 Introduction

Private Set Intersection (PSI) is a two-party protocol carried out between a
client (C) and a server (S), and allows them to compute privately the inter-
section of their respective private sets. Consider the following problem, suppose
department of homeland security (DHS) wants to detect whether anyone on its
terror watch list is on a flight’s passenger list while preserving privacy for terror
watch list. Besides, the innocent flight passengers may not want to reveal their
privacy. A PSI between DHS and Airlines is an ideal cryptographic primitive to
address the above problem. PSI protocols have been used extensively for many
practical applications. Privacy preserving data mining, location-based services,
social networks, testing of fully sequenced human genomes, collaborative botnet
detection, on-line gaming are a few to name.

A variant of PSI, where the client’s set is made authorized by a trusted
third party at the beginning of PSI protocol, is known as Authorized Private Set
Intersection (APSI).

In social networking, suppose two parties want to secretly compute the num-
ber of common connections (or interests) in order to decide whether or not to
become friends. Private Set Intersection Cardinality (PSI-CA) is a proper choice
for this scenario which yields only size of the intersection of the private sets of C
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and S. PSI-CA is applicable in various field such as genomic operations, role-
based association mining, location sharing, affiliation-hiding authentication, etc.

It is essential to keep secret the size of the client’s input set from the server
in applications where (i) input size may represent sensitive information, (ii) fluc-
tuations in input size may be equally (or even more) sensitive when multiple
interactions between the same two parties are given or (iii) the amount of com-
putation imposed on the server may concern input size privacy. For instance,
department of homeland security (DHS) does not reveal the number of names
on the terror watch list because the list is dynamic in the sense that names can
be added and removed frequently to the list and disclosing its size may leak sen-
sitive information. The concept of size-hiding PSI was introduced by Ateniese
et al. [1].

Recently, several PSI protocols are proposed based on Bloom filters [2] which
provide space and time-efficient storage of sets. Bloom filter is a simple random-
ized data structure that possess a linear relation between its size and the number
of element that can be stored in it and has applications in testing membership
in a set and many areas including PSI [6,10].

Our Contribution: The main contribution in this paper is the construction of
efficient PSI-CA and APSI-CA protocols using Bloom filter achieving security in
standard model, linear complexity in terms of both communication and compu-
tation and independency of the size of client’s set. To the best of our knowledge,
there is no PSI-CA and APSI-CA with the above mentioned properties. These
are further modified to PSI and APSI respectively. We summarize the security
features of our constructions below.

1. The proposed PSI, PSI-CA are provably secure in semi-honest model where
adversaries follow the prescribed protocol but try to learn more information
than allowed from the protocol transcript. The security of APSI is in fully
malicious model where adversaries can run any efficient strategy to carry out
attack and can deviate at will from the protocol specification. The proposed
APSI-CA is secure against malicious client and semi-honest server.

2. All our constructions are secure in standard model under the Quadratic Resid-
uosity (QR) assumption.

3. The client need not to reveal the size of his private set to the server. Thus
our designs are independent of the size of the client’s set. Only the upper
bound of the client’s set size is disclosed to the server. As the upper bound is
different from the security parameter, the computational effort of the server
is independent of this bound.

4. The client’s set needs to be authorized by a trusted third party in APSI and
APSI-CA designs which prevents the client from including arbitrary elements
in its input set to steal server’s element.

The performance of our designs over prior works are summarized in Tables 1, 2,
3 and 4. We point out the following facts:

1. Till now, the constructions of [4] are the most efficient to the best of our knowl-
edge. However, the security proofs are in the random oracle model (ROM)
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Table 1. Comparison of PSI-CA protocols

Protocol Security
model

Adv.
model

Security assumption Comm. Comp. Based
on

Size
hiding

Sch. 1 of [4] ROM SH DDH and GOMDH O(w + v) O(w + v) no

Sch. 2 of [4] ROM MS, SHC GOMDH O(w + v) O(w + v) no

Our PSI-CA Std SH QR O(w + v) O(w + v) BF yes

Table 2. Comparison of APSI-CA protocols

Protocol Security
model

Adv.
model

Security
assumption

Comm. Comp. Based
on

Size
hiding

[3] Std Mal Strong RSA O(wv) O(wv) OPE no

[4] ROM SH GOMDH O(w + v) O(w + v) no

Our APSI-CA Std MC, SHS QR O(w + v) O(w + v) BF yes

Table 3. Comparison of PSI protocols based on BF

Protocol Security
model

Adv.
model

Security
assumption

Comm.
cost

Comp.
cost

Based on Size
hiding

[10] Std SH QR O(w + v) O(w + v) BF+SYY yes

[9] Std Mal d-strong DDH O(w + v) O(w + v) OPRF no

Sch. 1 of [6] ROM SH CDH O(w + v) O(w + v) BF yes

Sch. 2 of [6] ROM Mal CDH O(w + v) O(w + v) BF no

[11] ROM SH O(w + v) O(w + v) BF yes

our PSI Std SH QR O(w + v) O(w + v) BF yes

Table 4. Comparison of APSI protocols

Protocol Security
model

Adv.
model

Security
assumption

Comm. Comp. Based on Size
hiding

[3] Std Mal Strong RSA O(w + v) O(wv) OPE no

[5] ROM Mal RSA O(w + v) O(w + v) no

[12] ROM Mal CBDH O(v) O(v log log v) no

[10] Std Mal QR O(w + v) O(w + v) BF+SYY yes

our APSI Std Mal QR O(w + v) O(w + v) BF yes

VE=Verifiable Encryption, CBDH=Computational Bilinear Diffie-Hellman,
Mal=Malicious, OPRF=Oblivious Pseudorandom Function, SYY= Sander,
Young and Yung Technique, MC=Malicious Client, SHS=Semi-honest Server,
CDH=Computational Diffie-Hellman, SD=Subgroup Decision, SC=Subgroup
Computation, CE=Commutative Encryption, GOMDH=Gap-One-More-Diffie-
Hellman, OPE=Oblivious Polynomial Evaluation, Std=Standard, SH=Semi-honest,
MS=Malicious Server, SHC=Semi-honest Client, DDH=Decisional Diffie-Hellman,
HE=Homomorphic Encryption, w= Size of Client’s set, v= Size of Server’s set
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under non-standard cryptographic assumption and require O(v +w) modular
exponentiations. Here w, v are the sizes of input sets of the two parties. In
contrast, our designs are secure in standard model under QR assumption. We
emphasize that our PSI-CA utilize O(v + w) modular multiplications and no
modular exponentiations. On the other side, our APSI-CA requires O(v +w)
modular multiplications together with O(w) many signature verifications.
Recently, Dong et al. [6] and Pinkas et al. [11] proposed very efficient PSI
protocols using the garbled Bloom filter GBF. However, extending these PSI
to PSI-CA seems to be a non-trivial task.

2. The Boom filter based PSI protocols of [6,11] are secure in ROM, although
they are computationally less expensive as compared to our scheme, especially
when the sizes of input sets are large. Constructions of [10] also have the
properties similar to our schemes. However, computationally they are more
expensive and have more false positive rate than our constructions. Besides,
server’s elements must be fixed length bit string in the PSI of [10], whereas
our PSI is not restricted to this. In the APSI of [10], the trusted party has to
send an exponent secretly to the server which needs a secure communication
channel between them. On the other hand, we do not require any such secret
sharing. Both the client and the trusted third party are able to compute
the intersection in the APSI of [10] as both of them hold the secret key of
associated encryption scheme. Our APSI enables only the client to get the
intersection and no other party.

2 Preliminaries

Throughout the paper the notations κ, a ← A, x � X and {Xt}t∈N ≡c {Yt}t∈N
are used to represent “security parameter”, “a is output of the procedure A”,
“variable x is chosen uniformly at random from set X” and “the distribution
ensemble {Xt}t∈N is computationally indistinguishable from the distribution
ensemble {Yt}t∈N ” respectively. Informally, {Xt}t∈N ≡c {Yt}t∈N means for all
probabilistic polynomial time (PPT) distinguisher Z, there exists a negligible
function ε(t) such that |Probx←Xt

[Z(x) = 1] − Probx←Yt
[Z(x) = 1]| ≤ ε(t).

Definition 1. Negligible Function: A function ε : N → R is said to be neg-
ligible function of κ if for each constant c > 0, we have ε(κ) = o(κ−c) for all
sufficiently large κ.

Definition 2. Quadratic Residuosity (QR) Assumption [8]: On input 1κ,
let the algorithm RGen generates an RSA modulus n = PQ, where P and Q are
distinct primes and let X be the subgroup of Z∗

n of elements having Jacobi symbol
equal to 1. The QR assumption states that, given an RSA modulus n (without its
factorization), it is computationally infeasible to distinguish a random element
u of X ⊆ Z

∗
n from an element of the subgroup {x2|x ∈ Z

∗
n} of quadratic residues

modulo n i.e., for every PPT algorithm A, |Prob[A(n, x2) = 1]−Prob[A(n, u) =
1]| is negligible function of κ.
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2.1 Security Model for Semi-honest Adversary [7]

A two-party protocol, Π is a random process that computes a function f from
pair of inputs (one per party) to pair of outputs i.e.,

f = (f1, f2) : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗.

Let x, y ∈ {0, 1}∗ be the inputs of parties P1, P2 respectively. Then the outputs
of the parties P1, P2 are f1(x, y), f2(x, y) respectively. A protocol Π is said to be
secure in semi-honest model if whatever can be computed by a party after partic-
ipating in the protocol, it could obtain from its input and output only. This is for-
malized using the simulation paradigm. On the input pair (x, y), view of the party
Pi during an execution of Π is denoted by ViewΠ

i (x, y) = (w, r(i),m
(i)
1 , ...,m

(i)
t ),

where w ∈ {x, y} represents the input of the party Pi, r(i) is the outcome of Pi’s
internal coin tosses, and m

(i)
j (j = 1, 2, ..., t) represents the j-th message which

has received by Pi during the execution of Π.

Definition 3. Let f = (f1, f2) be a deterministic function. Then we say that
the protocol Π securely computes f if there exists probabilistic polynomial-time
adversaries, denoted by S1 and S2, controlling P1 and P2 respectively, such that

{S1(x, f1(x, y))}x,y∈{0,1}∗ ≡c ViewΠ
1 (x, y)x,y∈{0,1}∗

{S2(y, f2(x, y))}x,y∈{0,1}∗ ≡c ViewΠ
2 (x, y)x,y∈{0,1}∗

2.2 Security Model for Malicious Adversary [7]

The formal security framework of a two-party protocol in malicious model is
described below:

The Real World: In the real world a protocol Π is executed. An honest party
follows the instructions of Π, but an adversary Ai, controlling the party Pi, can
behave arbitrarily. Let the party P1 has the private input X, the party P2 has
the private input Y and the adversary Ai has auxiliary input Z. At the end
of the execution an honest party outputs whatever prescribed in the protocol,
a corrupted party outputs nothing and an adversary outputs its view which
consists of the transcripts available to the adversary. The joint output in the
real world is denoted by REALΠ,Ai(Z)(X,Y ).

The Ideal Process: Let SIMi be the ideal process adversary that corrupts
a party Pi, i ∈ {1, 2}. The ideal process involves an incorruptible trusted third
party.

Input: Let X and Y be the inputs of parties P1 and P2 respectively, SIMi gets
Pi’s input and an auxiliary input Z.

Sending Inputs to the Trusted Party: An honest party always sends his original
input to the trusted party whereas a corrupted party may send “abort” or
an arbitrary input. Let the trusted party receives (X̃, Ỹ ), where X̃, Ỹ may
be different from X,Y respectively. If anyone of X̃, Ỹ is “abort”, then the
trusted party sends ⊥ to both the parties.
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The Trusted Party Answers the Adversary: The trusted party computes the
functionality F : (X̃, Ỹ ) → (F1(X̃, Ỹ ),F2(X̃, Ỹ )) and sends Fi(X̃, Ỹ ) to
SIMi. Then SIMi sends “abort” or “continue” to the trusted party.

The trusted Party Answers the Honest Party: If the trusted party receives “con-
tinue” from SIMi, then the trusted party sends Fj(X̃, Ỹ ) to the honest
party Pj , j ∈ {1, 2}\{i}. Otherwise, the trusted party sends ⊥ to the honest
party.

Output: An honest party always outputs the output value it obtained from the
trusted party. The corrupted party outputs nothing. The adversary outputs
his view. The joint output of the ideal process is denoted by
IDEALF,SIMi(Z)(X,Y ).

Definition 4. Simulatability: Let Π be a protocol and F be a functionality.
Then protocol Π is said to securely compute F in the malicious model if for
every PPT adversary Ai in the real world, there exists a PPT adversary SIMi

in the ideal model, such that for every i ∈ {1, 2},
IDEALF,SIMi(Z)(X,Y ) ≡c REALΠ,Ai(Z)(X,Y ).

2.3 Goldwasser-Micali (GM) Encryption [8]

The Goldwasser-Micali (GM) encryption consists of three algorithm (KGen,Enc,
Dec) and works as follows:

KGen. On input 1κ, an user generates secret key as sk = (P,Q) and public
key as pk = (n, u), where n = PQ is an RSA modulus, P,Q are distinct
primes, u is a pseudo quadratic residue i.e., L( u

P ) = −1 and L( u
Q ) = −1

but J(u
n ) = 1, where L and J denote respectively the Legendre symbol and

Jacobi symbol.
Enc. Encryptor encrypts a message m ∈ {0, 1} using the public key pk = (n, u)

by picking r � Zn and outputs the corresponding ciphertext as

c = Encpk(x) =

{
r2 mod n if m = 0
ur2 mod n if m = 1

Note that c is a quadratic residue modulo n if m = 0 and quadratic non-
residue modulo n if m = 1 with J( c

n ) = 1
Dec. Decryptor has the the secret key sk = (P,Q). On receiving the ciphertext

c, the decryptor computes L( c
P ). If L( c

P ) = 1, then the decryptor outputs
the message m as 0 . Otherwise, the decryptor outputs the message m as 1.

This encryption scheme is semantically secure under the QR assumption. It
also satisfies homomorphic property under the binary operations exclusive-or
⊕ and modulo multiplication on the message space and the ciphertext space
i.e., Encpk(x ⊕ y) = Encpk(x) · Encpk(y). Encryption cost of GM encryption
is maximum 2 modular multiplications and decryption cost is O((log n)2) bit
operations.
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2.4 Bloom Filter [2]

Bloom filter (BF) is a data structure that represents a set X = {s1, s2, ..., sv}
of v elements by an array of m bits and uses k independent hash functions
H = {h0, h1, ..., hk−1} with hi : {0, 1}∗ → {0, 1, ...,m − 1} for i = 0, 1, ..., k − 1.
Let BFX ∈ {0, 1}m represents a Bloom filter for the set X and BFX [i] represents
the bit at the index i in BFX . We describe below a variant of Bloom filter [2]
that completes in three steps- Initialization, Add, Check.

Initialization: Set 1 to all the bits of an m-bit array, which is an empty Bloom
filter with no element in that array.

Add(s): To add an element s ∈ X ⊆ {0, 1}∗ into a Bloom filter, s is hashed with
the k hash functions {h0, h1, ..., hk−1} to get k indices h0(s), h1(s), ..., hk−1(s).
Set 0 to the indices h0(s), h1(s), ..., hk−1(s) of the Bloom filter. Each s ∈ X
needs to be added to get BFX ∈ {0, 1}m.
Check (ŝ): To check if an element ŝ belongs to X or not, ŝ is hashed with the
k hash functions {h0, h1, ..., hk−1} to get k indices h0(ŝ), h1(ŝ), ..., hk−1(ŝ).
Now if at least one of BFX [h0(ŝ)], ...,BFX [hk−1(ŝ)] is 1 then ŝ is not in X,
otherwise ŝ is probably in X.

Bloom filter allows false positive whereby an element that has not been inserted
in the filter can mistakenly pass the set membership test. This happens due to
the fact that an element ŝ may not belong to X but BFX [hi(ŝ)] = 0 for all
i = 0, 1, ..., k − 1. On the contrary, Bloom filter never yields false negative i.e.,
an element that has been inserted in the filter will always pass the test. This is
because if ŝ belongs to X, then each of BFX [h0(ŝ)], ...,BFX [hk−1(ŝ)] is 0.

Theorem 1. Given the number v of elements to be added and a desired maxi-
mum false positive rate 1

2k
, the optimal size m of the Bloom filter is m = vk

ln 2 .

3 Protocol

Protocol Requirements: Each of our protocols is run between a client C
with private input set Y = {c1, c2, ..., cw} and a server with private input set
X = {s1, s2, ..., sv}, where w ≤ v. In the rest of our discussion, k represents
number of hash functions for Bloom filter, H denotes the set {h0, h1, ..., hk−1}
of k hash functions with hi : {0, 1}∗ → {0, 1, ...,m − 1} for i = 0, 1, ..., k − 1, m
stands for optimal size of Bloom filter, pkC/skC indicates public/secret key for
GM encryption, EncpkC

/DecskC
stands for Encryption/Decryption function for

GM under pkC/skC and s̄i,j represents the j-th bit of the element s̄i ∈ {0, 1}k for
j = 0, 1, ..., k − 1. Let E(s̄i) = {EncpkC

(s̄i,0), ...,EncpkC
(s̄i,k−1)} and decryption

of E(s̄i) be D(E(s̄i)) = {DecskC
(EncpkC

(s̄i,0)), ...,DecskC
(EncpkC

(s̄i,k−1)}) =
{s̄i,0, ..., s̄i,k−1} = s̄i. The auxiliary inputs include security parameter κ, the
maximum set size v, the optimal Bloom filter parameters m,H and k.
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1. The client C generates a public key pkC = (n, u) and a secret key skC =
(P,Q) for GM encryption using KGen algorithm described in section 2.3.
Then C does the following:
(a) constructs a Bloom filter BFY = (BFY [0], ...,BFY [m − 1]) ∈ {0, 1}m of

the set Y = {c1, c2, ..., cw} ⊆ {0, 1}∗ following the procedure described
in section 2.4,

(b) generates bi = EncpkC
(BFY [i]) ∈ Zn for i = 0, 1, ...,m − 1,

(c) sets Y = {b0, ..., bm−1} ∈ Z
m
n ,

(d) sends Y and pkC = (n, u) to S.
2. The server S with private input set X = {s1, s2, ..., sv} ⊆ {0, 1}∗, pkC =

(n, u) does the followings on receiving Y = {b0, ..., bm−1} ∈ Z
m
n from C:

For i = 1, 2, ..., v, the server S
(a) computes h0(si), ..., hk−1(si) ∈ {0, 1, ...,m − 1};
(b) extracts bh0(si), ..., bhk−1(si) ∈ Zn from Y ; and
(c) sets E(s̄i) = {bh0(si) ·r2i,0 mod n, ..., bhk−1(si) ·r2i,k−1 mod n} ∈ Z

k
n, where

ri,0, ..., ri,k−1 � Zn.
Finally S sends X = {E(s̄1), ..., E(s̄v)} ⊆ Z

k
n to C.

3. On receiving X = {E(s̄1), ..., E(s̄v)} ⊆ Z
k
n from S, the client C first sets

card = 0. For i = 1, 2, ..., v, the client C
(a) decrypts E(s̄i) ∈ Zn to get s̄i ∈ {0, 1}k; and
(b) checks whether s̄i ∈ {0, 1}k is all-zero string. If yes, then sets card =

card + 1.
Finally, C outputs card as the cardinality of X ∩ Y .

Fig. 1. Description of our PSI-CA

3.1 The PSI-CA

We present the description of our PSI-CA in Fig. 1, where the client C has the
private set Y = {c1, c2, ..., cw} ⊆ {0, 1}∗ and the server S has the private set
X = {s1, s2, ..., sv} ⊆ {0, 1}∗ .

Correctness: First note that as r2i,j is a quadratic residue modulo n, we have
r2i,j = EncpkC

(0) for all i = 1, 2, ..., v; j = 0, 1, ..., k − 1. Since GM Encryption is
homomorphic under the operation ⊕, we have

E(s̄i) = {bh0(si) · r2i,0 mod n, ..., bhk−1(si) · r2i,k−1 mod n}
= {EncpkC (BFY [h0(si)]) · EncpkC (0), ...,EncpkC (BFY [hk−1(si)]) · EncpkC (0)}
= {EncpkC (BFY [h0(si)] ⊕ 0), ...,EncpkC (BFY [hk−1(si)] ⊕ 0)}
= {EncpkC (BFY [h0(si)]), ...,EncpkC (BFY [hk−1(si)])}

Therefore s̄i = {BFY [h0(si)], ...,BFY [hk−1(si)]} ∈ {0, 1}k for all i = 1, 2, ..., v.
Now we have the following claim:

Claim 1. An element s̄i ∈ {0, 1}k is a all-zero string if and only if si ∈ X ∩ Y .
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Proof. If si ∈ X ∩ Y , then by Add step of Bloom filter construction defined in
Sect. 2.4, BFY [hj(si)] = 0 for all j = 0, 1, ..., k − 1. This in turn implies s̄i ∈
{0, 1}k is a all-zero string. On the other hand, if s̄i ∈ {0, 1}k is a all-zero string,
then si ∈ X satisfies the set membership test for the Bloom filter BFY ∈ {0, 1}m

with high probability by the Check step of the Bloom filter construction defined
in Sect. 2.4 for the set Y . Hence si ∈ Y and thereby si ∈ X ∩ Y except with
negligible probability 1

2k
. �

The variable card is incremented only when s̄i is a all-zero string and hence it
gives the cardinality of X ∩Y . Note that the server S first multiplies bhj(si) with
a random value r2i,j for all i = 1, 2, ..., v; j = 0, 1, ..., k−1 and then sends E(s̄i) =
{bhj(si) · r2i,j}k−1

j=0 for i = 1, 2, ..., v to the client C. Due to this randomization
C would not be able to predict the value of bhj(si) from E(s̄i) although C is
having the set {b0, ..., bk−1} i.e., si is not revealed to C. Otherwise, if S does not
multiply bhj(si) with a random value r2i,j , then from bhj(si) the client C would
be able to compute the position hj(si) for all i = 1, 2, ..., v; j = 0, 1, ..., k − 1
as C is having the set {b0, ..., bk−1}. On the other hand, C would be able to
compute the Bloom filter BFX of S’s set X by setting BFX [hj(si)] as 0 for all
i = 1, 2, ..., v; j = 0, 1, ..., k−1 and remaining positions as 1 which in turn enables
C to compute S’s private set X i.e., S’s privacy is not preserved in this case.

3.2 The APSI-CA

OurAPSI-CA involves three parties – a clientC withprivate setY = {c1, c2, ..., cw}
⊆ {0, 1}∗, a server S with private set X = {s1, s2, ..., sv} ⊆ {0, 1}∗ and a certify-
ing authority CA who is assumed to be mutually trusted to both C and S. The
protocol completes in two phases: off-line phase described in Fig. 2 and online
phase described Fig. 3.

Note that given ({b0, ..., bm−1}, Sig(h̄(b0), ..., h̄(bm−1)), pkDSig), if someone
wants to verify the signature then he does the following steps:

1. computes Y ′ = {h̄(b0), ..., h̄(bm−1)} from Sig(h̄(b0), ..., h̄(bm−1)) using pkDSig.
2. computes hash h̄ of each elements of the set Y = {b0, ..., bm−1} to compute

the set Ŷ = {h̄(b0), ..., h̄(bm−1)} and checks that whether i-th member of the
set Ŷ is same as i-th member of the set Y ′.

The correctness can be shown in the same way as explained for PSI-CA in
Sect. 3.1. Note that in APSI-CA the certifying authority CA generates (Y =
{b0, ..., bm−1} ∈ Z

m
n , Sig(h̄(b0), ..., h̄(bm−1))) on behalf of the client C in the off-

line phase to control over the malicious behavior of C, the server S checks the
validity of the signature Sig(h̄(b0), ..., h̄(bm−1)) received from C in the online
phase. For this S uses public key pkDSig that S has received from CA in the
off-line phase.
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1. The client C generates a key pair (pkC = (n, u), skC = (P,Q)) for GM
encryption using KGen algorithm described in section 2.3 and sends Y =
{c1, c2, ..., cw} ⊆ {0, 1}∗, pkC = (n, u) to the certifying authority CA.

2. On receiving Y = {c1, c2, ..., cw} ⊆ {0, 1}∗, pkC = (n, u) from C, the certify-
ing authority CA constructs a Bloom filter BFY ∈ {0, 1}m, generates a key
pair (pkDSig, skDSig) for some publicly verifiable digital signature scheme
DSig over composite order group Zn and for each i = 0, 1, ...,m − 1,
(a) sets bi = EncpkC

(BFY [i]) ∈ Zn,
(b) computes h̄(bi), where h̄ : {0, 1}∗ → Zn is a hash function.
(c) makes a signature Sig(h̄(b0), ..., h̄(bm−1)) on Y ′ = {h̄(b0), ..., h̄(bm−1)}

with the secret key skDSig.
Finally, CA sends (Y = {b0, ..., bm−1} ∈ Z

m
n , Sig(h̄(b0), ..., h̄(bm−1)), pkDSig)

to C and pkDSig to S.
Note that in digital signature scheme, hash of a message is signed, instead
of the message to overcome forgery.

Fig. 2. Description of off-line phase of our APSI-CA

1. The client C forwards (Y = {b0, ..., bm−1} ∈ Z
m
n , Sig(h̄(b0), ..., h̄(bm−1)))

received from CA in off-line phase together with public key pkC = (n, u) to
the server S.

2. The server S, on receiving (Y = {b0, ..., bm−1} ∈ Z
m
n , Sig(h̄(b0), ..., h̄(bm−1)),

pkC = (n, u)) from C, verifies the validity of signature Sig(h̄(b0), ..., h̄(bm−1))
using pkDSig received from CA in off-line phase. If verification fails, then S
aborts the protocol. Otherwise, for each i = 1, 2, ..., v, the server S
(a) computes h0(si), ..., hk−1(si) ∈ {0, 1, ...,m − 1};
(b) extracts bh0(si), ..., bhk−1(si) ∈ Zn from Y ;
(c) sets E(s̄i) = {bh0(si) ·r2i,0 mod n, ..., bhk−1(si) ·r2i,k−1 mod n} ∈ Z

k
n, where

ri,0, ..., ri,k−1 � Zn.
Finally S sends X = {E(s̄1), ..., E(s̄v)} ⊆ Z

k
n to C.

3. On receiving X = {E(s̄1), ..., E(s̄v)} ⊆ Z
k
n from S, the client C first sets

card = 0. For each i = 1, 2, ..., v, the client C
(a) decrypts E(s̄i) ∈ Zn to get s̄i ∈ {0, 1}k,
(b) increments card by 1 if s̄i ∈ {0, 1}k is all-zero string.
Finally, C outputs card as the cardinality of X ∩ Y .

Fig. 3. Description of online phase of our APSI-CA

3.3 The PSI

Let φ : {0, 1}∗ → {0, 1}k be a collision resistant hash function. Our PSI protocol
is described in Fig. 4, where the client C has the private set Y = {c1, c2, ..., cw} ⊆
{0, 1}∗ and the server S has the private set X = {s1, s2, ..., sv} ⊆ {0, 1}∗.

Correctness: As GM Encryption is homomorphic under ⊕, we have

E(s̄i) = {bh0(si) · EncpkC
(si,0), ..., bhk−1(si) · EncpkC

(si,k−1)}
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= {EncpkC
(BFY [h0(si)] ⊕ si,0), ...,EncpkC

(BFY [hk−1(si)] ⊕ si,k−1)}

Therefore s̄i = {BFY [h0(si)] ⊕ si,0, ...,BFY [hk−1(si)] ⊕ si,k−1} ∈ {0, 1}k for all
i = 1, 2, ..., v. Now we can conclude that {ci ∈ Y |φ(ci) ∈ X̂} = X ∩ Y from the
following claim:

Claim 2. Let X̃ = {φ(si)}v
i=1. Then an element φ(si) ∈ X̃ is same as s̄i ∈ X̂ if

and only if si ∈ X ∩ Y .

Proof. If si ∈ X ∩ Y , then by Add step of Bloom filter construction for the set
Y , BFY [hj(si)] = 0 for all j = 0, 1, ..., k − 1 which in turn implies s̄i ∈ X̂ is same
as φ(si) ∈ X. On the other side, if φ(si) ∈ X̃ is same as s̄i ∈ X̂, then si ∈ X
satisfies the set membership test for the Bloom filter BFY ∈ {0, 1}m with high
probability by the Check step of the Bloom filter for the set Y . Hence si ∈ Y
and thereby si ∈ X ∩ Y except with negligible probability 1

2k
. �

1. The client C generates a public key pkC = (n, u) and a secret key skC =
(P,Q) for GM encryption using the KGen algorithm as in section 2.3. Then
C proceeds as follows:
(a) constructs a Bloom filter BFY ∈ {0, 1}m of the set Y ,
(b) encrypts each of BFY [i] ∈ {0, 1} for i = 0, 1, ...,m − 1 using GM encryp-

tion under public key pkC ,
(c) sends Y = {b0 = EncpkC

(BFY [0]), ..., bm−1 = EncpkC
(BFY [m − 1])}

∈ Z
m
n , pkC = (n, u) to S.

2. The server S, on receiving Y = {b0, ..., bm−1} ∈ Z
m
n , pkC = (n, u) from C

does the followings:
For i = 1, 2, ..., v, the server S
(a) computes h0(si), ..., hk−1(si) ∈ {0, 1, ...,m − 1};
(b) extracts bh0(si), ..., bhk−1(si) ∈ Zn from Y ;
(c) generates EncpkC

(si,0), ...,EncpkC
(si,k−1), where si,j is j-th bit of φ(si)

∈ {0, 1}k for j = 0, 1, ..., k − 1; and
(d) sets E(s̄i) = {bh0(si) · EncpkC

(si,0) mod n, ..., bhk−1(si) · EncpkC
(si,k−1)

mod n} ∈ Z
k
n.

Finally S sends X = {E(s̄1), ..., E(s̄v)} ⊆ Z
k
n to C.

3. On receiving X = {E(s̄1), ..., E(s̄v)} ⊆ Z
k
n from S, C does the followings:

(a) decrypts E(s̄i) ∈ Zn for i = 1, 2, ..., v to get the set X̂ = {s̄1, ..., s̄v}
⊆ {0, 1}k.

(b) computes Ỹ = {φ(ci)}wi=1

Finally, C outputs {ci ∈ Y |φ(ci) ∈ X̂} as X ∩ Y .

Fig. 4. Description of our PSI
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1. The client C generates a key pair (pkC = (n, u), skC = (P,Q)) for GM
encryption using KGen algorithm described in section 2.3 and sends Y =
{c1, c2, ..., cw} ⊆ {0, 1}∗, pkC = (n, u) to the certifying authority CA.

2. The certifying authority CA, on receiving Y = {c1, c2, ..., cw} ⊆ {0, 1}∗, pkC =
(n, u) from C, constructs a Bloom filter BFY ∈ {0, 1}m, generates a key pair
(pkDSig, skDSig) for some publicly verifiable digital signature scheme DSig
over composite order group Zn and for each i = 0, 1, ...,m − 1,
(a) sets bi = EncpkC

(BFY [i]) ∈ Zn,
(b) computes h̄(bi), where h̄ : {0, 1}∗ → Zn is a hash function.
(c) generates a signature Sig(h̄(b0), ..., h̄(bm−1)) on Y ′ = {h̄(b0), ..., h̄(bm−1)}

with the secret key skDSig

Finally, the certifying authority CA , sends (Y = {b0, ..., bm−1} ∈ Z
m
n ,

Sig(h̄(b0), ..., h̄(bm−1)), pkDSig) to C and pkDSig to S.

Fig. 5. Description of off-line phase of our APSI

1. The client C sends (Y = {b0, ..., bm−1} ∈ Z
m
n , Sig(h̄(b0), ..., h̄(bm−1))) re-

ceived from CA in off-line phase together with public key pkC = (n, u) to
the server S.

2. The server S, on receiving (Y = {b0, ..., bm−1} ∈ Z
m
n , Sig(h̄(b0), ..., h̄(bm−1)),

pkC = (n, u)) from C, verifies the signature Sig(h̄(b0), ..., h̄(bm−1)) using
pkDSig which S has received in off-line phase from CA. If verification fails,
then S aborts the protocol. Otherwise, for each i = 1, 2, ..., v, the server S
(a) computes h0(si), ..., hk−1(si) ∈ {0, 1, ...,m − 1};
(b) extracts bh0(si), ..., bhk−1(si) ∈ Zn from Y ;
(c) generates EncpkC

(si,0), ...,EncpkC
(si,k−1), where si,j is j-th bit of si

∈ {0, 1}k for j = 0, 1, ..., k − 1; and
(d) sets E(s̄i) = {bhj(si) · EncpkC

(si,j) mod n}k−1
j=0 ∈ Z

k
n.

Finally, S sends X = {E(s̄1), ..., E(s̄v)} ⊆ Z
k
n to C.

3. On receiving X = {E(s̄1), ..., E(s̄v)} ⊆ Z
k
n from S, C decrypts E(s̄i) ∈ Zn

for i = 1, 2, ..., v to get the set X̂ = {s̄1, ..., s̄v} ⊆ {0, 1}k. Finally, C outputs
the set X̂ ∩ Y as intersection of X and Y .

Fig. 6. Description of online phase of our APSI

3.4 The APSI

Similar to APSI-CA, this protocol also involves three participants – client C with
private set Y = {c1, c2, ..., cw} ⊆ {0, 1}∗, server S with private set
X = {s1, s2, ..., sv} ⊆ {0, 1}k and a certifying authority CA that is assumed
to be trusted to both C and S. The protocol completes in two phases: off-line
phase and online phase described in Figs. 5 and 6 respectively. Note that in this
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protocol the certifying authority CA does some short of signature on the client’s
inputs in the off-line phase to control over the malicious behavior of C, the server
S checks the validity of the messages received from C in the online phase. For
this S uses a public key pkDSig that S has received from CA in the off-line phase.

Note that each si ∈ X is chosen as k-bit string so that simulator can extract
corrupt server S’s private set X in ideal world. The correctness of this proto-
col can be shown in the same way as explained for PSI in Sect. 3.3. The only
difference is that φ(si) will be replaced by si in case of APSI.

4 Security

All our protocols are based on Bloom filter. As Bloom filter allows false positive,
therefore an element of the server can be revealed to the client with negligible
probability ε = 1

2k
. We describe below the security proofs of PSI-CA, APSI-CA,

PSI and APSI.

Theorem 2. If the quadratic residuosity assumption holds, then PSI-CA pro-
tocol presented in Sect. 3.1 is a secure computation protocol for functionality
Fcard : (Y,X) −→ (|X ∩ Y |,⊥) in the security model described in the Sect. 2.1
against semi-honest server and semi-honest client except with negligible proba-
bility ε, where Y = {c1, c2, ..., cw} ⊆ {0, 1}∗ and X = {s1, s2, ..., sv} ⊆ {0, 1}∗

with w ≤ v.

Proof. Case I (Server is Corrupted): We construct a simulator SIM that
has given access to the server’s private input X and output ⊥. SIM then
chooses m random elements z0, z1, ..., zm−1 � Zn and outputs the simulated
view as (X, z0, z1, ..., zm−1). The view in the real protocol execution consists
of X and the ciphertexts {bi = EncpkC

(BFY [i])}m−1
i=0 ∈ Z

m
n . Input set X in

a real view is same as input set in simulated view and the distribution of
{z0, z1, ..., zm−1} ∈ Z

m
n in the ideal model is computationally indistinguishable

from the distribution of {b0, ..., bm−1} ∈ Z
m
n as GM encryption scheme is IND-

CPA secure under quadratic residuosity assumption. Hence the the simulated
view (X, z0, z1, ..., zm−1) is indistinguishable from the view (X,EncpkC

(BFY [0]),
...,EncpkC

(BFY [m − 1])) of a real protocol execution.

Case II (Client is Corrupted): Let us construct a simulator SIM that has
given access to the client’s input Y and output |X ∩ Y |. SIM outputs the
simulated view as (Y, a1, a2, ..., av), where |X ∩ Y | many ai’s are all-zero strings
and remaining v − |X ∩ Y | many ai’s are randomly chosen non-zero strings of
length k each. In a real execution the view contains Y , |X ∩ Y | many all-zero
strings and v − |X ∩ Y | many non-zero strings of length k each, except with a
negligible probability ε. Input set Y in a real view and simulated view are same.
Also {a1, a2, ..., av} is a set of |X∩Y | many of all-zero strings and v−|X∩Y | many
non-zero strings of length k each. Thus the simulated view is indistinguishable
from the view of a real protocol execution except with negligible probability ε.
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Theorem 3. If the quadratic residuosity assumption holds, then APSI-CA pro-
tocol presented in Sect. 3.2 is a secure computation protocol for functionality
Fcard : (Y,X) −→ (|X ∩ Y |,⊥) in the security models described in the Sects. 2.1
and 2.2 against semi-honest server and malicious client except with negligible
probability ε, where Y = {c1, c2, ..., cw} ⊆ {0, 1}∗ and X = {s1, s2, ..., sv} ⊆
{0, 1}∗ with w ≤ v.

Proof. Case I (Server is Corrupted): This case is exactly same as case I in
the proof of the Theorem 2.

Case II (Client is Corrupted): Let the client C be corrupted by an adversary
A in the real world while the server S is honest. We construct the corresponding
ideal world adversary SIM who has oracle access to A and simulates S in
the ideal world as follows. Note that the ideal process additionally involves an
incorruptible trusted third party, say T .

1. SIM invokes the adversary A with the input Y = {c1, c2, ..., cw} ∈ {0, 1}∗

and generates a key pair (pkDSig, skDSig) for the digital signature used by
CA in real world.

2. First, SIM plays the role of CA. On receiving Y = {c1, c2, ..., cw} ∈ {0, 1}∗,
pkC = (n, u) from A, SIM constructs a Bloom filter BFY ∈ {0, 1}m, encrypts
each of BFY [i] ∈ {0, 1} using GM encryption to get bi = EncpkC

(BFY [i])
∈ Zn and generates signature Sig(h̄(b0), ..., h̄(bm−1)) using skDSig. SIM then
sends (Y = {b0, ..., bm−1} ∈ Z

m
n , Sig(h̄(b0), ..., h̄(bm−1)), pkDSig) to A.

3. SIM next plays the role of real world server. SIM, on receiving (Y =
{b0, ..., bm−1} ∈ Z

m
n , Sig(h̄(b0), ..., h̄(bm−1)), pkC = (n, u)) from A, verifies the

signature Sig(h̄(b0), ..., h̄(bm−1)) using public key pkDSig. If the verification
fails, then SIM aborts. Otherwise, SIM plays the role of an ideal world
client by sending the set Y to T , whereas the ideal world server sends the set
X = {s1, s2, ..., sv} ⊆ {0, 1}∗ to T , T being an incorruptible trusted party
involved in the ideal process. The ideal functionality Fcard is computed in
turn by T on the inputs X and Y . As the output of the ideal functionality,
SIM receives the cardinality of X ∩ Y from T .

4. SIM constructs a set X̂ = {s̄1, ..., s̄v} ⊆ {0, 1}k by setting |X ∩Y | many s̄i’s
to be all-zero strings of length k and the remaining v−|X∩Y | many s̄i’s to be
k-bit non-zero strings each. SIM encrypts each s̄i ∈ {0, 1}k for i = 1, 2, ..., v
and sends X = {E(s̄1), ..., E(s̄v)} ⊆ Z

k
n to A, where s̄i = {s̄i,0, ..., s̄i,k−1} ∈

{0, 1}k and E(s̄i) = {EncpkC
(s̄i,0), ...,EncpkC

(s̄i,k−1)} ∈ Z
k
n. The simulator

SIM then outputs whatever A outputs and terminates.

As the honest party has no output, it is sufficient to show that the adversary
A’s view in the ideal process is indistinguishable from a view in the real world.
The input set Y is same in simulation and in real protocol execution. Note that
the simulator SIM sets the set X above as the encryption of v number of k-bit
strings of the set X̂, out of which |X ∩ Y | many strings are all-zero k-bit strings
and v − |X ∩ Y | many strings are randomly chosen non-zero strings of length
k. Also in the real protocol execution, number of encrypted all-zero strings and
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non-zero strings in X are respectively |X ∩ Y | and v − |X ∩ Y | except with
negligible probability ε. Thus the views of A in the real world and ideal process
are indistinguishable except with negligible probability ε. �
Theorem 4. If the quadratic residuosity assumption holds, then PSI protocol
presented in Sect. 3.3 is a secure computation protocol for functionality F∩ :
(Y,X) −→ (X ∩ Y,⊥) in the security model described in the Sect. 2.1 against
semi-honest server and semi-honest client except with negligible probability ε,
where Y = {c1, c2, ..., cw} ⊆ {0, 1}∗ and X = {s1, s2, ..., sv} ⊆ {0, 1}∗ with
w ≤ v.

Proof. Case I (Server is Corrupted): This case is exactly same as case I in
the proof of the Theorem 2.

Case II (Client is Corrupted): This case is obvious because the client C
only receives the messages for its output, i.e. the intersection X ∩ Y . Thus the
simulated view (Y,X ∩ Y ) is same as the view of a real protocol execution. �
The APSI is proven to be secure against malicious server and malicious client.

Theorem 5. If the quadratic residuosity assumption holds, then APSI protocol
presented in Sect. 3.4 is a secure computation protocol for functionality F∩ :
(Y,X) −→ (X ∩ Y,⊥) in the security model described in the Sect. 2.2 against
malicious server and malicious client except with negligible probability ε, where
Y = {c1, c2, ..., cw} ⊆ {0, 1}∗ and X = {s1, s2, ..., sv} ⊆ {0, 1}k with w ≤ v.

Proof. Case I (Server is Corrupted): Let the adversary A corrupts the server
S in the real world and the client C be honest party. We construct the corre-
sponding ideal world adversary SIM who has oracle access to A and simulates
C in the ideal world as follows:

1. SIM first acts as certifying authority by generating key pair (pkDSig, skDSig)
for the digital signature used by CA in real world and sending pkDSig to A.
The adversary A that has access to the input X = {s1, s2, ..., sv} ⊆ {0, 1}k

of the corrupted server S is also invoked by SIM.
2. SIM next plays the role of real world client as follows:

(a) runs the key generation algorithm KGen to generate the key pair (pkC =
(n, u), skC = (P,Q)) for GM encryption,

(b) creates a Bloom filter BFY ∈ {0, 1}m, by setting BFY [i] = 0 for i =
0, ...,m − 1,

(c) sends (W = {b̂i = EncpkC
(BFY [i])}m−1

i=0 ∈ Z
m
n , Sig(h̄(b̂0), ..., h̄(b̂m−1)),

pkC = (n, u)) to A.
3. On receiving X = {E(s̄1), ..., E(s̄v)} ⊆ Z

k
n from A, the simulator SIM

decrypts each element of X to get the set X̂ = {s̄1, ..., s̄v} ⊆ {0, 1}k using
the secret key skC of GM encryption generated by SIM himself.

4. SIM then plays the role of ideal world server by sending the set X̂ to the
incorruptible trusted third party T involved in the ideal process, whereas
the ideal world client sends the set Y to T . The deal functionality F∩ is
then computed by T on the inputs X̂, Y and as the output of the ideal
functionality, the ideal world client receives X̂ ∩ Y from T .
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Note that X̂ ∩Y is equal to X ∩Y as the Bloom filter BFY set by SIM is a all-
zero string which makes the elements of X̂ = {s̄1, ..., s̄v} ⊆ {0, 1}k same as the
elements of X = {s1, ..., sv} ⊆ {0, 1}k. Therefore the honest party C’s output is
same in the real and ideal world. The following argument shows that the view
of the adversary A in the ideal process is also indistinguishable from a view in
the real world. As the input set X in simulation and X̂ in real protocol execu-
tion are same and GM encryption is IND-CPA secure under quadratic residuos-
ity assumption, the simulated sets W = {b̂i}m−1

i=0 ∈ Z
m
n , Sig(h̄(b̂0), ..., h̄(b̂m−1))

in the ideal world are computationally indistinguishable from the sets Y =
{bi}m−1

i=0 ∈ Z
m
n , Sig(h̄(b0), ..., h̄(bm−1)) in the real world respectively. Hence the

views of the adversary A in the ideal process and in the real world are compu-
tationally indistinguishable.

Case II (Client is Corrupted): Let the client C be corrupted by an adversary
A in the real world and the server S be honest party. Then the corresponding
ideal world adversary SIM who has oracle access to A and simulates S in the
ideal world, can be constructed with similar manner as in case II in the proof of
the Theorem 3. The only difference is that in this case SIM receives X∩Y rather
than |X ∩Y | from the incorruptible trusted party T and constructs X̂ ⊆ {0, 1}k

by including all the elements of X ∩ Y and v − |X ∩ Y | many randomly chosen
k-bit strings.

We need to show only that the adversary A’s view in the ideal process is
indistinguishable from a view in the real world as the honest party has no output.
In the both simulation and real protocol execution the input set is Y . The
simulator SIM sets the set X as the encryption of all the elements of X ∩ Y
and v − |X ∩ Y | many randomly chosen k-bit strings. Also in the real protocol
execution X contains the encryption of the elements of X ∩ Y and v − |X ∩ Y |
number of strings except with negligible probability ε. Thus the views of A
in the real world and ideal process are indistinguishable except with negligible
probability ε. �

5 Efficiency

The communication cost in our protocol is measured by counting number of group
elements transmitted publicly by an user. Also each entity in our protocols per-
forms same operations like modular multiplication, signature, Jacobi/Legendre
symbol computation, hash function evaluation. These incur computation over-
heads. Tables 5 and 6 exhibit the complexity of our construction. Once the digital
signature, used by our constructions APSI-CA and APSI, is fixed, then the addi-
tional group elements and the computation cost due to the digital signature can
be computed. In particular, the number of group elements to be transferred dur-
ing the APSI-CA (or APSI) is O(v + w) and the computation cost of APSI-CA
(or APSI) is O(v + w). Note that for PSI-CA and APSI-CA, number of mod-
ulo multiplications MUL will be 2( vk

ln 2 + kv) instead of 2 vk
ln 2 + 3kv in Tables 5

and 6 respectively. Furthermore, without including any extra cost, our PSI-CA or
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Table 5. Complexity of PSI-CA and PSI

Party Hash MUL GE LC

C (k + 1)w 2m = 2 vk
ln 2

m + 2 kv

S (k + 1)v 3kv kv

Total (k + 1)(w + v) 2 vk
ln 2

+ 3kv vk
ln 2

+ kv + 2 kv

Table 6. Complexity of APSI-CA and APSI without digital signature

Party Hash MUL GE LC

CA kw + m 2m m

C m + w + 4 kv

S kv + m 3kv kv

Total k(w + v) + 2 vk
ln 2

2 vk
ln 2

+ 3kv 2 vk
ln 2

+ kv + w + 4 kv

Hash=Number of hash query, LC=Number of Legendre symbol
computation, MUL=Number of multiplications, GE= Number
of group element

APSI-CA protocol can be used to compute Private set union cardinality (PSU-
CA ) or Authorized PSU-CA using the formula |X ∪ Y | = |X| + |Y | − |X ∩ Y |.
Note: Recently proposed very efficient BF based PSI protocols are [6,11], where
the authors used a variant of BF, called Garbled Bloom Filter (GBF). Similar to
BF, GBF uses k independent hash functions H = {h0, h1, ..., hk−1} but instead
of single bit, each of GBF [i], i = 0, 1, ..., k − 1 contains λ-bit string, where λ
is a security parameter. In [6], Dong et al. represented a set X using a GBF as
follows:

1. Set each GBFX [i] as unoccupied for i = 0, 1, ...,m − 1.
2. For each x ∈ X,

(a) find a hash hl ∈ {h0, h1, ..., hk−1} such that GBFX [hl(x)] is unoccupied;
(b) for j = 0, 1, ..., k − 1 (j �= l), if GBFX [hj(x)] is unoccupied then set

GBFX [hj(x)] as a random λ-bit string;
(c) finally, sets GBFX [hl(x)] = x ⊕ (⊕k−1

j=0,j �=lGBFX [hj(x)]) to obtain a valid
XOR sharing of x.

Thus the PSI of [6] may be converted to PSI-CA by setting GBFX [hl(x)] as
(⊕k−1

j=0,j �=lGBFX [hj(x)]) instead of x⊕ (⊕k−1
j=0,j �=lGBFX [hj(x)]) i.e., by XOR shar-

ing of λ-bit all-zero string. However, in that case client also can compute the
intersection by inserting the elements of his private set for which (⊕k−1

j=0GBFX

[hj(x)]) is a λ-bit all-zero string. This breaks the security of PSI-CA, thereby
extension of the PSI of [6] to PSI-CA seems to be a non-trivial task. Similar
argument holds for the PSI of [11].
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6 Conclusion

We have presented efficient constructions for PSI-CA, APSI-CA, PSI and APSI
protocols with linear complexities based on Bloom filter and homomorphic GM
encryption. In our protocols, client’s input set size need not be revealed to the
server. Proposed PSI-CA and APSI-CA are the first cardinality set intersection
protocols secure in standard model with linear complexity and preserving client’s
input set size independency.

References

1. Ateniese, G., De Cristofaro, E., Tsudik, G.: (If) size matters: size-hiding private
set intersection. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC
2011. LNCS, vol. 6571, pp. 156–173. Springer, Heidelberg (2011)

2. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970)

3. Camenisch, J., Zaverucha, G.M.: Private intersection of certified sets. In:
Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 108–127. Springer,
Heidelberg (2009)

4. De Cristofaro, E., Gasti, P., Tsudik, G.: Fast and private computation of cardinality
of set intersection and union. In: Pieprzyk, J., Sadeghi, A.-R., Manulis, M. (eds.)
CANS 2012. LNCS, vol. 7712, pp. 218–231. Springer, Heidelberg (2012)

5. De Cristofaro, E., Kim, J., Tsudik, G.: Linear-complexity private set intersection
protocols secure in malicious model. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 213–231. Springer, Heidelberg (2010)

6. Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data: an effi-
cient and scalable protocol. In: Proceedings of the 2013 ACM SIGSAC Conference
on Computer and Communications Security, pp. 789–800. ACM (2013)

7. Goldreich, O.: Foundations of Cryptography: Volume 2, Basic Applications, vol. 2.
Cambridge University Press, New York (2009)

8. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

9. Hazay, C.: Oblivious polynomial evaluation and secure set-intersection from alge-
braic PRFs. IACR Cryptology ePrint Archive 2015, 4 (2015)

10. Kerschbaum, F.: Outsourced private set intersection using homomorphic encryp-
tion. In: Proceedings of the 7th ACM Symposium on Information, Computer and
Communications Security, pp. 85–86. ACM (2012)

11. Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based on ot
extension. USENIX Secur. 14, 797–812 (2014)

12. Stefanov, E., Shi, E., Song, D.: Policy-enhanced private set intersection: shar-
ing information while enforcing privacy policies. In: Fischlin, M., Buchmann, J.,
Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 413–430. Springer, Heidelberg
(2012)



On the Efficiency of Multi-party Contract
Signing Protocols
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Abstract. This paper presents an efficiency study of fair exchange pro-
tocols for Multi-Party Contract Signing (MPCS) from their architecture
point of view, an approach that has not been previously explored. A set
of common topologies is presented and defined: ring, star sequential and
mesh. Some common terms and notions, such as round and message, are
defined according to the topology where they are applied. The suitabil-
ity of such common terms to measure the efficiency of the protocols is
discussed. Finally, we present the design of optimal asynchronous opti-
mistic MPCS protocols for different topologies and evaluate them under
the unified definition/criterion of the efficiency parameters. These results
are important to support secure and efficient online business which is part
of our efforts for building secure and smart cyber society.

Keywords: Multi-party contract signing · Contract signing efficiency ·
Abuse-freeness

1 Introduction

The objective of a Multi-Party Contract Signing (MPCS) protocol is to allow a
set of participants Pi (2 < i < N) to exchange a valid signature on a contract
C, without any of them gaining advantage over the others. We can describe the
protocol as an application of fair exchange: N parties want to sign a contract C,
but none of the participants is willing to give his signature away unless he has
an assurance that he will receive all the other participants’ signatures.

Most of the solutions we can find in the literature for MPCS protocols are
based on the existence and possible involvement of a Trusted Third Party (TTP).
The TTP is an external entity that assures the protocol is executed correctly,
providing the participants who contact it with evidence proving the state of
the execution. In fact, even for two-party contract signing protocols there is a
consensus that solutions without a TTP are not practical. One step further is
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to decide if this TTP will intervene in every protocol run (inline or online TTP)
or only in case of exception (offline TTP, also called optimistic solutions). The
majority of scientific proposals tend to use offline TTPs, where the TTP is only
involved if a dispute arises, which is expected to be an exceptional case.

We can find different proposals for MPCS in the scientific literature [3,4,8,
12–14]. Some of them claim to propose optimal solutions or define lower-bounds
to design MPCS protocols [8,12,13], but the different criteria applied to define
requirements like fairness, or terms like round, step, etc., makes it difficult to
assert the validity of such optimal solutions. Moreover, even though we can use
different topologies to design MPCS protocols, none of these solutions contem-
plates the influence of the topology over the efficiency of the final result.

The objective of this paper is to design asynchronous protocols in which
N participants sign the same contract C. We choose to design asynchronous
protocols instead of synchronous ones, to avoid the problems related to the
participant’s clock synchronization.

Our Contribution: The contributions of this paper are manifold. First, we dis-
cuss the parameters that are generally used to measure the efficiency of MPCS
protocols, making clear definitions of each one and defining new ones when the
commonly used parameters are not good for measuring efficiency. Second, we
describe four of the most common architectures (ring, star, sequential and mesh)
and we define them according to the efficiency parameters. Finally, we describe a
method to design asynchronous optimistic MPCS protocols, and we propose one
as example. We also informally prove that our proposals are optimal, improv-
ing the existent proposals of lower-bounds for asynchronous optimistic MPCS
protocols.

2 MPCS Requirements

MPCS is a particular case of fair exchange protocols in which we have more
than 2 participants and the items to be exchanged are signatures on a contract.
Requirements for optimistic fair exchange protocols were defined by Asokan et
al. [1]: effectiveness, fairness (strong and weak), timeliness and non-repudiation,
and later, re-formulated by Zhou et al. [19]. In this section we will adapt these
requirements to the asynchronous optimistic MPCS scenario.

Effectiveness. If all participants in a MPCS protocol behave correctly (and
there are no network or system errors), the protocol will finish without the
intervention of the TTP.

Strong Fairness. Upon finalization of a MPCS protocol, either all honest par-
ticipants have the signature from the other participants, or all of them have
proof that the signature has been canceled. None of the participants can
receive evidence that contradicts the final state of the protocol execution.

Weak Fairness. Upon finalization of a MPCS protocol, either strong fairness
is met or all honest participants can prove they have behaved correctly.
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Non-repudiation. Upon finalization of a MPCS protocol, none of the partic-
ipants can deny having participated. In particular, the participants cannot
deny having originated (non-repudiation of origin) the signatures exchanged.

Timeliness. Any participant in a MPCS protocol can be sure that the duration
of the protocol execution is finite. And once the protocol is finished, any
honest participant will maintain the level of fairness obtained.

In addition to the requirements stated by Asokan et al. [1] and Zhou et al.
[19], Garay et al. [7] introduced abuse-freeness. Its objective is to avoid dishonest
participants to misuse the information acquired during the protocol execution
(e.g., the commitment to sign a contract from other participants).

Abuse-Freeness. After receiving Pi a partial signature from another partici-
pant Pj , the recipient Pi cannot convince others but himself that the partial
signature is from the sender Pj .

3 Efficiency

It is usually accepted that a protocol is efficient when it makes a reasonable use
of resources to fulfil its purpose. But we do not have a reference measure to
distinguish reasonable from unreasonable, therefore authors usually talk about
the efficiency of their solutions compared to others. Most of the papers use the
computational power as the resource to measure, giving their value of efficiency
in terms of number of mathematical operations, but it is not always easy to
grasp the real value of these measures.

Throughout the solutions found in the literature, authors use the terms
’round’ and ’step’ without clearly defining them, which often brings on con-
fusion with respect to the metric to be used for its efficiency evaluation, or what
they are exactly measuring. Another value typically provided is the number of
messages required to complete a protocol execution, but again they fail to give a
clear description of it. In our opinion, the term round should not be used for mea-
suring the efficiency of a protocol, but to help in its description. As we will see
in Sect. 4, the problem is that rounds in different topologies are not equal, e.g.,
in a ring topology a round requires the participants to make N transmissions
of information (1 per participant). Moreover, in a ring topology the protocol
execution must follow a certain order, and this information can be used by the
TTP to detect malicious users (see TTP rules for ring topology, in Sect. 7.1),
meanwhile in a mesh topology there is no execution order among participants.
The use of message as a parameter to measure efficiency has also the same prob-
lem: a transmission of information may contain more than one message. In this
paper we will take a different approach, we will focus on the participants to mea-
sure the protocol efficiency. We will measure the protocol complexity in terms of
how many transmissions are required, and how many messages each user has to
generate. These terms can later be translated in a time estimation, giving each
participant an idea of time, how long will a protocol execution take. Following
we make a definition of message and transmission, to clearly state their meaning.
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Fig. 1. Multi-party contract signature topologies

Definition 1 (Transmission) The action of transmitting one or more mes-
sages from an originator A to a recipient B.

Definition 2 (Message) A logical set of information sent from an originator
A to B, where B can be a set of recipients {B1, ..., BN}.

4 Topologies

In this section we will define four of the most used topologies when designing
MPCS protocols. For each topology we will define the meaning of round, and
we will calculate the number of transmissions required to complete a round,
assuming N participants {P1, ..., PN}.
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4.1 Ring

In a ring topology the transmissions occur between two adjacent nodes Pi and
P(i+1), until the execution flow reaches PN , whose transmission recipient is P1,
the initiator node. The ring architecture executes the transmissions on a serial
basis. In Fig. 1a we have depicted a complete round of a ring topology.

Definition 3 (Ring-Round.) A round begins when P1 executes a transmission
to P2, then P2 transmits to P3, ..., and ends when P1 receives the transmission
from PN , closing the ring.

A complete ring-round requires N transmissions, and generates information
on the execution order that can be used by the TTP to detect attempts of
misbehaviour.

4.2 Sequential

In a sequential topology the transmissions are executed on a serial basis. The
protocol execution flows from P1 to PN , and back to P1, going through all the
participants in between. In Fig. 1b we have a complete round execution of a
sequential topology depicted.

Definition 4 (Sequential-Round.) A round is started by the participant P1,
transmitting one or more messages to P2. The transmissions continue through all
the participants in a certain order (e.g., incrementing the subindex i: Pi, P(i+1),..),
until it reaches PN , who reverses the order transmitting to P(N−1), who executes
a transmission to P(N−2), etc. The round ends when P1 receives a transmission
from P2.

A complete sequential-round requires 2(N−1) transmissions. It also generates
information on the execution order of the transmissions.

4.3 Star

In a star topology the transmissions between participants are routed through a
central node/participant. The central node P1 receives all the transmissions from
the participants Pj (j ∈ [2..N ]), and then P1 returns to each Pj the correspond-
ing messages. Figure 1c depicts a complete round execution of star topology
depicted.

Definition 5 (Star-Round.) A round begins when the initiator P1 transmits
some message or messages to all Pj (j ∈ [2..N ]), and ends when P1 has received
the corresponding transmission from each Pj. Alternatively, the round can be
started by all Pj (j ∈ [2..N ]) transmitting to P1, and finish when each Pj has
received P1’s transmission.

The star topology only generates information about who initiated the star-
round. It requires 2(N − 1) transmissions.
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4.4 Mesh

In a mesh topology the transmissions are executed on a parallel basis. Each Pi,
with 1 ≤ i ≤ N will execute a transmission to each Pj , with j ∈ [1..N ], j �= i.
In Fig. 1d we have a complete round execution of mesh topology.

Definition 6 (Mesh-Round.) A round begins when Pi, with 1 ≤ i ≤ N exe-
cutes a transmission to each Pj, with j ∈ [1..N ], j �= i. The round will end when
every participant has received a transmission from the other N − 1 participants.

A complete mesh-round requires N(N − 1) transmissions, and it does not
generate additional information: the participants are not ordered.

5 Related Work

Baum-Waidner et al. propose in [3] a MPCS protocol that requires N +1 rounds
without abuse-freeness, and N + 3 with it (optimistic case). Their protocol uses
a mesh topology, but they also describe how to transform it into a protocol with
star topology. The number of rounds and messages required for each protocol
are presented as a function of the number of dishonest parties t. But it is not
clear the usefulness of it, because we cannot know the number of dishonest
participants beforehand. In [2] Baum-Waidner presents an optimization of the
previous proposal [3] where they assume a number of dishonest participants
t < (N − 1), but it is difficult to see the utility of this enhancement because, as
we just said, we cannot predict the number of dishonest parties beforehand.

Khill et al. [11] propose a protocol for multi-party fair exchange using a ring
topology. They affirm that the ring model is more efficient than the full mesh
topology. Their protocol consists on 3 rounds and 3N messages in the optimistic
case, and 7N messages in the worst case. A serious drawback of the protocol
is that it is supposed that the TTP broadcasts its decision to all parties. This
assumption is dangerous, because the channels can be resilient, but some party
can be unreachable for other reasons.

Chadha et al. [4] analyze formally two previous works: Garay et al. [8] and
Baum-Waidner et al. [3]. They focus on three properties: fairness, timeliness
and abuse-freeness. They conclude that the proposal of Baum-Waidner et al. [3]
has no security problems. On the other hand, they prove that the proposal of
Garay et al. [8] presents a security flaw when N = 4: it is not fair. Mukhamedov
et al. [15] prove that Chadha et al.’s [4] proposal (a fix to [8]) is also flawed.
An interesting issue discussed in that paper [15] is the abort chaining problem
(or resolve impossibility): non-honest parties can group together to propagate a
TTP’s abort decision. In fact, this is a way to prove the necessity of more than
(N − 1) rounds for N users (in order to avoid the abort chaining attack). The
abort chaining attack is a sequence of requests made by dishonest participants
trying to force the TTP to deliver cancel evidence, even though some other
honest participant may have already signed the contract.

Ferrer et al. present in [5] an optimal solution for asynchronous optimistic
MPCS with a ring topology, requiring quasi N rounds (more than N − 1 but
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less than N) for N parties. Their solution meets the following requirements:
effectiveness, weak fairness, timeliness, non-repudiation and verifiability of TTP.
The proposal takes into account the abort chaining problem.

In [14] Mukhamedov and Ryan criticize the work of Baum-Waidner et al. [3]
alleging that they use a non-standard notion of signed contract and they need
(N + 1)N(N − 1) messages, more than in the solution provided in [14], N(N −
1)(�N/2�+1). In [14] fairness, abuse-freeness and timeliness are considered. They
use a hybrid topology, a mixture of sequential and mesh, where the participants
are ordered. The protocol needs (�N/2� + 1) rounds, and authors observe that
it is not coherent with Garay’s Theorem of [7], but they argue that the concept
of round, used in different papers, is not clear.

Mauw et al. [13] use the concept of abort chaining of Mukhamedov et al.
[15] to derive a lower bound on the number of messages in MPCS protocols.
The authors model contract signing protocols as sequences of numbers. They
consider three security requirements: fairness, timeliness and abuse-freeness (but
they affirm that the latter “will not play a role in our observations on message
minimality”).

Zhang et al. propose in [18] a game-based verification of MPCS protocols.
They assume that MPCS protocols have to satisfy three properties: fairness,
timeliness and abuse-freeness. They analyze the protocols provided in [13,16],
proving the latter to be flawed for 3 signers and proposing a fix. Authors assume
that “once having contacted TTP by initiating a sub-protocol, the signers would
never be allowed to proceed the main protocol any more”, but we cannot forbid
a dishonest party to contact the TTP and proceed with the main protocol.

Following a similar reasoning than [13], Kordy et al. [12] propose protocols
derived from sequences of numbers. They consider the following requirements:
fairness, timeliness and abuse-freeness. An example with N = 3 results in a
protocol (sequential topology) with 18 messages, that can be converted to 12
messages. They cannot provide closed expressions for all values of N , and only
provide upper bounds.

6 MPCS Protocols Overview

This section presents a simple method to design asynchronous optimistic MPCS
protocols. An asynchronous optimistic MPCS protocol will be composed of two
sub-protocols: the exchange sub-protocol and the resolution sub-protocol. If all
participant behave correctly and there are no network errors, only the exchange
sub-protocol will be executed and the TTP will not intervene. As defined in
Sect. 2, the MPCS protocol will meet the security requirements for asynchronous
optimistic MPCS: effectiveness, weak fairness, non-repudiation and timeliness.
And since it is a contract signing protocol, it should also consider the abuse-
freeness requirement.

The MPCS protocol execution will follow a simple principle: in turns, the
participants will exchange series of commitments to sign the contract C, until
they have enough evidence to consider the contract signed. The commitments
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are signatures on the contract C and an index k. What is a “turn” or what
is “enough evidence” will be determined by the topology of the protocol (ring,
star, etc.).

In Sect. 7 we have an example of an asynchronous optimistic MPCS protocol
using a ring topology. Along the rest of the paper, we will use the following
notation:

– N Number of participants.
– Pi Participant i, 1 ≤ i ≤ N .
– Tx(r,i) Transmission generated by the participant i, during round r.
– C Contract to be signed.
– CID unique Contract IDentifier. A random number used to uniquely identify

a protocol execution.
– h(Mi) Hash Function of message Mi.
– Sj[Mi] = SKj[h(Mi)] j’s Digital Signature on Mi (where SKj is j’s pri-

vate key).

We assume that the contract C includes the necessary information, as the
identity of the participants, the TTP, the number N of participants, etc.

As regards the communications channels we make some usual assumptions
([1,6]):

– channels among participants Pi are unreliable, the messages can be delayed
or lost.

– channels among participants Pi and the TTP are resilient, the messages can
be delayed but not lost.

To meet the abuse-freeness requirement we can use signature schemes like
Designated Verifier Signatures (DVS) presented by Jakobsson et al. [10], Multi
DVS (MDVS) [17], Private Contract Signatures (PCS) introduced by Garay
et al. [7] or the Ambiguous Optimistic Fair Exchange (AOFE) scheme from
Huang et al. [9]. In essence, these signature schemes allow the participants to
generate a “weak” signature as commitment (partial signature), that can only be
verified by the intended recipient (or recipients in the case of MDVS). Once all
commitments are exchanged, they can generate a signature that can be verified
by third parties (full signature).

6.1 The TTP

The TTP is a third-party that assures the fairness of the protocol providing the
participants with proof of the protocol execution state. When a participant does
not receive a signature expected, either because an error occurred or because a
misbehaving participant, he can send a resolution request to the TTP. The TTP
will answer with a canceled or a signed token.

To solve the resolution requests (Table 1) the TTP follows a set of rules.
These rules are based on a group of variables the TTP updates on every request
received, indicating the state of a protocol execution. Following we have this
group of variables, their definition, and some notation used along the rules
definition.
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– XN = {P1, ..., PN} set of participants in a MPCS.
– XR set of participants who already requested resolution.
– XC set of participants who have received a canceled token from the TTP.
– XS set of participants who have received a signed token from the TTP.
– TxR set of transmissions Tx(r′ ,i′ ) received by the TTP.
– PC set of participants that are allowed to cancel the contract signature.
– canceled boolean value stating that the contracting protocol execution has

been canceled if its value is true.
– signed boolean value stating that the contracting protocol execution has been

finished (signed) if its value is true.

The rules are the same for all the protocols, but there are some particulariza-
tions depending on the topology, that we will explain in the example of MPCS
protocol (see Sects. 7.1 and 7.2). Following we have the common set of rules that
the TTP will follow to solve the resolution requests (the term x-round refers to
the particular round of each topology):

RULE 0 (R0). The TTP will only accept one resolution request per participant
Pi: if Pi ∈ XR, the TTP will dismiss the request.

RULE 1 (R1). If the TTP receives a request from Pi ∈ PC during x-round
r = 1, and the execution has not been previously finished (signed=true) by other
party, the TTP will cancel it and send a canceled token to Pi.

RULE 2 (R2). If the TTP receives a request from Pi during x-round r > 1,
and the execution has not been previously canceled by other party, the TTP will
finish it (signed=true) and send a signed token to Pi.

RULE 3 (R3). If the TTP receives a request from Pi during x-round r ≥ 1,
and the execution has been previously finished (signed=true) by other party, the
TTP will send a signed token to Pi.

RULE 4 (R4). If the TTP receives a request from Pi during x-round r > 1,
and the execution has been previously canceled (canceled=true) by other party,
the TTP will check the previously received requests. If the TTP can prove that
all previous requestors cheated, it will change the protocol status from canceled
to finished, and deliver the signed token to Pi. Otherwise the TTP will send a
cancel token to Pi.

7 Asynchronous Optimistic MPCS Protocols

In this section we present a set of asynchronous optimistic MPCS protocols,
one for each topology (ring, sequential, star and mesh) described in Sect. 4. All
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Table 1. Resolution sub-protocol for all topologies

MPCS resolution sub-protocol

Pi → TTP: CID,C, r, Tx(r,i), SPi [CID,C, r, Tx(r,i)]

if the TTP decides canceled

Pi ← TTP: Cancel Token

else

Pi ← TTP: Signed Token

Cancel Token: STTP [CID,C, r, CANCELED]; where CANCELED is a string

Signed Token: STTP [CID,C,m(k,i)N
]

protocols meet the requirements defined in Sect. 2: effectiveness, weak fairness,
timeliness, non-repudiation, and abuse-freeness. The examples presented in this
section assume the use of the Private Contract Signature (PCS) scheme ([7])
to meet the abuse-freeness requirement. We could replace the PCS signature
scheme for any other mentioned in the precious section, and the protocol would
still be valid (TTP rules, number of transmissions, security requirements, etc.),
according we make the necessary modifications on the content of each transmis-
sion Tx(r,i).

7.1 An Asynchronous Optimistic MPCS Protocol Using Ring
Topology

This protocol is based on the optimistic MPCS protocol from Ferrer-Gomila
et al. [5], where the authors present a solution with quasi N rounds (more
than N − 1 but less than N) for N parties, meeting the security requirements
(Sect. 2). Table 2 shows the exchange sub-protocol execution using the PCS sig-
nature scheme, following the nomenclature from Garay et al. [7] for the PCS.

In every turn each participant generates a commitment, a private signature
(PCS), for each of the other participants in the protocol execution. The index
of the commitments, k, is decremented by one every time a participant receives
all k-commitments from the other participants (see Table 3 for values of k in a
ring protocol). From then, the participants generate (k − 1)-commitments, until
again a participant receives all (k−1)-commitments and he decrements its value
again. This process is repeated until k reaches the value −1. When the index
k reaches the value 0, the commitments will be generated on the contract C,
without index. The next iteration, when k is −1, the participants will start to
transmit the full signature on the contract C, final evidence that the protocol has
finished successfully. In Table 4 we can see an example of a complete execution
for N = 3.

All participants except PN can cancel the protocol, therefore we have that in
TTP’s rule R1 PC = {P1, ..., P(N−1)}. When PN receives the first transmission
Tx(1,(N−1)) he already has evidence that proves that all other participants are
willing to sign the contract. If he does not want to sign the contract, he only
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Table 2. Asynchronous optimistic MPCS protocol with ring topology and PCS signa-
ture scheme

MPCS protocol with ring topology

for r = 1

for i = 1 to N : Pi → P(i+1) Tx(1,i)

PCSi((C, k), Pj , TTP ) ∀j ∈ [1..N ] � [i]

PCS(i−1)((C, k), Pj , TTP ) ∀j ∈ [1..N ] � [i, (i − 1)]
...

PCS1((C, k), Pj , TTP ) ∀j ∈ [1..N ] � [i, (i − 1), ...1]

for r = 2 to (N − 1)

for i = 1 to N : Pi → P(i+1) Tx(r,i)

PCSi((C, k), Pj , TTP ) ∀j ∈ [1..N ] � [i]

PCS(i−1)((C, k), Pj , TTP ) ∀j ∈ [1..N ] � [i, (i − 1)]
...

PCS(i−K)((C, k), Pj , TTP ) ∀j ∈ [1..N ] � [i, (i − 1), ...(i − K)]

for r = N

for i = 1 to (N − 1): Pi → P(i+1) Tx(N,i)

S − Signj(C) ∀j ∈ [1..N ] � [2, ..(i + 1)]

K = N − 2
PCSi(C,Pj , TTP ), Private Contract Signature of Pi over C for
Pj with Trusted Third Party TTP
S − Signi(C) Universally verifiable signature of Pi over C
Operations are mod, e.g., Pi → P(i+1) when i = N is PN → P1

needs to discontinue the protocol execution. In a protocol with ring topology,
TTP’s rule R4 states:

– if ∃ Tx(r′ ,i′ ) ∈ TxR / (r
′
= r) or (r

′
= r − 1 and i

′
> i), the TTP will send

a cancel token to Pi to maintain fairness for the previous honest requestors.
– if ∀ Tx(r′ ,i′ ) ∈ TxR / r

′
< r − 1, then Pi′ cheated.

– if ∀ Tx(r′ ,i′ ) ∈ TxR / r
′
= r − 1 and i

′
< i, then Pi′ cheated.

Notice that the TTP’s rule R4 for a ring topology uses the information gen-
erated by the protocol flow (when comparing the index i with i

′
), the execution

order to detect cheating participants.
The cancel Token (STTP [CID,C, r, CANCELED]) is evidence provided by

the TTP proving the contract signature has been canceled. It is the TTP’s uni-
versally verifiable signature on the unique Contract Identifier CID, the contract
C itself, the round number r in which the request was sent to the TTP (it can
be used later to prove the validity of the assertion), and a value indicating the
final state of the protocol execution.

The signed Token is evidence provided by the TTP proving the contract is
signed. It will depend on the signature scheme used. In the case of the PCS



238 G. Draper-Gil et al.

Table 3. Value of k according to the round r and the participant i for an asynchronous
optimistic MPCS protocol with ring topology

r i k

1 1 ≤ i ≤ (N − 1) k = (N − 2)

1 i = N k = (N − 3)

2 1 ≤ i ≤ (N − 2) k = (N − 3)

2 (N − 1) ≤ i ≤ N k = (N − 4)

3 1 ≤ i ≤ (N − 3) k = (N − 4)

3 (N − 2) ≤ i ≤ N k = (N − 5)

...

(N-2) 1 ≤ i ≤ 2 k = 1

(N-2) 3 ≤ i ≤ N k = 0

(N-1) i = 1 k = 0

(N-1) 2 ≤ i ≤ N k = −1

N 1 ≤ i ≤ (N − 1) k = −1

and ambiguous signatures, both schemes have a method to transform the partial
signatures in full signatures. Therefore the signed token will be the TTP’s full
signature on the CID, C, the round r, and the partial signatures converted into
full signatures.

Lemma 1. All asynchronous optimistic MPCS protocols with ring topology,
meeting timeliness, require at least (N + 1)(N − 1) transmissions to be fair.

Proof. We will prove it by contradiction. Assume that (N +1)(N −1)−1 trans-
missions are enough (we eliminate the last transmission: Tx(N,(N−1))). It means
that PN has all the evidence when he receives Tx(N−1),(N−1). Now we will con-
struct the abort-chaining attack.

Let us suppose P(N−1) sends a resolution request claiming he has sent
Tx(1,(N−1)) but he has not received Tx(2,(N−2)). He is the first to contact the
TTP, therefore the TTP will apply rule R1, canceling the protocol and delivering
a canceled token to P(N−1).

Next, P(N−2) sends a resolution request claiming he has sent Tx(2,(N−2)) but
he has not received Tx(3,(N−3)). The TTP will apply rule R4 (r

′
= r − 1 and i

′

> i) and it will send a canceled token to P(N−2).
Following, P(N−3) sends a resolution request claiming he has sent Tx(3,(N−3))

but he has not received Tx(4,(N−4)). The TTP will apply rule R4. This time, the
TTP will detect that P(N−1) ((r

′
= 1) < (r − 1 = 2)) cheated, but to maintain

fairness for P(N−2) (1 = 2 − 1 and (N − 1) > (N − 2)), it will send a canceled
token to P(N−3).

We can continue this abort-chaining attack, until P2 sends a resolution request
claiming he has sent Tx((N−2),2) but he has not received Tx((N−1),1). Applying
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R4, the TTP detects that P4 cheated, but to maintain fairness for P3 it sends a
canceled token to P2.

Finally, P1 sends a resolution request claiming he has sent Tx((N−1),1) but
he has not received Tx((N−1),N). Again, the TTP will apply rule R4, and deliver
a canceled token to P1 to maintain fairness for P2 (the TTP can prove that
{P3, P4 ,..., P(N−2), P(N−1)} have cheated). In this scenario, an honest PN may
have received all evidence, but an honest P1 has a canceled token from the TTP
(Tx((N−1),N) may be lost due to a network error), therefore fairness is broken.

But if we add another transmission, Tx(N,(N−1)), we can avoid the abort
chaining attack. Continuing the previous execution, with the additional trans-
mission, we have two possibilities:

– If P1 is honest, he will not continue with the protocol execution, therefore PN

will send a resolution request to the TTP claiming the missing evidence. The
TTP will be able to prove that P2 cheated, but again, to maintain fairness for
the honest participants it will send a canceled token to PN . Both P1 and PN ,
honest, will have a canceled token.

– If P1 is dishonest, and all other dishonest participants continue with the pro-
tocol execution, PN will receive Tx(N,(N−1)), therefore he will have evidence
the contract has been signed.

In both cases weak fairness is met. Therefore we can affirm that the minimum
number of transmissions that an asynchronous optimistic MPCS protocol with
ring topology needs to be fair is (N + 1)(N − 1).

7.2 An Asynchronous Optimistic MPCS Protocol with Sequential,
Star and Mesh Topology

Following the same method we used to design the MPCS protocol with ring
topology, we can design a protocol using a sequential, star and mesh topology.
Due to the lack of space, we cannot include their full description, but we briefly
present their measures of efficiency and the TTP rules.

Sequential: (N + 1)(N − 1) transmissions are necessary.
In a protocol with sequential topology we have: PC = {P1, ..., P(N−1)}, i.e. all
participants except PN can cancel the protocol. To apply R4, the TTP follows
these statements:

– if ∃ Tx(r′ ,i′ ) ∈ MR / (r
′
= r) or (r

′
= r− 1 and i

′
< i), the TTP will send a

canceled token to Pi to maintain fairness for the previous honest requesters.
– if ∀ Tx(r′ ,i′ ) ∈ MR / r

′
< r − 1, then Pi′ cheated.

– if ∀ Tx(r′ ,i′ ) ∈ MR / r
′
= r − 1 and i

′
> i, then Pi′ cheated.

Star: (2N − 1)(N − 1) transmissions are necessary.
In an asynchronous optimistic MPCS protocol with star topology, all participants
except P1 can cancel the protocol: PC = {P2, ..., PN}, TTP’s R1. To apply R4
the TTP follows the next assertions:
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Table 4. Example of asynchronous optimistic MPCS protocol, ring topology, PCS
signature scheme and N = 3

r = 1

P1 → P2 PCS1((C, 1), P2, TTP ), PCS1((C, 1), P3, TTP )

P2 → P3 PCS2((C, 1), P3, TTP ), PCS2((C, 1), P1, TTP )

PCS1((C, 1), P3, TTP )

P3 → P1 PCS3(C,P1, TTP ), PCS3(C,P2, TTP )

PCS2((C, 1), P1, TTP )

r = 2

P1 → P2 PCS1(C,P2, TTP ), PCS1(C,P3, TTP )

PCS3(C,P2, TTP )

P2 → P3 S − Sig2

PCS1(C,P3, TTP )

P3 → P1 S − Sig3

S − Sig2

r = 3

P1 → P2 S − Sig1

S − Sig3

P2 → P3 S − Sig1

– if ∃ Tx(r′ ,i′ ) ∈ MR / r
′ ≥ r − 1, the TTP will send a canceled token to Pi to

maintain fairness for the previous honest requesters.
– if ∀ Tx(r′ ,i′ ) ∈ MR / r

′
< r − 1, then Pi′ cheated.

Mesh: N2(N − 1) transmissions are necessary.
In the mesh topology, all participants can cancel the protocol: PC = {P1, ..., PN},
in TTP’s R1. Regarding the detection of cheating users, R4 for a mesh topology
states:

– if ∃ Tx(r′ ,i′ ) ∈ MR / r
′ ≥ r − 1, the TTP will send a canceled token to Pi to

maintain fairness for the previous honest requesters.
– if ∀ Tx(r′ ,i′ ) ∈ MR / r

′
< r − 1, then Pi′ cheated.

8 Protocol Comparison

In Table 5 we can compare the efficiency of our MPCS protocol proposals and
some of the most relevant presented in the related work (we eluded proposals that
have been proved flawed). In Sect. 3 we have given a definition of message and
transmission to avoid confusions (a transmission can include several messages).

Within our solutions, the proposals with ring and sequential architecture are
the most efficient, requiring only (N+1)(N−1) transmissions. But comparing the
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Table 5. Efficiency of asynchronous optimistic MPCS protocols

Protocol Topology Transmissions(1) Messages/User(2)

� Ring (N + 1)(N − 1) (N − 1)2 + 1 when Pi = P1

(N − 2)(N − 1) + 1 when
Pi �= P1

� Sequential (N + 1)(N − 1) �(N − 1)/2	(N − 1) + 1 when N
is odd

�(N − 1)/2	(N − 1) − i + 2
when N is even

[14] Sequential/
Mesh

(�N/2	 + 1)N(N − 1) (�N/2	 + 1)(N − 1) + 1

� Star (2N − 1)(N − 1) (N − 2)(N − 1) + 1

[3] Star 4(N + 3)(N − 1) (N + 2)

� Mesh N2(N − 1) (N − 1)2 + 1

[3] Mesh N(N − 1)(N + 3) (N + 2)

� Our proposal.
N, number of participants.
(1) Optimistic case, the TTP does not intervene, and N − 1 malicious participants
assumed.
(2) Number of messages (signatures) generated by each user. i ∈ [1..N ] ith

participant

number of messages each user has to generate, we can see that the sequential
protocol has advantage, requiring approximately half the messages, which is
translated in less computational power needed.

Baum-Waidner et al. [3] propose a MPCS protocol that achieves abuse-
freeness using standard public key cryptography. In their paper, the authors
propose a mesh solution and they also explain how to convert it into a star solu-
tion. Comparing the efficiency of their solution, we see that our proposals require
less transmissions in both cases: ring and mesh architecture. But the number of
messages generated by each user is lower in their proposals, due to the use of
standard public key cryptography.

The proposal from Mukhamedov et al. [14] uses an architecture that is a mix
of sequential and mesh. Compared with Mukhamedov et al. [14], our proposals
with ring and sequential architecture require less transmissions. Therefore both
should be more efficient than Mukhamedov et al.’s. But comparing the number
of messages generated by each user, we have that Mukhamedov et al.’s proposal
requires each user to generates less messages than our solution with ring topology,
but more than our sequential proposal. Therefore, requiring less transmissions
and less messages, we can affirm that our solution with sequential topology is the
most efficient asynchronous optimistic MPCS protocol, setting a lower-bound for
the minimum number of transmissions required in MPCS protocols.

With these results we can see that with our new definition of efficiency para-
meters we are able to compare protocols using different topologies, but only
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if they use the same cryptographic techniques (signature schemes, encryption
schemes, etc.). A step further into measuring the efficiency of MPCS protocols
is to find other parameters that would allow us to compare protocols, even when
they use different cryptographic techniques, and to have a better notion of the
influence of the architecture, e.g., sending messages in a sequence (ring, sequen-
tial) is slower than sending them in parallel (star, mesh), but sending messages
in parallel (independent threads) requires more resources than sending messages
in a sequence. This topic is part of the future work.

9 Conclusions

Using a common approach for the design of asynchronous optimistic MPCS
protocols, we have proposed an asynchronous optimistic MPCS protocol for a
ring, sequential, star and mesh topology. Each proposal meets the asynchronous
optimistic MPCS protocol requirements, including abuse-freeness. Moreover, the
number of transmissions required by each protocol is the minimum needed to
maintain fairness, therefore we have also defined a new set of lower-bounds,
minimum number of transmissions, for each topology.

As future work we plan to extend this work including hybrid topologies
(mesh/sequential, etc.) and a study of different efficiency parameters. Our final
goal is to use these results to enhance the efficiency of existing MPCS protocols,
and establish a common framework for the evaluation of MPCS topologies.
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Abstract. Dragonfly is a password-authenticated key exchange proto-
col that was proposed by Harkins [11] in 2008. It is currently a candidate
for standardization by the Internet Engineering Task Force, and would
greatly benefit from a security proof. In this paper, we prove the secu-
rity of a very close variant of Dragonfly in the random oracle model.
It shows in particular that Dragonfly’s main flows - a kind of Diffie-
Hellman variation with a password-derived base - are sound. We employ
the standard Bellare et al. [2] security model, which incorporates forward
secrecy.

1 Introduction

Authenticated Key Exchange (AKE) is a cryptographic service run between two
or more parties over a network with the aim of agreeing on a secret, high-quality,
session key to use in higher-level applications (e.g., to create an efficient and
secure channel.) One talks of Password -Authenticated Key Exchange (PAKE)
if the message flows of the protocol itself are authenticated by means of a low-
entropy password held by each user. The inherent danger in this setup is its
vulnerability to dictionary attacks, wherein an adversary - either eavesdropping
or impersonating a user - tries to correlate protocol messages with password
guesses to determine the correct password being used.

PAKE research is very active. New protocol designs are regularly proposed
and analyzed, and PAKE itself has been subject to standardization since at
least 2002. In 2008 Harkins proposed Dragonfly [11]: Specifically tailored for
mesh networks, it is up for IETF (Internet Engineering Task Force) standard-
ization [12]. However, proving the security of Dragonfly remains open.

This paper proves secure a protocol similar to the version of Dragonfly
up for standardization, in the random oracle (RO) model [4]. Thus we can at
least assert that the scheme’s main flows - a Diffie-Hellman [10] variant with
a password-derived base - are sound. Dragonfly’s design is similar to that of
Jablon’s SPEKE [13]. MacKenzie having proved SPEKE secure in [16], we
followed [16]’s proof to structure ours. However, unlike in [16], we incorporated
forward secrecy into the analysis, and chose to work in the Bellare et al. model [2].
To our knowledge, this is the first time a protocol employing a password-derived

c© Springer International Publishing Switzerland 2015
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Diffie-Hellman base is proven forward-secure and analyzed using [2]. As in [16],
Dragonfly’s security is based on the Computational Diffie-Hellman (CDH) and
Decisional Inverted-Additive Diffie-Hellman (DIDH) assumptions (see Sect. 2.2).

Related Work. PAKE has been heavily studied in the last decade. It began with
the works of Bellovin and Merrit [5] and Jablon [13], but with no precise security
analysis. Security models in the vein of [3,19] were then introduced by Bellare
et al. [2] and Boyko et al. [6] respectively, and the number of provably secure
schemes - with random oracles (RO) or ideal ciphers [2,7], common reference
strings [8,14], universal composability [8], to name a few - has exploded. We refer
to Pointcheval’s survey [18] for a more complete picture. As for Dragonfly, it
first appeared in [11]. The attention it has received as an IETF proposal has led
it to being broken by Clarke and Hao [9], and subsequently fixed.

Organization. The rest of the paper is structured as follows. In Sect. 2, we recall
the commonly-used security model of [2]. Section 3 contains a description of the
version of Dragonfly we analyze. Next, Sect. 4 sketches the security proof, the
details being in the appendix. Finally, the paper is concluded in Sect. 5.

2 Security Model

We use the indistinguishability-based framework of [2], designed for two-party
PAKE. In what follows, we will assume some familiarity with the model in [2].

2.1 Model

Participants, Passwords and Initialization. Each principal U that can par-
ticipate in a PAKE protocol P comes from either the Client or Server set,
which are finite, disjoint, nonempty sets whose union is the set ID. We assume
that each client C ∈ Client is in possession of a password πC , while each server
S ∈ Server holds a vector of the passwords of all clients πS = 〈πS [C]〉C∈Client.
Before the execution of a protocol, an initialization phase occurs, in which public
parameters are fixed and a secret πC , drawn uniformly (and independently) at
random from a finite set Passwords of size N , is generated for each client and
given to all servers.

Protocol Execution. The protocol P is a probabilistic algorithm that defines
the way principals behave in response to messages from the environment. In
the real world, each principal may run multiple executions of P with different
partners, and to model this we allow each principal to have an unlimited number
of instances executing P in parallel. We denote client instances by Ci and server
instances by Sj . Each instance maintains local state (i.e. statei

U , sidi
U , pidi

U , ski
U ,

acci
U , termi

U ) and can be used only once. To assess the security of P, we assume
that an adversary A has complete control of the network. Thus, A provides the
inputs to instances, via the following queries:
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– Send(U i,M): A sends message M to instance U i. As a result, U i processes M
according to P, updates its local state, and outputs a reply. A Send(Ci, Start)
has client Ci output P’s first message. This query models active attacks.

– Execute(Ci, Sj): This triggers an honest run of P between Ci and Sj , and
its transcript is given to A. It covers passive eavesdropping on protocol flows.

– Reveal(U i): A receives the current value of the session key ski
U . A may do

this only if U i holds a session key. This captures session key leakage.
– Test(U i): A bit b is flipped. If b = 1, A gets ski

U . Otherwise, it receives a
random string from the session key space. A may only make one such query
at any time during the execution. This query measures ski

U ’s semantic security.
– Corrupt(U): πU is given to A. This models compromise of the long-term key.1

Accepting and Terminating. An instance U i accepts (acci
U = 1) if it holds

a session key ski
U , a session ID sidi

U and a partner ID pidi
U . An instance U i

terminates (termi
U = 1) if it will not send nor receive any more messages. U i

may accept and terminate once.

Partnering. Instances Ci and Sj are partnered if: (1) acci
C = 1 and accj

S = 1;
(2) sidi

C = sidj
S �= ⊥; (3) pidi

C = S and pidj
S = C; (4) ski

C = skj
S ; and (5) no

other instance accepts with the same sid.

Freshness. Freshness captures the idea that the adversary should not trivially
know the session key being tested. An instance U i is said to be fresh with forward
secrecy if: (1) acci

U = 1; (2) no Reveal query was made to U i nor to its partner
U ′j (if it has one); (3) no Corrupt(U ′) query was made before the Test query
and a Send(U i,M) query was made at some point, where U ′ is any participant.

Advantage of the Adversary. Now that we have defined freshness and all the
queries available to the adversary A, we can formally define the authenticated
key exchange (ake) advantage of A against P. We say that A wins and breaks
the ake security of P, if upon making a Test query to a fresh instance U i that
has terminated, A outputs a bit b′, such that b′ = b where b is the bit from
the Test query. We denote the probability of this event by Succake

P (A). The
ake-advantage of A in breaking P is

Advake
P (A) = 2 Succake

P (A) − 1. (1)

Authentication. Another of A’s goals is violating authentication. In [2], Bellare
et al. define three notions of authentication: client-to-server (c2s), server-to-client
(s2c), and mutual (ma). We denote by Succc2s

P (A) (respectively, Succs2c
P (A))

the probability that c2s (resp., s2c) authentication is violated, which happens
if some server (resp., client) has terminated before any Corrupt query without
being partnered with a client (resp., server). The adversary is said to violate
mutual authentication if there exists some instance that terminates before any
Corrupt query without a partner. We denote by Succma

P (A) the probability of
this event occurring, and the ma-advantage of A in breaking P is

Advma
P (A) = Succma

P (A). (2)
1 This is the weak-corruption model of [2].
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2.2 Security Assumptions

Here we state the assumptions upon which the security of Dragonfly rests. Let
ε ∈ [0, 1], and let B and D be probabilistic algorithms running in time t. Let
G be a finite group of prime order q, and g be a generator of G. We say that
the assumption holds if there is no (t, ε)-solver for polynomial t (in the security
parameter k governing the size of G) and non-negligible ε (also in k).

Computational Diffie-Hellman (CDH). Set DHg(gx, gy) := gxy, for any x
and y in Zq. We say that B is a (t, ε)-CDH solver if

Succcdh
g,G(B) := Pr[B(g, gx, gy) = DHg(gx, gy)] ≥ ε, (3)

where x and y are chosen uniformly at random.

Decisional Inverted-Additive Diffie-Hellman (DIDH). For x and y in
Z

∗
q , where x + y �= 0, set IDHg(g1/x, g1/y) := g1/(x+y). An algorithm D is a

(t, ε)-DIDH solver if

Advdidh
g,G (D) := Succdidh

g,G (D) − 1
2

≥ ε, (4)

where Succdidh
g,G (D) := Pr[b′ = b] in the following game. First, x, y, and z are

chosen uniformly at random and a bit b is flipped. Let X := g1/x and Y := g1/y.
If b = 0, set Z := g1/z, and if b = 1, set Z := IDHg(X,Y ). D gets as input
(g,X, Y, Z), and outputs bit b′.

The DIDH assumption is less-known than the CDH one. It states that it is
hard to tell apart g1/(x+y) and a random g1/z when given g1/x and g1/y. [16]
shows that DIDH is as hard as the Decisional Diffie-Hellman problem in generic
groups. For a nice overview of the relations between the DIDH assumption and
other discrete-logarithm-style assumptions we refer the reader to [1].

3 The Dragonfly Protocol

We first fix some notation and then describe the version of Dragonfly to analyze.
Its cryptographic core is a Diffie-Hellman key exchange similar to the one used
in SPEKE [13], where a function of the password is the base for group values.

Notation. Let G be a finite multiplicative group of prime order q, and k be the
security parameter. When we sample elements from Zq, it is understood that
they are viewed as integers in [1 . . . q], and all operations on these are performed
mod q. Let H0 be a full-domain hash mapping {0, 1}∗ to G. We also define a
hash function H1 from {0, 1}∗ to {0, 1}3k. a ← A denotes selecting a uniformly
at random from the set A. Let the function Good(E, s) be true iff: (1) s ∈ [1 . . . q]
and (2) E ∈ G. We assume the existence of an efficient algorithm to perform the
latter check; this is important, as it prevents instantiation-specific attacks, like
the small subgroup attack in [9].
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Client Server
InitializationInitialization

Public: , p, q; H0 : {0, 1}∗ → ; H1 : {0, 1}∗ → {0, 1}3k

π ∈ Passwords, PW := H0(C, S, π)

m1, r1 ← q

s1 := r1 + m1

E1 := PW −m1 C, E1, s1

abort if ¬Good(E1, s1)

m2, r2 ← q

s2 := r2 + m2

S, E2, s2 E2 := PW −m2

abort if ¬Good(E2, s2)

σ := (PW s2 × E2)
r1

tr := (C, S, s1, s2, E1, E2)

κ|τ̂ |skC := H1(tr, σ, PW ) κ

σ := (PW s1 × E1)
r2

tr := (C, S, s1, s2, E1, E2)

κ̂|τ |skS := H1(tr, σ, PW )

τ abort if κ �= κ̂

abort if τ �= τ̂

Fig. 1. The Dragonfly protocol.

Protocol Description. A high-level protocol description is shown in Fig. 1. At
initialization, the password is chosen at random from Passwords and given to
the client and server. Then, both parties compute a base PW = H0(C,S, π) for
Diffie-Hellman values, where C and S are ID strings.

In nutshell, the protocol runs in two phases. In the first phase, each partic-
ipant chooses a random exponent ri and mask mi, computes their sum si ∈
Zq and the group element Ei := PW−mi , and sends the commit message
(ID,Ei, si), where i = 1, 2. Upon receiving this message, Good(Ei, si) is called
to check its validity. At this point, the session IDs sidC and sidS are set to
(C,S, s1, s2, E1, E2) for each participant. In the second phase, both participants
derive the Diffie-Hellman value σ = PW r1r2 . This is followed by a computation
of a hash value (using the derived σ value), parsed into three k-bit strings: an
authenticator for each participant and the session key sk. Then, the authentica-
tors are exchanged. If the received authenticator is valid, the participant accepts
and terminates the execution, saving session key sk. Otherwise, it aborts, delet-
ing its state.

Remarks. We point out here the main areas where the presented protocol
slightly differs from the IETF proposal. First of all, we do not model the
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“hunting-and-pecking” procedure explicitly, but this is not a problem here. As
pointed out in the proposal, “hunting-and-pecking” is just one way among others
to deterministically obtain a base group element from a password. Thus, simply
using a random oracle taking as input the participants’ identities in addition to
the password is appropriate.

The procedure we use to compute the confirmation codes and the session
keys is not that of the proposal. In particular, our construction makes all of
these direct functions of the shared secret, both identities, the main protocol’s
message flows, and the password element. This is similar to the PAK and PPK
protocols [6], for instance, as well as in MacKenzie’s analysis of SPEKE [16].
In our view, it is more prudent to follow this pattern, as either removing identi-
ties - or replacing them with generic “role” strings - can lead to attacks, e.g. [17]
and [1]. Thus, we recommend adding the receiver’s identity in the IEFT pro-
posal’s computation of the “confirm” message.

Finally, the protocol could have been dropped to three flows, but we chose to
keep it four, for two reasons. First, this way we stay close to the IETF protocol,
and secondly, despite reducing communication efficiency, four-flow PAKEs - in
which the first two flows commit to a shared password and the second two are
proofs-of-possession of the session key - are by design secure against many-to-
many guessing attacks on the server side, see [15].

4 Security Proof of Dragonfly Protocol

We now present a proof of security for Dragonfly in the RO model [4]. We show
that Dragonfly distributes semantically secure session keys, provides mutual
authentication, and enjoys forward secrecy. We also adopt the convenient nota-
tions of [7].

Theorem 1. We consider Dragonfly as described in Sect. 3, with a password
set of size N . Let A be an adversary that runs in time at most t, and makes at
most nse Send queries, nex Execute queries, and nh0 and nh1 RO queries to
H0 and H1, respectively. Then there exist two algorithms B and D running in
time t′ such that Advake

dragonfly(A) ≤ T and Advma
dragonfly(A) ≤ T where

T :=
6nse

N
+

4(nse + nex)(2nse + nex + nh1)
q2

+
n2

h0 + 2nh1

q
+

n2
h1 + 2nse

2k
+

2nh1(1 + nse
2) × Succcdh

PW,G(B) + 4n3
h0 ×

(
Advdidh

g,G (D) +
n3

h1 + 3nse

q

)
(5)

and where t′ = O(t + (nse + nex + nro)texp) with texp being a time required for
exponentiation in G.

Proof. Our proof is given as a sequence of games G0, ...,G4. Our goal is to
prove that Dragonfly resists offline dictionary attacks, i.e. that A’s advantage
is proportional to that of the easily detected “dummy” online guesser. We define
events, corresponding to A attacking the protocol in game Gm and breaking
semantic security, and c2s and s2c authentication, for m = 0, ..., 4.
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SendSend queries made to a client instance Ci are answered as follows:

– A SendSend(Ci, StartStart) query is executed according to the following rule:

� Rule C1(1)

Choose an ephemeral exponent r1 ← q and a mask m1 ← q, compute
s1 := r1 + m1 and E1 := PW −m1 .

The client instance Ci then replies to the adversary A with (C, E1, s1) and goes
to an expecting state EC1.

– If the instance Ci is in the expecting state EC1, a received SendSend(Ci, (S, E2, s2))
query is first parsed and Good(E2, s2) is called. If the check passes, the instance
continues processing the query according to the following rules:

� Rule C2(1)

Compute σ := (PW s2 × E2)
r1 .

� Rule C3(1)

Compute κ|τ̂ |skC := H1(C, S, s1, s2, E1, E2, σ, PW ).

The instance Ci accepts, replies to A with κ, and goes to an expecting state EC2.
Otherwise, it terminates (rejecting), saving no state.

– In case Ci is in the expecting state EC2, a SendSend(Ci, τ) query is processed according
to the following rule:

� Rule C4(1)

Check if τ = τ̂ . If so, the instance terminates, saving skC as a state.

If the equality does not hold, the instance terminates (rejecting), saving no state.

Fig. 2. Simulation of the Send queries to the client.

– Sm occurs if A returns b′ equal to the bit b chosen in the Test query.
– Authc2s

m occurs if an Sj terminates saving skS as a state without being part-
nered with some Ci.

– Auths2c
m occurs if a Ci terminates saving skC as a state without being part-

nered with some Sj .

Throughout the proof, we call A’s oracle query of the form H1(C, S, s1, s2, E1,
E2, σ, PW ) bad if σ = DHPW (m,μ) (where m = PW s1E1 and μ = PW s2E2),
and Good(E1, s1) and Good(E2, s2) are true. Also, we denote by πC the value of
the password selected for C and by PWC,S the value of the base derived from it
with server S. The number of instances that A can activate and of hash queries
that A can make are bounded by t. In addition, in case A does not output b′

after time t, b′ is chosen randomly. Let us now proceed with a detailed proof.

Game G0 : This game is our starting point, with Dragonfly defined as in Fig. 1.
A may make Send, Execute, Reveal, Corrupt, and Test queries and these
queries are simulated as shown in Figs. 2, 3, and 4. From Definition 1 we have

Advake
dragonfly(A) = 2 Pr[S0] − 1. (6)
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SendSend queries made to a server instance Sj are answered as follows:

– A SendSend(Sj , (C, E1, s1)) query is first parsed and then Good(E1, s1) is called. If
both values are valid, the instance continues processing the query according to the
following rules:

� Rule S1(1)

Choose an ephemeral exponent r2 ← q and a mask m2 ← q, compute
s2 := r2 + m2 and E2 := PW −m2 .

The server instance Sj then replies to the adversary A with (S, E2, s2) and goes
to an expecting state ES1. Otherwise, it terminates (rejecting), saving no state.

– If the instance Sj is in the expecting state ES1, a SendSend(Sj , κ) query is executed
according to the following rules:

� Rule S2(1)

Compute σ := (PW s1 × E1)
r2 .

� Rule S3(1)

κ̂|τ |skS := H1(C, S, s1, s2, E1, E2, σ, PW ).

� Rule S4(1)

Check if κ = κ̂. If so, Sj accepts, replies with τ , and terminates while saving
skS as a state.

If the equality does not hold, the Sj terminates (rejecting), saving no state.

Fig. 3. Simulation of the Send queries to the server.

Game G1 : This is our first simulation, in which hash queries2 to H0, H1 and
H ′

1 are answered by maintaining lists Lh0,Lh1 and L′
h1, respectively (see Fig. 5).

The simulator also maintains a separate list LA of all hash queries asked by A.
Note that we assume that the simulator knows the discrete logarithms of the
outputs of H0 queries. The simulator also keeps track of all honestly exchanged
protocol messages in the list LP . We say that a client instance Ci and a server
instance Sj are paired if ((C,E1, s1), (S,E2, s2)) ∈ LP . We can easily see that
this simulation is perfectly indistinguishable from the attack in G0. Thus,

Pr[S1] = Pr[S0]. (7)

Game G2 : In this game, collisions on the outputs of H0 queries and collisions
on the partial transcripts ((C,E1, s1), (S,E2, s2)) are avoided. Let list LR keep
track of the replies generated by client and server instances as answers to Send
queries. We abort if a pair (E1, s1) generated by a client instance is already in
the list LR as a result of previous Send or Execute queries, or in the list LA
as an input to an H1 query. Similarly, we abort in case a pair (E2, s2) generated
by a server instance is already in LR or LA.

2 The private oracle H ′
1 : {0, 1}∗ → {0, 1}3k will be used in the later, starting from

the G3.
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An ExecuteExecute(Ci, Sj) query is simulated by successively running the honest simulations
of SendSend queries. After the completion, the transcript is given to the adversary.

As a result of the RevealReveal(U i) query, the simulator returns the session key (either skC

or skS) to A, only in case the instance U i has already computed the key and accepted.

As a result of the CorruptCorrupt(U) query, if U ∈ Client the simulator returns the password
πC , and otherwise the vector of passwords πS = 〈πS [C]〉C∈Client.

As a result of the TestTest(U i) query, the simulator flips a bit b. If b = 1, it returns session
key ski

U to A. Otherwise, A receives a random string drawn from {0, 1}k.

Fig. 4. Simulation of the Execute, Reveal, Corrupt, and Test queries.

H0: For each hash query H0(w), if the same query was previously asked, the simulator
retrieves the record (w, r, α) from the list Lh0 and answers with r. Otherwise, the
answer r is chosen according to the following rule:

� Rule H
(1)
0

Choose α ← q. Compute r := gα and write the record (w, r, α) to Lh0.

H1: For each hash query H1(w) (resp. H ′
1(w)), if the same query was previously asked,

the simulator retrieves the record (w, r) from the list Lh1 (resp. L′
h1) and answers with

r. Otherwise, the answer r is chosen according to the following rule:

� Rule H
(1)
1

Choose r ← {0, 1}3k, write the record (w, r) in the list Lh1 (resp. L′
h1), and answer

with r.

Fig. 5. Simulation of the hash functions.

� RuleC1(2)

Choose an ephemeral exponent r1 ← Zq and a mask m1 ← Zq, compute
s1 := r1 + m1 and E1 := PW−m1 . If (E1, s1) ∈ LR ∪ LA, abort the game.

� Rule S1(2)

Choose an ephemeral exponent r2 ← Zq and a mask m2 ← Zq, compute
s2 := r2 + m2 and E2 := PW−m2 . If (E2, s2) ∈ LR ∪ LA, abort the game.

Additionally, we abort in case of collisions on H0 outputs. This event’s prob-
ability is bounded by the birthday paradox n2

h0/2q.

� Rule H
(2)
0

Choose α ← Zq. Compute r := gα and write the record (w, r, α) to Lh0. If
(∗, r, ∗) ∈ LA, abort the game.

The rule modifications in this game ensure the uniqueness of honest instances
and that distinct passwords do not map to the same base PW . So we have:

|Pr[S2] − Pr[S1]| ≤ 2(nse + nex)(2nse + nex + nh1)
q2

+
n2

h0

2q
. (8)
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Game G3 : In this game, we first define event Corrupted that occurs if the
adversary makes a Corrupt query while the targeted client and server instance
are not paired. From now on, if Corrupted is false, instead of using H1 to
compute session keys and authenticators, the simulator uses a private oracle H ′

1.
The rules change as follows:

� RuleC3(3)

If Corrupted is false, compute κ|τ̂ |skC := H ′
1(C,S, s1, s2, E1, E2). Other-

wise, compute κ|τ̂ |skC := H1(C,S, s1, s2, E1, E2, σ, PW ).
� Rule S3(3)

If Corrupted is false , compute κ̂|τ |skS := H ′
1(C,S, s1, s2, E1, E2). Other-

wise, compute κ̂|τ |skC := H1(C,S, s1, s2, E1, E2, σ, PW ).

Then, since the shared secret σ and base PW are no longer used in above
computations in case the event Corrupted is false, we can further modify the
following rules:

� RuleC2(3)

If Corrupted is false, do nothing. Otherwise, compute σ := (PW s2 ×E2)r1 .
� Rule S2(3)

If Corrupted is false, do nothing. Otherwise, compute σ := (PW s1 ×E1)r2 .
� RuleC1(3)

Choose ψ1, s1 ← Zq and compute E1 := gψ1 . If (E1, s1) ∈ LR ∪ LA, abort.
� Rule S1(3)

Choose ψ2, s2 ← Zq and compute E2 := gψ2 . If (E2, s2) ∈ LR ∪ LA, abort.

Note that after the above modification the simulator can determine correct and
incorrect password guesses and answer perfectly to all queries using the ψ1, ψ2,
and α values and the lists Lh0, Lh1, L′

h1, LA, LP , and LR. Also, the values s1, s2,
E1, E2 obtained after applying rules C1(3) and S1(3) are identically distributed
to those generated in game G2.

Now that the password-derived base is absent from protocol executions (if
Corrupted is false3), we can dismiss the event that A has been lucky in guessing
the right PWC,S without making the corresponding H0 query. Hence we abort
the simulation if the adversary A submits a H1(C, S, ∗, ∗, ∗, ∗, ∗, PWC,S)
query without prior H0(C,S, πC) query. The probability of this event occurring
is nh1/q.

� Rule H
(3)
1

If w = (C,S, ∗, ∗, ∗, ∗, ∗, PWC,S), ((C,S, πC), PWC,S) /∈ LA, and Corrupted
is false, abort. Otherwise, choose r ← {0, 1}3k, write the record (w, r) in the
list Lh1, and answer with r.

3 Notice that in case Corrupted is true, a password-derived base is still used in H1

computations, hence we can not apply the same argument.
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Next, we avoid the cases where the adversary A may have guessed one of the
authenticators (κ or τ) without having made an appropriate H1 query (when
Corrupted is false). A “lucky guess” occurs if A submits a Send(Sj , κ) query
with the correct authenticator κ to an unpartnered server instance Sj without
previously submitting a bad H1(C, S, s1, s2, E1, E2, σ, PWC,S) query. In this
case Sj aborts, even though it should have accepted. Similarly, if A submits
a Send(Ci, τ) query with the correct τ to an unpartnered Ci without having
submitted a bad H1(C, S, s1, s2, E1, E2, σ, PWC,S) query, Ci aborts.

� Rule S4(3)

Check if κ = κ̂. If so, check if ((C,S, s1, s2, E1, E2, σ, PWC,S), κ) /∈ LA, where
Good(E1, s1) is true, σ = DHPWC,S

(m,μ), and Corrupted is false. If the
latter check is true, the server instance Sj aborts. Otherwise, Sj accepts,
replies to the adversary with τ , and terminates while saving skS as a state.

� RuleC4(3)

Check if τ = τ̂ . If so, check if ((C,S, s1, s2, E1, E2, σ, PWC,S), τ) /∈ LA, where
Good(E2, s2) is true, σ = DHPWC,S

(m,μ), and Corrupted is false. If the
latter check is true, the client instance Ci aborts. Otherwise, Ci terminates,
saving skC as a state.

Since the authenticators are computed using a private random oracle H ′
1 (when

Corrupted is false), we can argue that the adversary can not do better than
a random guess per an authentication attempt via Send query. Therefore, the
probability of “lucky guessing” is bounded by nse/2k.

Without the collisions on the partial transcripts and the “lucky guesses” on
the password-derived base and authenticators, one can see that A has to make
the specific combination of H0 and H1 hash queries for games G2 and G3 to
be distinguished. Let AskH13 be the event that A makes the bad query H1(C,
S, s1, s2, E1, E2, σ, PWC,S) for some transcript ((C,E1, s1), (S,E2, s2), κ, τ),
where H0(C,S, πC) has been already made. Depending on how the transcript is
generated, we distinguish between four disjoint sub-cases AskH13:

– AskH1-Passive3 : ((C,E1, s1), (S,E2, s2), κ, τ) comes from an honest exe-
cution between Ci and Sj (via an Execute(Ci, Sj) query);

– AskH1-Paired3 : ((C,E1, s1), (S,E2, s2)) comes from an honest execution
between Ci and Sj , while (κ, τ) may come from A;

– AskH1-withC3 : before anyCorruptquery,A interactswithCi, so (C,E1, s1)
is generated by Ci, while (S,E2, s2) is not from Sj ;

– AskH1-withS3 : before any Corrupt query, A interacts with Sj , so (S,E2, s2)
is generated by Sj , while (C,E1, s1) is not from Ci.

Since session key(s) are computed using the private oracle H ′
1, the only way

A can break semantic security is via a Reveal query to honest instances that
generated the same transcript ((C,E1, s1), (S,E2, s2), κ, τ), a case we dismissed
in G2. Thus,

Pr[S3] =
1
2
, |Pr[S3] − Pr[S2]| ≤ nh1

q
+

nse

2k
+ Pr[AskH13]. (9)
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Similarly - and as already previously mentioned - the authenticators are com-
puted using H ′

1 as well, and due to G2, A cannot reuse authenticators from
other instances. Thus,

Pr[Authc2s
3 ] ≤ nse

2k
, Pr[Auths2c

3 ] ≤ nse

2k
. (10)

Game G4 : In this game, we estimate the probability of the event AskH13

occurring and thus conclude the proof. Notice that the probability of AskH1
occurring does not change between games G3 and G4. We also have that

Pr[S4] = Pr[S3], Pr[Authc2s (s2c)
4 ] = Pr[Authc2s (resp., s2c)

3 ]. (11)

Since all the sub-cases of AskH14 are disjoint, we will treat them independently:

The following lemma upper bounds the probability of AskH1-Passive4:

Lemma 1. For any A running in time t that asks a bad query H1(C, S, s1, s2,
E1, E2, σ, PWC,S) for some transcript ((C,E1, s1), (S,E2, s2), κ, τ) that comes
from an honest execution between Ci and Sj, there is an algorithm B running
in time t′ = O(t + (nse + nex + nro)texp) that can solve the CDH problem:

Pr[AskH1-Passive4] ≤ nh1 × Succcdh
PW,G(B). (12)

Proof. Concretely, this shows that under the CDH assumption, an eavesdropping
A has a negligible advantage in discarding a single password. The formal proof
is in Appendix A.1. �
The next lemma bounds the chance of AskH1-Paired4 occurring:

Lemma 2. For any A running in time t that asks a bad query H1(C, S, s1,
s2, E1, E2, σ, PWC,S) for some partial transcript ((C,E1, s1), (S,E2, s2)) ∈ LP
that comes from an honest execution between Ci and Sj, there is an algorithm
B running in time t′ = O(t + (nse + nex + nro)texp) that can solve the CDH
problem:

Pr[AskH1-Paired4] ≤ n2
senh1 × Succcdh

PW,G(B). (13)

Proof. The proof is similar to the previous one, except that the simulator needs
to guess the client and server instances whose execution is going to be tested. The
reason for this comes from the fact that the private exponents of all the instances
would be unknown to the simulator if we applied the same reduction as in the
proof of Lemma 1 (see A.1). The problem in the simulation could arise in case the
adversary sends the authenticator after making the Corrupt query. Therefore,
if the simulator makes the right guess, the given random Diffie-Hellman values
will be inserted in the instances that are fresh (no Corrupt query). The formal
proof is in Appendix A.2 . �
Before estimating the probability of AskH1-withS4 occurring, we evaluate that
of CollS , which happens if A makes two explicit password guesses at the same
server instance. Since there are no collisions on H0 outputs, the only way for A
to accomplish this is if a collision occurs on the first k-bits of two H1 queries
made by A, with PW1 �= PW2. The probability of this occurring is bounded by
the birthday paradox n2

h1/2k+1.
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� Rule H
(4)
1

If w = (C,S, ∗, ∗, ∗, ∗, ∗, PWC,S), ((C,S, πC), PWC,S) /∈ LA, and Corrupted
is false or if CollS event occurs abort. Otherwise, choose r ← {0, 1}3k, write
the record (w, r) in the list Lh1, and answer with r.

Now, without any collision on H0 and H1 oracles, each authenticator κ coming
from A via a Send query corresponds only to one password π. Therefore,

Pr[AskH1-withS4] ≤ nse

N
. (14)

To bound the probability of AskH1-withC4, we first bound the probability
of CollC , which happens if A makes three implicit password guesses against the
same client instance. The following lemma gives such a bound:

Lemma 3. For any A running in time t that asks at least three bad H1 queries
with distinct values of PW for the same transcript ((C,E1, s1), (S,E2, s2), κ,
τ), generated in a communication between A and Ci, there exists an algorithm
D running in time t′ = O(t + (nse + nex + nro)texp) that can solve the DIDH
problem:

Pr[CollC ] ≤ 2n3
h0 ×

(
Advdidh

g,G (D) +
n3

h1 + 3nse

2q

)
. (15)

Proof. This lemma actually shows that the DIDH assumption prevents the
adversary from making more than two password guesses per online attempt
on the client. The proof is in Appendix A.3. �
Now, without any collision on the H0 and H1 outputs, A impersonating the
server to an honest client instance can test at most two passwords per imper-
sonation attempt. Therefore,

Pr[AskH1-withC4] ≤ 2nse

N
. (16)

Thus,

Pr[AskH14] ≤ 3nse

N
+

n2
h1

2k+1
+ nh1(1 + n2

se) × Succcdh
PW,G(t′) + Pr[CollC ]. (17)

By combining the above equations the bound for semantic security follows.
The bound for the mutual authentication is derived in a similar way, by noting
that from Definition 2 we have Advma

dragonfly(A) ≤ Pr[Authc2s
0 ] + Pr

[Auths2c
0 ]. �

5 Conclusion

In this paper, using techniques similar to those MacKenzie used to study SPEKE
in [16], we proved the security of a slight variant of Dragonfly, which gives some
evidence that the IETF proposal of Dragonfly is sound. Furthermore, unlike
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the analysis of [16], we also include forward secrecy. (It is highly probable that
SPEKE is forward secure as well.) Note that Theorem 1’s statements indicate
that the adversary may successfully guess up to six passwords per send query.
Using a much more complex analysis, most likely we could replace the constant
6 in the non-negligible term by 2, and count per instance rather than per send
query, but this would be at the cost of readability of the already intricate proof.
Also, by virtue of the contents of Lemma 3, 2 is certainly the best we could do
with this particular analysis.

It would also be nice to see if the proof can be made tighter. In particular,
while it helps readability, the technique of using private oracles as in [7] seems less
fine-grained than the systematic “backpatching” of, e.g. [17]. Finally, it would
be interesting to see if the security of Dragonfly (and SPEKE) could be based
on an assumption other than DIDH.

Acknowledgments. We thank the anonymous reviewers for their helpful comments.
This work was partially supported by project SEQUOIA, a joint project between the
Fonds National de la Recherche, Luxembourg and the Agence Nationale de la Recherche
(France).

A Proofs of Lemma 1, 2 and 3

A.1 Proof of Lemma 1

Proof. We construct an algorithm B that, for given random Diffie-Hellman values
〈X,Y 〉 such that X ← gx and Y ← gy, attempts to break the CDH assumption
(i.e. computes Z such that Z = DHg(X,Y )) by running the adversary A as a
subroutine. The algorithm B simulates the protocol for A with the modification
of the rules C1 and S1 in case an Execute(Ci, Sj) query was made:

� RuleC1(4)
exe

Choose ψ1, s1 ← Zq and compute E1 := Xgψ1 . If (E1, s1) ∈ LR ∪ LA, abort
the game.

� Rule S1(4)
exe

Choose ψ2, s2 ← Zq and compute E2 := Y gψ2 . If (E2, s2) ∈ LR ∪ LA, abort
the game.

After the game ends, for every H1(C, S, s1, s2, E1, E2, σ, PWC,S) query the
adversary A makes, where the values s1, s2, E1 and E2 were generated by honest
client and server instances (after an Execute(Ci, Sj) query), the password-
derived base is correct, and the corresponding H0(C,S, πC) query was made,

(σY − ψ1
α X− ψ2

α E2
−s1E1

−s2g− ψ1ψ2
α g−s1s2α)α (18)

is added to the list LZ of possible values for Z = DHg(X,Y ). Equation 18
follows from the fact that a base PW := gα is generated in such a way that the
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discrete logarithm α is known. Thus, the Diffie-Hellman values X and Y can be
represented as PW

x
α and PW

y
α , respectively. So we have:

σ = DHPW (E2PW s2 , E1PW s1)

= DHPW (PW
y+ψ2

α PW s2 , PW
x+ψ1

α PW s1)

= Z
1
α Y

ψ1
α X

ψ2
α E2

s1E1
s2g

ψ1ψ2
α gs1s2α.

(19)

From the adversary’s view, the simulation B runs is indistinguishable from
the protocol in the game G3 up to the point AskH1-Passive4 occurs, and in
that case, the correct DHg(X,Y ) value is added to the list LZ of size at most
nh1. The running time of B is t′ = O(t + (nex + nro + nse)texp). Thus, Lemma 1
follows from the fact that the probability of B breaking CDH assumption is at
least Pr[AskH1-Passive4]/nh1. �

A.2 Proof of Lemma 2

Proof. We construct an algorithm B that, for given random Diffie-Hellman val-
ues 〈X,Y 〉 such that X ← gx and Y ← gy, attempts to solve the CDH assump-
tion (i.e. computes Z such that Z = DHg(X,Y )) by running the adversary
A as a subroutine. The algorithm B chooses distinct random indexes b1, b2 ←
{1, 2, . . . , nse} and simulates the protocol for A with the modification of the rule
C1(3) in case of a b1th Send(Ci, Start) query and the rule S1(3) in case of a
b2th Send(Sj , (C,E1, s1)) query:

� RuleC1(4)

For the b1th query choose s1 ← Zq and set E1 := X. Otherwise, choose
ψ1, s1 ← Zq and compute E1 := gψ1 . In any case, if (E1, s1) ∈ LR ∪ LA,
abort the game.

� Rule S1(4)

For the b2th query choose s2 ← Zq and set E2 := Y . Otherwise, choose
ψ2, s2 ← Zq and compute E2 := gψ2 . In any case, if (E2, s2) ∈ LR ∪ LA,
abort the game.

After the game ends, for every H1(C, S, s1, s2, E1, E2, σ, PWC,S) query the
adversary A makes, where pairs (E1, s1) and (E2, s2) were generated after b1th
and b2th Send query, the password-derived base is correct, and the correspond-
ing H0(C,S, πC) query was made,

(σY −s1X−s2g−s1s2α)α (20)

is added to the list LZ of possible values for DHg(X,Y ) of size at most nh1.
From the adversary’s view, the simulation B runs is indistinguishable until

the adversary triggers AskH1-Paired4. The probability that B will guess the
correct client instance, the correct server instance, and the correct Z value from
LZ is at least 1/(n2

senh1). The running time of B is t′ = O(t + (nex + nro +
nse)texp). Thus, the Lemma 2 follows from the fact that the probability of B
solving the CDH assumption is at least Pr[AskH1-Paired4]/(n2

senh1). �
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A.3 Proof of Lemma 3

Proof. We construct an algorithm D that given a triple 〈X,Y,Z〉 as input, where
X ← g1/x, Y ← g1/y and Z ∈ G, attempts to break the DIDH assumption (i.e.
determine whether Z is random or Z = IDHg(X,Y ) = g1/(x+y)) by running the
adversary A as a subroutine. The algorithm D chooses pair-wise distinct random
indexes d1, d2, d3 ← {1, 2, . . . , nh0}, chooses random non-zero exponents u1, u2,
u3 in Zq, and simulates the protocol for A as follows.

The simulation will be running as in the previous game G3 until the selected
H0 queries d1, d2, or d3 are made. The simulator will abort the game if the
inputs to three selected H0 queries do not satisfy following conditions : (a) the
passwords π1, π2, and π3 are pair-wise distinct and different from the correct
password πC ; and (b) the strings (C, S) in all three queries are the same.

If the selected H0 queries are valid, 〈X,Y,Z〉 values will be plugged in accord-
ing to the following rules:

� Rule H
(4)
0

For the d1th query set r := Xu1 . For the d2th query set r := Y u2 . For the
d3th query set r := Zu3 . For all three selected queries set α = ⊥. Otherwise,
choose α ← Zq and compute r := gα. In any case, write the record (w, r, α)
to Lh0. If (∗, r, ∗) ∈ LA, abort the game.

The prerequisites for the CollC event to occur are: (1) valid d1th, d2th, or
d3th H0 queries are selected by the simulator; (2) a pair (E1, s1) is generated by
an honest client instance after a Send(Ci, Start) query; (3) the adversary gener-
ated a pair (E2, s2) and made a Send(Ci, (S,E2, s2)) query, where Good(E2, s2)
is true and E2 /∈ {X,Y,Z}; (4a) for each PWi, received from the selected H0

queries, at least one bad H1(C,S, s1, s2, E1, E2, σi, PWi) query is made for the
same transcript, where i ∈ {1, 2, 3}. (4b) σi �= 1.

After the game ends, for every H1(C, S, s1, s2, E1, E2, σ, PWi) query A
made, where PWi is equal to any of the plugged values {Xu1 , Y u2 , Zu3}, a pair

(
E2, (σ

ui
ψ1 E2

−uis1
ψ1 PWi

−uis1s2
ψ1 g−uis2)

)
(21)

is added to the list Li
bad.

So, in the case of an H1(C, S, s1, s2, E1, E2, σ, Xu1) query, by stripping
away known values from σ, we may identify a guess at Ex

2 and place it in the
list L1

bad together with the E2 value. Remember that the client instance uses
rule C1(4) to compute E1, which can be represented with Xu1ψ1x. In order to
extract the F1 = Ex

2 value we do as follows. Since

σ = DHXu1 (E2X
u1s2 , E1X

u1s1)

= Es1
2 Xu1s1s2E

ψ1x
u1

2 gs2ψ1 ,
(22)

we get
Ex

2 = σ
u1
ψ1 E2

−u1s1
ψ1 PW

−u1s1s2
ψ1 g−u1s2 . (23)
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The same goes for H1 queries where the values Y and Z are plugged, in which
case the corresponding F2 and F3 are computed, respectively. At the end of
the simulation, D checks if for any E2 value there exist pairs (E2, F1) ∈ L1

bad,
(E2, F2) ∈ L2

bad and (E2, F3) ∈ L3
bad, such that F1F2 = F3. If there exist three

such pairs, then D will output b′ = 1, and otherwise b′ = 0.
Now let us analyze the probability that D returns a correct answer. Suppose

first that Z is random. The algorithm D will return a wrong answer if by chance
equation F1F2 = F3 holds. Since the ui values are random, the probability
of this happening is at most n3

h1/q by the union bound. Now suppose that
Z = IDHg(X,Y ). The probability of aborting in case E2 is equal to X, Y or Z is
at most 3nse/q. If the adversary triggers CollC , then D will correctly answer with
b′ = 1 only in case it correctly guessed d1, d2, and d3 from {1, 2, . . . , nh0}, which
happens with probability of 1/n3

h0. Therefore, the probability of D returning a
correct answer is at least

Pr[b′ = b] ≥ Pr[b′ = 1|b = 1]Pr[b = 1] + Pr[b′ = 0|b = 0]Pr[b = 0]

≥
(

Pr[CollC ]
n3

h0

− 3nse

q

)(
1
2

)
+

(
1 − n3

h1

q

) (
1
2

)
.

(24)

Thus,

Pr[CollC ] ≤ 2n3
h0 ×

(
Advdidh

g,G (D) +
n3

h1 + 3nse

2q

)
. (25)

From the adversary’s view, the simulation D runs is indistinguishable unless
CollC event occurs. The probability of this happening is bounded by (25). D’s
running time is t′ = O(t + (nex + nro + nse)texp) and thus Lemma 3 follows. �
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Abstract. The existing network security infrastructure is not ready for
future protocols such as Multipath TCP (MPTCP). The outcome is that
middleboxes are configured to block such protocols. This paper studies
the security risk that arises if future protocols are used over unaware
infrastructures. In particular, the practicality and severity of cross-path
fragmentation attacks utilizing MPTCP against the signature-matching
capability of the Snort intrusion detection system (IDS) is investigated.
Results reveal that the attack is realistic and opens the possibility to
evade any signature-based IDS. To mitigate the attack, a solution is also
proposed in the form of the MPTCP Linker tool. The work outlines the
importance of MPTCP support in future network security middleboxes.

Keywords: IDS evasion · Multipath transfers · TCP · Snort · Middle-
boxes

1 Introduction

The single path nature of traditional TCP1 is arguably its greatest weakness.
Traditional TCP implements connections between two sockets (pairs of host IP
addresses and port numbers) and this 4-tuple needs to remain constant during
the lifetime of the connection. Today, end-hosts are equipped with multiple net-
work interfaces, all of which can have a unique IP address. A traditional TCP
connection from/to such a host will be limited to using only one path (defined
by the two sockets) at a time. Thus, there is a potential and a need to imple-
ment TCP connections between end-hosts that can utilize all possible paths that
the hosts provide. Such connections will provide higher availability and higher
throughput, among many other advantages. They can also solve a number of
existing problems in the Internet of today [11,29].

Multipath TCP (MPTCP2) is an extension to traditional TCP that adds
the missing ability and enables the use of multiple paths between hosts. It is
carefully designed to work on the Internet of today. It also has a fallback mech-
anism that allows it to switch to traditional TCP when MPTCP is not feasible.
The developers of MPTCP have until now specially focused on the feasibility
aspects of the protocol and also ensure that no residual security vulnerabilities
1 Traditional TCP is the same TCP we know and use today.
2 Multipath TCP is also referred to as MPTCP.
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exist in the protocol itself. However, the network security impacts of using the
new MPTCP protocol on the existing infrastructure are yet to be thoroughly
investigated.

1.1 Motivation and Research Questions

Internet hosts a number of middleboxes. These middleboxes are deployed either
in the form of dedicated hardware or software-based solutions. Nevertheless, most
of them are transparent (implicit) with end-hosts unaware of their existence.
These middleboxes are deployed to do more processing than simply forwarding
the packets that pass through. More and more enterprises are implementing and
deploying middleboxes in the form of load balancers, Network Address Transla-
tors (NAT), firewalls and Intrusion Detection and Prevention Systems (IDPS)
to optimize performance and enhance network security. The middleboxes that
are used to improve security perform intrusion detection and prevention. One
widely used technique in such systems is based on pre-defined signatures. The
signatures used for detection have been developed over the years by making a
number of assumptions about the behavior and pattern of the traffic. As revealed
by [23], many of those assumptions may no longer be valid with the advent of
new protocols like MPTCP. In fact, MPTCP opens the possibility of intrusion
detection system (IDS) evasion, where a sender can fragment the data stream
and send the fragments across multiple paths in a way such as to bypass the IDS.

This has left the enterprises with a headache as the middlebox infrastructure
is unaware of MPTCP and allowing such traffic to go through might come at the
cost of degraded security. An increasing number of enterprises have decided not
to take that risk and instead configure their middleboxes to remove the MPTCP
option and force the protocol to fall back to traditional TCP. A few years ago,
Honda et al. [12] found that 14 percent of the tested paths use middleboxes to
eliminate the MPTCP options. This behavior of middleboxes is a stumbling block
in the universal deployment of MPTCP. There is therefore a need to investigate
whether the concerns related to the use of MPTCP are actually true and how
dangerous the potential attacks could be.

IDS evasion using Multipath TCP is possible, as shown in [23], but how do
the current IDS solutions react under such an intrusion attempt? What is the
severity or seriousness of the situation? Is there a solution to the problem? In
this paper, we try to answer these questions. We use Snort [24] as an example of
a popular software-based middlebox and investigate how cross-path data frag-
mentation using MPTCP affects its detection capability. We do so by generating
attack traffic corresponding to the latest Snort rule set using the tools we have
developed. The traffic is fragmented and sent across a varying number of paths
using MPTCP to a server where Snort is running (loaded with the same rule
set) as a middlebox. The number of intrusions detected by Snort is counted and
compared to the benchmark results collected using the same set-up but with
traditional TCP (or a single subflow). The goal is to establish the extent to
which the detection suffers and security degrades as a consequence of cross-path
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fragmentation. Finally, to mitigate the degraded detection, a novel solution is
proposed in the form of the MPTCP Linker tool.

1.2 Contribution

The key contributions of this paper are as follows: (1) A statistical analysis of
the latest Snort rule set (snapshot 2970); (2) Development of novel tools to parse
Snort rules, generate relevant payloads, fragment equally across available paths
and send them to a server using MPTCP; (3) Development and implementation
of a research methodology to test the effects of cross-path data fragmentation
using MPTCP on Snort’s detection engine; and (4) Introduction of a solution in
the form of the MPTCP Linker tool that can be used as an extension to Snort
to mitigate the cross-path fragmentation attack.

1.3 Paper Structure

The rest of the paper is structured as follows. Section 2 summarizes related work.
Section 3 provides some background on MPTCP and Snort, which is relevant for
future sections. Section 4 provides a description of the research methodology
developed to carry out the work and the working of different tools. Section 5
presents a statistical analysis on the Snort rule set. Section 6 shows the results
of the testing and evaluation of Snort. Section 7 describes a solution to mitigate
the attack. Section 8 provides an outlook and, finally, Sect. 9 provides concluding
remarks.

2 Related Work

Much effort has been put into the feasibility and functionality side of MPTCP.
Honda et al. [12] studied the real world feasibility of extending TCP in their
work. They used volunteers across 24 countries to test the traversal of unknown
TCP options through the middleboxes deployed in different access networks. In
total, 142 paths were tested between September 2010 and April 2011. The results
showed that 20 of the 142 paths removed or stripped the unknown MPTCP
options, while the remaining 122 paths passed the options intact. Since most
paths allowed the unknown option, the authors concluded that extending TCP
using new options is feasible as long as the new extension has a fallback mecha-
nism. They also outlined that the paths with middleboxes that strip the options
can easily be configured to allow the unknown options to pass through, provided
that the new options do not introduce a security risk. Lanley [14] also studied
the viability of TCP extensions. The work of both Honda et al. and Lanley has
influenced the design of MPTCP in its current form.

Some focus has also been placed on the inherent threats in the MPTCP pro-
tocol extension. A draft [6] has been proposed to identify potential vulnerabilities
in the MPTCP design. The overall goal is to ensure that MPTCP is no worse
than traditional TCP in terms of security. A number of potential attacks have
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been identified and their possible solutions have been proposed. Such solutions,
if implemented, can help push MPTCP to become a standard.

However, the network security implications of MPTCP have not been stud-
ied very much. The most significant work in this regard was that of Pearce and
Thomas [23]. In their work, they investigated the effects of MPTCP on current
network security and indicated that the existing security infrastructure is not
MPTCP aware. To demonstrate the risk, a tool [28] was developed to show pre-
liminary IDS evasion. Our work will further contribute to this area and highlight
the network security implications of MPTCP using novel tools and will propose
novel solutions.

3 Background

In this section, we discuss some key concepts and information that will be bene-
ficial to comprehend the future sections. First, multipath transfers are discussed
with a focus on MPTCP. Network security implications are then emphasized.
Finally, the Snort IDS is presented.

3.1 Multipath Networking

TCP has enjoyed success for decades and will continue to do so. However, there
have been an ever increasing number of situations where it falls short. The
dependency of a TCP connection on the same pair of IP addresses and port
numbers throughout the life of the connection is becoming an issue for a number
of use cases and applications. Therefore, researchers attempted to address the
issue as early as 1995 in the form of a draft [13]. The draft identified different
cases where the above mentioned dependency is harmful and proposed modifying
TCP and adding a new Protocol Control Block (PCB) parameter. This para-
meter will allow the IP addresses to change during the course of a connection.
Recent efforts have seen the development of the SCTP protocol [26], which has
a great deal of potential but has so far failed to achieve wide-scale deployment.
There are two main reasons behind the failure of such efforts. First is their rev-
olutionary nature, which requires changes in the software and sometimes even
hardware. Second is the feasibility aspect. Any attempt to introduce an almost
completely new protocol on the Internet will most likely fail. Such a protocol will
not be able to traverse far across the Internet because most of the networking
infrastructure on the Internet assumes that TCP and UDP are the only two
transport layer protocols that exist. In addition, the proposed solutions had no
fallback mechanism, which made them a failure.

In this regard, the latest efforts in multipath networking have more of an
evolutionary nature. The feasibility of the solution has been a paramount consid-
eration because, no matter how good a solution is, it is only going to succeed if it
will be feasible to use it on a wide scale. The IETF established a working group
called Multipath TCP in 2010. The group was tasked to develop mechanisms
that can add the capability of multiple paths to the traditional TCP without



Multipath TCP IDS Evasion and Mitigation 269

requiring any significant modifications to the existing Internet infrastructure.
The deployability and usability of the solution were also two key goals. The first
draft was put forward by the working group in 2011 in the form of RFC 6824 [9].

Overview of MPTCP. MPTCP is an extension to traditional TCP that
enables a TCP connection to operate across multiple paths simultaneously [9].
This brings the support to a number of use cases, which was not possible before.
It is designed to run on top of today’s Internet infrastructure and has a fallback
mechanism that allows it to be backward compatible. Crudely, an MPTCP con-
nection consists of one or more subflows. Each of these subflows is a proper TCP
connection but with additional MPTCP options that allow every subflow to be
linked to an MPTCP connection. A detailed technical discussion of the protocol
is beyond the scope of this work. Hence, we discuss only some key concepts and
the operation of MPTCP in the subsequent text.

Implementation. MPTCP is realized using the options field available in the
TCP header. IANA has assigned a special TCP option (value 30) to MPTCP.
Individual messages use MPTCP option subtypes. MPTCP implementations are
already available on a number of operating systems. It is available for Linux [20],
BSD [4] and Android [7]. Commercially, Apple has implemented it in iOS7 [5]
and OS X Yosemite [22]. In our work, the Linux kernel implementation [20] of
MPTCP is used.

Initiating an MPTCP Connection. An MPTCP connection uses the same
three-way connection establishment handshake as the traditional TCP but with
an MP CAPABLE option attached to all the exchanged messages. This option
serves two purposes. First, it announces to the remote host that the sender
supports MPTCP. Second, it carries additional information, e.g. random keys,
which can be used in forthcoming exchanges. Figure 1 shows the required inter-
action between a multipath capable client and server to successfully complete
the MPTCP handshake. This initial handshake is also called the MP CAPABLE
handshake.

Addition of a New Subflow. Additional subflows can be added to an estab-
lished MPTCP connection. This is achieved in the same way as initiating a new

Fig. 1. MP CAPABLE handshake. Fig. 2. MP JOIN handshake.
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MPTCP connection but instead making use of the MP JOIN option. This option
uses the keys exchanged in the MP CAPABLE handshake to tell the remote end
that the connection request is not for a new connection but relates to an exist-
ing one. Figure 2 shows the handshake involved. This handshake is also known
as MP JOIN handshake. New subflows can be added or removed at any time
during the lifetime of a connection. For further details, see [9].

Data Transfer using MPTCP. MPTCP ensures reliable and in-order deliv-
ery of the data across all subflows of an MPTCP connection using a Data
Sequence Number (DSN). Every subflow has its own transmission window
(sequence number space), and the DSS option of MPTCP is used to map the
subflow sequence space to the overall MPTCP connection space. This enables
data to be retransmitted on different subflows in the event of failure. On the
receiver side, MPTCP uses a single receive window across all subflows.

The important thing to note is that the proposed MPTCP standard leaves
the exact routing or scheduling of traffic among the subflows up to the implemen-
tation. In a common use case where a higher throughput is desired, all available
paths (subflows) can be used simultaneously [9]. A sender of the data can tell
the receiver how the data are routed among the subflows using the DSS option.
The receiver uses this information to re-order the data received over different
subflows before passing them on to the application layer in the correct order.
Thus, MPTCP enables the sender to choose how to split the input data among
the available subflows.

3.2 Network Security Reflections

MPTCP has a number of network security implications. It affects the expecta-
tions of other entities in the environment where the protocol extension is used.
Network infrastructures can not expect MPTCP to behave in ways similar to
those of the traditional TCP.

In this regard, one such observation that is most relevant for this work is
cross-path data fragmentation. As discussed earlier, MPTCP allows the use of
multiple paths simultaneously. A sender can also distribute the data stream
among the subflows as it wishes. This opens the possibility to perform cross-path
fragmentation attacks. A sender can send a known malicious payload by frag-
menting it across the subflows in a smart way. The activity will not be detectable
by any existing (or non-MPTCP aware) network security middleboxes because,
for all they know, every subflow (path) is an independent TCP connection with
an unknown fragmented payload.

To further exacerbate the situation, this is just a single problem. The fact that
the network paths that are part of the MPTCP connection could be controlled
by different Internet Service Providers (ISPs) implies that there may not be
any single point in the network that can be used to observe the traffic from all
paths. This in turn implies that, even if a middlebox is intelligent enough to
know that different subflows make up one MPTCP connection, it may not be
able to properly aggregate the traffic and inspect, simply because some subflows
may not be visible to it.
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3.3 Snort

In the open source world, Snort [24] is the de facto standard IDPS. Snort is
effective and is available under the GNU General Public License [25], making it
the most widely deployed solution in the world [27].

Snort Operation. Snort provides protection in two ways. It can provide detailed
statistics on traffic that can be used for detection of anomalies. It can also pro-
vide pattern-matching, which can be used for signature detection. Snort utilizes
a rule-based detection approach to perform signature matching on the contents
of traffic and detect a variety of attacks [24]. It can currently analyze packets
belonging to the four protocols TCP, UDP, ICMP and IP. The detection engine
of Snort is configured based on rules. Rules are used to define per packet tests
and actions. Once Snort is running with a set of rules, it analyzes every packet
that passes through and checks whether the specification given in any of the
rules exactly matches the packet. If it detects a match, then it has the possibil-
ity to generate and send real time alerts to the syslog facility, a UNIX socket
or a CSV formatted alert file. The paper by Roesch [24], who is the founder of
Snort, provides more detailed information on it.

Rules. Snort rules are written in a simple and flexible, yet powerful, language.
Basically, every Snort rule can be divided into two logical parts, a rule header
and the rule options. The rule header defines the action of the rule, the protocol
it detects, the pair of source IP address/port number, and the pair of destination
IP address/port number. The rule options consist of the alert message to display
and further information about the processing to perform on the packet as well
as which parts of the packet should be inspected. The following is an example
of a Snort rule.

alert tcp any any -> any any (msg:‘‘Sample alert’’;content:‘‘Hello’’;)

The above rule should trigger on an incoming TCP packet from any source
IP address and port going to any destination IP address and port as long as it
contains the text “Hello” in its payload.

4 Experimental Methodology

This section will provide information about the experimental methodology that
was developed and was used to carry out the testing. Figure 3 shows the overall
set-up. The client and server sides, both, have component modules that work
together to achieve the task. The client and server sides are described in the
forthcoming text.

4.1 Client Side

The client side of the methodology is made up of the latest Snort rule set and
three tools, namely the Rule Analyzer, the Rule Parser and the MPTCP tool.
We will describe all of these components in the forthcoming text.
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Fig. 3. Experimental setup.

Snort Rules. The latest Snort registered user rule snapshot (2970), available
at [27], is used in this work. All the rule files inside the folder (except three3)
are passed on to the Rule Analyzer.

Rule Analyzer. Rule Analyzer performs the following tasks. It reads all input
files one by one, analyzes every single rule and then outputs statistics. The sta-
tistics provide a distribution of rules by protocol, keyword and other parameters
as requested by the user. The Rule Analyzer is used to perform the statistical
analysis on the rules.

Rule Parser. A mechanism to parse every Snort rule and craft a consistent
payload according to the details in the rule was required. A literature review
uncovered tools such as Stick [10], PCP [21] and Mucus [18]. Further investi-
gation found two main drawbacks to these related approaches. First, they are
stateless, which means that they can only handle rules relating to stateless proto-
cols such as ICMP and UDP. TCP, on the other hand, maintains states, and any
tool not supporting it will be limited in its coverage. Secondly, they are at least
ten years old and are thus not compatible with the rule syntax of modern IDSs.
A more recent attempt has been the rule2alert [16] tool which, although it is a
great improvement over other approaches, still lacks some required functionality.
For this work, a further enhancement of [16] was conducted. The tool developed
has been presented at [3]. It is able to translate a large number of Snort rules
into corresponding payloads. Such payloads can later be encapsulated in packets
and used to test the detection accuracy of Snort. This is due to the facts that
the payloads are generated directly from the details in the rule and that Snort
uses the same rules for detection.

The tool developed searches for the content keyword in the option field of
every rule. The keyword content is used to define the signature that Snort should
search for in a packet payload. The signature can be a text sequence, binary
3 Among these three files, one contains old and deleted rules, one is for local rules and

the third is for obsolete X windows rules. All of these were deemed irrelevant.
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data or even a combination of text and binary data. If Snort detects data that
exactly match that given using the content keyword in a packet payload, the
test is successful and the remainder of rule options are checked. The tool uses
regular expressions to find the signatures mentioned in every rule (signatures
follow the content keyword, e.g. content:“Hello”) and extracts them. A payload
is crafted for each rule and sent to the MPTCP tool, which will be described
later.

Snort also supports a number of additional modifier keywords, e.g. dsize,
offset, distance and within in the rule options field. These keywords modify the
semantics of the content keyword. As an example, the offset keyword tells Snort
that, instead of starting pattern matching for a signature at the beginning of
the payload in a packet, Snort should actually start pattern matching from the
given offset value. Hence, if the modifier keywords are ignored when crafting the
payloads, then it is implausible to expect Snort to generate alerts. The Rule
Parser tool developed is smart enough to craft the payload by taking modifier
keywords (if any) into account.

Limitation. It is not currently possible to test all Snort rules. There are a
number of keywords that are more complex and require extra effort to build the
corresponding payload for. That is why Snort rules are classified into testable
and untestable categories when the statistical analysis of the rules is conducted
in Sect. 5.

MPTCP Tool. This is the core tool responsible for generating MPTCP packets
with the given payloads and sending them to the destination server. It runs
in a virtual machine with Ubuntu as the operating system. The Linux kernel
implementation [20] of MPTCP is used, which adds the MPTCP support to the
kernel’s networking subtree. The tool is inspired by the software [28] released by
Pearce et al. [23] with a few improvements.

The tool implements an ad hoc MPTCP scheduler as in [28]. The main
criterion used by the tool to fragment the data stream is that the destination
should be able to correctly reassemble data in the right order. In that sense,
the minimum size of a fragment has to be one byte or two hex digits. The
tool attempts to fragment data equally across all available subflows as much as
possible. This means that, if a way to split the data equally among all available
subflows exists, the tool will do that. However if, for a given set of data, it is not
possible to split it equally using all available subflows, the tool will use a subset
of available subflows. The tool uses the following formula to calculate packet size
for each subflow:

pkt size = ceiling

(
length of data

available subflows

)

As an example, let us consider a data stream, “netmap” or 0x6e65746d6170
in hex, and two available subflows. The data stream will be fragmented in the
following manner. Subflow 1 will be used to send 0x6e6574 and subflow 2 will be
used to send 0x6d6170. If the available subflows are three, then subflow 1 will
send 0x6e65, subflow 2 send 0x746d and finally subflow 3 send 0x6170. However,
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if the available subflows are four, there is no way to divide the data stream
equally using all subflows. Thus, one subflow (subflow 4) will not be used at all.
Regardless of how data are fragmented, it should be noted that the destination
always receives data in a way such that they can be reassembled back to create
the original data stream of 0x6e65746d6170 or “netmap”.

The ad hoc scheduler used might not be representative of the actual intention
of MPTCP developers, but there is nothing to stop an attacker from exploiting
things in a way in which they were not intended to be used. In fact, splitting data
equally among available paths (subflows) might also not be the most effective
way from an attacker’s point of view. There could be smarter ways of fragmenting
data across subflows while still ensuring that the receiver gets the original data
stream. We believe that the scheduler implemented is good enough to show the
scope of the problem. The improved version of our tool can perform the following
tasks:

1. Test the server for MPTCP support.
2. Perform a three-way MPTCP handshake with the MPTCP server.
3. Add the user defined number of subflows to the connection.
4. Send the given payload (can be text, binary or both) to the server using any

specific user defined subflow.
5. Send the given payload (can be text, binary or both) to the server by frag-

menting it equally across all available subflows (using the ad hoc scheduler).
6. Terminate the MPTCP connection.

4.2 Server Side

The server side of our methodology is made up of the Snort IDS, the MPTCP
server, a log file generated by Snort and the Log Analyzer tool. Snort was
described in Sect. 3, and the remaining components are discussed below.

MPTCP Server. A virtual remote machine with Ubuntu and the MPTCP
kernel implementation [20] is used as the server. A simple off-the-shelf server
(http-server [19]) is utilized to listen to incoming connections on port 80. The
server accepts any incoming MPTCP connections on port 80 and receives the
data. It is powerful enough to deal with a high number of simultaneously incom-
ing requests.

Log Analyzer. Manually analyzing the log file generated by an IDS is a hectic
task. Log Analyzer aims to automate this process. Snort writes its alerts to a
CSV formatted log file in real time. Every value is at a fixed position on each
line of the log file and can be extracted. The Log Analyzer reads the CSV file,
parses and extracts the important features and then displays an output table
similar to Table 1. We are thus able to see how many alerts per rule category
exist in the log file.
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Table 1. Output of the Log Analyzer tool.

Index Category Triggered alerts

5 Statistical Analysis of Snort Rules

This section presents the results of a statistical analysis conducted on the latest
Snort rules. The motivation for this study was an investigation of how much of
the Snort rule set might be affected by the cross-path data fragmentation attack
using MPTCP. Thus only the rules relating to the TCP protocol were of interest.
The results are based on Snort registered user rules v2.9 (snapshot 2970). The
Rule Analyzer described in Sect. 4 is used to perform the analysis.

5.1 Results

Table 2 shows the results when the Rule Analyzer tool processes the Snort rules
folder with all the relevant rule files in it. Table 3 shows the breakdown of TCP
rules.

Table 2. Distribution of Snort rules v2.9 (excluding deleted rules).

Protocol TCP UDP ICMP IP Total

Rules 18577 (84.17 %) 3134 (14.20 %) 156 (0.70 %) 203 (0.91 %) 22070

Table 3. Break down of TCP rules.

TCP Rules with content Rules with offset Testable Untestable

18577 18398 (99.03 %) 959 (5.16 %) 9857 (53.06 %) 8720 (46.93 %)

5.2 Trends

To investigate the evolution of Snort rules and any possible trends, the results
obtained can be compared to older rule sets. However, due to licensing issues,
it is not easy to acquire old Snort rules. An old study conducted on Snort rules
v2.4 [17] is nevertheless relevant. In addition, two old rule set versions from
October 2000 and June 2001 were found at [1]. The results of the old study on
rules v2.4 and the breakdown of rules available at [1], performed by the Rule
Analyzer tool that was developed, are shown in Table 4.

On the basis of these results, Fig. 4 shows a comparison chart. The following
observations can be made from the comparison: (1) the total number of rules have
increased significantly over the years (from 422 in October 2000 to 22070 today;
(2) IP rules were non-existent at least until June 2001; (3) ICMP rules have
increased but not considerably (from 47 to 156); (4) UDP rules have increased
by a factor of 47 (from 66 to 3134); (5) TCP rules have increased rapidly by a
factor of 60 (from 309 to 18577); and (6) TCP rules dominate other protocol
rules over the years.
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Table 4. Distribution of Snort rules v2.4, June’01 and Oct’00.

Rule Set TCP UDP ICMP IP Total

v2.4 6494 356 132 39 7021

June 2001 404 86 55 0 545

October 2000 309 66 47 0 422

Fig. 4. Bar chart with a comparison of the number of rules in different rule sets.

6 Evaluation of Snort

This section will discuss the outcome of implementing the methodology discussed
in Sect. 4. The overall operation is described next, and is followed by the results
and a discussion.

6.1 Operation

The experimental methodology (see Fig. 3) discussed in Sect. 4 was put into
operation in the following way. First, every rule category4 file of Snort rules v2.9
is provided to the Rule Analyzer tool, which performs the analysis and classifies
the rules into different protocols. Since UDP and ICMP rules will not be affected
by any change at the transport layer, they are discarded. The remaining TCP
rules are further classified into testable and untestable rules by the Rule Analyzer
depending on whether the Rule Parser tool can create an accurate payload for
them. Next, the testable TCP rules of every category are used as input to the
Rule Parser tool to create a unique payload for each rule. These payloads are
passed on to the MPTCP tool, which acts as a client. It establishes an MPTCP
connection with the server, adds additional subflows to the connection and sends
the payload across by equally fragmenting it among the available subflows. Every
payload is tested using up to five subflows, starting from one subflow (which is
equivalent to traditional TCP).

4 According to the new Snort rule categories.
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On the server side, a software-based middlebox Snort IDS runs with the
same rules as were used to create the payloads. Every packet received on the
server is logged and analyzed in detail by Snort before its being passed on to the
Multipath TCP capable TCP/IP stack. Ideally, Snort should generate an alert
for every rule due to the fact that all the incoming packets are specially crafted
to trigger an alert. Snort logs its alerts in an alert file that is inspected by the
Log Analyzer to extract the results discussed in the next subsection.

6.2 Results

Table 5 shows the test results for all Snort rule categories. For every category,
an evaluation is conducted five times by changing the number of subflows and
effectively increasing data fragmentation. The results with one subflow can be
considered to be the baseline, since an MPTCP connection with one subflow is
essentially a traditional TCP connection.

6.3 Discussion

The findings in Table 5 are of considerable significance. The results show that
the Rule Parser tool has some inaccuracies. This leads to a lower number of
triggered alerts than expected. Nevertheless, the number of alerts generated by
Snort should be the same for any number of subflows, whether it be one subflow
(equivalent to a traditional TCP session) or five subflows. This is not the case
according to the results5. It can be observed from the results that, in general,
the number of subflows in an MPTCP connection has an inversely proportional
relationship with the detection capability of Snort. As the number of subflows
increase (so does the data fragmentation), the detection of Snort suffers even
more. With the fragmented data, Snort is only able to get partial matches of
the signatures it is looking for in the packets. Snort is still able to detect some
intrusions, even with five subflows. A deep look at those rules reveals a common
characteristic. All such rules that still work search for a very small signature.
Therefore, the MPTCP tool was not able to equally fragment the corresponding
data stream of those rules using all available subflows.

The rationale behind this degraded detection capability of Snort is the lack
of MPTCP awareness. Snort interprets all TCP subflows within an MPTCP
connection as independent TCP connections. It has no awareness that multiple
subflows could actually be components of the same MPTCP connection. Snort
analyzes every TCP subflow in isolation and expects to see all the traffic required
for matching a signature in that TCP session. That is not the case with an
MPTCP connection of multiple subflows. The intrusion data are present in the
overall MPTCP session (fragmented across subflows), and Snort can still not
detect it. This behavior was referred to as single-session bias in a recent IETF
draft [15]. These results confirm the concerns raised by [23]. The lack of MPTCP

5 About one half of the Snort rule set is evaluated, but similar results are expected
from the remaining rules.
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Table 5. Results from all categories.

Index Category Subflows Payloads sent Triggered alerts

1 FILE 1 2064 2018

2 2064 120

3 2064 110

4 2064 98

5 2064 97

2 PROTOCOL 1 151 123

2 151 9

3 151 8

4 151 8

5 151 8

3 POLICY 1 364 340

2 364 31

3 364 28

4 364 27

5 364 25

4 SERVER 1 1753 1475

2 1753 951

3 1753 951

4 1753 935

5 1753 928

5 BROWSER 1 963 946

2 963 8

3 963 5

4 963 4

5 963 4

6 MALWARE 1 2539 1959

2 2539 679

3 2539 565

4 2539 576

5 2539 537

7 OS 1 288 271

2 288 57

3 288 52

4 288 51

5 288 50

8 INDICATOR 1 339 269

2 339 70

3 339 60

4 339 57

5 339 60

9 PUA 1 617 527

2 617 449

3 617 413

4 617 351

5 617 211

10 MISC. 1 779 680

2 779 362

3 779 156

4 779 146

5 779 154
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awareness on the part of middleboxes performing traffic inspection is the primary
reason why they are configured to force MPTCP into using traditional TCP
instead. Essentially, these middleboxes currently see MPTCP traffic as attack
traffic. If they allow it to pass, then the outcome is degraded functionality and
degraded security.

7 Proposed Solution

We introduce the MPTCP Linker, a tool that captures and analyzes MPTCP
packets to link sessions and correlate MPTCP subflows with the goal to mitigate
the above discussed cross-path fragmentation attack. Using the MPTCP options,
TCP flags and a few tricks, it is able to associate MPTCP subflows along with
the data sent on them with the respective MPTCP connections (something Snort
can not do). Figure 5 depicts the higher level concept behind the tool and the
forthcoming subsections discuss the implementation and the validation of the
tool.

7.1 Implementation

MPTCP Linker is implemented as a python script and is available at [2]. It
sniffs the chosen network interface card for MPTCP packets and performs its
processing using few commodity and open source modules. As output, it can
generate TCP based pcap files. A separate pcap file is generated for each MPTCP

Fig. 5. Flow chart for operation of the MPTCP linker
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Table 6. Validation of the MPTCP linker.

Category Subflows Payloads Sent Alerts (before6) Alerts (after7)

PROTOCOL 1 151 123 123

2 151 9 123

3 151 8 123

4 151 8 123

5 151 8 123
6 Snort performed detection directly.
7 Snort performs detection using packets generated by the MPTCP

Linker.

session. Every pcap file contains in-order data from all subflows of that MPTCP
session.

7.2 Validation

We validate the MPTCP Linker under the same attack traffic that was used for
the evaluation of Snort in Sect. 6. Snort has an offline mode where it reads pcap
files and detects intrusions from the packets. This offline mode is utilized for the
validation. MPTCP Linker runs on the server side and performs its processing on
all attack traffic to generate pcap files. The pcap files are then used by Snort in
offline mode to perform intrusion detection. Table 6 shows the evaluation results
from one category (due to space limitations) of Snort rules.

As can be seen in Table 6, the MPTCP Linker mitigates the earlier discussed
cross-path fragmentation attack. The number of intrusions detected by Snort
are consistent (123), irrespective of whether one subflow or up to five subflows
are used to fragment the data stream. The MPTCP Linker correlates MPTCP
subflows, links them to their respective MPTCP sessions and keeps track of the
data on those subflows. Once it detects the termination of a session, it extracts
data from all subflows of that session and reassembles them to recreate the
original data stream in the correct order.

8 Outlook

The ultimate solution to this problem will be the evolution of the network secu-
rity infrastructure to fully support MPTCP. However, there could be interim
solutions that can be employed in the meantime to partially support the protocol
and still ensure security. One such solution has been proposed and implemented
in this work in the form of the MPTCP Linker [2]. There are also suggestions
for developing TCP-MPTCP (and vice versa) proxies or a protocol converter [8].
Such solutions can help in the deployment of MPTCP as well as benefit network
security.
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9 Concluding Remarks

This paper investigated the reasons why existing network security middleboxes
block MPTCP connections. With the help of a systematic experimental method-
ology, it was established that MPTCP could indeed be used by an attacker to
degrade the functionality of existing network security middleboxes. To take a
step towards adding MPTCP support and making security middleboxes MPTCP
aware, a solution was also proposed and evaluated. The solution has been released
under an open-access license for the benefit of the whole community. It also mer-
its mentioning that only one of potentially many issues has been investigated
in this work. Other security issues that arise with the advent of MPTCP, par-
ticularly the common scenario where only partial traffic passes through security
middleboxes, also need to be explored and resolved.
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Abstract. Digital provenance, as an important type of cloud data, has
aroused increasing attention on improving system performance. Cur-
rently, provenance have been employed to provide hints on access control
and estimate data quality. However, provenance itself might also be sen-
sitive information. Therefore, provenance might be encrypted to store on
cloud. In this paper, we provide a mechanism to classify cloud documents
by searching specific keywords from their encrypted provenance, and we
proof our scheme achieves semantic security.

Keywords: Security · Provenance · Access policies · Encrypted search

1 Introduction

There has been a growing trend in recent times to store data in the cloud due
to a dramatic increase in the amount of digital information. This ranges from
consumers’ personal data to larger enterprises wanting to back-up databases
or storing archival data. Cloud data storage can be particularly attractive for
users, individuals or enterprises, with unpredictable storage demands, requiring
an inexpensive storage tier or a low-cost, long-term archive. By outsourcing users’
data to the cloud, service providers can focus more on the design of functions
to improve user experience of their services without worrying about resources
to store the growing amount of data. The cloud can also provide on-demand
resources for storage, which can help service providers to reduce their mainte-
nance costs. Furthermore, cloud storage provides a flexible and convenient way
for users to access their data from anywhere on any device.

An important issue when it comes to management of data, in the cloud as
much as any other storage platform, is who can access the data under what
circumstances. Typically a cloud service also provides an access control service
to manage access to data by different users and applications. With the vast
array of data stored in the cloud, and the range of possible access options,
the need has grown for improved access control approaches. At base the access
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control question is which system entities can access what data? However, this
simple statement does not capture the nuances of data handling. Data in the
cloud may be shared between users, may be constructed from contributions
from multiple users and gone through numerous processing steps before being
accessed by an end user. Access decisions may not rest solely on the end data
container, but also on what operations were applied by which users in the process
of constructing the data. Such concepts are not new to access control, the idea of
access control based on the operations carried out on the data (i.e., history-based
approaches [17,22,23]) being well known. The scope and complexity of data in
the cloud, however, gives renewed emphasis to the consideration of history-based
approaches.

The cloud, as in many other areas of security, adds to this an extra layer
of complication. By taking a service-based approach to provisioning, the cloud
separates the authority over data from the authority over service provision. His-
torically, many access control mechanisms were controlled by system authorities
that implicitly had complete system access (label-based access control being an
exception). This meant that access control mechanisms could be assumed to
have free access to all system information, including the data and associated
meta-data. This is not true in the cloud.

Users of the cloud may wish to protect their data from the cloud storage
providers. This has led to work on access control mechanisms for the cloud that
allow the data to be encrypted to protect against storage provider access. Just as
users may wish to protect their data from the cloud storage provider, they may
wish to protect the history of operations (both which operation and who carried
them out) from the cloud storage provider where those are central to the access
control decision. In a service-based approach it should not be a requirement to
reveal such information to the cloud storage provider, any more than it should be
a requirement to reveal the data itself to the data storage provider. However, the
data storage provider needs to be able to supply an access control mechanism.

Combining these requirements leads to the need for an access control mech-
anism that makes decisions based on historical operations on data, and can do
so when the data itself and the record of operations are both encrypted.

Historical operations on data can be referred to as the data provenance.
A number of proposals for access control based on the provenance of the data
have been made [1,2]. Provenance is a well-known concept in the areas of art
and archaeology. Provenance concerns not only the origin or creator of data but
also the storage and ownership path and what operations have carried out by
whom and in what context. As such, representation of data provenance provides
information about the ownership as well as actions and modifications which
have been performed on the data, describing the process by which it arrives at a
particular point in the cloud. In terms of secure decision making, characteristics
such as data accuracy, timeliness and the path of transfer of data are important.
With increasing regulation, such as the Sarbanes-Oxley Act, the consequences
for signing incorrect statements has significantly increased, even if the signer
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was not directly responsible for the invalid sections. Therefore it is important to
track which entities were responsible for the process that led to the final form of
the data.

In this paper, we consider the approach where the data carries with it prove-
nance information which can be used to make access control decisions. Prove-
nance information can be represented as a combination of what, when, where,
how, who and why. What denotes an event that affected data during its life-
time. When refers to the time at which the event occurred. Where tells the
location of the event. How depicts the action leading up to the event. Who tells
about the agent(s) involved in the event, and Why represents the reasons for
the occurrence of events. Such a generic representation is sufficiently extensible
to capture the essence of the semantics of provenance across various domains.
If such a representation can be captured in a secure manner, then it will be
useful in tackling the issue of attribution of data as it moves around the cloud.
For instance, information about the origin of data together with the conditions
and the state under which it was created along with the modifications that have
been made and the conditions under which these modifications have been made
will allow the access control service to more robustly make security decisions.
Such an approach would transform the access control service to a more stateful
decision and make it more context dependent.

The issue of securing provenance information in a cloud environment poses a
variety of challenges. Secure generation and transfer of provenance information
and its secure management over a distributed cloud infrastructure pose several
challenges. There would be a need to create provenance aware cloud infrastruc-
ture with additional trusted authorities for provenance based policy decision
making and enforcement. Policy decision authorities are needed to ensure prove-
nance validity and policy compliance of data prior to allowing it into cloud
storage. Policy enforcement authorities would collect provenance from various
entities in the infrastructure and act as the arbiters of whether to allow reading
or writing to cloud storage. There is also a need for provenance databases to
store provenance for querying by policy decision authorities. Recently there has
been several research that has addressed the issue of provenance based access
control (e.g. [1,9]). These research works have used the provenance information
in plain format in the design of access control policies. Our focus in this paper is
on encrypted provenance information and its use in secure access control decision
making. Note as the provenance is transferred over the network infrastructure
in the cloud, it needs to be secured using encryption techniques to achieve confi-
dentiality (as provenance can contain sensitive information). Similarly the data
transferred over the cloud networks is also encrypted. Encrypted provenance
associated with encrypted data pose further challenges in the design of prove-
nance based access control, as the policy decision authority checking provenance
validity and compliance before storing the data may not have the key to decrypt
the provenance information. This paper addresses the issue of encrypted prove-
nance information and its use in access decision making regarding storage of
encrypted data in a public cloud.
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In particular, our paper makes the following contributions: (1) allowing the
policy decision server to check the encrypted provenance without decrypting
the provenance, while at the same time (2) providing guarantees to the policy
decision server that the provenance is from a genuine source and is linked with the
particular data or file. Such a solution will enable authenticated and confidential
provenance information to be used in the access control service without revealing
its plain content. To achieve such a solution, we introduce a new notion of
Encrypted Provenance Search Scheme (EPSS). EPSS is based on the searchable
encryption method proposed by Boneh et al. [12].

In cloud storage systems, to provide appropriate management and security
protection, files could be stored into separate units. While each unit keeps a cat-
egory of files. Classifying files as categories is an effective mechanism for organ-
ising files and management access to files. In this paper, we focus on classifying
files according to provenance which records generating process of files. Specifi-
cally, our system identifies and classifies files by their own preferences on what
process worked on files. For example, when medical records or governmental sur-
vey documents are anonymised, it removes sensitive personal information. Then,
these files could be access by the public, students and scholars for the purpose
of research. Therefore, it identifies files after anonymization as “public educa-
tion”. On the contrary, if files are combined with judgement or comments with
sensitive agents, they might wish to keep secret from access with the public or
attackers. Then these files are classifies as “sensitive information” to take higher
level protection and deny access from unauthorised users. However, the third
party to execute classification might not be full trusted. To prevent internal
attack and keep confidentiality of data, we hope keep secret of data information
by encryption as well as classifying them. We provide Provenance-based classi-
fication system to implement this goal. In this system, we propose a scheme to
search keywords from encrypted provenance. When specific keywords are found,
files are classified by according system policies.

The organisation of this paper is as follows. Section 2 briefly presents some
research works in the areas of provenance and encrypted search that are rel-
evant to our work. Section 3 gives a brief introduction on the representation
of provenance and its characteristics. Section 4 presents our Provenance based
Classification Access Policy (PBCAP) System. It gives an outline of the sys-
tem architecture and describes provenance based classification policy. Section 5
propose the Provenance based Classification Scheme. Then it presents semantic-
secure game for it and proofs that this scheme is semantic secure. Finally, Sect. 6
concludes the paper and states the future work.

2 Related Work

In recent years, defining provenance models [5,6,13] which are adopted by vari-
ous systems is a topic of research. [4] provides Open Provenance Model (OPM)
which could be presented as a form of directed acyclic graph (DAG). It consists
of five main entities as nodes and dependencies as edges and records processes
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taken on data. The three main entities are “Artifact”, “Process” and “Agent”
respectively, and each edge represents a causal dependency. OPM meets the
requirement allowing provenance information to be exchanged between systems,
and it is possible for developers to build and share tools operating on OPM. Cur-
rently, it has been employed by some provenance-aware systems. A paper [13]
provides another provenance model that presents as a set of provenance records.
It defines five kinds of records which are operation records, message records,
actor records, preference records, and context records and each records con-
sists of several attributes. However, these attributes are optional in that might
be null. To carry contextual information such as time, temporal aspects, user
ID and so on, [2] presents an extensional model of OPM by adding attributes
data of a transaction to vertex “Action” of each transaction. For instance, these
attribute information supports extra access control policies of Dynamic Separa-
tion of Duties (DSOD) [14]. And there are other proposals [18–21] focusing on
specific application domains such as electronic health data and scientific records.

Data provenance might be sensitive information, then the security of prove-
nance (for example [9–11]) has increasing aroused attention. There are several
attempts to encrypt provenance information to keep its confidentiality. Paper [15]
proposes a provenance-aware system based on Attribute-based signature (ABS)
which supports fine-grained access control policies. The users’ privacy is also
protected because attribute private key of users is issued with an anonymous
key-issuing protocol from multiple attribute authorities. However, the whole
computation is built on the assumption that could server has large computa-
tional ability. In paper [16], authors proposed a cryptographic design for cloud
storage systems supporting dynamic users and provenance data.

And several papers attempt to use data provenance to make access control
decisions. Paper [1,8] proposes a basic provenance-based access control model
PBACB, which facilitates additional capabilities beyond those available in tradi-
tional access control models. This paper also mentions a family of PBAC models,
PBACB being the basic model in this family. It defines three criteria for the
provenance-based access control family, namely (1) the kind of provenance data
in the system, (2) whether policies are based on acting user dependencies and
object dependencies, and (3) whether the policies are readily available or need to
be retrieved. The three other models PBACU , PBACA and PBACPR extend
one of these three criteria respectively. However, in this paper, the mechanism
to list dependency paths manually and search dependency paths from prove-
nance graphs are not unrealistic, because in real cloud systems, the items in
dependency path lists might be huge numbers.

[13] proposes an access control language influenced by the XACML language
which supports both actor preferences and organisational access control policies.
In their system, applicable organisational policies and applicable preferences are
evaluated together for a given query. However, there are obviously shortcomings
for the evaluation, such as uncertain decisions are inevitable due to the lack of
privileges.
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In the area of encrypted data search, [12] presents a Public Key Encryption
with keyword Search (PKES) scheme. We will be making use of this work in
the design of our Provenance based Classification Access scheme. Essentially,
the work in [3,12] considers the following scenario: when Alice receives emails,
she would like to set a gate that helps her to check whether the incoming emails
contain certain sensitive keywords such as “urgent”. However, the emails are
encrypted to protect privacy. As the gateway is not fully trusted, Alice does
not want to grant the gateway the ability to decrypt her emails. The PKES
scheme enables the gateway to conduct a test to verify if the encrypted emails
contain the keywords while learning nothing else about the content of the emails
themselves.

3 Provenance

Though provenance has long played a major role in the context of art and archae-
ology (in terms of lineage or pedigree), more recently it has become more impor-
tant for data in various sectors such as finance and medicine. It is not just about
the origin or creator of data but also what sort of operations have been done
by whom and in what context, especially when it comes to security and privacy.
As such, representation of data provenance provides information about the own-
ership as well as actions and modifications which have been performed on the
data. In terms of secure decision making, characteristics such as data accuracy,
timeliness and the path of transfer of data are important. For instance, with
the Sarbanes-Oxley Act, the consequences for signing incorrect corporate finan-
cial statements became contractual. Therefore it is important to keep track of
data which contributed to financial reports and to authenticate the people who
worked on it.

Fig. 1. Dependencies in Provenance Model [4]



Provenance Based Classification Access Policy System 289

In our system, we adopt the representation described in the Open Prove-
nance Model (OPM) [4]. The OPM takes the form of a directed acyclic graph
(DAG). It is based on three primary entities, namely Artifact, Process and Agent.
Specifically, Artifact is a piece of data which may be a physical object or a digital
representation stored in computers; Process is an action affecting the artifact and
creating new artifacts; Agent is an actor enabling and controlling the process.
These main entities act as nodes in the provenance directed acyclic graph. Depen-
dencies describe the relationships between these entities and connect the nodes
in the graph.

Figure 1 shows the five main dependencies. They are “used” (Process used
Artifact); “wasGeneratedBy” (Artifact was generated by Process); “wasCon-
trolledBy” (Process was controlled by Agent); “wasTriggeredBy” (Process2
was triggered by Process 1); “wasDerivedFrom” (Artifact2 was derived from
Artifact1).

Fig. 2. Provenance example

In the example shown in Fig. 2, it records the following transaction: Mac-
quarie Panel revised Artifact O2V1 and generated a new Artifact O2V2. Mac-
quarie Panel is the Agent, revise1 is the Process and O2V1 and O2V2 are
Artifacts. The dependency relationship between Macquarie Panel and revise1
is “c”, which implies that Macquarie Panel controls the Process “revise1”. The
Process “revise1” uses Artifact O2V1 as input; Artifact O2V2 is the generated
output from the Process “revise1”.

The provenance information is normally recorded as metadata. For the
above example, the metadata will be: MacquariePanel, revise1, ArtifactO2V1,
ArtifactO2V2 >:< revise1,MacquariePanel, wasControlledBy >< revise1,
Artifact O2V1, Uinput >,<Artifact O2V2, revise1, wasGeneratedBy(revise) >.
In our system, we will be focussing mainly on the first two items of each record,
which are the Agent and the Process. Hence such a provenance fragment in
the above example is “Macquarie Panel, revise1”. In our system, the owners of
files encrypt such provenance fragments and generate cipher texts which will be
employed by our following scheme.
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4 PBCAP System Design

4.1 System Architecture

We assume that a cloud service provider has several remote storage units avail-
able for storing data that is received from different users of the system. Users
wish to store their files with provenance in the cloud, and send them in encrypted
format to cloud service provider. The goal is to design an access control system
that the cloud service provider can use to classify encrypted files by searching
keywords from encrypted provenance. We refer to this access control system as
Provenance based Classification Access Policy (PBCAP) System.

Figure 3 givens an outline of our system architecture. The remote data stor-
age units are managed by a cloud server which classifies files and allocates
them in corresponding storage units. Our PBCAP system achieves the following
objectives: (1) the cloud server will classify the encrypted files that it receives
from users based on the attached encrypted provenance information; (2) the
encrypted provenance information is checked for policy compliance while they
remain encrypted (hence the confidentiality of both the encrypted files and their
provenance information are guaranteed); and (3) provides a guarantee to the
cloud server that the provenance is from a genuine source.

The components of the system architecture are as follows:

– Users are the owners of files who send encrypted files to the cloud server for
storage. The files along with their provenance are encrypted by the user before
they are sent to the cloud server. In our scheme, users also generate a pair
of public and private keys which are used for an embedded short signature
verification mechanism.

– Cloud Server classifies the received encrypted files and stores them in different
storage units. Each unit stores a bunch of files that shares common attributes.

Fig. 3. PBCAP system architecture



Provenance Based Classification Access Policy System 291

For instance, an attribute might be undergoing a specific process (e.g. being
graded by Alice, or being edited by Bob). This benefits management of files
as well as providing corresponding levels security protections.

– Policy Administrator Point (PAP) generates polices and send them to Pol-
icy Decision Points (PDP) for implementation. To keep confidentiality, PAP
encrypted sensitive information in policies before sending them to PDP.

– PDP Execute Encrypted Provenance Search Scheme (EPSS) as the following
the steps: verifying short signatures of provenance cipher texts to make sure
they are from genuine users; searching keywords from encrypted provenance,
output results to Policy Enforcement Point (PEP).

– PEP receives results from PDP and allocates files to corresponding storages
units.

4.2 Provenance Based Classification Policy

In this system, the rules to classify files only care about historical transactions
taken on them. For example, one educational storage unit might only accept
documents after anonymous processing due to the consider of comprehensive.
Then, the system formulate polices to map sets of historical transactions to
file categories and storage units. The example below maps a set of transactions
to a category of “Medical Documents” and a storage unit “Hospital”. As one
transaction corresponds with a specific piece of data in provenance, these trans-
actions was expressed as pieces of provenance data which are named provenance
fragments in this paper.

However, a provenance files might contain provenance fragments which map
more than one category. To avoid this conflict, we set priorities of each category.
When conflict happens, files are identifies as the highest priority category.

< PolicyID = “1′′ >
< ProvenanceFragmentSet > Seti < /ProvenanceFragmentSet >
< Priority > m < /Priority >
< Category > “MedicalDocuments′′ < /Category >
< CloudStorageUnit > “Hospital′′ < /CloudStorageUnit >

< /Policy >

Set1=[ProvenanceFragment(1,1),ProvenanceFragment(1,2),
... ProvenanceFragment(1,n)],

Set2=[ProvenanceFragment(2,1),ProvenanceFragment(2,2),
... ProvenanceFragment(2,n)],

......
Setn=[ProvenanceFragment(n,1),ProvenanceFragment(n,2),

... ProvenanceFragment(n,n)],

5 Provenance Based Classification Scheme

In this section, we describe our provenance based classification scheme. First we
give a brief overview of preliminaries needed for our scheme. We provide details
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of our scheme which consists of setup phase and verification phase. Finally, after
presenting security game of a chosen-word-attack, we give the security proof of
our scheme showing that is semantically secure.

5.1 Preliminaries

Let G1,G2 be two cyclic multiplicative groups with the same order p. The size
of G1,G2 is determined by the security parameter. Let ê : G1 × G1 → G2 be a
bilinear map with the following properties:

– Bilinearity: ê(ga
1 , gb

2) = ê(g1, g2)ab for all {g1, g2} ∈ G1, {a, b} ∈ Zq.
– Non-degeneracy: There exists g ∈ G1 such that ê(g, g) �= 1.
– Computability: There exists an efficient algorithm to compute ê(g1, g2) for all

{g1, g2} ∈ G1.

The construction of the Provenance-based Classification Scheme is based on
identity-based encryption [3]. We build a non-interactive searchable encryption
scheme from the Bilinear map above and hash functions H1 : {0, 1}∗ → G1 and
H2 : G2 → {0, 1}log p. In particular, H2 is a collision resistant hash function. The
functions in scheme work as follows:

– KeyGen1: Takes a security parameter 1λ as input; then the algorithm picks
at random an α ∈ Z∗

p and a generator g ∈ G1, where p is a prime and it is
the size of G1 and G2. It outputs the public key Apub = [g, h1 = gα] and the
private key Apriv = α.

– KeyGen2: Takes a security parameter 1λ as input; then the algorithm picks at
random a β ∈ Z∗

p and a generator g ∈ G1, where p is a prime and it is the size
of G1 and G2. It outputs the public key Bpub = [g, h2 = gβ ] and the private
key Bpriv = β.

– PBCT(Apub,Bpriv): Generates a Provenance based Classification Tags
(PBCTs) for provenance fragments for the purpose of searching. Then Com-
putes t = ê(H1(P)β , hr

1) ∈ G2 for a random r ∈ Z∗
p and a provenance fragment

P. Output PBCT(Apub, β) = [hβ
1 , hr

2,H2(t)] ≡ [X,Y,Z].
– T rapdoor(Apriv): Output TP = H1(P ′)α ∈ G1, where P ′ is provenance frag-

ments chosen by the administrator PAP.
– Test(Apub, Bpub, TP , S): Test if H2(ê(TP , Y )) = Z and ê(X, g) = ê(h1, h2).

If both are true, output 1; otherwise 0. The test function using Apub, Bpub

checks if the encrpyted provenance matching TP satisfies the policies; it also
verifies if the provenance is generated by authenticated users by checking the
short signature.

5.2 Policy Based Classification Scheme

Our policy-based classification scheme (Fig. 4) has two phases, namely the setup
phase and the verification phase. Initially, in the setup phase, both the adminis-
trator PAP and users generate their own pair of public and private keys. Then
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PAP calculates Trapdoor for sets of provenance fragments listed in the access
control policies and sends them with policies to PDP which executes the test
function. In the verification phase, before users send encrypted files and prove-
nance to the Cloud Server, they calculate PBCT and attach them to the files.
After receiving files, the PDP classifies them by running the Test function. Our
scheme involves encrypted provenance search and is constructed using the tech-
nique mentioned in [12].

– Setup Phase:
• PAP runs KeyGen1, taking an input security parameter 1λ; the algorithm

picks a random α ∈ Z∗
p and a generator g ∈ G1. It outputs the public key

Apub = [g, h1 = gα] and the private key Apriv = α. Then PAP sends the
public keys to users and PDP.

• Users run KeyGen2 taking an input security parameter 1λ; the algorithm
picks a random β ∈ Z∗

p and a generator g ∈ G1. It outputs the public key
Bpub = [g, h2 = gβ ] and the private key Bpriv = β. Then, users send public
keys to PDP.

• PAP runs Trapdoor(Apriv) to output TP′ = H1(P)α ∈ G1, and then sends
the policies with TP to PDP.

– Verification Phase:
• Users run function PBCT(Apub,Bpriv) to compute tags where t =

ê(H1(P)β ,hr
1)∈ G2 for a random r ∈ Z∗

p and a provenance P. Output
PBCT(Apub, β) = [hβ

1 , hr
2,H2(t)] ≡ [X,Y,Z]. Users then attach the tags

with encrypted files and provenance.
• When the encrypted files with tags are sent to PDP, PDP checks if the

provenance has the specified keywords in the policies, by running the Test

function. Test if ê(X, g) ?= ê(h1, h2) (1) and H2(ê(TP , Y )) ?= Z (2). If both
are true, then output 1; otherwise 0. The result will then be sent to PEP
which executes further operations.

In formula (1), the left hand side ê(X, g) = ê(hβ
1 , g) = ê(h1, g

β), according to
the property of the Bilinear Map. By definition h2 = gβ , and hence the left hand

Users PDP PAP

Run KeyGen2 Run KeyGen1

Send Bpub to PDP
Bpub−−−−→ Apub←−−−− Send Apub to PDP,Users

Run Trapdoor
TP←−−−− and send it to PDP

Calculate PBCT

Send E(f)||PBCT to PDP
E(f)||PBCT−−−−−−−−−−→

Run Test and Output Result

Fig. 4. Provenance based classification scheme
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side equals the right hand side. This formula verifies if the users are authenticated
by checking whether they have the corresponding private keys. Similarly, we also
prove that the left hand side equals the right hand side in formula (2). It tests if
PBCT matches the chosen provenance fragments specified by the administrator.

H2(ê(TP , Y )) ?= Z (2)
H2(ê(H1(P)α, hr

2))
?= H2(ê(H1(P)β , hr

1))
H2(ê(H1(P), hαr

2 )) ?= H2(ê(H1(P), hβr
1 ))

H2(ê(H1(P), (gβ)αr)) ?= H2(ê(H1(P), (gα)βr))

5.3 Security Proof

Let us now consider the security proof. This scheme has the property of semantic-
security against a chosen word attack. That is, PBCT does not reveal any infor-
mation of provenance to PDP except that TP is available to PDP. By simulating
our scheme with the game below, an active attacker can obtain TP for any prove-
nance fragment that s/he chooses. However the attacker could not distinguish
PBCT for P0 and P1 for which it does not know the TP .

We define the security game between an attacker and the challenger as
follows:

Provenance-based Classification Security Game:

1. The challenger runs KeyGen1 and KeyGen2 functions to obtain Apub, Apriv

and Bpub, Bpriv. The challenger then sends Apub and Bpub to the attacker.
2. The attacker sends provenance fragments P ∈ {0, 1}∗ of its choice to the chal-

lenger. Then the attacker receives trapdoor TP calculated by the challenger.
3. Then, the attacker sends two random provenance fragments P0 and P1 for

which it did not ask previously TP .
4. The challenger chooses a random b ∈ {0, 1}, and returns C= PBCT(Apub,

Bpriv, Pb) to the attacker.
5. The attacker can continue to retrieve TP from the challenger of any random

provenance fragment as long as it is neither P0 nor P1.
6. Finally, the attacker makes a guess for b ∈ {0, 1} and wins if b′ = b.

We define the attacker’s advantage to break the Provenance based Classification
Scheme as

Adv(s) = |Pr[b = b′] − 1/2|
To complete the security proof, we define an External Bilinear Diffie-

Hellman Problem. We use the CorollaryA.3. in [7] to get a new hard problem
by setting P = (1, a, b, c, d, ab, bc), Q = (1), f = abcd.

Corollary A.3. in [7]. Let P,Q ∈ Fp[X1, ..,Xn]s be two s-tuples of n-variable
polynomials over Fp and let f ∈ Fp[X1, ...Xn]. Let d = max(2dp, dQ, df ). If f is
independent of (P, Q) then any A that has advantage 1/2 in solving the decision
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(P,Q,f)-Diffie-Hellman Problem in a generic bilinear group G must take time at
least Ω(

√
p/d − s).

External Bilinear Diffie-Hellman Problem(XBDH). Let ê : G1×G1 → G2

be a bilinear map. For a generator g of G1, the BDH problem is as follows: given
{g, ga, gb, gc, gd, gab, gbc} ∈ G1 as input, compute ê(g, g)abcd.

Theorem 1. The Provenance based Classification Scheme given above is seman-
tically secure against a chosen-word-attack in the random oracle model if the
XBDH problem is hard.

Proof. Suppose the attacker makes at most q1 hash function queries to H2 and
at most q2 trapdoor queries. Assume the attack algorithm has an advantage ε
in breaking the scheme. Then the challenger is able to solve the XBDH problem
with an advantage ε′ = ε/(eq1q2). We know, in G1, XBDH is a hard problem
and ε′ is negligible. Therefore, ε must be negligible and the Provenance based
Classification protocol is semantic-secure.

We simulate the game between the attacker A and the challenger B. The
challenger is given g, u1 = gα, u2 = gβ , u3 = gγ , u4 = gδ, u5 = gαβ , u6 = gβγ .
The goal of the challenger is to successfully output v = e(g, g)αβγδ. The attacker
wins the game if it is able to distinguish PBCT (P0) and PBCT (P1).

KeyGen: Challenger sends public keys [g, u1, u2] to attacker A.

H1-queries: At anytime, attacker A could query the random oracles H1 by sending
a random Pi, which is a provenance fragment in an item of provenance, while
the challenger B keeps a Hi-list recorded as < Pi, hi, aj , cj > to answer the
queries. The list is initially empty. When the attacker A sends Pi ∈ {0, 1}∗ as a
query, the challenger B calculates the following:

1. The challenger send hi back directly as Hi(Pi) = hi ∈ G1 if Pi exists in the
current list.

2. Or else, the challenger B chooses a random ci ∈ {0, 1}, with Pr[ci = 0] =
1/(q2 + 1).

3. Then, the challenger B generates a random ai ∈ Zp, and then computes
hi ← u4 ∗ gai ∈ G1 if ci=0, and hi ← gai ∈ G1 if ci=1.

4. Then the challenger adds the newly generated < Pi, hi, aj , cj > to the Hi-list
and responds to the attacker hi.

H2-queries: The attacker A sends t as a H2 query, and the challenger picks a
random V ∈ {0, 1}logp as H2(t) = V . Adds the set (t, V) to the H2 list if this
does not exist in the list previously. H2 is initially empty.

Trapdoor queries: The attacker A sends random Pi as trapdoor queries. Then the
challenger calculates the following:

1. Run H1 query algorithm to obtain ci. If ci=0, and outputs failure and
terminates.

2. If ci = 1, outputs Ti = uai
1 as the result. Note that Ti = H(Pi)α as hi = gα.

Then Ti = H(Pi)α = gaiα = uai
1 .
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Challenge: The attacker A picks two provenance fragments P0 and P1 for the
challenge. Note that both P0 and P1 should not have been challenged previously.
The challenger B calculates PBCT as follows:

1. The challenger B runs H1-query algorithm to generate c0 and c1: if c0=1 and
c1=1, reports failure and terminates; if there is one between c0 and c1 equals
0, then sets that one to cb; if both of them equals 0, then randomly chooses
one of them to be cb.

2. Then generates a challenge C for Pb as C = [u5, u6, J ], where J ∈ {0, 1}logp

is a random number. The challenger B defines J = H2(ê(H1(Pb)β , uγ
1)) =

H2(ê(u4g
ab , gαβγ)) = H2(ê(g, g)αβγ(δ+ab))

More trapdoor queries: The attacker could continue to ask trapdoor for Pi, where
Pi �= P0, P1.

Output: Finally, the attacker A outputs a guess b′ ∈ {0, 1} which represents
whether the challenge C is calculated for P0 or P1. Then, the challenger chooses
a random pair (t, V ) from H2 list and calculates t/ê(u5, u3)ab as the output for
ê(g, g)αβγδ, where ab is known as a parameter to calculate the challenge C.

For the simulation process described above, the probability that a challenger
B correctly outputs ê(g, g)αβγδ is ε′. The challenger B wins the game if s/he
chooses the correct H2 pair, and does not abort during the trapdoor queries
period and the challenge period.

Claim1 : The probability that challenger outputs e(g, g)αβγδ is ε′ = ε/(eq1q2).

Proof . Briefly, the challenger’s algorithm does not abort mean that it does
not abort during both the trapdoor queries period and during the challenge
period. The probability that a trapdoor query causes challenger to abort is
1/(q2 + 1). Because attacker makes at most q2 trapdoor queries, the probabil-
ity that challenger does not abort at the trapdoor queries phrase is at least
(1 − 1/(q2 + 1))qT ≥ 1/e. Similarly, it will abort at the challenge phrase when
c0 = c1 = 1 with Pr[c0 = c1 = 1] = (1 − 1/(q2 + 1))2 ≤ 1 − 1/q2. In the opposite
way, it does not abort at the challenge phrase is at least 1/q2. Therefore, we have
the corresponding probabilities are Pr[ξ1] ≥ 1/e and Pr[ξ2] ≥ 1/q2 respectively.
Note that these two events are independent; therefore, the probability that the
challenger’s algorithm does not abort is Pr[ξ1 ∧ ξ2] ≥ 1/(eq2). Following that,
the attacker A issues a query for H2(e(H1(Wb)β , uγ

1)) with probability at least
ε; then the challenger chooses the right pair with probability 1/q1. As these
processes are independent from one other, we can conclude that the probability
that the challenger outputs ê(g, g)αβγδ is ε/eq1q2. As this is a hard problem,
the attacker can break the game with negligible probability. In other words, the
attacker A cannot distinguish whether P0 or P1 is PBCT (Pb). Hence Then the
Provenance based Classification Scheme is semantic-secure.
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6 Concluding Remarks

In this paper, we have proposed a Provenance-based Access Policy System which
can be used to classify encrypted files sent to the cloud by different users. The
access control decisions are made according to the provenance attached to the
encrypted files. The provenance information itself is in encrypted form. The cloud
server is able to check whether the provenance satisfies certain policies specified
by the administrator without decrypting the provenance. That is, the scheme
allows searching encrypted provenance. Furthermore, the cloud server is also able
to check the identity of users who sent these files as that is part of the provenance
information. We have described the scheme in detail and developed a provenance-
based classification security game and proof to show that the proposed scheme
is semantically-secure based on a known hard problem.

However, provenance-based access control is still at its initial stage. There are
still interesting work are left. That will include examination of the granularity
of access control and the range of policy types that can be provided using prove-
nance. By employing provenance, access control systems might support more
kinds of policies beyond traditional scope. Provenance records could be formu-
lated with other attributes such as time stamps, users’ ID, agent etc. to fertilise
more policies. In the meanwhile, decision uncertainties might arouse in the eval-
uation of provenance based access control policies, specially for a fine-grained
approach. Then, conflict solutions might be required.

We also recognise that long lived and much handled data can acquire exten-
sive provenance information. In practice, system administrators may need to
limit the lifespan of provenance data if this is found to cause unacceptable per-
formance issues. Moreover, an scheme with adaptive semantic secure will improve
the security level of this system.
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Abstract. While Searchable Encryption (SE) has been widely studied,
adapting it to the multi-user setting whereby many users can upload
secret files or documents and delegate search operations to multiple other
users still remains an interesting problem. In this paper we show that
the adversarial models used in existing multi-user searchable encryption
solutions are not realistic as they implicitly require that the cloud service
provider cannot collude with some users. We then propose a stronger
adversarial model, and propose a construction which is both practical
and provably secure in this new model. The new solution combines the
use of bilinear pairings with private information retrieval and introduces
a new, non trusted entity called “proxy” to transform each user’s search
query into one instance per targeted file or document.

1 Introduction

Cloud computing nowadays appears to be the most prominent approach for
outsourcing storage and computation. Despite well known advantages in terms
of cost reduction and efficiency, cloud computing also raises various security and
privacy issues. Apart from classical exposures due to third party intruders one
of the new requirements akin to outsourcing is the privacy of outsourced data
in the face of a potentially malicious or careless Cloud Service Provider (CSP).

While data encryption seems to be the right countermeasure to prevent pri-
vacy violations, classical encryption mechanisms fall short of meeting the privacy
requirements in the cloud setting. Typical cloud storage systems also provide
basic operations on stored data such as statistical data analysis, logging and
searching and these operations would not be feasible if the data were encrypted
using classical encryption algorithms.

Among various solutions aiming at designing operations that would be com-
patible with data encryption, Searchable Encryption (SE) schemes allow a poten-
tially curious party to perform searches on encrypted data without having to
decrypt it. SE seems a suitable approach to solve the data privacy problem in
the cloud setting.

A further challenge is raised by SE in the multi-user setting, whereby each
user may have access to a set of encrypted data segments stored by a number of
different users. Multi-user searchable encryption schemes allow a user to search
through several data segments based on some search rights granted by the owners
of those segments. Privacy requirements in this setting are manifold, not only the
c© Springer International Publishing Switzerland 2015
J. Lopez and C.J. Mitchell (Eds.): ISC 2015, LNCS 9290, pp. 299–316, 2015.
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confidentiality of the data segments but also the privacy of the queries should be
assured against intruders and potentially malicious CSP. Recently, few research
efforts [5,8,12,15] came up with multi-user keyword search schemes meeting
these privacy requirements, either through some key sharing among users or
based on a Trusted Third Party (TTP).

In this paper, we first investigate the new privacy challenges for keyword
search raised by the multi-user setting beyond the basic privacy concerns about
data, queries and responses by focusing on the relationship among multiple
queries and responses. We realize that while as analyzed in [7], the protection of
the access pattern privacy (privacy of the responses) is optional for single-user
searchable encryption mechanisms, this requirement becomes mandatory in the
multi-user setting. Unfortunately all existing Multi-User Searchable Encryption
(MUSE) schemes [5,8,12,15] suffer from the lack of such protection. We fur-
ther come up with a new adversary model for MUSE that takes into account
new security exposures introduced by the possible collusion of some users with
the CSP.

After showing that all existing MUSE schemes fail at meeting the privacy
requirements in our new adversarial model, we suggest a new solution for MUSE
for which it is not the case, i.e., all users who have not been explicitly authorized
to search a document can collude with the adversary without threatening the
privacy of that document. Our solution for MUSE inherently ensures access
pattern privacy through the use of Private Information Retrieval (PIR). While
the PIR protocol together with the multi-user setting may add a significant
complexity overhead, this overhead is outsourced from the users to a third party
our scheme introduces, the proxy, that is in charge of multiplexing a user query
into several PIR queries. Moreover the overhead of PIR is further lowered by
querying binary matrices representing the keyword indices instead of querying
the bulky keyword lists themselves. As opposed to most existing solutions based
on a TTP [3,5,8,15], the proxy in our scheme does not need to be trusted. With
the sole assumptions that the CSP and the proxy are honest-but-curious and
that they do not collude with one another, we prove that our solution meets the
privacy requirements defined for MUSE.

Section 2 states the problem addressed by MUSE. Section 3 describes our
solution for MUSE and Sect. 4 defines the security properties for MUSE. Section 5
proves that our solution achieves the security properties we defined and Sect. 6
studies the algorithmic complexity of our solution. Section 7 reviews the state of
the art and, finally, Sect. 8 concludes the paper.

2 Multi-user Searchable Encryption (MUSE)

A MUSE mechanism extends existing keyword search solutions into a multi-
writer multi-reader [6] architecture involving a large number of users, each of
which having two roles:

– as a writer, the user uploads documents to the server and delegates keyword
search rights to other users.
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– as a reader, the user performs keyword search operations on the documents
for which she received delegated rights.

As any SE solution, MUSE raises two privacy requirements:

– index privacy: unauthorized parties should not discover information about the
content of uploaded documents.

– query privacy: no one should get information about the targeted word and the
result of a search operation apart from the reader who sent the corresponding
query.

In addition to the CSP, any user that has not been explicitly given search
rights on an index should be considered as potentially colluding with the CSP
in order to violate index or query privacy. This assumption leads to a model
in which the adversary is composed of a coalition of the CSP and some non-
delegated users. This new adversary model extends the one used in other existing
MUSE schemes [5,7,12,15], which although secure in their own adversary model
do not achieve index and query privacy any more if non-delegated users collude
with the CSP.

Figure 1 illustrates one example of the impact of a collusion between a CSP
and a user on privacy by taking advantage of the lack of access pattern privacy.
Assuming that R1 is authorized to query both indices I1 and I2, by observing
the access pattern of R1’s queries, the CSP can discover similarities between Ia

and Ib. In a second phase, the CSP corrupts reader R2 who is authorized to
query Ib only. By exploiting the similarities between Ia and Ib and discovering
the content of Ib through R2, the CSP can easily discover the content of Ia. The
index privacy is thus violated for Ia since the CSP partially learns the content
of Ia although R1, the only reader having delegated search rights for Ia, was not
corrupted. Furthermore, once the CSP obtains information about the content
of an index, observing the access pattern of the queries targeting this index
enables the CSP to violate the privacy of these queries. This attack allows to
violate both query and index privacy in all existing MUSE schemes since they all
let the CSP discover the access pattern of the queries. The new adversary model
we introduce not only prevents such an attack but also prevents any attack that
would require the corruption of a non-delegated user.

3 Our Solution

3.1 Idea

Our solution introduces a third party called the proxy that performs an algorithm
called QueryTransform to transform a single reader query into one query per tar-
geted document1. For each of these queries, the proxy sends to the CSP a specific
1 Note that the set of targeted document can reveal the authorized set of documents

for this particular user. However, such an additional information does not have a
serious impact on index or query privacy as access pattern leakage has.
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Fig. 1. In (a), discovery of similarities through the access pattern. In (b), use of the
similarities to extend index privacy violation.

PIR request. Thanks to the PIR protocol the CSP does not have access neither
to the content of the query nor to its result, which makes our scheme achiev-
ing query privacy (including access pattern privacy) against the CSP. While the
use of PIR provides privacy against the CSP, a new privacy exposure raises with
respect to the proxy. Indeed through the execution of QueryTransform, the proxy
is able to discover the relationship between a query and the different ciphertexts
in the targeted indices which are the encryption of the same keyword. However
with the assumption that the proxy does not collude with the CSP, the proxy
cannot realize whether these ciphertexts are present in their respective indices or
not; thus, our scheme achieves index privacy against the proxy. Moreover thanks
to some randomization of the queries and the encryption of the responses by
the CSP with the reader’s key, the proposed solution also ensures query pri-
vacy against the proxy. Consequently, while our solution does introduce a third
party (the proxy), this third party does not need to be trusted and is
considered as an adversary. Both the CSP and the proxy are then considered
as potentially malicious in our scheme, and are only assumed honest-but-curious
and non colluding with each other.

Another advantage of introducing the proxy into this new MUSE solution is
scalability: Indeed, thanks to the QueryTransform algorithm executed by the
proxy a user does not need to generate several PIR queries (one per index) for
the same keyword.

3.2 Preliminaries

Bilinear Pairings Let G1, G2 and GT be three groups of prime order q and g1,
g2 generators of G1 and G2 respectively. e : G1 × G2 → GT is a bilinear map if
e is:
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– efficiently computable
– non-degenerate: if x1 generates G1 and x2 generates G2, then e(x1, x2) gen-

erates GT

– bilinear: e(ga
1 , gb

2) = e(g1, g2)ab ∀(a, b) ∈ Z
2

We assume that the widely used eXternal Diffie-Hellman (XDH) assumption
[4] holds.

Definition 1 (External Diffie Hellman Assumption). Given three groups
G1, G2 and GT and a bilinear map e : G1 × G2 → GT , the Decisional Diffie-
Hellman (DDH) problem is hard in G1, i.e., given (g1, gα

1 , gβ
1 , gδ

1) ∈ G4
1, it is

computationally hard to tell if δ = αβ.

Private Information Retrieval (PIR). A PIR protocol allows a user to retrieve
data from a database without revealing any information about the retrieved
data.

PIR consists of five algorithms:

– PIR.Setup() → PIRParams
– PIR.KeyGen() → (PirKey): this algorithm outputs the keying material for

PIR.
– PIR.Query(PirKey, size, target) → Query: given PIR parameters, the size

of the targeted database and a target position, this algorithm outputs a PIR
query targeting the given position in a database of the given size.

– PIR.Process(Query,DataBase) → R: this algorithm applies the query
Query on the database DataBase and outputs a response R.

– PIR.Retrieve(R,P irKey) → Cell: given a PIR response R and the PIR key
used in corresponding query, this algorithm outputs the value of the retrieved
database cell.

Single-database computational PIR has already been widely studied [1,2,10,
11], and the results presented in [1] show that solutions with practical perfor-
mances already exist. Our solution uses the technique of recursive PIR which
allows to reduce communication complexity as explained in [1]: The database is
viewed as a matrix each row of which is considered as a sub-database. To query
the whole database a single query is sent and this query is further applied on
each row, resulting in the generation of many PIR responses.

3.3 Protocol Description

Figure 2 illustrates the structure and the various flows of our solution. We define
two phases in the protocol, the upload phase and the search phase: During the
upload phase, a writer A uploads a secure index to the CSP by encrypting each
keyword with the Index algorithm. A then delegates search rights to reader B
using the Delegate algorithm which computes an authorization token using B’s
public key and A’s private key. The authorization token is sent to the proxy.
During the search phase, B can further search all the indices for which she has
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Fig. 2. Overview of our solution.

been given search rights, by creating a single query through the execution of
QueryCreate. Whenever the proxy receives the B’s query it uses the autho-
rization tokens attributed to B to transform this query into one PIR query per
authorized index through the execution of QueryTransform. Upon reception of
a PIR query, the CSP through the execution of Respond builds a binary matrix
using the corresponding encrypted index, applies the query to the matrix and
encrypts the resulting PIR answers. The responses are then pre-processed by the
proxy through the execution of ResponseF ilter. Finally B obtains the result of
her search query by executing ResponseProcess.

Revocation in our solution only consists in the deletion of the appropriate
authorizations by the proxy upon a writer’s request.

The set of users is denoted by ui1≤i≤N . For the sake of clarity, each user ui

is assumed to own only one index Ii.

– Setup(κ) → params : given the security parameter κ, this algorithm outputs
the parameters param consisting in:
• a description of the bilinear map that will be used: the three groups G1,

G2, GT of prime order q, the two generators g1 and g2 and the map itself e.
• a cryptographically secure hash function h : {0, 1}∗ → G1

• the size n of the matrices for PIR, and a hash function H : GT → [[0, n−1]]
to transform encrypted keywords into positions in the matrices. Without
loss of generality, n is assumed to be a perfect square.

• the PIR parameters PIRParams from the execution of PIR.Setup
• a symmetric cipher Enc and the corresponding decipher algorithm Dec.
All these parameters are considered implicit for each further algorithm.

– KeyGen(κ) → (γ, ρ, P,K): given the security parameter κ, a user ui gener-
ates the following keys:
• a secret writer key γi

$←− Z
∗
q

• a private reader key ρi
$←− Z

∗
q
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• a public reader key Pi = g
1
ρ

2

• a transmission key Ki used for Enc/Dec. This key is shared with the CSP.
– Index(w, γi) → w̃: Writer ui executes this algorithm to encrypt keyword w

with his key γi. The algorithm outputs w̃ = e(h(w)γi , g2).
– Delegate(γi, Pj) → Δi,j : Provided with the public key Pj of reader uj , writer

ui executes this algorithm using its secret key γi to generate Δi,j = P γi

j the
authorization token that authorizes uj to search the index Ii. The output Δi,j

is sent to the proxy which adds it to the set Dj . Note that this token can only
be created by the legitimate data owner and cannot be forged by any other
party including the CSP and the proxy.

– QueryCreate(w, ρj) → Qj : This algorithm is run by an authorized reader to
generate a query for keyword w using its private reader key ρj . The algorithm

draws a randomization factor ξ
$←− Z

∗
q and outputs Qj = h(w)ξρj .

– QueryTransform(Qj ,Dj) →< Q′
i,j >: Whenever the proxy receives a

reader’s query Q, it calls this algorithm together with the set Dj .
For each authorization token Δi,j in D, the algorithm creates a PIR query Q′

j

as follow:
• compute Q̃i,j ← e(Qj ,Δi,j)
• compute x′||y′ ← H(Q̃i,j)
• some PIR keying material is generated: PirKey ← PIR.KeyGen()
• a

√
n-size PIR query is created that targets position y′:

Q′
i,j ← PIR.Query(PirKey,

√
n, y′)

The algorithm outputs < Q′
i,j > which are forwarded to the CSP together

with the corresponding identifiers i of the indices. The proxy additionally
stores each generated PIRKey and x′ in a table in order to use them upon
reception of the corresponding response.

– Respond(Q′, I, ξ) → R: Whenever the CSP receives an individual PIR query
Q′, it executes this algorithm using the corresponding index I and the ran-
domization factor ξ corresponding to this query.
The algorithm initializes a

√
n × √

n matrix M with “0”. Then for each
encrypted word w̃ ∈ I, the cell Mx,y is set to “1” where x||y ← H(w̃ξ)
(recall that w̃ ∈ GT ). The response is the tuple of the outputs from the
application of the PIR query Q′ on each row of the binary matrix M :
R̃ ← (PIR.Process(Q′,Mx) | Mx a row of M). Each component of R̃ is then
encrypted with algorithm Enc using the transmission key K of the query-
ing reader to obtain R which the algorithm outputs. This layer of encryption
prevents the proxy from reading the result of the query.

– ResponseFilter(R, x′, P irKey) → (R′, P irKey): Whenever the proxy
receives a response R it calls this algorithm together with the x′ and PirKey
associated to the corresponding query. The purpose of this algorithm is to
reduce the communication cost for the reader. Indeed the algorithm extracts
the x′-th component of R and outputs it together with the value for PirKey.
This results in a filtered response which is much smaller than the original
response.
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– ResponseProcess(R′, P irKey,K) → b ∈ {0, 1}: On receiving the filtered
response R′ with the corresponding PirKey, the reader executes this algo-
rithm using her transmission key K. The algorithm further outputs the value
of PIR.Retrieve(DecK(R′), P irKey) which corresponds to the content of the
retrieved matrix cell. An output of 1 means that the searched keyword is
present in the index, and a 0 means that it is absent.

3.4 Correctness

We now show that a query correctly retrieves a particular cell which content
corresponds to whether the queried keyword has been uploaded or not.

Let γ be the encryption key of a given index. If keyword w has been uploaded
to that index, then the cell Mx,y of the corresponding matrix is equal to 1 with
x||y = H(e(h(w), gγ

2 )). Conversely if a given cell Mx,y is equal to 1 then with
high probability the corresponding keyword w where x||y = H(e(h(w), gγ

2 )) has
been uploaded. A false positive implies a collision in either H or h. Thus the
content of Mx,y corresponds to the upload of w.

Secondly, a query for keyword w in that index will retrieve cell Mx′,y′ with:

x′||y′ = H(e(h(w)ρ, g
γ
ρ

2 )) = H(e(h(w), gγ
2 )) = x||y . (1)

Thus a response to a query will decrypt to the content of the proper cell and
our scheme is correct.

4 Security Model

Our security definitions are game-based definitions, where the games are repre-
sented by algorithms. Since the CSP and the proxy are considered as two non-
colluding adversaries, security will be defined for each of them independently.
The consequence of the non-collusion assumption is that each adversary will see
the other one as an oracle. For each adversary type we define one game for index
privacy and one game for query privacy. For each definition, the correspond-
ing game consists of seven phases: a setup phase, a learning phase, a challenge
phase, a restriction phase, second learning and restriction phases identical to the
previous ones, and finally a response phase. The adversary is denoted by A.

4.1 Security with the CSP as Adversary

We now formally define Index Privacy and Query Privacy considering the CSP as
the adversary. In the following two definitions the setup and the learning phases
are the same and are described in Algorithm 1. The challenge and restriction
phases for index privacy are further described in Algorithm2 and the ones for
query privacy are described in Algorithm3. Finally during the response phase,
A outputs a bit b∗ representing its guess for the challenge bit b.
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/* Setup phase */

A ← Setup();
for i = 1 to N do

(γi, ρi, Pi, Ki) ← KeyGen(κ) ;
A ← (i, Pi, Ki) ;

end
/* First learning phase */

for j = 1 to a polynomial number l1 do
A → query ;
switch query do

case Index for word w and user ui

A ← Index(w, ui);
case Corrupt user ui

A ← (ρi, γi, Ki)
case Delegation of user ui by user uj

/* A does not receive any value, but the delegation will

modify the set Di used in QueryTransform */

end
case Queries for word w from user ui

/* Di comes from the Delegations queried by A */

A ← QueryTransform(QueryCreate(w, ρi), Di);
/* A also receives the randomization factor ξ */

A ← ξ;

case Queries for user query Q from corrupted user ui

A ← QueryTransform(Q, Di);
case Filtered response for response R from corrupted user ui

A ← ResponseF ilter(R)
endsw

end

Algorithm 1. Setup and learning phases of both index privacy and query
privacy games, whereby A is the CSP

/* Challenge phase */

A → (uchall, w
∗
0 , w∗

1);

b
$←− {0, 1};

A ← Index(w∗
b , uchall);

/* Restriction phase */

if uchall is corrupted OR Index for w∗
0 or w∗

1 for user uchall has been previously
queried OR a corrupted user has been delegated by uchall then

HALT;

end

Algorithm 2. Challenge and restriction phases of the index privacy game
whereby A is the CSP
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/* Challenge phase */

A → (uchall, w
∗
0 , w∗

1);

b
$←− {0, 1};

A ← QueryTransform(QueryCreate(w∗
b , ρchall), Dchall);

/* Restriction phase */

if uchall is corrupted then
HALT;

end

Algorithm 3. Challenge and restriction phases of the query privacy game
whereby A is the CSP

Definition 2 (Index Privacy Against the CSP). We say that a MUSE
scheme achieves index privacy against the CSP when the following holds for the
index privacy game (Algorithms 1 and 2): |Pr[b = b∗]− 1

2 | ≤ ε, with ε a negligible
function in the security parameter κ.

Definition 3 (Query Privacy Against the CSP). We say that a MUSE
scheme achieves query privacy against the CSP when the following holds for the
query privacy game (Algorithms 1 and 3): |Pr[b = b∗]− 1

2 | ≤ ε, with ε a negligible
function in the security parameter κ.

4.2 Security with the Proxy as Adversary

Due to space limitations we do not provide the detailed description of index
and query privacy games whereby the proxy is considered as the adversary. In a
nutshell, the main differences with the previous games are the following:

– during the learning phase the proxy can query for the Respond algorithm
executed by the CSP, but does not query for the QueryTransform and
ResponseF ilter algorithms. Moreover the proxy receives the output of the
Delegate algorithm, but does not get the transmission key and the random-
ization factors of the users.

– during the challenge phase, the proxy does not receive the output of the Index
algorithm for index privacy, and receives the output of QueryCreate for query
privacy.

5 Security Analysis

Inspired by the methodology in [14], in order to prove each security property
we define a sequence of games (gamei)i=0..n, the first game being the original
security definition. For each game gamei a “success event” Si is defined as the
event when the adversary Ai correctly guesses the challenge bit b used as part of
the challenge. For every two consecutive games gamei and gamei+1, it is shown



Multi-user Searchable Encryption in the Cloud 309

that |Pr[Si] − Pr[Si+1]| is negligible. Then it is shown that the probability of
success Pr[Sn] of the last game is the target probability, namely 0.5. Hence the
probability of success of the first game is negligibly close to the target probability,
which ends the proof.

Due to space limitations we provide a detailed proof for index privacy against
the CSP only.

5.1 Index Privacy with the CSP as the Adversary

Theorem 1. Our construction achieves index privacy against the CSP.

game0. Let game0 be the game of Definition 2 (Algorithms 1 and 2). The success
event S0 is “b = b∗”.
game1. The only difference between game0 and game1 is that in game1, the
adversary A1 can no longer send queries requesting the corruption of a user.
Consequently A1 can neither send queries related to corrupted users, namely
queries for QueryTransform and ResponseF ilter.

Lemma 1. If Pr[S1] is negligibly close to 0.5, then Pr[S1] and Pr[S0] are negli-
gibly close.

Proof. This Lemma is proved by introducing an adversary A1 executing the
algorithm depicted in Algorithm4.

A1 plays game1 using adversary A0 playing game0. To that effect, A1 sim-
ulates an instance of game0 with respect to A0 and responds at game1 using
the response of A0. Since, as opposed to A0, A1 cannot corrupt any user, A1

has to fabricate responses to A0’s corruption queries as part of the simulated
instance of game0. To do so, A1 simulates corrupted users by locally generating
keys which are sent to A0 as a response to the corruption query. These same
generated keys must be used in all responses related to this corrupted user in
order for A1 to simulate a consistent instance of game0. However A0 may have
sent queries related to this user before the corruption query. A way for A1 to
ensure the required consistency is to choose a set of users that will be simulated
from the beginning. If A0 sends a request to corrupt a user that A1 chose not to
simulate, A1 cannot simulate a proper instance of game0 any more. Simulation
also fails if a user that was simulated by A1 is chosen by A0 to be the challenge
user or a delegate of the challenge user. We define the event C as when none
of the previous cases occur, i.e., C is “A0 does not corrupt any non-simulated
user and A0 does not chose any simulated user as either the challenge user or
a delegate of the challenge user”. We also define the event C ′ as “all users but
the challenge user and her delegates are simulated”. Since C ′ implies C we have
Pr[C] ≥ Pr[C ′], and actually Pr[C] is expected to be much greater than Pr[C ′].
Whenever the event C occurs, A0 received a valid instance of game0 with the
challenge value from the instance of game1, and thus the probability for A1 to
succeed at game1 is the probability of A0 to succeed at game0:

Pr[S1|C] = Pr[S0]. (2)
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A1 receives data from game1 setup phase;
/* A1 simulates some users to A0 */

Sim
$←− P([1..N ]);

for i ∈ Sim do
(γ′

i, ρ
′
i, P

′
i , K

′
i) ← KeyGen(κ)

end
for i from 1 to N do

if i ∈ Sim then
A0 ← (i, P ′

i , K
′
i);

else
A0 ← (i, Pi, Ki)

end

end
/* Learning phase 1 */

for a polynomial number l1 of times do
A0 → query;
if A1 knows all the input values for the corresponding algorithm then

A1 runs the algorithm locally and sends back the answer;
else

if query was for corruption then
/* exit with random guess */

b∗ $←− 0, 1;
A1 → b∗;
HALT;

else
A1 forwards the call to game1 and forwards the answer to A0;

end

end

end
/* Challenge phase */

A1 forwards everything from A0 to game1 and back.
/* Learning phase 2 */

Same as learning phase 1;
/* Response phase */

A1 forwards the bit b∗ outputted by A0;

Algorithm 4. Algorithm run by A1 the transition adversary from game0
to game1. Restrictions phases are omitted.

If the simulation of game0 fails, A1 can still give a random answer to game1
which implies:

Pr[S1|¬C] = 0.5. (3)

Finally we define the event C ′
i as “user ui is either simulated or challenge-or-

delegate, but not both”. We have Pr[C ′
i] = 0.5 and Pr[C ′] =

∏
i=1..N Pr[C ′

i]
thus Pr[C ′] = 2−N and it follows that Pr[C] ≥ 2−N . It seems reasonable to
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assume that the number N of users grows at most polylogarithmically with the
security parameter κ, which implies that Pr[C] is non-negligible:

∃p polynomial in κ,
1

Pr[C]
≤ p. (4)

Then the following holds:

Pr[S1] = Pr[S1|C].P r[C] + Pr[S1|¬C].P r[¬C]
Pr[S1] = Pr[S0].P r[C] + 0.5(1 − Pr[C])

Pr[S1] = Pr[C]. (Pr[S0] − 0.5) + 0.5

Pr[S0] = 0.5 +
1

Pr[C]
(Pr[S1] − 0.5)

Pr[S0] − Pr[S1] = (0.5 − Pr[S1])
(

1 − 1
Pr[C]

)
.

Then from (4) we have that if (0.5 − Pr[S1]) is negligible then |Pr[S0] − Pr[S1]|
is negligible also. This conclude the proof of Lemma1.
game2. In game2, calls to QueryCreate are replaced by the generation of ran-
dom bits.

Lemma 2. Pr[S2] is negligibly close to Pr[S1].

Proof. Distinguishing between game1 and game2 is equivalent to breaking the
security of the encryption scheme used in the PIR construction. This holds
because corruption is not allowed in game1, and hence the adversary cannot
obtain the required PIR parameters to open the PIR query. It follows that
Lemma 2 is true.
game3. In game3, the call to Index in the challenge phase is replaced by picking
a random element in GT .

Lemma 3. Pr[S3] is negligibly close to Pr[S2].

Proof. To prove this Lemma we build a distinguishing algorithm DDDH ,
described in Algorithm 5, which uses a game2 adversary A2 and which advantage
at the DDH game is:

εDDH = O(
1

Nl
)|Pr[S3] − Pr[S2]| . (5)

Given the DDH problem instance (g1, gα
1 , gβ

1 , gδ
1) ∈ G4

1, the intuition behind
algorithm DDDH is to “put” β in the challenge word, α in the challenge user
key, and δ in the value given to A2 during the challenge phase. DDDH makes
some predictions on the queries of A2, namely on the user A2 will choose as
the challenge user and on the moment A2 will call the hash function h on the
challenge word. If these predictions prove false DDDH sends a random answer
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DDDH ← (g1, g
α
1 , gβ

1 , gδ
1);

A ← Setup();

predict
$←− [1..N ];

I
$←− [0, .., l];

for i from 1 to N do
(γi, ρi, Pi, Ki) ← KeyGen(κ);
A ← (i, Pi, Ki)

end
for a polynomial number l of times do

A → query;
switch query do

case hash of word w through h
if this is the I-th call to O then

A ← gβ
1

else

A ← g
O[w]
1

end

case Index for word w and user upredict

A ← e((gα
1 )O[w], g2);

otherwise
normal handling of the query;

end

endsw

end
A → (uchall, w

∗
0 , w∗

1);

b
$←− {0, 1};

if chall �= predict OR I = 0 and O has been called with input w∗
b OR I �= 0 and

w∗
b does not correspond to the I-th call to O then

bDDH
$←− 0, 1;

DDDH → bDDH ;
HALT;

end

A ← e(gδ
1 , g2);

A → b∗;
if b∗ = b then

DDDH → 1;
else

DDDH → 0;
end

Algorithm 5. Listing for the distinguishing algorithm DDDH from game2
to game3.

to the DDH problem. Otherwise if the predictions prove true DDDH outputs 1
if A2 wins the game and 0 if not. If the correct answer to the DDH game was
1 then A2 was playing game2 and DDDH outputs 1 with probability Pr[S2].
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Similarly if the answer to DDH was 0 DDDH outputs 1 with probability Pr[S3]
During the whole game DDDH simulates the hash function h as a random oracle,
using O which behaves the following way: if O has stored a value for keyword w,
O[w] returns this value; else it returns a random value and stores it for future
queries.

The following variable change shows that if the predictions prove right, the
adversary received a proper game instance:

α ↔ γchall, gβ
1 ↔ h(w∗

b ). (6)

The probability that the predictions were correct is clearly non-negligible:
Pr[upredict = uchall] = 1/N and the probability that predicted I is correct is
O(1/l), N and l being at most polynomial in the security parameter κ.

Finally from the XDH assumption, DDH is a hard problem in G1. Thus
εDDH is negligible in κ. Given that N and l are at most polynomial in κ and
from (5), we have that |Pr[S3] − Pr[S2]| is negligible which concludes the proof
of Lemma 3.

Proof of Theorem 1. In game3 the adversary does not receive any value which
depends on the challenge bit, so Pr[S3] = 0.5. Then Lemma 3 implies that Pr[S2]
is negligibly close to 0.5, Lemma 2 implies that Pr[S1] is negligibly close to 0.5
and finally Lemma 1 implies that Pr[S0] is negligibly close to 0.5. This concludes
the proof of Theorem 1.

6 Performance Analysis

During the upload phase, the cost for a user of running the Index algorithm
over the entire index is naturally linear towards the number of keywords in the
index. The most costly operation within the Index algorithm is one pairing
computation; however since inside a same index the second argument of the
pairing remains the same between two executions of Index, pairing becomes
much more efficient than in the case with independent pairings [13].

Furthermore, the Delegate algorithm only consists in one exponentiation.
As the search phase involves three parties, namely the reader, the proxy and

the CSP, we evaluate the computational cost for each of them.
The QueryCreate algorithm executed by the reader is not costly since it only

consists of one hashing and one exponentiation. This algorithm outputs a unique
query for a given keyword to be searched in several indices. Therefore, the cost of
this algorithm does not depend on the number of searched indices. On the other
hand, the reader will receive one response per targeted index and will have to
execute ResponseProcess over each received response. The cost for one response
consists in one decryption through Dec and one PIR.Retrieve operation. Note
that the retrieved value for each index is a single bit, and based on [1] the
computational overhead can be considered as reasonable for a lightweight user.

The cost for the proxy of multiplexing the queries with QueryTransform
and filtering the responses with ResponseF ilter is linear towards the number of
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indices the querying reader is authorized to search, and for each queried index the
proxy performs a pairing and one execution of PIR.Query. The ResponseF ilter
algorithm can be considered negligible as it only extracts the relevant part of
the response.

For a given keyword search query, the CSP builds one matrix per queried
index, and executes PIR.Process on each matrix. The building of one matrix
requires one exponentiation in GT per keyword. The operations performed by
the CSP being similar to the ones in [9], the workload of the CSP is considered
affordable for a cloud server.

To conclude our scheme achieves a very low cost at the reader side, which
usually is the main requirement for a cloud computing scenario, and a reasonable
cost at the CSP and the proxy. Figure 3 summarizes the cost of each algorithm
considering a scenario where one writer uploads several indices and one reader
send one query.

Algorithm Cost number of executions

Index h + e + expG1 i.k

Delegate expG2 i.d

QueryCreate h + multZq + expG1

QueryTransform a(e + H + PIR.KeyGen + PIR.Query)

Respond k(expGT + h) +
√
n(PIR.Process + Enc) a

ResponseFilter negligible (data forwarding) a

ResponseProcess Dec + PIR.Retrieve a

Key:

– expX : cost of an exponentiation in X
– multX : cost of a multiplication in X
– k: number of keyword per index
– i: number of index owned by a writer
– d: number of reader with delegated search rights per index
– a: number of indices the reader is authorized to search
– name of a function: execution cost of this function

Fig. 3. Computational cost of each algorithm.

7 Related Work

Our review of the related work focuses on fully multi-user SE schemes. For a
detailed survey on SE in general, we refer the reader to [6].

While solutions in [7,9] seem very efficient in the case where there is a single
writer authorizing multiple readers, they become unpractical for the multi writer-
multi reader case. Indeed each reader should at least store one key per writer
and send one query (even if the same) per writer.

Among the few existing MUSE solutions [3,5,8,12,15], all of them except
the one described in [12] require the existence of a TTP, which is an unpractical
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assumption that our solution does not make. Finally, all the solutions share a
common pitfall as they do not ensure access pattern privacy. As already discussed
in this paper, this leads to a serious privacy exposure in the case where users
collude with the CSP. Furthermore the execution of PIR.Process in our solution
is less costly compared to the search operation at the CSP in all existing MUSE
schemes, since in these schemes the trapdoor must be tested with each encrypted
keyword in the index either until the test shows that the keyword is present, or
until all the keywords in the index have been tested.

8 Conclusion

We have presented a new multi-user searchable encryption scheme that is prov-
ably secure under the newly proposed adversarial model witch considers the case
where some users can collude with the CSP. All existing schemes become inse-
cure under this new model. The proposed solution is very efficient for the user as
it introduces a new party, the proxy, which bears most of the overhead. At the
same time this overhead remains reasonable for both the CSP and the proxy.

Future work on this scheme will include implementation and benchmark
results of the presented scheme with realistic datasets.
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Abstract. Under the strengthened subgroup indistinguishability
assumption, we present a new generic construction of chosen ciphertext
attack (CCA) secure public key encryption scheme, achieve resilience to
auxiliary input information as well as resilience to secret key leakage,
from an all-but-one lossy function. In particular, under a special case of
SSI assumption, we construct a scheme, if chose the proper parameters
for 80-bit security, then it remains CCA secure if any 2−2048-weakly unin-
vertible functions of secret key is given to the adversary. Furthermore,
our scheme also remains CCA secure if any efficient leakage function of
secret key is given to the adversary. The leakage rate is 1 − 1690

l
, where

l is the length of binary representation of secret key. If we choose a suf-
ficiently large l, then the leakage rate is arbitrarily close to 1.

Keywords: CCA secure · PKE · Auxiliary input · Leakage resilient ·
All-bust-one lossy function

1 Introduction

Traditionally, the security model of cryptographic schemes assumes that an
adversary has no access to its internal secret state. Unfortunately, in the real
world, an adversary may often learn some partial information about secret key
via side channel attacks [1–6]. The physical realization of a cryptographic prim-
itive can leak additional information, such as the computation time, power-
consumption, radiation/noise/heat emission etc. Recently, much progress has
been made in obtaining increasing complex systems with strongly secure against
side channel attacks. The emergence of leakage resilient cryptography has lead
to constructions of many cryptographic primitives [7–15]. A variety of leakage
models have been proposed, such as Exposure-resilient [19,20], Only computation
leaks information [21,22], Bounded leakage model [8,23,24], Continual leakage
model [17,25,26], and Auxiliary input model [7,16,18] etc.

Auxiliary input model is developed from the relative leakage model [7], which
allow any uninvertible function f that no probabilistic polynomial-time (PPT)
adversary can compute the actual pre-image with non-negligible probability.
c© Springer International Publishing Switzerland 2015
J. Lopez and C.J. Mitchell (Eds.): ISC 2015, LNCS 9290, pp. 319–335, 2015.
DOI: 10.1007/978-3-319-23318-5 18
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That is to say, although such a function information-theoretically reveals the
entire secret key sk, it still computationally infeasible to recover sk from f(sk).
If an encryption scheme that is secure w.r.t. any auxiliary input, then user’s
secret and public key pair can be used for multiple tasks. Dodis et al. [18] firstly
introduced the notion of auxiliary input, and proposed the public key encryption
schemes in this model. Yuen et al. [16] proposed the first IBE scheme that is
proved secure even when the adversary is equipped with auxiliary input. In [16],
they also propose a model of continual auxiliary leakage which combines the
concepts of auxiliary inputs with continual memory leakage. However, up to now,
all the cryptographic schemes resilience to auxiliary input are only proved chosen
plaintext secure (CPA) and cannot achieve chosen ciphertext security (CCA)1.

Bounded leakage model is a simple but general model, which is formalized
by allowing an adversary to adaptively and repeatedly choose functions of the
secret key and gain the outputs of the functions, and the total amount of leaked
information on the secret key is bounded by λ-bit (called the leakage amount).
Bounded leakage model is presented by Akavia et al. [7] and further explored by
Naor et al. [1]. In their definition, the leakage amount must strictly smaller than
|sk|. Bound leakage model is simple and powerful, but a thorough understanding
of this model is essential to many other models. If a cryptosystem is secure
against key-leakage attacks, we call it leakage resilient. We call the ratio λ/|sk|
the leakage rate of a cryptosystem, which is an obvious goal of designing a
leakage resilient cryptosystem. Many leakage resilient PKE schemes with CPA
secure have been proposed. In particular, Naor et al. [1] proposed a generic
construction of CPA secure leakage resilient PKE schemes from any hash proof
systems (HPSs) [27]. The leakage rate of Naor et al. [1] is flexible range over [0, 1),
which is called leakage flexible. The open problem of leakage resilient CCA secure
PKE was also solved by Naor et al. [1], which is relied on the simulation-sound
Non-Interactive Zero-Knowledge proof (impractical) or HPSs with leakage rate
1/6. Later, some new variants [28,29] of Cramer and Shoup system [27] by using
HPSs are show to be leakage resilient CCA secure with leakage rate 1/4. Very
recently, Baodong et al. proposed a new notion called one-time lossy filter [14],
which can be used to construct leakage resilient CCA secure PKE schemes with
leakage rate 1/2 − o(1). In [15], Baodong et al. presented the refined subgroup
indistinguishable (RSI) assumption and a simple case of one-time lossy filter
called all-but-one lossy function (ABOLF). With the RSI assumption over a
specific group, they obtain a CCA secure PKE scheme with leakage rate 1−o(1).

Our Contributions. In this paper, we propose a generic construction of CCA
secure PKE schemes, which can achieve auxiliary input security as well as leakage
resiliency. In 2010, Brakerski et al. [9] proposed a generic PKE construction with
circular security, leakage resiliency and auxiliary input security, however, their

1 Indistinguishability under chosen ciphertext attack (CCA) uses a definition similar to
that of CPA. However, in addition to the public key, the adversary is given access to
a decryption oracle which decrypts arbitrary ciphertexts at the adversary’s request,
returning the plaintext.
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construction only can be proved CPA secure. We define a new assumption called
strengthened subgroup indistinguishable (SSI) assumption over a finite commu-
nicative multiplicative group G, which is a direct product of two cyclic groups
G = Gω1 × Gω2 of order ω1 and ω2 respectively. The SSI assumption is sim-
ilar to Baodong et al.’s RSI assumption [15] except that ω1 and ω2 are both
primes, which can be used to construct simple and efficient ABOLF with large
tag space. In our generic PKE construction, an ABOLF is used to verify whether
the ciphertext is well-formed, which helps our construction to achieve the CCA
security. We also propose an instantiation over a group of known order, which
achieves auxiliary input security with any 2−2048-weakly uninvertible functions
for 80-bit security, and leakage resiliency with leakage rate 1 − o(1).

Organization. The rest of this paper is organized as follows. Basic definitions
and related notations are introduced in Sect. 2. The security model of PKE
with auxiliary input security and leakage resiliency are proposed in Sect. 3.
The generic construction under SSI assumption, and its proofs are presented
in Sect. 4. An instantiation over a group of known order is proposed in Sect. 5.
Finally, we conclude our paper in Sect. 6.

2 Preliminaries

2.1 Strengthened Subgroup Indistinguishability Assumption

Brakerski et al. [9] defined a generalized class of assumptions called subgroup
indistinguishability (SI) assumptions. A SI problem is defined by a group G
which is a direct product of two groups G = Gω1 × Gω2 , and their orders are
ω1 and ω2 respectively. Here, gcd(Gω1 , Gω2) = 1 and Gω1 is a cyclic group.
Essentially, the SI assumption is that a random element of G is computationally
indistinguishable from a random element in Gω1 .

In our construction, we should proposed a new notion of SSI assumption,
which is strengthened from SI assumption, and similar to Baodong et al.’s RSI
assumption [15]. Let Gen(1κ) be a group generation algorithm that, on input a
security parameter 1κ, outputs a description of a finite commutative multiplica-
tive group Ξ = (G,T, g, h), where G = Gω1 × Gω2 , and g, h are generators of
Gω1 , Gω2 . The SSI assumption requires that:

– ω1 and ω2 are both prime numbers, which is the difference from RSI assump-
tion2. This implies that Gω1 and Gω2 are all cyclic groups, and G is also a
cyclic group with the order T = ω1 · ω2.

– Elements in G are efficiently checkable.
– An upper bound T = ω1 · ω2 given in the group description, such that for

x ←R ZT , x mod T is ε-uniform over ZT , where ε = ε(κ) is negligible in κ.
This implies that for x ←R ZT , gx (resp. hx) is also ε-uniform over Gω1 (resp.
Gω2).

2 RSI assumption only requires that Gω1 and Gω2 are both cyclic groups.
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Definition 1. Let Ξ = (G,T, g, h) ← Gen(1κ). The SSI assumption in group
G states that for any PPT adversary A, the advantage

Advssi
Ξ,A := |Pr[A(Ξ, x) = 1|x ←R Gω1 ] − Pr[A(Ξ, x) = 1|x ←R G]|,

Advssi
Ξ,A := |Pr[A(Ξ, x) = 1|x ←R Gω2 ] − Pr[A(Ξ, x) = 1|x ←R G]|.

is negligible in κ.

From the above definition of SSI assumption, it is easy to derive the following
lemma.

Lemma 1. Let Ξ = (G,T, g, h) ← Gen(1κ). If the SSI assumption holds in
group G, then for any PPT adversary B,

|Pr[B(Ξ, x) = 1|x ←R Gω1 ] − Pr[B(Ξ, x) = 1|x ←R G \ Gω1 ]| ≤ 2Advssi
Ξ,A(κ),

|Pr[B(Ξ, x) = 1|x ←R Gω1 ] − Pr[B(Ξ, x · h) = 1|x ←R Gω1 ]| ≤ 2Advssi
Ξ,A(κ).

Example: Let P, p, q be distinct prime such that P = 2pq + 1. The lengths of p
and q are both at least κ bits, where κ is a security parameter. Obviously, Z∗

p is a
quadratic residues group QRp, which order is T = pq [15]. QRp can be denoted
as a direct product QRp = Gp ×Gq, where Gp and Gq are cyclic groups of prime
order p and q respectively. Gonzalez et al. [33] proved that the SSI assumption
holds over group QRp if the factoring problem of N is hard.

2.2 All-but-One Lossy Functions

Recently, Baodong et al. proposed a new function called One-time Lossy Filter
(OT-LF) [14], which is a simple version of Lossy Algebraic Filter [30]. If the One-
time Lossy Filter is operated at “injective mode”, then the function is injective.
Otherwise, if it is operated at “lossy mode”, then the function is non-injective.
Compared with Lossy Algebraic Filter, One-time Lossy Filter does not require
efficiently invertible in “injective mode”. After then, Baodong et al. proposed
a simple variant of OT-LF, namely all-but-one lossy functions (ABOLF) [15].
ABOLF is a family of functions parameterized with a tag. In which, all tags are
injective and only one lossy tag.

Definition 2. A collection of (Dom, ι) - ABOLF consists of two algorithms:
ABOLF.Gen,ABOLF.Eval, where

ABOLF.Gen: On input 1κ and any c∗ ∈ C3, this algorithm generates an evalu-
ation key EK.

ABOLF.Eval:On input the evaluation key EK, a tag c ∈ C and X ∈ Dom, this
algorithm computes ABOLFEK,c(X).

3 C is a tag space.
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We require that ABOLF has the following properties:

Lossiness: If c is an injective tag, then ABOLFEK,c(·) is also an injective func-
tion. Otherwise, If c is a lossy tag, then ABOLFEK,c(·) is also a lossy function,
which only has 2ι possible outputs.

Hidden lossy tag: For any PPT adversary A, and for any c∗
0, c

∗
1 ∈ C, the

following advantage is negligible in κ,

AdvABO,A(κ) = |Pr[A(1κ, EK0) = 1] − Pr[A(1κ, EK1]|
where EK0 ← ABOLF.Gen(1κ, c∗

0), EK1 ← ABOLF.Gen(1κ, c∗
1).

Here is an instantiation of ABOLF under the SSI assumption.
Let Ξ = (G,T, g, h) ← Gen(1κ) and G = Gω1 × Gω2 be defined as the SSI

assumption. Let C = {0, 1}�log ω2�−1 and Dom = ZT . Algorithms ABOLF.Gen,
ABOLF.Eval can be defined as follows.

ABOLF.Gen(1κ, c∗) On input c∗ ∈ C, it randomly selects v ←R ZT . Finally,
ABOLF.Gen returns the EK = gvhc∗ ∈ G.

ABOLF.Eval(EK, c, x) On input EK, c ∈ C and x ∈ ZT , it computes fEK,c(x) =
(EK · h−c)x = (gvhc∗−c)x.

Lemma 2. The above construction is a family of (ZT , log ω1)-ABOLF with tag
space C = {0, 1}�log ω2�−1.

Proof: Obviously, the above construction has the lossiness property, since (1)
for c = c∗, fEK,c∗(x) = gvx has only ω1 possible values; (2) for c �= c∗,
fEK,c(x) = (gvhc∗−c)x is an injective map. The remainder is to show its hid-
den lossy tag property. For any c∗

0, c
∗
1 ∈ C, let EK0 = gvhc∗

0 be the distribution
output by ABOLF.Gen(1κ, c∗

0) and EK1 = gvhc∗
1 be the distribution output by

ABOLF.Gen(1κ, c∗
1). It suffices to show that EK0 and EK1 are computationally

indistinguishable under the SSI assumption. To do so, we again define two distri-
butions EK′

0 = (g · h)vhc∗
0 and EK′

1 = (g · h)vhc∗
1 . From Lemma 1, it follows that

Pr[A(EK) = 1|EK ←R EK0] − Pr[A(EK) = 1|EK ←R EK′
0] ≤ 2Advssi

Ξ,A(κ),

(1)

Pr[A(EK) = 1|EK ←R EK1] − Pr[A(EK) = 1|EK ←R EK′
1] ≤ 2Advssi

Ξ,A(κ).

(2)

Additionally, since v is chosen from ZT uniformly at random, v mod ω2 is
also uniform over Zω2 even conditioned on the value of v mod ω2 and gv =
gv mod ω1 , according to the Chinese Remainder Theorem. Consequently

(gh)vhc∗
0 = gvhv mod ω2+c∗

0 ≈s gvhv mod ω2+c∗
1 = (gh)vhc∗

1 .

So, EK′
0 ≈s EK′

1, which derives EK0 ≈c EK1.
Since ω2 is a prime number, we can set C = {0, 1}�log ω2�−1. In this case,

gcd(c∗ − c, ω2) = 1, hence (c∗ − c)−1 mod ω2 always exists. Thus, the tag space
can be set C = {0, 1}�log ω2�−1. This completes the proof of lemma. ��
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2.3 Chameleon Hash Function

A chameleon hash function Ch is essentially a keyed and randomized hash func-
tion, which consists of three PPT algorithms (Ch.Gen, Ch.Eval, Ch.Equiv).
The key generation algorithm Ch.Gen(1λ) takes as input a security para-
meter 1λ, and returns a key pair (ekCh, tdCh). The evaluation algorithm
Ch.Eval(ekCh, x; r) takes as input a preimage x ∈ {0, 1}∗ and a randomness
r ∈ R, and computes a hash value y. If r is uniformly distributed over R, so
is y over its range. Ch is collision resistant on the condition that for any PPT
adversary A, the following probability

Advcr
Ch,A(1λ) := Pr[(x′, r′) �= (x, r) ∧ Ch.Eval(ekCh, x′; r′) = Ch.Eval(ekCh, x; r)|

(ekCh, tdCh) ← Ch.Gen(1λ), (x′, r′, x, r) ← A(ekCh)]

is negligible in λ. However, given x, r, x′ and the trapdoor key tdCh,
Ch.Equiv(tdCh, x, r, x′) can compute r′ such that Ch.Eval(ekCh, x; r) =
Ch.Eval(ekCh, x′; r′) and the distribution of r′ is also uniform over R given
only ekCh and x.

According to [15], an ABOLF can be transformed into a OT-LF by using a
chameleon hash function. The Fig. 1 shows such a construction.

2.4 Goldreich-Levin Theorem for Large Fields

We recall the Goldreich-Levin Theorem for Large Fields [18] over any field GF (q)
for a prime q.

Theorem 1 (GL Theorem for Large Fields). Let q be a big prime, and let
H be a subset of GF (q). Let f mapping from Hm to {0, 1}∗ be any function.
Randomly chooses a vector s from Hm, and computes y = f(s). Then, randomly
selects a vector r for GF (q)m. If a PPT distinguisher D runs in time t, and
there exists a negligible probability ε such that

|Pr[D(y, r,< r, s >) = 1] − Pr[u ← GF (q) : D(y, r, u) = 1]| = ε,

then given y ← f(s), there exists an inverter A can compute s from y in time
t′ = t · poly(m, |H|, 1/ε) with the probability

Pr[s ← Hm, y ← f(s) : A(y) = s] ≥ ε3

512 · m · q2
.

Fig. 1. Construction of a one-time lossy filter
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2.5 DDH Assumption

Definition 3 (The Decisional Diffie Hellman Assumption [18]). Let G
be a cyclic group with prime order q and g is the generator of G. The Decisional
Diffie Hellman (DDH) Assumption holds on G iff

Advddh
G,A(κ) = |Pr[A(g1, g2, gr

1, g
r
2) = 1] − Pr[A(g1, g2, gr

1, g
r′
2 ) = 1]|

is negligible in κ for any PPT adversary A, where g1, g2 ← G, r ← Zq and
r′ ← Zq \ {r}.

Naor et al. proposed a Lemma [31] which states that a natural generalization
of DDH assumption which considers l > 2 generators is actually equivalent
to DDH.

Lemma 3 Under the DDH assumption on G, for any positive integer l,

Advddh
G,A(κ) = |Pr[A(g1, · · · , gl, g

r
1 , · · · , gr

l ) = 1] − Pr[A(g1, · · · , gl, g
r1
1 , · · · , g

rl
l ) = 1]|

is negligible in κ for any PPT adversary A, where g1, · · · , gl ← G, r ← Zq and
r1, · · · , rl ← Zq \ {r}.

2.6 Min-entropy

We define SD(X,Y ) = 1/2
∑

ω∈Ω |Pr[X = ω] − Pr[Y = ω]| as the statistical
distance of random variables X and Y over domain Ω. The min-entropy of
X is H∞(X) = − log(maxωinΩPr[X = ω]). The average min-entropy of X
conditioned on Y can be defined as H̃∞(X|Y ) = − log(Ey←Y [2−H∞(X|Y =y)]).
Dodis et al. [32] proposed the following property of average min-entropy.

Lemma 4 Let X, Y and Z be random variables. If Z has at most 2r possible
values, then H̃∞(X|(Y,Z)) ≥ H̃∞(X|Y ) − r.

3 Auxiliary Input and Leakage Resilient Public Key
Encryption

A public key encryption (PKE) scheme with secret key space SK, public
key space PK and message space M consists of a triple of PPT algorithms
(PKE.G,PKE.E,PKE.D). The key generation algorithm PKE.G takes as input
1κ, and outputs a pair of public/secret keys (pk, sk). The encryption algorithm
PKE.G takes as input a public key pk and a message m ∈ M, and outputs
a ciphertext CT = PKE.E(pk,m). The decryption algorithm PKE.D takes as
input a secret key sk and a ciphertext CT , and returns a message m or ⊥.
For consistency, we require that PKE.D(sk, PKE.E(pk,m)) = m holds for all
(pk, sk) ← PKE.G(1κ) and all messages m ∈ M.
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3.1 Auxiliary Input CCA Security of PKE

In the scenario of auxiliary input, the attacker can access additional information
about the secret key. The auxiliary input model defines a class of computationally
uninvertible function families F to simulate a large class of leakage. However,
although such a function f ∈ F can information-theoretically reveal the entire
secret key sk, but it still computationally infeasible to recover sk. For any family
of functions F = {f : SK → {0, 1}∗}, we define the inverting advantage and
weakly inverting advantage of an adversary A as follows:

Advf = Pr[A(1κ, f(sk)) = sk|(pk, sk) ← PKE.G(1κ)]
Advweak

f = Pr[A(1κ, pk, f(sk)) = sk|(pk, sk) ← PKE.G(1κ)]

Let l denote the length of binary representation of sk. A polynomial time com-
putable function f is ε = ε(l)-weakly hard to invert(resp. ε-hard to invert) if for
any PPT A it holds that Advweak

f ≤ ε (resp. Advf ≤ ε). Then, for any efficiently
computable function family F , we provide the definition of auxiliary input game
as follows:

Initialize: The simulator selects b ←R {0, 1} and generates a key pair (pk, sk) ←
PKE.G(1κ). The simulator sends pk to the adversary.

Auxiliary Input: The challenger computes z = f(sk) and sends z to the
adversary.

Query1: The adversary can make decryption queries (polynomial times) on
any ciphertext CT , and the challenger returns with the messages m =
PKE.D(sk, CT ).

Challenge: The adversary sends m0,m1 ∈ M to the challenger. The challenger
computes CT ∗ = PKE.E(pk,mb) and sends CT ∗ to the adversary.

Query2: In this phase, the adversary also can make decryption queries (poly-
nomial times) on any ciphertext CT except for CT ∗.

Output: The adversary outputs a guess b′ for b.

The PKE scheme is called ε-weak auxiliary input CCA secure if for any ε-
weakly uninvertible f and for any PPT adversary A, Advweak

f,A = Pr[b′ = b] is
negligible. The PKE scheme is called ε-auxiliary input CCA secure if the above
holds for any ε-uninvertible fs.

3.2 Leakage Resilient CCA Security of PKE

The scenario of leakage resilient is quite similar to that of auxiliary input. The
attacker also can get some bounded information about the secret key. However,
the restriction on the amount of information is information theoretic rather than
computational. We define the λ-leakage game as follows:

Initialize: The simulator selects b ←R {0, 1} and generates a key pair (pk, sk) ←
PKE.G(1κ). The simulator sends pk to the adversary.
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Leakage: The adversary sends an efficient computable function f : SK →
{0, 1}λ to the challenger. The challenger computes f(sk) and returns it to
the adversary.

Query1: The adversary can make decryption queries (polynomial times) on
any ciphertext CT , and the challenger returns with the messages m =
PKE.D(sk, CT ).

Challenge: The adversary sends m0,m1 ∈ M to the challenger. The challenger
computes CT ∗ = PKE.E(pk,mb) and sends CT ∗ to the adversary.

Query2: In this phase, the adversary also can make decryption queries (poly-
nomial times) on any ciphertext CT except for CT ∗.

Output: The adversary outputs a guess b′ for b.

The PKE scheme is called λ-bit leakage resilient CCA secure if for any PPT
adversary A, Advλ,A = Pr[b′ = b] is negligible. In the case of λ = 0, the PKE
scheme is just the standard CCA secure scheme.

4 The Generic Construction

The construction is parameterized by a group G as described in Sect. 2.1. Namely,
the probabilistic algorithm Gen(1κ) produce an instance Ξ = {G,T, g, h}, where
G = Gω1 × Gω2 , T = ω1 · ω2. An additional parameter is the value l that is
polynomial in the security parameter κ but its exact value is determined based
on the specific application. Let H be a 2-universal hash family4, consisting of
(deterministic) functions H : Gl

ω1
×G → {0, 1}�log ω2�−1.5 We assume that there

exists an efficient injective mapping inj : Gω1 → ZT . The encryption scheme
PKE = (KeyGen,Encrypt,Decrypt) can be defined as follows.

KeyGen: This algorithm first samples an instance Ξ = {G,T, g, h} of SSI
assumption. Then, it selects a uniformly random s = (s1, · · · , sl) ∈ {0, 1}l,
and g = (g1, · · · , gl) ∈ Gl

ω1
. It sets g0 =

∏
i∈[l] g

si
i , and then ran-

domly chooses c∗ ∈ {0, 1}�log ω2�−1 and v ←R ZT . It computes EK =
gvhc∗ ∈ G, and selects H uniformly at random from H. Then, it chooses
a chameleon hash function Ch=(Ch.Gen,Ch.Eval, Ch.Equiv) with key
pair (ekCh, tdCh) and randomness space R. Finally, outputs the public key
pk = (g, g0, ekCh, EK,H), and the secret key sk = s. The instance Ξ is an
additional implicit public parameter.

Encrypt: This algorithm takes as input a public key pk and a message M ∈ G.
It randomly selects r ∈ ZT , tc ∈ R and computes C = (gr

1, · · · , gr
l ). It then

computes
ψ = gr

0 · M,H(C,ψ) = c,Π = (EK · h−c)inj(gr
0)

The ciphertext is CT = (C,ψ,Π, c).
4 For any x �= y, we have PrH←RH[H(x) = H(y)] ≤ 1

2�log ω2�−1 .
5 We assume that G is q-order elliptic curve group over finite field Fp. For 80-bit

security, p and q can be chosen to be 160-bit prime. Thus, in such a group, each
element can be denoted as a 160-bit strings. So, in this case, the hash function H
maps a (l + 1) × 160-bit string to a �log ω2� − 1-bit string.



328 Z. Wang and S.M. Yiu

Decrypt: This algorithm takes as input a secret key sk = s and a ciphertext
CT = (C,ψ,Π, c) where C = (gr

1, · · · , gr
l ), computes K =

∏
i∈[l](g

r
i )si and

Π ′ = (EK · h−c)inj(K). It checks whether Π = Π ′. If not, it rejects with ⊥.
Otherwise, it outputs the message M = ψ/K.

Note: 1) In our construction, both the ABOLF and the whole PKE scheme are
over the same group G = Gω1 × Gω2 , which will greatly reduce the number of
system parameters. 2) Since there is only one challenge ciphertext in the CCA
secure proof, and the ABOLF has only one lossy tag, we only use the ABOLF
to authenticate the encapsulated key.

Theorem 2. Let l = (4 log ω1)1/ε, given an instance Ξ = {G,T, g, h} of SSI
assumption, if DDH assumption holds in group Gω1 , then the encryption scheme
PKE in this section is auxiliary input CCA secure with any 2−lε-weakly uninvert-
ible function under the Goldreich-Levin Theorem for Large Fields. Particularly,

AdvAI−CCA
PKE,A ≤ 4Advssi

Ξ,B1
(κ) + Advddh

Gω1 ,B4
+

1
2�log ω2� + negl(κ).

Proof: We prove by a game argument by using a sequence of games,
Game0, · · · ,Game6, played between a simulator S and a PPT adversary A.
In each game, the adversary A outputs a bit b′ as a guess for the random bit b
selected by S. Let Ei denote the event that b′ = b in Gi.

Game0: This is the original auxiliary input CCA secure game. The simulator
S generates the public/secret key pair (pk, sk) by using the KeyGen algo-
rithm, and sends pk to A. when A makes decryption query CT or leakage
query, S responses with Decrypt(sk, CT ) or f(sk) using the secret key sk
and public key pk. Then, A provides two messages M0 and M1 of equal
length to S. S randomly selects a bit b and sends the challenge ciphertext
CT ∗ = Encrypt(pk,Mb) to A. Following that, S continues to answer A’s
decryption queries except that CT = CT ∗. Finally, A outputs a bit b′ as a
guess of b. We have AdvAI−CCA

PKE,A = |Pr[E0] − 1/2|.
Game1: The game is exactly like Game0, except for the generation of the tag

c∗ in the challenge ciphertext. When S uses the KeyGen algorithm, it keeps
the lossy tag c∗ of EK as well as sk. Instead of randomly choosing c∗ ∈ C,
S uses the lossy tag c∗ which it keeps from the KeyGen algorithm. Due to
ABOLF’s property of hidden lossy tag (hlt), we have |Pr[E1] − Pr[E0]| ≤
Advhlt

ABOLF,B1
(κ) for a PPT adversary B1 on ABOLF’s hidden lossy tag.

Furthermore, from (1) and (2) in the proof of Lemma 2, we have

|Pr[E1] − Pr[E0]| ≤ Advhlt
ABOLF,B1

(κ) ≤ 4Advssi
Ξ,B1

(κ).

Game2: This game is exactly like the Game1, except for a copied lossy tag. That
is to say, when the adversary A queries on a ciphertext CT = (C,ψ,Π, c) such
that c = c∗, the decryption oracle should halt immediately, and outputs ⊥. If
Π = Π∗ and H is a 2-universal hash function, then it implies CT = CT ∗ with
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high probability (≥ 1 − 1
2�log ω2�−1 ). In this case, A is not allowed to ask the

decryption oracle for the challenge ciphertext in both Game1 and Game2.
If Π �= Π∗, since c = H(C,ψ) = H(C∗, ψ∗) = c∗ and H is a 2-universal
hash function, it follows that (C,ψ) = (C∗, ψ∗) with high probability (≥
1 − 1

2�log ω2�−1 ), which implies K = K∗ with the same probability. Then,
from ABOLF.EvalEK,c(inj(K)) = ABOLF.EvalEK,c∗(inj(K∗)) = Π∗, such
decryption queries still should be rejected in Game1. From the discussion
above, we have Pr[E2] − Pr[E1] ≤ 1

2�log ω2�−1 .
Game3: The game is exactly like Game2, except for the generation of gr∗

0 used
in the challenge ciphertext. In this game, S computes gr∗

0 using the secret
key sk and C∗ instead of using the public key pk. Since gr∗

0 =
∏

i∈[l](g
r∗
i )si ,

this change is purely conceptual, and thus Pr[E3] = Pr[E2].
Game4: The game is exactly like Game3, except for the generation of vector

C∗ in the challenge ciphertext (C∗, ψ∗,Π∗, c∗). In this game, S selects the
vector C∗ = (f∗

1 , · · · , f∗
l ) randomly from Gl

ω1
, and ψ∗ =

∏
i∈[l] f

si
i · Mb as

before. Since the DDH problem is hard for Gω1 , we have Pr[E4] − Pr[E3] ≤
Advddh

Gω1 ,B4

Game5: The game is exactly like Game4, except that a special rejection rule
is applied to the decryption oracle. If the adversary queries a ciphertext
CT = (C,ψ,Π, tc) for decryption such that C is invalid (d loggi

Ci �=
d logg0

∏
i∈[l] C

si
i

6 where Ci is the ith element of C), then the decryption
oracle immediately halts and outputs ⊥. Let Γ denote the event that a
ciphertext is rejected by Game5, while it would not be rejected by Game4.
Thus, we have Pr[E5] − Pr[E4] ≤ Pr[Γ ]. We prove the following lemma
which guarantees that Γ occurs with a negligible probability.

Lemma 5. The event Γ occurs with a negligible probability

Pr[Γ ] ≤ 1
2�log ω2�−1

+ negl(κ).

Proof: We define Δ to be a event that in Game4 there exists a decryption query
CT = (C,ψ,Π, c) such that c is a copied lossy tag, then we have

Pr[Γ ] = Pr[Γ ∧ Δ] + Pr[Γ ∧ Δ̄] ≤ Pr[Γ |Δ] + Pr[Γ |Δ̄].

– Γ cannot occur given Δ. Since c = H(C,ψ) = c∗ is a copied lossy tag, however,
since H is 2-universal hash function, we have (C,ψ) = (C∗, ψ∗) with high
probability. In this case, A is not allowed to ask the decryption oracle for the
challenge ciphertext in Game2 − Game4. Thus, Pr[Γ |Δ] ≤ 1

2�log ω2�−1 .
– Suppose that Γ happens given Δ̄. In this case, d loggi

Ci �= d logg0

∏
i∈[l] C

si
i

but
Π = Π ′ = ABOLF.Eval(EK, c, inj(

∏

i∈[l]

Csi
i )) (3)

while c is an injective ABOLF tag. We assume that d logg gi = ki and
k = (k1, · · · , kl), then

∏
i∈[l] C

si
i can be denoted as r < k, s >. Since C is

6 Here, d log denote the discrete logarithm.
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invalid (d loggi
Ci �= d logg0

∏
i∈[l] C

si
i ), we have r′(�= r) is uniformly random.

As the definition of ABOLF, when c is an injective tag, ABOLF.Eval is also
an injective function. Thus, if A want to make (3) hold, then it should make
< r ·k, s >= r′u. When the adversary A gets the right value u (corresponding
to a random r′) according to < r · k, s >, it can make the event Γ occur.
Since r′ is uniformly random, u =< rk, s > /r′ is also uniformly random. If
the adversary A want to determine u (corresponding to a random r′), then
it should firstly know the exactly value of < r · k, s >, where r · k is pub-
lic, and thus A should know s. However, from the view of adversary A, it
only get the uninvertible auxiliary input f(s) and the public key pk. Assume
towards contradiction that there exists a non-negligible probability δ such
that Pr[Γ |Δ̄] = δ.

We reduce the task of inverting f(s) (with suitable probability) to the
task of gaining some non-negligible δ = δ(κ) advantage of event Γ . Let
l = (4 log ω1)1/ε, and let f be any 2−lε -weakly uninvertible function (more pre-
cisely, family of functions). It follows that for any adversary C, Pr[C(f(s))] <
2−lε . Our assumption implies that when the event Γ occurs with the proba-
bility δ, the distribution

(pk, f(s), rk, < rk, s >) and (pk, f(s), rk, u)

are distinguishable with the advantage greater than δ. In this case, it follows
from the Goldreich-Levin Theorem for Large Fields that there exists a C whose
running time is at most poly(l, 2, 1/δ) = poly(1/δ), such that

Pr[C(f(s)) = s] ≥ ω1 · δ3

512l · ω3
1

> ω1 · 1
512l · 23lε/4 · poly(l)

> 2−lε .

We reach a contradiction and therefore, Pr[Γ |Δ̄] ≤ negl(κ).

Thus, Pr[Γ ] ≤ Pr[Γ |Δ] + Pr[Γ |Δ̄] ≤ 1
2�log ω2�−1 + negl(κ). ��

From the Lemma 5, we have Pr[E5]−Pr[E4] ≤ Pr[Γ ] ≤ 1
2�log ω2�−1 +negl(κ).

Game6: The game is exactly like Game5, except for the generation of ψ∗

in CT ∗. In this game, S selects ψ∗ randomly in G instead of computing
ψ∗ =

∏
i∈[l] f

si
i · Mb. In Game4, f1, · · · , fl are randomly chosen from Gω1 .

Thus, if l is large enough, then the left over hash lemma [9] implies that∏
i∈[l] f

si
i is almost uniform. Therefore, if

∏
i∈[l] f

si
i is uniform, then it is dis-

tributed identically to
∏

i∈[l] f
si
i ·Mb. Hence, Pr[E6] = Pr[E5]. Observe that

in Game6, the challenge ciphertext is complete independent of the random
coin b picked by S. Thus, Pr[E6] = 1/2. ��

Theorem 3. The encryption scheme PKE in this section is leakage resilient
CCA secure with leakage bits λ ≤ l − log ω1 − log T − ω(log κ). Particularly,

AdvLR−CCA
PKE,A ≤ 4Advssi

Ξ,A(κ) + Advddh
Gω1 ,B4

+
1

2�log ω2� +
Q(κ)2λ+log ω1+log T

2l − Q(κ)
.
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The proof (below) follows the same steps as the proof of Theorem 2. The
only change is the Game5.

Proof: We use the exact same games as in the proof of Theorem 2 (with the
exception that f is a length bounded leakage function rather that a 2−lε -weakly
uninvertible function). The exact same arguments imply that

AdvLR−CCA
PKE,A = |Pr[E0] − 1/2|

|Pr[E1] − Pr[E0]| ≤ 4Advssi
Ξ,B1

(κ)

Pr[E2] − Pr[E1] ≤ 1
2�log ω2�−1

Pr[E3] = Pr[E2]
Pr[E4] − Pr[E3] ≤ Advddh

Gω1 ,B4

Pr[E6] = Pr[E5]
Pr[E6] = 1/2

Therefore, it remains to prove a bound on Pr[E5]−Pr[E4]. Game5 is exactly like
Game4, except that a special rejection rule is applied to the decryption oracle.
If the adversary queries a ciphertext CT = (C,ψ,Π, tc) for decryption such that
C is invalid ( d loggi

Ci �= d logg0

∏
i∈[l] C

si
i ). We also assume that Γ denote the

event that a ciphertext is rejected by Game5, while it would not be rejected by
Game4. Thus, we have Pr[E5] − Pr[E4] ≤ Pr[Γ ].

Lemma 6. Suppose that the adversary A makes at most Q(κ) decryption
queries, then

Pr[Γ ] ≤ 1
2�log ω2�−1

+
Q(κ)2λ+log ω1+log T

2l − Q(κ)
where l is the bit length of the secret key.

Proof: We also define Δ to be a event that in Game4 there exists a decryption
query CT = (C,ψ,Π, c) such that c is a copied lossy tag, then we have

Pr[Γ ] = Pr[Γ ∧ Δ] + Pr[Γ ∧ Δ̄] ≤ Pr[Γ |Δ] + Pr[Γ |Δ̄].

– Pr[Γ |Δ] ≤ 1
2�log ω2�−1 , and the proof is the same as Lemma 5.

– Suppose that CT = (C,ψ,Π, c) is the first ciphertext that makes Γ happen
given Δ̄. As we analyzed in the proof of Lemma 5, if the adversary A want
to make the event Γ occur given Δ̄, then it should know the secret key s.
However, observe that only pk, the challenge ciphertext CT ∗, and the leakage
of at most λ bits of the secret key can be used to reconstruct s. In the challenge
ciphertext CT ∗, only ψ∗ and Π∗ are related to the secret key s, and ψ∗ has at
most 2log T possible values and Π∗ has at most 2log ω1 possible values. Since
C is invalid, C and s are independent. Thus, H̃∞(s|(pk,C)) = H∞(s) = l.
According to Lemma 4, we have

H̃∞(s|pk,C,CT ∗, λ − leakage) ≥ H̃∞(s|pk,C,CT ∗) − λ

≥ H̃∞(s|pk,C) − λ − log ω1 − log T

= l − λ − log ω1 − log T
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Thus, the probability of recovering s is at most 2λ+log ω1+log T /2l. Hence, in
Game5, the decryption algorithm accepts the first invalid ciphertext with the
same probability. Since A makes at most Q(κ) decryption queries, it follows
that

Pr[Γ |Δ̄] ≤ Q(κ)2λ+log ω1+log T

2l − Q(κ)
,

which is negligible in κ if λ ≤ l − log ω1 − log T − ω(log κ).

Thus, Pr[Γ ] ≤ Pr[Γ |Δ] + Pr[Γ |Δ̄] ≤ 1
2�log ω2�−1 + Q(κ)2λ+log ω1+log T

2l−Q(κ)
. ��

From the Lemma 6, we have Pr[E5] − Pr[E4] ≤ Pr[Γ ] ≤ 1
2�log ω2�−1 +

Q(κ)2λ+log ω1+log T

2l−Q(κ)
. ��

5 Instantiation over a Group of Known Order

Let P, p, q be distinct prime such that P = 2pq + 1. The lengths of p and q
are both at least κ bits, where κ is a security parameter. Obviously, Z∗

p is a
quadratic residues group QRp, which order is T = pq [15]. QRp can be denoted
as a direct product QRp = Gp ×Gq, where Gp and Gq are cyclic groups of prime
order p and q respectively. If we randomly chose x, y ←R Z∗

p, then g = xq and
h = yp are the generators of Gp and Gq respectively. If integer factorization of
T is hard, the SSI assumption holds over the group QRp. Thus, let G = QRp,
Gω1 = Gp, Gω2 = Gq, T = pq, g = xq (for x ←R Z∗

p), and h = yp (for y ←R Z∗
p),

we can obtain an instantiation (over a group of known order) of SSI assumption
by setting IG = (G,T, g, h).

Firstly, we can use IG to realize an instantiation of ABOLF in Sect. 2.3, which
is a (ZT , log p)-ABOLF with tag space C = {0, 1}�log q�−1. Secondly, we can use
IG to initiate our generic PKE construction under the SSI assumption. For a
80-bit security level, we choose |p| = |q| = 512 bits, then |T | = 1024 bits, which
suffices to guarantee that T is hard to be factored, and thus the SSI assumption
holds over QRp. In this case, this instantiation can be proved auxiliary input
CCA secure with any 2−2048-weakly uninvertible functions. For the bounded
leakage model, we choose ω(log κ) = 160 bits, then the leakage bits of secret key
λ ≤ l − 512 − 1024 − 160 = l − 1690, where l = |sk|. Therefore, the leakage
rate of λ

|sk| = l−1690
l = 1 − 1690

l . Thus, if we choose a sufficiently large l, then
the leakage rate is arbitrarily close to 1. So, this instantiation is also a leakage-
flexible scheme.

6 Conclusions

We present a new generic construction of PKE scheme secure against auxiliary
input and leakage resilient, based on the SSI assumption. In order to achieve
CCA secure, our construction use an ABOLF to verify whether the ciphertext is
well-formed. Instantiation over a group of known order, which is a special case of
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SSI assumption, shows that our construction can achieve auxiliary input CCA
secure with any 2−2048-weakly uninvertible functions, for the 80-bit security.
Moreover, this instantiation is also a leakage-flexible scheme, since the leakage
rate of λ

|sk| = l−1690
l = 1 − 1690

l , where l is the bit length of secret key. If we
choose a sufficiently large l, then the leakage rate is arbitrarily close to 1.
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Abstract. This paper demonstrates new technique for managing revo-
cation in the context of attribute-based encryption (ABE) and presents
two selectively secure directly revocable ABE (RABE) constructions
– supporting decryption policies realizable by polynomial size Boolean

circuits of arbitrary fan-out and
– featuring compactness in the sense that the number of revocation con-

trolling components in ciphertexts and decryption keys are constant.
In fact, our RABE schemes are the first to achieve these parameters. Both
our constructions utilize multilinear maps. The size of public parameter
in our first construction is linear to the maximum number of users sup-
ported by the system while in the second construction we reduce it to
logarithmic.

Keywords: RABE for circuits · Polynomial size circuits · Multilin-
ear map

1 Introduction

In recent times, the cost effectiveness and greater flexibility of cloud technology
has triggered an emerging trend among individuals and organizations to out-
source potentially sensitive private data to the “cloud”, an external large and
powerful server. Attribute-based encryption (ABE), a noble paradigm for public
key encryption in which ciphertexts are encrypted for entities possessing specific
decryption credentials, has been extensively deployed to realize complex access
control functionalities in cloud environment. ABE comes in two flavors, namely,
key-policy and ciphertext-policy. However, in spite of its promising properties,
the adoption of ABE in cloud management requires further refinements.

A crucial feature of ABE systems is the expressiveness of the supported
decryption policies. Recently, few independent seminal works [4,10] have
extended the class of admissible policies for ABE to arbitrary polynomial size
Boolean circuits of unbounded fan-out in contrast to circuits of fan-out one real-
ized by all ABE constructions prior to their works.
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The other significant requirement in the context of ABE is user revocation, a
tool for changing the users’ decryption rights. Over time many users’ private keys
might get compromised, users might leave or be dismissed due to the revealing of
malicious activities. In the literature several revocation mechanisms have been
proposed in ABE setting [1–3,11,14–16]. The direct revocation technique [1,2,
14,15], that controls revocation by specifying a revocation list directly during
encryption, does not involve any additional proxy server [16] or key update phase
[1,3,11]. Consequently, the non-revoked users remain unaffected and revocation
can take effect instantly without requiring to wait for the expiration of the
current time period.

However, in all the above revocable ABE (RABE) systems the decryption
policies were restricted to circuits of fan-out one, paving the way for a “back-
tracking” attack [10] on the policy circuits by unauthorized users, thereby com-
pletely breaking the confidentiality of ciphertexts. Further, all currently available
standard model RABE constructions supporting direct revocation mode [1,2,14]
essentially follow the tree-based revocation mechanism of Naor et al. [12], as a
result of which the number of components for managing user revocation con-
tained in the ciphertexts and decryption keys are respectively O(r̂ log Nmax

r̂ ) and
O(log Nmax), where Nmax is the maximum number of users supported by the
system and r̂ is the number of revoked users.

Our Contribution: In this paper, we apply the revocation technique introduced
in [5] and its improved variant [6] in the ABE setting and propose two RABE
schemes for general circuit realizable decryption policies supporting direct revo-
cation and featuring constant number of components for enforcing revocation in
the ciphertexts and decryption keys.

More precisely, we integrate the revocation strategy of [5,6] with the ABE
scheme of [10]. As an outcome, we develop the first RABE constructions that
support the most expressive form of decryption policies achieved so far for
ABE, namely, arbitrary polynomial size circuits having unbounded fan-out with
bounded depth and input length. Although the basic conception may sound sim-
ple, its exact realization involves many subtleties that we address with innovative
ideas. Our schemes employ multilinear map for which some approximate can-
didates have recently been proposed [7,8,10]. Both our schemes support direct
revocation and are proven secure in the selective revocation list model under
the Multilinear Diffie-Hellman Exponent [4] and the Compressed Multilinear
Diffie-Hellman Exponent assumptions [13], which are multilinear equivalents of
the Bilinear Diffie-Hellman Exponent assumption. Our security analyses do not
use random oracles or generic multilinear group framework. We emphasize that
selective security can be a reasonable trade-off for performance in some circum-
stances. Moreover, applying a standard complexity leveraging argument, as in [4],
our selectively secure constructions can be made adaptively secure.

Our first RABE scheme, which is a blend of the revocation technique of [5]
and an improved version of the ABE construction proposed in [10], has ciphertext
consisting of only 3 group elements (or encodings). The decryption keys comprise
of �+4q+1 group elements in the worst case, � and q being the input length and
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number of gates in the policy circuits. This is the same as all currently available
vanilla ABE constructions for general circuits based on multilinear maps [4,10].
Consequently, we achieve very short ciphertext size without imposing any extra
overhead on the decryption key for the added revocation functionality. To the
best of our knowledge, our work is the first to achieve this property.

However, the number of group elements in the public parameters in our first
RABE construction is linear to Nmax. In order to overcome this bottleneck, we
modify our first construction by replacing the revocation method with that of [6]
taking advantage of a multilinear map of (possibly) slightly higher multilinearity
level compared to the one used in the first scheme. We reduce the number of
group elements in the public parameters to log Nmax in our second RABE scheme.
This is comparable with the previous standard model RABE constructions sup-
porting direct revocation [1,2,14]. However, we retain the same property for
ciphertext and decryption keys, i.e., the number of ciphertext and decryption
key components do not grow with Nmax.

Finally, while both our RABE schemes are of key-policy variety, using the
notion of universal circuits, as in [10], both our constructions can be extended to
realize ciphertext-policy style RABE for arbitrary bounded size circuits achieving
the same parameters.

2 Preliminaries

� Circuit Notation: We adopt the same notations for circuits as in [10]. First
note that without loss of generality we can consider only those circuits which
are monotone, where gates are either OR or AND having fan-in two, and layered
(see [10] for details). Our circuits will have a single output gate. A circuit will
be represented as a six-tuple f = (�, q, d, A, B,GateType). Here, �, q respectively
denote the length of the input, the number of gates, and d represents the depth
of the circuit which is one plus the length of the shortest path from the output
wire to any input wire. We designate the set of input wires as Input = {1, . . . , �},
the set of gates as Gates = {� + 1, . . . , � + q}, the total set of wires in the
circuit as W = Input ∪ Gates = {1, . . . , � + q}, and the wire � + q as the
output wire. Let A, B : Gates → W\{� + q} be functions. For all w ∈ Gates,
A(w) and B(w) respectively identify w’s first and second incoming wires. Finally,
GateType : Gates → {AND,OR} defines a functions that identifies a gate as either
an AND or an OR gate. We follow the convention that w > B(w) > A(w) for
any w ∈ Gates.

We also define a function depth : W → {1, . . . , d} such that if w ∈ Input,
depth(w) = 1, and in general depth(w) of wire w is equal to one plus the length
of the shortest path from w to an input wire. Since our circuit is layered, we
have, for all w ∈ Gates, if depth(w) = t then depth(A(w)) = depth(B(w)) = t−1.

We will abuse notation and let f(x) be the evaluation of the circuit f on
input x ∈ {0, 1}�, and fw(x) be the value of wire w of the circuit f on input x.
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2.1 The Notion of RABE for General Circuits

� Syntax of RABE for circuits: Consider a circuit family F�,d that consists of
all circuits f with input length � and depth d characterizing decryption rights.
A (key-policy) revocable attribute-based encryption (RABE) scheme for circuits
in F�,d with message space M consists of the following algorithms:

RABE.Setup(1λ, �, d,Nmax): The trusted key generation center takes as input
a security parameter 1λ, the length � of Boolean inputs to decryption circuits,
the allowed depth d of the decryption circuits, and the maximum number Nmax

of users supported by the system. It publishes the public parameters PP along
with the empty user list UL = ∅, while keeps the master secret key MK to itself.

RABE.KeyGen(PP,MK,UL, ID, f): On input the public parameters PP, the mas-
ter secret key MK, the current user list UL, and a user identity ID together with
the decryption policy circuit description f ∈ F�,d of that user, the key generation
center provides a decryption key SKf,ID to the user and publishes the user list
UL updated with the information of the newly joined user.

RABE.Encrypt(PP,UL, x,RL,M) : Taking in the public parameters PP, the cur-
rent user list UL, a descriptor input string x ∈ {0, 1}�, a set of revoked user iden-
tities RL, and a message M ∈ M, the encrypter prepares a ciphertext CTx,RL.

RABE.Decrypt(PP,UL,CTx,RL,SKf,ID): A user takes as input the public para-
meters PP, the current user list UL, a ciphertext CTx,RL encrypted for x along
with a list RL of revoked user identities, and its decryption key SKf,ID corre-
sponding to its decryption policy circuit f ∈ F�,d as well as user identity ID. It
attempts to decrypt the ciphertext and outputs the message M ∈ M if successful;
otherwise, it outputs the distinguished symbol ⊥.

� Correctness: The correctness of RABE for general circuits is defined
as follows: For all (PP,UL,MK) ← RABE.Setup(1λ, �, d,Nmax), SKf,ID ←
RABE.KeyGen(PP, MK,UL, ID, f) for any ID and f ∈ F�,d, CTx,RL ←
RABE.Encrypt(PP,UL, x,RL,M) for any x ∈ {0, 1}�,RL and M ∈ M,

(
[f(x) =

1] ∧ [ID /∈ RL] =⇒ RABE.Decrypt(PP, UL,CTx,RL,SKf,ID) = M
)
.

� Security Model: The security of RABE under selective revocation list model
against chosen plaintext attacks (CPA) is defined in terms of the following exper-
iment between a probabilistic challenger B and a probabilistic polynomial-time
adversary A:

Init: A commits to a challenge descriptor input string x∗ ∈ {0, 1}� along with a
challenge revoked user identity list RL∗.

Setup: B creates a user list UL including all users with identities in RL∗ in it;
generates a master secret key MK together with the public parameters PP by
running RABE.Setup(1λ, �, d,Nmax); keeps MK to itself; and gives PP,UL to A.

Phase 1: A adaptively requests a polynomial number of decryption keys for
circuit description f ∈ F�,d along with user identity ID of its choice subject to
the restriction that [f(x∗) = 0] ∨ [ID ∈ RL∗]. B returns the corresponding



340 P. Datta et al.

decryption keys SKf,ID along with the updated user list UL to A by executing
RABE.KeyGen(PP,MK,UL, ID, f).

Challenge: A submits two equal length messages M∗
0 ,M∗

1 ∈ M. B flips a random
coin b ∈ {0, 1} and hands the challenge ciphertext CT∗ to A by performing
RABE.Encrypt(PP,UL, x∗,RL∗,M∗

b ).

Phase 2: A may continue adaptively to make a polynomial number of decryption
key queries as in Phase 1 with the same constraint as above.

Guess: Finally, A outputs a guess b′ ∈ {0, 1} and wins the game if b = b′.

Definition 1. An RABE scheme for circuits is said to be secure under selective
revocation list model against CPA if the advantage of all probabilistic polynomial
time adversaries A in the above game, AdvRABE,SRL-CPA

A (λ) = |Pr[b′ = b] − 1/2|,
is at most negligible.

2.2 Multilinear Maps and Complexity Assumptions

A (leveled) multilinear map [7–9] consists of the following two algorithms:

(I) GMLM(1λ, κ): It takes as input a security parameter 1λ and a positive integer
κ indicating the number of allowed pairing operations. It outputs a sequence
of groups

#»

G = (G1, . . . , Gκ) each of large prime order p > 2λ together with
the canonical generators gi of Gi. We call G1 the source group, Gκ the target
group, and G2, . . . , Gκ−1 intermediate groups. Let PPMLM = (

#»

G, g1, . . . , gκ)
be the description of the multilinear group with canonical generators.

(II) ei,j(g, h) (for i, j ∈ {1, . . . , κ} with i + j ≤ κ): On input two elements
g ∈ Gi and h ∈ Gj with i + j ≤ κ, it outputs an element of Gi+j such
that ei,j(ga

i , gb
j) = gab

i+j for a, b ∈ Zp. We often omit the subscripts and just
write e. We can also generalize e to multiple inputs as e(χ(1), . . . , χ(t)) =
e(χ(1), e(χ(2), . . . , χ(t))).

We refer ga
i as a level-i encoding of a ∈ Zp. The scalar a itself is referred to

as a level-0 encoding of a. Then the map e combines a level-i encoding of an
element a ∈ Zp and a level-j encoding of another element b ∈ Zp, and produces
level-(i + j) encoding of the product ab.

Assumption 1 [(κ, N)-Multilinear Diffie-Hellman Exponent: (κ, N)-
MDHE [4]]. The (κ,N)-Multilinear Diffie-Hellman Exponent ((κ,N)-MDHE)
problem is to guess b̃ ∈ {0, 1} given �

˜b = (PPMLM, ϑ1, . . . , ϑN , ϑN+2, . . . , ϑ2N , Υ,

τ1, . . . , τκ−2,�˜b) generated by G(κ,N)-MDHE
˜b

(1λ), where G(κ,N)-MDHE
˜b

(1λ) operates
as follows: It runs GMLM(1λ, κ) to generate PPMLM of order p; picks random
α, ς, ψ1, . . . , ψκ−2 ∈ Zp; computes ϑj = gα(j)

1 for j = 1, . . . , N, N+2, . . . , 2N,Υ =

gς
1, τi = gψi

1 for i = 1, . . . , κ − 2; sets �0 = g
α(N+1)ς

∏κ−2
i=1 ψi

κ while �1= some ran-
dom element in Gκ; and finally returns �

˜b = (PPMLM, ϑ1, . . . , ϑN , ϑN+2, . . . , ϑ2N ,
Υ, τ1, . . . , τκ−2,�˜b).
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The (κ,N)-MDHE assumption is that the advantage of all probabilistic poly-
nomial time algorithms B in solving the above problem, Adv

(κ,N)-MDHE
B (λ) =

|Pr[B(1λ, �0) → 1] − Pr[B(1λ, �1) → 1]| is at most negligible.

Assumption 2 [(n, k, l) -Compressed Multilinear Diffie-Hellman Ex-
ponent: (n, k, l)-cMDHE [13]]. The (n, k, l)-Compressed Multilinear Diffie-
Hellman Exponent ((n, k, l)-cMDHE) problem is to guess b̃ ∈ {0, 1} given
�
˜b = (PPMLM, ξ0, . . . , ξn, τ1, . . . , τk, Υ,�

˜b) generated by G(n,k,l)-cMDHE
˜b

(1λ), where

G(n,k,l)-cMDHE
˜b

(1λ) operates as follows: It runs GMLM(1λ, κ = n + k + l − 1)
to generate PPMLM of order p; picks random α, ς, ψ1, . . . , ψk ∈ Zp; computes
ξι = gα(2ι)

1 for ι = 0, . . . , n, τh = gψh

1 for h = 1, . . . , k, Υ = gς
l ; sets

�0 = g
α(2n−1)ς

∏k
h=1 ψh

κ while �1= some random element of Gκ; and finally
returns �

˜b = (PPMLM, ξ0, . . . , ξn, τ1, . . . , τk, Υ,�
˜b).

The (n, k, l)-cMDHE assumption is that the advantage of all probabilistic poly-
nomial time algorithms B in solving the above problem, Adv

(n,k,l)-cMDHE
B (λ) =

|Pr[B(1λ, �0) → 1] − Pr[B(1λ, �1) → 1]| is at most negligible.

3 RABE-I

� The Construction:
RABE.Setup(1λ, �, d,Nmax): The trusted key generation center takes as input a
security parameter 1λ, the length � of Boolean inputs to the decryption circuits,
the allowed depth d of decryption circuits, and the maximum number Nmax of
users supported by the system. Let N = {1, . . . , Nmax} be the set of user key
indices. It proceeds as follows:

1. It runs GMLM(1λ, κ = �+d+1) to obtain PPMLM =
( #»
G = (G1, . . . , Gκ), g1, . . .,

gκ

)
of prime order p > 2λ.

2. It selects random (a1,0, a1,1), . . . , (a�,0, a�,1) ∈ Z
2
p, and computes Ai,β =

g
ai,β

1 for i = 1, . . . , �; β ∈ {0, 1}.

3. It selects random α, γ, θ ∈ Zp and computes ϑj = gα(j)

1 for j = 1, . . . , Nmax,

Nmax + 2, . . . , 2Nmax, Y = gγ
1 , Z = gθ

d−1, Ω = gα(Nmax+1)θ
d+1 .

4. It initializes the user list UL, which would consist of ordered pairs (ID, u)
such that ID is the identity of an user who has participated in the system and
u ∈ N is the unique index assigned to ID by the key generation center at the
time of subscription, as an empty set, i.e., it sets UL = ∅.

5. Finally it publishes the public parameters PP =(
PPMLM, {Ai,β}i=1,...,�;β∈{0,1}, {ϑj}j=1,...,Nmax,Nmax+2,...,2Nmax , Y, Z,Ω

)
along

with the empty user list UL, while keeps the master secret key MK = (α, γ, θ)
to itself.

RABE.KeyGen(PP,MK,UL, ID, f): The key generation center takes the public
parameters PP, the master secret key MK, the current user list UL, and the
user identity ID together with the description f = (�, q, d, A, B,GateType) of the
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decryption circuit from a user as input. Our circuit has �+ q wires {1, . . . , �+ q}
where {1, . . . , �} are � input wires, {� + 1, . . . , � + q} are q gates (OR or AND
gates), and the wire �+q is designated as the output wire. It proceeds as follows:

1. It first assigns an index u ∈ N such that (·, u) /∈ UL to ID and updates UL by
adding the pair (ID, u).

2. It chooses random r1, . . . , r�+q ∈ Zp where we think of randomness rw as being
associated with wire w ∈ {1, . . . , � + q}. It produces the “header” component

K = g
α(u)θγ−r�+q

d .
3. It generates key components for every wire w. The structure of the key com-

ponent depends upon the category of w, i.e., whether w is an Input wire, OR
gate, or AND gate. We describe below how it generates the key components
in each case.
• Input wire: If w ∈ {1, . . . , �} then it corresponds to the w-th input. It

computes the key component Kw = e(Aw,1, g1)rw = g
rwaw,1
2 .

• OR gate: Suppose that wire w ∈ Gates, GateType(w) = OR, and t =
depth(w). It picks random μw, νw ∈ Zp and creates the key component

Kw =
(

Kw,1 = gμw
1 ,Kw,2 = gνw

1 ,Kw,3 = g
rw−μwrA(w)
t ,Kw,4 = g

rw−νwrB(w)
t

)

.

• AND gate: Let wire w ∈ Gates, GateType(w) = AND, and t = depth(w). It
selects random μw, νw ∈ Zp and forms the key component

Kw =
(
Kw,1 = gμw

1 ,Kw,2 = gνw
1 ,Kw,3 = g

rw−μwrA(w)−νwrB(w)
t

)
.

4. It provides the decryption key SKf,ID =
(
f, ID,K, {Kw}w∈{1,...,�+q}

)
to the

user and publishes the updated user list UL.

RABE.Encrypt(PP,UL, x,RL,M): Taking as input the public parameters PP,
the current user list UL, a descriptor input string x = x1 . . . x� ∈ {0, 1}�, a list
RL of revoked user identities, and a message M ∈ Gκ, the encrypter forms the
ciphertext as follows:

1. It first defines the revoked user key index set RI ⊆ N corresponding to RL
using UL, i.e., if ID ∈ RL and (ID, j) ∈ UL it includes j in RI. It then determines
SI = N\RI.

2. It picks random s ∈ Zp and computes

CM = e(Ω,A1,x1 , . . . , A�,x�
)sM = gα(Nmax+1)θsδ(x)

κ M,

C = gs
1, C ′ =

(
Y

∏

j∈SI

ϑNmax+1−j

)s =
(
gγ
1

∏

j∈SI

gα(Nmax+1−j)

1

)s
,

where we define δ(x) =
∏�

i=1 ai,xi
for the ease of exposition.

3. It outputs the ciphertext CTx,RL = (x,RL, CM , C, C ′).

RABE.Decrypt(PP,UL,CTx,RL,SKf,ID): A user, on input the public parameters
PP, the current user list UL, a ciphertext CTx,RL = (x,RL, CM , C, C ′) encrypted
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for descriptor input string x = x1 . . . x� ∈ {0, 1}� and a list of revoked user
identities RL, along with its decryption key SKf,ID =

(
f, ID,K, {Kw}w∈{1,...,�+q}

)

for its decryption circuit f = (�, q, d, A, B,GateType) as well as its user identity
ID, where u ∈ N is the index assigned to ID (say), outputs ⊥, if [f(x) = 0] ∨ [ID ∈
RL]. Otherwise, (if [f(x) = 1] ∧ [ID /∈ RL]) it proceeds as follows:

1. First, as a “header” computation it computes

D = e(A1,x1 , . . . , A�,x�
) = g

δ(x)
� , Ê = e(K,D,C) = g

(α(u)θγ−r�+q)sδ(x)
κ ,

extracting {Ai,xi
}i=1,...,� from PP.

2. Next, it performs the bottom-up evaluation of the circuit. For every wire w
with corresponding depth(w) = t, if fw(x) = 0, nothing is computed for that
wire, otherwise (if fw(x) = 1), it attempts to compute Ew = g

rwsδ(x)
�+t+1 as

follows. The user proceeds iteratively starting with computing E1 and moves
forward in order to finally compute E�+q. Note that computing these values
in order ensures that the computation on a wire w with depth(w) = t − 1
that evaluates to 1 will be defined before the computation on a wire w with
depth(w) = t. The computation procedure depends on whether the wire is an
Input wire, OR gate, or AND gate.
• Input wire: If w ∈ {1, . . . , �} then it corresponds to the w-th input and

t = depth(w) = 1. Suppose that xw = fw(x) = 1. Extracting Kw from its
decryption key SKf,ID, the user computes

Ew = e(Kw, A1,x1 , . . . , Aw−1,xw−1 , Aw+1,xw+1 , . . . , A�,x�
, C) = g

rwsδ(x)
�+1+1 .

• OR gate: Consider a wire w ∈ Gates with GateType(w) = OR and
t = depth(w). Assume that fw(x) = 1. Then the user checks whether
fA(w)(x) = 1, i.e., the first input of gate w evaluated to 1, and if so, then
the user extracts Kw,1,Kw,3 from Kw included in SKf,ID and computes

Ew = e(EA(w),Kw,1)e(Kw,3,D,C) = g
rwsδ(x)
�+t+1 .

Note that EA(w) is already computed at this stage in the bottom-up circuit
evaluation as depth(A(w)) = t − 1.
Alternatively, if fA(w)(x) = 0 then it must be the case that fB(w)(x) = 1 as
fw(x) = 1, and it computes

Ew = e(EB(w),Kw,2)e(Kw,4,D,C) = g
rwsδ(x)
�+t+1

extracting Kw,2,Kw,4 from Kw contained in SKf,ID.
• AND gate: Consider a wire w ∈ Gates with GateType(w) = AND and

t = depth(w). Suppose that fw(x) = 1. Then fA(w)(x) = fB(w)(x) = 1.
The user computes

Ew = e(EA(w),Kw,1)e(EB(w),Kw,2)e(Kw,3,D,C) = g
rwsδ(x)
�+t+1

extracting Kw,1,Kw,2,Kw,3 from Kw in SKf,ID.
The user finally computes E�+q = g

r�+qsδ(x)
κ , as f(x) = f�+q(x) = 1.
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3. It determines the revoked user key index set RI ⊆ N corresponding to RL
using UL and obtains SI = N\RI which contains all the non-revoked user key
indices. Note that since ID /∈ RL, u ∈ SI. The user retrieves the message by
the following computation:

CM ÊE�+qe
( ∏

j∈SI\{u}
ϑNmax+1−j+u, Z,D,C

)
e
(
ϑu, Z,D,C ′)−1 = M.

� Security Analysis:
Theorem 1. RABE-I is secure in the selective revocation list model against CPA
as per the security model of Sect. 2.1 if the (� + d + 1, Nmax)-MDHE assumption
holds for the underlying multilinear group generator GMLM, described in Sect. 2.2,
where �, d, and Nmax denote respectively the input length of decryption circuits,
depth of the decryption circuits, and the maximum number of users supported by
the system.

Proof. Suppose that there exists a probabilistic polynomial-time adversary A
that attacks RABE-I as per the selective revocation list model under CPA with a
non-negligible advantage. We construct a probabilistic algorithm B that attempts
to solve an instance of the (� + d + 1, Nmax)-MDHE problem using A as a sub-
routine. B is given a challenge instance

�
˜b = (PPMLM, ϑ1, . . . , ϑNmax , ϑNmax+2, . . . , ϑ2Nmax , Υ, τ1, . . . , τ�+d−1,�˜b)

where {ϑj = gα(j)

1 }j=1,...,Nmax,Nmax+2,...,2Nmax , {τi = gψi

1 }i=1,...,�+d−1, Υ = gς
1

such that α, ς, ψi are random elements of Zp, and �
˜b is g

α(Nmax+1)ς
∏�+d−1

i=1 ψi

�+d+1 or
some random element in G�+d+1 according as b̃ is 0 or 1. B plays the role of the
challenger in the CPA security game as per the selective revocation list model of
Sect. 2.1 and interacts with A as follows:

Init: A declares the challenge input string x∗ = x∗
1 . . . x∗

� ∈ {0, 1}� along with
the challenge revocation list RL∗ to B. Let N = {1, . . . , Nmax} be the set of user
key indices. B first initializes the user list UL = ∅. Next for each ID ∈ RL∗ it
selects an index j ∈ N such that (·, j) /∈ UL and adds (ID, j) to UL. Let RI∗ ⊆ N
be the revoked set of user key indices corresponding to RL∗ and SI∗ = N\RI∗.
Setup: B chooses random z1, . . . , z�, ϕ ∈ Zp and sets

Ai,β = τi = gψi

1 , if β = x∗
i , Ai,β = gzi

1 , if β = x∗
i , for i = 1, . . . , �; β ∈ {0, 1},

Y = gϕ
1

( ∏

j∈SI∗
ϑNmax+1−j

)−1 = gγ
1 , Z = e(τ�+1, . . . , τ�+d−1) = gθ

d−1,

Ω = e(ϑNmax , ϑ1, τ�+1, . . . , τ�+d−1) = gα(Nmax+1)θ
d+1 .

Note that the above setting corresponds to (possibly) implicitly letting

ai,β = ψi, if β = x∗
i , ai,β = zi, if β = x∗

i , for i = 1, . . . , �; β ∈ {0, 1},

γ = ϕ −
∑

j∈SI∗
α(Nmax+1−j), θ =

�+d−1∏

h=�+1

ψh = Γ (� + 1, � + d − 1),
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where we define Γ (v1, v2) =
∏v2

h=v1
ψh for positive integers v1, v2, with the con-

vention that Γ (v1, v2) = 1 if v1 > v2, for the purpose of enhancing readability
in subsequent discussion. B hands the public parameters

PP =
(
PPMLM, {Ai,β}i=1,...,�;β∈{0,1}, {ϑj}j=1,...,Nmax,Nmax+2,...,2Nmax , Y, Z,Ω

)

along with the user list UL to A.

Phase 1 and Phase 2: Both the key query phases are executed in the same
manner by B. So, we describe them once here. A adaptively queries a decryption
key for a circuit f = (�, q, d, A, B,GateType) and user identity ID to B subject to
the restriction that [f(x∗) = 0] ∨ [ID ∈ RL∗]. B answers the query as follows:

Case (I) (ID ∈ RL∗): B retrieves the index u ∈ N already assigned to ID in
the initialization phase from UL. B forms the decryption key components Kw

corresponding to all the wires w ∈ {1, . . . , �+q} of the circuit f exactly as in the
real scheme. Next B sets the “header” component K of the decryption key as

K = e(ϑu, Z)ϕ
[ ∏

j∈SI∗
e(ϑNmax+1−j+u, Z)

]−1
g

−r�+q

d ,

where r�+q ∈ Zp is the randomness associated with the wire �+q already selected
by B at the time of computing the decryption key component K�+q. The above

simulation of K = g
α(u)θγ−r�+q

d is valid since

α(u)θγ − r�+q = α(u)Γ (� + 1, � + d − 1)
[
ϕ −

∑

j∈SI∗
α(Nmax+1−j)

] − r�+q

= α(u)Γ (� + 1, � + d − 1)ϕ − Γ (� + 1, � + d − 1)
∑

j∈SI∗
α(Nmax+1−j+u) − r�+q.

Further, notice that since ID ∈ RL∗, u /∈ SI∗. Hence, none of the α(Nmax+1−j+u)

in the preceding equation matches α(Nmax+1), enabling B to simulate K as above
using the available information.

Case (II) (ID /∈ RL∗): In this case B assigns an index u ∈ N such that (·, u) /∈ UL
to ID and adds (ID, u) to UL. Now observe that due to the restriction on A’s
decryption key queries we must have f(x∗) = 0 in this case. As in [10], we will
think of the simulation as having some invariant property on the depth of the
wire we are looking at. Consider a wire w with depth(w) = t. B views rw, the
randomness associated with the wire w, as follows: If fw(x∗) = 0, then B will
implicitly view rw as the term −α(Nmax+1)Γ (�+1, �+ t−1) plus some additional
known randomization term. Otherwise (if fw(x∗) = 1), B will view rw as 0
plus some additional known randomization term. We keep this property intact
for the bottom-up key simulation of the circuit. This makes B to view r�+q as
−α(Nmax+1)Γ (� + 1, � + d − 1) plus some additional known randomization term
since f�+q(x∗) = f(x∗) = 0. Then B can simulate the “header” component K by
cancelation as will be explained shortly.
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The bottom-up simulation of the key component for each wire w by B varies
depending on whether w is an Input wire, OR gate, or AND gate as follows:

• Input wire: Consider w ∈ {1, . . . , �}, i.e., an input wire. Hence, depth(w) = 1.

– If x∗
w = 1 then B picks random rw ∈ Zp (as is done honestly) and sets the

key component Kw = e(τw, g1)rw = g
rwaw,1
2 .

– Otherwise, if x∗
w = 0 then B implicitly lets rw = −α(Nmax+1) + ηw =

−α(Nmax+1)Γ (� + 1, � + 1 − 1) + ηw, where ηw ∈ Zp is randomly selected by
B, and sets the key component Kw = e(ϑNmax , ϑ1)−zwgηwzw

2 = g
rwaw,1
2 .

• OR gate: Consider a wire w ∈ Gates with GateType(w) = OR and t =
depth(w). Then, depth(A(w)) = depth(B(w)) = t − 1 as our circuit is lay-
ered.

– If fw(x∗) = 1 then B chooses random μw, νw, rw ∈ Zp as in the real scheme,
and forms the key component as

Kw =
(
Kw,1 = gμw

1 ,Kw,2 = gνw
1 ,Kw,3 = g

rw−μwrA(w)
t ,Kw,4 = g

rw−νwrB(w)
t

)
.

Lets have a closer look to the simulation of Kw,3 and Kw,4 in Kw by B
above. Since fw(x∗) = 1, the A(w) and B(w) gates might evaluate to 1 or
0 upon input x∗ with the only restriction that both of them cannot be 0 at
the same time. Consider the case of Kw,3. Observe that if fA(w)(x∗) = 1,
then rA(w) is a random element in Zp already selected by B at this stage due
to the bottom-up key simulation. Thus, in this case B can simulate Kw,3

exactly as in the real scheme. Now, let fA(w)(x∗) = 0. Therefore, rA(w) has
been implicitly set as −α(Nmax+1)Γ (�+1, �+t−2)+ηA(w) by B in the course
of its bottom-up key simulation, where ηA(w) ∈ Zp is randomly chosen by
B. Thus, in this case B can create Kw,3 as

Kw,3 = e(ϑNmax , ϑ1, τ�+1, . . . , τ�+t−2)μwg
rw−μwηA(w)
t = g

rw−μwrA(w)
t .

A similar argument holds for Kw,4.
– On the other hand, if fw(x∗) = 0 then B picks random σw, ζw, ηw ∈ Zp,

implicitly sets μw = ψ�+t−1 + σw, νw = ψ�+t−1 + ζw, along with rw =
−α(Nmax+1)Γ (� + 1, � + t − 1) + ηw, and creates the key component Kw =
(Kw,1,Kw,2,Kw,3,Kw,4) as follows:

Kw,1 = τ�+t−1g
σw
1 = gμw

1 ,Kw,2 = τ�+t−1g
ζw

1 = gνw
1 ,

Kw,3 = e(τ�+t−1, gt−1)−ηA(w)e(ϑNmax , ϑ1, τ�+1, . . . , τ�+t−2)σwg
ηw−σwηA(w)
t

= g
ηw−ψ�+t−1ηA(w)−σw(−α(Nmax+1)Γ (�+1,�+t−2)+ηA(w))
t = g

rw−μwrA(w)
t ,

Kw,4 = e(τ�+t−1, gt−1)−ηB(w)e(ϑNmax , ϑ1, τ�+1, . . . , τ�+t−2)ζwg
ηw−ζwηB(w)
t

= g
ηw−ψ�+t−1ηB(w)−ζw(−α(Nmax+1)Γ (�+1,�+t−2)+ηB(w))
t = g

rw−νwrB(w)
t .
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Note that since fw(x∗) = 0, fA(w)(x∗) = fB(w)(x∗) = 0. Therefore, B’s
bottom-up key simulation has implicitly set rA(w) = −α(Nmax+1)Γ (�+1, �+
t − 2) + ηA(w), where ηA(w) ∈ Zp is randomly picked by B. Hence,

rw − μwrA(w)

= ηw − ψ�+t−1ηA(w) − σw

( − α(Nmax+1)Γ (� + 1, � + t − 2) + ηA(w)

)
(1)

establishing that the distribution of simulated Kw,3 by B is identical to that
in the actual construction. Analogous argument holds for Kw,4.

• AND gate: Consider wire w ∈ Gates with GateType(w) = AND and t =
depth(w). Then depth(A(w)) = depth(B(w)) = t − 1 for the reason that our
circuit is layered.

– Let fw(x∗) = 1. Then fA(w)(x∗) = fB(w)(x∗) = 1. B picks random
μw, νw, rw ∈ Zp and forms the key component

Kw =
(
Kw,1 = gμw

1 ,Kw,2 = gνw
1 ,Kw,3 = g

rw−μwrA(w)−νwrB(w)
t

)

exactly as in the real scheme. Observe that, since fA(w)(x∗) = fB(w)(x∗) =
1, rA(w) and rB(w) are random elements of Zp already chosen by B in the
course of the bottom-up simulation.

– Alternatively, let fw(x∗) = 0. Then, fA(w)(x∗) = 0 or fB(w)(x∗) = 0. If
fA(w)(x∗) = 0, then B selects σw, ζw, ηw ∈ Zp, implicitly defines μw =
ψ�+t−1 + σw, νw = ζw, and rw = −α(Nmax+1)Γ (� + 1, � + t − 1) + ηw, and
determines the decryption key component Kw = (Kw,1,Kw,2,Kw,3) by
setting

Kw,1 = τ�+t−1gσw
1 = gμw

1 , Kw,2 = gζw
1 = gνw

1 ,

Kw,3 = e(τ�+t−1, gt−1)
−ηA(w)e(ϑNmax , ϑ1, τ�+1, . . . , τ�+t−2)

σw g
ηw−σwηA(w)
t ·

(
g

rB(w)
t

)−ζw = g
ηw−ψ�+t−1ηA(w)−σw(−α(Nmax+1)Γ (�+1,�+t−2)+ηA(w))−ζwrB(w)
t

= g
rw−μwrA(w)−νwrB(w)
t .

The simulated Kw,3 by B above is identically distributed as that in the
original construction. This follows from the fact that, the A(w) gate
being evaluated to 0, rA(w) has already been implicitly set as rA(w) =
−α(Nmax+1)Γ (�+1, �+t−2)+ηA(w) by B upon selecting random ηA(w) ∈ Zp

in the course of the bottom-up key simulation. Therefore, as in Eq. (1),
we have

rw − μwrA(w)

= ηw − ψ�+t−1ηA(w) − σw

( − α(Nmax+1)Γ (� + 1, � + t − 2) + ηA(w)

)
.

Notice that g
rB(w)
t is always computable by B from the available informa-

tion regardless of whether the B(w) gate evaluates to 1 or 0 upon input
x∗. If fB(w)(x∗) = 1, then rB(w) is a random element of Zp chosen by B
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itself during the bottom-up simulation process. Hence, the computation
of g

rB(w)
t is straightforward in this case. Otherwise, if fB(w)(x∗) = 0, then

B has already set rB(w) as rB(w) = −α(Nmax+1)Γ (�+1, �+d−2)+ηB(w) at
this stage by selecting random ηB(w) ∈ Zp. Therefore, in this case B can
compute g

rB(w)
t as g

rB(w)
t = e(ϑNmax , ϑ1, τ�+1, . . . , τ�+t−2)−1g

ηB(w)
t .

The case where fB(w)(x∗) = 0 and fA(w)(x∗) = 1 can be argued analo-
gously, with the roles of μw and νw reversed.

Since f(x∗) = f�+q(x∗) = 0, r�+q = −α(Nmax+1)Γ (� + 1, � + d − 1) + η�+q,
where η�+q ∈ Zp is randomly selected by B. Also, since ID /∈ RL∗, u ∈ SI∗. These
two facts allow B to compute the “header” component of the key as

K = e(ϑu, Z)ϕ
[ ∏

j∈SI∗\{u}
e(ϑNmax+1−j+u, Z)

]−1
g

−η�+q

d

= g
α(u)Γ (�+1,�+d−1)ϕ−Γ (�+1,�+d−1)

∑

j∈SI∗\{u} α(Nmax+1−j+u)−η�+q

d

= g
α(u)Γ (�+1,�+d−1)

[
ϕ−∑j∈SI∗ α(Nmax+1−j)

]
−r�+q

d = g
α(u)θγ−r�+q

d .

B provides A the decryption key SKf,ID =
(
f, ID,K, {Kw}w∈{1,...,�+q}

)
along

with the updated user list UL.

Challenge: A submits two challenge messages M∗
0 ,M∗

1 ∈ G�+d+1 to B. B flips
a random coin b ∈ {0, 1}, sets the challenge ciphertext

CT∗ =
(
x∗,RL∗, C∗

M = �
˜bM

∗
b , C∗ = Υ = gς

1, C
′∗ = Υϕ = (Y

∏

j∈SI∗
ϑNmax+1−j)ς

)
,

and gives it to A.

Guess: B eventually receives back the guess b′ ∈ {0, 1} from A. If b = b′, B
outputs b̃′ = 1; otherwise, it outputs b̃′ = 0.

Note that if b̃ = 0, then

C∗
m = �

˜bM
∗
b = g

α(Nmax+1)ςΓ (1,�+d−1)
�+d+1 M∗

b = gα(Nmax+1)θςδ(x∗)
κ M∗

b ,

where δ(x∗) =
∏�

i=1 ai,x∗
i
. Thus, we can see that the challenge ciphertext CT∗

is properly generated by B in this case by implicitly letting s, the randomness
used to prepare the ciphertext, as ς. On the other hand, if b̃ = 1, then �

˜b is
a random element of G�+d+1, so that, the challenge ciphertext is completely
random. Hence the result. ��

4 RABE-II

� The Construction:
RABE.Setup(1λ, �, d,Nmax): Taking as input a security parameter 1λ, the length
� of Boolean inputs to the decryption circuits, the allowed depth d of decryption
circuits, and the maximum number Nmax of users supported by the system, the
trusted key generation center proceeds as follows:
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1. It chooses two positive integers n,m suitably such that Nmax ≤ (
n
m

)
. Let

N denotes the set of all integers j ∈ {1, . . . , 2n − 2} of Hamming weight
HW(j) = m when expressed as a bit string of length n. N is considered as
the set of possible user key indices.

2. It executes GMLM(1λ, κ = n + d + m − 1) to generate PPMLM =
( #»
G =

(G1, . . . , Gκ), g1, . . . , gκ

)
of prime order p > 2λ.

3. It picks random a1, . . . , a� ∈ Zp and computes Ai = gai
m for i = 1, . . . , �.

4. It chooses random α, γ, θ ∈ Zp and computes ξι = gα(2ι)

1 for ι = 0, . . . , n, Y =
gγ

n−1, Z = gθ
d, Ω = gα(2n−1)θ

κ .
5. It initializes the user list UL, which would consist of ordered pairs (ID, u)

such that ID is the identity of an user who has participated in the system and
u ∈ N is the unique index assigned to ID by the key generation center at the
time of subscription, as an empty set, i.e., it sets UL = ∅.

6. It keeps the master secret key MK = (α, γ, θ) to itself while publishes the pub-
lic parameters PP =

(
PPMLM, n,m, {Ai}i=1,...,�, {ξι}ι=0,...,n, Y, Z,Ω

)
along

with the empty user list UL.

RABE.KeyGen(PP,MK,UL, ID, f): The key generation center intakes the public
parameters PP, the master secret key MK, the current user list UL, and the
user identity ID together with the description f = (�, q, d, A, B,GateType) of the
decryption circuit from a user. Our circuit has � + q wires {1, . . . , � + q} where
{1, . . . , �} are � input wires, {� + 1, . . . , � + q} are q gates (OR or AND gates),
and the wire � + q is distinguished as the output wire. It proceeds as follows:

1. It first assigns to ID an index u ∈ N such that (·, u) /∈ UL and updates UL by
adding the pair (ID, u).

2. It chooses random r1, . . . , r�+q ∈ Zp where we think of randomness rw as being
associated with wire w ∈ {1, . . . , � + q}. It produces the “header” component

K = g
α(u)θγ−r�+q

n+d−1 .
3. It forms key components for every wire w. The structure of the key component

depends upon the category of w, i.e., whether w is an Input wire, OR gate, or
AND gate. We describe below how it generates the key components in each
case.
• Input wire: If w ∈ {1, . . . , �} then it corresponds to the w-th input. It

chooses random zw ∈ Zp and computes the key component

Kw =
(
Kw,1 = grw

n e(Aw, gn−m)zw = grw
n gawzw

n , Kw,2 = g−zw
n

)
.

• OR gate: Suppose that wire w ∈ Gates, GateType(w) = OR, and t =
depth(w). It picks random μw, νw ∈ Zp and creates the key component

Kw =
(

Kw,1 = gμw
1 ,Kw,2 = gνw

1 ,Kw,3 = g
rw−μwrA(w)
n+t−1 ,Kw,4 = g

rw−νwrB(w)
n+t−1

)

.

• AND gate: Let wire w ∈ Gates, GateType(w) = AND, and t = depth(w). It
selects random μw, νw ∈ Zp and forms the key component

Kw =
(
Kw,1 = gμw

1 ,Kw,2 = gνw
1 ,Kw,3 = g

rw−μwrA(w)−νwrB(w)
n+t−1

)
.
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4. It provides the decryption key SKf,ID =
(
f, ID,K, {Kw}w∈{1,...,�+q}

)
to the

user and publishes the updated user list UL.

RABE.Encrypt(PP,UL, x,RL,M): On input the public parameters PP, the cur-
rent user list UL, a descriptor input string x = x1 . . . x� ∈ {0, 1}�, a revoked user
identity list RL, and a message M ∈ Gκ, the encrypter proceeds as follows:

1. It defines the revoked user key index set RI ⊆ N corresponding to RL using
UL, i.e., if ID ∈ RL and (ID, j) ∈ UL it puts j in RI, and sets SI = N\RI.

2. It computes ϑ2n−1−j for all j ∈ SI utilizing the ξι values included in PP

and multilinear map as follows, where we define ϑ� = gα(�)

n−1 for positive
integer �. Observe that any j ∈ SI ⊆ N can be expressed as a bit string of
length n with HW(j) = m. Hence, j can be written as j =

∑
ι∈J 2ι where

J ⊆ {0, . . . , n−1} of size m. Now 2n−1 =
∑n−1

ι=0 2ι. Thus, 2n−1−j =
∑

ι∈J 2ι

where J = {0, . . . , n − 1}\J = {ι1, . . . , ιn−m}. It computes ϑ2n−1−j as

ϑ2n−1−j = e(ξι1 , . . . , ξιn−m
, gm−1) = gα(2n−1−j)

n−1 .

3. It picks random s ∈ Zp and computes

CM = ΩsM = gα(2n−1)θs
κ M, C = gs

m,

C ′
i = As

i = gais
m for i ∈ Sx = {i|i ∈ {1, . . . , �} ∧ xi = 1},

C ′′ =
(
Y

∏

j∈SI

ϑ2n−1−j

)s =
(
gγ

n−1

∏

j∈SI

gα(2n−1−j)

n−1

)s
.

4. It outputs the ciphertext CTx,RL = (x,RL, CM , C, {C ′
i}i∈Sx

, C ′′).

Remark 1. We would like to mention that the number of ciphertext components
could be made constant (precisely only 4), as in RABE-I, rather than scaling
with the size of Sx using a (�+n+d+m−2)-leveled multilinear map. However,
since in current approximate multilinear map candidates the multilinearity is
expensive, we opt for a construction that requires lower multilinearity level.

RABE.Decrypt(PP,UL,CTx,RL,SKf,ID): A user intakes the public parameters
PP, current user list UL, a ciphertext CTx,RL = (x,RL, CM , C, {C ′

i}i∈Sx
, C ′′)

encrypted for descriptor input string x = x1 . . . x� ∈ {0, 1}� along with a revoked
user identity list RL, and its decryption key SKf,ID =

(
f, ID,K, {Kw}w∈{1,...,�+q}

)

for its decryption policy circuit f = (�, q, d, A, B,GateType) as well as its user
identity ID, where u ∈ N is the index assigned to ID (say). It outputs ⊥, if
[f(x) = 0] ∨ [ID ∈ RL]; otherwise, ( if [f(x) = 1] ∧ [ID /∈ RL]) proceeds as follows:

1. First, as a “header” computation, it computes

Ê = e(K, C) = e
(
g

α(u)θγ−r�+q

n+d−1 , gs
m

)
= g

(α(u)θγ−r�+q)s
κ .

2. Next, it performs the bottom-up evaluation of the circuit. For every wire
w with corresponding depth(w) = t, if fw(x) = 0, nothing is computed for
that wire, otherwise (if fw(x) = 1), it attempts to compute Ew = grws

n+t+m−1
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as described below. The user proceeds iteratively starting with computing
E1 and moves forward in order to finally compute E�+q. Note that com-
puting these values in order ensures that the computation on a wire w with
depth(w) = t−1 that evaluates to 1 will be defined before the computation on
a wire w with depth(w) = t. The computation procedure depends on whether
the wire is an Input wire, OR gate, or AND gate.
• Input wire: If w ∈ {1, . . . , �} then it corresponds to the w-the input and

t = depth(w) = 1. Suppose that xw = fw(x) = 1. The user extracts
Kw,1,Kw,2 from Kw included in its decryption key SKf,ID and computes

Ew = e(Kw,1, C)e(Kw,2, C
′
w) = grws

n+m = grws
n+1+m−1.

• OR gate: Consider a wire w ∈ Gates with GateType(w) = OR and t =
depth(w). Let fw(x) = 1. Then the user checks whether fA(w)(x) = 1. If
so, then it extracts Kw,1,Kw,3 from Kw contained in SKf,ID and computes

Ew = e(EA(w),Kw,1)e(Kw,3, C) = grws
n+t+m−1

Alternatively, if fA(w)(x) = 0, then it must hold that fB(w)(x) = 1 as
fw(x) = 1. In this case, it extracts Kw,2,Kw,4 from Kw in SKf,ID and
computes

Ew = e(EB(w),Kw,2)e(Kw,4, C) = grws
n+t+m−1

• AND gate: Consider a wire w ∈ Gates with GateType(w) = AND and
t = depth(w). Suppose that fw(x) = 1. Then fA(w)(x) = fB(w)(x) = 1. The
user extracts Kw,1,Kw,2,Kw,3 from Kw included in SKf,ID and computes

Ew = e(EA(w),Kw,1)e(EB(w),Kw,2)e(Kw,3, C) = grws
n+t+m−1.

Note that both EA(w) and EB(w) are already computed at this stage in
the course of the bottom-up evaluation of the circuit as depth(A(w)) =
depth(B(w)) = t − 1.
At the end, the user computes E�+q = g

r�+qs
κ , as f(x) = f�+q(x) = 1.

3. It determines the revoked user key index set RI ⊆ N corresponding to RL
using UL and obtains SI = N\RI. Note that since ID /∈ RL, u ∈ SI.

4. It computes ϑ′
u = gα(u)

m and ϑ2n−1−j+u = gα(2n−1−j+u)

n−1 for all j ∈ SI\{u} using
the ξι values included in PP and multilinear map as follows:
(a) (Computing ϑ′

u) Note that u can be expressed as a bit string of length
n with HW(u) = m as u ∈ SI ⊆ N . Let u =

∑
ι∈U 2ι where U =

{ι′1, . . . , ι
′
m} ⊆ {0, . . . , n − 1}. It computes ϑ′

u = e(ξι′
1
, . . . , ξι′

m
) = gα(u)

m .

(b) (Computing ϑ2n−1−j+u for j ∈ SI\{u}) Let 2n − 1 − j =
∑

ι∈J 2ι where
J = {ι1, . . . , ιn−m} ⊆ {0, . . . , n−1} as earlier. Now U and J are disjoined
only if J ∪U = {0, . . . , n− 1}, i.e., 2n − 1− j +u =

∑
ι∈J 2ι +

∑
ι∈U 2ι =

∑n−1
ι=0 2ι = 2n − 1, i.e., j = u. Since j = u, there must exist at least one

ι̂ ∈ {0, . . . , n − 1} such that ι̂ ∈ J ∩ U . Without loss of generality, let
ι̂ = ιn−m = ι′m. Then 2n − 1 − j + u =

∑
ι∈J\{ιn−m} 2ι +

∑
ι∈U\{ι′

m} 2ι +
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2 ·2ι̂ =
∑

ι∈J\{ι̂} 2ι +
∑

ι∈U\{ι̂} 2ι +2ι̂+1 where [J\{ι̂}]∩ [U\{ι̂}] may not
be empty. It computes ϑ2n−1−j+u as

ϑ2n−1−j+u = e(ξι1 , . . . , ξιn−m−1 , ξι′
1
, . . . , ξι′

m−1
, ξι̂+1) = gα(2n−1−j+u)

n−1 .

Note that ξι̂+1 is extractable from PP since ι̂ ∈ {0, . . . , n − 1}.
5. Finally, utilizing the fact that u ∈ SI, the user retrieves the message by the

following computation:

CM ÊE�+qe
( ∏

j∈SI\{u}
ϑ2n−1−j+u, Z, C

)
e
(
ϑ′

u, Z, C ′′)−1 = M.

� Security:

Theorem 2. RABE-II is secure in the selective revocation list model against CPA
as per the security model of Sect. 2.1 if the (n, d,m)-cMDHE assumption holds
for the underlying multilinear group generator GMLM described in Sect. 2.2, such
that d denotes the allowed depth of the decryption circuits, and n,m are two
integers for which Nmax ≤ (

n
m

)
, where Nmax is the maximum number of users

supported by the system.

The proof of Theorem2 closely resembles that of Theorem 1 and is omitted here
due to page restriction.

5 Efficiency

Both our RABE schemes permit general Boolean circuits of arbitrary polynomial
size and unbounded fan-out with bounded depth and input length. This is the
most expressive form of decryption policies accomplished for ABE till date [4,10].
We utilize the power of the multilinear map framework. All previous RABE con-
structions in the standard model [1–3,11,14], could support at most polynomial
size monotone Boolean formulae because of the inherent limitation [10] of the
traditional bilinear map setting underlying those schemes.

Another drawback of the previous standard model RABE schemes support-
ing direct revocation mode [1,2,14] is that they essentially utilize the tree-based
revocation mechanism of Naor et al. [12]. As a result, the number of group
elements comprising the revocation controlling segments of the ciphertexts and
decryption keys are O(r̂ log Nmax

r̂ ) and O(log Nmax) respectively, where Nmax and
r̂ denote respectively the maximum number of users supported by the system
and the number of revoked users. Moreover, the number of group elements in
the ABE realizing portion of the ciphertexts scales with the size of the attribute
set or the complexity of the decryption policy associated to it. Our first RABE
construction, RABE-I, which is designed by carefully integrating the revocation
strategy introduced in [5] with an improved variant of [10], features only 3 group
elements in the ciphertexts. Furthermore, the number of decryption key compo-
nents is � + 4q + 1 in the worst case, � and q being respectively the input length
and number of gates in the policy circuits. This is the same in all currently avail-
able multilinear map-based vanilla ABE constructions for general circuits [4,10].
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This the added revocation functionality is attained without any extra overhead
on the decryption keys.

One problem in RABE-I is that the number of PP elements is linear to Nmax

and, hence, the construction can accommodate only a small number of users.
In our second RABE scheme, RABE-II, we attempt to reduce it by applying
a more advanced revocation technique [6] so that we can support potentially
large number of users. For RABE-II we consider κ = n + d + m − 1 such that
Nmax ≤ (

n
m

)
and the number of PP components becomes linear to n. As discussed

in [6], a judicious choice of n and m would require n ≈ log Nmax. Therefore, the
number of PP components reduces approximately to log Nmax in RABE-II. This
is comparable to the best PP size attained by previous RABE constructions with
direct revocation mode secure in the standard model [1,2,14]. Also, in RABE-II
we need to provide only one component in PP in place of two in case of RABE-I
corresponding to each input of the decryption policy circuits. However, observe
that in this scheme also we could maintain the property that the number of
ciphertext and decryption key components meant for revocation do not grow
with Nmax. To the best of our knowledge, no previous RABE scheme with direct
revocation could achieve such parameters.

Regarding computational complexity, note that the (worst case) number of
multilinear operations involved in the setup, key generation, encryption, and
decryption algorithms are respectively 2�+2Nmax+2, 2�+4q+2, 4, and �+3q+4
for RABE-I while � + 2n + 5 , 4� + 4q + 3, � + 3, and 2� + 3q + 3 for RABE-II.
Thus, we can see that RABE-II involves slightly more computation in the key
generation, encryption and decryption procedures compared to RABE-I.

Remark 2. Note that a recent work [13] has applied the same revocation tech-
nique as ours [5,6] in the context of identity-based encryption (IBE). We empha-
size that although IBE and ABE are related concepts, the richer functionality
offered by the latter, especially when the access structures are highly expressive
such as general polynomial-size circuits, poses significantly more challenges in
enforcing revocation and necessitates more elegant techniques which we have
developed in this work.

6 Conclusion

In this work, employing multilinear map [7–9], we have adopted a new technique
[5,6] for enforcing direct user revocation in the context of ABE. Following that
method, we have developed two selectively secure RABE schemes, both of which
support decryption policies representable as general polynomial-size circuits as
well as features very short ciphertexts without imposing any extra overhead in
the decryption keys for the added revocation functionality. In our first construc-
tion, the size of the public parameters is linear to the maximum number of users
supported by the system, while we have shrunk it to logarithmic in our second
construction.
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To the best of our knowledge, our work is the first in the literature which
attained these features. Both our RABE constructions are proven secure in the
selective revocation list model under reasonable assumptions.
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Abstract. Jacobi quartic curves are well known for efficient arithmetics
in regard to their group law and immunity to timing attacks. Two deter-
ministic encodings from a finite field Fq to Jacobi quartic curves are con-
structed. When q ≡ 3 (mod 4), the first deterministic encoding based
on Skalba’s equality saves two field squarings compared with birational
equivalence composed with Fouque and Tibouchi’s brief version of Ulas’
function. When q ≡ 2 (mod 3), the second deterministic encoding based
on computing cube root costs one field inversion less than birational
equivalence composed with Icart’s function at the cost of four field mul-
tiplications and one field squaring. It costs one field inversion less than
Alasha’s encoding at the cost of one field multiplication and two field
squarings. With these two deterministic encodings, two hash functions
from messages directly into Jacobi quartic curves are constructed. Addi-
tionally, we construct two types of new efficient functions indifferentiable
from a random oracle.

Keywords: Deterministic encoding · Hash function · Random oracle ·
Jacobi quartic curves · Timing attacks

1 Introduction

Many algebraic curve cryptosystems require hashing into an algebraic curve.
Boneh–Franklin’s identity-based encryption scheme [1] proposes a one-to-one
mapping f from a finite field Fq to a particular supersingular elliptic curve. Based
on this mapping f , they constructed a hash function f(h(m)) where message m ∈
{0, 1}∗ and h is a classical hash function. Many other identity-based schemes need
messages to be hashed into an algebraic curve, such as encryption schemes [2,3],
signature schemes [4,5], signcryption schemes [6,7], and Lindell’s universally-
composable commitment scheme [8]. Password-based authentication protocols
also require messages to be hashed into algebraic curves. The simple password
exponential key exchange [9] and the password authenticated key exchange [10]
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protocols both require a hash algorithm to map the password into a point of the
algebraic curve.

Boneh and Franklin [1] proposed an algorithm mapping an element of Fpn to
a rational point of an ordinary elliptic curve, which is probabilistic and fails to
return a point for a fraction 2−k of the inputs, where k is a predetermined bound.
One drawback of the algorithm is that the number of steps in the algorithm
depends on the input u where u is an element of a finite field Fq. Thus, the
number of operations is not constant. If the input u has to be secret in practice,
this algorithm may be threatened by timing attacks [11] for not being run in
constant time. Therefore, hashing into an algebraic curve in a constant number
of operations is significant.

There are various algorithms mapping elements of Fq to an elliptic curve in
deterministic polynomial time. Shallue and Woestijne’s algorithm [12] is based
on Skalba’s equality [14] and uses a modification of Tonelli–Shanks algorithm for
computing square roots efficiently as x1/2 = x(q+1)/4 when q ≡ 3 (mod 4). Icart
[13] in Crypto 2009 proposed an algorithm based on finding cube roots efficiently
as x1/3 = x(2q−1)/3 when q ≡ 2 (mod 3). Both algorithms encode an element
of a finite field into Weierstrass-form elliptic curves. Later, Fouque, Joux and
Tibouchi introduced an injective encoding to elliptic curves [15].

There are some methods of hashing into hyperelliptic curves [16,17]. Their
main idea is to compute square roots. Fouque and Tibouchi [18] gave the brief
version of Ulas’ function [16]. Later, hashing into Hessian curves [19] and Mont-
gomery curves [20] were proposed. Alasha [21] proposed deterministic encodings
into Jacobi quartic curves, Edwards curves and Huff elliptic curves based on cal-
culating a cube root. A hash function from plaintext to C34-curves is constructed
in [22] by finding a cube root.

Jacobi quartic curves [23], one type of elliptic curves, are widely used for
efficient arithmetics and immunity to timing attacks. The order of group of
rational points on Jacobi quartic curves is divisible by 2 [24,25]. Jacobi quartic
curves can provide a larger group than Huff elliptic curves, Montgomery-form
elliptic curves, Hessian curves and Edwards curves. The pairing computation of
Jacobi quartic curves were well studied in [26,27].

We propose two deterministic encodings directly from finite fields to Jacobi
quartic curves: Shallue-Woestijne-Ulas (SWU) encoding and cube root encoding.
SWU encoding is based on Skalba’s equality [14]. Its main operation is finding
a square root. Since SWU encoding has two variables, we analyze brief SWU
encoding having only one variable. It costs two field squarings less than bira-
tional equivalence from Weierstrass curve to Jacobi quartic curves composed
with Fouque and Tibouchi’s brief version [18] of Ulas’ function [16]. We esti-
mate the character sum of any non-trivial character defined over Jacobi Quartic
curves through brief SWU encoding. Cube root encoding is based on finding
a cube root. It saves one field inversion compared with birational equivalence
from Weierstrass curves to Jacobi quartic curves composed with Icart’s function
at the cost of four field multiplications and one field squaring. It saves one field
inversion compared with Alasha’s encoding at the cost of one field multiplication
and two field squarings. We give the size of images of this hash function and also
estimate the relevant character sum through cube root encoding.
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We do experiments over 192-bit prime field FP192 and 384-bit prime field
FP384 recommended by NIST in the elliptic curve standard [28]. All elements
in both fields have a unique square root and a unique cube root. On FP192,
our cube root encoding saves 23.8 % running time compared with birational
equivalence composed with Ulas’ function, 21.7 % with birational equivalence
composed with Fouque and Tibouchi’s brief version of Ulas’ function, 20.2 %
with our brief SWU encoding, 5 % with birational equivalence composed with
Icart’s function and 5.8 % with Alasha’s work. On FP384, Cube root encoding is
also fastest among these deterministic encodings, but saves less than on FP192.

Based on these two encodings, we construct two hash functions from mes-
sages into Jacobi quartic curves. Moreover, we provide new efficient functions
indifferentiable from a random oracle based on these encodings.

This paper is organized as follows. In Sect. 2, we recall some basics about
Jacobi quartic curves. In Sect. 3, we propose SWU encoding, brief SWU encoding
and construct a hash function based on brief SWU encoding, and estimate its
character sum. In Sect. 4, we give a cube root encoding, construct a hash function
based on cube root encoding, estimate its character sum, and give the size of
images of this hash function. In Sect. 5, two efficient functions indifferentiable
from a random oracle are constructed. Section 6 gives the time complexity of
these algorithms and the experimental results. Section 7 concludes the paper.

2 Jacobi Quartic Curves

Jacobi quartic curves, which are Jacobi quartic form elliptic curves, were first
introduced to cryptography by Billet and Joye [23] for their efficient group law.

Let Fq be a finite field of odd characteristic. Jacobi quartic curves, defined
over Fq, can be written as

Ea,d : y2 = dx4 + 2ax2 + 1,

where a, d ∈ Fq with d a non-quadratic residue. The discriminant of Ea,d is
Δ = 256(a2 − d)2 �= 0, and the j-invariant is 64(a2+3d)3

d(a2−d)2 . ECC-standards [28]
recommend that for cryptographic applications the cofactor of the elliptic curve
should be no greater than four, which Jacobi quartic curves can supply.

Next we present the group law of Jacobi quartic curves.

Group Law

1. Identity: O = (0, 1): ∀ P ∈ E(Fq), P + O = O + P = P .
2. Negative point: if P = (x, y) ∈ E(Fq), then (x, y) + (−x, y) = O, denote the

negative of P is −P = (−x, y), and −O = O.
3. Unified point-addition formulae: let P1 = (x1, y1), P2(x2, y2) ∈ E(Fq), P1 �=

−P2, then P1 + P2 = (x3, y3), where

x3 = x1y2+y1x2
1−dx2

1x2
2

,

y3 = (y1y2+2ax1x2)(1+dx2
1x2

2)+2dx1x2(x
2
1+x2

2)

(1−dx2
1x2

2)
2 .
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Its group law is efficient and resistant to timing attacks. (0,−1) is the point
of order 2.

Wang et al. [26] provided a nice geometric explanation of this law and comes
to a way to compute the pairing on Jacobi quartic curves. Duquesne and Fouotsa
[27] gave a more efficient computation of pairing.

Next, our deterministic encodings will be given.

3 SWU Encoding

Ulas’ achievement [16], constructing rational points on y2 = xn + ax2 + bx, is
used to construct our deterministic encoding.

3.1 SWU Encoding

We construct the deterministic encoding from Fq to g(s) = s(s2−4as+4a2−4d).
g(s) is an intermediate variable for the convenience of constructing encoding to
Jacobi quartic curves.

Let u be an element of a finite field Fq and

X1(u, r) = r,

X2(u, r) =
(a2 − d)[u2g(r) − 1]

au2g(r)
,

X3(u, r) = u2g(r)X2(u, r),
U(u, r) = u3g(r)2g(X2(u, r)),

then
U(u, r)2 = g(X1(u, r))g(X2(u, r))g(X3(u, r)). (1)

From Eq. (1), at least one of g(X1(u, r)), g(X2(u, r)), g(X3(u, r)) is a quadratic
residue. Thus, one of X1(u, r),X2(u, r),X3(u, r) is the abscissa of a point on the
curve t2 = g(s). If g(X1(u, r)) is a quadratic residue, then s = X1(u, r), t =
−√

g(X1(u, r)), else if g(X2(u, r)) is a quadratic residue, then s = X2(u, r), t =√
g(X2(u, r)), else s = X3(u, r), t = −√

g(X3(u, r)).
Let

x = 2t
(s−2a)2−4d ,

y = s2−4(a2−d)
(s−2a)2−4d .

If q ≡ 3 (mod 4),
√

x is simply an exponentiation x
1
2 = x

q+1
4 . This map,

u �→ (x, y), is called an SWU map and denoted by f0, whose main operation
is to compute square roots (see [12,16]). Substitute x, y of f0 into the Jacobi
quartic equation y2 = dx4 + 2ax2 + 1, then t2 = s(s2 − 4as + 4a2 − 4d). Thus, x
and y satisfy the Jacobi quartic equation. We simplify f0 in the following.
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3.2 Brief SWU Encoding

Note that the value of r is not required to be known in computing X2, X3 and
U ; indeed, these only depend on g(r). For this reason, r does not have to be
explicitly computed and we can take g(r) = −1. −1 is a quadratic non-residue
when q ≡ 3 (mod 4). Even if the value of r does not necessarily exist in Fq, it
exists in Fq3 . With this value of r, Eq. (1) is still correct. Rewriting the SWU
maps as a single variable with g(r) = −1 gives the following maps.

X2(u) =
(a2 − d)(u2 + 1)

au2
,

X3(u) =
−(a2 − d)(u2 + 1)

a
= −u2X2(u),

U(u) = u3g(X2(u)).

Thus
U(u)2 = −g(X2(u))g(X3(u)). (2)

Therefore either g(X2(u)) or g(X3(u)) must be a quadratic residue. This
leads to the simplified SWU encoding.

If g(X2(u)) is a quadratic residue, then s = X2(u), t =
√

g(X2(u)), else
s = X3(u), t = −√

g(X3(u)). Then

x = 2t
(s−2a)2−4d ,

y = s2−4(a2−d)
(s−2a)2−4d .

Denote the map u �→ (s, t) by ρ, and denote (s, t) �→ (x, y) by ψ, we call the
composition f1 = ψ ◦ r brief SWU encoding. X2(t) has at most two solutions,
and X3(t) has at most two solutions (deg X3(t) = 2). Therefore a point has at
most four pre-images.

We estimate the character sum of any non-trivial character defined over
Jacobi Quartic curves through brief SWU encoding.

3.3 Character Sum

Definition 1 (Character Sum). Suppose f is an encoding from Fq into an
elliptic curve E, and J(Fq) denotes the Jacobian group of E, χ is a character of
J(Fq). We define the character sum

Sf (χ) =
∑

s∈Fq

χ(f(s)).

And we say f is B-well-distributed if for any nontrivial character χ of J(Fq),
the inequality |Sf (χ)| � B

√
q holds.
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Lemma 1 (Corollary 2, [30]). If f : Fq → E(Fq) is a B-well-distributed encod-
ing into a curve E, then the statistical distance between the distribution defined
by f⊗s on J(Fq) and the uniform distribution is bounded as:

∑

D∈J(Fq)

|Ns(D)
qs

− 1
#J(Fq)

| � Bs

qs/2

√
#J(Fq),

where
f⊗s(u1, . . . , us) = f(u1) + . . . + f(us),

Ns(D) = #{(u1, . . . , us) ∈ (Fq)s|D = f(u1) + . . . + f(us)},

i.e., Ns(D) is the size of preimage of D under f⊗s. In particular, when s is
greater than the genus of E, the distribution defined by f⊗s on J(Fq) is sta-
tistically indistinguishable from the uniform distribution. Especially, the hash
function construction

m �→ f⊗s(h1(m), . . . , hs(m)) (s = gE + 1)

is indifferentiable from a random oracle if h1, . . . , hs are seen as independent
random oracles into Fq(See [30]).

Hence, it is of great importance to calculate the encoding into a curve, and we
will study the case of Jacobi Quartic curves.

Definition 2 (Artin Character). Let E be an elliptic curve, E(Fq) be Jaco-
bian group of E. Let χ be a character of E(Fq). Its extension is a multiplicative
map χ̄ : DivFq

(E) → C,

χ̄(n(P )) =

{
χ(P )n, P ∈ S,

0, P �∈ S.

Here P is a point on E(Fq), S is a finite subset of E(Fq), usually denotes the
ramification locus of a morphism Y → X. Then we call χ̄ an Artin character
of X.

Theorem 1 [Theorem 3 of [30]]. Let h : X̃ → X be a nonconstant morphism
of projective curves, and χ be an Artin character of X. Suppose that h∗χ is
unramified and nontrivial, ϕ is a nonconstant rational function on X̃. Then

|
∑

P∈X̃(Fq)

χ(h(P ))| � (2g̃ − 2)
√

q

and

|
∑

P∈X̃(Fq)

χ(h(P ))
(

ϕ(P )
q

)
| � (2g̃ − 2 + 2deg ϕ)

√
q,

where
( ·

q

)
denotes Legendre symbol, and g̃ is the genus of X̃.
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Let S = {0}⋃{roots of g(Xj(u)) = 0, j = 2, 3} where Xj(u) = 0, j = 2, 3 are
defined as in Sect. 3.2. For any u ∈ Fq\S, X2(u) and X3(u) are both well defined
and nonzero. Let Cj = {(u, s, t) ∈ F̄

3
q|s = Xj(u), t = (−1)j

√
g(Xj(u))}, j = 2, 3

be the smooth projective curves. There exists a one-to-one map Pj : u �→ (u, s, t)
from Fq to Cj(Fq) where ρ(u) = (s, t). Let hj be the projective map on Cj

satisfying ρ(u) = hj ◦ Pj(u), Sj = Pj(S ∪ {∞}).

Theorem 2. Let f1 be a map from Fq to Ea,d defined as Eq. (2). For any
nontrivial character χ of Ea,d(Fq), the character sum Sf1(χ) satisfies:

Sf1(χ) � 52
√

q + 65. (3)

Proof. Sf1(χ) can be estimated as

Sf1(χ) =

∣
∣
∣
∣
∣
∣

∑

u∈Fq\S

(f∗
1χ)(u) +

∑

u∈S

(f∗
1χ)(u)

∣
∣
∣
∣
∣
∣

�

∣
∣
∣
∣
∣
∣

∑

u∈Fq\S

(f∗
1χ)(u)

∣
∣
∣
∣
∣
∣
+ #S,

we observe that

∣
∣
∣
∣
∣
∣

∑

u∈Fq\S

(f∗
1χ)(u)

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣
∣
∣
∣

∑

P∈C2(Fq)\S2

( t(P )
q )=1

(h∗
2ψ

∗χ)(P ) +
∑

P∈C3(Fq)\S3

( t(P )
q )=−1

(h∗
3ψ

∗χ)(P )

∣
∣
∣
∣
∣
∣
∣
∣
∣

� #S2 + #S3 +

∣
∣
∣
∣
∣
∣
∣
∣
∣

∑

P∈C2(Fq)

( t(P )
q )=1

(h∗
2ψ

∗χ)(P )

∣
∣
∣
∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣
∣
∣
∣

∑

P∈C3(Fq)

( t(P )
q )=−1

(h∗
3ψ

∗χ)(P )

∣
∣
∣
∣
∣
∣
∣
∣
∣

,

and

2

∣
∣
∣
∣
∣
∣
∣
∣
∣

∑

P∈C2(Fq)

( t(P )
q )=1

(h∗
2ψ

∗χ)(P )

∣
∣
∣
∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣

∑

P∈C2(Fq)

(h∗
2ψ

∗χ)(P ) +
∑

P∈C2(Fq)

(h∗
2ψ

∗χ)(P ) ·
(

t(P )
q

)
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−
∑

( t(P )
q )=0

(h∗
2ψ

∗χ)(P )
∣
∣
∣
∣

�
∣
∣
∣
∣

∑

P∈C2(Fq)

(h∗
2ψ

∗χ)(P )
∣
∣
∣
∣ +

∣
∣
∣
∣

∑

P∈C2(Fq)

(h∗
2ψ

∗χ)(P ) ·
(

t(P )
q

) ∣
∣
∣
∣

+ #{roots of g(X2(u)) = 0}.

From the covering ψ ◦ h2 : C2 → Ea,d, X2(u) = s ◦ ψ−1(x, y), which implies

T (u) =
(
ya2 + d + 3 a2 − yd

)
u4 +

(−2 a2 + 2 d − 2 ya2 − 2 yd
)
u2

+ (y − 1)
(
a2 − d

)

= 0.

Ramifications occur when disc(T (u)) = 0. Then y ∈
{

±
√

−d(a2−d)

d ,−d+3 a2

a2−d , 1
}

.

When y = 1, ψ◦h2 has ramification index 2; when y ∈
{

±
√

−d(a2−d)

d ,−d+3 a2

a2−d

}
,

ψ ◦ h2 is of ramification type (2, 2). By Riemann-Hurwitz formula,

2gC2 − 2 = 0 + 2 · 1 + 2 · 2 + 2 · 2 + 2 · 2 = 14.

Hence curve C2 is of genus 8. Similarly, C3 is also of genus 8.
Observe that deg t = [Fq(s, t, u) : Fq(t)] = [Fq(s, t, u) : Fq(s, t)][Fq(s, t) :

Fq(t)] = 4 · 3 = 12. Furthermore,
∣
∣
∣
∣
∑

P∈C2(Fq)
(h∗

2ψ
∗χ)(P )

∣
∣
∣
∣ � (2gC2 − 2)

√
q =

14
√

q,

∣
∣
∣
∣
∑

P∈C2(Fq)
(h∗

2ψ
∗χ)(P ) ·

(
t(P )

q

) ∣
∣
∣
∣ � (2gC2 − 2 + 2deg t)

√
q = 38

√
q, and

g(X2(u)) = 0 is sextic polynomial, we can derive
∣
∣
∣
∣
∣
∣
∣
∣
∣

∑

P∈C2(Fq)

( t(P )
q )=+1

(h∗
2ψ

∗χ)(P )

∣
∣
∣
∣
∣
∣
∣
∣
∣

� 26
√

q + 3.

Similarly,

∣
∣
∣
∣
∣
∑

P∈C3(Fq)

( t(P )
q )=−1

(h∗
3ψ

∗χ)(P )

∣
∣
∣
∣
∣
� 26

√
q + 3.

Hence |Sf1(x)| � 52
√

q + 6 + #S2 + #S3 + #S. Since g(X2(u)) = 0 and
g(X3(u)) = 0 have 2 common roots, then #S � 1 + 6 + 6 − 2 = 11. Thus
#Sj � 2(#S + 1) � 24. Then |Sf1(x)| � 52

√
q + 65.

|Sf1(x)| � 52
√

q + 65 implies that f1 is well-distributed (the definition of well-
distributed encoding refers to [30]).

Next, we will prove that the construction H1(m) = f1(h(m)) is a hash func-
tion when h is a classical hash function.
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3.4 One-Wayness

One-wayness is defined as follows.

Definition 3. A hash function h is (t, ε) one-way, if any algorithm without
precomputation running in time t, when given a random y ∈ im(h) as input,
outputs m such that h(m) = y with probability at most ε. If ε is negligible for
any polynomial time t in the security parameter, then the hash function h is
one-way.

Proposition 1. If h is a (t, ε) one-way function, then H1 is (t′, ε′) one-way
where H1(m) = f1(h(m)), ε′ = 16ε and t′ is a polynomial expression of t.

Proof. Each point has at most L = 4 different preimages through f1. L is a
polynomial in the security parameter and h is one way. The main idea of this
proof, similar to [13], is to reduce the argument that H1 is not one-way to
absurdity when h is one-way. Taking L = 4 in the proof of Lemma 5 in [13],
ε′ = L2ε = 16ε and t′ is a polynomial expression of t.

If ε is negligible, then ε′ = 16ε also can be negligible. Then if h is one-way, H1

is one-way. Next, we prove that the construction H1(m) = f1(h(m)) is collision-
resistant where h is collision-resistant.

3.5 Collision-Resistance

The definition of collision-resistance is:

Definition 4. A family H of hash functions is (t, ε) collision-resistant if any
algorithm running in time t when given a random h ∈ H, outputs m and m′ s.t.
h(m) = h(m′) with probability at most ε. If ε is negligible for any polynomial
time t in the security parameter, then H is collision-resistant.

Proposition 2. If H : {0, 1}∗ → {0, 1}k is a (t, ε) collision-resistant, then H ′
1 is

a (t′, ε′) collision-resistant hash function where H ′
1(m) = f1(c ·h(m)+d), h ∈ H

for c, d ∈ Fq selected randomly, ε′ = ε + 22k+2

q , and t′ is a polynomial expression
of t.

Proof. Each point has at most L = 4 different preimages through f1. The main
idea of this proof, similar to [13], is to reduce the argument that H1 is not
collision-resistant to absurdity when H is collision-resistant. Using Theorem 3
[13] for L = 4, ε′ = ε+L 22k

q = ε+ 22k+2

q and t′ is a polynomial expression of t.

When ε is chosen as 2−k, then ε′ is approximately 5 × 2−k when the size of
q is at least 3k bits. If ε is negligible, then ε′ = 5ε also is negligible. Thus, if h
is collision-resistant, H ′

1 is collision-resistant. When ε = 2−k, the size of q is at
least 3k bits, setting c = 1 and d = 0, H1(m) = f1(h(m)) is collision-resistant.

Thus we have proven that the construction H1(m) = f1(h(m)) is a hash
function when h is a classical hash function.
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4 Cube Root Encoding

When q = pn ≡ 2 (mod 3), the function x �→ x3 is a bijection with inverse
function

x �→ x
1
3 = x

2pn−1
3 = x

2q−1
3 .

Based on this bijection, our cube root encoding f2(u) = (x, y) is constructed
from Fq to Jacobi quartic curve, where

x =
2α

uα + β
,

y =
2α2(α − 2a)
(uα + β)2

− 1, (4)

α =
4a + u2

3
+ 3

√

β2 −
(

4a + u2

3

)3

,

β =
4(a2 − d) − 3

(
4a+u2

3

)2

2u
. (5)

Notice that in Eq. (4), y = x2

2 (α−2a)−1. Substitute it into the Jacobi quartic
equation y2 = dx4 +2ax2 +1, then x4(α−2a)2 −4αx2 = 4dx4. When x = 0, the
Eq. (4) is right. When x �= 0, it is easy to check that x2(α − 2a)2 − 4α = 4dx2.
Thus, x and y satisfy the Jacobi quartic equation. 4a+u2

3 shows up repeatedly in
the representation of α, β to construct the encoding using a cube root.

4.1 Properties of Cube Root Encoding

Lemma 2. Let P (x, y) be a point on the curve Ea,d. The solutions us of f2(u) =
P are the solutions of the polynomial equation

Q(u;x, y) = x3u4 − 4x(ax2 + 3y + 3)u2 + 24(ax2 + y + 1)u + 4x3(a2 + 3d) = 0.

Proof. Let α and β be defined in Eq. (5).
{

y2 = dx4 + 2ax2 + 1
x3u4 − 4x(ax2 + 3y + 3)u2 + 24(ax2 + y + 1)u + 4x3(a2 + 3d) = 0

⇔
⎧
⎨

⎩

y2 = dx4 + 2ax2 + 1

x3

[
4(a2 − d) − 3

(
4a+u2

3

)2
]

= 4u(2 − xu)(ax2 + y + 1)

⇔
{

y2 = dx4 + 2ax2 + 1
x3β = 2(2 − xu)(ax2 + y + 1)

⇔
{

y2 = dx4 + 2ax2 + 1
xβ

2−xu = 2a + 2(y+1)
x2

⇔
{

x = 2α
uα+β

x3β = 2(2 − xu)(ax2 + y + 1)
⇔

{
x = 2α

uα+β

y = 2α2(α−2a)
(uα+β)2 − 1
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H2(m) = f2(h(m)) is a hash function if h is a classical hash function whose
proof is the same as H1.

Also, we construct a projective curve Ra,d = {(u, x, y)|(x, y) ∈ Ea,d,
Q(u;x, y) = 0} and a natural morphism from Ra,d onto Ea,d.

4.2 The Genus of Ra,d

To find the genus of the curve Ra,d, we have to calculate the number of ramifi-
cation points. Note that the discriminant of Q(u; x, y) is

D(x, y) = disc(Q(u;x, y)) = −212 · 32x6((−72x8d2 − 36 ax6d + 108x4d

+540 a2x4 + 648 ax2 + 216 − 96x10d2a − 192 a2x8d + 124 a3x6

−32 a3x10d + 8 a4x8)y + 216 + 864 ax2 − 174 a2x8d + 288 ax6d (6)
−144 a3x10d − 240x10d2a − 64x12d2a2 + 1080 a2x4 + 51 a4x8

+216x4d − 45x8d2 − 48x12d3 + 448 a3x6 − 16 a4x12d).

Then the curve ramifies if and only if Eq. (6) vanishes. If x �= 0, then we
represent y in Eq. (6) by x and substitute it into y2 − dx4 − 2ax2 − 1 = 0, and
get an equation of x with degree 12. Each x corresponds a point (x, y) on curve
Ea,d. Hence there are 12 distinct branch points on Ea,d. If Q(u; x, y) has a triple
root, then ⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ea,d = 0
Q(u;x, y) = 0
d

du
Q(u;x, y) = 0

d2

du2
Q(u;x, y) = 0.

This branch point has a solution if and only if 4 a6−45 da4+270 d2a2+27 d3 = 0.
Thus, all 12 branch points have ramification index 2. By Riemann-Hurwitz

formula:
2gRa,d

− 2 = 4(2 · 1 − 2) + 12(2 − 1),

hence gRa,d
= 7.

4.3 Calculating Character Sums on the Curve Ra,d

Theorem 3. Let f2 be a map from Fq to Ea,d defined as Eq. 4. For any non-
trivial character χ of Ea,d(Fq), the character sum Sf2(χ) satisfies:

Sf2(χ) � 12
√

q + 3. (7)

Proof. Let K = F (x, y) be the function field of curve Ea,d, andL = K[u]/
(Q(u;x, y)). For field inclusions Fq(u) ⊂ L and K ⊂ L, we construct birational
maps ς : Ra,d → P

1(Fq) and τ : Ra,d → Ea,d. Then ς is a bijection and f2(u) =
τ ◦ ς−1(u).
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Since curve Ra,d is of genus 7, by Theorem 1, we have

|Sf2(χ) +
∑

P∈C(Fq),s(P )=∞
χ ◦ h(P )| = |

∑

P∈C(Fq)

χ ◦ h(P )| � (2 · 7 − 2)
√

q = 12
√

q.

When x �= 0, it can be checked that Q(u;x, y) has 4 finite roots. When x = 0,

substitute v =
1
u

into Q(u;x, y), then we have 48v3 = 0. Since q > 3 and q is

odd, then v3 = 0, which implies u has exactly 3 poles on Ra,d.
Thus Sf (χ) � 12

√
q + 3.

Since Sf (χ) � 12
√

q + 3, then f2 is well-distributed.
Let F be the algebraic closure of Fq, K = F (x, y) be the function field of

curve Ea,d, L be the function field of Ra,d. Next, we study Galois group of field
extension L/K.

4.4 Galois Group of Field Extension L/K

To estimate the size of the image of f2, the structure of Gal(L/K) should be
investigated.When L/K is a quartic extension, in [32], Gal(L/K) = S4 if and
only if

1. Q(u;x, y) is irreducible over K;
2. let C(u;x, y) be the resolvent cubic of Q(u;x, y), then C(u; x, y)is irreducible

over K;
3. the discriminant of C(u;x, y) is not a square in K.

Hence, we only need to prove Lemmas 3, 4 and 5.

Lemma 3. The polynomial Q(u;x, y) is irreducible over K.

Proof. Let σ be the nontrivial Galois automorphism in Gal(F (x, y)/F (x)), which
maps y to −y. We only need to show that Q̃(u;x) = Q(u; x, y) · Q(u; x, y)σ is
irreducible over F (x).

Q̃(u;x) = x6u8 − 8x4(x2a + 3)u6 + 48x3(x2a + 1)u5 + 24x3(x3a2 − 5x3d + 4xa

−12 a)u4 − 192x2(x3a2 − 3x3d + 4xa − 6 a)u3 − 32x(3 ax5d + a3x5

+27x3d − 15x3a2 − 36xa + 36 a)u2 + 192x3(x2a + 1)(a2 + 3 d)u

+16x6(a2 + 3 d)2. (8)

Suppose that Q̃(u;x) is reducible over F (x). Note that Q̃(u; x) can be rep-
resented as

(24u4a2 + 96 a2d − 8u6a − 120u4d + u8 − 96u2ad − 32u2a3 + 16 a4 + 144 d2)x3

+ 48u(u4a − 4u2a2 + 12u2d + 12 ad + 4 a3)x2 + 24u2(−u4 − 8 au2 + 20 a2

− 36 d)x + 48u(u4 + 8 au2 + 4 a2 + 12 d). (9)
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If Q̃(u;x) has an irreducible factor G ∈ F [u], then G is a common factor of all
coefficients of Eq. (9). If a2 +3d = 0, then u is a factor of Q̃(u; x) and is a factor
of Q(u;x, y). Since gcd(−u4 −8au2 +20a2 −36d, u4 +8au2 +4a2 +12d) = 1, if u
is not a common factor, then all coefficients of Eq. (9) do not have any common
factor. Thus Q̃(u;x) has not a factor in F [u].

Otherwise, Q̃(u;x) has a factor G ∈ F [u, x] with deg(G, x) = 1. We suppose
that Q̃(u;x) = (Ax + B) · (Zx2 + Dx + E) = AZx3 + (AD + BZ)x2 + (AE +
BD)x + BE,A,B,Z,D,E ∈ F [u]. Let v(H) be the lowest degree of H ∈ F [u].
We have
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

v(A) + v(Z) = 0
v(B) + v(E) = 1
min(v(A) + v(D), v(B) + v(Z)) = 1 or v(A) + v(D) = v(B) + v(Z) < 1
min(v(A) + v(E), v(B) + v(D)) = 2 or v(A) + v(E) = v(B) + v(D) < 2,

which lead to a contradiction for no value satisfies these conditions.

Lemma 4. The resolvent cubic C(u;x, y) is irreducible over K.

Proof. The resolvent cubic of Q(u;x, y) is

C(u;x, y) = u3x6 + 4x4
(
x2a + 3 y + 3

)
u2 − 16x6

(
a2 + 3 d

)
u − 1152 x2a

−576 y2 − 1152 y − 576 − 768 a2x4 − 192 ax6d − 64 a3x6 (10)
−192 ya2x4 − 1152 x2ay − 576 ydx4 − 576x4d

Similar to Lemma 3, we need to show C̃(u; x) = C(u; x, y) · C(u; x, y)σ is
irreducible over F (x). We have

C̃(u;x) = x6 · ((16 a2 + 8ua − 144 d + u2)(48 d + 16 a2 − u2)2x6 + 24 (48 d + 16 a2

−u2 · (64 a3 + 64 a2u + 8 au2 − 1344 ad − u3 + 96 du)x4 + (−4608u3a

−331776 d2 + 73728ua3 + 221184uda + 23040u2a2 + 13824u2d

−1990656 da2 − 36864 a4)x2 − 2304 (−u + 8 a)(48 d + 16 a2 − u2)). (11)

Let z = x2, we firstly show that

(16 a2 + 8ua − 144 d + u2)(48 d + 16 a2 − u2)2z3 + 24 (48 d + 16 a2 − u2) ·
(64 a3 + 64 a2u + 8 au2 − 1344 ad − u3 + 96 du)z2 + (−4608u3a − 331776 d2 +

73728ua3 + 221184uda + 23040u2a2 + 13824u2d − 1990656 da2 − 36864 a4)z −
2304 (−u + 8 a)(48 d + 16 a2 − u2)

is irreducible over F (z).
If it is not irreducible, then it can be written as

(Az + B)(Zz2 + Dz + E) = AZz3 + (AD + BZ)z2 + (AE + BD)z + BE.
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Similar to previous proof, we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

deg(A) + deg(Z) = 6
deg(B) + deg(E) = 3
max(deg(A) + deg(D),deg(B) + deg(Z)) = 5, or

deg(A) + deg(D) = deg(B) + deg(Z) > 5

max(deg(A) + deg(E),deg(B) + deg(D)) = 3, or
deg(A) + deg(E) = deg(B) + deg(D) > 3.

Then deg(A) = deg(B) + 1 and this equation set does not have a solution.
Thus the resolvent cubic C(u;x, y) is irreducible over K.

Lemma 5. The discriminant of C(u;x, y) is not a square in K.

Proof. Let D(x, y) be the discriminant of C(u;x, y).

D(x, y) = −36864x12(135 + 432 y + 4536x2 + 370244x6 + 1052079x8

−13720x12 + 11340 yx2 + 852012x10 + 58842x4 + 6804x2y2 − 2268x2y3

−2268x2y4 + 383572x6y + 425516x8y + 26082x4y2 − 43120 y2x8

−10192x6y2 − 23520x6y3 + 54880 yx10 + 102564 yx4 − 20160 y3x4

−2520 y4x4 + 378 y2 − 297 y4 − 108 y5 − 108 y3).

We only need to show that

D̃(x) =
D(x, y) · D(x, y)σ

(−36864x12)2

is not a square over F (x). Let z = x2, D̃(x) can be represented as

z6 · (a2 − d)2 · a2 · (256A2a6 (3A + 1)2 z6 + 3072A2a5 (3A + 1) z5

− 96 a4A
(−72A + 9A2 + 7

)
z4 − 32 a3

(
459A2 + 4 + 273 A

)
z3

− 27 a2
(
1174 A + 53 + 309A2

)
z2 − 864 a (5 + 27A) z − 1728 − 5184 A),

where A =
d

a2
.

Then D̃ is a square only if it can be represented as (z3(a2 − d) · a)2 · (Uz3 +
V z2 + Rz + S)2 which is impossible. Hence D(x, y) is not a square.

Summarize Lemmas 3, 4 and 5, we directly deduce:

Theorem 4. Gal(L/K) = S4.
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4.5 Calculating the Size of the Images of f2

Applying Chebotarev density theorem to Jacobi Quartic curves, we give the size
of images of f2.

Theorem 5 (Chebotarev [18]). Let K be an extension of Fq(x) of degree n <
∞ and L a Galois extension of K of degree m < ∞. Assume Fq is algebraically
closed in L, and fix some subset ϕ of Gal(L/K) stable under conjugation. Let
s = #ϕ and N(ϕ) the number of places v of K of degree 1, unramified in L,

such that the Artin symbol
(

L/K

v

)
(defined up to conjugation) is in ϕ. Then

|N(ϕ) − s

m
q| � 2s

m
((m + gL) · q1/2 + m(2gK + 1) · q1/4 + gL + nm)

where gK and gL are genera of the function fields K and L.

we calculating the size of the images of f2 in Theorem 6.

Theorem 6.

|#Im(f2) − 5
8
#Ea,d(Fq)| <

5
4
(31q1/2 + 72q1/4 + 65).

Proof. K is the function field of Ea,d and is the quadratic extension of Fq(x).
Hence [K : Fq(x)] = 2, and the genus of K is 1 for the genus of elliptic curve is 1.
Gal(L/K) = S4, hence m = #S4 = 24. ϕ is the subset of Gal(L/K) consisting at
least 1 fixed point, which are conjugates of (1)(2)(3)(4), (12)(3)(4) and (123)(4),
then s = 1 + 6 + 8 = 15. Since the place v of K of degree 1 correspond to the
projective unramified points on Ea,d(Fq), hence |#Im(f2) − N(ϕ)| ≤ 12, where
12 represents the number of ramified points. Then we have

|#Im(f2) − 5
8
q| � |#Im(f) − N(ϕ)| + |N(ϕ) − 5

8
q|

� 12 +
5
4
(31q1/2 + 72q1/4 + 55)

<
5
4
(31q1/2 + 72q1/4 + 65).

5 Indifferentiable from Random Oracle

5.1 First Construction

As a consequence of the proof of random oracle, if f : S → G is any weak encoding
[29] to a cyclic group G with generator G, the hash function HR : {0, 1}∗ → G

is defined by
HR(m) = f(h1(m)) + h2(m)G,

where h1 : {0, 1}∗ → Fp and h2 : {0, 1}∗ → ZN are two hash functions. HR(m) is
indifferentiable from a random oracle in the random oracle model for h1 and h2.
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If we want to prove HRi
(m) = fi(h1(m)) + h2(m)G, i = 1, 2, are both

indifferentiable from a random oracle in the random oracle model for h1 and h2,
we only need to prove f1, f2 are both weak encodings. From the definition of weak
encoding [29], f1 is an α1-weak encoding from Fq to Ea,d(Fq), with α1 = 8N/q,
where N is the order of Ea,d(Fq). Similarly, f2 is an α2-weak encoding from Fq

to Ea,d(Fq), with α2 = 4N/q. As α1, α2 are polynomial functions of the security
parameter, f1, f2 are both weak encodings. Thus,

HRi
(m) = fi(h1(m)) + h2(m)G, i = 1, 2 (12)

are both indifferentiable from a random oracle in the random oracle model for h1

and h2. For more details about hash function indifferentiability from a random
oracle, we refer the interested reader to [29,30].

5.2 Second Construction

The second construction is :

HR′
i
(m) = fi(h1(m)) + fi(h2(m)), i = 1, 2.

Using [30]’s Corollary 2: fi is well-distributed encoding, then HR′
i
(m) are

well-behaved i.e. HR′
i
(m) is indifferentiable from a random oracle.

In Sects. 3.3 and 4.3, we have proved that f1, f2 are both a well distributed
encodings. Then HR′

i
(m), i = 1, 2 are both indifferentiable from a random oracle,

where h1, h2 are regarded as independent random oracles with values in Fq.

6 Time Complexity

For the convenience of making comparisons, we first introduce a birational map
which is based on the map in [25] and show that the curve Ea,d is birationally
equivalent over Fq to the Weierstrass curve

EW : v2 = u3 − 4
3
(a2 + 3d)u +

16a

27
(a2 − 9d), (13)

via maps

φ : Ea,d → EW :

(x, y) �→ (u, v) =
(

2dx2 + 2a(1 + y)
y − 1

− 4a

3
,
4a(dx2 + 2a) − 4d(1 − y)

(1 − y)2
x

)
,

ψ : EW → Ea,d :

(u, v) �→ (x, y) =
(

2v

(u − 2a/3)2 − 4d
,
(u + 4a/3)2 − 4(a2 − d)

(u − 2a/3)2 − 4d

)
. (14)



Hashing into Jacobi Quartic Curves 371

6.1 Theoretical Analysis of Hash

The hash functions Hi(m) = fi(h(m)), i = 1, 2 require the calculation of fi and
a classical hash function h. When comparing Hi, we only need to compare fi.

Let M denote field multiplication, S field squaring, I field inversion, E a
modular exponent in a finite field, EC the cube root, ES the square root, D
a determination of the square residue, and K the security parameter. Suppose
that a is a small integer in the Jacobi quartic curve equation. We make the
assumptions that S = M , I = 10M , and EC = ES = E for EC and ES both
need calculating a modular exponent.

The cost of f1 can be computed as following:

1. Compute u2 for an S, and that is enough to compute X3(u).
2. When computing X2(u), we find the inverse of u2 and multiply by −X3(u),

for additional M + I.
3. Note that since g(s) = s(s2 − 4as + 4a2 − 4d), computing g(s) takes M + S.

Computing g(X2(u)) and g(X3(u)) costs 2M + 2S.
4. One of the two is a quadratic residue, but we only need to check one, which

adds a D, then take square root ES of whichever is the square. Then we now
have new variables s, t.

5. We compute the inverse of (s − 2a)2 − 4d, which requires I, for s2 and a · s
have computed in g(s).

6. Finally, x is 2t times that inverse, while y is s2 − 4(a2 − d) times the inverse,
which adds 2M for s2 have computed in g(s).

Thus, f1 costs 2I + ES + 5M + 3S + D = E + 28M + D. f2 can be computed as

uβ =
4(a2 − d) − 3

(
4a+u2

3

)2

2
2S

uα = u
4a + u2

3
+ 3

√

u(uβ)2 −
(

u
4a + u2

3

)3

EC + 3M + 2S

x =
2uα

u(uα) + uβ
=

uα(2u)
(u(uα) + uβ)u

I + 4M

y =
2(uα)2u(uα − 2au)
(u(uα) + uβ)2u2

− 1 2M + S.

f2 costs I + EC + 9M + 5S = E + 24M .
The parameter of Weierstrass equation EW (Eq. (13)) can be precomputed.

Calculating birational equivalence from Weierstrass curve to Jacobi quartic curves
in Eq. (14) need I + 2M + S. Birational equivalence from Weierstrass curve to
Jacobi quartic curves composed with the Ulas’ function [16], denoted by fUlas,
costs (2I + 2M + S + ES + D) + (I + 2M + S) = 3I + ES + 4M + 2S + D =
E + 36M + D. Fouque and Tibouchi [18] gave the brief version of Ulas’ function,
denoted by fFT , costs (I + 3M + 4S + ES + D) + (I + 2M + S) = 2I + ES +
5M + 5S + D = E + 30M + D. Birational equivalence from Weierstrass curve to
Jacobi quartic curves composed with the Icart’s function [13], denoted by fIcart,
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costs (I + 3M + 3S + EC) + (I + 2M + S) = 2I + EC + 5M + 4S = E + 29M .
Alasha’s work [21] on deterministic encoding into Jacobi quartic curves over Fq

when q ≡ 2 (mod 3), denoted by fAlasha, is shown as

m = u2 − 2b S

v =
3m2 − a

u
I + M + S

s = 3
√

m3 − u2 + 2ab − m EC + M

x =
2(b − s)
us + v

y =
s2 − 2bs + a

a − s2
I + 6M + S.

Total cost is EC + 2I + 8M + 3S.
The cost of different deterministic encodings is summarized in Table 1. fUlas,

fFT , and f1 work over Fq when q ≡ 3 (mod 4). fIcart, fAlasha, and f2 work over
Fq when q ≡ 2 (mod 3).

From Table 1, f1 saves 8 field multiplications compared with fUlas and 2
multiplications compared with fFT . f2 costs 5 field multiplications less than
fIcart and 7 multiplications than fAlasha. Thus, the hash functions constructed
directly into Jacobi quartic curves are more efficient than birational equivalence
from Weierstrass curve to Jacobi quartic curves composed with existing hash
functions into short Weierstrass curves.

6.2 Theoretical Analysis of Random Oracle

The constructions HRi
(m) = fi(h1(m)) + h2(m)G, i = 1, 2 require one hash

function fi(h1(m)) and one scalar multiplication h2(m)G. Because HRi
(m), i =

1, 2 both require calculating h1(m) and h2(m)G, we only need compare fi, which
is the same as analyzing deterministic encodings.

The constructions HR′
i
(m) = fi(h1(m))+fi(h2(m)), i = 1, 2 require two hash

functions fi(hj(m)), j = 1, 2. Because HR′
i
(m), i = 1, 2 both require calculating

h1(m) and h2(m)G, we only need compare fi, which is the same as analyzing
deterministic encodings.

Table 1. Time cost of different deterministic encodings

Deterministic encoding Cost Converted cost

fUlas 3I + ES + 4M + 2S + D E + D + 36M

fFT 2I + ES + 5M + 5S + D E + D + 30M

f1 2I + ES + 5M + 3S + D E + D + 28M

fIcart 2I + EC + 5M + 4S E + 29M

fAlasha 2I + EC + 8M + 3S E + 31M

f2 I + EC + 9M + 5S E + 24M
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Table 2. NIST primes

Prime Value Residue (mod 3) Residue (mod 4)

P192 2192 − 264 − 1 2 3

P384 2384 − 2128 − 296 + 232 − 1 2 3

6.3 Practical Implementations

The running times for the various deterministic encodings into Jacobi quartic
curves is discussed in the following. The implementation has been done on FP192

and FP384 (Table 2).
Miracl lib [31] was used to implement big number arithmetic. The experi-

ments were tested on an Intel Core 2, 2.66G Hz processor. fUlas, fFT , f1, fIcart,
fAlasha, and f2 all ran 1,000,000 times for randomly chosen u on given prime
fields FP192, FP384.

Table 3. Time cost (ms) of different methods on NIST

Prime P192 P384

fUlas 0.449 1.212

fFT 0.437 1.190

f1 0.429 1.180

fIcart 0.360 1.013

fAlasha 0.364 1.018

f2 0.342 0.992

From the average running times of Table 3, f1 is faster than FUlas and fFT .
On FP192, it saves 23.8 % running time compared with fUlas, 21.7 % with fFT ,
20.2 % with f1, 5 % with fIcart, and 5.8 % with fAlasha. On FP384, f2 is also
fastest among these deterministic encodings, but saves less than on FP192.

7 Conclusion

We proposed two deterministic encodings directly from finite field to Jacobi
quartic curves, namely, SWU encoding f0 (its brief version is f1), and cube root
encoding f2. f1 is most efficient in all existed methods working over Fq when
q ≡ 3 (mod 4), and f2 is most efficient when q ≡ 2 (mod 3). In the case q ≡ 11
(mod 12), both f1 and f2 can be applied over Fq and f2 is much faster than f1.

Additionally, Legendre encoding, based on computing Legendre symbols, is
proposed in appendix when the j-invariant of Jacobi quartic curves is 1728. The
Legendre encoding, from a finite field Fq to Jacobi quartic curves y2 = dx4 + 1,
costs ES + 3M + S + D = E + 4M + D when q ≡ 3 (mod 4).
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Abstract. Since the security analysis against stream ciphers becomes
more difficult nowadays, it is urgent and significant to propose new
generic methods. In this work, we introduce guess-and-determine tech-
niques to two traditional analysis methods and make the new approaches
methodological for generalization. We show the power of the new meth-
ods by analyzing two stream ciphers: Grain-v1 and ACORN. Grain-v1 is
one of the finalists selected in the eSTREAM project. We present a time-
memory-data tradeoff attack against Grain-v1 by importing the idea of
conditional sampling resistance based on the k-linear-normality and a
specific guessing path, with the parameters of 261 time online employing
a memory of 271 assuming available keystream of 279 and 281 preprocess-
ing time, which are much better than the best tradeoffs in the single key
and IV pair setting so far. We transform the parameters into cipher ticks,
and all the complexities are lower than 287.4 cipher ticks, which is the
actual complexity of the brute force attack. We also evaluate the security
of another lightweight authenticated cipher ACORN, since there is few
security analysis of the recently submitted cipher to CAESAR compe-
tition. The analysis against this cipher emphasizes on finding the linear
approximations of the output function and the efficiently guessed com-
bination information of the upstate function, and exploiting the integer
linear programming problem as a tool to search the optimal complexity.
Our attack calls for 2157 tests, which estimate the security margin of
ACORN.

Keywords: Guess-and-determine · Time-memory-data tradeoff · Lin-
ear approximation · Stream cipher · ACORN · Grain-v1

1 Introduction

Additive stream ciphers are an important class of data encryption primitives,
whose cores are the pseudo-random keystream generators. They are currently
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used in various aspects of our life, like RC4 on the Internet [25], E0 in Blue-
tooth [9] and A5/1 in GSM communication [10]. Nowadays, the trend of design-
ing stream ciphers becomes exploiting nonlinear components, which increases
the difficulty for analyzing the security of the ciphers using previous traditional
analysis methods. Thus to propose new generic approaches to analyze those
stream ciphers becomes more urgent and necessary. After massive research, we
find that some guess-and-determine techniques seem relatively efficient against
the nonlinear components [5,16]. Hence we try to associate some traditional
analysis methods with guess-and-determine techniques to further analyze such
stream ciphers and make the new methods standard and methodological for
general application. We show the power of the new methods by analyzing two
additive stream ciphers as follows.

Firstly, we present a time-memory-data tradeoff attack against Grain-v1 by
introducing the idea of conditional sampling resistance. Grain-v1 [18] is one of
the three remaining candidates in the final hardware portfolio of the eSTREAM
project [1]. It uses 80-bit key and 64-bit IV, which consists of two combined
registers each has 80-bit state, one NFSR and one LFSR, filtered together by
a non-linear function. Grain-v1 has a compact structure with carefully chosen
tap positions, feedback functions and output function. The feedback function
of NFSR and the filter function make it impossible to take a correlation or a
distinguishing attack in time faster than exhaustive search [4,21]. In [12], a slide
property in the initialization phase was discovered, and later mounted with sev-
eral related-key chosen IV attacks [22]. Recently, a near collision attack against
Grain-v1 was proposed in [28]. Our work described here is a state recovery attack
against Grain-v1 in the single key and IV pair setting using time-memory-data
tradeoffs. Firstly, we extend the concept of k-normality into k-linear-normality
of Boolean functions. Then we combine the k-linear-normality of the filter func-
tion with sampling resistance under the constraints of some state bits, which
makes the sampling resistance much longer, and reduces the searching space
that supports wider tradeoff parameters. We call this kind of sampling resis-
tance as conditional sampling resistance. For Grain-v1, we find a conditional
sampling resistance based on a specific guessing path that by fixing 51 bits
of state constraint conditions and guessing 81 bits more of the internal state,
the remaining 28 bits of the state can be recovered directly using the first 28
keystream output bits generated from the state, which is 10 bits longer than
the sampling resistance given in [8]. According to the conditional sampling resis-
tance, we conduct a time-memory-data tradeoff attack against Grain-v1 with
the parameters of T = 261 table look-up operations employing a memory of
M = 271 dimensions assuming available keystream length of D = 279 and the
preprocessing time of P = 281, which are much better than the best parameters
that T = 271,D = 253.5,M = 271 and P = 2106.5 in the single key and IV pair
setting as far as we know, and the preprocessing time can be controlled much
lower. We also compare our attack with the brute force attack by transform-
ing the parameters into cipher ticks, and our attack calls for 267.3 cipher ticks
online after the pre-computation of 287.3 ticks, given 278.3 bits memory and 279
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keystream bits, while the complexity of brute force attack is actually 287.4 cipher
ticks which is higher than 280. Moreover, each brute force attack can only be
mounted for each fixed IV, while our precomputation can be applied to the sce-
nario with arbitrary IVs. Furthermore, it is a generic approach to analyze stream
ciphers, by bringing the conditional sampling resistance into time-memory-data
tradeoff attacks, based on the k-linear-normality of the output function and
an efficient guessing path. We also put forward the tradeoff curve of our new
time-memory-data tradeoff attacks.

We also present a security evaluation of another stream cipher ACORN.
ACORN is a lightweight authenticated cipher recently proposed by H. Wu [27]
and submitted to CAESAR (Competition for Authenticated Encryption: Secu-
rity, Applicability, and Robustness) [2], which is a new competition following
a long tradition of focus in secret-key cryptography and expecting to have a
tremendous increase in confidence in the security of authentication ciphers. The
structure of ACORN is very clear and it has only 128-bit version at present.
ACORN-128 contains a 293-bit internal state, and is designed to protect up to
264 bits of associated data and 264 bits of plain-text by using a 128-bit secret key
and a 128-bit IV. The authentication tag can be ltag bits, where 64 ≤ ltag ≤ 128,
and the use of a 128-bit tag is recommended by the designer. The designer
requests that in ACORN, each key, IV pair is used to protect only one message
and if verification fails, the new tag and the decrypted ciphertext should not be
given as output, which are in order to use the cipher securely. Since there is no
security analysis against the encryption process of the cipher by the designer and
only one analysis proposed in [23], we present a state recovery attack against
ACORN to assess the security margin of the cipher. Our method focuses on find-
ing the linear approximations of the output function and the efficiently guessed
combination information of the upstate function. Then we exploit the integer lin-
ear programming problem to optimize the tradeoff between using better linear
approximations and adding fewer feedback steps needed to guess. Concretely, we
obtain 265 linear approximation equations and guess 28-bit information, each is
a value of a linear function in the internal state variables. Thus we find a system
of linear equations in the initial state variables of the cipher, and then we solve
the system and deduce the initial state to be verified. The attack calls for 2157

tests, which is better than that for 2164 tests in [23]. This result can be a security
bound of ACORN examined by the method of guess-and-determine attacks so
far. Moreover, it provides some insights on such compact stream ciphers and
can be viewed as a generic way to evaluate the security of such compact stream
ciphers.

This paper is organized as follows. Section 2 contains a time-memory-data
tradeoff attack against Grain-v1 using conditional sampling resistance based a
guessing path. Section 3 presents a security evaluation of ACORN using linear
approximation and guessing strategy. Section 4 concludes the paper.
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2 Time-Memory-Data Tradeoff Attack Against Grain-v1
with Conditional Sampling Resistance Based
on Guess-and-Determine Strategy

In this section, we present a state recovery attack against Grain-v1 in the single
key and IV pair setting. For the self-completeness of the discussion that follows,
we first introduce some basic knowledge of time-memory-data tradeoff attacks in
Sect. 2.1, and give a brief description concerning Grain-v1 in Sect. 2.2. To analyze
Grain-v1, we point out certain weakness of the filter function, and give the
conditional sampling resistance of Grain-v1 that employs a specific guessing path
in Sect. 2.3. According to the conditional sampling resistance, we conduct the
time-memory-data trade-off attack against Grain-v1 in Sect. 2.4, and present the
complexity analysis and the comparison with previously reported time-memory-
data trade-off attacks against Grain-v1 in Sect. 2.5.

2.1 Introduction of Time-Memory-Data Tradeoff Attack

Time-memory (TM) tradeoffs were first introduced by Hellman [19] in 1980 as
a generic way of attacking block ciphers, but can be generalized to the problem
of inverting one-way functions. In the case of function inversion, Babbage and
Golic [3,15] and later Biryukov, Shamir and Wagner [6] showed that the basic
TM tradeoffs can be improved significantly by using several data points, known
as time-memory-data (TMD) tradeoffs. For the state recovery of stream ciphers,
the one-way function to be inverted is commonly taken to be the map sending
an n-bit internal state of the cipher to the first n bits of keystream generated
from that state. Several stream ciphers have been broken by TMD tradeoffs,
most famously the GSM encryption scheme A5/1 [7].

Using a TMD tradeoff to invert a function can be split into two phases;
offline and online phase. In the offline step, the attacker builds large tables
relating to the function in question. In the active phase, the attacker obtains
a number of actual data points that he wants to invert, and tries to find a
preimage of at least one value using the precomputed tables. A TMD tradeoff
is thus characterized by five parameters: the size of the search space N , the
time consumed by the precomputation P , the amount of memory M used to
store the precomputed tables, the time complexity of the online phase T , and
the amount of data required D. In particular, the Hellman tradeoff is related
by P = N,TM2 = N2, 1 ≤ T ≤ N , the Babbage-Golic tradeoff is specified by
the relations P = M,N = TM and T = D, while the Biryukov-Shamir-Wagner
tradeoff is given by P = N/D,N2 = TM2D2,D2 ≤ T .

2.2 Description of Grain-v1

Next we describe the parts of Grain-v1, and refer to [18] for the full specification.
Grain-v1 is a bit-oriented stream cipher taking an 80-bit key and a 64-bit IV.
The internal secret state of Grain-v1 has 160 bits, and it consists of an 80-bit
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LFSR, denoted as (s0, · · · , s79) and an 80-bit NFSR, denoted as (b0, · · · , b79).
The feedback polynomial of the LFSR is a primitive polynomial of degree 80,
and the update functions of the LFSR and NFSR are, respectively, described as
follows:

st+80 = st+62 ⊕ st+51 ⊕ st+38 ⊕ st+23 ⊕ st+13 ⊕ st

bt+80 = st ⊕ bt+62 ⊕ bt+60 ⊕ bt+52 ⊕ bt+45 ⊕ bt+37 ⊕ bt+33 ⊕ bt+28 ⊕ bt+21

⊕ bt+14 ⊕ bt+9 ⊕ bt ⊕ bt+63bt+60 ⊕ bt+37bt+33 ⊕ bt+15bt+9

⊕ bt+60bt+52bt+45 ⊕ bt+33bt+28bt+21 ⊕ bt+63bt+45bt+28bt+9

⊕ bt+60bt+52bt+37bt+33 ⊕ bt+63bt+60bt+21bt+15

⊕ bt+63bt+60bt+52bt+45bt+37 ⊕ bt+33bt+28bt+21bt+15bt+9

⊕ bt+52bt+45bt+37bt+33bt+28bt+21.

During the keystream generation, Grain-v1 outputs a single bit at each clock
cycle, which is computed by taking 5 variables from the two registers as input
to the filter function h(x), and masking seven more state bits from the NFSR.
The output function is defined as

zt = h(st+3, st+25, st+46, st+64, bt+63) ⊕
∑

j∈A

bt+j ,

where A = {1, 2, 4, 10, 31, 43, 56} and the filter function h(x) is given by

h(x) = x1 ⊕ x4 ⊕ x0x3 ⊕ x2x3 ⊕ x3x4 ⊕ x0x1x2 ⊕ x0x2x3

⊕ x0x2x4 ⊕ x1x2x4 ⊕ x2x3x4,

where the variables x0, x1, x2, x3, and x4 of h(x) correspond to the tap positions
st+3, st+25, st+46, st+64 and bt+63, respectively.

Grain-v1 is initialized with a 64-bit IV injected directly into the LFSR (the
remaining bits of the LFSR are assigned value one), and an 80-bit key that is
loaded into the NFSR. Then the cipher is clocked 160 times without producing
any keystream, but feeding the output bits back into both the LFSR and the
NFSR. The structures of the Grain-v1 in the keystream generation and key
initialization work mode are respectively depicted as shown in Fig. 1. Finally,
we note that the state update function of Grain-v1 is invertible both during
keystream generation and key initialization. This implies that if we recover the
state of the cipher at some time t, we can clock it backwards to recover the key
used. Our state recovery attack only focuses on the keystream generation mode
after initialization.

2.3 Preliminary Analysis

Firstly, we present some definitions. A Boolean function is said to be k-normal
if it is constant on a k-dimensional flat, and the k is referred as the normality
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Fig. 1. Grain-v1: Keystream generation mode and Key initialization mode

order of the Boolean function. The notion of normality was introduced in [14]
and later on was generalized to k-normality in [11]. In this paper, we further
generalize the definition as a Boolean function is said to be k-linear-normal if
its restriction is a linear function on a k-dimensional flat. For the filter function
h(x) of Grain-v1, we deduce all the linear operation modes by setting certain
constraints on the state, shown in Table 1.

Table 1. Linear operation modes of the filter function h(x)

Constraint
conditions

Linear
operation modes

x2 = 0, x3 = 0 x1 ⊕ x4

x2 = 0, x3 = 1 x0 ⊕ x1

x0 = 0, x1 = 0, x2 = 1 x3 ⊕ x4

x0 = 0, x1 = 1, x2 = 1 x3 ⊕ 1

x0 = 1, x1 = 0, x2 = 1 x3

x0 = 1, x1 = 1, x2 = 1 x3 ⊕ x4

x0 = 0, x1 = 0, x3 = 0 x4

x0 = 1, x1 = 0, x3 = 1 x4

x0 = 0, x1 = 1, x3 = 1 x2 ⊕ 1

x0 = 1, x1 = 0, x3 = 1 1

x0 = 1, x1 = 1, x3 = 0 x2 ⊕ x4 ⊕ 1

x0 = 0, x1 = 0, x4 = 1 x3 ⊕ 1

x0 = 0, x1 = 1, x4 = 1 x2 ⊕ x3

Continued from previous sheet

x0 = 1, x1 = 0, x4 = 0 x3

x0 = 1, x1 = 1, x4 = 0 x2 ⊕ x3 ⊕ 1

x1 = 0, x2 = 0, x3 = 0 x4

x1 = 0, x2 = 0, x3 = 1 x0

x1 = 1, x2 = 0, x3 = 0 x4 ⊕ 1

x1 = 1, x2 = 0, x3 = 1 x0 ⊕ 1

x1 = 0, x2 = 1, x4 = 0 x3

x1 = 0, x2 = 1, x4 = 1 x0 ⊕ x3 ⊕ 1

x1 = 1, x2 = 1, x4 = 0 x0 ⊕ x3 ⊕ 1

x1 = 1, x2 = 1, x4 = 1 x3 ⊕ 1

x2 = 0, x3 = 0, x4 = 0 x1

x2 = 0, x3 = 0, x4 = 1 x1 ⊕ 1

x2 = 0, x3 = 1, x4 = 0 x0 ⊕ x1

x2 = 0, x3 = 1, x4 = 1 x0 ⊕ x1

Secondly, we bring in the definition of sampling resistance. Consider a stream
cipher with n-bit state. If given a value of n − l special state bits of the cipher
and the first l bits of the keystream sequence generated from that internal state,
the remaining l bits of the internal state can be recovered directly, then the
sampling resistance is defined as R = 2−l, where l is the maximum value for
which this enumeration of special states is possible. Thus, we can associate with
each special state a short name of n − l bits, and a short output of n − l bits.
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This technique does not modify the Biryukov-Shamir-Wagner tradeoff curve, but
offers wider choices of tradeoff parameters.

In many proposed constructions, the sampling resistance depends on the
location of the taps and the properties of the filter function. It is usually possible
for small values of l, but only leads to improved tradeoff attacks if l is moderately
large. The sampling resistance of Grain-v1 was analyzed in [8]. It said that given
the value of 133 particular state bits of Grain-v1 and the first 18 keystream
bits produced from that state, another 18 internal state bits may be deduced
efficiently, and it emphasized that the sampling resistance of Grain-v1 is at most
2−18, which is obviously not enough. Then comes the problem that how to make l
longer. Our idea is associating the technique of k-linear-normality with sampling
resistance by fixing some state bits. Under the constraints of state bits, the filter
function of the remaining bits is linear. Thus we can substitute more state bits
with keystream bits, i.e., extend the sampling resistance. Also, we can reduce the
space of guessed bits both impacted by the constraints and sampling resistance.
We call it conditional sampling resistance, which supports tradeoff parameters
in larger range.

Next, we present the specific conditional sampling resistance for Grain-v1,
which is based on the following guess-and-determine strategy. At first, we choose
two of those linear operation modes according to the k-linear-normality of the
filter function h(x):

– Let x2 = 0, x3 = 1, i.e., st+46 = 0, st+64 = 1, then h(x) = x0 ⊕ x1 = st+3 ⊕
st+25,

– Let x0 = 1, x1 = 0, x2 = 1, i.e., st+3 = 1, st+25 = 0, st+46 = 1, then h(x) =
x3 = st+64.

Combining the linear modes with the output function and the update functions
of both LFSR and NFSR, we show the guessing path in Table 2, which is similar
with the analysis in [26]. Let us briefly illustrate the procedures in the strategy.
For Step 0 to 15, i.e., at t = 0, . . . , 15, we derive

bt+10 = zt ⊕ bt+1 ⊕ bt+2 ⊕ bt+4 ⊕ bt+31 ⊕ bt+43 ⊕ bt+56 ⊕ st+3 ⊕ st+25,

under the constraint conditions of st+46 = 0, st+64 = 1 by guessing the state bits
listing in the table at each step. For Step 16, we derive

b29 = z19 ⊕ b20 ⊕ b21 ⊕ b23 ⊕ b50 ⊕ b62 ⊕ b75 ⊕ s83,

under the constraint conditions of s22 = 1, s44 = 0, s65 = 1 at t = 19, where
underline identifies the state bits unknown to make the explanation more clear.
Then we substitute s83 with the update function of LFSR

s83 = s65 ⊕ s54 ⊕ s41 ⊕ s26 ⊕ s16 ⊕ s3,

hence we only need to guess b75 to compute b29. It is similar for Step 17 and 18.
For Step 19, since we have

b35 = z25 ⊕ b26 ⊕ b27 ⊕ b29 ⊕ b56 ⊕ b68 ⊕ b81 ⊕ s89,
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Table 2. Guess-and-determine strategy

Step Constraint conditions Concerned
keystream
bits

Guessed NFSR and
LFSR bits

Recovered
bit

0 s46 = 0, s64 = 1 z0 b1, b2, b4, b31, b43, b56, s3 b10

1 s47 = 0, s65 = 1 z1 b3, b5, b32, b44, b57, s4 b11

2 s48 = 0, s66 = 1 z2 b6, b33, b45, b58, s5 b12

3 s49 = 0, s67 = 1 z3 b7, b34, b46, b59, s6 b13

4 s50 = 0, s68 = 1 z4 b8, b35, b47, b60, s7 b14

5 s51 = 0, s69 = 1 z5 b9, b36, b48, b61, s8 b15

6 s52 = 0, s70 = 1 z6 b37, b49, b62, s9, s31 b16

7 s53 = 0, s71 = 1 z7 b38, b50, b63, s10, s32 b17

8 s54 = 0, s72 = 1 z8 b39, b51, b64, s11, s33 b18

9 s55 = 0, s73 = 1 z9 b40, b52, b65, s12, s34 b19

10 s56 = 0, s74 = 1 z10 b41, b53, b66, s13, s35 b20

11 s57 = 0, s75 = 1 z11 b42, b54, b67, s14, s36 b21

12 s58 = 0, s76 = 1 z12 b55, b68, s15, s37 b22

13 s59 = 0, s77 = 1 z13 b69, s16, s38 b23

14 s60 = 0, s78 = 1 z14 b70, s17, s39 b24

15 s61 = 0, s79 = 1 z15 b71, s18, s40 b25

16 s22 = 1, s44 = 0, s65 = 1 z19 b75 b29

17 s23 = 1, s45 = 0, s66 = 1 z20 b76 b30

18 s24 = 1, s46 = 0, s67 = 1 z21 – b77

19 s19 = s20 = s28 = 1 z16 = 0 b72, b73 s0

s41 = s42 = s50 = 0 z17 = 0

s62 = s63 = s71 = 1 z25 = 0

20 s20 = s21 = s29 = 1 z17 = 0 b74 s1

s42 = s43 = s51 = 0 z18 = 0

s63 = s64 = s72 = 1 z26 = 0

21 s30 = 1, s52 = 0, s73 = 1 z27 – b28

22 s21 = 1, s43 = 0, s64 = 1 z18 – s2

23 s29 = 1, s51 = 0, s72 = 1 z26 – b27

24 s28 = 1, s50 = 0, s71 = 1 z25 – b26

25 s25 = 1, s47 = 0, s68 = 1 z22 – b78

26 s26 = 1, s48 = 0, s69 = 1 z23 – b79

26 s27 = 1, s49 = 0, s70 = 1 z24 – b0
– Overline denotes that this condition has already been assigned
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under the constraint conditions of s21 = 1, s43 = 0, s64 = 1 at t = 25, and

b26 = z16 ⊕ b17 ⊕ b18 ⊕ b20 ⊕ b47 ⊕ b59 ⊕ b72 ⊕ s80,

under the constraint conditions of s19 = 1, s41 = 0, s62 = 1 at t = 16, and

b27 = z17 ⊕ b18 ⊕ b19 ⊕ b21 ⊕ b48 ⊕ b60 ⊕ b73 ⊕ s81,

under the constraint conditions of s20 = 1, s42 = 0, s63 = 1 at t = 17, and also
the following update state functions of LFSR and NFSR,

s80 = s62 ⊕ s51 ⊕ s38 ⊕ s23 ⊕ s13 ⊕ s0,

s81 = s63 ⊕ s52 ⊕ s39 ⊕ s24 ⊕ s14 ⊕ s1,

s89 = s71 ⊕ s60 ⊕ s47 ⊕ s32 ⊕ s22 ⊕ s9,

b81 = s1 ⊕ b63 ⊕ b61 ⊕ b53 ⊕ b46 ⊕ b38 ⊕ b34 ⊕ b29 ⊕ b22 ⊕ b15 ⊕ b10 ⊕ b1 ⊕ b64b61

⊕ b38b34 ⊕ b16b10 ⊕ b61b53b46 ⊕ b34b29b22 ⊕ b64b46b29b10 ⊕ b61b53b38b34

⊕ b64b61b22b16 ⊕ b64b61b53b46b38 ⊕ b34b29b22b16b10 ⊕ b53b46b38b34b29b22,

we derive

s0 = b35 ⊕ z25 ⊕ z16 ⊕ b17 ⊕ b18 ⊕ b20 ⊕ b47 ⊕ b59 ⊕ b72 ⊕ s62 ⊕ s51 ⊕ s38 ⊕ s23

⊕ s13 ⊕ z17 ⊕ b18 ⊕ b19 ⊕ b21 ⊕ b48 ⊕ b60 ⊕ b73 ⊕ s63 ⊕ s52 ⊕ s39 ⊕ s24 ⊕ s14

⊕ b29 ⊕ b56 ⊕ b68 ⊕ b64 ⊕ b61 ⊕ b53 ⊕ b46 ⊕ b38 ⊕ b34 ⊕ b29 ⊕ b22 ⊕ b16 ⊕ b10

⊕ b1 ⊕ b64b61 ⊕ b38b34 ⊕ b16b10 ⊕ b61b53b46 ⊕ b34b29b22 ⊕ b64b46b29b10

⊕ b61b53b38b34 ⊕ b64b61b22b16 ⊕ b64b61b53b46b38 ⊕ b34b29b22b16b10

⊕ b53b46b38b34b29b22 ⊕ s89.

That is, we only need to guess b72, b73 to compute s0. It is similar for Step 20.
For Step 21, we derive

b28 = z27 ⊕ b29 ⊕ b31 ⊕ b37 ⊕ b58 ⊕ b70 ⊕ b83 ⊕ s91,

under the constraint conditions of s30 = 1, s52 = 0, s73 = 1, and then substitute
s91 and b83 with their update functions

s91 = s73 ⊕ s62 ⊕ s49 ⊕ s34 ⊕ s24 ⊕ s11,

b83 = s3 ⊕ b65 ⊕ b63 ⊕ b55 ⊕ b48 ⊕ b40 ⊕ b36 ⊕ b31 ⊕ b24 ⊕ b17 ⊕ b12 ⊕ b3 ⊕ b66b63

⊕ b40b36 ⊕ b18b12 ⊕ b63b55b48 ⊕ b36b31b24 ⊕ b66b48b31b12 ⊕ b63b55b40b36

⊕ b66b63b24b18 ⊕ b66b63b55b48b40 ⊕ b36b31b24b18b12 ⊕ b55b48b40b36b31b24.

We need to guess no more bits to compute b28. For Step 22, we have

s82 = z18 ⊕ b19 ⊕ b20 ⊕ b22 ⊕ b28 ⊕ b49 ⊕ b61 ⊕ b74,

under the constraint conditions of s21 = 1, s43 = 0, s64 = 1, and substitute s82
with the update function

s82 = s64 ⊕ s53 ⊕ s40 ⊕ s25 ⊕ s15 ⊕ s2,
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hence we need to guess no more bits to compute s2. Step 23 and 24 are similar
with Step 21. Step 25 and 26 are similar with Step 16. For Step 27, we have

b80 = z24 ⊕ b25 ⊕ b26 ⊕ b28 ⊕ b55 ⊕ b67 ⊕ b34 ⊕ s88,

under the constraint conditions of s27 = 1, s49 = 0, s70 = 1, and we substitute
s88 and b80 as follows,

s88 = s70 ⊕ s59 ⊕ s46 ⊕ s31 ⊕ s21 ⊕ s8,

b80 = s0 ⊕ b62 ⊕ b60 ⊕ b52 ⊕ b45 ⊕ b37 ⊕ b33 ⊕ b28 ⊕ b21 ⊕ b14 ⊕ b9 ⊕ b0 ⊕ b63b60

⊕ b37b33 ⊕ b15b9 ⊕ b60b52b45 ⊕ b33b28b21 ⊕ b63b45b28b9 ⊕ b60b52b37b33

⊕ b63b60b21b15 ⊕ b63b60b52b45b37 ⊕ b33b28b21b15b9 ⊕ b52b45b37b33b28b21.

We need to guess no more new bits to compute b0.
In summary, given the guess-and-determine strategy, we derive that by fixing

51 bits of state constraint conditions and guessing 81 bits more of the internal
state, the remaining 28 bits of the state can be recovered directly using the first
28 keystream output bits generated from the state, which is 10 bits longer than
the sampling resistance given in [8].

2.4 Time-Memory-Data Tradeoff Attack of Grain-v1

Now, we complete the TMD trade-off attack against Grain-v1 according to the
conditional sampling resistance given in Sect. 2.3. The attack has two phases:
During the preprocessing phase, we explore the general structure of the cryp-
tosystem, and summarize the findings in a large table. During the realtime phase,
we are given actual data produced from a particular unknown state, and our goal
is to use the precomputed table to find the state as quickly as possible. Proce-
dures in details are as follows.

– Preprocessing Phase:
1. Choose a fixed string s ∈ {0, 1}28 as a segment of keystream according to

Table 2.
2. Form a m × t matrix that tries to cover the whole search space which is

composed of all the possible guessed 81 bits of NFSR and LFSR states as
follows.
(a) Randomly choose m startpoints of the chains, each point formed by a

vector of 81 bits which is to be an injection into the guessed positions
of NFSR and LFSR shown in Table 2.

(b) Under the constraint conditions of 51 bits shown in Table 2, the remain-
ing 28 bits of the state can be recovered using the segment of keystream
s according to the guessing path. Thus, the overall system is obtained.
Perform a backward computation of the system and generate the for-
mer 81 keystream bits from this moment on. Make it the next point
in the chain, i.e., update the injection into NFSR and LFSR with this
point.
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(c) Iterate Step (b) t times on each startpoint respectively.
(d) Store the pairs of startpoints and endpoints (SPj ,EPj), j = 1, . . . ,m in

a table.
– Realtime Phase:

1. Observe the keystream and find 251 number of 28-bit strings matching with
string s. For one such string, let its former 81 bits in the keystream be y.

2. For each y, check if there is EPj , j = 1,. . . ,m matching with y first. If not,
iterate Step (b) w times on y until it matches with one of EPj , j = 1,. . . ,m,
where w = 1,. . . ,t. When there is a match, jump to the corresponding
startpoint, and repeatedly apply Step (b) to the startpoint until the 81-bit
keystream vector reaches y again. Then the previous point visited is the 81
guessed state bits of NFSR and LFSR, and the whole initial state of the
cipher is recovered by jointing it with the 51 constraint state bits and 28
derived state bits.

There are several points to illustrate. Actually, the one-way function employed
here is on the special states from {0, 1}81 to {0, 1}81 under the constraint con-
ditions rather than inverting the full state of the cipher. To reduce the cross
points of the chains, we can build more matrices in Step 2 by randomly seeding
an 81-bit maximum LFSR and generating a sequence of distinct 81-bit vectors
X1,X2,. . . , each exclusive-ORs with the original points in each matrix to make
the new points.

2.5 Complexity Analysis and Comparison

In this part, we consider the complexity of the attack. Firstly, we focus on the
tradeoff parameters. The whole search space is composed of all the possible
guessed NFSR and LFSR bits, whose cardinality is 281 = m · t, which equals the
preprocessing time P. The memory complexity is M = m for the storage of the
startpoints and endpoints table. Since the matrix is built under the constraint
conditions of 51 bits, we expect to encounter a state among the matrix given 251

selected data. Moreover, we need to sample D = 251 · 228 consecutive keystream
bits to collect the required 251 strings, since the string s of length 28 bits occurs
on average once in 228 keystream bits. For each selected data, we need to cal-
culate Step (b) at most t times, and the time complexity T equals 251 · t. Here,
we choose m = 271 and t = 210, then we get a group of tradeoff parameters as
follows, T = 261,M = 271,D = 279, P = 281.

Next, we compare our attack with previously reported TMD trade-off state
recovery attacks against Grain-v1 in the single key and IV pair setting. It was
first analyzed in the design document [17]. The designers follow the rule stated
by Babbage [3] strictly that “if a secret key length of k bits is required, a state
size of at least 2k bits is desirable”. Thus, Grain-v1 is immune to the Babbage-
Golic TMD attack. For Biryukov-Shamir-Wagner TMD attack, it needs to obey
the tradeoff curve that P = N/D,N2 = TM2D2,D2 ≤ T . In this way, the
extreme parameters we can obtain is T = 280,D = 240,M = 280, P = 2120.
Another attack [8] employed the sampling resistance of R = 2−18 and finally
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Table 3. Comparison of trade-off parameters against Grain-v1 in the single key and
IV pair setting

Resource Time online (T) Keystream (D) Memory (M) Preprocessing
time (P)

BSW TMD 280 240 280 2120

[8] 271 253.5 271 2106.5

new 261 279 271 281

choose the parameters of T = 271,D = 253.5,M = 271, P = 2106.5, which obey
the tradeoff curve that P = N/D, (RN)2 = TM2(RD)2,D2 ≤ T . Those are all
the attacks published against Grain-v1 by time-memory tradeoffs in the case of
single key and IV pair. We show the comparison of the parameters in Table 3
and our figures appear as significantly better than the previously reported ones,
since the preprocessing time can be controlled much lower.

There are still several TMD attacks against Grain-v1 in the case of multi
key and IV pairs, or different initial values. Such as in [17], the designers viewed
the initialization process of the stream cipher as a one-way function, i.e., the
function taking the key and IV as input and outputting the first |K| + |IV | bits
of the keystream. In this case, the search space is 2|K|+|IV | and new data is
generated by repeated initializations of the cipher. They gave the attack com-
plexities in the tradeoff setting of [20], i.e., N2 = TM2D2 and P = N/D.
Note that D is the number of initializations, rather than keystream here. They
presented two parameter choices: T = 280,D = 240,M = 264, P = 2104 and
T = 272,D = 236,M = 272, P = 2108. For the attacks using different initial val-
ues, the attackers usually split the samples D = d ·d′ into d keystreams of length
d′, each generated by the same key and different IV. Usually, d·d′ exceeds 280, and
loading different IVs calls for more complexity for the cipher initialization. For
example, it calls for the parameters that T = 246,D = 234 ·238,M = 270, P = 288

in [24], and T = 269.5,D = 245.25 · 245.25,M = 269.5, P = 269.5 in [13].
Next, we transform the tradeoff parameters into cipher ticks. For the pre-

processing time, Step (b) needs to run backwards 81 cipher ticks. Thus to cover
the space, we need the precomputation of P = 281 ·81 = 287.3 ticks. The memory
is M = m ·81 ·2 bits for storing the pairs of 81-bit length points. The time online
taken is T = 251 · t · 81 ticks for Step (b). Since we choose m = 271 and t = 210,
the memory is M = 278.3 bits and the time online is T = 267.3 cipher ticks. As
a baseline, we analyzed the time complexity of the brute force attack against
Grain-v1. Actually, the complexity of brute force attack is higher than 280 ticks.
Given a known fixed IV IV and an 80-bit keystream segment w generated by
the (K, IV ) pair, the goal is to recover K using the exhaustive search strategy.
For each enumerated ki, 1 ≤ i ≤ 280 − 1, the attacker first needs to proceed
the initialization phase which needs 160 ticks. During the keystream generation
phase, once a keystream bit is generated, the attacker compares it to the corre-
sponding bit in w. If they are equal, the attacker continues to generate the next
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keystream bit and does the comparison. If not, the attacker searches another
key and repeats the previous steps. If each keystream bit is treated as a random
independent variable, then for each ki, the probability that the attacker needs
to generate l(1 ≤ l ≤ 80) keystream bits is 1 for l = 1 and 2−(l−1) for l > 1,
which means that the previous l − 1 bits are equal to the counter bits in w.
Let Nw be the expected number of bits needed to generate for each enumerated
key, which is Nw =

∑80
l=1 l · 2−(l−1) = 4. Then, the total time complexity is

(280 − 1) · (160+4) = 287.4 cipher ticks. Thus the complexities of the new attack
are all below that of the brute force attack. Furthermore, the brute force attack
can only be mounted for each fixed IV, while our attack can be applied to the
scenario with arbitrary IVs.

Moreover, it is a generic approach to analyze stream ciphers, by bringing
the conditional sampling resistance in TMD tradeoff attacks, which is based on
the k-linear-normality of the output function and an efficient guessing path. To
illustrate the universality, we summarize the tradeoff curve of the new TMD
attack. Assume a conditional sampling resistance is already obtained, that given
r state bits of constraint conditions and g guessed state bits, the remaining l state
bits can be recovered by the first l keystream bits generated from the state. Then
we have N = 2g+r+l, since the search space of the full states can be divided into
three parts for constraint, guessing and sampling resistance respectively. The
preprocessing time becomes P = 2g, because we have to evaluate all the short
states under the fixed constraint conditions. An m × t matrix is used to cover
the enumerated short states, i.e., P = mt. The memory required to store the
table of start- and end- points is M = m. Since we expect to encounter a state
among the matrix built under the r constraint conditions, and the rate to find
a fixed section of keystream is 2−l, the data required is 2r+l. We need to try 2r

samples online, each iterates up to t times. This product is t2r. Thus we derive
the tradeoff curve as follows.

D = 2r+l = N/2g = N/P,

TMD = t2rm2r+l = 2r2g+r+l = 2rN.

We believe the method can apply to more stream ciphers and should be taken
into considerations when designing the security community of the stream ciphers.

3 Security Evaluation of ACORN Using Linear
Approximation and Guessing Strategy

In this section, we present a state recovery attack against the lightweight authen-
ticated cipher ACORN, given some length of keystream and plaintext. We start
by giving a short description of the ACORN in Sect. 3.1. Then, we examine
the guess-and-determine type of attacks against the cipher combined with the
technique of linear approximation in Sect. 3.2. Since the designer did not give
any security analysis against the encryption process of the cipher, we think it is
necessary to present an evaluation to assess the security margin.
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Fig. 2. ACORN-128

3.1 Description of ACORN

A concise description of ACORN is specified here as much detail as needed
for the analysis, referred to [27]. ACORN-128 uses a 128-bit key and a 128-bit
IV. The associated data length and the plaintext length are required less than
264 bits. The authentication tag length is less than or equal to 128 bits, and the
designer strongly recommends the use of a 128-bit tag. The state size is 293 bits,
and there are six linear feedback shift registers (LFSRs) being concatenated in
ACORN-128, shown in Fig. 2. Two Boolean functions are used in ACORN:

maj(x, y, z) = (x&y) ⊕ (x&z) ⊕ (y&z); ch(x, y, z) = (x&y) ⊕ ((∼ x)&z),

where ⊕, & and ∼ denote bit-wise exclusive OR, bit-wise AND and bit-wise
NOT respectively. Let the j-th bit of the state at the beginning of the i-th step
be Si,j , the keystream bit generated at the i-th step be ksi, and the data bit be
mi. One step of ACORN is done as follows:

Si,289 = Si,289 ⊕ Si,235 ⊕ Si,230;
Si,230 = Si,230 ⊕ Si,196 ⊕ Si,193;
Si,193 = Si,193 ⊕ Si,160 ⊕ Si,154;
Si,154 = Si,154 ⊕ Si,111 ⊕ Si,107;
Si,107 = Si,107 ⊕ Si,66 ⊕ Si,61;
Si,61 = Si,61 ⊕ Si,23 ⊕ Si,0;
ksi = Si,12 ⊕ Si,154 ⊕ maj(Si,235, Si,61, Si,193);
fi = Si,0 ⊕ (∼ Si,107) ⊕ maj(Si,244, Si,23, Si,160) ⊕ ch(Si,230, Si,111, Si,66)

⊕ (cai&Si,196) ⊕ (cbi&ksi);
for j := 0 to 291 do Si+1,j = Si,j+1;
Si+1,292 = fi ⊕ mi;

where cai and cbi are control bits at the i-th step. Moreover, cai = 1 and cbi = 0
at each step of the encryption without the separating process, which phase is
focused on in our analysis.

The initialization of ACORN-128 consists of loading the key and IV into
the state, and running the cipher for 1536 steps. After the initialization, the
associated data is used to update the state. Note that even when there is no
associated data, it is still needed to run the cipher for 512 steps. After processing
the associated data, at each step of the encryption, one plaintext bit pi is used
to update the state, and pi is encrypted to the ciphertext bit ci as ci = pi ⊕ ksi.
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Still 256 steps are called for separating the encryption and finalization. At last,
the algorithm generates the authentication tag. Note that since the cipher has
invertible state-update function, the internal state recovery of the cipher also
leads to a key recovery attack.

3.2 Security Evaluation of ACORN

Firstly, we present some observations of the cipher on linear approximations of
the filter function and guessed combination information of the upstate function.
One observation is that the maj function can be linearly approximated with a
big probability. Given the truth table of maj function as follows.

maj 0 0 0 0 1 1 1 1

x 0 0 0 1 0 1 1 1

y 0 0 1 0 1 0 1 1

z 0 1 0 0 1 1 0 1

At each step, the probability that any one of these three variables x, y, z equals
the value of the maj function is 3

4 , the probability that any two of these three
variables equal the value of the maj function is 1

2 , and the probability that all
these three variables equal the value of the maj function is 1

4 . It is true that
the probability of only one variable approximation at two steps is bigger than
the probability of two variables approximations at only one step, (34 )2 > 1

2 ,
and also the probability of only one variable approximation at three steps is
bigger than the probability of three variables approximations at only one step,
(34 )3 > 1

4 . Since ksi = Si,12 ⊕ Si,154 ⊕ maj(Si,235, Si,61, Si,193), it is easy to
get several linear equations before that the nonlinear feedback bits shift into
the register and become one tap going into the keystream generating function
used for linear approximation. Then there can be 139 steps for linear equations
when using the approximation to Si,61 of maj, considering the tap of Si,154 not
loading the feedback bits. Similarly, there can be 100 and 58 steps when using
the approximation to Si,193 and Si,235 of maj, respectively.

To receive more linear equations, we consider the feedback bits. Here comes
another observation,

fi = Si,0 ⊕ (∼ Si,107) ⊕ maj(Si,244, Si,23, Si,160) ⊕ ch(Si,230, Si,111, Si,66) ⊕ Si,196

= Si,0 ⊕ Si,23 ⊕ Si,66 ⊕ (∼ Si,107) ⊕ Si,196 ⊕ (Si,23 ⊕ Si,160)&(Si,23 ⊕ Si,244)

⊕ (Si,66 ⊕ Si,111)&Si,230.

Thus we only need to guess two bits combination information of Si,23 ⊕ Si,160

and Si,66 ⊕ Si,111, then the feedback bit becomes liner. Hence, the feedback bit
can be used in the approximation accordingly. Moreover, we get another two
linear equations. It is easy to transform the state variables at each step into the
initial ones linearly.
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Thus, there becomes a problem for balancing the number of approximations
at each step and the length of steps for approximations regarding to the guesses
of feedback bits. Let the number of steps using just one variable approximation,
two variables approximations and three variables approximations be a, b and
c, respectively. Let the number of feedback steps be f . Then we transform the
balancing problem into an integer linear programming problem (ILP) as follows.

maximum Pr := (
3
4
)a · (

1
2
)b · (

1
4
)c · (

1
2
)2f

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a + 2b + 3c + 2f ≥ 293
t := a + b + c = 139 + f

b + c ≤ 100 + f
c ≤ 58 + f

a, b, c, f ≥ 0, are integers.

We use Maple to solve the optimization problem, and the result is

a = 41, b = 112, c = 0, f = 14.

Here the goal Pr is about 2−157, and t = 153. We explain the transforma-
tion briefly. Our objective is to get enough linear equations in the initial state
variables as to recover the state with biggest success probability, which is the
goal of the ILP problem. The first condition of the ILP problem shows that we
have already found an adequate linear system. We have simulated the process,
and testified the systems randomly. The results show that those linear systems
mostly unisolvent. The following condition denotes the length of steps we used
for approximation including 139 steps without feedback and f steps using the
feedback bits. The next two conditions confine the steps using two and three
variables approximations. At last, all the parameters are the numbers of steps,
so they are integers and not negative.

A brief algorithm of the attack is presented as follows.

1. Guess 28 bits information to make the feedback bits at 14 steps linear and get 28
linear equations in the initial state variables.
2. For every guess, collect 265 linear approximating equations at optional steps
according to the results of the ILP problem.
3. Given 153 keystream bits of ACORN, recover the state of ACORN, and verify the
solution.
4. Repeat the loops from Step 1 to 3 until the right initial state is found.

If the solution is not the real state, both the error of linear approximation and
the guessed information can lead to the inaccuracy. We expect a right solution
among 2157 tests according to the success probability. There is also a guess-
and-determine attack against ACORN in [23], while its complexity is about 2164
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tests, which is larger than ours. This result can be a security bound of ACORN
examined by the method of guess-and-determine attacks so far. Moreover, we
can view this method a generic way to evaluate the security of stream ciphers,
which works as firstly finding the linear approximations of the output function
and the efficient guessed combination information of the upstate function, then
transforming the bounding problem into an integer linear programming problem
for searching the optimal solution.

4 Conclusion

In this paper, we have presented two new generic methods for analyzing stream
ciphers. One is a time-memory-data tradeoff attack using the conditional sam-
pling resistance, and its application to Grain-v1 shows that the result is better
than the previous ones and lower than the security bound. Another is a security
evaluation method using linear approximations, efficiently guessed information
and the tool of integer linear programming problem. The result of its application
to ACORN gives a security bound of ACORN.
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Abstract. A key recovery attack allows an attacker to recover the
private key of an underlying encryption scheme when given a number of
decryption oracle accesses. Previous research has shown that most exist-
ing Somewhat Homomorphic Encryption (SHE) schemes suffer from this
attack. In this paper, we propose efficient key recovery attacks against
two NTRU-based SHE schemes due to Lopez-Alt et al. (2012) and Bos
et al. (2013), which have not gained much attention in the literature. Par-
allel to our work, Dahab, Galbraith and Morais (2015) have also proposed
similar attacks but only for specific parameter settings. In comparison,
our attacks apply to all parameter settings and are more efficient.

Keywords: Somewhat homomorphic encryption · Key recovery attack ·
IND-CCA1 Security

1 Introduction

In the literature, all Somewhat Homomorphic Encryption (SHE) schemes have
been developed with the aim of being IND-CPA secure. In [Gen09], Gentry
emphasized it as a future work to investigate SHE schemes with IND-CCA1
security (i.e. secure against a non-adaptive chosen-ciphertext attack). Up to now,
the only scheme proven IND-CCA1 secure is that by Loftus et al. [LMSV12].
Most works in this direction focus on devising attacks against existing schemes.

It has been shown that most existing SHE schemes suffer from key recovery
attacks, which allow an attacker to recover the private key of an underlying
encryption scheme when given a number of decryption oracle accesses. It is
clear that a key recovery attack is stronger than a typical attack against IND-
CCA1 security. Loftus et al. [LMSV12] showed key recovery attacks against SHE
schemes from [Gen09,GH11]. Zhang et al. [ZPS12] presented an attack against
the SHE scheme in [vDGHV10]. Chenal and Tang [CT14] presented key recovery
attacks for all the schemes in [BV11b,BV11a,GSW13,Bra12,BGV12].

Previous analysis has not paid much attention to the NTRU-based SHE
schemes. Two representative schemes in this line are those by Lopez-Alt, Tromer

This paper is an extended abstract of the IACR report [CT15].
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and Vaikuntanathan [LATV12] and Jos et al. [BLLN13]. Note that, instead
of relying on the original NTRU scheme by Hoffstein, Pipher and Silverman
[HPS98], these schemes are based on a variant by Stehle and Steinfeld [SS10].
Parallel to our work in this paper, we noticed that Dahab, Galbraith and Morais
[DGM15] constructed key recovery attacks for these schemes from [BLLN13,
LATV12].

1.1 Our Contribution

The key recovery attacks by Dahab, Galbraith and Morais [DGM15] work for
some tailored parameters for the LTV12 and BLLN13 SHE schemes. For exam-
ple, they require 6(t2 + t) < q and B2 <

q

36t2
while these conditions are not

assumed in [LATV12,BLLN13]. In this paper, we present attacks that work for
all parameter settings. Moreover, our attacks are more efficient than theirs, see
the following table. Note that n is defined as an integer of power of 2, B is
a bound on the coefficient size of error distribution and is much smaller than
q, t ≥ 2 is an integer that partially determines the message space size. More
detailed definitions for these parameters can be found in the following sections.

Our attacks Attacks from [DGM15]

[LATV12] �log2B� + n n · �log2B� + n

[BLLN13] (t is odd) �log2(B/t)� n · �log2B�
[BLLN13] (t is even but not 2) �log2(B/t)� + n n · �log2B�
[BLLN13] (t = 2) �log2(B/t)� + n n · �log2B� + n

Our work, together with the results from [LMSV12,ZPS12,CT14], show that
most existing SHE schemes, except that from [LMSV12], suffer from key recovery
attacks so that they are not IND-CCA1 secure.

1.2 Structure of the Paper

In Sect. 2, we recall some background on SHE schemes. In Sect. 3, we present our
attack against the LTV12 SHE scheme. In Sect. 4, we present our attack against
the BLLN13 SHE scheme. In Sect. 5, we conclude the paper.

2 Preliminary

Let N be the set of natural numbers, Z the ring of integers, Q the field of rational
numbers, and Fq a finite field with q elements, where q is a power of a prime p.
In particular, we will consider often Fp = Z/pZ = Zp. If r ∈ Zq, we indicate as
r−1 its inverse in Zq, i.e. that value such that r−1 · r = 1 mod q. For a ring R
and a (two-sided) ideal I of R, we consider the quotient ring R/I. For a given
rational number x ∈ Q, we let �x�, �x� and �x� be respectively the rounding
function, the floor function and the ceiling function. For a given integer n ∈ N,
�n + 1/2� = n + 1. Of course, our attacks work also, with trivial modifications,
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in the case we define �n + 1/2� = n. To indicate that an element a is chosen

uniformly at random from a set A we use notation a
$← A. For a set A, we let its

cardinality be |A|. We denote the map that reduces an integer x modulo q and
uniquely represents the result by an element in the interval (−q/2, q/2] by [·]q.
Therefore, we will consider the ring Zq as Zq := {− ⌊

q
2

⌋
,− ⌊

q
2

⌋
+ 1, . . . ,

⌊
q
2

⌋}.
We extend this map to polynomials in Z[X] and thus also to elements of R
by applying it to their coefficients separately; given a polynomial a(x) ∈ R, we
define the map [·]q : R → R, a(x) =

∑n−1
i=0 aix

i 
→ ∑n−1
i=0 [ai]qxi Unless otherwise

specified, λ will always denote the security parameter. In the asymmetric schemes
we are going to discuss, the secret key is denoted as sk, and the public key is pk.

The following definitions are adapted from [Gen09]. We only assume bit-
by-bit public-key encryption, i.e. we only consider encryption schemes that are
homomorphic with respect to boolean circuits consisting of gates for addition and
multiplication mod 2. Extensions to bigger plaintext spaces and symmetric-key
setting are straightforward, so that we skip it.

Definition 1 (Homomorphic Encryption). A public key homomorphic
encryption (HE) scheme is a set E = (KeyGenE ,EncryptE ,DecryptE ,EvaluateE)
of four algorithms all of which must run in polynomial time. When the context
is clear, we will often omit the index E.

KeyGen(λ) = (sk, pk)

• input: λ

• output: sk; pk

Encrypt(pk,m) = c

• input: pk and plaintext m ∈ F2

• output: ciphertext c

Decrypt(sk, c) = m′

• input: sk and ciphertext c
• output: m′ ∈ F2

Evaluate(pk, C, (c1, . . . , cr)) = ce

• input: pk, circuit C, cipher-
texts c1, . . . , cr, with ci =
Encrypt(pk,mi)

• output: ciphertext ce

Informally, a homomorphic encryption scheme that can perform only a limited
number of Evaluate operations is called a Somewhat Homomorphic Encryption
(SHE) scheme.

A public-key encryption scheme is IND-CCA1 secure if a polynomial time
attacker can only win the following game with a negligible advantage AdvIND-CCA1

A,E,λ

= |Pr(b = b′) − 1/2|.
1. (pk, sk) ← KeyGen(1λ)
2. (m0,m1) ← A(Decrypt)

1 (pk)
[Stage 1]

3. b ← {0, 1}
4. c∗ ← Encrypt(mb, pk)
5. b′ ← A2(c∗)

[Stage 2]

According to the definition, in order to show that a scheme is not IND-
CCA1 secure, we only need to show that an adversary can guess the bit b with
a non-negligible advantage given access to the decryption oracle in Stage 1. In
comparison, in a key recovery attack, an adversary can output the private key
given access to the decryption oracle in Stage 1. Clearly, a key recovery attack
is stronger and can result in more serious vulnerabilities in practice.
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3 Attack Against the LTV12 SHE Scheme

We start by recalling the LTV12 SHE Scheme [LATV12]. Let λ be the security
parameter, consider an integer n = n(λ) and a prime number q = q(λ) �= 2.
Consider also a degree-n polynomial φ(x) = φλ(x): following [LATV12], we will
use φ(x) = xn + 1. Finally, let χ = χ(λ) a B(λ)-bounded error distribution over
the ring R := Z[x]/(φ(x)). The parameters n, q, φ(x) and χ are public and we
assume that given λ, there are polynomial-time algorithms that output n, q and
φ(x), and sample from the error distribution χ. The message space is M = {0, 1},
and all operations on ciphertexts are carried out in the ring Rq := Zq[x]/(φ(x)).

KeyGen(λ) :
• sample f ′, g ← χ
• set f := 2f ′ + 1 so that

f ≡ 1 mod 2
• if f is not invertible in Rq,

resample f ′
• pk := h = 2gf−1 ∈ Rq

• sk := f ∈ R

Encrypt(pk,m):
• sample s, e ← χ

• output ciphertext c := hs + 2e +
m ∈ Rq

Decrypt(sk, c):
• let μ = f · c ∈ Rq

• output μ′ := μ mod 2

Since we don’t need the evaluation step, we omit it in the description. In
the original paper [LATV12], the somewhat homomorphic encryption scheme
is multi-key, i.e. one can use several secret keys sk1 = f1, . . . , skM = fM in
order to decrypt. By analyzing the original decryption step, one can see that, in
order to decrypt the plaintext message, we need to multiply secret keys sk1 =
f1, . . . , skM = fM together, and then multiply the result with the ciphertext and
reduce. For this reason, it is enough to retrieve, as the secret key, the polynomial
f1 · · · fM =: s = s(x) = s0 + s1x + s2x

2 + · · · + sn−1x
n−1 ∈ Rq, with si ∈

(−q/2, q/2] for all i = 0, 1, . . . , n − 1. For this reason, it is enough to present the
scheme as we saw it, with only one secret key.

Remark 1. In [LATV12], the authors do not explicitly state how the decryption
behaves if μ mod 2 is not a constant. We consider three scenarios: (1) output
directly μ mod 2; (2) output the constant of μ mod R2; (3) output an error.
In the following, we describe a key recovery attack for scenario (1) and it can
be easily extended to scenario (2). It is likely that we can adapt our attack to
scenario (3), but we have not succeeded so far.

3.1 Attack Preview

Generally, suppose the secret key is in the form of the polynomial f = s(x) =
s0 + s1x + s2x

2 + · · · + sn−1x
n−1 ∈ Rq. Now, since we assume q odd, and

si is an integer, we have −q/2 < si < q/2, and in particular − ⌊
q
2

⌋ ≤ si ≤⌊
q
2

⌋
, ∀0 ≤ i ≤ n − 1. Each coefficient si can have

⌊
q
2

⌋ − (− ⌊
q
2

⌋
) + 1 = q

possible different values. We remark that there exists a bit representation of
the si’s such that #bits(si) = �log2(q − 1)� + 1 =: N , and #bits(s) = n ·
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#bits(si) = n · (�log2(q − 1)� + 1). The decryption oracle reveals a polynomial
μ′(x) = μ(x) mod 2 = μ′

0 + μ′
1x + · · · + μ′

n−1x
n−1, with μ′

i ∈ {0, 1} for i =
0, 1, . . . , n − 1. Hence, decryption oracle reveals n bits at a time. Therefore, the
minimum number of oracle queries needed to recover s is N . As we will see,
our attack needs N oracle queries, plus at most n − 1 oracle queries necessary
to determine the signs of the coefficients of the secret key. We remark that the
scheme as described in [LATV12] has message space M = {0, 1}. When the
oracle decryption receives an honestly-generated ciphertext, it returns either
0 =

∑n−1
i=0 0 · xi ∈ Rq or 1 = 1 +

∑n−1
i=1 0 · xi ∈ Rq. However, in principle the

oracle decryption can return any polynomial in {0, 1}/(xn + 1) and we will use
this fact as basis to build our attack.

Here is the workflow of our key recovery attack. First of all, we are going
to determine the parity of each coefficient si ∈ (−q/2, q/2]. Then, we are going
to find si by gradually reducing (halving) the interval in which it lies. At some
point, si will be reduced to belong to some interval with at most two consecutive
integers; the absolute value of si will be deduced by its (known) parity. At this
point, we will know the secret key coefficient si in absolute value; in the last step,
we are going to query the oracle decryption at most n times in order to recover
the sign of the coefficients si, for i = 1, 2, . . . , n − 1, relative to the (unknown)
sign of s0. So in the end, we will end up with two possible candidate secret keys
s1(x) and s2(x) = −s1(x). We have then s(x) = s1(x) or s(x) = s2(x), and
recovering which one of the two is trivial with an extra oracle query.

In our description, we consider the coefficients si in the interval (−q/2, q/2]
and can recover the private key with at most �log2q�+n decryption oracle queries.
However, we could consider the stricter interval [−B,B], with B the bound on
coefficients given by the distribution χ from which the coefficients are picked from.
In this case, we can see that the total number of queries needed to be submitted
to the decryption oracle are actually at most �log2B� + n.

3.2 Detailed Attack

Preliminary Step. Submit to the decryption oracle the “ciphertext” c(x) =
1 ∈ Rq. The oracle will compute and return the polynomial D(c(x) = 1) =
s(x) mod 2 =

∑n−1
i=0 (si mod 2)xi, which tells us the parity of each si, i =

0, 1, . . . , n − 1.

Step 1. Choose and submit to the decryption oracle the “ciphertext” c(x) =
2 ∈ Rq. It will compute and return the polynomial D(c(x) = 2) = (2s(x) ∈
Rq) mod 2 =

∑n−1
i=0 [(2si mod q) mod 2] xi. For all i ∈ [0, n − 1] we have

−q + 1
2

≤ si ≤ q − 1
2

, and so − q + 1 ≤ 2si ≤ q − 1 (A)

For each i, we have two cases to distinguish:

Case A1: (2si mod q) mod 2 = 0. Then, condition (A) implies that −q+1
2 ≤

2si ≤ q−1
2 , i.e. −q+1

4 ≤ si ≤ q−1
4

− q + 1 ≤ 4si ≤ q − 1 (A1)
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Case B1: (2si mod q) mod 2 = 1. Then, condition (A) implies that q−1
2 + 1 ≤

2|si| ≤ q − 1, i.e. q+1
4 ≤ |si| ≤ q−1

2

q + 1 ≤ 4|si| ≤ 2q − 2 (B1)

Step 2. Choose and submit to the decryption oracle the “ciphertext” c(x) = 4 ∈
Rq. It will compute and return the polynomial D(c(x) = 4) = [s(x) ·4]q mod 2 =∑n−1

i=0 [[4si]q mod 2] xi. For each i, we have four cases to distinguish:

Case A2: In Step 1 case A1 held, and [4si]q mod 2 = 0. Then, condition (A1)
implies that −q+1

2 ≤ 4si ≤ q−1
2 , i.e. −q+1

8 ≤ si ≤ q−1
8

− q + 1 ≤ 8si ≤ q − 1 (A2)

Case B2: In Step 1 case A1 held, and [4si]q mod 2 = 1. Then, condition (A1)
implies that q−1

2 + 1 ≤ 4|si| ≤ q − 1, i.e. q+1
8 ≤ |si| ≤ q−1

4

q + 1 ≤ 8|si| ≤ 2q − 2 (B2)

Case C2: In Step 1 case B1 held, and [4si]q mod 2 = 0. Then, condition (B1)
implies that q + 1 + q−1

2 ≤ 4|si| ≤ 2q − 2, i.e. 3q+1
8 ≤ |si| ≤ q−1

2

3q + 1 ≤ 8|si| ≤ 4q − 4 (C2)

Case D2: In Step 1 case B1 held, and [4si]q mod 2 = 1. Then, condition (B1)
implies that q + 1 ≤ 4|si| ≤ 3q−1

2 , i.e. q+1
4 ≤ |si| ≤ 3q−1

8

2q + 2 ≤ 8|si| ≤ 3q − 1 (D2)

Step 3. Choose and submit to the decryption oracle the “ciphertext” c(x) = 8 ∈
Rq. It will compute and return the polynomial D(c(x) = 8) = [s(x) ·8]q mod 2 =∑n−1

i=0 [[8si]q mod 2] xi. For each i, we have four cases to distinguish:

Case A3: In Step 2 case A2 held, and [8si]q mod 2 = 0. Then, condition (A2)
implies that −q+1

2 ≤ 8si ≤ q−1
2 , i.e. −q+1

16 ≤ si ≤ q−1
16

− q + 1 ≤ 16si ≤ q − 1 (A3)

Case B3: In Step 2 case A2 held, and [8si]q mod 2 = 1. Then, condition (A2)
implies that q−1

2 + 1 ≤ 8|si| ≤ q − 1, i.e. q+1
16 ≤ |si| ≤ q−1

8

q + 1 ≤ 16|si| ≤ 2q − 2 (B3)

Case C3: In Step 2 case B2 held, and [8si]q mod 2 = 0. Then, condition (B2)
implies that 3q+1

2 ≤ 8|si| ≤ 2q − 2, i.e. 3q+1
16 ≤ |si| ≤ q−1

4

3q + 1 ≤ 16|si| ≤ 4q − 4 (C3)
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Case D3: In Step 2 case B2 held, and [8si]q mod 2 = 1. Then, condition (B2)
implies that q + 1 ≤ 8|si| ≤ 3q−1

2 , i.e. q+1
8 ≤ |si| ≤ 3q−1

16

2q + 2 ≤ 16|si| ≤ 3q − 1 (D3)

Case E3: In Step 2 case C2 held, and [8si]q mod 2 = 0. Then, condition (C2)
implies that 7q+1

2 ≤ 8|si| ≤ 4q − 4, i.e. 7q+1
16 ≤ |si| ≤ q−1

2

7q + 1 ≤ 16|si| ≤ 8q − 8 (E3)

Case F3: In Step 2 case C2 held, and [8si]q mod 2 = 1. Then, condition (C2)
implies that 3q + 1 ≤ 8|si| ≤ 7q−1

2 , i.e. 3q+1
8 ≤ |si| ≤ 7q−1

16

6q + 2 ≤ 16|si| ≤ 7q − 1 (F3)

Case G3: In Step 2 case D2 held, and [8si]q mod 2 = 0. Then, condition (D2)
implies that 2q + 2 ≤ 8|si| ≤ 5q−1

2 , i.e. q+1
4 ≤ |si| ≤ 5q−1

16

4q + 4 ≤ 16|si| ≤ 5q − 1 (G3)

Case H3: In Step 2 case D2 held, and [8si]q mod 2 = 1. Then, condition (D2)
implies that 5q+1

2 ≤ 8|si| ≤ 3q − 1, i.e. 5q+1
16 ≤ |si| ≤ 3q−1

8

5q + 1 ≤ 16|si| ≤ 6q − 2 (H3)

Final Step. We continue in this fashion and finally we obtain integers s′
i :=

|si| ∈ [0, q−1
2 ], for i = 0, 1, . . . , n − 1. This is obtained in the last step, where

all coefficients |si|, in absolute value, can assume at most only two (consecutive)
values; the known parity will then determine |si|. It is easy to see that in order
to achieve this we need �log2q� steps.

The strategy now is to find out whether si · sj < 0 or si · sj > 0 holds, for
every i, j with si, sj �= 0. Let sm be the first non-zero coefficient. This way, we
will obtain two possible candidates of the secret key, one with sm > 0 and the
other with sm < 0. A trivial query to the oracle decryption will allow us to
determine which is the correct secret key.

We have to choose an appropriate “ciphertext” c(x) = c0 + c1x + · · · +
cn−1x

n−1 to submit to the decryption oracle. Choose c0 = 1, c1 = 1 and cj = 0
for j �= 0, 1. Oracle decryption will compute and return the polynomial

D(c(x)) = s(x) · c(x) = [s0 − sn−1]q mod 2 +
n−1∑

i=1

([si + si−1]q mod 2)xi

Fix i = 1, 2, . . . , n − 1 such that si, si−1 �= 0. Let bi := [si + si−1]q mod 2 be the
coefficient of xi, and let b′

i := [s′
i +s′

i−1]q mod 2. There are two cases to consider:

1. s′
i + s′

i−1 ≥ q+1
2 . Then

• if bi = b′
i, then si and si−1 have the same sign;

• if bi �= b′
i, then si and si−1 have different signs.
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2. 0 ≤ s′
i + s′

i−1 ≤ q−1
2 . Then we need to make an extra query to understand

whether si and si−1 have the same sign or not.

Now, for each one of the i of the previous case (i.e. such that 0 ≤ s′
i+s′

i−1 ≤ q−1
2 ,

i = 1, 2, . . . , n − 1, and si, si−1 �= 0) we choose and submit to the decryption
oracle the polynomial c(x) = αi|si−1| + αi|si|x, i.e. we choose c0 = αi|si−1|,
c1 = αi|si|, c2 = c3 = · · · = cn−1 = 0, where αi is chosen such that

αi|si−1 · si| ∈
(

q − 1
4

,
q − 1

2

]
(1)

(it is always possible to find such an αi). The oracle decryption will return the
polynomial D(c(x)) = s(x) · c(x), i.e.

[αi|si−1|s0 − αi|si|sn−1]q mod 2 +
n−1∑

j=1

([αi|si−1|sj + αi|si|sj−1]q mod 2) xj

Let’s focus on the coefficient of xi, i.e. βi := [αi|si−1|si + αi|si|si−1]q mod 2.
Now, there are two cases:

1. if si, si−1 have different signs, then βi = 0;
2. if si, si−1 have the same sign, then βi = 1 (trivial to verify: 1 holds, and

therefore [2αi · |si · si−1|]q) is odd.

By repeating this idea for every i = 1, 2, . . . , n− 1 such that 0 ≤ s′
i + s′

i−1 ≤ q−1
2

we will know which one of the following relations si · si−1 < 0 ∨ si · si−1 > 0
holds, for every consecutive non-zero coefficients si, si−1.

Now, we have one more thing to consider: we have to be careful in case one
of the coefficient si is zero. In this case in fact, no information can be given
about the sign of si−1 if we compare it to si. To solve this problem, we have
to choose and submit to the decryption oracle a polynomial c(x) = a + bxj

for appropriates a, b, j. Let 0 ≤ m1 ≤ n − 1 be an integer such that sm1 is
the first non-zero coefficient of the secret key s(x). If there exists i1 > m1

such that si1 = 0, then let m2 be the first non-zero coefficient such that i1 <
m2 ≤ n − 1. Then we want to compare the relative signs of sm1 and sm2 by
choosing the polynomial c(x) with c0 = α|sm1 |, cm2−m1 = α|sm2 |, cj = 0
for j �= 0,m2 − m1. So we have c(x) = α|sm1 | + α|sm2 |xm2−m1 , with α such
that α|sm1sm2 | ∈ (

q−1
4 , q−1

2

]
. The oracle decryption will return the polynomial

D(c(x)) = s(x) · c(x) = β0 + β1x + · · · + βn−1x
n−1. Consider the m2-th coeffi-

cient βm2 = [α|sm1 |sm2 + α|sm2 |sm1 ]q mod 2. As before, we can conclude that
if sm1 , sm2 have different signs, then βm2 = 0, and if sm1 , sm2 have the same
sign, then βm2 = 1.

Now, similar to what just discussed, if there exists i2 > m2 such that si2 = 0,
then let m3 be the first non-zero coefficient such that m3 > i2. We will in a similar
fashion compare the relative signs of sm1 and sm3 . We keep proceeding this way,
and in the end we will know, for every 0 ≤ i, j ≤ n − 1 such that si �= 0, sj �= 0,
whether si · sj > 0 or si · sj < 0 occurs. This allows us to determine two possible
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candidates for the secret key s(x) (assume sm is the first non-zero coefficient;
then one candidate has sm < 0, the other has sm > 0). A trivial oracle decryption
query will reveal which one of the two is the correct secret key. The total number
of decryption queries is then at most �log2q� + n.

4 Attack Against the BLLN13 SHE Scheme

We start by recalling the BLLN13 SHE Scheme [BLLN13]. For a given positive
integer d ∈ N>0, define the quotient ring R := Z[x]/(Φd(x)), i.e. the ring of
polynomials with integer coefficients modulo the d-th cyclotomic polynomial
Φd(x) ∈ Z[x]. The degree of Φd is n = ϕ(d), where ϕ is Euler’s totient function.
As considered by the authors of [BLLN13], for correctness of the scheme, let d
be a power of 2; in this case, we have Φd(x) = xn + 1 with n also a power of
2. Therefore R = Z[x]/(xn + 1). The other parameters of the [BLLN13] SHE
scheme are a prime integer q ∈ N and an integer t ∈ N such that 1 < t < q. Let
also χkey, χerr be two distributions on R. The parameters d, q, t, χkey and χerr are
public and we assume that given λ, there are polynomial-time algorithms that
output d, q, t and φ(x), and sample from the error distributions χ. The message
space is M = R/tR = Zt[x]/(xn + 1), and all operations on ciphertexts are
carried out in the ring Rq := Zq[x]/(φ(x)).

KeyGen(λ) :

• sample f ′, g ← χkey

• let f = [tf ′ + 1]q
• if f is not invertible in Rq, resam-

ple f ′

• set pk := h = [tgf−1]q ∈ Rq

• set sk := f ∈ Rq

Encrypt(pk,m):
• for message m + tR, let [m]t be

its representative
• sample s, e ← χerr

• output ciphertext c =
[�q/t�[m]t + e + hs]q ∈ Rq

Decrypt(sk, c):
• output m =

[⌊
t
q · [fc]q

⌉]

t
∈ Rt

Since we don’t need the evaluation step, we omit it in the description.

4.1 Attack Preview

We are going to recover the secret key f(x) = f0+f1x+f2x
2+ · · ·+fn−1x

n−1 ∈
Zq[x]

(xn+1) , where fi is an integer in (−q/2, q/2] for all i = 0, 1, . . . , n−1. In order to
recover f(x), we are going to submit specifically-chosen’ciphertexts’ of the form
c(x) = c0 + c1x+ c2x

2 + · · ·+ cn−1x
n−1 ∈ Zq [x]

(xn+1) , with integers ci ∈ (−q/2, q/2].
Choose c(x) = 1 = 1 + 0x + 0x2 + · · · + 0xn−1. We have

D(c = 1) =
[⌊

t

q
· [f · 1]q

⌉]

t

=
[⌊

t

q
· (

[f0]q + [f1]qx + · · · + [fn−1]qxn−1
)
⌉]

t

∗=
[⌊

t

q
· (

f0 + f1x + · · · + fn−1x
n−1

)
⌉]

t

=
[⌊

t

q
f0

⌉
+

⌊
t

q
f1

⌉
x + · · · +

⌊
t

q
fn−1

⌉
xn−1

]

t
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Equality ∗= holds since the integer coefficients fi are already reduced modulo
q. Now, for every 0 ≤ i ≤ n − 1 we have −q/2 < fi ≤ q/2. We have that
q > 2 since in [BLLN13] it is claimed that 1 < t < q, with t, q integers. In
particular, q is a prime integer greater than 2, and therefore q/2 /∈ N. So we
have −q/2 < fi < q/2. In particular we have that − t

2 < t
q · fi < t

2 . For every

0 ≤ i ≤ n − 1, let u
(1)
i :=

⌊
t
q fi

⌉
. We have

⌈− t
2

⌉ ≤ u
(1)
i ≤ ⌊

t
2

⌋
. Each u

(1)
i can

have
⌊

t

2

⌋
−

⌈
− t

2

⌉
+ 1 = 2

⌊
t

2

⌋
+ 1 =

{
t if t is odd
t + 1 if t is even

possible different values, i.e. u
(1)
i can have t different possible values if t is odd,

and can have t + 1 different possible values if t is even. Now, for every 0 ≤ i ≤
n − 1, we have that [u(1)

i ]t ∈ (−t/2, t/2] and therefore

• [u(1)
i ]t ∈= [− t

2 + 1
2 ,− t

2 + 3
2 ,− t

2 + 5
2 , · · · , t

2 − 1
2 ] =: T1 if t is odd;

• [u(1)
i ]t ∈ [− t

2 + 1,− t
2 + 2, . . . , t

2

]
=: T2 if t is even.

We have that #(T1) = #(T2) = t. Let v
(1)
i := [u(1)

i ]t for 0 ≤ i ≤ n− 1. It is clear
that if u

(1)
i = −t/2, i.e. if u

(1)
i = �−t/2� and t is even, then v

(1)
i = t/2. We have

D(c(x) = 1) =
[
u
(1)
0 + u

(1)
1 x + u

(1)
2 x2 + · · · + u

(1)
n−1x

n−1
]

t

= [u(1)
0 ]t + [u(1)

1 ]tx + · · · + [u(1)
n−1]tx

n−1

= v
(1)
0 + v

(1)
1 x + v

(1)
2 x2 + · · · + v

(1)
n−1x

n−1

where ∀i = 0, 1, . . . , n − 1,

v
(1)
i =

{
t
2 if u

(1)
i = − t

2 (i.e. if u
(1)
i =

⌈− t
2

⌉
and t is even)

u
(1)
i otherwise

In particular, if t is odd, then D(c = 1) = u
(1)
0 +u

(1)
1 x+u

(1)
2 x2 + · · ·+u

(1)
n−1x

n−1.
We have, ∀0 ≤ i ≤ n − 1,

if t is odd, − t

2
+

1
2

≤ v
(1)
i ≤ t

2
− 1

2
; if t is even, − t

2
+ 1 ≤ v

(1)
i ≤ t

2

In both cases, v
(1)
i can only have t different values. As we saw before, in case

of t odd we need to perform �log2(q/t)�+1 oracle decryption queries; in case of t
even, we need to perform extra oracle decryption queries (at most n−1) in order
to understand which sign are given the coefficients of the secret key. Therefore,
the total number of queries to the decryption oracle is at most �log2(q/t)� + n.
If we use the actual bound B given on the coefficients si by the distribution χ,
we have that the total number of queries to the decryption oracle is at most
�log2(B/t)� + n.
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4.2 Detailed Attack in Three Cases

Case 1: t is odd

Step 1: Select c(x) = 1. Select “ciphertext” c(x) = 1 and submit it to the
decryption oracle. Since t is odd and v

(1)
i = u

(1)
i , ∀0 ≤ i ≤ n − 1, we obtain the

polynomial D(c = 1) = u
(1)
0 + u

(1)
1 x + u

(1)
2 x2 + · · · + u

(1)
n−1x

n−1, where
⌈− t

2

⌉ ≤
u
(1)
i ≤ ⌊

t
2

⌋
. Every u

(1)
i can have only t different values and can be written as

u
(1)
i =

⌈− t
2

⌉
+ ki,1, with ki,1 ∈ {0, 1, . . . , t − 1}. Now, it is easy to see that

u
(1)
i =

⌈
− t

2

⌉
+ ki,1 ⇔ −q

2
+

q

t
ki,1 < fi < −q

2
+

q

t
(ki,1 + 1)

The polynomial obtained from the decryption oracle can therefore be written as

D(c(x) = 1) = u
(1)
0 + u

(1)
1 x + u

(1)
2 x2 + · · · + u

(1)
n−1x

n−1 =
n−1∑

i=0

(⌈
− t

2

⌉
+ ki,1

)
xi

Each fi belongs to the interval (−q/2, q/2). But after this our first query we
learn values ki,1 ∈ [0, 1, . . . , t − 1], 0 ≤ i ≤ n − 1, such that

− q

2
+

q

t
ki,1 < fi < −q

2
+

q

t
(ki,1 + 1) (F(0,1))

We have − q
2 + q

t (ki+1 + 1) − (− q
2 + q

t ki+1

)
= q

t . Therefore, we know each inte-
ger coefficient fi with an error up to q

t . The idea now is to keep submitting
‘ciphertext’ to the decryption oracle and obtain values ki,j , with 0 ≤ i ≤ n − 1
and increasing integers j = 1, 2, 3, . . ., in such a way that we keep reducing the
interval in which fi lies until we know fi with an error smaller than 1, which
determines each fi completely.

Step 2: Select c(x) = 2. Select now “ciphertext” c(x) = 2 = 2 + 0x + 0x2 +
· · · + 0xn−1. Decryption oracle computes and return the polynomial

D(c = 2) =
[⌊

t

q
· [f · 2]q

⌉]

t

=
[⌊

t

q
· (

[2f0]q + [2f1]qx + · · · + [2fn−1]qxn−1
)
⌉]

t

=
[⌊

t

q
f
(2)
0

⌉
+

⌊
t

q
f
(2)
1

⌉
x + · · · +

⌊
t

q
f
(2)
n−1

⌉
xn−1

]

t

where we have put f
(2)
i := [2fi]q, for every 0 ≤ i ≤ n − 1; of course we have

− q
2 < f

(2)
i < q

2 . Now,

• if −q/4 < fi < q/4, then − q
2 < 2fi < q

2 and therefore f
(2)
i = [2fi]q = 2fi

• if −q/2 < fi < −q/4, then −q < 2fi < − q
2 and therefore f

(2)
i = [2fi]q = 2fi+q

• if q/4 < fi < q/2, then q
2 < 2fi < q and therefore f

(2)
i = [2fi]q = 2fi − q
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So we have

f
(2)
i = [2fi]q =

⎧
⎪⎨

⎪⎩

2fi if − q
4 < fi < q

4

2fi + q if − q
2 < fi < − q

4 , and in this case 0 < f
(2)
i < q

2

2fi − q if q
4 < fi < q

2 , and in this case − q
2 < f

(2)
i < 0

(2)

Let u
(2)
i :=

⌊
t
q · f

(2)
i

⌉
. Then D(c = 2) =

[

u
(2)
0 + u

(2)
1 x + u

(2)
2 x2 + · · · + u

(2)
n−1x

n−1
]

t
.

As before, u
(2)
i can have only t different possible values, and can be written as

u
(2)
i =

⌈− t
2

⌉
+ ki,2, with ki,2 ∈ {0, 1, . . . , t − 1}, and also u

(2)
i =

⌈− t
2

⌉
+ ki,2 ⇔

− q
2 + q

t ki,2 < fi < − q
2 + q

t (ki,2 + 1). As before, since −q/2 < f
(2)
i < q/2

and t is odd, we have
⌈− t

2

⌉ ≤ u
(2)
i ≤ ⌊

t
2

⌋
, and therefore we can simply write

D(c = 2) = u
(2)
0 + u

(2)
1 x + u

(2)
2 x2 + · · · + u

(2)
n−1x

n−1 =
∑n−1

i=0

(⌈− t
2

⌉
+ ki,2

)
xi. So

now, for each 0 ≤ i ≤ n − 1, we know ki,1, ki,2 such that
{

− q
2 + q

t ki,1 < fi < − q
2 + q

t (ki,1 + 1)
− q

2 + q
t ki,2 < [2fi]q < − q

2 + q
t (ki,2 + 1)

There are 3 cases to distinguish, where 3 = 22 − 1.

(1/3)[c=2]. If − q
2+ q

t (ki,1+1) ≤ − q
4∧− q

2+ q
t ki,1 ≥ − q

2 , which says that 0 ≤ ki,1 ≤⌊
t
4 − 1

⌋
, then we are sure that fi ∈ (− q

2 ,− q
4 ). Therefore, by condition

(2), we expect f
(2)
i = [2fi]q = 2fi + q. Therefore, − 3q

4 + q
2tki,2 < fi <

− 3q
4 + q

2t (ki,2 + 1)
(2/3)[c=2]. If − q

2 + q
t (ki,1 + 1) ≤ q

4 ∧ − q
2 + q

t ki,1 ≥ − q
4 , which says that

⌈
t
4

⌉ ≤
ki,1 ≤ ⌊

3t
4 − 1

⌋
, then we are sure that fi ∈ (− q

4 , q
4 ). Therefore, by

condition (2), we expect f
(2)
i = [2fi]q = 2fi. Therefore, − q

4 + q
2tki,2 <

fi < − q
4 + q

2t (ki,2 + 1)
(3/3)[c=2]. If − q

2 + q
t (ki,1 + 1) ≤ q

2 ∧ − q
2 + q

t ki,1 ≥ q
4 , which says that

⌈
3t
4

⌉ ≤
ki,1 ≤ t−1, then we are sure that fi ∈ ( q

4 , q
2 ). Therefore, by condition

(2), we expect f
(2)
i = [2fi]q = 2fi − q. Therefore, q

4 + q
2tki,2 < fi <

q
4 + q

2t (ki,2 + 1)

Now, we remark that there are values of ki,1 for which is not clear to which
of the previous cases we are falling in. For instance, if ki,1 is such that − q

4 ∈(− q
2 + q

t ki,1,− q
2 + q

t (ki,1 + 1)
)
, then we are not sure whether we are in Case

(1/3)[c=2] or in Case (2/3)[c=2]. This uncertainty happens if �ki,1 ∈ [0, 1, . . . , t−1]
such that − q

2 + q
t ki,1 = − q

4 , i.e. such that ki,1 = t/4. So, if �ki,1 ∈ [0, 1, . . . , t−1]
such that ki,1 = t/4, i.e. if 4 � t, then − q

4 ∈ (− q
2 + q

t

⌊
t
4

⌋
,− q

2 + q
t

(⌊
t
4

⌋
+ 1

))
. So,

if ki,1 =
⌊

t
4

⌋
, with t

4 /∈ N, we have that fi ∈ (− q
2 + q

t

⌊
t
4

⌋
,− q

2 + q
t

(⌊
t
4

⌋
+ 1

))
=:

I. It is easy to see that

− q

2
+

q

t

(⌊
t

4

⌋
+ 1

)
≤ 0,∀1 < t < q (3)
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There are two cases:

1/2: fi ∈ I1 := I ∩(−q/2,−q/4). Then condition (2) implies that f
(2)
i = [2fi]q ∈

(0, q/2)
2/2: fi ∈ I2 := I ∩ (−q/4, 0). Then f

(2)
i = [2fi]q ∈ (−q/2, 0)

So, to sum up we have that if ki,1 =
⌊

t
4

⌋
, with t

4 /∈ N, then

• if f
(2)
i ∈ (0, q/2) then fi ∈ (−q/2,−q/4) and apply Case (1/3)[c=2]

• if f
(2)
i ∈ (−q/2, 0) then fi ∈ (−q/4, 0) and apply Case (2/3)[c=2]

Now if ki,1 is such that q
4 ∈ (− q

2 + q
t ki,1,− q

2 + q
t (ki,1 + 1)

)
, then similarly to

what we have just discussed we are not sure if we are in Case (2/3)[c=2] or in
Case (3/3)[c=2] This uncertainty happens when �ki,1 ∈ [0, 1, . . . , t − 1] such that
− q

2 + q
t ki,1 = q

4 , i.e. such that ki,1 = 3t/4. So, if �ki,1 ∈ [0, 1, . . . , t− 1] such that
ki,1 = 3t/4, then q

4 ∈ (− q
2 + q

t

⌊
3t
4

⌋
,− q

2 + q
t

(⌊
3t
4

⌋
+ 1

))
. So, if ki,1 =

⌊
3t
4

⌋
, with

3t
4 /∈ N, we have that fi ∈ (− q

2 + q
t

⌊
3t
4

⌋
,− q

2 + q
t

(⌊
3t
4

⌋
+ 1

))
=: I. It is easy to

see that

− q

2
+

q

t

⌊
3t

4

⌋
≥ 0,∀t, q (4)

There are two cases:

1/2: fi ∈ I1 := I ∩ (0, q/4). Then f
(2)
i = [2fi]q ∈ (0, q/2)

2/2: fi ∈ I2 := I ∩ (q/4, q/2). Then condition (2) implies that f
(2)
i = [2fi]q ∈

(−q/2, 0)

So, to sum up we have that if ki,1 =
⌊
3t
4

⌋
, with 3t

4 /∈ N, then

• if f
(2)
i ∈ (0, q/2) then fi ∈ (−q/4, q/4) and apply Case (2/3)[c=2]

• if f
(2)
i ∈ (−q/2, 0) then fi ∈ (q/4, q/2) and apply Case (3/3)[c=2]

We can write now all the 3 cases in a more complete way:

(1/3)[c=2]. Suppose that

0 ≤ ki,1 ≤
⌊

t

4
− 1

⌋
∨

(
ki,1 =

⌊
t

4

⌋
,with

t

4
/∈ N ∧ f

(2)
i ∈ (0, q/2)

)
(K(1,1))

Then fi ∈
(
−q

2
,−q

4

)
, −3q

4
+

q

2t
ki,2 < fi < −3q

4
+

q

2t
(ki,2 + 1)

(F(1,1))

(2/3)[c=2]. Suppose that
⌈

t

4

⌉
≤ ki,1 ≤

⌊
3t

4
− 1

⌋
∨

(
ki,1 =

⌊
t

4

⌋
∧ f

(2)
i ∈ (−q/2, 0)

)
∨

∨
(

ki,1 =
⌊

3t

4

⌋
∧ f

(2)
i ∈ (0, q/2)

) (K(1,2))

Then fi ∈
(
−q

4
,
q

4

)
, −q

4
+

q

2t
ki,2 < fi < −q

4
+

q

2t
(ki,2 + 1) (F(1,2))
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(3/3)[c=2]. Suppose that
⌈

3t

4

⌉
≤ ki,1 ≤ t − 1 ∨

(
ki,1 =

⌊
3t

4

⌋
∧ f

(2)
i ∈ (−q/2, 0)

)
(K(1,3))

Then fi ∈
(q

4
,
q

2

)
,

q

4
+

q

2t
ki,2 < fi <

q

4
+

q

2t
(ki,2 + 1) (F(1,3))

In all cases, we end up by knowing fi with an error up to q/(2t).

Generalization and Complexity. At step 3, we select the “ciphertext” c(x) =
4; we omit the details of step 3 (for more details, see [CT15]). In general, at
each step we keep submitting “ciphertexts” c(x) := 2h, for increasing values
h = 0, 1, 2, . . ., i.e. at step h+1 we submit ciphertext c(x) = 2h. Suppose we are
at step h+1. Then we submit to the decryption oracle the ‘ciphertext’ c(x) = 2h,
and the decryption oracle will return us a polynomial

D(c = 2h) = u
(h+1)
0 + u

(h+1)
1 x + · · · + u

(h+1)
n−1 xn−1 =

n−1∑

i=0

u
(h+1)
i xi

=
n−1∑

i=0

(⌈
− t

2

⌉
+ ki,h+1

)
∈ Rt

from which we learn values ki,h+1 for 1 ≤ i ≤ n − 1. So, at this point, we know
ki,j , for 0 ≤ i ≤ n − 1 and 1 ≤ j ≤ h + 1. These values allow us to distinguish
between mh := 2h+1 − 1 cases: for each 0 ≤ i ≤ n − 1, we know that integer fi

belongs to one of the cases:

(a/2h+1 − 1)[c=2h]. Suppose that

[Condition (C(h, a, 1)) holds] ∧ [Condition (C(h, a, 2)) holds] (K(h,a))

Then

fi ∈ (xa,h, ya,h), Δh,a +
q

2ht
ki,h+1 < fi < Δh,a +

q

2ht
(ki,h+1 + 1) (F(h,a))

where a ∈ {1, 2, . . . , 2h+1 − 1}. Since

Δh,a +
q

2ht
(ki,h+1 + 1) −

(
Δh,a +

q

2ht
ki,h+1

)
=

q

2ht
,

this allows us to recover, for each 0 ≤ i ≤ n−1, the integer fi with an error up to
q

2ht
. Therefore, we keep submitting’ciphertexts’ c(x) = 2h for increasing values

h = 0, 1, 2, . . . until h is such that q
2ht

< 1, i.e. h ≥ �log2(q/t)�. So, we have
to repeat our attack, submitting ciphertexts c(x) = 1 = 20, 21, 22, 23, . . . , 2H ,
where H := �log2(q/t)�. Se we repeat our attack H + 1 times. Now, the secret
key is f(x) = f0 + f1x + · · · + fn−1x

n−1, where fi ∈ (−q/2, q/2], ∀0 ≤ i ≤ n − 1.
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So fi can have q different values. The decryption oracle reveals a polynomial
m(x) = m0+m1x+· · ·+mn−1x

n−1, where mi ∈ (−t/2, t/2], ∀0 ≤ i ≤ n−1. So mi

can have t different values. Each fi can be described with at most �log2(q − 1)�+1
bits. So f(x) can be described with n · (�log2(q − 1)� + 1). Oracle decryption
reveals n · (�log2(t − 1)� + 1) bits. So the minimum number of oracle queries to
determine f(x) is given by n·(�log2(q−1)�+1)

n·(�log2(t−1)�+1) . In order to finish our attack for t odd,
we need to give complete description of Δh,a, Condition C(h, a, 1) and Condition
C(h, a, 2), for each 0 ≤ h ≤ �log2(q/t)� = H and for each 1 ≤ a ≤ 2h+1 − 1. Fix
0 ≤ h ≤ �log2(q/t)�. For a given 1 ≤ a ≤ 2h+1 − 1 put

δh,a :=

⎧
⎪⎨

⎪⎩

2h−1 if a = 2h

⌊
a
2

⌋
if 1 ≤ a < 2h

⌈
a
2

⌉
if 2h < a ≤ 2h+1 − 1

, Δh,a := −
(

1
2

+
1

2h+1
− δh,a

2h

)
· q

Also, put

η(h, a) :=

{⌈
a
2

⌉
if 1 ≤ a ≤ 2h

⌊
a
2

⌋
if 2h < a ≤ 2h+1 − 1

Then

Condition (C(h, a, 1)) = Condition (K(h − 1, η(h, a)))

Remark that, if h = 0 or h = 1, then Condition (C(h,a,1)) = ∅ i.e., we don’t put
any condition at all, vacuous condition.

For Condition C(h, a, 2), remark that if h = 0 then Condition (C(0, a, 2)) = ∅
i.e., we don’t put any condition at all, vacuous condition. One can see that, at
step h + 1, condition C(h, a, 2) is only one among the following 5:

1. V3,h := U2,1 = U1,1 ∧ (r is even) = U3,1 ∧ (r is odd):

0 ≤ ki,h ≤
⌊

t

4
− 1

⌋
∨

(
ki,h =

⌊
t

4

⌋
∧ f

(h+1)
i ∈

(
0,

q

2

))
(V3,h)

2. V5,h := U2,2:
⌈

t

4

⌉
≤ ki,h ≤

⌊
3t

4
− 1

⌋
∨

(
ki,h =

⌊
t

4

⌋
∧ f

(h+1)
i ∈

(
−q

2
, 0

))
∨

∨
(

ki,h =
⌊

3t

4

⌋
∧ f

(h+1)
i ∈

(
0,

q

2

)) (V5,h)

3. V2,h := U2,3 = U1,2 ∧ (r is odd) = U3,2 ∧ (r is even):
⌈

3t

4

⌉
≤ ki,h ≤ t − 1 ∨

(
ki,h =

⌊
3t

4

⌋
∧ f

(h+1)
i ∈

(
−q

2
, 0

))
(V2,h)
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4. V1,h := U1,1 ∧ (r is odd) = U3,1 ∧ (r is even):
⌈

t

2

⌉
≤ ki,h ≤

⌊
3t

4
− 1

⌋
∨

(
ki,h =

⌊
3t

4

⌋
∧ f

(h+1)
i ∈

(
0,

q

2

))
(V1,h)

5. V0,h := U1,2 ∧ (r is even) = U3,2 ∧ (r is odd):
⌈

t

4

⌉
≤ ki,h ≤

⌊
t

2
− 1

⌋
∨

(
ki,h =

⌊
t

4

⌋
∧ f

(h+1)
i ∈

(
−q

2
, 0

))
(V0,h)

So, suppose we are in case (a/2h+1 − 1)[c=2h]. Then we see that we have
Therefore, we have

C(h, a, 2) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V1,h if 1 ≤ a ≤ 2h − 2 ∧ a ≡ 1 mod 4 or
or 2h + 2 ≤ a ≤ 2h+1 − 1 ∧ a ≡ 0 mod 4

V2,h if 1 ≤ a ≤ 2h − 2 ∧ a ≡ 2 mod 4 or
or 2h + 2 ≤ a ≤ 2h+1 − 1 ∧ a ≡ 1 mod 4
or a = 2h + 1

V3,h if 1 ≤ a ≤ 2h − 2 ∧ a ≡ 3 mod 4 or
or 2h + 2 ≤ a ≤ 2h+1 − 1 ∧ a ≡ 2 mod 4
or a = 2h − 1

V0,h if 1 ≤ a ≤ 2h − 2 ∧ a ≡ 0 mod 4 or
or 2h + 2 ≤ a ≤ 2h+1 − 1 ∧ a ≡ 3 mod 4

V5,h if a = 2h

Case 2: t is even but not 2

Step 1: Select c(x) = 1. Select “ciphertext” c(x) = 1 and submit it to the
decryption oracle. We obtain the polynomial D(c(x) = 1) = v

(1)
0 + v

(1)
1 x +

v
(1)
2 x2 + · · ·+ v

(1)
n−1x

n−1. Suppose there exists v
(1)
i = t/2. This means that either

u
(1)
i = t

2 or u
(1)
i = − t

2 . We want to find out which one among the two above
cases holds.

1. If we are in case u
(1)
i = t

2 , then we have
⌊

t
q fi

⌉
= t

2 ⇔ q
2 − q

2t < fi < q
2

2. If we are in case u
(1)
i = − t

2 , then we have
⌊

t
q fi

⌉
= − t

2 ⇔ − q
2 < fi < − q

2 + q
2t

To find out which one is the case, we have to wait for the next step.
Now, let’s focus on all the other v

(1)
i �= t

2 . We have in this case, v
(1)
i = u

(1)
i .

Now, similarly as before, we have − t
2 + 1 ≤ u

(1)
i ≤ t

2 , and every u
(1)
i can have

only t different values; it can be written as u
(1)
i = − t

2 + 1 + ki,1, with ki,1 ∈
{0, 1, . . . , t − 1}. Now, it is easy to see that

u
(1)
i = − t

2
+ 1 + ki,1 ⇔ −q

2
+

q

t
(ki,1 +

1
2
) < fi < −q

2
+

q

t
(ki,1 +

3
2
)
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The polynomial obtained from the decryption oracle can therefore be written
as D(c(x) = 1) =

∑n−1
i=0

(− t
2 + 1 + ki,1

)
xi. Each fi belongs to the interval

(−q/2, q/2). But after this our first query we learn values ki,1 ∈ [0, 1, . . . , t − 1],
0 ≤ i ≤ n − 1, such that − q

2 + q
t (ki,1 + 1

2 ) < fi < − q
2 + q

t (ki,1 + 3
2 ). We have

that − q
2 + q

t (ki+1 + 3/2) − (− q
2 + q

t (ki+1 + 1/2)
)

= q
t . Therefore, we know each

integer coefficient fi with an error up to q
t .

The idea now is to keep submitting ’ciphertext’ to the decryption oracle and
obtain values ki,j , with 0 ≤ i ≤ n − 1 and increasing integers j = 1, 2, 3, . . ., in
such a way that we keep reducing the interval in which fi lies until we know fi

with an error smaller than 1, which determines each fi completely.

Step 2: Select c(x) = 2. Select now “ciphertext” c(x) = 2 = 2+0x+· · ·+0xn−1.
Decryption oracle computes and return the polynomial

D(c(x) = 2) =

[⌊

t

q
· [f · 2]q

⌉]

t

=

[⌊

t

q
· ([2f0]q + [2f1]qx + · · · + [2fn−1]qx

n−1)
⌉]

t

Now, let’s focus on
[⌊

t
q [2fi]q

⌉]

t
xi for each i such that, in the previous step,

v
(1)
i = t

2 .

1. We have
q

2
− q

2t
< fi <

q

2
⇔ q − q

t
< 2fi < q ⇔ −q

t
< [2fi]q < 0

⇔ −1 <
t

q
[2fi]q < 0 ⇔ −1 ≤

[⌊
t

q
[2fi]q

⌉]

t

≤ 0

⇔
[⌊

t

q
[2fi]q

⌉]

t

=

{
0 or − 1 if t > 2
0 or 1 if t = 2

2. We have analogously −q

2
< fi < −q

2
+

q

2t
⇔

[⌊
t

q
[2fi]q

⌉]

t

= 0 or 1.

From now on we assume t > 2; we will consider later the case in which t = 2.
Let v

(2)
i =

[⌊
t
q [2fi]q

⌉]

t
. We have that

1. if v
(2)
i = −1, then u

(1)
i = t

2 and q
2 − q

2t < fi < q
2

2. if v
(2)
i = 1, then u

(1)
i = − t

2 and − q
2 < fi < − q

2 + q
2t

3. if v
(2)
i = 0, then we can’t conclude right now the exact interval in which fi

belongs; this will be considered in the next step.

Remark 2. Suppose we are in the above case 3, i.e. v(2) =
⌊

t
q [2fi]q

⌉
= 0. Then

1. We have q
2 − q

2t < fi < q
2 ∧

⌊
t
q [2fi]q

⌉
= 0 ⇔ q

2 − q
4t < fi < q

2

2. We have − q
2 < fi < − q

2 + q
2t ∧

⌊
t
q [2fi]q

⌉
= 0 ⇔ − q

2 < fi < − q
2 + q

4t
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We will use this remark in the next step to investigate further the interval in
which fi lies. Now, let’s focus on all of the other coefficients. Using the same
arguments as in Sect. 4.2, the decryption oracle computes and return the poly-
nomial

D(c(x) = 2) =

[⌊

t

q
· [f · 2]q

⌉]

t

=

[⌊

t

q
f
(2)
0

⌉

+

⌊

t

q
f
(2)
1

⌉

x + · · · +

⌊

t

q
f
(2)
n−1

⌉

xn−1

]

t

=
[

u
(2)
0 + u

(2)
1 x + · · · + u

(2)
n−1x

n−1
]

t
:= v

(2)
0 + v

(2)
1 x + · · · + v

(2)
n−1x

n−1

As before, suppose there exists v
(2)
i = t/2. This means that either u

(2)
i = t

2 ,
or u

(2)
i = − t

2 . We can easily understand which case we are by considering the
known value v

(1)
i �= t

2 . All the other v
(2)
i correspond to values u

(2)
i �= −t

2 . These
u
(2)
i can then have only t different possible values, and can be written as u

(2)
i =

− t
2 + 1 + ki,2, with ki,2 ∈ {0, 1, . . . , t − 1}, and also

u
(2)
i = − t

2
+ 1 + ki,2 ⇔ −q

2
+

q

t
(ki,2 +

1
2
) < fi < −q

2
+

q

t
(ki,2 +

3
2
)

So now, for each 0 ≤ i ≤ n − 1 such that v
(1)
i �= t

2 ∨ (v(1)
i = t

2 ∧ v
(2)
i = 0), we

know ki,1, ki,2 such that
{

− q
2 + q

t (ki,1 + 1
2 ) < fi < − q

2 + q
t (ki,1 + 3

2 )
− q

2 + q
t (ki,2 + 1

2 ) < fi < − q
2 + q

t (ki,2 + 3
2 )

There are 3 cases to distinguish. These cases can be computed in an analogous
way to what seen for the case t odd. We omit the details.

Generalization. We continue in this way, following the blueprint for t odd and
taking care of all the coefficients for which v

(1)
i = t

2 and all subsequents v
(j)
i = 0

(when we finally find a j ≥ 2 such that v
(j)
i = 1 or −1, then we can deduce the

original value of u
(1)
i = t

2 or − t
2 ). If at the last step m we still get v

(m)
i = 0, then

all the values u
(1)
i remain undetermined, which also say that all the corresponding

coefficients fi can have only two possible values. At this point, the strategy is
to submit to the decryption oracle ’ciphertexts’ in order to determine whether
fi · fj < 0 or fi · fj > 0 holds among all the non-zero coefficients fi, fj , in a way
similar to what we have already discussed for the attack on the [LATV12] SHE
scheme. We omit the details; we will give a description of how to do this in the
case t = 2; the general case t > 2 is then easy to obtain.

Case 3: t = 2

Step 1: Select c(x) = 1. Choose and submit to the decryption oracle the
polynomial c(x) = 1. It will compute and return the polynomial

D(c(x) = 1) =
[⌊

2
q

· [f · 1]q

⌉]

2

=
[⌊

2
q
f0

⌉
+

⌊
2
q
f1

⌉
x + · · · +

⌊
2
q
fn−1

⌉
xn−1

]

2
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For every 0 ≤ i ≤ n − 1, u
(1)
i :=

⌊
2
q fi

⌉
is such that −1 ≤ u

(1)
i ≤ 1, and so

v
(1)
i := [u(1)

i ]2 = 0 or 1. We have two cases to distinguish:

(1) v
(1)
i = 0 ⇔ u

(1)
i = 0 ⇔

⌊
2
q
fi

⌉
= 0 ⇔ −1

2
<

2
q
fi <

1
2

⇔ −q

4
< fi <

q

4

(2) v
(1)
i = 1 ⇔ u

(1)
i = −1 or u

(1)
i = +1 ⇔

⌊
2
q
fi

⌉
= −1 or

⌊
2
q
fi

⌉
= +1

⇔ −3
2

<
2
q
fi < −1

2
or

1
2

<
2
q
fi <

3
2

⇔ −q

2
< fi < −q

4
or

q

4
< fi <

q

2

Step 2: Select c(x) = 2. Choose and submit to the decryption oracle the polyno-
mial c(x) = 2. It will return the polynomial D(c(x) = 2) =

∑n−1
i=0

[⌊
2
q [2fi]q

⌉]

2
xi

=:
∑n−1

i=0

[
u
(2)
i

]

2
xi =:

∑n−1
i=0 v

(2)
i xi. We have two cases to distinguish:

(1) v
(2)
i = 0. We have

v
(2)
i = 0 ⇔ u

(2)
i = 0 ⇔

⌊

2

q
[2fi]q

⌉

= 0 ⇔ −1

2
<

2

q
[2fi]q <

1

2
⇔ − q

4
< [2fi]q <

q

4

⇔ − q

4
< 2fi <

q

4
or − 5q

4
< 2fi < −3q

4
or

3q

4
< 2fi <

5q

4

⇔ − q

8
< fi <

q

8
or − q

2
< fi < −3q

8
or

3q

8
< fi <

q

2

We have three cases to distinguish, according to which known interval fi lies
at the end of step 1:
(1.1) If − q

4 < fi < q
4 , then − q

8 < fi < q
8

(1.2) If − q
2 < fi < − q

4 , then − q
2 < fi < − 3q

8

(1.3) If q
4 < fi < q

2 , then 3q
8 < fi < q

2

(2) v
(2)
i = 1. We have

v
(2)
i = 1 ⇔ u

(2)
i = −1 or u

(2)
i = +1 ⇔

⌊
2
q
[2fi]q

⌉
= −1 or

⌊
2
q
[2fi]q

⌉
= +1

⇔ −3
2

<
2
q
[2fi]q < −1

2
or

1
2

<
2
q
[2fi]q <

3
2

⇔ −3q

4
< [2fi]q < −q

4
or

q

4
< [2fi]q <

3q

4

⇔ −3q

4
< 2fi < −q

4
or

q

4
< 2fi <

3q

4

⇔ −3q

8
< fi < −q

8
or

q

8
< fi <

3q

8
Now, again we have three cases to distinguish, according to which known interval
fi lies at the end of step 1:

(2.1) If − q
4 < fi < q

4 , then − q
4 < fi < − q

8 or q
8 < fi < q

4

(2.2) If − q
2 < fi < − q

4 , then − 3q
8 < fi < − q

4

(2.3) If q
4 < fi < q

2 , then q
4 < fi < 3q

8
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Generalization and the Last Step. We continue in this way, and in the
end we will know each coefficient fi up to the sign. Therefore, we will know a
polynomial f ′(x) = f ′

0 + f ′
1x + · · · + f ′

n−1x
n−1, with f ′

i = |fi| for every i. We
proceed similarly to what we have seen for the attack on the [LATV12] scheme,
i.e. we query the decryption oracle in order to find out the relations fi ·fj < 0 or
fi · fj > 0 among the coefficients fi of the secret key f(x). Suppose that the two
consecutive coefficients fi, fi−1 are both non-zero. We know their absolute values
f ′

i , f
′
i−1. Choose and submit to the decryption oracle the polynomial c(x) =

α|fi−1| + α|fi|x, with α ∈ (−q/2, q/2] such that [2α|fi−1 · fi|]q ∈ [
q
4 , q

2

]
(it is

always possible to find such an α). Now, the decryption oracle will compute and
return the polynomial

D(c(x)) =

[⌊

2

q
[α|fi−1|f0 − α|fi|fn−1]q

⌉]

2

+

n−1
∑

j=1

[⌊

2

q
[α|fi−1|fj + α|fi|fj−1]q

⌉]

2

xj

Let’s focus on the i-th coefficient
[⌊

2
q [α|fi−1|fi + α|fi|fi−1]q

⌉]

2
. We have two

cases:

(1) If fi, fi−1 have different signs, then α|fi−1|fi + α|fi|fi−1 = 0, and therefore
the i-th coefficient is zero

[⌊
2
q [α|fi−1|fi + α|fi|fi−1]q

⌉]

2
= 0

(2) If fi, fi−1 have the same positive sign, we then have [α|fi−1|fi+α|fi|fi−1]q =
[2α|fifi−1|]q ∈ [

q
4 , q

2

]
. In case fi, fi−1 are both negative, we have that

[α|fi−1|fi + α|fi|fi−1]q = [−2α|fifi−1|]q ∈ [− q
2 ,− q

4

]
).

In both cases, it is easy to see that
[⌊

2
q [α|fi−1|fi + α|fi|fi−1]q

⌉]

2
= 1.

So we can distinguish whether two consecutive non-zero coefficients fi, fi−1 have
the same sign or not. As we saw for the attack on the [LATV12] scheme, this
leads us to two candidates for the secret key; to determine which one is the
correct one, it is enough to submit an extra query to the decryption oracle.

Remark 3. As we saw for the attack on the [LATV12] scheme, we have to be
careful in case one of the coefficient fi is zero. In this case in fact, no information
can be given about the sign of fi−1 if we compare it to fi. To solve this issue,
we choose and submit to the decryption oracle a polynomial in the form c(x) =
a + bxj , for appropriates a, b, j. We omit the details, which are straightforward
from what we have just discussed and from the attack on the [LATV12] scheme.

5 Conclusion

In this paper, we have described efficient key recovery attacks against the SHE
schemes from [LATV12,BLLN13]. At this moment, it is still not clear whether
we can adapt our attack to the scenario (3) of the LTV12 scheme, as noted
in Remark 1 in the beginning of Sect. 3. This is an interesting future work.
Up to today, the only known IND-CCA1 SHE scheme is that of Loftus et al.
[LMSV12]. It is a wide open problem to design more efficient IND-CCA1 secure
SHE schemes, possibly based on standard assumptions such as LWE.
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Abstract. Physically unclonable functions (PUFs) are crucial to the
implementations of secure key protection and authentication protocol.
Ring oscillator PUF (RO PUF) is popular for its nice properties of neat
structure. The power of an accurate model to describe the characteristics
of a physical system is beyond doubt. However, there are few publications
to quantitatively analyze the source of RO PUF’s bit error probability
and give out a calculation model for the bit error probability. In this
paper, based on the characteristics of RO and the pairwise comparison
of different oscillations, we quantitatively describe the factors to affect
RO PUF’s bit error rate, including the process variation, sampling inter-
val and temperature. Experiments are conducted to demonstrate the
validation of our calculating model. Our work allows the studying of RO
PUF’s bit error probability in full detail, and strengthen the evaluation
scheme of RO PUF. What’s more, it is an important tool for designers
to construct more efficient RO PUF-based systems.

Keywords: Physically unclonable functions · Ring oscillators · Bit error
probability · Evaluation model

1 Introduction

In recent years, researchers have given the high degree of attention on PUF
technology. Utilizing the intrinsic process variation inside the electronic circuits,
PUF is steadily solving problems of secure key storage, secure boot and so on [1].
Since PUFs don’t operate on their own but are usually embedded into systems,
it is invaluable to design PUF architectures which can meet the high reliability
and security constraints imposed by such systems. Generally, the fundamental
physical security of PUF-based system is derived from the PUF implementation
and post-processing is involved to make the PUF implementation suitable for
some applications, e.g., key storage. The essential characteristic of PUF imple-
mentation is the probabilistic behavior of the PUF itself since the private keys
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cannot tolerate any bit error. However, PUF’s original response almost may con-
tain bit errors. Therefore, fuzzy extractors [2] is necessary for almost all PUF
implementations, but more complex the fuzzy extractor is, more resources it
consumes. As a result, constructing a PUF system becomes an intricate work
because it should make a trade-off between the reliability, resource consumption
and efficiency.

There are many types of PUFs, like SRAM PUF [3,4], Glitch PUF [5], Arbiter
PUF [6], RO PUF [7–10] and so on. SRAM PUF takes advantage of SRAM cell’s
uninitialized value after power on, but traditionally in the commercial FPGA
products, SRAM cells are forcibly reset to a known value. Therefore, SRAM PUF
is not usually available on FPGA platform. Glitch PUF exploits glitches that
behave non-linearly from delay variation between gates and the characteristic of
pulse propagation of each gate. For its complex architecture, Glitch PUF is not
easy to be implemented. Arbiter PUF utilizes the variation of two symmetrical
signal propagation path, but on FPGA platform, it is difficult to place two
symmetrical paths and it is also not easy to implement Arbiter PUF on FPGAs.
The construction of RO PUF is simple and it is easy to be implemented on both
ASIC and FPGA platforms, so the researches on the characteristics evaluation
of RO PUF is significant as the guide to design RO PUF-based systems.

Up to now, since bit error rate is one of the most essential characteris-
tics, there are many researches [4,11,12] on the probabilistic behavior. Some
researches are focused on the design of the optimized error correction module.
In CHES 2008, Bösch et al. [11] propose an efficient helper data key extractor on
FPGAs and in CHES 2009, Maes et al. [12] propose a soft decision helper data
algorithm for error correction. If the error correction module is powerful enough,
all the response’s errors can be corrected. However, in the practical design of
PUF-based systems, we should make balancing typically opposing goals between
reliability and design’s complexity. What’s more, there are also researches on
the PUF architectures which are error-free. In J.Cryptol.2011, Maiti et al. [8]
describe a configurable RO PUF which can generate responses nearly without
errors over varying environmental conditions. The configurable RO PUF con-
sumes extra resource and the selection of the most stable RO pairs also consumes
extra resource. If we can master the bit error probability in advance, it can be
the guide to construct the error correction module or error-free construction with
high efficiency and appropriate resource consumption.

In order to analyze the source of RO PUF’s bit error probability, we pro-
pose an error bit analysis model which is based on the RO’s classical oscillation
model. Considering three main factors, process variation, sampling interval and
environmental conditions, to affect the RO’s bit error probability, we quantita-
tively analyze their effects on the bit error probability. From the results of our
model calculation and experiments, it achieves high consistency to demonstrate
the validity of our model to describe the probabilistic behavior of RO PUF. In
summary, in this paper, we make the following contributions.
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• According to the basic RO’s characteristics, we describe our bit error calcula-
tion model which can quantitatively calculate the bit error probability with
basic oscillation parameters.

• We conduct experiments to show the effects of sampling interval and environ-
mental conditions on the bit error probability. The results demonstrate the
validity of our analysis model.

• Our work contributes to the evaluation scheme of RO PUF and can help
designers efficiently construct RO PUF with an acceptant bit error rate.

Structure. In Sect. 2, we briefly describe the concept of RO PUF and its basic
notations. Section 3 presents our proposed bit error analysis model based on RO’s
classical oscillation mode and show the simulation design for our new model.
In Sect. 4, we conduct experiments to demonstrate the validity of our model.
Section 5 gives a simple evaluation of the sampling interval and temperature on
the bit error probability. In Sect. 6, we conclude this paper.

2 Preliminaries

A ring oscillator consists of odd number of inverters. The frequency of this ring
depends on the propagation delay of all the inverters. During the period of
manufacture, slight difference of an inverter’s propagation delay appears among
different rings. The slight difference is called process variation and it can not be
avoidable.

2.1 Ring Oscillator PUF

Ring oscillator architecture is a typical method to construct PUFs. The ring
oscillator PUF is first proposed by Suh and Devadas [7], and an RO PUF is
composed of n identical ROs, RO1 to ROn, with frequencies, f1 to fn, respec-
tively. Generally, RO PUF also contains two counters and two n-to-1 multiplexers
that control which ROs are currently applied to both counters. Due to process
variation, the frequencies of these two selected ROs, fi and fj , tend to be dif-
ferent from each other. One bit response rij can be extracted from two ring
oscillators by using a simple comparison of their frequencies as follows.

rij =

{
1 if fi > fj ,

0 otherwise.
(1)

Since all the process variation and other noises have influence on the fre-
quencies, the resulting comparison bit will be random and device-specific. The
above comparison operation is a basic form of compensated measurement, which
is proposed by Gassend et al. [1]. The compensated measurements based on
the ratio of two frequencies is particularly effective because the environmental
changes and systematic noises can affect both frequencies of two ring oscillators
simultaneously.
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2.2 The Evaluation Scheme of RO PUF

In brief, the evaluation scheme of RO PUF has three parts: reliability, uniqueness
and security [8].

– Reliability shows the ability to generate stable responses as the environmental
variables changing.

– Uniqueness evaluates how uniquely to distinguish different PUF instances
based on the generated responses.

– Security indicates the ability to prevent an adversary from stealing the PUF’s
secrets.

In this paper, we focus on the reliability because the bit error probability is
the same with reliability. Reliability is measured by intra-distance. For a partic-
ular challenge, the intra-distance between two evaluations on one PUF instan-
tiation is the hamming distance between the responses resulting from applying
this challenge twice to the PUF. Due to the environmental changes and system-
atic noises, the reproducing probability of a PUF response can not be 100 %. To
evaluate the bit error probability, we get one n-bit response m+1 times at some
environmental condition and select one response as the reference response R0

and the other responses as Rj (1 ≤ j ≤ m). The average intra-distance μintra

can be calculated as follows.

μintra =
1
m

m∑

j=1

HD(R0, Rj)
n

× 100% (2)

3 Analysis of the Model on Bit Error Probability

In order to simplify the scenario for our analysis, we assume that except Gaussian
noise there are no other disturbance signals to affect RO’s oscillations. Therefore,
there are two random variables in our model, one is process variation and the
other is Gaussian noise.

3.1 Notations

On the observation of previous researches on ROs, there are some important
notations in oscillator-based architecture, like TRNGs [13–15]. The period of one
ring oscillation between two rising edges is Xk, and Xk is affected by two parts,
intrinsic manufacturing factor and Gaussian noise. In CHES 2014, Ma et al. [14]
give one assumption that Xk is i.i.d. The mean and variance of Xk is denoted as
μ and σ2. Amaki et al. [15] point out that for an oscillator jitter characteristic
of gates is important factor and define variance constant r as the variance of Xk

divided by the mean of Xk. Due to this definition, the variance constant of an
oscillator composed of n gates with r variance constants is conveniently equal to
r and we describe the variance constant r as follows.

r = var(Xk)/mean(Xk) = σ2/μ (3)



Bit Error Probability Evaluation of RO PUFs 425

Fig. 1. The oscillators in sampling interval S

From the results of [16] in CHES 2008 on the probability calculation of sam-
pling bits, there are some basic preliminary of our work.

As shown in Fig. 1, in an equal sampling interval S, ROA has ka periods and
ROB has kb periods. The relationship between the number of period and the
sampling interval is described as follows.

Tka
= XA,1 + XA,2 + · · · + XA,ka

< S (4)

Tka+1 = XA,1 + XA,2 + · · · + XA,ka+1 > S (5)

Tkb
= XB,1 + XB,2 + · · · + XB,kb

< S (6)

Tkb+1 = XB,1 + XB,2 + · · · + XB,kb+1 > S (7)

From formula (4)∼(7), let Ni = max{ k | Tk < S } and Ni is the number
of periods in sampling interval S. The probability Prob(Ni = k) is calculated as
shown in formula (8).

Prob(Ni = k) = Prob(Tk ≤ S) − Prob(Tk+1 ≤ S) (8)

The distribution of Tk is derived from the central-limit theorem (CLT), so it
can be deduced as follows.

Prob(
Tk − kμ

σ
√

k
≤ x) → Φ(x), k → ∞. (9)

where Φ(x) denotes the cumulative distribution function of the standard normal
distribution N(0, 1). Based on formulas (8) and (9), calculate Prob(Ni = k) as
follows.

Prob(Ni = k)

= Prob(Tk ≤ S) − Prob(Tk+1 ≤ S)

≈ Φ((v − k) · μ

σ
√

k
) − Φ((v − k − 1) · μ

σ
√

k + 1
) (10)

In formula (10), v = S/μ is denoted as the frequency ratio.
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3.2 Analysis on RO PUF

A one-bit response of RO PUF is derived from the comparison of pairwise ROs.
In a sampling interval, record two oscillation counting values and get the one-bit
response by comparing these two counting values. However, the existence of noise
may result in the difference of the one bit response in multiple response extrac-
tions. For example, one bit response has preference to be zero, but sometimes the
measured response changes to be zero. This unexpected bit error is not friendly
to extract private information because if there is no error correction module, bit
errors from extraction lead to the uncertainty of private information. Based on
the assumptions and notations proposed in previous section, we analyze the bit
error probability of RO PUF from the ROs’ jitter characteristics.

As shown in Fig. 1, the mean of XROA
is μA and that of XROB

is μB . Here
we regard the difference of μA and μB as the process variation between ROA and
ROB. If there are no noise influences, the one-bit response from ROA and ROB

is only determined by the comparison of μA and μB , and the one-bit response
keeps stable forever. However, in practice the noise influences exist. Moreover,
if the difference value between μA and μB is not enough large, the cumulative
influence of noise may be larger than that of process variation. The basic model
for our analysis is described as follows.

dLoop = dAVG + dRANDP
+ dNOISE (11)

where dAVG is the nominal delay that is the same for all identical ROs. dRANDP

is the delay variation due to the random process variation. dNOISE is the delay
variation because of the noise influence.

Based on formula (11), the bit error probability Proberror is that the sign of
the difference value between μa and μB is the same to the sign of the difference
value between ka and kb.

Proberror = Prob(ka > kb | μa > μb) (12)

From formula (10), we can get both the probability of Prob(NA = ka) and
Prob(NB = kb). Then we can calculate the probability Prob(ka > kb) as follows.

Prob(ka > kb) =
+∞∑

i=0

{Prob(ka = i) · [
i−1∑

j=0

Prob(kb = j)]} (13)

Let Prob(kb = 0) = 0, and the calculation of
∑i−1

j=0 Prob(kb = j) can be
deduced as follows.

i−1∑

j=0

Prob(kb = j)

≈ {
i−1∑

j=0

Φ((vb − kb) · μb

σb

√
kb

) − Φ((vb − kb − 1) · μb

σb

√
kb + 1

)}
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= Φ((vb − (i − 1)) · μb

σb

√
i − 1

) − Φ((vb − i) · μb

σb

√
i
) + Φ((vb − (i − 2)) · μb

σb

√
i − 1

)

−Φ((vb − (i − 1)) · μb

σb

√
i − 1

) + Φ((vb − (i − 3)) · μb

σb

√
i − 3

) − Φ((vb − (i − 2)) · μb

σb

√
i − 2

)

+ · · · · · · + Φ((vb − (1)) · μb

σb

√
1
) − Φ((vb − (2)) · μb

σb

√
2
) + Prob(kb = 0)

= Φ((vb − 1) · μb

σb

√
1
) − Φ((vb − i) · μb

σb

√
i
) (14)

Based on formulas (13) and (14), Prob(ka > kb) is deduced that

Prob(ka > kb)

=
+∞∑

i=0

{[Φ((va − (i − 1)) · μa

σa

√
i − 1

) − Φ((va − i) · μa

σa

√
i
)] · [

i−1∑

j=0

Prob(kb = j)]}

=
+∞∑

i=0

{[Φ((va − (i − 1)) · μa

σa

√
i − 1

) − Φ((va − i) · μa

σa

√
i
)]·

[Φ((vb − 1) · μb

σb

√
1
) − Φ((vb − i) · μb

σb

√
i
)]} (15)

According to formula (15), the probability Prob(ka > kb) is involved with
the process variation parameter μi, the sampling interval S and the variance
constant r. As described in [15], the variance constant of an oscillator composed
of n gates with r variance constants is conveniently equal to r, namely, in RO
PUF, the variance constants of different n-stage ROs are the same under the
same environmental conditions. Therefore, transform formula (15) to another
form as (16).

Prob(ka > kb)

=
+∞∑

i=0

{[Φ((S/μa − (i − 1)) ·
√

μa√
r
√

i − 1
) − Φ((S/μa − i) ·

√
μa√
r
√

i
)]·

[Φ((S/μb − 1) ·
√

μb√
r
√

1
) − Φ((S/μb − i) ·

√
μb√
r
√

i
)]} (16)

According to formula (16), we can utilize the contingent probabilities Prob(ka >
kb | μa > μb) or Prob(ka < kb | μa < μb) to estimate the bit error probability.
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First, we assume that the process variation distribution is a normal distribution
with the probability density function

fPV (x) =
1√

2πσPV

exp(− (x − μPV )2

2σ2
PV

),

and for m ROs, the mean of the ROi period is μi, 1 ≤ i ≤ m.

(μ1, μ2, · · · · ··, μm−1, μm) ∼ N(μPV , σ2
PV ) (17)

Then from formulas (16) and (17), we can achieve that

Prob(ka > kb | μa > μb)

=
∫ +∞

0

∫ x

0

+∞∑

i=0

{[Φ((S/x − (i − 1)) ·
√

x√
r
√

i − 1
) − Φ((S/x − i) ·

√
x√

r
√

i
)]·

[Φ((S/y − 1) ·
√

y√
r
√

1
) − Φ((S/y − i) ·

√
y√

r
√

i
)]} · fPV (x) · fPV (y) · dy · dx

=
+∞∑

i=0

∫ +∞

0

∫ x

0

{[Φ((S/x − (i − 1)) ·
√

x√
r
√

i − 1
) − Φ((S/x − i) ·

√
x√

r
√

i
)]·

[Φ((S/y − 1) ·
√

y√
r
√

1
) − Φ((S/y − i) ·

√
y√

r
√

i
)]} · fPV (y) · fPV (x) · dy · dx (18)

Therefore if the sampling interval S, RO PUF’s variance constant r and the
probability density function fPV (x) is known, we can calculate the expectation
of the bit error probability.

3.3 Simulation Design for the Bit Error Probability Estimation

In order to verify the model for bit error probability estimation, we utilize Matlab
to simulate this test scenario and there are 1024 ROs in this simulation. First,
the inherent characteristic of RO is resulted from the process variation and
instantiate these ROs by 1024 sampling values (μRO1 , μRO2 , · · ·, μRO1024) from
the process variation’s normal distribution N(μPV , σ2

PV ). Second, the variance
constant is mainly affected environmental variables (such as temperature and
supply voltage) and manufacturing technology, and in our simulation, we assume
that the variance constant r is the same for these 1024 ROs. Therefore, we can
have the period distributions for these 1024 ROs as follows.

for RO1, TRO1 ∼ N(μRO1 , σ
2
RO1

) = N(μRO1 , r · μRO1) (19)
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for RO2, TRO2 ∼ N(μRO2 , σ
2
RO2

) = N(μRO2 , r · μRO2) (20)

· · · · · · (21)

for RO1024, TRO1024 ∼ N(μRO1024 , σ
2
RO1024

) = N(μRO1024 , r · μRO1024) (22)

Based on these 1024 period distributions, we can simulate to complete one record
of the oscillation’s numbers in sampling interval S.

for RO1, max{ k1 | tRO1,1 + tRO1,2 + · · · + tRO1,k1−1 + tRO1,k1 < S} (23)

for RO2, max{ k2 | tRO2,1 + tRO2,2 + · · · + tRO2,k2−1 + tRO2,k2 < S} (24)

· · · · · · (25)

for RO1024, max{ k1024 | tRO1024,1 + tRO1024,2 + · · ·+ tRO1024,k1024 < S} (26)

Then when we get these 1024 oscillations’ values, we can extract a 512-bit
response by comparing the oscillations’ values pairwise. Finally, repeat the step
shown in formula (26) 1000 times and we can get 1000 512-bit responses. From
the 1000 512-bit responses, we can extract the bit error probability based on the
calculation of intra-distance. We briefly summarize the steps as follows.

1. According to the process variation’s normal distribution, get 1024 ROs’ inher-
ent characteristics.

2. Based on the variance constant r, get the 1024 period distributions of different
ROs.

3. Select the sampling interval S and record the oscillations’ values.
4. Extract the response and calculate the bit error probability.

Among the parameters for simulation, the process variation distribution and
the variation constant are fixed if the environmental variables and the manufac-
turing technology for simulation are unchanged. However, the sampling interval
S is not fixed and on the observation of formula (18), the sampling interval S is
one factor to affect the bit error probability. Therefore, in our simulation design,
it is necessary to consider the influence of sampling interval on the bit error
probability.

Keep variance constant r and the process variation distribution’s parameters
unchanged, and only change the value of sampling interval S, the simulation
results can show the influence of the sampling interval on the bit error probabil-
ity. We select the different sampling intervals as

S0, S1 = 2 · S0, S2 = 22 · S0, · · · , Sn = 2n · S0,

and achieves different sampling intervals’ bit error probabilities respectively.
The basic parameters for simulation, like the variance constant and the

process variation’s normal distribution, can be extracted from practical experi-
ments. In next section, we conduct practical experiments to extract these para-
meters and verify the consistency of the simulation and experiments on the
estimation of bit error probability.
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4 Experiment Design for Model Verification

In this section, we conduct practical experiments on fifteen Xilinx Virtex-5
XC5VLX110T-1ff1136 FPGA boards and there are 1024 ROs deployed in every
board. The evaluation system is shown in Fig. 2. A 50 MHz crystal oscillator
onboard is used for the setting of the sampling interval S. For example, if the
sampling interval is S0, the reference counting value N0 based on this 50 MHz
crystal oscillator is setting as that

N0 = S0/20 · 109

The architecture of the ROs in our experiments is shown in Fig. 3 and they
are 15-stage ROs composed of 16 LUTs. One of these LUTs is configured as
a 2-input AND gate and one input is used as the enable signal for ROs. The
other 15 LUTs are configured as inverters. These LUTs are deployed in 4 slices
and we utilize the Hard Macro technique to deploy these 1024 ROs. In order to
record every RO’s oscillations, we utilize the UART to transmit all the counting
values to PC for analysis. Our configured ROs’ frequencies are about 132 MHz
on Virtex-5 FPGA.

4.1 Parameter Extraction

When we conduct our experiments, there are two modes to complete the record
of counting values. One mode is that use our configured RO to drive reference
counter. When our configured RO has N oscillations, record the counter NCO

which is driven by the 50 MHz crystal oscillator. The feature of this mode is
that we can fix the number of configured RO’s oscillations and get the time
consumption’s distribution. Although in this mode we can extract all the para-
meters for our simulation, the disadvantage of this mode is that every record
of counting value only records the time consumption for one RO and it is not
very efficient to extract the process variation’s distribution function. The other
mode is that use the 50 MHz crystal oscillator to drive reference counter. When
the crystal oscillator has NCO oscillations, record the counters that driven by all
our configured ROs. The feature of this mode is that we can record all the ROs’
counting values in a sampling interval. However, this mode can only roughly
extract the process variation’s distribution function, and it can not extract the
variance constant r. Therefore, we extract the variance constant r in mode one,
and extract the parameters for process variation’s distribution in mode two.

First, we conduct experiments in mode two to extract the parameters for
the process variation’s distribution function. In order to record the counting
values, we select NCO = 211 and the sampling interval S0 is 40.96µs. In every
FPGA board, we record counting values 1000 times in the same sampling interval
S0. The different counting values of 1024 ROs are shown as Fig. 4 and these
counting values is one of these 1000 records. From Fig. 3, the frequencies of these
1024 ROs are about 130.86 MHz to 134.27 MHz. The histogram of the counting
values seems a normal distribution. From these records, we extract the process
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Fig. 2. The basic architecture of this evaluation system

Fig. 3. The architecture of the ROs in our experiments

variation distribution function. Notice the assumption that for one ROi, its
oscillation period is a normal distribution N(μi, σ

2
i ) and every oscillation period

is i.i.d.. Therefore, in sampling interval S0, based on the average number of ROi’s
oscillations, ki, we can extract the parameter μi = S0

ki
. Because in a sampling

interval, there are ki oscillations, it can be roughly regarded that ki variables
are added up and the sum’s distribution is N(kiμi, kiσ

2
i ). The same calculation

is used for all the 1024 ROs, and we get 1024 process variation parameters. The
description of process variation distribution function’s extraction is shown in
Algorithm 1. The distributions of these 1024 process variation parameters μi,
1 ≤ i ≤ 1024, are shown in Fig. 5. Therefore, we can get the mean value of the
process variation distribution function is 7.5627 ∗ 10−9 s and the variance of this
distribution is 9.8156 ∗ 10−22.

Then, in mode one we extract the variance constant r. We select the ref-
erence counting value for our configured RO ROi, N = 211. Once ROi has N
oscillations, record the counter of the crystal oscillator’s oscillations. Repeat the
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Fig. 4. The histogram of the counting values

Algorithm 1. Process variation distribution function’s extraction
Input: · Counteri,j is the jth counting value of ROi.

· 1 ≤ i ≤ NROs and 1 ≤ j ≤ TRecord.
· NROs denotes ROs’ quantity and TRecord denotes records’ quantity.

Output: Process variation distribution function’s parameters.
σ2
PV denotes the standard deviation.

μPV denotes the mean value.
for i = 1 to NROs do

for j = 1 to TRecord do
Temp = Temp + Counteri,j ;

end for
ki = Temp/TRecord;

end for
for i = 1 to NROs do

μi = S0/ki

end for
N(μPV , σ2

PV ) ←− (μ1, μ2, · · ·, μNROs)

operation 1000 times and we can get the ROi’s time consumption distribution
function, and calculate the variance constant r. And then repeat the calculation
of the variance constant multiple times to extract an average variance constant
for the simulation.

Based on the variance constant r and the process variation’s parameters,
theoretically we can utilize formula (18) to calculate the bit error probability
with a pre-set sampling interval S.

4.2 Simulation

During the process of simulation, there are complicated calculation which is
mainly from the formula (18) and when we conduct simulations with Matlab, the
calculation of formula (18) takes a large amount of time. In order to improve the
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Fig. 5. The histogram of 1024 ROs’ period affected by process variation

simulation’s efficiency, we can appropriately simplify the calculation of formula
(18). First, in the integrating range there are some values which are so small
that we can ignore these values. As shown in Fig. 5, the RO’s period is about
7.45 ∗ 10−9 s to 7.7 ∗ 10−9 s, but the integrating ranges of formula (18) are

(0,+∞) and (0, x)

So we can use the smaller integrating ranges

(7.3 ∗ 10−9, 7.7 ∗ 10−9) and (7.3 ∗ 10−9, x)

to replace previous integrating ranges. Second, in a pre-set sampling interval,
because the number of oscillations just fluctuates a bound which is affected
by the sampling interval, we can change the i’s from Bounddown to Boundup.
Bdown and Bup can be approximately computed from the sampling interval S.
Third, the continuous integration may lead to time-consuming calculations and
we can take advantage of the trapezoidal numerical integration to calculate
formula (18). As long as the interval for the trapezoidal numerical integration is
small enough, it works well to take place of the continuous integration. The new
efficient calculation of bit error probability is shown as follows.

Prob(ka > kb | μa > μb)

=

Bup∑

i=Bdown

7.7∗10−9
∑

x=7.3∗10−9

x∑

y=7.3∗10−9

{[Φ((S/x − (i − 1)) ·
√

x√
r
√

i − 1
) − Φ((S/x − i) ·

√
x√

r
√

i
)]·

[Φ((S/y − 1) ·
√

y√
r
√

1
) − Φ((S/y − i) ·

√
y√

r
√

i
)]} · fPV (y) · fPV (x) · Δy · Δx (27)

4.3 Results From Simulations and Practical Experiments

We assess the validity of the bit error probability calculating model by the results
from simulations and practical experiments. In our practical experiments of RO
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Fig. 6. The results from simulations and experiments

PUFs on Virtex-5 FPGA, the sampling time interval is 211 oscillations of 50 MHz
crystal oscillator, and the environmental variables, such as temperature and
supply voltage, are both in normal conditions. All the ROs have 15 inverters
and an extra enable switch. Because on every FPGA board there are 1024 ROs
and ROs are compared pairwise to generate a 512-bit response, we reproduce
the 512-bit response 1000 times and calculate the bit error probability. Figure 6
shows the bit error probabilities which are the results of data statistic from every
FPGA board and the bit error probability calculated by model simulation. The
dot denotes the bit error probabilities from practical experiments and the line
denotes the bit error probability calculated from formula 27. The parameters
for the model calculation is that the sampling time interval is 40.96 µs which
is the same for the experiments on FPGAs. The process variation distribution
function has the mean value, 7.5627 ∗ 10−9 s, and the variance, 9.8156 ∗ 10−22 s.
The variance constant for simulation is 5∗10−13. As shown in Fig. 6, the error bit
probabilities of experiments on different FPGAs are near the bit error probability
calculated from the RO PUF model.

Therefore, according to Fig. 6, it indicates that with these environmental
variables and sampling interval, the model simulation and the practical experi-
ments achieve high consistency. However, from the formula (18) or (27), besides
the process variation, the magnitude of sampling interval and the variance con-
stant also affect the bit error probability. The variance constant is involved with
temperature, supply voltage and the number of RO’s stage.

5 Further Discussion

As is mentioned above, the sampling interval and variance constant affect the
bit error probability. In this section, first we conduct experiments with different
sampling intervals. Then perform a rough temperature test in which we can get
the relationship between variance constant and the bit error probability since
the variance constant is mainly affected by environmental temperature.
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Fig. 7. The results of further discussions (Color figure online)

The sampling interval is set from 28 to 216 and Fig. 7 shows the results from
both model calculation and practical experiments. With the sampling interval
becoming larger, the bit error probability decreases. When the sampling interval
is larger than 215, the bit error probability is less than 10−4.

Using a thermoelectric device, we heat the FPGA board to make its tem-
perature to be about 70◦C and cool it to about 5◦C. We measure the variance
constant r under different temperature conditions. In Fig. 7(b), the blue squares
denote the bit error rate from experiments and the red dots denote the bit error
probability from model calculation. In a word, our model calculation is suitable
for the bit error probability evaluation of RO PUFs.

6 Conclusion

In this paper, we propose a bit error analysis model which utilizes the RO’s oscil-
lating characteristics. Therefore, this model can be more accurate and quantita-
tively describe the source of bit error probability. In this bit error analysis model,
we consider three factors, process variation, sampling interval and temperature.
The effect of temperature is transformed to the influence of the oscillation’s jitter
and the variance constant is used to denote the jitter. Experiments are conducted
to demonstrate the validity of this new model. Therefore, the evaluation scheme
is further improved based on our work and our bit error analysis model can serve
as a guide to construct RO PUF with a prescient bit error probability and design
the RO PUF-based system efficiently and economically.
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Abstract. Physical unclonable functions (PUFs) are innovative primi-
tives to extract secret keys from the unique submicron structure of inte-
grated circuits. PUFs avoid storing the secret key in the nonvolatile
memory directly, providing interesting advantages such as physical unclon-
ability and tamper resistance. In general, Error-Correcting Codes (ECC)
are used to ensure the reliability of the response bits. However, the ECC
techniques have significant power, delay overheads and are subject to infor-
mation leakage. In this paper, we introduce a PUF-based key generator for
NAND Flash memory chips, while requiring no extra custom hardware cir-
cuits. First, we present three methods to extract raw PUF output numbers
from NAND Flash memory chips, namely partial erasure, partial program-
ming and program disturbance, which are all based on the NAND Flash
Physical Unclonable Function (NFPUF). Second, we use a bit-map or a
position-map to select the cells with the most reliable relationship of the
size between raw NFPUF output numbers. Only the selected cells are used
for key generation. Finally, we describe the practical implementations with
multiple off-the-shelf NAND Flash memory chips, and evaluate the reli-
ability and security of the proposed key generator. Experimental results
show that our NFPUF based key generator can generate a cryptographi-
cally secure 128-bit key with a failure rate < 10−6 in 93.83 ms.

Keywords: Physical Unclonable Functions (PUFs) · NAND flash ·
Process variation · Secret keys · Error correction

1 Introduction

As electronic devices have become interconnected and ubiquitous, people are
increasingly depending on electronic devices to perform sensitive tasks and to

This work was partially supported by the National 973 Program of China under
award No. 2013CB338001 and the Strategic Priority Research Program of Chinese
Academy of Sciences under Grant XDA06010702.

c© Springer International Publishing Switzerland 2015
J. Lopez and C.J. Mitchell (Eds.): ISC 2015, LNCS 9290, pp. 437–454, 2015.
DOI: 10.1007/978-3-319-23318-5 24



438 S. Jia et al.

handle sensitive information. As a result of the merits of NAND Flash mem-
ory, such as small size, low power consumption, light weight, high access speed,
shock/temperature resistance and mute characteristics [12], now virtually all
portable electronic devices such as smartphones, SD cards, USB memory sticks
and tablets use NAND Flash memory as nonvolatile storage.

Now many electronic devices of embedded systems have become to con-
tain more confidential information, and many applications need to identify and
authenticate users. Therefore, the secret keys used by the devices and the appli-
cations should be protected to ensure the security of the communication system.
However, in the real world implementations of cryptosystems, the cryptographic
keys are recently revealed from nonvolatile memories by sophisticated tamper-
ing methods [3,9,21,25]. Based on the above situation, we leverage the special
virtue of NAND Flash to avoid storing the secret key in the nonvolatile mem-
ory directly.

In order to prevent both the invasive and noninvasive physical attacks, Physi-
cal Unclonable Functions (PUFs) have been attracting wider attention and stud-
ied intensively in recent years. Due to the advantages of physical unclonability
and tamper proof, PUFs are used to avoid storing actual bits of the secret keys in
the storage memory. Generally, PUFs are engaged in two typical classes of appli-
cations, namely authentication and secret key generation. In the authentication
applications, the responses of the PUFs can be designed to tolerate a certain
amount of errors. While in the secret key generation applications, the responses
of the PUFs need to be consistent [16]. The conventional method to ensure the
robustness and the reliability of the responses is to utilize fuzzy extractors [6,14].
Traditionally, fuzzy extractors employ an Error-Correcting Code (ECC) and a
cryptographic hash function. There have been several state of the art papers cite
the use of ECC with PUFs to generate cryptographic keys [2,10,15,29]. How-
ever, ECC is not viable for resource constrained electronic devices. First, the
error rates for PUFs across environmental variations can be as high as 25 % [5],
making a straightforward use of ECC infeasible [15,24], namely the codeword
sizes required will be too large in practice. Second, ECC is generally performed by
specialised hardware chips, which not only requires tremendous area and power
overheads, but also scales up as the number of bits of correction increases [1].
Third, ECC requires additional helper or syndrome data to be publicly stored
for the regeneration of the key. The helper data of ECC reveals information
about the outputs of the PUFs [23]. Thus, error reduction techniques can be
applied to reduce the cost of ECC and to ensure the reliability and security of
the responses.

In this work, we focus on the NFPUF and the error reduction techniques
to generate cryptographic robust keys. First, we present three methods (partial
erasure, partial programming and program disturbance) to extract raw NFPUF
output numbers from NAND Flash memory chips. Second, we introduce two
methods (the bit-map and position-map) to select the cells with the most reliable
relationship of the size between raw NFPUF output numbers. In other words,
the size relationship of the raw NFPUF output numbers from the selected cell
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pairs is almost constant during the whole lifetime of the NAND Flash chips. At
last, we evaluate the reliability and security of the proposed key generator. The
proposed key generator can get reliable and robust keys for the electronic devices
with limited hardware resources, meanwhile it reduces the implementation costs
and hardware overheads of ECC significantly.

Our Contributions. In this paper we introduce a robust key generator based
on NFPUF for NAND Flash memory chips. The main contributions of this paper
are as follows:

– We present the first implementation of secret key generator from unmodified
commercial NAND Flash memory chips. Most importantly, the proposed key
generator can be applied to any NAND Flash memory chips, extending the
functionality of NAND Flash memory chips, while requiring no extra hardware
circuits overheads.

– We describe three specific methods to extract raw NFPUF output numbers
from NAND Flash memory chips. Particularly, the partial erasure method is
proposed for the first time.

– We present two methods to select the NAND Flash memory cells with the
most reliable relationship of the size between raw NFPUF output numbers.
It reduces the system overheads of ECC significantly, and it is feasible for the
electronic devices even with constrained hardware resources.

– We evaluate the reliability and security of our proposed key generator with
multiple NAND Flash memory chips from different manufacturers by plenty
of experiments.

Organization of the Paper. The organization of the rest of this paper is as
follows. Section 2 introduces the related work. The background is introduced in
Sect. 3. We will present the specific secret key generator in Sect. 4. Implementa-
tion details and evaluations are shown in Sect. 5. Finally, conclusions are given
in Sect. 6.

2 Related Works

Pappu et al. introduced the Physical One-Way Functions (POWFs) in [18]. They
used a transparent optical medium with a three-dimensional micro-structure as
a POWF. The concept of silicon PUFs was introduced in [7,8]. Silicon PUFs
have substantial challenge-response pairs (CRPs) owing to the manufacturing
process variations, so it is impossible for the attacker to clone all the potential
CRPs [13]. Our key generator also takes advantage of the manufacturing process
variations.

Škorić et al. presented a key extraction method from the bit-string extrac-
tion of noisy optical PUFs in [20]. Different PUFs circuit designs based on ring
oscillators were introduced in [13,15,23,29]. The first construction of a PUF
intrinsic based on the power-up state of SRAM memory on current FPGAs was
presented in [10] to solve the IP protection problem. An efficient helper data
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key extractor technique was introduced to generate secret keys on FPGAs in [2],
which leverages several complicated concatenated codes (repetition code and
ECC) to ensure the reliability of the keys. Our key generator does not require a
power cycle or the special circuit designs that the prior PUFs need, while it can
be done by any electronic devices with commercial off-the-shelf NAND Flash
memory chips as nonvolatile storage.

Xu et al. introduced the sources of variations in Flash memory for PUFs in
[28]. It points out that the uniqueness and robustness of the NFPUF are indeed
universally applicable, rather than just a phenomenon presented in the limited
selection. In general, NFPUF distributions are translated to threshold voltage
distributions via tunneling current during programming and erasing operations
to analyze its physical origins. Our key generator also leverages the threshold
voltage distributions of the NAND Flash memory cell transistors to extract the
raw NFPUF output numbers.

Prabhu et al. evaluated seven techniques to extract unique signatures from
Flash devices based on the observable effects of process variations as device fin-
gerprints [17]. They exploited formal correlation metric (the Pearson correlation)
to distinguish whether the extracted signatures were from the same page or dif-
ferent pages, then they could uniquely identify individual Flash devices. Yang
et al. took advantage of the uncertainty of Random Telegraph Noise (RTN) from
Flash memory to provide two security functions: true random number generation
and digital fingerprinting [27]. As a result of the high uncertainty of the random
numbers and device fingerprints, neither the techniques they proposed could be
used to extract unique and reproduceable secret keys with a tiny bit error rate.
Our key generator leverages the specific physical characteristics of the NAND
Flash memory cells to extract numbers, then we select the cells with the most
reliable relationship of the size between the extracted numbers during the whole
life of the chip for key generation. Our key generator ensures the reproducibility
and the reliability of the key, meanwhile, it avoids the costly overheads of ECC.

3 Background

The secret keys generator that we will describe in Sect. 4 bases on the composi-
tion of NAND Flash memory cells, and how NAND Flash memory chip organize
the cells into memory arrays. The specific NAND Flash memory cell composi-
tion and array organization lead to noises exist in NAND Flash memory cells
universally. This section summarizes the primary characteristics of NAND Flash
memory chips that we rely on for this study.

3.1 Uncertain States of NAND Flash Memory Cells

As Fig. 1(a) shows, a NAND Flash memory cell is based on a floating gate metal
oxide semiconductor (MOS) transistor. There are two gates in a floating gate
transistor. The top one is called control gate, which is capacitive coupled. The
bottom one is the floating gate, which is surrounded by dielectrics. The special
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Fig. 1. (a) NAND flash memory cell structure. (b) Threshold voltage schematic
diagram.

property of dielectrics makes the NAND Flash memory nonvolatile. In general,
a triple layer of oxide-nitride-oxide isolates the two gates. In addition, the thin
oxide between the floating gate and transistor channel is known as tunnel oxide.
The source and drain electrodes are heavy doped, and they are electron-rich
(n-type). While the substrate is less doped, and it is electron-deficient (p-type).

Both programming and erasing operations of common-ground NAND Flash
memory cells are by Fowler-Nordheim (FN) tunneling, which is a quantum-
mechanical tunneling mechanism induced by the electric field [19]. The presence
or absence of trapped charge on the floating gate is expressed as logical state
“0” or logical state “1” respectively.

The trapped charge affects the threshold voltage (Vth) of the transistor [28].
When an electron charge is stored in the floating gate, the threshold voltage
of this transistor increases, and the increase amplitude is proportional to the
stored charge. As illustrated in Fig. 1(b), the charge stored in the floating gate
discourages the presence of current in the transistor channel, then the cell is
sensed and translated into logical state “0”, thus the NAND Flash memory cell
will be in the programmed state. On the contrary, when the floating gate has
no electron charge, then it forms a conductive path between the drain and the
source electrodes, creating a current (IDS) in the transistor channel, and hence
the cell will be sensed and translated into logical state “1”, then the NAND Flash
memory cell will be in the erased state. In conclusion, by applying an appropriate
voltage to the control gate and measuring the current flow through the transistor
channel of the target cell, a NAND Flash memory chip can effectively measure
the threshold voltage of the cells, and determine the logical states of the cells.

However, on account of variations in manufacturing processes, the threshold
voltages of (Vth“1”) and (Vth“0”) vary from cell to cell. When the threshold voltage
is not shifted sufficiently from the programmed state to the erased state, and vice
versa, then the cell will be in an uncertain state. In these cases, the cell can be
expressed as either logic state “0” or logic state “1”. In this paper, we propose
the partial erasure and the partial programming methods, both the methods
exploit the uncertain states of the NAND Flash memory cells to extract raw
NFPUF output numbers.
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Fig. 2. NAND flash memory array organization.

3.2 Disturbance Related to NAND Flash Memory
Array Organization

As Fig. 2 illustrates, the NAND Flash memory cells are arranged in a coher-
ent and structured manner, normally in arrays, to achieve high density. Due to
the array organisation, each cell can be accessed by its specific row and column
address. In general, the NAND Flash memory cells are grouped into pages (typ-
ically 512 bytes-4 KB) and blocks. A block contains dozens of (typically 32–128)
adjacent pages [22]. Thousands of independent blocks make up a NAND Flash
memory chip. The common drain connection that the rows of cells share is called
a bitline (BL), while the common poly-2 gate connection that the columns of cells
share is called a wordline (WL) [9]. A single wordline connects the gates on all
the transistors in a page or more than one page, and the latter case is particularly
general for multi-level cells (MLC) NAND Flash memory chips. Programming
and reading operations are performed on the unit of a page, whereas erasing
operation must be performed on an entire block. What is more, the pages in a
block must be programmed sequentially. The programmed sequence is designed
to minimize the programming disturbance between the neighboring pages, which
aims to avoid undesired voltage shifts in the pages despite not being selected.

However, although the array organization of the NAND Flash memory is
specially designed, there still exists electrical influence between adjacent NAND
Flash memory cells. During the programming and reading operations, a high
voltage is applied to the wordlines of the selected pages, meanwhile produc-
ing an intermediate gate voltage to the neighbouring wordline. After multiple
repeating operations, the intermediate gate voltage makes the according adja-
cent NAND Flash memory cells flip, which is a process of quantitative change to
qualitative change. In particular, as the result of the capacitive coupling between
the selected wordline and the physically adjacent wordline, the effect of program-
ming operations is much stronger [30]. In this paper, we propose the program
disturbance method, which leverages the effects between the adjacent pages to
extract raw NFPUF output numbers.
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4 Robust Key Generation

As Sect. 3.1 discussed the physical sources of variations in NAND Flash memories
for NFPUF, not only the initial and after-erase voltages, but also the initial and
after-program voltages for a same NAND Flash memory chip may vary from
cell to cell due to the manufacturing process variations. Section 3.2 discussed the
disturbance related to the specific NAND Flash memory array organization. The
repeating programming operations to a same page, resulting in its neighbouring
page unexpected bit variations.

Both the above phenomena are due to the maximum density of NAND Flash
memory cells. Since process variations are beyond the manufacturers’ control,
small variations in tunnel oxide thicknesses and control gate coupling ratio may
make a big difference in the threshold voltage of the floating gate transistor [28].
So even an adversary who has the detail information of the NFPUF principle
still cannot clone the NFPUF.

4.1 Extracting Raw NFPUF Output Numbers

In this paper, we propose three methods to extract raw NFPUF output numbers,
namely partial erasure, partial programming and program disturbance. We will
discuss the details of the three methods in order.

Partial Erasure. This method exploits the feature of NAND Flash memory
chip that the initial and after-erase voltages vary from cell to cell due to the
manufacturing process variations. Algorithm 1 provides the pseudo-code. First,
we erase the selected block (BlockNum), then we program all the cells of the
selected page (PageNum) belonging to the selected block to logic state “0”.
Second, we perform fixed number (PENum) of partial erasure operations to
the selected page. The time of each partial erasure operation (Te) is also fixed.
After each partial erasure operation, some cells in the selected page will have
been erased enough to flip their states from logic state “0” to logic state “1”.
Therefore, we record the number of partial erasure operations that the selected
cells need to flip. Third, after the fixed number of partial erasure operations,
some cells may have not flipped, then the value of PENum plus 1 is assigned
to these cells. At last, we extract the raw NFPUF output numbers by repeating
partial erasure operations from the specific block and page.

Partial Programming. Similar with the partial erasure method, the partial
programming method leverages the feature of NAND Flash memory chip that the
initial and after-program voltages vary from cell to cell due to the manufacturing
process variations. First, we erase the selected block. Second, we perform fixed
number (PPNum) of partial programming operations to the selected page, the
time of each partial programming operation (Tp) is also fixed. After each partial
programming operation, some cells may have been programmed enough to flip
their states from logic state “1” to logic state “0”. Therefore, we record the
number of partial programming operations that the selected cells need to flip.
Third, after the fixed number of partial programming operations, some cells
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Algorithm 1. Partial erasure: Extract the raw NFPUF output numbers by
repeating partial erasure operations to the specific block and page.
Require:

The number of block to erase (BlockNum);
The number of page to read (PageNum);
The number of cells to record (CellsNum);
The time of each partial erasure operation (Te);
The number of partial erasure operations (PENum);

Ensure:
The number of partial erasure operations of each NAND Flash memory cell need
to reach the erased state (RawPuf [CellsNum]).

1: Erase(BlockNum);
2: Program(PageNum, 0);
3: for i = 1; i <= PENum; i + + do
4: PartiallyErase (Te, BlockNum);
5: Read(PageNum);
6: for All the selected cells to record do
7: if The first observation of the cell flips from 0 to 1 then
8: RawPuf [The Position of the cell in the selected cells ]= i;
9: end if

10: end for
11: end for
12: for The cells have not flipped after PENum partial erasure operations do
13: RawPuf [The Position of the cell in the selected cells]= PENum + 1;
14: end for

may have not flipped, then the value of PPNum plus 1 is assigned to these
cells. At last, we extract the raw NFPUF output numbers by repeating partial
programming operations from the specific block and page.

Program Disturbance. Unlike the above two methods, this method is based
on the disturbance between the adjacent pages due to the specific NAND Flash
memory array organization. The repeating programming operations to a same
page, resulting in its neighbouring page unexpected bit variations. First, we erase
the selected block. Second, we perform fixed number (PDNum) of programming
operations to the selected page. After each programming operation, some cells
in its physically adjacent page will have been programmed enough to flip their
states from logic state “1” to logic state “0”. Therefore, we record the number
of programming operations that the selected cells in its physically adjacent page
need to flip. Third, after the fixed number of programming operations, some cells
may have not flipped, then the value of PDNum plus 1 is assigned to these cells.
At last, we extract the raw NFPUF output numbers by repeating programming
operations from the specific block and pages.
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4.2 Extracting Robust Keys from the Raw NFPUF
Output Numbers

If the PUFs are measured repeatedly, the cell-wise extracted numbers apparently
will have non-negligible fluctuations as a result of noises. Therefore, the raw
PUFs output numbers are not fit as secret key directly [4]. In general, fuzzy
extractors are used to ensure the reliability of the PUFs response outputs. Fuzzy
extractors employ an ECC and a cryptographic hash function. As a result of
the tremendous raw bits and helper data overheads are needed in real system
implementations of ECC, it is expensive to implement in electronic devices with
limited hardware resources [5,24].

In this work, our objective is to extract robust keys from raw NFPUF output
numbers with a tiny bit error rate, meanwhile reducing the costly overheads in
the implementations of ECC. Therefore, it will be feasible for NAND Flash
devices even with constrained hardware resources to generate robust keys.

Due to the layout and spatial variations of NAND Flash memory chips, a
consistent systematic variation exists among the average page NFPUF output
numbers and the average block NFPUF output numbers [28]. Typically NAND
Flash memory can withstand 100,000 program and erase (P/E) cycles for single-
level cell (SLC) type and 10,000 for MLC type [26]. Repetitive P/E cycles can
alter the raw extracted numbers of the cells due to cyclic endurance aging effects
[27]. As Fig. 3(a) illustrates, the raw NFPUF output numbers from the cells of
the same page present an irregular distribution and have great difference. How-
ever, as shown in Fig. 3(b), although the raw NFPUF output numbers slightly
decreased over P/E cycles, the relationship between the size of raw NFPUF out-
put numbers extracted from different cells is relatively stable during the whole
lifetime of the NAND Flash memory chips.

Our key generator is to find the NAND Flash memory cells with the most
reliable and stable relationship between the size of raw NFPUF output numbers.
We translate the size relationship of the raw NFPUF output numbers into binary
numbers as a robust secret key, meanwhile we record the according cell position
information as helper data for key regeneration.

We introduce two methods to extract secret keys by selecting the NAND
Flash memory cells with the most reliable relationship of the size between raw
NFPUF output numbers, namely the bit-map method and position-map method.
Only the selected cells are used for generation of the key.

Figure 4 describes an example of our two key extraction methods. We extract
ten raw NFPUF output numbers (RawPuf) from ten cells, and the position of
the cells starts from 0×0065 to 0×006e (due to the page size of the commercial
off-the-shelf NAND Flash memory chip is from 512 bytes to 4 KB generally, so
we use 16 bits to represent an address of a cell). The specific quantities of the
raw NFPUF output numbers and the according bit number of the extracted key
are related to the bit error rate of the key, which will be discussed in detail in
the experimental section.

Bit-Map Method. First, we compare the adjacent raw NFPUF output num-
bers in pairs and record the absolute values of the corresponding D-values
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Fig. 3. The distributions of raw NFPUF output numbers.

(ADvalue). Second, we sort the the recorded ADvalues from small to large,
and only a part of the cell pairs with the top largest ADvalues are selected to
generate a key (here three cell pairs are selected). Third, we assign “1” to the
selected cell pairs, and assign “0” to the rest as helper data (BitMap). Fourth,
if the former raw NFPUF output number is bigger than the latter one in the
selected cell pairs, we allocate “1” to the key (Key1), if not, then we allocate
“0” to the key. At last, we obtain the secret key (Key1) and store the BitMap
for regeneration of the key.

Position-Map Method. First, we sort the extracted raw NFPUF output num-
bers from small to large (SortedRawPuf). Second, we select a part of the top
smallest and the top largest cells to make up the selected cell pairs (here both
the cells with the top three smallest and the top three largest raw NFPUF
output numbers are selected). Then we sort the raw NFPUF output numbers
of each cell pairs according to the cell positions (PairRawPuf). Third, we
record the cell position of the selected NAND Flash memory cells as helper
data (PositionMap). Fourth, we compare the raw NFPUF output numbers of
the selected cells. If the former is bigger than the latter one, we allocate “1” to
the key (Key2), if not, we allocate “0” to the key. At last, we obtain the secret
key (Key2) and store the PositionMap for regeneration of the key.

Note that both the BitMap and PositionMap just represent the location
of the selected NAND Flash memory cells, and they have nothing to do with
the relationship of the size between the raw NFPUF output numbers. Therefore,
the helper data carries no information about the polarity of the bits in the key.
Hence the helper data does not leak any information about the key, unless there
is a location-based correlation found in the numbers generated from the NFPUF.
As the proposed key generator is based on the manufacturing process variations,
which is a random process, and hence the polarity of the bits of the key is also
random. Therefore, the helper data of this study is significantly more resilient
to information leakage as compared to the helper data in conventional ECC.
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Fig. 4. Schematic diagram of the two key extraction methods.

5 Implementation and Evaluation

In this section, we present the experimental facilities used in this study, and eval-
uate the primary characteristics of reliability and security of the key generator
based on NFPUF.

5.1 Tested Device

To extract raw NFPUF output numbers from NAND Flash memory chips, we
use a custom PCB test board that contains the STM32F103VCT6 controller,
which has a common ARM Cortex-M3 32-bit RISC core. With the controller,
we can send program, read, and erase operations to the tested NAND Flash
memory chips at will. This common device shows that our robust key generator
can be applied to commercial off-the-shelf NAND Flash memory devices with
no extra integrated circuits.

We evaluate NFPUF with a set of NAND Flash memory chips from different
manufacturers. Table 1 shows the chips we use in this study.

5.2 Experimental Results and Evaluation

In order to evaluate the performance of the proposed key generator based on
NFPUF, we need to analyse the primary characteristics of the security and
reliability of the generated keys, such as speed (for performance), reproducibility
(for reliability), uniqueness (for security), and randomness (for high-entropy).

Speed. Both the generation and regeneration processes of our proposed key
generator need multiple program or erase operations, so the throughput of the
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Table 1. Tested NAND flash memory chips.

Chip Manufacturer Part number Capacity Quantity Technology

A Samsung K9K8G08U0M 8 Gbit 10 90 nm SLC

B Samsung K9F2G08U0B 2 Gbit 10 SLC

C Micron MT29F4G08ABA DAWP:D 4 Gbit 5 34 nm SLC

D Micron MT29F16G08CB ACAWP:C 16 Gbit 5 MLC

E Intel JS29F64G08AAME1 64 Gbit 5 MLC

F Hynix HY27UF084G2B 4 Gbit 5 SLC

G Numonyx NAND04GW3B2DN6 4 Gbit 5 57 nm SLC

proposed key generator varies significantly depending on the program and erase
characteristics of the selected NAND Flash memory chips. Table 2 shows the
parameters of the proposed three raw NFPUF output numbers extraction meth-
ods of the selected NAND Flash memory chips.

First, we find out the typical block erase time (tBERS) and the typical page
program time (tPROG) from the datasheet of each NAND Flash memory chip.
Second, we determine the time of each partial erasure operation (Te) and the time
of each partial programming operation (Tp) by trial and error until we get obvi-
ously diacritical outputs from each cell. The vast experimental results show that
the Te should be about the 1/12 of tBERS , and the Tp should be about the 1/20
of tPROG. To determine the number of partial erasure operations (PENum),
we can partially erase the specific block and page with the selected Te repeat-
edly until 99 % cells are erased in a page. In the same way, we can determine the
number of partial programming operations (PPNum) by repeatedly partial pro-
gramming operations with the determined Tp until 99 % cells are programmed
in a page. At last, we can determine the number of repeated programming oper-
ations (PDNum) by normal programming operations to a specific page until
99 % cells are programmed in its adjacent page.

With the determined parameters in Table 2, we obtain the average through-
put of the raw NFPUF output numbers with the NAND Flash memory chips
from five manufactures, and it is shown in Table 3. The average throughput
ranges from 7.35 Kbits/second to 22.38 Kbits/second. On account of the oper-
ation time, the average throughput of the partial programming method shows
the highest speed, the next one is the partial erasure method, while the program
disturbance method shows the slowest speed comparatively.

To get a 128-bit key with the bit error rate < 10−6, we need 18.28 Kbits raw
NFPUF output numbers for the bit-map method, so we can get a 128-bit key in
816.8 ms to 2.48 s. While we only need 2.1 Kbits raw NFPUF output numbers for
the position-map method, so we can get a 128-bit key in 93.83 ms to 285.7 ms.

In our experiments, the average throughput is largely limited by the timing of
the asynchronous interface, which is controlled by an ARM microcontroller with
CPU frequency of 72 MHz and the 8-bit bus of the NAND Flash memory chips.
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Table 2. Parameters setting of the raw NFPUF output numbers extraction methods.

Chip tBERS(µs) Te(µs) PENum tPROG(µs ) Tp (µs) PPNum PDNum

A 1500 180 250 200 10 245 3912

B 1500 180 250 200 10 245 4002

C 700 85 200 200 11 200 3017

D 700 85 200 200 11 200 3123

E 3000 358 230 1200 58 220 3438

F 1500 179 240 200 10 250 3621

G 1500 181 235 200 11 240 3419

Table 3. The average throughput of the raw NFPUF output numbers(Kbits/second).

Method Sumsung Micron
SLC

Micron MLC Intel MLC Hynix Numonyx

Partial
erasure

14.67 13.92 13.87 12.21 14.52 13.68

Partial
programming

22.38 17.47 16.32 14.45 18.36 17.18

Program
disturbance

9.72
8.78

7.89 7.35 9.74 8.29

The throughput performance can be much higher if the data can be transferred
more quickly through the controller interface.

Reproducibility. In order to indicate the reproducibility of the PUF outputs,
we evaluate the intra-chip variation, namely the number of bits changes when
regenerated from a single PUF with or without environmental changes [23].
Ideally, the intra-chip variation should be 0 %.

To reduce the cost of ECC, we propose the bit-map and position-map meth-
ods to select the NAND Flash memory cells with the most reliable relationship
of the size between raw NFPUF output numbers. For our reference implemen-
tation, we aim to obtain a 128-bit key with intra-chip variation < 10−6, which
means that our proposed key generator is applicable and reliable during the
whole lifetime of the NAND Flash memory chips.

As Fig. 5 illustrates, we evaluate the average intra-chip variation with tem-
perature and aging variations. We extract Y bits key from X raw NFPUF output
numbers. The x-axis represents the ratio of Y in the X (as we use the relation-
ship of the size between two raw NFPUF output numbers to extract a bit for
the key, so the maximum of Y is X/2). The y-axis shows the according average
intra-chip variation of the tested NAND Flash memory chips.

The variations of temperature influence thermal noise amplitude, while RTN
amplitude stays almost the same [27]. Since we extract raw NFPUF output num-
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bers based on RTN primarily, as Fig. 5(a) and (c) show, there is little difference
across different temperatures.

NAND Flash memory chips wear-out over time due to program/erase (P/E)
operations are performed. The average page NFPUF decreases slightly as P/E
cycles increases [28]. However, we test the chips in Table 1 under different tem-
perature conditions with our test board to verify the relationship of the size
between raw NFPUF output numbers, all the chips show the same result as
Fig. 3(b), namely the relationship of the size between raw NFPUF output num-
bers is rather stable. Therefore, we can see in the Fig. 5(b) and (d), the aging
influence between different P/E cycles is also unconspicuous.

In the bit-map method, the intra-chip variation decreases from 14.42 % to less
than 10−6 as the ratio of Y/X decreases from 0.5 to 0.055. In this case, when
the ratio of Y/X is 0.055, now 2340 NAND Flash memory cells are needed to
generate a 128-bit robust key, and the length of helper data is 2340/2=1.14 Kbits.

In the position-map method, the intra-chip variation decreases from 2.3×10−5

to less than 10−6 as the ratio of Y/X decreases from 0.5 to 0.474. In this case,
when the ratio of Y/X is 0.474, now 270 NAND Flash memory cells are needed to
generate a 128-bit robust key, and the length of helper data is 128×16×2=4Kbits.

In conclusion, to generate a 128-bit key with the bit error rate < 10−6, we can
select 2340 or 270 NAND Flash memory cells for the bit-map method and the
position-map method, respectively. Then we just choose the top 128 cell pairs
with the maximal difference of the raw NFPUF output numbers to generate the
key. Comparatively, the bit-map method needs more NAND Flash memory cells
and less helper data, while the position-map method requires much less cells and
more helper data. Therefore, we can select the appropriate method according to
the specific implementation requirement.

ECC is too complex and expensive to implement for efficient PUF-based key
generation [5,15,24]. To generate a 128-bit key with a targeted key error rate
< 10−6, ECC implementations typically require 3 K-10 K PUF raw response bits
(with bit error rate of 15 %) to generate the key, and the helper data generated
for this case will be typically 3 K-15 K bits [1]. What is more, the error correcting
capability of a specific ECC technology is fixed, if the number of error bits are
beyond its fixed ability, the ECC would be useless. Therefore, our key generator
is much more flexible, and it can achieve a 128-bit key with error rate < 10−6

by using much less overheads compared with ECC.

Uniqueness. Uniqueness is a measure of how uncorrelated the PUFs response
numbers are across different chips [1]. We evaluate the inter-chip variation,
namely the number of bits which are different between two keys extracted from
different PUF numbers. If the PUF produces uniformly distributed and indepen-
dent random bits, the Hamming distance (HD) of a k-bit response from ideally
unique chips should follow a binomial distribution with parameters N = k and
p = 0.5, and the mean of the HD distribution should be equal to k/2, namely
the inter-chip variation should be 50 % on average [1].

The inter-chip variations of the three proposed extraction methods to gen-
erate 128-bit keys are shown in Fig. 6. The x-axis represents the different bit
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Fig. 5. The intra-chip variations with environmental changes.

number of the 128-bit key, and the y-axis represents the according probabil-
ity. Here, the bars (blue) show the experimental results from 10000 pair-wise
comparisons, and the lines (read) show a binomial distribution. As shown in
the Fig. 6, the average different bits out of 128 bits are 63.91, 63.94, and 59.98,
respectively. The average inter-chip variations of the three methods are 49.93 %,
49.95 % and 46.86 % respectively. The results are all pretty close to the ideal
average of 50 %.

Fig. 6. The inter-chip variations of the three proposed extraction methods.
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Fig. 7. The percentage of bit “1” with temperature changes.

Randomness. To ensure that the generation of the keys does not favor bits
with a certain polarity, we compute the percentage of bit “1” in 10000 groups of
128-bit keys under three temperatures. As Fig. 7 shows, we find that the percent-
age of bit “1” ranges from 46.94 % to 53.62 %, and it is quite close to ideal 50 %
with temperature variations. What’s more, we can just leverage Von Neumann
skew-correction algorithm to generate uniformly random bits, and use a hash
function [11] to ensure the high entropy requirement.

6 Conclusion

In this work, we showed that common NAND Flash memory chips could be
used to generate robust keys based on NFPUF. First, we proposed three meth-
ods to extract raw NFPUF output numbers from NAND Flash memory chips.
Second, we utilized the bit-map or position-map method to select the NAND
Flash memory cells with the most reliable relationship of the size between raw
NFPUF output numbers. Only the selected cells are used for key generation. At
last, we evaluated the primary characteristics of the generated key in various
temperature and aging conditions. To our knowledge, this is the first time that a
key generator based NFPUF implementation has been evaluated. Our key gen-
erator could generate a 128-bit key with a bit error rate < 10−6 in 93.83 ms. The
bit error rate ensures our key generator is reliable during the whole lifetime of
the NAND Flash memory chips. Such low bit error rate is conventionally only
achievable using powerful, but costly, error correction codes (ECC). Our key
generator eschews the costly ECC overheads to generate robust and error-free
keys. This study extends the functionality of NAND Flash memory chips, while
requires no hardware change. Due to the widespread use of NAND Flash mem-
ory chips, the proposed robust key generator is potential to be widely applied to
any electronic encryption devices, as long as the device leverages NAND Flash
memory chip as nonvolatile storage.
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Abstract. In a white-box attack context, an attacker has full visibility of the
implementation of a cipher and full control over its execution environment. As a
countermeasure against the threat of a key exposure in this context, a white-box
implementation of the block cipher SHARK, i.e., the white-box SHARK, was
proposed in a piece of prior work in 2013. However, based on our observation
and investigation, it has been derived that the white-box SHARK is insuffi-
ciently secure, where the hidden key and external encodings can be extracted
with a work factor of approximately 1.5 * (2 ^ 47).

Keywords: White-box attack contexts � Symmetric encryption � Key expo-
sure � SHARK � Cryptanalysis

1 Introduction

Symmetric encryption is one of the most frequently used techniques for encrypting
information. It is a class of algorithms for cryptography that use the same cryptographic
keys for both the encryption of plaintexts and the decryption of ciphertexts.

Cryptographic models based on standard symmetric encryption algorithms assume
that endpoints such as hosts are secure. However, if those endpoints reside in poten-
tially hostile environments, crackers are able to extract the keys whenever they are used
by actively monitoring standard cryptographic functions or memory dumps. Hence, the
standard design and implementation of symmetric encryption algorithms are not suit-
able for “white-box” environments and contexts, where their executions on devices can
be observed. In fact, the contexts of adversaries to attack cryptosystems can be cate-
gorized in three types [1, 2] as follows.

First is the black-box attack context. It is a traditional attack context where an
adversary only has access to the functionality of a cryptosystem. Second is the gray-
box attack context, which refers to a model where a leakage function is present. In this
attack context, the adversary can deploy side-channel cryptanalysis techniques such as
fault analysis, electromagnetic analysis, and power analysis. Because of the large
variety of leakage functions, several gray-box models can be defined. However, in
many applications, a gray-box attack model is not realistic. The white-box attack
context (WBAC) is the third one where the adversary has total visibility of the software
implementation of the cryptosystem and full control over its execution platform. One
could refer to the white-box attack context as the worst protection case. The white-box
attack context is used to analyze algorithms that are running in a non-trustable
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environment, that is, an environment in which applications are subject to attacks from
the execution platform. There exist distinct cryptanalysis techniques applicable to each
of the three attack contexts respectively. For black-box attack contexts, the most
commonly used cryptanalysis techniques against block ciphers include differential and
linear attacks. Typical side-channel cryptanalysis (gray-box attacks) includes time
analysis, fault injection, power analysis, and electromagnetic radiation attack. In con-
trast, powerful cryptanalysis techniques such as memory inspection, CPU call inter-
ception, debugging, reverse-engineering, code tampering and entropy attack are
available in WBAC.

Secure computing in a WBAC is more challenging than in other two attack contexts
because WBAC is commonly subject to three assumptions [3, 4]: (1) fully-privileged
attack tools run on the same host as the cryptographic software, which allows the attack
software complete access to the implementation of algorithms; (2) dynamic executions
(with instantiated cryptographic keys) can be observed; and (3) internal details of
cryptographic algorithms are both completely visible and alterable.

Nowadays, with the rapid development of networking, distributed computing,
mobile computing, and ubiquitous computing, more and more white-box attack con-
texts can be discovered in various IT systems and computing devices. Some typical
white-box attack contexts include: (1) a server or an endpoint for which a hacker has
got the “root” or “admin” privilege; (2) a malicious host where mobile agents are
running [5, 6]; (3) an outdoor node of a wireless sensor network captured by an attacker
[7, 8]; (4) Digital Rights Management (DRM) components in TV set-top boxes or
IPTV equipments [9, 10]; (5) On Board Units (OBUs) and Road Side Units (RSUs) in a
VANet (e.g., the device suffering from the so-called “Industrial Insiders” attack in [11],
the “on-board tampering” attack in [12], or even the “Malware attack” in [13]); and
(6) mobile devices (e.g., smart phones and tablets) captured by an attacker [14].

To protect implementations of symmetric encryption algorithms in WBACs, spe-
cialized obfuscating techniques are urgently demanded. A white-box encryption
algorithm (WBEA) is a particular form or implementation of a block cipher with strong
security in terms of preventing attackers from extracting the embedded cryptographic
key, even if the attackers are positioned in a WBAC. Since it was introduced in 2002
by Chow et al. [4], many WBEAs were proposed, such as in [3–5, 15–20]. All of these
WBEAs have been found insecure except the white-box SHARK in [5].

In this paper, we demonstrate that white-box SHARK is not sufficiently secure. By
a set of theoretical analysis on the design of the white-box SHARK components, it is
found that the cryptographic key can be extracted from a white-box implementation
with a work factor of 1:5� 247 at most.

The remainder of this paper is organized as follows. In Sect. 2, we briefly review
recent advances in white-box cryptography and cryptanalysis. The block cipher
SHARK and the white-box SHARK proposed in the piece of prior work [5] are
reviewed and sketched out in Sect. 3. In Sect. 4 we provide the theoretical analysis of
the white-box SHARK implementation. In Sect. 5, we propose an approach that can
extract the key and even external encodings from a white-box implementation of
SHARK. Finally, concluding remarks are summarized and presented in Sect. 6.
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2 Recent Advances in White-Box Cryptography
and Cryptanalysis

WBEAs can be classified into two categories: light-weight WEBAs and heavy-weight
WBEAs. Light-weight WBEAs are used to provide time-limited protection only in
resource-constrained scenarios such as wireless sensor networks. Heavy-weight
WBEAs commonly require large space and lead to relatively low efficiency, but they
have been designed for providing long-term protection. Existing research on
heavy-weight WBEAs has been mainly concerned with white-box implementations of
classical symmetric encryption algorithms, such as DES and AES.

Chow et al. [4] proposed a white-box implementation of DES by interleaving affine
transformations and using de-linearization techniques. Chow et al. [3] implemented
white-box AES by representing it with a set of key-dependent look-up tables. They
suggested the use of these two white-box encryption algorithms in DRM applications
to protect digital information content and the associated usage rights from unauthorized
access, use, and dissemination. These two works form the foundation of almost all
white-box encryption papers. Many attacks are proposed against [3, 4], and these two
algorithms are insecure now. The next two paragraphs introduce attacks on [3, 4].

Jacob et al. [21] proposed a fault injection based attack, where an attacker injects
errors into the environment during program execution, to defeat some obfuscation
methods. They presented a cryptanalysis of the naked variant of the Chow et al.’s
white-box DES, that is, a variant without external encodings. Similar to Chow et al.’s
white-box DES, Link et al. [18] implemented white-box DES and white-box
triple-DES with alterations that improved the security of the key. Their system is
secure against the previously published attacks on Chow et al.’s white-box DES
implementation and their own adaptation of a statistical bucketing attack. In 2007,
Wyseur et al. [22] and Goubin et al. [23], independently of each other, cryptanalyzed
all existing obfuscation methods of DES. These attacks were based on a truncated
differential cryptanalysis. Goubin, et al. presented an attack that analyzed the first
rounds of the white-box DES implementations, while Wyseur et al. presented an attack
that works on the internal information. Hence, none of proposed white-box DES
implementations are secure.

Billet et al. [24] presented an efficient practical attack against the obfuscated AES
implementation proposed by Chow et al., with negligible memory and worst time
complexity of 230. In 2009, Michiels et al. [25] generalized the attack so that it can be
deployed on a generic class of white-box implementations. The most time-consuming
part of Billet et al.’s attack [24] is finding the used byte permutation up to an affine
mapping, which takes a time-complexity of 224 in the worst situation. In 2012,
Tolhuizen [26] provided a variation on this part of the attack, reducing the time
complexity to at most 214. With the help of this improvement, the overall worst time
complexity of breaking Chow et al.’s white-box AES in [3] is reduced from 230 to 220.

Bringer et al. [20] proposed a solution to address the issue of white box repre-
sentation of block ciphers by applying perturbation on algebraic structures of a cipher.
The authors claimed that the techniques can be applied to a variant of the AES block
cipher for which the S-Boxes are all different.
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Unfortunately, De Mulder et al. [27] showed that the perturbation procedures and
random equation calculations can be separated from the implementation, and the linear
input and output encodings can be removed. Accordingly, attackers can transform the
white-box implementation into a simple but functionally equivalent implementation
and then retrieve a set of keys that are equivalent to the original key. The cryptanalysis
of the white-box AES in [20] has a worst-case work factor of 217.

Xiao et al. [15] proposed a white-box AES implementation after a detailed analysis
of attack techniques in [24]. The size of this implementation is considerably large to
achieve a higher security level. In Xiao et al.’s scheme, the obfuscation works on at
least two cells of an AES state; moreover, the attacker cannot divide it into smaller
units (e.g. one cell of an AES state) and remove it using the attack techniques proposed
in [24]. The time complexity of the Xiao-Lai white-box AES implementation is 224,
which is slower than the Chow et al.’s implementation in [3] (220), and the size is
20502 KB.

De Mulder et al. [28] presented a practical cryptanalysis of Xiao et al.’s white-box
AES. They applied the linear equivalence algorithm presented by Biryukov et al. [29]
as a building block in their key-extraction algorithm. The cryptanalysis efficiently
extracts the AES key with a work factor of about 232.

Another white-box implementation for AES is proposed by Karroumi [19]. This
implementation makes InvSubBytes and InvMixColumns operations variable by using
additional sets of coefficients taken from dual representations of AES. Karroumi
claimed that the expected security level is raised from 230 to 291. However, an algebraic
analysis [30] was proposed in 2013 and Karroumi’s implementation can be easily
broken.

The two key factors of a white-box encryption algorithm are size and security level.
Unfortunately, in many cases, the two key factors form a tradeoff and cannot be
achieved simultaneously. The goal of light-weight WBEAs proposed in prior work
[16, 17] is to make the size of implementations as small as possible in order to meet the
requirements on computing with mobile agents and sensor nodes. In general, these
white-box implementations only intend to support time-limited black box security [31].

As summarized in Table 1, white-box implementations designed for providing long
term protections (i.e., heavy-weight WBEAs) are listed in the left column with the
corresponding attacks listed in the right column. The latest published heavy-weight
WBEA (i.e., the white-box SHARK [5]) is also included.

3 SHARK and its White-Box Implementation

SHARK [32] is a six round substitution-permutation-network that alternates a key
mixing stage with linear and non-linear transformation layers. Each round of the
SHARK encryption algorithm can be split into three distinct layers: a non-linear
confusion layer of S-Boxes, a linear diffusion layer and a key addition (XOR) layer.

Let S : GFð28Þ ! GFð28Þ; x 7! S½x� be the mapping of S-Boxes. Then the
substitution layer can be defined as c : GFð28Þ8 ! GFð28Þ8, cðaÞ ¼ b , bi ¼ S½ai�,
0� i� 7.
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Let k : GFð28Þ8 ! GFð28Þ8 denote the linear transformation corresponding to the
linear diffusion layer. There exists a matrix H such that kðaÞ ¼ b , b ¼ a � H.

Furthermore, let Kr be the round key of the rth round and let r½Kr� : GFð28Þ8 !
GFð28Þ8 be the key exclusive or mapping.

Then, the encryption algorithm of SHARK with cryptographic key K can be
defined by:

SHARK½K� ¼ k�1 � �6
r¼1

r½Kr� � k � c
� �

� r K0� � ð1Þ

An overall illustration of the SHARK workflow is shown in Fig. 1.
In constructing the white-box SHARK according to [5], the following two steps are

applied. Firstly, for each round r, the rth round function of the block cipher SHARK is
transformed into a random “dual version” by applying a transformation Δr. Δr is an
isomorphic transformation that takes the description of (a round of) the cipher under the
standard irreducible polynomial to another description with a different irreducible
polynomial. Secondly, several operations of each dual round function are merged into
lookup tables which are blended by randomly generated mixing bijections. It should be
noted that each Δr is kept secret from attackers and corresponds to 8160 possible
choices. Hence, the authors of [5] claimed that Δr makes an attack almost 8160 times
harder than a white-box encryption algorithm being protected by the second step only.

Table 1. Heavy-weight WBEAs and cryptanalysis

WBEA Cryptanalysis

White-box DES [4] (Chow et al., 2002) Jacob, Boneh and Felten in [21], 2002
Wyseur, Michiels, Gorissen and Preneel in [22],
2007

Goubin, Masereel, and Quisquater in [23], 2007
White-box DES [18] (Link and
Neumann, 2005)

Wyseur, Michiels, Gorissen and Preneel in [22],
2007

Goubin, Masereel, and Quisquater in [23], 2007
White-box AES [3] (Chow et al., 2002) Billet, Gilbert and Ech-Chatbi in [24], 2004

Tolhuizen in [26], 2012 (an improvement of
[24])

Lepoint, Rivain, De Mulder, Roelse and Bart
Preneel in [30], 2013 (an improvement of
[24])

A generic construction base on [3] Michiels, Gorissen and Hollmann in [25], 2008
Perturbated White-Box AES [20]
(Bringer et al., 2006)

De Mulder, Wyseur, and Preneel in [27], 2010

White-box AES [15] (Xiao and Lai,
2009)

De Mulder, Roelse and Preneel in [28], 2013

White-box AES with dual ciphers [19]
(Karroumi, 2011)

Lepoint, Rivain, De Mulder, Roelse and Preneel
in [30], 2013

White-box SHARK [5] (Shi et al., 2013) This paper
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Let M64 be the set that consists of all 64 × 64 nonsingular binary matrices and M16

be the set that consists of all 16 × 16 nonsingular binary matrices. In addition, the
symbol 2$ denotes a randomly selected element of a set. Components of the white-box
SHARK are defined as follows.

Let Q r;ið Þ 2$ M16, r ¼ 1; . . .; 6; i ¼ 0; . . .; 3, and N rð Þ 2$ M64, r ¼ 0; . . .; 6. For

each i 2 0; 1; 2; 3f g, let L 0ð Þ
i ¼ D0 � �Q 0;ið Þ� �

and ss be pre-round mixing bijections.
Let H be the 64 × 64 binary matrix that corresponds to the diffusion operation of

SHARK. The post-round diffusion-mixing bijections are given by (2) and (3) as
follows.

P rð Þ ¼ Dr Hð Þ � N rð Þ ¼def
P rð Þ
0

P rð Þ
1

P rð Þ
2

P rð Þ
3

2
6664

3
7775; r ¼ 0; . . .; 5 ð2Þ

P 6ð Þ ¼ D6 H�1� � � N 6ð Þ ¼def
P 6ð Þ
0

P 6ð Þ
1

P 6ð Þ
2

P 6ð Þ
3

2
6664

3
7775 ð3Þ

Let k rð Þ
2i k rð Þ

2iþ1

��� be the 2ið Þth and 2iþ 1ð Þth bytes of the rth round-key, and K be the

cipher key. Lookup tables of the white-box SHARK are generated by using (4) and (5)
as follows:

qW ½r; i;K� xð Þ ¼ S Skð ÞDr L rð Þ
i xð Þ

	 

� Dr k rð Þ

2i k rð Þ
2iþ1

���	 
	 
	 
	 

P rð Þ
i ; r ¼ 0; . . .; 5; i

¼ 0; . . .; 3 ð4Þ

qW ½6; i;K� xð Þ ¼ L 6ð Þ
i xð Þ

	 

� D6 k 6ð Þ

2i k 6ð Þ
2iþ1

���	 
	 
	 

P 6ð Þ
i ; i ¼ 0; . . .; 3; ð5Þ

where S Sk denotes two SHARK S-Boxes (Substitution-Boxes) operating in parallel
and SjjSð ÞDr is given by (6):

Fig. 1. The workflow of SHARK
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SjjSð ÞDr: GF 28
� �2! GF 28

� �2
; x 7!Dr S Skð Þ D�1

r xð Þ� �� �
: ð6Þ

Let M rð Þ be a 64 × 64 nonsingular binary matrix, defined for r ¼ 1; . . .; 6 as in (7).

M rð Þ ¼ N r�1ð Þ
	 
�1

�

Q r;0ð Þ� ��1

Q r;1ð Þ� ��1

Q r;2ð Þ� ��1

Q r;3ð Þ� ��1

2
66664

3
77775 ð7Þ

Based on the components described above, the structure of the round function of
white-box SHARK is shown in Fig. 2; the workflow of white-box SHARK is shown in
Fig. 3; and the encryption algorithm is then presented following the two figures. Note
that the structure of the last round function is slightly different from others, and readers
may refer to [5] for details.

Fig. 2. The structure of the round function of the white-box SHARK

Fig. 3. The workflow of the white-box SHARK
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Note that each TBoxr;i in the algorithm is a lookup table in correspondence to the
functionality of qW ½r; i;K� that is given by (4) or (5).

4 Theoretical Analysis of T-Boxes

The security of white-box SHARK partially relies on the secret isomorphic transfor-
mation Dr that is used to transform each round into a dual version. One major step in
breaking the white-box SHARK is to defeat the extra protection provided by Dr. By
means of Theorem 1 below, we found that the transformation Dr can be “merged into”
the secret transformation embedded inside the T-Boxes. Consequently, the secret
transformation Dr cannot effectively protect the implementation in WBACs.

Suppose that

H ¼
H0
H1
H2
H3

2
664

3
775 ð8Þ

and

H�1 ¼
H0

0
H0

1
H0

2
H0

3

2
664

3
775; ð9Þ

where H0;H1;H2;H3 and H0
0;H

0
1;H

0
2;H

0
3 are 16 × 64 block binary matrices, and we

present the following theorem with the proof.

Theorem 1.

8r 2 0; 1; 2; 3; 4; 5f g; 8i 2 0; 1; 2; 3f g; 9A r;ið Þ 2 M16 ^ 9B rð Þ 2 M64; st:

qW ½r; i;K� xð Þ ¼ S Skð Þ x � A r;ið Þ � k rð Þ
2i k rð Þ

2iþ1

���	 
	 
	 

� Hi � B rð Þ ð10Þ

and

8i 2 0; 1; 2; 3f g; 9A 6;ið Þ 2 M16 ^ 9B 6ð Þ 2 M64; st:

qW ½6; i;K� xð Þ ¼ S Skð Þ x � A 6;ið Þ � k 6ð Þ
2i k 6ð Þ

2iþ1

���	 
	 
	 

� H0

i � B 6ð Þ ð11Þ

Proof. The isomorphic mapping D transforms the description of the cipher under the
standard irreducible polynomial into another description under a distinct irreducible
polynomial. Transparently, the mapping is linear. Hence, there exists a 16 × 16 non-
singular binary matrix Dr corresponding to the isomorphic transformation Dr,
r ¼ 0; 1; . . .; 6.
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For r ¼ 1; . . .; 5, we have

qW ½r; i;K� xð Þ ¼ S Skð ÞDr L rð Þ
i xð Þ

	 

� Dr k rð Þ

2i k rð Þ
2iþ1

���	 
	 
	 
	 

P rð Þ
i

¼ Dr S Skð Þ D�1
r L rð Þ

i xð Þ
	 


� Dr k rð Þ
2i k rð Þ

2iþ1

���	 
	 
	 
	 
	 
	 

P rð Þ
i

¼ Dr S Skð Þ D�1
r Dr � D�1

r�1 � �Q r;ið Þ
	 


xð Þ
	 


� Dr k rð Þ
2i k rð Þ

2iþ1

���	 
	 
	 
	 
	 
	 

P rð Þ
i

¼ S Skð Þ D�1
r x � Q r;ið Þ � D�1

r�1 � Dr

	 

� k rð Þ

2i k rð Þ
2iþ1

���	 

� Dr

	 
	 
	 

� Dr � P rð Þ

i

¼ S Skð Þ x � Q r;ið Þ � D�1
r�1

	 

� k rð Þ

2i k rð Þ
2iþ1

���	 
	 

� Dr

	 

� D�1

r

	 
	 

� Dr � P rð Þ

i

¼ S Skð Þ x � Q r;ið Þ � D�1
r�1 � k rð Þ

2i k rð Þ
2iþ1

���	 
	 
	 

� Dr � P rð Þ

i

and

P rð Þ

¼ Dr Hð Þð Þ � N rð Þ

¼

H0;0 H0;1 H0;2 H0;3

H1;0 H1;1 H1;2 H1;3

H2;0 H2;1 H2;2 H2;3

H3;0 H3;1 H3;2 H3;3

2
6664

3
7775 �

Dr

Dr

Dr

Dr

2
6664

3
7775 � N rð Þ

¼

H0

H1

H2

H3

2
6664

3
7775 �

Dr

Dr

Dr

Dr

2
6664

3
7775 � N rð Þ

;

where each Hi;j is a 16 × 16 block matrix.
Let

B rð Þ ¼
Dr

Dr

Dr

Dr

2
664

3
775 � N rð Þ

and

A rð Þ

¼

A r;0ð Þ

A r;1ð Þ

A r;2ð Þ

A r;3ð Þ

2
6664

3
7775
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¼def
Q r;0ð Þ � D�1

r�1
Q r;1ð Þ � D�1

r�1
Q r;2ð Þ � D�1

r�1
Q r;3ð Þ � D�1

r�1

2
664

3
775

Thus,

qW ½r; i;K� xð Þ
¼ S Skð Þ x � Q r;ið Þ � D�1

r�1 � k rð Þ
2i k rð Þ

2iþ1

���	 
	 
	 

� Dr � P rð Þ

i

¼ S Skð Þ x � A r;ið Þ � k rð Þ
2i k rð Þ

2iþ1

���	 
	 
	 

� Hi � B rð Þ

For r ¼ 0, we have

qW ½0; i;K� xð Þ
¼ S Skð ÞD0 L 0ð Þ

i xð Þ
	 


� D0 k 0ð Þ
2i k 0ð Þ

2iþ1

���	 
	 
	 
	 

P 0ð Þ
i

¼ D0 S Skð Þ D�1
0 L 0ð Þ

i xð Þ
	 


� D0 k 0ð Þ
2i k 0ð Þ

2iþ1

���	 
	 
	 
	 
	 
	 

P 0ð Þ
i

¼ D0 S Skð Þ D�1
0 D0 � �Q 0;ið Þ

	 

xð Þ

	 

� D0 k 0ð Þ

2i k 0ð Þ
2iþ1

���	 
	 
	 
	 
	 
	 

P 0ð Þ
i

¼ S Skð Þ x � Q 0;ið Þ � k 0ð Þ
2i k 0ð Þ

2iþ1

���	 
	 
	 

� D0 � P 0ð Þ

i

Hence, the matrices given by (12) and (13) would satisfy (10) when r ¼ 0.

B 0ð Þ ¼
D0

D0

D0

D0

2
664

3
775 � N 0ð Þ ð12Þ

A 0;ið Þ ¼
Q 0;0ð Þ

Q 0;1ð Þ

Q 0;2ð Þ

Q 0;3ð Þ

2
664

3
775 ð13Þ

As to the final round, similarly, we have
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qW ½6; i;K� xð Þ
¼ S Skð ÞD6 L 6ð Þ

i xð Þ
	 


� D6 k 6ð Þ
2i k 6ð Þ

2iþ1

���	 
	 
	 
	 

P 6ð Þ
i

¼ S Skð Þ x � Q 6;ið Þ � D�1
5 � k 6ð Þ

2i k 6ð Þ
2iþ1

���	 
	 
	 

� D6 � P 6ð Þ

i

and

P 6ð Þ

¼ D6 H�1� �� � � N 6ð Þ

¼

H0;0 H0;1 H0;2 H0;3

H1;0 H1;1 H1;2 H1;3

H2;0 H2;1 H2;2 H2;3

H3;0 H3;1 H3;2 H3;3

2
6664

3
7775

�1

�

D6

D6

D6

D6

2
6664

3
7775 � N 6ð Þ

¼

H0
0

H0
1

H0
2

H0
3

2
6664

3
7775 �

D6

D6

D6

D6

2
6664

3
7775 � N 6ð Þ

where each Hi;j is a 16 × 16 block matrix.
Let

B 6ð Þ ¼
D6

D6

D6

D6

2
664

3
775 � N 6ð Þ

and

A 6ð Þ

¼

A 6;0ð Þ

A 6;1ð Þ

A 6;2ð Þ

A 6;3ð Þ

2
6664

3
7775

¼def
Q 6;0ð Þ � D�1

5

Q 6;1ð Þ � D�1
5

Q 6;2ð Þ � D�1
5

Q 6;3ð Þ � D�1
5

2
6664

3
7775

Thus, qW ½6; i;K� xð Þ ¼ S Skð Þ x � A 6;ið Þ � k 6ð Þ
2i k 6ð Þ

2iþ1

���	 
	 
	 

� H0

i � B 6ð Þ.
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This ends the proof.
Based on Theorem 1, an attacker can regard the white-box SHARK as a series of

protected lookup tables which directly correspond to the (round functions of) standard
SHARK, and the protection are only provided by means of secret linear mappings A r;ið Þ

and B rð Þ in fact.

5 Extracting the Embedded Key

To demonstrate that the vulnerability identified by the theoretic analysis in the previous
section can be utilized to break the white-box SHARK, we propose an algorithm for
extracting the key and even external encodings from a white-box implementation of
SHARK. As the proposed algorithm incorporates an extended version of the linear
equivalence (LE) algorithm as a building block, we briefly review the LE algorithm and
its extension first.

For a pair of given S-Boxes S0 and S00, if there exists a pair of linear mappings A and
B such that A � S0 � B ¼ S00, we say that S0 and S00 are linear equivalent. Clearly, a
brutal-force implementation would start by guessing the mapping B and then com-
puting the mapping A using the equation A ¼ S00 � ðS0 � BÞ�1. If A turns out to be linear
as well, then we have found a solution; if not, we try again with a different guess. The
worst-case work factor is n3 � 2n

2
for n-bit to n-bit S-Boxes and thus the attack would

be impossible.
Fortunately, the LE algorithm proposed in [29] is a powerful and efficient tool for

cryptanalysis with a much smaller work factor at approximately n3 � 2n. The general
idea of the LE algorithm is to guess the linear mapping A by the fewest input points
possible, and then use the linearity of A and B to continue with these guesses as far as
possible. The inputs of the algorithm are S0 and S00, whereas the output is either a linear
equivalence (A, B) in case that S0 and S00 are linearly equivalent, or a message that such
a linear equivalence does not exist. The LE process starts by selecting two distinct
non-zero input values x1 and x2, and guesses the values of Aðx1Þ and Aðx2Þ. Then, the
two equations BðyiÞ ¼ S00ðxiÞ and yi ¼ S0ðAðxiÞÞ are utilized to retrieve the information
about B. Furthermore, new information about A is obtained according to the equation
Aðx3Þ ¼ S0�1ðy1� y2Þ where x3 ¼ S00�1ðBðy1Þ � Bðy2ÞÞ. This process is applied
iteratively, and the linearity of the partially determined mappings A and B can be
verified by a Gaussian elimination. The entire process is briefly illustrated in Fig. 4; for
in-depth descriptions of the LE algorithm, please refer to [29].

The original linear equivalence algorithm LE terminates upon finding one single
linear equivalence which adequately proves that both given S-Boxes, i.e. S0 and S00, are
linearly equivalent. However, as suggested in [28], by executing LE over all possible
guesses (i.e., both initial guesses and possible additional guesses made during the
execution of LE), other linear equivalences (A, B) can also be found. Therefore, we can
adopt the techniques in [28] to perform further cryptanalysis. Such an extended variant
of LE can be denoted as ELE (Extended LE). Consequently, the work factor of ELE is
at least n3 � 22n, i.e., a Gaussian elimination (n3) for each possible pair of initial
guesses (22n).
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One remaining task for breaking the white-box SHARK is to propose an efficient
approach for constructing a pair of known S-Boxes that are linearly equivalent. The
theoretic foundation of such an approach is provided by Theorem 2 below. Obviously,
9s0 2 GFð2Þ8; S s0ð Þ ¼ 0. Let S00 ¼ ðSjjSÞ � ð�s0jjs0Þ. Theorem 2 demonstrates that for
each pair {r; i}, an S-Box which is linearly equivalent to S00 can be derived from
qW ½r; i;K�.

Theorem 2. Suppose that qW ½r; i;K� z rð Þ
i

	 

¼ 0 where z rð Þ

i 2 GF 2ð Þ16.

Let S0r;i xð Þ ¼ qW ½r; i;K� x� z rð Þ
i

	 

. 8i 2 f0; � � � ; 3g, we have

S0r;i ¼ �A r;ið Þ
	 


� S00 � �Hi � B rð Þ
	 


; r ¼ 0; � � � ; 5 ð14Þ

and

S06;i ¼ �A 6;ið Þ
	 


� S00 � �H0
i � B 6ð Þ

	 

ð15Þ

Proof. We only prove (14) whereas the proof of (15) is omitted, because it can be
acquired by similar deductions.

0 ¼ qW ½r; i;K� z rð Þ
i

	 

¼ S Skð Þ z rð Þ

i � A r;ið Þ � k rð Þ
2i k rð Þ

2iþ1

���	 
	 
	 


s0jjs0 ¼ z rð Þ
i � A r;ið Þ � k rð Þ

2i k rð Þ
2iþ1

���	 


Hence,

Fig. 4. The process of LE
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S0r;i xð Þ
¼ S Skð Þ x� z rð Þ

i

	 

� A r;ið Þ � k rð Þ

2i k rð Þ
2iþ1

���	 
	 
	 

� Hi � B rð Þ

¼ S Skð Þ x � A r;ið Þ � z rð Þ
i � A r;ið Þ

	 

� k rð Þ

2i k rð Þ
2iþ1

���	 
	 
	 

� Hi � B rð Þ

¼ S Skð Þ x � A r;ið Þ � s0jjs0ð Þ � k rð Þ
2i k rð Þ

2iþ1

���	 
	 

� k rð Þ

2i k rð Þ
2iþ1

���	 
	 
	 

� Hi � B rð Þ

¼ S Skð Þ x � A r;ið Þ � s0jjs0ð Þ
	 
	 


� Hi � B rð Þ

.

This ends the proof.
According to Theorem 2, when S0r;i and S00 are analyzed by applying the ELE

algorithm, A r;ið Þ and B rð Þ are obtained with work factor of 244, i.e., n3 � 22n for n ¼ 16.
It is feasible to break a round by running the ELE algorithm four times.

From the specification of SHARK, we know that the 128-bit cipher key is used as
input of SHARK with a public-known encryption key (PEK) and a public-known initial
value (PIV) in 64-bit cipher feedback (CFB) mode. Then the output bits are used as the
actual round keys for the encryption of the message. Hence, the cipher key can be
recovered from the first two round-keys. Moreover, the external encodings can be
recovered by analyzing the first and the last rounds. Thus, the overall work factor is
dominated by running the ELE algorithm 12 times, i.e., 12� 244 ¼ 1:5� 247.
Although the work factor is rather large, the time efficiency could be optimized by
executing the ELE algorithm programs in parallel (multi-threading) on a workstation
with a group of multi-core processors. For example, on a medium-level workstation
with 2 hexa-core processors or 4 quad-core processors, the work factor would decrease
to 244. To achieve higher efficiency, the attacking software could be implemented based
on CUDA or OpenCL by utilizing GPU computational techniques and capabilities. In
such case, the Gaussian eliminations could be significantly accelerated [33, 34].

In addition to the ELE algorithm, three more algorithms are used in the attack
process. SHARK:DecCFB is the SHARK decryption algorithm which works in the CFB
mode, where the input arguments are the ciphertext, the key, and the initial value in
sequence. SHARK:EncECB is the SHARK encryption algorithm which works in the
ECB (Electronic Codebook) mode, where the input arguments are the ciphertext and
the key in sequence. An algorithm named SearchKey takes a pair of matrices, namely A
and B, and the round number r as the input arguments, which performs a brutal force
searching of the round key in GFð2Þ16 and returns the key as output.

The attack first analyzes the T-Boxes of Round 0, 1 and 6 by using the ELE
algorithm. The output of the analysis is the complete set of possible linear transfor-
mations used in the 12 T-Boxes, i.e. Pr;i for r ¼ 0; 1; 6 and i ¼ 0; 1; 2; 3. Next, the
“real” transformations used in the first two rounds are extracted by testing whether they
match the corresponding inter-round matrices. The algorithm SearchKey is then used to
find the values of round keys of the first two rounds. With the round keys found, the
cipher key can be acquired by inversing the key-scheduling process of SHARK.
Finally, the “real” transformations used in the last round are extracted by comparing the
results from (a) the encryption using the white-box encryption algorithm and (b) the
encryption using the standard SHARK algorithm plus external encodings.
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The integrated algorithm that implements the above attack process is presented as
follows.

6 Conclusions

Theoretical analysis in this paper has proved that, in essence, each embedded round key
fragment hidden in a lookup table of the white-box SHARK is only protected by a pair
of secret linear mappings. As a result, the unknown isomorphic transformations are not
capable of providing effective protections on the tables that contain embedded keys in
WBACs. It has been demonstrated that the white-box SHARK can be broken by the
proposed attack, where the hidden key and external encodings can be extracted with a
work factor of approximately 1:5� 247. Although the computational efficiency of the
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attack procedure could be potentially improved, it is sufficient to indicate the insecurity
of the white-box SHARK.
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Abstract. Static binary code analysis and reverse engineering are cru-
cial operations for malware analysis, binary-level software protections,
debugging, and patching, among many other tasks. Faster binary code
analysis tools are necessary for tasks such as analyzing the multitude
of new malware samples gathered every day. Binary code disassembly is
a core functionality of such tools which has not received enough atten-
tion from a performance perspective. In this paper we introduce GPU-
Disasm, a GPU-based disassembly framework for x86 code that takes
advantage of graphics processors to achieve efficient large-scale analy-
sis of binary executables. We describe in detail various optimizations
and design decisions for achieving both inter-parallelism, to disassem-
ble multiple binaries in parallel, as well as intra-parallelism, to decode
multiple instructions of the same binary in parallel. The results of our
experimental evaluation in terms of performance and power consumption
demonstrate that GPU-Disasm is twice as fast than a CPU disassembler
for linear disassembly and 4.4 times faster for exhaustive disassembly,
with power consumption comparable to CPU-only implementations.

1 Introduction

Code disassemblers are typically used to translate byte code to assembly lan-
guage, as a first step in understanding the functionality of binaries when source
code is not available. Besides software debugging and reverse engineering, dis-
assemblers are widely used by security experts to analyze and understand the
behaviour of malicious programs [8,12], or to find software bugs and vulnerabili-
ties in closed-source applications. Moreover, code disassembly forms the basis of
various add-on software protection techniques, such as control-flow integrity [24]
and code randomization [16].

Most previous efforts in the area have primarily focused on improving the
accuracy of code disassembly [9,13,24]. Besides increasing the accuracy of code
disassembly, little work has been performed on improving the speed of the actual
disassembly process. As the number of binary programs that need to be analyzed
is growing rapidly, improving the performance of code disassembly is vital for
c© Springer International Publishing Switzerland 2015
J. Lopez and C.J. Mitchell (Eds.): ISC 2015, LNCS 9290, pp. 472–489, 2015.
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coping with the ever increasing demand. For instance, mobile application repos-
itories contain thousands of applications that have to be analyzed for malicious
activity [17]. To make matters worse, most of these applications are updated
quite frequently, resulting in large financial and time costs for binary analysis
workloads. At the same time, antivirus and security intelligence vendors need
to analyze a multitude of malware samples gathered every day from publicly
available malware scanning services and deployed malware scanners.

In this work, we focus on improving the performance of code disassembly
and propose to offload the disassembly process on graphics processing units
(GPUs). We have designed and implemented GPU-Disasm, a GPU-based dis-
assembly engine for x86 code that takes advantage of the hundreds of cores
and the high-speed memory interfaces that modern GPU architectures offer, to
achieve efficient large-scale analysis of binary executables. GPU-Disasm achieves
both inter-parallelism, by disassembling many different binaries in parallel, as
well as intra-parallelism, by decoding multiple instructions of the same binary
in parallel. We discuss in detail the challenges we faced for achieving high code
disassembly throughput.

GPU-Disasm can be the basis for building sophisticated analysis tools that
rely on instruction decoding and code disassembly. We chose to focus on the
x86 instruction set architecture for several reasons. First, x86 and x86-64 are
the most commonly used CISC architectures. Second, building a disassembler
for a CISC architecture poses more challenges compared to RISC, due to much
larger set of instructions and the complexity of the instruction decoding process.
Third, it is easier to apply the proposed GPU-based design decisions to a RISC
code disassembler than the other way around.

We have experimentally evaluated GPU-Disasm in terms of performance and
power consumption with a large set of Linux executables. The results of our eval-
uation demonstrate that GPU-Disasm is twice as fast compared to a CPU disas-
sembler for linear disassembly, and 4.4 times faster for exhaustive disassembly,
with power consumption comparable to CPU-only implementations.

In summary, the main contributions of this paper are:

1. We present the first (to our knowledge) GPU-based code disassembly frame-
work, aiming to improve the performance of the instruction decoding process.

2. We present techniques that exploit the GPU memory hierarchy for optimiz-
ing the read and write throughput of the decoding process. Such memory
optimizations can be applied in tools with similar memory I/O operations.

3. We evaluate and compare our GPU-based disassembly library with a CPU-
based approach in terms of performance, cost, and power consumption.

2 Background

2.1 General Purpose Computing on GPUs (GPGPU)

While GPUs are traditionally used for computer graphics, they can also be
used for general-purpose computation. Due to the massive parallelism they offer,
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they can achieve significant performance boosts to certain types of computation.
GPUs typically contain hundreds (or even thousands) of streaming cores, orga-
nized in multiple stream multiprocessors (SM). GPU Threads are divided in
groups of 32, called warps, with each core hosting one warp. Each warp executes
the same block of code, meaning that the threads within a warp do not execute
independently, but all of them run the same instruction concurrently. Conse-
quently, code containing control flow statements that lead to different threads
following divergent execution paths, cannot fully utilize the available cores. When
some threads within a warp diverge, because a branch follows a different path
than the rest of them (branch divergence), they are stalled. Consequently, the
tasks that can truly benefit from the massively parallel execution of GPUs are
the ones that do not exhibit branch divergence. Among many domains, GPUs
have been used in scientific computing [2], cracking passwords [1], machine learn-
ing [5], and network traffic processing [20–22].

GPUs have a distinct memory model. Each multiprocessor has a set of 64 K
registers, which are the fastest GPU memory component. Registers are assigned
to threads and are privately scoped. The scheduler is responsible for ensuring
that register values are saved and restored during context switches of threads.
Each multiprocessor has its own Level 1 (L1) cache and shared memory, which
are shared by all the threads running on it, and are part of the same physical
memory component. This allows for choosing at run time (before spawning the
GPU threads) how to distribute memory between cache and shared memory.
The L1 cache is organized in data cache lines of 128 bytes. Shared memory is
as fast as L1 cache but is programmable, which means that it can be statically
allocated and used in GPGPU programs.

GPUs also include global memory, which is equivalent to the host’s RAM.
It is the slowest memory interface, but has the largest capacity. Global memory
is available to all SMs and data from the host to the device and vice versa can
be transfered only through this part of memory. Interestingly, global memory
also hosts local memory, which is used by threads to spill data when they run
out of registers or shared memory. Finally, global memory also includes constant
memory, a region where programs can keep read-only data, allowing for fast
access when threads use the same location repeatedly.

A Level 2 (L2) cache is shared between all SMs and has a larger capacity
than L1. Every read/write from and to the global memory passes through the
L2 cache. A GPU multiprocessor can fetch 128 byte lines. The driver keeps this
alignment in global memory and in cache lines to achieve increased through-
put for read and write operations. The maximum transfer throughput to global
memory is 180 GB/s.

There are two frameworks commonly used to program GPUs for general
purpose computations, both using C API extensions. The first is CUDA [14],
a programming framework developed by NVIDIA (which we use in this work),
and the second is OpenCl [19], which is a generic framework for programming
co-processors with general purpose computational capabilities.
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Fig. 1. x86 Instruction format.

2.2 x86 Architecture

The x86 and x86-64 architectures are probably the most widely used CISC (Com-
plex Instruction-Set Computing) architectures [7]. Their instruction sets are rich
and complex, and most importantly they support instructions of varying length.
Instruction lengths range from just one byte (i.e., instructions comprising just
an opcode) to 15 bytes. Generally, instructions consist of optional prefix bytes,
which extend the functionality of the instruction, the opcode, which defines
the instruction, the ModR/M and SIB bytes, which describe the operands, fol-
lowed by an immediate value, that is also optional. The overall format of an x86
instruction is depicted in Fig. 1.

Due to the extensive instruction set and the variable size if its instructions, it
is very easy for disassemblers to be confused, decoding arbitrary bytes as instruc-
tions [3], e.g., because data may be interleaved with instructions, or because the
beginning of a block of instructions is not correctly identified.

2.3 Code Disassemblers

There are two widely used code disassembly techniques, linear and recursive
disassembly [6]. In linear disassembly, a segment of bytes is disassembled by
decoding instructions from the beginning of the of the segment until the end
is reached. Linear disassembly typically does not apply any heuristics to dis-
tinguish between code and data, and consequently, it is easy to get “confused”
and produce erroneous results. For example, compilers emit data and patching
bytes for function alignment, which a linear disassembler decodes as instructions,
along with the actual code. Thus, when disassembling the whole text segment
of a binary, the output of linear disassembly is likely to contain erroneous parts
that correspond to embedded data and alignment byte Binaries may also con-
tain unreachable functions that are included during compilation, e.g., due to the
static linkage of libraries, which will also be included in the output of linear
disassembly.

Recursive disassemblers use a different approach that eliminates the erro-
neous assembly produced by linear disassembly, but with its own disadvantages.
The decoding process starts from an address out of a set of entry points (exported
functions, entry points) and linearly disassembles the byte code. Whenever the
disassembler encounters control flow instructions, it adds all targets to the set of
entry points. The disassembly process stops when it finds indirect (computed)
branches which cannot be followed statically. The process continues recursively
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by decoding from a new target out of the set of entry points. They main draw-
back of recursive disassembly is that it cannot reach code segments that are
accessible only through indirect control flow transfer instructions.

3 Architecture

In this section, we describe the overall architecture of our system. Our aim is to
design a GPU-based disassembly engine that is able to process a large number of
binaries in parallel. The key factors for achieving good performance are: (i) exploit
the massively parallel computation features of the GPU, (ii) optimize PCIe trans-
fers and pipeline all components for keeping the hardware utilized at all times,
and (iii) design optimization heuristics for exploiting further capabilities of the
hardware.

The basic operations of our approach include: (i) Pre-processing : loading of
the binaries from disk to properly aligned buffers of the host’s memory space,
(ii) Host-to-device: transfer of the input data buffers to the memory space of the
GPU, (iii) Disassembly : the actual parallel code disassembly of the inputs on
the GPU, and storage of the decoded instructions into pre-allocated output data
buffers, (iv) Device-to-host : transfer of the output buffers to the host’s memory
space, and finally (v) Post-processing : delivery of the disassembled output and
initialization of the pointers to the next chunk of bytes of each binary, if any,
that will be fed to the GPU for disassembly. Once processing of all binaries has
completed, input buffers are loaded with the next binaries to be analyzed.

3.1 Transferring Input Binaries to the GPU

The operation to consider is how input binary files will be transferred from
the host to the memory space of the GPU. The simplest approach would be to
transfer each binary file directly to the GPU for processing. However, due to the
overhead associated with data transfer operations to and from the GPU, group-
ing many small transfers into a larger one achieves much better performance
than performing each transfer separately. Thus, we have chosen to copy the
binary files to the GPU in batches. In addition, the input file buffer is allocated
as a special type of memory, called page-locked or “pinned down” memory, in
order to prevent it from being swapped out to secondary storage. The copy from
page-locked memory to the GPU is performed using DMA, without occupying
the CPU. This allows for higher data transfer throughput compared to the use
of pageable memory, e.g., using traditional memory allocation functions such as
malloc().

3.2 Disassembling x86 Code on the GPU

Instruction Decoding and Linear Disassembly. Linear disassembly blindly
decodes a given sequence of bytes from the beginning to the end without apply-
ing any further heuristics or logic. Initially, the GPU decoder dispatches the
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instruction prefixes (if present), which always come before the opcode of x86
instructions. Afterwards, the decoder dispatches the next byte of the instruction
which is the actual opcode we are interested in. The decoder shifts the opcode
bytes to bring them in a form that it can easily use them as an index for a
look-up table. After decoding the opcode, we determine if the instruction has
operands or not, by decoding the ModR/M byte. The operands can be registers
or immediate values. If the operands are registers, they can be either implicit, as
part of the instruction, or explicit, defined by the following bytes. If the instruc-
tion uses indexed addressing, then the next decoded byte corresponds to the SIB
(Scale Index Base) which determines the addressing mode of the array. Lastly,
the disassembler decodes the displacement and immediate bytes.

The disassembly process can fail while decoding an instruction. Depending
on the failure reason, the disassembler handles it in a different way. When more
bytes than available are expected based on the last decoded opcode, the instruc-
tion decoding process stops and an appropriate error is reported. When invalid
instructions are encountered, the disassembler marks them and continues the
decoding process from the following byte.

Each GPU thread is assigned to disassemble a single chunk of an input binary
at a time. Consequently, the total GPU kernel execution time is equal to the
time of the slowest (last finished) thread. Note that the overall performance
would drop in case some threads remained under-utilized, i.e., they were assigned
smaller workloads. To avoid this, we assign fixed-sized input buffers (chunks) to
all threads, which minimizes the possibility of having idle threads. However, as all
input binaries do not have the same size, some imbalance unavoidably happens
as the processing of smaller input files completes. Our current prototype does
not handle such imbalances, but their effect can be minimized by selecting input
file batches based on file sizes, so that each batch includes files of similar sizes.

Having fixed size chunks leads to more complex data splitting, when a binary
may not fit inside the buffer all at once. Therefore, we have to divide the binary
in several chunks and perform the disassembly process on batches. Due to the
nature of the x86 instruction set (Sect. 2.2) we have to carefully choose the start-
ing point of the next chunk of bytes for decoding, otherwise any split instructions
will generate incorrect disassembly.

Exhaustive Disassembly. We have also implemented an exhaustive disassem-
bly mode, which applies linear disassembly by starting from each and every byte
of the input, i.e., by decoding all possible (valid) instructions contained in the
input. Further analysis of the output can be then performed to identify function
boarders, basic blocks, and even obfuscated code constructs. For instance, Bao
et al. [4] use exhaustive disassembly to generate all possible outputs, and then
apply machine learning techniques to find instruction sequences that correspond
to function entry and exit points. Other approaches [8,13] disassemble the same
regions of a binary from different indexes and apply heuristics to identify basic
blocks and reconstruct the control flow graph.

For exhaustive disassembly, we transfer the input buffer to the GPU memory
space and spawn as many threads as the bytes of the binary. Each thread starts
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the decoding of the same input from a different index. Although each thread
decodes only one instruction, this approach is effective in quickly extracting all
possible instructions contained in the input.

3.3 Transferring the Results to the Host

After an instruction is decoded, the corresponding data is stored in the GPU
memory. As storing extensive data for all decoded instructions from all threads
can easily deplete the memory capacity, we chose to save only basic information
about each decoded instruction, which though is enough for further analysis.
Specifically, we store the relative address of the instruction within the input file,
its opcode, the group to which it belongs (e.g., indirect control flow transfer,
arithmetic operation, and so on), and all explicit operands such as registers
and immediate values. The above extracted information can fully describe each
decoded instruction, and can be easily used for further static analysis, compared
to more verbose storing of raw fields, such as ModR/M bits. Information such
as implicit operands and the size of the instruction mnemonic can be easily
extracted from the stored metadata. For example, the size of the instruction can
be calculated from the distance between the relative addresses of the current
and the next instruction.

The decoded instructions are stored in a pre-allocated array with enough
space for all instructions of the input. As shown in Fig. 4 (discussed in more detail
in Sect. 5.1), only less than 20 % of the encountered instructions on average are a
single-byte long, so the number of decoded instructions in typically much smaller
than the size of the input in bytes. Consequently, we safely set the number of
slots in the array as half the size of the input buffer in bytes.

The GPU disassembly engine saves the decoded instructions on GPU memory
and transfers them back to the host for further analysis. After the device to host
transfer has completed, the system evaluates the extracted information as part of
a post-process phase. This includes checks for errors due to any misconfiguration
of the GPU threads, and for each thread, whether there are pending bytes for
disassembly for the current input binary being processed. Then, the pointer for
the next chunk to be processed is set according to the last successfully decoded
instruction, so that the disassembly process is not corrupted. If a thread has
finished disassembling an input binary, the pointer is set to NULL so that a new
binary will be assigned to it, after the processing of the whole batch is completed.

3.4 Pipeline

After optimizing the basic operations, we have to design the overall architecture
in such a way that will keep every hardware component utilized. The GPGPU
API supports running computations using streams. Thus, we can parallelize data
transfers with the disassembly process and eliminate idle time for the PCIe bus
and the GPU multiprocessors. We use double buffers for both input and output,
so that when the GPU processes a buffer, the system can transfer the output
data and fill the next input buffers with new binaries for disassembly. With the
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proper usage of streams, we can keep the CPU, the PCIe bus, and the GPU
utilized concurrently at all times.

The GPU can handle the synchronization of GPU operations internally. How-
ever, before the host proceeds with output analysis, it needs to synchronize the
GPU operations. The host is unable to know if the device has finished processing
until the driver receives a signal from the GPU that denotes completion. Ideally,
we would like to keep the GPU utilized without blocking for synchronization.
The architecture can be designed so that synchronization is kept to a minimum,
just for one of the operations. By placing all input values (binaries, sizes, memory
addresses) and all output data into a single buffer, as described above, requires
invoking the synchronization process only after the copy of the output from
device to host, eliminating in this way any intermediate serialization points.

4 Optimizations

4.1 Access to Global Memory

Due to the linear nature of the disassembly process, we enforce both reads and
writes to the input and output buffers to be performed only once for each decoded
instruction. As mentioned, the instruction sizes of the x86 ISA vary significantly,
ranging between 1 and 15 bytes. According to the alignment property that GPUs
follow for the memory accesses, different sequences of instructions with differ-
ent sizes may result in misaligned accesses, consequently resulting in degraded
memory access throughput.

We describe the improvement of the reading process in Sect. 4.3. Regarding
the improving the write throughput of the disassembly output to global mem-
ory, GPU best practices [15] propose that data structures on the GPU should be
placed as structs of arrays. In most cases, this results in improved data through-
put from global memory. However, in our case we observed lower performance
due to the drop of the writing throughput back to global memory. We tackled
this issue and achieved a better throughput by having a struct with the decoded
information per instruction, instead of separate arrays for each field.

4.2 Constant Memory

A crucial part of the disassembler are the look-up tables with the decoding
information that are hardcoded in the instruction decoder. These tables are
used as dispatchers for the decoding process. They hold information about each
instruction, such as the opcode, whether there are operands and how many to
expect, the type of the instruction, the group of the architecture extension of
an instruction, and so on. The look-up tables are constants and shared through
all threads. Therefore, we can use the constant memory of the GPU in order
to have fast access to these tables. The constant memory though is limited in
size, and the look-up tables can easily exceed the available memory. To strike a
balance between performance and accuracy, we measured the most used tables
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and placed them to the GPU constant memory, and kept the more rarely used
tables in the (slower) global device memory. Furthermore, global variables such
as function pointers that are being assigned by the initialization process, are
placed to the shared memory of each multiprocessor, which can be initialized at
run time.

4.3 Access to L2 Cache

Read and write data accesses pass through the L2 cache, which is a shared mem-
ory interface for all multiprocessors as the global memory. The L2 cache memory
is n-associative [23], which means that data lines are placed depending on the
least significant bits of the accessed address. When assigning large input buffers
to each thread, memory divergence increases, and consequently, line collisions
inside the L2 cache occur more frequently as well. On the other hand, having
small input buffers will result in under-utilization of the GPU threads, and an
overall drop in performance.

Taking in consideration this trade-off, we sought a solution that combines
the benefits of both approaches. Each read access to the global memory from a
multiprocessor fetches a 128-byte line of data. Consequently, we chose to divide
large buffers into smaller ones (as shown in Fig. 2) with a size aligned to the
access line of the GPU, and place them within the larger buffer in such a way
that threads access the buffer as a group. We evaluated buffer sizes of 16, 32 and
64 bytes, and the results of our experiments showed that beyond 32 bytes, the L2
hit ratio from the L1 cache dropped due to line collisions (Table 1). For every 32
bytes of the input buffer, we place in the first 16 bytes the previous 16 decoded
bytes, and in the following 16 bytes the new bytes that have to be decoded.
The repeated bytes are needed for correcting the decoding alignment, in case
of out-of-bounds errors of a previous disassembly. In that case, we continue the
decoding process from the byte where the previous disassembly stopped at, until
the end of the 32 bytes. Furthermore, this optimization forces the disassembler
to make fixed read accesses to global memory, which achieves better throughput.

4.4 Data in GPU Registers

We take advantage of the GPU registers to store statically allocated data that is
frequently used by the decoder. Typically, instruction operands are dynamically
allocated for each instruction, due to the fact that the number of operands am
x86 instruction uses is not known in advance. We changed the list of operands
to a static array, which eventually the compiler keeps in registers. As mentioned
earlier, operands may be either explicit or implicit. Due to memory capacity
limitations, we decided to keep in registers only the explicit operands (three or
less). Implicit operands depend on the instruction opcode, and therefore can be
easily inferred.

Keeping operands into registers instead of shared memory is preferable
because the latter would affect the L1 cache of each multiprocessor, which
corresponds to the same hardware, and therefore would drop the read access
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Fig. 2. Reading inputs from GPU global memory with L2 cache optimization.

throughput of the input binaries. Also, the shared memory would have to be
divided according to the number of threads for each multiprocessor, imposing
an upper-bound on the number of threads that could be spawn due to the size
of temporary list of operands for each thread.

Another use of registers is related to improving the read throughput of the
input buffers. Traditionally, read requests pass from global memory through the
L2 cache, and finally the data are fetched to the L1 cache of the corresponding
multiprocessor. In order to avoid reading from the L1 cache, or even worse to
overwrite the cache line where decoded bytes are stored, we save the 32 byte lines
into a uint4 t statically declared array, which is translated at compile time in
register storage. Although excessive use of registers can result in register spilling
to local memory, any incurred latencies can be hidden by spawning more threads.
Our experiments show that stall instructions due to local data accesses are rare.

5 Evaluation

In order to evaluate our GPU-based disassembler, we create a corpus of 32,768
binaries from the /usr/bin/ directory of a vanilla Ubuntu 12.04 installation,
allowing duplicates to reach the desired set size. The sizes of the binaries vary
between 30 KB and 40 KB. Our testbed consists of a PC equipped with an Intel
i7-3770 CPU at 3.40 GHz and 8 GB of RAM, and an NVIDIA GeForce GTX 770
GPU with 1536 cores and 4 GB of memory.

5.1 Performance Analysis

The performance evaluation examines both the system as a whole, as well as its
sub-parts (e.g., the decoding engine and data transfers). We also test existing
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Fig. 3. Performance evaluation of various open-source linear disassemblers.

CPU-only disassemblers for comparison. We report the throughput of the disas-
sembly process as the number of assembly lines (or decoded instructions) pro-
duced per second. As the size of instructions in x86 ISA varies, it would be
misleading to measure the number of bytes processed per time.

Performance Analysis of Open-Source Disassemblers. As a first step,
we evaluate several popular open-source linear disassemblers to estimate the
throughput of conventional CPU-based disassemblers. In order to eliminate any
I/O overhead, we redirect the output of the tools to /dev/null. Figure 3 depicts
the average disassembly rate for various disassemblers in thousands of assembly
lines (KLines) per second, when utilizing a single CPU thread. The faster dis-
assembler is Udis86, which achieves a throughput of 2142.2 KLines/sec and the
slower is the objdump utility, which processes 423.664 KLines/sec. The differences
in throughput are mostly due to the data produced for disassembled instruction;
the more information generated by a disassembler, the lower its throughput. For
instance, some tools record only the opcodes and the corresponding operands for
each instruction, while others include information such as its instruction group,
relative virtual addresses, etc.

Data Transfer Costs. In this experiment, we measure the data transfer rate
between CPU and GPU over PCIe for different block sizes of data. Figure 5
shows the results in GB/sec including standard error bars for transferring data
from host to GPU memory and vice versa. The maximum theoretical transport
bandwidth for PCIe 3.0 is 16 GB/s, however, in this experiment the maximum
achieved rate is 12 GB/s, when transferring blocks of 16 MB.

GPU Instruction-Decoding Performance. In this section, we evaluate the
decoding performance of the GPU, excluding any data transfers, and pre- and
post-processing occurring on the CPU (e.g., opening files and preparing data
exchanges). In this experiment, we use three different inputs: (i) linear dis-
assembly of synthetic binaries, (ii) linear disassembly of binaries corpus, and
(iii) exhaustive disassembly of a subset of the corpus.
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Fig. 4. CDF of the x86 Instructions
sizes found on GNU Binutils.

Fig. 5. PCIe 3.0 transfer throughput.

Synthetic Binaries. In this experiment, we aim to evaluate our various optimiza-
tions and the effect of instruction-size. First, we generate buffers including 2-byte
instructions, which is the most common instruction length (about 38.54 % in our
dataset, see Fig. 4), and measure how the buffer size used in decoding affects the

Table 1. Average hit rate at L2 cache for all read requests from L1 cache, when
decoding 2-byte instructions in the GPU.

Cache hit rate in L2

Buffer optimized size Average hit rate %

16 Bytes 58.70

32 Bytes 53.65

64 Bytes 45.26

Table 2. Impact of Access To Global optimizations, when decoding 2-byte instructions
in the GPU.

Optimization MLines/Sec. Performance
gained %

No optimization 52.05 -

Improve cache hits 65.51 +25.85 %

Array of structs 43.85 -15.75 %

Table 3. Effect of instruction sizes in decoding.

Instruction
size

MLines/Sec.
CPU

Performance
dropped CPU %

MLines/Sec.
GPU

Performance
dropped GPU %

1 35.90 - 100.91 -

2 14.12 60.6 66.67 33.93

4 12.63 64.81 59.53 41.00

8 9.96 72.25 46.32 54.09
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Table 4. Exhaustive disassembly of
101 binaries from the corpus. GPU
speedup results compared to the CPU.
(Includes only instruction decoding.)

Exhaustive disassemble results

Description Speedup

Average 4.411

Standard deviation 0.928

Maximum 7.122

Minimum 2.729

Table 5. End-to-end disassembly of
binaries coprus. Overall Performance in
MLines/sec. (Data transfer buffer is 8192
Bytes)

Threads Performance MLines/sec

512 3.096

1024 4.857

2048 9.335

4096 17.548

8192 28.053

16384 28.085

CPU performance: 13.933

L2 cache hit rate, when using 4096 threads. Table 1 shows that the optimal
buffer size is 16 bytes. Table 2 shows the performance gained in accessing global
memory by each of the optimizations described in Sect. 4.

As mentioned in Sect. 2.2, the size of an x86 instruction can be between
1–15 bytes. Figure 4 shows the cumulative distribution function (CDF) of instruc-
tion sizes in the binaries used in the evaluation. In order to understand how bina-
ries containing a mix of instructions with different sizes will affect performance, we
decode files containing instructions with different sizes, with each file containing
only a single length of instructions. We also compare decoding throughput by run-
ning our decoder both on the CPU and GPU, and try different numbers of threads
on the GPU. We again use 4096 threads in the GPU, as we found that is optimal
in the synthetic binaries scenario. Table 3 lists the results of this experiment.

Linear Disassembly of Binaries. In this experiment, we evaluate the GPU per-
formance on disassembling the binaries in our corpus. This is likely to be the
common use case of our prototype on large scale binary analysis. Each thread
is assigned a different binary for disassembling. In Fig. 6, we plot the speedup
gained when offloading the disassembling process to the GPU. We evaluate sev-
eral configurations, i.e., bytes per thread and number of threads, in order to find
the best configuration. We can see that the GPU reaches maximum performance
on different number of threads (8192) than with the synthetic binaries (4096). We
also observe that the performance on different binaries drops to 28.4 MLines/sec
compared to decoding all 8-byte instructions in the GPU (46.32 MLines/sec).
This performance loss happens due to the different memory stalls that occur to
each thread at a given moment. Threads decode different sizes of instructions
when disassembling binaries, as a consequence they do misaligned accesses to the
global memory and the cache misses increase. Still, by increasing the threads per
multiprocessor we can hide some of these stalls and therefore the disassembler
scales up to 8,192 threads. From the other hand, just spawning threads is not
enough for hiding all the stalls. Spawning more threads arises more races to the
caches and more cache misses for the concurrent cache lines. Lastly, by decod-
ing different instructions, we slightly increase the branch divergence that also
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Fig. 6. GPU-Disassembler speed up
compared to the CPU on different set
ups. Comparing only the disassemble
process without the transfers.

Fig. 7. The disassembly components
of the GPU pipelined using streams.
Focused on 8192 Threads.

Fig. 8. The overall performance on
CPU, GPU and on both processors.
Focused on 8192 Threads for the GPU.

Fig. 9. Power Consumption per decoded
line.

creates stalls. As we can see in Fig. 6 the GPU was ≈2 times faster on the disas-
sembly process than a relevant high-end CPU. Performance stops scaling after
8192 threads which we can safely state that this is the optimum configuration
for the disassembly process.

Exhaustive Disassembly of Binaries. In this experiment we disassemble each
binary starting from each byte in order to find all possible instructions included
in the binary. The evaluated prototype is the one described in Sect. 3.2. We
evaluate the prototype using several number of threads in order to find the
optimal for this case. The best performance is reached when we spawn 131,072
threads. Therefore, the exhaustive prototype, shall perform better, if we disas-
semble binaries of size bigger than the threads we spawn. In case the binary is
smaller than the optimal amount of threads we spawn as many threads as the
size of the binary. As we saw the disassemble performance differs among different
sizes of instructions. In order to be accurate, we exhaustive disassemble a set of
101 binaries and evaluate the achieved performance. In Table 4 we can see the
results of the experiment described, on disassembling binaries exhaustively. The
average speedup we gained is 4.411 with a standard deviation of 0.928.
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Overall Performance. In this section, we evaluate our prototype in an end-
to-end scenario. As mentioned in Sect. 3, we use streams in order to pipeline the
operations and hide communication costs. We measure the time spent for each
component in isolation. For all subsequent experiments with use 8,192 threads, as
this configuration achieves the best performance, as we have shown in Sect. 5.1.
In Fig. 7 we can see the raw times of the corresponding components stacked
in the order they execute in a given stream, pipelined with the current disas-
sembly process of the previous stream. When the number of threads is lower
than 1024 we can see that the bottleneck operation is pre-processing. However,
after 1024 bytes per thread we can see that the disassembly component becomes
the bottleneck of the whole process. Therefore, pipelining does not reduce per-
formance. In Table 5 we demonstrate the raw performance in MLines/sec of the
GPU in several threads with the size of the input buffer at 8192 bytes per thread.

Hybrid Model: We also evaluate the performance of utilizing all CPU cores and
the GPU to massively disassemble binaries. Despite the fact that the GPU is
an independent processing system, it still requires interaction with the CPU
for transferring data, spawning the GPU kernel for execution, etc. Therefore,
when we over-utilize the CPU with workload, we increase the probability of
having threads stalled due to context switching. At the evaluation process, by
overloading the CPU we experience an increase in the pre- and post-processing
overhead and so, we wasted time by having idle the GPU and decrease the overall
performance. In order to evaluate properly the hybrid model we assigned one
CPU thread to the GPU processes (pre, post, GPU invocation and interaction)
and the rest for disassembly on the CPU. In Fig. 8 we can see the performance on
different devices and the hybrid model as described. The hybrid model achieved
the performance of 37.336 MLines/sec which is 2.67 times faster than having
only the CPU utilized and 1.32 times faster than the GPU implementation. The
divergence of the hybrid model from the ideal performance is due to the assigned
thread to the GPU controlling processes.

5.2 Power Consumption and Cost

Power Consumption per line. In this experiment we measure the power con-
sumption of our prototype at a given moment, with the components pipelined,
when disassembling binaries. For the comparison we define the metric Joules con-
sumed per decoded line. We evaluate the watts consuming per second and the
performance of the tool as defined in previous sections (Lines/sec). By dividing
these values we come up with Joules consumed per decoded line (Joules/line). In
Fig. 9 we demonstrate the power consumption efficiency for the GPU and CPU
in different threads. For the measurement of the power consumption we used
sensors that can measure the power consumption of the CPU, the PCI bus, the
RAM and peripherals. For each set up, we sum up the power consumed at a
given moment and then we calculate the power consumed per decode line. Both
of the devices perform similar in terms of power consumption per decoded line.
GPU consumes 8.34 µJ at the best configuration for decoding an instruction.
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Lines per Dollar. For our hardware setup, we have selected relatively high-end
devices; for the CPU we used an Intel(R) i7-3770 which costs around $305, and
the NVIDIA GTX 770 graphics card with similar cost at $396.1,2 These are
the prices at the time this work was published. The total system cost is around
$1120 with the current values of the components. Our prototype performs with
an overall cost of 23.36 KLines/$.

6 Related Work

The improvement of the disassembly process for the x86 and x86-64 architecture
is still an open issue. There are various publications that address disassembly cor-
rectness and effectively differentiate code from alignment patching bytes inside
the text section of the binaries. Most of these publications, are based on a similar
approach. They use the targets of control-flow instructions in order to recognize
the regions of basic blocks and functions borders. They make several disassem-
bly passes on these code regions until the given conditions of correctness are
satisfied. Finally, they construct the final call graph and discard the unreachable
regions [9,13,18,24]. However, there is also a dynamic approach that leverages
machine learning techniques [4,11]. This approach uses decision trees, that are
constructed by feeding binaries, compiled from various compilers and optimiza-
tion flags as training sets. They perform exhaustive disassembly on the binary
to produce all the possible assembly output. Lastly, they use the constructed
tree to match and recognize the entry and exit points of functions.

GPUs continuously become more powerful and with extended computational
capabilities that can support more applications. In the scientific community,
there are several security analysis tools that exploit the parallelism offered by
GPUs for fast processing such as network packet processing [10,20,21].

7 Limitations

The implementation of our prototype comes with limitations. The size of the
decoded instructions for all the threads can be enormous and as a result, we can
easily run out of memory. Also, memory constrains occur on the fast memory
interfaces such as constant memory, shared and register usage per thread. Fur-
thermore, GPU limitations with regards to dynamic memory allocation, forces
us to use static allocation and requires rewriting of the dynamic parts of the
disassembler.

We are unable to further exploit GPU parallelization due to memory stalls
that occur at decoding time. GPU threads, make arbitrary accesses to memory
at the decoding process which under-utilize the access throughput. Although,
we can hide memory stalls by spawning more threads, there is a limit on how
the cuda-process scales. The GPU hides stalled threads by context-switching to
1 Cpu benchmarks: Intel core i7-3770 @ 3.40ghz. http://www.cpubenchmark.net/.
2 Videocard benchmarks: Geforce gtx 770. http://www.videocardbenchmark.net/.

http://www.cpubenchmark.net/
http://www.videocardbenchmark.net/
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threads that are ready to execute. However, complex programs, that have high
needs in resources and frequently access memory, can generate more stalls when
excessively utilizing threads. Thus, it is not trivial to determine the optimal num-
ber of threads for a GPU-Disassembler; it really depends on the implementation
and the disassembly algorithm (linear, exhaustive, etc.).

8 Conclusion

GPUs are powerful co-processors, which we can use to accelerate computationally
intensive tasks like binary disassembly through parallelization. In this work we
have built a GPU based x86-disassembler that exploits the hardware features
offered from GPUs to accelerate disassembly. We evaluate our GPU-based x86-
disassembler in terms of performance and cost. Our prototype performs two
times faster in linear disassembly and 4.4x faster in exhaustive disassembling of
the same binary compared to a CPU implementation. In terms of performance
over power consumption; GPU performs similar with a full utilized CPU at
8.34 µJ/Line.
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Abstract. Motivated by the need for precise definitions of privacy
requirements, foundations for formal reasoning, and tools for justify-
ing privacy-preserving design choices, a recent work introduces a formal
model for the description of system architectures and the formal verifica-
tion of their privacy properties. A subsequent work uses this framework
to reason about privacy properties of biometric system architectures. In
these studies, the description of an architecture specifies each component,
their computations and the communications between them. This static
approach makes it possible to reason about design choices at the very
architectural level, leaving aside the implementation details. Although
it is important to express privacy properties at this level, this approach
fails to catch some leakage which may result from the system runtime.
In particular, in the case of biometric systems, known attacks allow to
recover some biometric information following a black-box approach, with-
out breaking any part of the system. In this paper, we extend the exist-
ing formal model in order to deal with such side-channel attacks and we
apply the extended model to analyse biometric information leakage in
several variants of a biometric system architecture.

Keywords: Formal methods · Biometric systems · Privacy by design

1 Introduction

The privacy-by-design approach requests that the privacy properties of a given
system or service should be considered from the early design steps. The draft of
the Data Protection Regulation adopted by the European parliament in March
2014 [11] introduces privacy-by-design and privacy-by-default as legal obliga-
tions. The concrete consequences of this requirement on system engineering,
however, are far from obvious. In particular, precise definitions of privacy prop-
erties are lacking, as well as a clear view of the tensions between functional,
security and privacy requirements.
c© Springer International Publishing Switzerland 2015
J. Lopez and C.J. Mitchell (Eds.): ISC 2015, LNCS 9290, pp. 493–510, 2015.
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The framework introduced in [1] is a first step towards a rigorous treatment
of this issue. It relies on a formal approach to describe system architectures
and to express their privacy and integrity requirements. Location of data and
computations are first identified, then the use of formal methods allows designers
to make the trust assumptions between stakeholders explicit, and to supply
rigorous justifications of architectural choices.

A subsequent work [6] uses the framework of [1] to describe different biomet-
rics system architectures and to reason about their privacy properties. Several
constructions have been proposed to protect biometric data, based for instance
on secure sketches [9], fuzzy vaults [17,35], existing cryptographic tools [23], or
secure hardware solutions [29]. Each proposal has been designed separately and
comparisons between different solutions are not straightforward. The merit of [6]
is to supply a unified framework for the precise comparison of existing solutions.

The authors of [1] advocate the definition of privacy requirements and design
choices at the architecture level. Formal architectural descriptions include the
specification of the exchanges between components and the location of the com-
putations. Details of protocols are hidden from the architecture description, and
the cryptographic building blocks are assumed to be correct. However, in general
side-channel information may leak from the system runtime. It is especially true
for biometric systems, where the comparison between biometric data is inher-
ently fuzzy. The result of a matching between a fresh biometric data and an
enrolled data inherently gives some information, even if the latter is protected
and the building cryptographic blocks assumed to be correct (cf. [7,30,32]). The
formal model of [1] fails to catch this leakage in its architecture analysis.

Our contribution. In this work, building upon the formalism of [1], we
propose a formal model in which such runtime leakage can be expressed and
analyzed. In particular, this model makes it possible to describe in the formal
language the leakage of information through several executions of the same proto-
col. We also apply the extended model to analyse biometric information leakage
in several variants of a biometric system architecture.

Related work. Privacy properties for biometric authentication have been
addressed in [34]. [19,21,22] also formalize privacy properties for a particular
representation of biometric templates, close to error correcting codes. Privacy
by design is advocated by several authors [15,20,24,26,27,33], who also under-
line the complexity of the engineering needed to ensure privacy properties. [13]
defines a language for expressing privacy properties of computations that are
ensured by the compilation process. Studies about the use of formal methods
to ensure privacy properties of protocols include dedicated privacy languages,
such as [3,4], applied π-calculus [8], and methods for the design of algorithms
meeting privacy metrics [25]. Privacy metrics, such as k-anonymity, l-diversity,
or ε-differential privacy [10], supply a quantitative estimation of the level of pri-
vacy provided by an algorithm. Most previous work address privacy properties
at the protocol level. In contrast, following the approach advocated in [1,6], we
study privacy properties at the architecture level. Because they abstract away
unnecessary details and focus on critical issues, architectural descriptions enable
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a more systematic exploration of the design space and make it easier to prove
high level privacy properties of a system.

Organization of the paper. Section 2 introduces a formalism to describe
architectures, and a privacy logic used to express privacy properties of architec-
tures. Section 3 presents an architecture exibiting black-box leakage of biometric
data and shows how the model of Sect. 2 makes it possible to integrate this
leakage in the formal analysis.

2 A Formalism for Architectures and Privacy Properties

This section introduces a formalism to describe system architectures, based on
the work of [1]. From the logical perspective, privacy properties are expressed
with a dedicated epistemic logic [12], in order to avoid the so-called logical omni-
science problem [16].

2.1 Architecture Syntax

We assume that a functionality achieved by an architecture is described by a set
Ω = {X = T} of equations over the term language T defined as follows.

T ::= X̃ | c | F (X̃1, . . . , X̃m, c1, . . . , cq) | �F (X)
X̃ ::= X | X[k]

X̃ is a (possibly indexed) variable, X a variable (X ∈ V ar), k an variable index
(k ∈ Index), c a constant (c ∈ Const) and F a function (F ∈ Fun). If X is an
array, Range(X) denotes its size. Each variable X is associated with at most one
index k. In this case k is exclusive to X. �F (X) denotes the iterative application
of the binary function F to each element of the array X. X̃ ∈ T denotes that
the variable X̃ appears in the term T . V (X̃) denotes either the array to which
the variable belongs, if X̃ = X[k] is the entry of an array, or the variable itself
in the other case.

Let LA be the following language used to described architectures.

A ::= {R}
R ::= Has

(n)
i (X) | Hasi(c) | Receive

(n)
i,j ({St}, {X} ∪ {c}) | Check

(n)
i ({Eq})

| Trusti,j | Reset | Compute
(n)
G (X = T ) | V erify

(n)
i ({St})

St ::= Pro | Att Att ::= Attesti({Eq})
Pro ::= Proof({P}) Eq ::= Pred(T1, . . . , Tm)

P ::= Att | Eq

{Z} is a set of elements of category Z. Pred is a set of predicates, depending on
the architectures to be considered in practice. An architecture defines not only a
set of primitives, but may also give a bound on the number of times a primitive
can be used. The superscript notation (n) denotes that a primitive can be carried
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out at most n ∈ (N \ {0}) ∪ {∞} times by the component(s) – where (∀n′ ∈ N:
n′ < ∞). To be consistent, we assume that n never equals 0. mul(α) denotes the
multiplicity (n) of the primitive α, if any. Each architecture A is built from a
set of components C = {C1, . . . , C|C|}. For the sake of conciseness we often use
indices such as i or j to denote the components themselves (Ci or Cj). G ⊆ C
is a subset of components. We note X̃ ∈ Eq := Pred(T1, . . . , Tm) if (∃l ∈ [1, n]:
X̃ ∈ Tl); X̃ ∈ E := {Eq1, . . . , Eqn} if (∃l ∈ [1, n]: X̃ ∈ Eql).

Consistency assumptions are made about the architectures to avoid meaning-
less definitions. For instance we require that components carry out computations
only on the values that they have access to (either through Has, Compute, or
Receive). We also require that all multiplicities (n) specified by the primitives
are identical in a consistent architecture. As a result, a consistent architecture
A is parametrized by an integer n ≥ 1 (we note A(n) when we want to make
this integer explicit). Let Arch be the set of consistent architectures.

2.2 Traces of Events

A trace is a sequence of events occurring in the system. Let T ε be the following
extension of T , used to manage computations using different values of the same
variables from different sessions and to instantiate indices by specific integer
values.

T ε ::= X̃ | c | F (X̃(n1)
1 , . . . , X̃

(nm)
m , c1, . . . , cq) | �F (X)

X̃ ::= X | X[K]
K ::= k | Ck

When a function is applied to some variables, each variable is given with a
multiplicity (n), for some n ≥ 1. F (X̃1, . . . , X̃m, c1, . . . , cq) ∈ T ε is a short-cut
for F (X̃(1)

1 , . . . , X̃
(1)
m , c1, . . . , cq). Ck is a index constant (an integer).

Let LT be the following language.

θ ::= Seq(ε)
ε ::= Hasi(X : V ) | Hasi(c) | Receivei,j({St}, {X : V } ∪ {c})

| Session | Reset | ComputeG(X = T ε)
| Checki({Eq}) | V erifyi({St})

In particular, an event can instantiate variables X with specific values V . Con-
stants always map to the same value. Let V al be the set of values the variables
and constants can take. The set V al⊥ is defined as V al ∪ {⊥} where ⊥ �∈ V al
is a specific symbol used to denote that a variable or a constant has not been
assigned yet.

ε · θ denotes a trace where the first event is ε and the remaining of the trace
is θ. ε ∈ θ is a short-cut for (θ = ε1 · · · εt and ∃a ∈ [1, t]: εa = ε). For two events
εa, εb ∈ θ, we note εb ≥θ εa if b ≥ a. θ<a = ε1 · · · εa−1 is the restriction of θ to
the events that precede εa, and θ|<a is the restriction of θ to the current session
up to εa. We note θ|l the restriction of θ to the current session. For an event
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εa ∈ θ, s(a) denotes the current session, i.e. the session to which εa belongs.
θ|s(a) is the restriction of θ to the session that contains εa. Likewise R(a) denotes
the current sub-trace between two Reset events.

The following correspondence relation expresses the link between traces and
architectures. The events (session markers excepted) are instantiations of the
architectural primitives (trust relations excepted). The correspondence relation,
defined over Event×A and noted C(ε, α), holds if, except for the Session event,
the event ε can be obtained from the architectural primitive α, by assigning
values to variables measured and received, multiplicities to variables in right-
hand side of computations, and integers to indices.

Consistency assumptions are made about the traces, as for architectures. In
particular, we require that, between two Reset events, all Hasi(c) events follow
the first Reset event.

A trace θ of events is said compatible with a consistent architecture A(n) if
all events in θ (except the computations) can be obtained by instantiation of
some architectural primitive from A, and if the number of events between two
Reset events corresponding to a given primitive respects the bound n specified
by the architecture: ((∀ε ∈ θ: if ε �= ComputeG(X = T ε), then ∃α ∈ A: C(ε, α)),
and (∀α ∈ A: if mul(α) = n, then (∀ε ∈ θ: |{ε′ ∈ θ|R(ε) | C(ε′, α)}| ≤ n))).

Due to the exclusion of computation from the definition, a compatible trace
can contain additional computations from an adversary trying to obtain infor-
mation about the variables. It may in particular use information leaking through
several executions of a protocol. A trace can also contain erroneous computa-
tions from the adversary, leading to the reception of erroneous values by compo-
nents. Let T (A) be the set of traces which are compatible with an architecture
A ∈ Arch.

2.3 Architecture Semantics

To define the semantics of an architecture, each component is associated with a
state. Each event in a trace of events affects the state of each component involved
by the event. Then, the semantics of an architecture is defined as the set of states
reachable by compatible traces.

The state of a component is either the Error state or a pair consisting of:
(i) a variable state assigning values to variables, and (ii) a property state defining
what is known by a component.

State⊥ = (StateV × StateP ) ∪ {Error}
StateV = V ar ∪ Const → List(V al⊥)
StateP = {Eq} ∪ {Trusti,j}

The data structure List over a set S denotes the finite ordered lists of elements
of S. size(L) denotes the size of the list L. () is the empty list, its size is 0. For
a non-empty list L = (e1, . . . , en) ∈ Sn where size(L) = n ≥ 1, L[m] denotes the
element em for 1 ≤ m ≤ n, last(L) denotes L[n], and append(L, e) denotes the
list (e1, . . . , en, e) ∈ Sn+1.
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σ := (σ1, . . . , σ|C|) denotes the global state (i.e. the list of states of all com-
ponents) defined over (State⊥)|C|. σv

i and σpk
i denotes, respectively, the variable

and the knowledge state of the component Ci ∈ C. The variable state assigns
values to variables, but also to constants (constants however are either unde-
fined or takes a single specific value). σv

i (X)[m] (resp. σv
i (c)[m]) denotes the

m-th entry of the variable state of X ∈ V ar (resp. c ∈ Const), and contains a
value. The initial state of an architecture A is noted InitA = 〈InitA1 , . . . , InitA|C|〉
where: ∀Ci ∈ C: InitAi = (Empty, {Trusti,j | ∃Cj ∈ C: Trusti,j ∈ A}). Empty
associates to each variable and constant a list of a single undefined value (⊥).
We assume that, in the initial state, the system lies in the first session. Alter-
natively, we could set empty lists in the initial state and assume that every
consistent trace begins with a Session event.

Let ST : Trace × (State⊥)|C| → (State⊥)|C| and SE : Event × (State⊥)|C| →
(State⊥)|C| be the following two functions. ST is defined recursively by iteration
of SE : for all state σ ∈ (State⊥)|C|, event ε ∈ Event and consistent trace θ ∈
Trace, ST (〈〉, σ) = σ and ST (ε · θ, σ) = ST (θ, SE(ε, σ)). The modification of a
state is noted σ[σi/(v, pk)] the variable and knowledge states of Ci are replaced
by v and pk respectively. σ[σi/Error] denotes that the Error state is reached
for component Ci. We assume that a component reaching an Error state gets
no longer involved in any later action (until a reset of the system). The function
SE is defined event per event.

The effect of Hasi(X : V ) and Receivei,j(S, {(X : V )}) on the variable state
of component Ci is the replacement of the last value of the variable X by the
value V : last(σv

i (X)) := V . This effect is denoted by σv
i [X/V ]:

SE(Hasi(X : V ), σ) = SE(Receivei,j(S, {X : V }), σ) = σ[σi/(σv
i [X/V ], σpk

i )].

In the case of constants, the value V is determined by the interpretation of c (as
in the function symbols in the computation).

The effect of ComputeG(X = T ε) is to assign to X, for each component
Ci ∈ G, the value V produces by the evaluation (denoted ε) of T ε. The new
knowledge is the equation X = T . A computation may involve values of variables
from different sessions. As a result, some consistency conditions must be met,
otherwise an error state is reached:

SE(ComputeG(X = T ε), σ) =

⎧
⎪⎨

⎪⎩

σ[∀Ci ∈ G : σi/(σv
i [X/V ], σpk

i ∪ {X = T})]
if the condition on the computation holds,

σ[σi/Error] otherwise,

where V := ε (T ε,∪Ci∈Gσv
i ). For each X̃(n) ∈ T ε, the evaluation of T ε is done

with respect to the n last values of X̃ that are fully defined. An error state is
reached if n such values are not available. The condition on the computation is
then: ∀Ci ∈ G, X̃(n) ∈ T ε: size

({
m

∣
∣ σv

i

(
V

(
X̃

))
[m] is fully defined

}) ≥ n.
Semantics of the verification events are defined according to the (implicit)

semantics of the underlying verification procedures. In each case, the knowledge
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state of the component is updated if the verification passes, otherwise the com-
ponent reaches an Error state. The variable state is not affected.

SE(Checki(E), σ) =

{
σ[σi/(σv

i , σpk
i ∪ E)] if the check holds,

σ[σi/Error] otherwise,

SE(V erifyi(Proof(E)), σ) =

{
σ[σi/(σv

i , σpk
i ∪ newpk

Proof )] if the proof is valid,

σ[σi/Error] otherwise,

SE(V erifyi(Attestj(E)), σ) =

⎧
⎪⎨

⎪⎩

σ[σi/(σv
i , σpk

i ∪ newpk
Attest)]

if the attestation is valid,

σ[σi/Error] otherwise.

The new knowledge newpk
Proof and newpk

Attest are defined as: newpk
Proof := {Eq |

Eq ∈ E ∨ (∃j′ : Attestj′(E′) ∈ E ∧ Eq ∈ E′ ∧ Trusti,j′ ∈ σpk
i )} and newpk

Attest

:= {Eq | Eq ∈ E ∧ Trusti,j ∈ σpk
i }.

In the session case, the knowledge state is reinitialized and a new entry is
added in the variable states:

SE(Session, σ) = σ[∀i ∈ C : σi/(updv, {Trusti,j | ∃Cj ∈ C : Trusti,j ∈ A})],

where the new variable state updv is such that σv
i (X) := append(σv

i (X),⊥) for
all variables X ∈ V ar, and σv

i (c) := append(σv
i (c), last(σv

i (c))) for all constants
c ∈ Const. The session event is not local to a component, all component states
are updated. As a result, we associate to each global state σ a unique number,
noted s(σ), which indicates the number of sessions. In the initial state, s(σ) := 1,
and at each Session event, s(σ) is incremented.

In the reset case, all values are dropped and the initial state is restored:
SE(Reset, σ) = InitA.

The semantics S(A) of an architecture A is defined as the set of states reach-
able by compatible traces: S(A) = {σ ∈ (State⊥)|C| | ∃θ ∈ T (A) : ST (θ, InitA) =
σ}. Let Si(A) = {σ ∈ S(A) | σi �= Error} denote the restriction S(A) to well-
defined states with respect to component Ci.

2.4 Privacy Properties of Architectures

Following the approach of [1], we define a dedicated epistemic logic to express
privacy properties of architectures. Let LP be the following language.

φ ::= Hasi(X(n)) | Hasi(c) | Hasnone
i (X) | Hasnone

i (c) | Ki(Eq) | φ1 ∧ φ2

Eq ::= Pred(T1, . . . , Tm)

The formula Hasi represents n ≥ 1 accesses by Ci to some variable X. The
knowledge operator Ki represents the knowledge a component Ci can derive,
following the “deductive algorithmic knowledge” approach [12,31]. More pre-
cisely, the knowledge of a component Ci is defined as the set of properties that
this component can actually derive using its own information and the deductive
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system 
i. The deductive relation 
i of a component Ci is defined as a set of rela-
tions: {Eq1, . . . , Eqn} 
i Eq0. The notation Eq in LP is an overloaded notation
of the Eq definition in the language architecture A.

In addition, each component Ci ∈ C is associated with a dependence relation
Depi, catching dependencies between variables. In particular, several values of
the same variables from different sessions can give information about other vari-
ables. For a variable Y (or a constant c), a set X of variables (and eventually
constants), each variable being given with a multiplicity, Depi(Y,X ) means that
a value of Y can be obtained by the component Ci if it gets access to the n
values of X, for each X(n) ∈ X , and to the value of the constants, if any.

The semantics S(φ) of a property φ ∈ LP is defined as the set of architectures
where φ is satisfied. The fact that φ is satisfied by a (consistent) architecture
A ∈ Arch is defined as follows.

A satisfies Hasi(X(n)) if there is a reachable state in which X is fully defined
(at least) n ≥ 1 times:
∃σ ∈ S(A): ∃(1 ≤ m1 < m2 < · · · < mn): (∀l ∈ [1, n]: [(σv

i (X)[ml] �= ⊥) and
(if σv

i (X)[ml] = 〈v1, . . . , vk〉, then ∀l′ ∈ [1, k]: (vl′ �= ⊥))]).
A satisfies Hasi(c) if there is a reachable state in which c is fully defined:

∃σ ∈ S(A),∃m ≥ 1: ((σv
i (c)[m] �= ⊥) and (if σv

i (c)[m] = 〈v1, . . . , vk〉, then
∀l′ ∈ [1, k]: (vl′ �= ⊥))).

A satisfies Hasnone
i (X) (resp. Hasnone

i (c)) if no compatible trace leads to a
state in which Ci assigns a value to X (resp. c):
(resp. ∀σ ∈ S(A): ∀m ≥ 1: (if size(σv

i (c)) ≤ m, (σv
i (c)[m] = ⊥))).

A satisfies Ki(Eq) if for all reachable states, there exists a state in the same
session in which Ci can derive Eq:
∀σ′ ∈ Si(A): ∃σ ∈ Si(A): σ ≥i σ′ and s(σ) = s(σ′) and σpk

i 
i Eq.
A satisfies φ1 ∧ φ2 if A satisfies φ1 and A satisfies φ2.

A set D of deductive rules for LP is given Fig. 1. A � φ denotes that φ can
be derived from A thanks to D (i.e. there exists a derivation tree such that all
steps belong to D and such that the leaf is A � φ). D is sound and complete
with respect to the above semantics of properties.

Theorem 1 (Soundness). For all A ∈ Arch, if A � φ then A ∈ S(φ).

Theorem 2 (Completeness). For all A ∈ Arch, if A ∈ S(φ) then A � φ.

Due to the length of the proofs and the lack of place, we only give sketch for
these proofs in Appendix A. Soundness is proved by induction on the derivation
tree. For each theorem A � φ, one can find traces satisfying the claimed property,
or show that all traces satisfy the claimed property (depending on the kind of
property). Completeness is shown by induction on the property φ. For each
property belonging to the semantics, one can exhibit a tree that derives it from
the architecture.
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3 Application to Biometric Systems Architectures

In this section, we analyse a particular biometric system architecture, introduced
in [5], with the formal model of the precedent section. This architecture extends
the Match-On-Card (MOC) technology, used for authentication purposes, to
the identification paradigm. We first describe it within the framework of [6]. We
then note that this framework is insufficient to consider some dynamic leakage
of information and show how to use our extended formalism to integrate this
leakage into the architecture analysis.

3.1 Extension of the MOC Technology to Biometric Identification

In a biometric system, users are registered during an enrolment phase and the
biometric templates, aka the references, are recorded in a database. During the
identification, a user presents a fresh biometric trait to a terminal, equipped

Has
(n)
i (X) ∈ A

H1 A � Hasi(X
(n))

Receive
(n)
i,j (S, E) ∈ A X ∈ E

H2 A � Hasi(X
(n))

Hasi(c) ∈ A
H1’ A � Hasi(c)

Receive
(n)
i,j (S, E) ∈ A c ∈ E

H2’ A � Hasi(c)

Compute
(n)
G (X = T ) ∈ A Ci ∈ G

H3 A � Hasi(X
(n))

A � Hasi(X
(n)) 1 ≤ m ≤ n

H4 A � Hasi(X
(m))

Depi(Y, X ) ∀X(n) ∈ X : A � Hasi(X
(n)) ∀c ∈ X : A � Hasi(c)

H5 A � Hasi(Y
(1))

Depi(c, X ) ∀X(n) ∈ X : A � Hasi(X
(n)) ∀c′ ∈ X : A � Hasi(c

′)
H5’ A � Hasi(c)

A � Hasi(X
(1))

HN A � Hasnone
i (X)

A � Hasi(c)
HN’ A � Hasnone

i (c)

Compute
(n)
G (X = T ) ∈ A Ci ∈ G

K1 A � Ki(X = T )

A � Ki(Eq1) A � Ki(Eq2)
K∧ A � Ki(Eq1 ∧ Eq2)

Check
(n)
i (E) ∈ A Eq ∈ E

K2 A � Ki(Eq)

E �i Eq0 ∀Eq ∈ E: A � Ki(Eq)
K� A � Ki(Eq0)

V erify
(n)
i (Proof(E)) ∈ A Eq ∈ E

K3 A � Ki(Eq)

A � φ1 A � φ2
I∧ A � φ1 ∧ φ2

V erify
(n)
i (Proof(E)) ∈ A Attestk(E′) ∈ E Eq ∈ E′ Trusti,k ∈ A

K4 A � Ki(Eq)

V erify
(n)
i (Attestj(E)) ∈ A Trusti,j ∈ A Eq ∈ E

K5 A � Ki(Eq)

Fig. 1. Set D of deductive rules
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with a sensor. A fresh biometric template is extracted from the trait and is com-
pared with the templates stored in the database. The identification procedure
accepts if there is a match between the fresh template and the database. In the
authentication paradigm, the fresh biometric template is compared to a single
reference template, instead of a whole database. In the Match-On-Card (MOC)
technology [14,28,29] (also called comparison-on-card), the reference biometric
template is stored on a smart-card. During the verification, the fresh template
is sent to the card, the comparison with the reference template is done inside
the card. In practice, since an entire database cannot be stored on a smart-card,
the MOC technology is used for authentication purpose.

In order to extend the MOC technology to the identification paradigm, the
main idea of [5] is to store a quantized version of the database inside a secure
module (playing the role of the card in the MOC case). From each biometric
reference template, a quantization is computed, using typically a secure sketch
scheme [9,18]. The reference database is encrypted and stored outside the secure
module, whereas the quantizations of the templates are stored inside.

The verification step is processed as follows. Suppose one wants to identify
himself in the system. A terminal captures the fresh biometrics, extracts a tem-
plate, computes its quantization and sends them to the secure module. Then, the
module proceeds to a comparison between the fresh quantization and all enrolled
quantizations. The c nearest quantizations, for some parameter c of the system,
are the c potential candidates for the identification. Then, the module queries
the c corresponding (encrypted) templates to the database, decrypts them, and
compares them with the fresh template. The module finally sends its response
to the terminal: 1 if one of the enrolled templates is close enough to the fresh
template, 0 otherwise.

The Fig. 2 gives a graphical representation of the resulting architecture. We
focus on the verification, and assume that users are already enrolled. A compo-
nent per actor is introduced, denoted by upper case sans serif letters S, T, etc.
The component U represents the user, and T the terminal. The issuer I enrols

U

rd

dec

T

rd → bs
bs → qs

ebr → sebr
ind qs

ind

bs, sebr

dec

M

ebr

S

ebr

I

br → ebr

br → qr
qr

Fig. 2. Architecture of the extension of the Match-On-Card technology to biometric
identification. The dotted red line indicates the location of the comparison.
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users and certifies their templates. Moreover it computes the quantizations and
sends them into the module. The server S stores the reference templates inside
a database. Finally a module M stores the quantizations, performs the matching
and eventually takes the decision.

Type letters bs, qs, etc. denote variables and capital letters thr, br, etc.
denote constants. br is a biometric reference templates database, built during
the enrolment phase. ebr is the encrypted version of br. rd is a raw biomet-
ric data provided by the user to the terminal during the verification phase. bs
is a fresh biometric template derived from the raw data rd. thr is a threshold
used as a closeness criterion for the biometric templates. The output dec of the
verification is the result of the matching between the fresh template bs and the
enrolled templates br, considering the threshold thr. n denotes the size of the
database (i.e. the number of enrolled users), q the size of the quantizations, and c
the number of indices asked by the card. The ranges are Range(br, ebr, qr) = n,
Range(rd,thr, bs, qs, dec) = 1, and Range(ind, sebr, sbr) = c.

The set Fun of functions contains the extraction procedure Extract, the
encryption and decryption procedures Enc and Dec, the (non-invertible) quan-
tization Quant of the biometric templates, the comparison of the quantizations
QComp, which takes as inputs two sets of quantizations and the parameter c,
the selection of the encrypted templates EGet, and finally the matching μ, which
takes as arguments two biometric templates and the threshold thr.

The biometric reference templates are enrolled by the issuer (HasI(br)).
A verification process is initiated by the terminal T receiving as input a raw bio-
metric data rd from the user U. T extracts the fresh biometric template bs from
rd using the function Extract ∈ Fun. The architecture then contains, as other
biometric systems, ReceiveT,U({}, {rd}) and ComputeT(bs = Extract(rd)) and
the DepT relation is such that (bs, {rd}) ∈ DepT. The user receives the final
decision dec from the terminal: ReceiveU,T({}, {dec}). To sum up, the architec-
ture is described as follows in the framework of [6]:

Ami :=
{
HasI(br),HasU(rd),HasM(c),HasM(thr),

ComputeI(ebr = Enc(br)), ComputeI(qr = Quant(br)),
ComputeT(bs = Extract(rd)), ComputeT(sebr = EGet(ebr, ind)),
ComputeT(qs = Quant(bs)), ComputeM(ind = QComp(qs, qr,c)),
ComputeM(sbr = Dec(sebr)), ComputeM(dec = μ(sbr, bs,thr)),
ReceiveS,I({AttestI(ebr = Enc(br))}, {ebr}), ReceiveT,U({}, {rd}),
ReceiveT,S({AttestI(ebr = Enc(br))}, {ebr}), ReceiveM,T({}, {qs}),
ReceiveM,I({AttestI(qr = Quant(br))}, {qr}), ReceiveT,M({}, {ind}),
ReceiveM,T({}, {sebr, bs}), ReceiveT,M({}, {dec}),
T rustT,I, T rustM,I, T rustT,M, V erifyT(AttestI(ebr = Enc(br))),
V erifyT({AttestM(dec = μ(sbr, bs,thr))}),

V erifyM(AttestI(qr = Quant(br))), V erifyT({AttestM(sbr = Dec(ebr))})
}
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The issuer encrypts the templates and computes the quantizations, which is
expressed by the dependencies: Depmi

I := {(ebr, {br}), (qr, {br})}. The termi-
nal and module computations are reflected in the dependencies as well: Depmi

T :=
{(bs, {rd}), (qs, {bs})}, (sebr, {bs, ind})}. The dependency relation of the mod-
ule reflects its ability to decrypt the templates: Depmi

M := {(ind, {qs, qr, c}), (sbr,
{sebr}), (dec, {sbr, bs, thr}), (br, {ebr})}. The absence of such a relation in
other dependencies prevents the corresponding components to get access to the
plain references, even if they get access to the ciphertexts.

3.2 Learning of the Protected Quantizations

The formalism of [1] is insufficient to consider the leakage of the sensitive biomet-
ric data stored inside the module. Let us now discuss this point. In Ami, we would
like that the terminal gets no access to the quantizations: Ami ∈ Hasnone

T (qr).
It is indeed possible to derive Ami � Hasnone

T (qr), thanks to the (HN) rule.
According to the notations of [1], where Hasall

i (X) stands for Hasi(X(1)) in
this paper, we have:

�X : DepT(qr,X) ∈ Ami

HasT(qr) �∈ Ami

�j, S : ReceiveT,j(S, {qr}) ∈ Ami

�T : ComputeT(qr = T ) ∈ Ami

A � Hasall
T (qr)

HN A � Hasnone
T (qr)

This corresponds to the intuition saying that quantizations are protected since
they are stored in a secure hardware element.

However, an attack (described in [7]) shows that, in practice, quantizations
can be learned if a sufficient number of queries to the module is allowed. The
attack roughly proceeds as follows (we drop the masks for sake of clarity). The
attacker maintains a N × Q table (say T ) of counters for each bit to be guessed.
All entries are initialized to 0. Then it picks q-bits random vector Q (in a non-
adaptive fashion) and sends it to the module. The attacker observes the set
of indices ind ⊆ [1,n] corresponding to the encrypted templates asked by the
module. It updates its table T as follows, according to its query Q and the
response ind: for each i ∈ [1,n] and j ∈ [1,q], it decrements the entry T [i][j]
if Q[j] = 0, and increments it if Q[j] = 1. At the end of the attack, the n
quantizations are guessed from the signs of the counters.

We experimentally verified what is claimed in [7]: our experiments show that
one can retrieve all the stored quantizations, with overwhelming probability, if a
linear number of attempts is allowed to the module (linear in the number of bits
to be guessed). For instance, if 10 quantizations of 128 bits are stored within the
module, around 1000–2000 queries are sufficient to correctly guess all the bits.

3.3 Architecture Description in our Extended Framework

The number of query made to the module is the crucial point in the attack
above (and generally in other black-box attacks against biometric systems [7]).
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The extended model of Sect. 2 enables to introduce a bound on the number
of actions allowed to be performed. We now use this model to integrate such
a bound in the formal architecture description. Let Ami-e(n) be the following
architecture, for some n ≥ 1:

Ami-e(n) :=
{
HasI(br),Has

(n)
U (rd),HasM(c),HasM(thr),

Compute
(n)
I (ebr = Enc(br)), Compute

(n)
I (qr = Quant(br)),

Compute
(n)
T (bs = Extract(rd)), Compute

(n)
T (sebr = EGet(ebr, ind)),

Compute
(n)
T (qs = Quant(bs)), Compute

(n)
M (ind = QComp(qs, qr,c)),

Compute
(n)
M (sbr = Dec(sebr)), Compute

(n)
M (dec = μ(sbr, bs,thr)),

Receive
(n)
S,I ({AttestI(ebr = Enc(br))}, {ebr}), Receive

(n)
T,U({}, {rd}),

Receive
(n)
T,S({AttestI(ebr = Enc(br))}, {ebr}), Receive

(n)
M,T({}, {qs}),

Receive
(n)
M,I({AttestI(qr = Quant(br))}, {qr}), Receive

(n)
T,M({}, {ind}),

Receive
(n)
M,T({}, {sebr, bs}), Receive

(n)
T,M({}, {dec}),

T rustT,I, T rustM,I, T rustT,M, V erify
(n)
T (AttestI(ebr = Enc(br))),

V erify
(n)
T ({AttestM(dec = μ(sbr, bs,thr))}),

V erify
(n)
M (AttestI(qr = Quant(br))),

V erify
(n)
T ({AttestM(sbr = Dec(ebr))})

}

In addition to the dependence of Ami, the dependence relations indicates that
the leakage is conditioned by a specific link mapping between the outsourced
ciphertexts and the stored quantizations: Depmi-e

T (qr, {ind(n·q), qs(n·q)}). Fur-
thermore, the module may learn the entire database ebr in a number of queries
depending on the size of the database and the number of indices asked by the
module: Depmi-e

M (ebr, {sebr(�n/c�)}).

3.4 Variants of the Architecture

Now, based on some counter-measures of the attacks indicated in [7], we express
several variants of the architecture Ami-e. For each variants, the deductive rules
D for the property language LP are used to show that, for some conditions on
the parameters, the quantizations qr are protected.

Variant 1. As a first counter-measure, the module could ask the entire database
at each invocation. It is rather inefficient, and, in some sense, runs against to ini-
tial motivation of its design. However, this can be described within the language
LA, and, in practice, can be manageable for small databases. This architecture,
denoted Ami-e1, is given by Ami-e(n) for some n ≥ 1, except that Depmi-e1

T :=
Depmi

T . It is now possible to prove that the quantizations are protected, even
in presence of several executions of the protocols. Since the relations DepT no
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longer contains a dependence leading to qr, an application of (HN) becomes
possible and gives the expected property.

�X : DepT(qr,X) ∈ Ami-e1

Has
(n)
T (qr) �∈ Ami-e1

�j : Receive
(n)
T,j(S, {qr}) ∈ Ami-e1

�T : Compute
(n)
T (qr = T ) ∈ Ami-e1

∀n : A � HasT(qr(n))
HN A � Hasnone

T (qr)

Variant 2. In the precedent variant, the effect of the counter-measure is the
withdrawal of the dependence relation. We now consider architectures where such
a dependency is still given, but where counter-measures are used to prevent a
critical bound on the number of queries to be reached.

A first measure is to block the number of attempts the terminal can make.
The module can detect it and refuse to respond. This architecture, denoted
Ami-e2, is given by Ami-e(b), for some b � n·q. As a result, the Hasnone

i (qr) prop-
erty can be derived. In particular one must show that Ami-e2

� HasT(ind(n·q)),
in order to prevent the dependence rule H5 to be applied.

�S : Receive
(b)
T,M(S, {ind}) ∈ Ami-e2

Has
(b)
T (ind) ∈ Ami-e2 b < n · q

�T : Compute
(b)
T (ind = T ) ∈ Ami-e2

Ami-e2
� HasT(ind(n·q))

An application of HN enables to conclude.

Depmi-e2
T (qr, {ind(n·q)}) ∈ Ami-e2

Has
(b)
T (qr) �∈ Ami-e2

�j : Receive
(b)
T,j(S, {qr}) ∈ Ami-e2

Ami-e2
� HasT(ind(n·q)) �T : Compute

(b)
T (qr = T ) ∈ Ami-e2

Ami-e2
� HasT(qr(1))

HN Ami-e2 � Hasnone
T (qr)

Variant 3. In the precedent variant, the terminal cannot accumulate enough
information since he cannot query the module enough times to derive a useful
knowledge. We now describe a variant where the terminal has no bound on
the number of times it asks the module, but where the systems is regularly
reinitialised, so that the accumulated information becomes useless.

The leakage of the system runtime is dependent on some association between
the quantizations qr and the encrypted database ebr; namely the association π
that maps the quantization qr[i] = Quant(br[π(i)]) to the encrypted template
from which it has been computed ebr[π(i)] = Enc(br[π(i)]). Once this map-
ping is changed, the information is cancelled. For instance the database can be
randomly permuted after b queries to the secure module.

Formally, this is caught by adding a Reset primitive to the architecture. Let
Ami-e3 be the architecture defined as Ami-e3 := Ami-e2 ∪ {Reset}. The semantics
of the Reset events ensures that no more than b values of ind will be gathered
by the terminal for a fixed mapping. The proof that Ami-e3 � Hasnone

T (qr) is as
the proof that Ami-e2 � Hasnone

T (qr).
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4 Conclusion

Previous work on the use of formal methods to reason about privacy properties
at the architecture level fail to consider the information leakage through system
sessions. When applied to biometric systems, this leakage must be considered
to analyze the confidentiality of biometric data. Indeed, several attacks against
biometric systems do not defeat the cryptographic building blocks, assumed to
remain secure, but exploit information leakage related to the distances between
biometrics templates. The goal of this paper was to address this limitation.

A computer aided privacy engineering tool called CAPRIV [2] has been devel-
oped to help non-expert designers to build architectures following a trust based
strategy. CAPRIV implements an iterative design procedure in which the key
decision to be taken by the designer is the type of trust which can be accepted
by the components. The design of the tool makes it possible to hide the formal
aspects of the model to the designer who does not want to be exposed to math-
ematical notations. This is mainly achieved through the use of a graphical user
interface (GUI) and natural language statements. However CAPRIV implements
the formal framework introduced in [1] and needs to be extended to include the
extensions proposed in this paper.

Approaches based on π-calculus or privacy metrics are complementary to
the work described in this paper. We leave to a future work to bridge the gap
between analysis done at the architectural level and the formal methods used at
the protocol level.

Acknowledgements. This work has been partially funded by the French ANR-12-
INSE-0013 project BIOPRIV and the European FP7-ICT-2013-1.5 project PRIPARE.

A Sketch of Proof for Completeness and Correctness

A trace is said to be a covering trace if it contains an event corresponding to
each primitive specified in an architecture A (except trust relations) and if for
each primitive it contains as much events as the multiplicity (n) of the primitive.
As a first step to prove soundness, it is shown that for all consistent architecture
A, there exists a consistent trace θ ∈ T (A) that covers A.

Then the soundness is shown by induction on the depth of the tree A � φ.

Let us assume that A � Hasi(X(n)), and that the derivation tree is of depth 1.
By definition of D, such a proof is obtained by application of (H1), (H2) or
(H3). In each case, it is shown (thanks to the existence of covering traces)
that an appropriate trace can be found in the semantics of A, hence A ∈
S(Hasi(X(n))). The case of A � Hasi(c) is very similar.

Let us assume that A � Ki(Eq), and that the derivation tree is of depth 1.
By definition of D, such a proof is obtained by application of (K1), (K2),
(K3), (K4) or (K5). In each case, starting from a state σ′ ∈ Si(A) such
that s(σ′) ≥ n, it is first shown that there exists a covering trace θ ≥ θ′ that
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extends θ′ and that contains n corresponding events ComputeG(X = T ε) ∈ θ
in n distinct sessions (for the K1 case, and other events for the other rules).
Then by the properties of the deductive algorithmic knowledge, it is shown
that the semantics of the property A ∈ S(Ki(X = T )) holds.

Let us assume that A � Hasi(X(n)), and that the derivation tree is of depth
strictly greater than 1. By definition of D, such a proof is obtained by appli-
cation of (H4) or (H5).
In the first case, by the induction hypothesis and the semantics of prop-
erties, there exists a reachable state σ ∈ S(A) and n indices i1, . . . , in
such that σv

i (X)[il] is fully defined for all l ∈ [1, n]. This gives, a fortiori,
A ∈ S(Hasi(X(m))) for all m such that 1 ≤ m ≤ n.
In the second case, we have that (Y, {X

(n1)
1 , . . . , X

(nm)
m , c1, . . . , cq}) ∈ Depi,

that ∀l ∈ [1,m] : A � Hasi(X
(nl)
l ) and ∀l ∈ [1, q] : A � Hasi(cl). of a

covering trace that contains an event ComputeG (Y = T ) (where i ∈ G),
allowing to conclude that A ∈ S(Hasi(Y (1))).
Again, the corresponding cases for constant are very similar.

A derivation for Hasnone is obtained by application of (HN). The proof assume,
towards a contradiction, that A �∈ S(Hasnone

i (X)). It is shown, by the archi-
tecture semantics, that there exists a compatible trace that enable to derive
A � Has

(1)
i (X). However, since (HN) was applied, we have A � Has

(1)
i (X),

hence a contradiction.
The last case (the conjunction ∧) is fairly straightforward.

The completeness is proved by induction over the definition of φ.

Let us assume that A ∈ S(Hasi(X(n))). By the architecture semantics and the
semantics of traces, it is shown that the corresponding traces either contain
events where X is computed, received or measured, or that some dependence
relation on X exists. In the first case, we have A � Hasi(X(n)) by applying
(respectively) (H1), (H2), or (H3) (after an eventual application of (H4)).
In the last case, the proof shows how to exhibit a derivation tree to obtain
A � Hasi(X(n)) (the (H5) rule is used).

Let us assume that A ∈ S(Hasnone
i (X)). By the semantics of properties, this

means that in all reachable states, X does not receive any value. The proof
shows that A � S(Hasi(X(1))), otherwise A ∈ S(Hasnone

i (X)) would be
contradicted. So as a conclusion, A � Hasnone

i (X) by applying (HN).
The constant cases A ∈ S(Hasi(c) and A ∈ S(Hasnone

i (c)) case are similar to
the variable cases.

Let us assume that A ∈ S(Ki(Eq)). By the semantics of properties this means
that for all reachable states, there exists a later state in the same session
where the knowledge state enables to derive Eq. By the semantics of archi-
tecture, we can exhibit a compatible trace that reaches a state where Eq
can be derived. By the semantics of compatible traces, the proof shows, by
reasoning on the events on the traces, that A � Ki(Eq) by applying either
(K1), (K2), (K3), (K4) or (K5).

Finally the conjunctive case is straightforward.
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15. Gürses, S., Troncoso, C., Dı́az, C.: Engineering privacy by design. In: Privacy and
Data Protection Conference, Presented at the Computers (2011)

16. Halpern, J.Y., Pucella, R.: Dealing with logical omniscience. In: Conference on The-
oretical Aspects of Rationality and Knowledge, TARK 2007, pp. 169–176 (2007)



510 J. Bringer et al.

17. Juels, A., Sudan, M.: A fuzzy vault scheme. Des. Codes Crypt. 38(2), 237–257
(2006)

18. Juels, A., Wattenberg, M.: A fuzzy commitment scheme. In: ACM Conference on
Computer and Communications Security, CCS 1999, pp. 28–36. ACM Press (1999)

19. Kanak, A., Sogukpinar, I.: BioPSTM: a formal model for privacy, security, and
trust in template-protecting biometric authentication. Secur. Commun. Netw. 7(1),
123–138 (2014)

20. Kerschbaum, F.: Privacy-preserving computation. In: Preneel, B., Ikonomou, D.
(eds.) APF 2012. LNCS, vol. 8319, pp. 41–54. Springer, Heidelberg (2014)

21. Lai, L., Ho, S.-W., Vincent Poor, H.: Privacy-security trade-offs in biometric secu-
rity systems - part I: single use case. IEEE Trans. Inf. Forensics Secur. 6(1), 122–139
(2011)

22. Li, L., Ho, S.-W., Vincent Poor, H.: Privacy-security trade-offs in biometric security
systems - part II: multiple use case. IEEE Trans. Inf. Forensics Secur. 6(1), 140–151
(2011)

23. Li, H., Pang, L.: A novel biometric-based authentication scheme with privacy pro-
tection. In: Conference on Information Assurance and Security, IAS 2009, pp. 295–
298. IEEE Computer Society (2009)

24. Maffei, M., Pecina, K., Reinert, M.: Security and privacy by declarative design. In:
IEEE Symposium on Computer Security Foundations, CSF 2013, pp. 81–96. IEEE
Computer Society (2013)

25. McSherry, F.: Privacy integrated queries: an extensible platform for privacy-
preserving data analysis. In: ACM Conference on Management of Data, SIGMOD
2009, pp. 19–30. ACM Press (2009)

26. Le Métayer, D.: Privacy by design: a formal framework for the analysis of architec-
tural choices. In: ACM Conference on Data and Application Security and Privacy,
CODASPY 2013, pp. 95–104. ACM Press (2013)

27. Mulligan, D.K., King, J.: Bridging the gap between privacy and design. Univ.
Pennsylvania J. Const. Law 14, 989–1034 (2012)

28. National Institute of Standards and Technology (NIST). MINEXII - an assessment
of match-on-card technology (2011). http://www.nist.gov/itl/iad/ig/minexii.cfm

29. International Standard Organization. International standard ISO/IEC 24787:2010,
information technology - identification cards - on-card biometric comparison (2010)

30. Pagnin, E., Dimitrakakis, C., Abidin, A., Mitrokotsa, A.: On the leakage of infor-
mation in biometric authentication. In: Meier, W., Mukhopadhyay, D. (eds.)
INDOCRYPT 2014. Lecture Notes in Computer Science, vol. 8885, pp. 265–280.
Springer, LNCS (2014)

31. Pucella, R.: Deductive algorithmic knowledge. J. Log. Comput. 16(2), 287–309
(2006)

32. Simoens, K., Bringer, J., Chabanne, H., Seys, S.: A framework for analyzing tem-
plate security and privacy in biometric authentication systems. IEEE Trans. Inf.
Forensics Secur. 7(2), 833–841 (2012)

33. Spiekermann, S., Faith Cranor, L.: Engineering privacy. IEEE Trans. Softw. Eng.
35(1), 67–82 (2009)

34. Tang, Q., Bringer, J., Chabanne, H., Pointcheval, D.: A formal study of the privacy
concerns in biometric-based remote authentication schemes. In: Chen, L., Mu, Y.,
Susilo, W. (eds.) ISPEC 2008. LNCS, vol. 4991, pp. 56–70. Springer, Heidelberg
(2008)

35. Uludag, U., Pankanti, S., Jain, A.K.: Fuzzy vault for fingerprints. In: Kanade, T.,
Jain, A., Ratha, N.K. (eds.) AVBPA 2005. LNCS, vol. 3546, pp. 310–319. Springer,
Heidelberg (2005)

http://www.nist.gov/itl/iad/ig/minexii.cfm


Improvement of Multi-bit Information
Embedding Algorithm for Palette-Based Images

Anu Aryal(B), Kazuma Motegi, Shoko Imaizumi, and Naokazu Aoki

Graduate School of Advanced Integration Science, Chiba University, 1–33 Yayoicho,
Inage-ku, Chiba-shi, Chiba 263-8522, Japan
{anu,afha3739,imaizumi}@chiba-u.jp

Abstract. We propose a new approach that is an improvement on the
conventional of a multi-bit information embedding algorithm for palette-
based images. The proposed method embeds secret information by chang-
ing the pixel values for each of the 2k−2 + 1 pixels. Hence, our scheme
can embed more information compared to the conventional method. Fur-
thermore, the developed algorithm does not drastically change the pixel
values with large color differences between before and after the changes.
Therefore, it reduces the degradation of the image quality. Our experi-
mental results show that the proposed scheme is superior to the conven-
tional method.

Keywords: Data embedding · Steganography · Palette-based images ·
Capacity enhancement · Quality improvement

1 Introduction

With the development of the Internet, a vast amount of information has been
exchanged through different communication channels. Hence, security for such
information has been required. Accordingly, many researches on steganography
techniques and its security have been studied. Digital steganography [1,2] is
a security technique to protect digital information. The main purpose of it is
to hide the existence of embedded confidential information. The confidential
information is imperceptibly embedded into digital media (hereinafter referred
to as cover data) and is transmitted through open channels without creating
noticeable artifacts. Therefore, the risk of information leakage is reduced because
unauthorized recipients are totally unaware of the existence of the message that
is embedded into the cover data.

Compared to full-color images, palette-based images possess a limited number
of colors, which leads to a reduction in the amount of data needed. For this
reason, these images are widely used in many multimedia applications, websites,
and so forth. Here, the color of each pixel is managed by a number (referred to
as the index). Each index corresponds to a color in the color palette.

For palette-based images, there are two methods to embed data by controlling
entries in the steganographic schemes. One of the methods changes the colors of
c© Springer International Publishing Switzerland 2015
J. Lopez and C.J. Mitchell (Eds.): ISC 2015, LNCS 9290, pp. 511–523, 2015.
DOI: 10.1007/978-3-319-23318-5 28
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the entries slightly to embed the message [3–12] whereas the other one retains the
colors of the entries and reorders the entries in the palette [13]. If the pixel values
are changed, the quality of the image is also reduced compared to that of the orig-
inal image. In addition, the degree of image quality degradation increases as the
amount of embedded data increases. However, the suppression of degradation
of image quality is demanded while embedding information in steganography.
Fridrich [8] proposed a method for hiding a message bit in the parity bit of each
neighboring color. Similarly, techniques to improve color difference calculation
[9,10] and methods of suppression of image quality degradation [4,7] have been
proposed. However, if the amount of embedded data per pixel is increased, the
image quality degradation also increases in these methods. Therefore, Ozawa
et al. [11] extended the embedded unit from a pixel to a pixel matrix and pro-
posed a technique to suppress the image quality degradation.

In this paper, we propose a new information embedding method using a
limited color image as cover data. The conventional method [11] reduces the
number of pixels used in the unit of a pixel matrix compared to their previous
work [12] but might lead to large color differences between before and after the
changes. The proposed method, which is an improvement on the conventional
method [11], can extend the embedded information capacity and suppress the
degradation of image quality.

2 Conventional Method

In Ozawa et al.’s method [11], each k-bit message w (w = {wn|wn ∈ {0, 1, . . . , 2k−
1}, n = 0, 1, 2, . . . } is embedded into the pixels tl(n) of a 2 × 2 pixel matrix mn

(tl(n) ∈ mn, l = 0, 1, 2, 3) as shown in Fig. 1. In this case, each tl(n) has an index
value of dl(n).

2.1 Sorting of Color Palette

First, we temporarily sort the entries Ci (i is a positive number) of the color
palette in accordance with the following steps. As a result, the new indices can
be assigned to the entries as C ′

j (j is a positive number).

Step 1. Calculate ai for each Ci in the original palette using the following
equation

ai =
(
2562ri + 2561gi + 2560bi

)
, i = 0, 1, 2, · · ·, (1)

and determine
C ′

0 = arg min ai. (2)
Step 2. The j-th color is determined by calculating arg min δj−1,j , where C ′

j−1

is the color that was assigned the index in the last process. Here, δ denotes
the color difference using the Euclidean distance. The color difference δp,q
between the colors Cp and Cq is expressed by,

δp,q =
√

(rp − rq)2 + (gp − gq)2 + (bp − bq)2. (3)

Step 3. Step 2 is repeated until the indices are assigned to all the entries.
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Fig. 1. Embedded unit of Ozawa et al.’s method [11].

2.2 Embedding of Message

In Ozawa et al.’s method [11], the message wn is embedded into each 2× 2 pixel
of matrix mn. In this section, the length of a message is considered to be 3-bit,
i.e., k = 3.

Step 1. As shown in Fig. 1, a 2×2 matrix mn is selected from the target image.
Step 2. Calculate the parity Sn as

Sn =
3∑

l=0

dl(n) mod 2k, (4)

and take the difference x between Sn and wn as

x = Sn − wn. (5)

Here, the number of pixels to be changed an is determined as

an =

⎧
⎪⎨

⎪⎩

min(x,−x + 2k) (Sn > wn)
min(−x, x + 2k) (Sn < wn)
0 (Sn = wn).

(6)

When a = 0, Steps 3−5 are not performed; thus, no pixel is changed.
Step 3. Choose an of the pixels tl(n) in ascending order corresponding to the

Euclidean distance Dl(n) between the entry C ′
j and the neighboring entry

C ′
j+1 or C ′

j−1. The distance Dl(n) between the two entries is given as

Dl(n) =

{
δj,j−1, if an = x(Sn > wn) or an = x + 2k(Sn < wn)
δj,j+1, if an = −x(Sn < wn) or an = −x + 2k(Sn > wn).

(7)
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Fig. 2. Embedded unit of proposed method (k = 3)

Step 4. Replace an of the indices dl(n) for the pixels tl(n), which are chosen by
Step 3, with j − 1 or j + 1.

Step 5. Steps 1−4 are repeated n times.

2.3 Extraction of Message

By calculating wn, that is, Sn of matrix mn, and concatenating wn in the order
of n, the entire message w is obtained. The embedding order of the message
is determined by the stego-key, which is a seed value of the pseudo-random
sequence. The sender of the message gives the stego-key and message length k
to the receiver to extract the message.

2.4 Problems of the Conventional Method

In Ozawa et al.’s method [11], four pixels are used to embed a 3-bit message. The
maximum embedded amount is smaller than that of the methods that embed
one bit message into one pixel [7–10]. In addition, there is also a tendency for
the color differences among the neighboring colors in the reordered color palette
to become large because the difference is based on the Euclidean distance. This
is one of the causes of the image degradation.

3 Proposed Method

We propose an efficient method to embed k-bit messages w(w = {wn|wn ∈
{0, 1, . . . , 2k − 1}, n = 0, 1, 2, . . . }) into a limited color image by controlling
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Fig. 3. Color blocks and isolated colors (Color figure online)

the index values. An embedded matrix mn consists of the pixels of p(n) and
tl(n)(tl(n) ∈ mn, l = 0, 1, . . . , 2k−2 − 1).

3.1 Sorting of Color Palette

The color palette of a limited color bitmap image is represented using RGB.
Since we sort the colors using CIEDE2000 [14] (hereinafter referred to as ΔE00),
it is necessary to convert the RGB color space to the L∗a∗b∗ color space.

The entries Ci in the color palette (i is a positive integer less than 256) are
temporarily sorted to change the index. Then, the entries C ′

j (j is a positive
integer less than 256) are generated with a new index j. The sorting procedure
is described as follows.

Step 1. C ′
0(j = 0), which is the darkest color in Ci, is obtained by calculating

arg min L∗
i .

Step 2. Set j = j + 1.
Step 3. Calculate ΔE00 between C ′

j−1 and the initial entries Ci that have not
been assigned an index. The entry Ci with the minimum ΔE00 is assigned j
and becomes C ′

j .
Step 4. Steps 2 and 3 are repeated until the index is assigned to all the entries.

Figure 3 represents the latter part of the sorted palette. Each block has been
generated by delimiting the colors when ΔE00 > 5.0. The colors with thick
frames are isolated colors, that is, they do not have any other colors in their color
blocks. For the pixels represented by the isolated colors, the color differences after
changing the indices would become incredibly large. Therefore, we cannot embed
the message into the pixels with the isolated colors.

3.2 Embedding of Message

In the proposed method, the k-bit messages are embedded into each 2k−2 + 1
pixel matrix. In this section, the message length is considered to be 3 bits (k = 3).
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Table 1. Example of Pn, Sn and embedded information wn

Pn Sn Embedded information wn

0 3 7

0 2 6

0 1 5

0 0 4

1 0 3

1 1 2

1 2 1

1 3 0

Step 1. As shown in Fig. 2, a 1 × 3 pixel matrix is selected from the target
image. Note that it must be confirmed that a k-bit message has not yet been
embedded into the selected matrix.

Step 2. The parity Sn is calculated as

Sn = d0(n) + dl(n) mod 4, (8)

where dl(n) indicates the index of the pixel tl(n).
Step 3. The value of Sn can be controlled by changing the indices of p(n), t0(n),

and/or t1(n) by either +1 or −1. Table 1 shows an example of the relation
among Pn, Sn, and wn. Here, we define Pn = 0 when the index of p(n) is
an even number and Pn = 1 when the index of p(n) is an odd number. The
indices of p(n), t0(n), and/or t1(n) may be changed to be the corresponding
values of the embedded message wn in accordance with Table 1.
(a) Change of Pn: If the value of Pn before the embedding process is different

from that after the process, the index of p(n) is changed by +1 or −1. In
this process, we should choose either +1 or −1 such that it makes ΔE00

be a smaller value.
(b) Change of Sn: If the difference between the values of Sn before and after

the embedding process is 2, the indices of d0(n) and d1(n) of t0(n) and
t1(n) are changed by +1 or −1. In this process, we should choose either
+1 or −1 such that it makes the average of ΔE00 be a smaller value.

If the difference between the values of Sn before and after the embed-
ding process is 1, either d0(n) or d1(n) is changed by +1 or −1. In this
process, we should choose either d0(n) or d1(n) and either +1 or −1 such
that it makes ΔE00 be the smallest value.

If the differences between the values of Sn before and after the embed-
ding process are zero, neither d0(n) nor d1(n) is changed.

The proposed method performs the embedding process only when all
the ΔE00 values for the pixels of the matrix become 5.0 or less. If any of
the ΔE00 values for the pixels exceeds 5.0, the embedding process is not
performed on the matrix.

Step 4. Steps 1−3 are repeated until all the messages are embedded.
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Fig. 4. Original images

3.3 Extraction of Message

We can extract each embedded message wn in accordance with Table 1 after cal-
culating Pn and Sn. It is possible to restore message w by sorting wn. To restore
the message, the embedding position and the message length k are required.



518 A. Aryal et al.

Fig. 5. Embedding of 10,800-bit message (Balloon)

Fig. 6. Embedding of 10,800-bit message (Parrot)

4 Experimental Results

In this section, the proposed method is compared to the conventional method
[11] in terms of image quality and the maximum amount of embedding data. We
performed our experiments on twelve different 256 × 256 palette-based images
(8-bit color bitmap images).
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Fig. 7. Embedding of 21,600-bit message (Balloon)

Fig. 8. Embedding of 21,600-bit message (Parrot)

4.1 Evaluation of Image Quality

The original images of Balloon and Parrot are shown in Fig. 4. The simulation
results for embedding a 10,800-bit message where k = 3 for the proposed method
and the conventional method [11] are depicted in Figs. 5 and 6. Similarly, the sim-
ulation results of embedding a 21,600-bit message where k = 3 for the proposed
method and the conventional method [11] are demonstrated in Figs. 7 and 8.
Furthermore, Tables 2 and 3 indicate the PSNR and the SSIM [15] values of the
simulation results of the proposed method and the conventional method [11],
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Fig. 9. Matrix arrangement for maximum amount of embedded bits

Fig. 10. Matrix arrangement for minimum amount of embedded bits
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Table 2. Evaluation using PSNR

10,800 Bits 21,600 Bits

Proposed Conventional [11] Proposed Conventional [11]

Aerial 41.96 39.61 38.87 36.81

Airplane 43.13 40.54 40.15 37.76

Balloon 43.49 40.73 40.62 37.68

Couple 41.87 39.18 38.77 35.98

Earth 45.59 43.38 42.54 40.54

Girl 40.34 36.23 37.30 32.88

Lena 43.03 40.65 40.00 37.67

Mandrill 39.06 36.38 35.73 33.25

Milkdrop 42.93 40.30 39.83 37.24

Parrots 39.33 35.77 36.30 32.48

Pepper 40.34 36.58 37.19 33.67

Sailboat 41.32 38.57 38.41 35.68

Table 3. Evaluation using SSIM

10,800 Bits 21,600 Bits

Proposed Conventional [11] Proposed Conventional [11]

Aerial 0.902 0.862 0.801 0.729

Airplane 0.846 0.825 0.709 0.670

Balloon 0.867 0.822 0.751 0.674

Couple 0.896 0.849 0.799 0.710

Earth 0.882 0.828 0.765 0.665

Girl 0.840 0.722 0.706 0.585

Lena 0.871 0.827 0.749 0.667

Mandrill 0.878 0.830 0.753 0.667

Milkdrop 0.871 0.835 0.753 0.683

Parrots 0.854 0.825 0.723 0.681

Pepper 0.871 0.831 0.754 0.699

Sailboat 0.863 0.827 0.755 0.685

respectively. The values of PSNR and SSIM demonstrate that the image quality
of the proposed method is superior to that of the conventional method [11].

4.2 Evaluation of Maximum Possible Amount of Embedding Bits

Next, we discuss the maximum amount of embedded bits in our proposed method.
Figure 9 represents the matrix arrangement for embedding the maximum
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Table 4. Maximum and minimum values of embedded bits

Proposed Conventional [11]

Maximum amount of embedded bits 65,280 49,152

Minimum amount of embedded bits 39,168 21,675

possible amount of message bits for the proposed method and the conventional
method [11], respectively. The squares surrounded by dashed lines represent each
pixel whereas the matrix is represented as a set of multiple pixels with thick lines.
It should be noted that the coordinates of each matrix to be embedded in the
messages are separately determined by pseudo-random numbers. We also show
the arrangements when dealing with the minimum amount of embedded bits for
the proposed method and the conventional method in Fig. 10. Note that when
the number of vertical pixels is not divisible by k in the proposed method and the
number of vertical and/or horizontal pixels is not divisible by 2 in the conven-
tional method [11], the excess pixels are considered to be outside the embedding
object.

Table 4 denotes the maximum and minimum amounts of embedded bits for an
image of 256 × 256 pixels in the proposed method and the conventional method
[11], respectively. It can be seen that in the proposed method, the maximum
possible amount of embedded bits is increased by 1.3 times whereas the minimum
number of embedded bits is increased by 1.8 times compared to that of the
conventional method [11].

5 Conclusion

We have proposed an improvement on the conventional multi-bit information
embedding algorithm for steganography of palette-based images. This method
enhances data embedding with larger capacity and improves the image quality
as well. The values of PSNR and SSIM in our experiments have been improved
in the proposed method. This indicates that image quality degradation is sup-
pressed in our method. Furthermore, by reducing the size of the embedded
matrix, the maximum amount of embedded bits is 1.3 times more than that
of the conventional method, and the minimum amount is 1.8 times more.

Acknowledgments. This work was supported by JSPS KAKENHI Grant Number
26820138.

References

1. Kahn, D.: The history of steganography. In: Anderson, R. (ed.) IH 1996. LNCS,
vol. 1174, pp. 1–5. Springer, Heidelberg (1996)

2. Chandramouli, R., Kharrazi, M., Memon, N.D.: Image steganography and ste-
ganalysis: concepts and practice. In: Kalker, T., Cox, I., Ro, Y.M. (eds.) IWDW
2003. LNCS, vol. 2939, pp. 35–49. Springer, Heidelberg (2004)



Multi-bit Embedding Algorithm for Steganography of Palette-Based Images 523

3. Wang, X., Yao, Z., Li, C.-T.: A palette-based image steganographic method using
colour quantisation. In: Proceedings of IEEE ICIP, pp. II-1090–II-1093 (2005)

4. Niimi, M., Noda, H., Kawaguchi, E.: High capacity and secure digital steganog-
raphy to palette-based images. In: Proceedings of IEEE ICIP, pp. II-917–II-920
(2002)

5. Zhao, H., Wang, H., Khan, M.K.: Steganalysis for palette-based images using gen-
eralized difference image and color correlogram. Sig. Process. 91(11), 2595–2605
(2011)

6. Zhang, X., Wang, S., Zhou, Z.: Multibit assignment steganography in palette
images. IEEE Signal Proc. Lett. 15, 553–556 (2008)

7. Tzeng, C.-H., Yang, Z.-F., Tsai, W.-H.: Adaptive data hiding in palette images
by color ordering and mapping with security protection. IEEE Trans. Commun.
52(5), 791–800 (2004)

8. Fridrich, J.: A new steganographic method for palette-based image. In: Proceedings
of IS&T PICS, pp. 285–289 (1999)

9. Huy, P.T., Thanh, N.H., Thang, T.M., Dat, N.T.: On fastest optimal parity assign-
ments in palette images. In: Pan, J.-S., Chen, S.-M., Nguyen, N.T. (eds.) ACIIDS
2012, Part II. LNCS, vol. 7197, pp. 234–244. Springer, Heidelberg (2012)

10. Inoue, K., Hotta, S., Takeichi, Y., Urahama, K.: A steganographic method for
palette-based images. Trans. Inst. Electron. Inf. Commun. Eng. A 82(11), 1750–
1751 (1999). (in Japanese)

11. Imaizumi, S., Ozawa, K.: Palette-based image steganography for high-capacity
embedding. Bull. Soc. Photogr. Image Jpn. 25(1), 7–11 (2015)

12. Imaizumi, S., Ozawa, K.: Multibit embedding algorithm for steganography of
palette-based images. In: Klette, R., Rivera, M., Satoh, S. (eds.) PSIVT 2013.
LNCS, vol. 8333, pp. 99–110. Springer, Heidelberg (2014)

13. Kwan, M.: Gifshuffle (2003). http://www.darkside.com.au/gifshuffle/
14. Colorimetry - Part 6: CIEDE2000 Colour-difference formula. ISO/CIE 11664–6

(2014)
15. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment:

from error visibility to structural similarity. IEEE Trans. Image Process. 13(4),
600–612 (2004)

http://www.darkside.com.au/gifshuffle/


Efficient Ephemeral Elliptic Curve
Cryptographic Keys

Andrea Miele(B) and Arjen K. Lenstra

EPFL, Lausanne, Switzerland
andrea.miele@epfl.ch

Abstract. We show how any pair of authenticated users can on-the-fly
agree on an elliptic curve group that is unique to their communication
session, unpredictable to outside observers, and secure against known
attacks. Our proposal is suitable for deployment on constrained devices
such as smartphones, allowing them to efficiently generate ephemeral
parameters that are unique to any single cryptographic application
such as symmetric key agreement. For such applications it thus offers
an alternative to long term usage of standardized or otherwise pre-
generated elliptic curve parameters, obtaining security against crypto-
graphic attacks aimed at other users, and eliminating the need to trust
elliptic curves generated by third parties.

Keywords: Elliptic curve cryptography · Complex multiplication
method

1 Introduction

Deployment of elliptic curve cryptography (ECC) [32,40] is becoming more
common. A variety of ECC parameters has been proposed or standard-
ized [1,5,9,13,16,17,39,58], with or without all kinds of properties that are felt
to be desirable or undesirable, and as reviewed in Sect. 2. All these proposals
and standards contain a fixed number of possible ECC parameter choices. This
implies that many different users will have to share their choice, where either
choice implies trust in the party responsible for its construction. Notwithstand-
ing a variety of design methods intended to avoid trust issues (cf. [6]) and despite
the fact that parameter sharing is generally accepted for discrete logarithm cryp-
tosystems, recent allegations [28,52] raise questions. As extensively discussed at
the recent Workshop on Elliptic Curve Cryptography Standards [45], currently
the main challenge in curve selection lies in re-establishing users’ trust in ECC
which vacillated after the above allegations were announced, and keep being
followed by a continuing string of disconcerting information security related
mishaps. Relying on choices made by others, either related to elliptic curve para-
meter selection or to any other personal choice related to information security,
parameter sharing and long term usage of any type of cryptographic key mater-
ial, may have to be reconsidered. In this paper we consider what can realistically
c© Springer International Publishing Switzerland 2015
J. Lopez and C.J. Mitchell (Eds.): ISC 2015, LNCS 9290, pp. 524–547, 2015.
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be done if this reconsideration is taken to the extreme and trust in other parties’
contributions is reduced to a minimum: never rely on choices made by others,
avoid parameter sharing as much as possible, and refresh key material as often
as feasible.

Specifically, we consider an approach that is diametrically different from cur-
rent common practice, namely selection of personalized, short-lived ECC para-
meters. By personalized we mean that no party but the party or parties owning
or directly involved in the usage of parameters should be responsible for their
generation:

– for a certified public key, only the owner of the corresponding private key
should be responsible for the selection of all underlying parameters;

– in the Diffie-Hellman protocol, as there is no a priori reason for the parties
to trust each others’ public key material other than for mutual authentica-
tion, both parties, and no other party, should be equally responsible for the
construction of the group to be used in the key agreement phase.

Personalization excludes parameter choice interference by third parties with
unknown and possibly contrary incentives. It also avoids the threats inherent
in parameter sharing.

By short-lived, or ephemeral, we mean that parameters are refreshed (and
possibly recertified) as often as feasible and permitted by their application; for
the Diffie-Hellman protocol it means that a group is generated and used for just
a single protocol execution and discarded after completion of the key agreement
phase. Ephemeral parameters minimize the attack-window before the parameters
are discarded. Attacks after use cannot be avoided for any type of public key
system. But the least we can do is to avoid using parameters that may have been
exposed to cryptanalysis for an unknown and possibly extended period of time
before their usage.

In this paper we discuss existing methods for personalized, short-lived ECC
parameter generation. Even with current technology, each end-user can in princi-
ple refresh and recertify his or her ECC parameters on a daily basis (cf. Sect. 2):
“in principle” because user-friendly interfaces to the required software are not
easily available to regular users. But it allows arbitrary, personalized choices –
within the restrictions of ECC of course – in such a way that no other party
can control or predict any of the newly selected parameters (including a curve
parameterization and a finite field that together define an elliptic curve group,
cf. below). Personalization isolates each user from attacks against other users,
and using keys for a period of time that is as short as possible reduces the
potential attack pay-off. Once personalized, short-lived ECC (public, private)
key pairs are adopted at the end-user level, certifying parties may also rethink
their sometimes decades-long key validities.

To satisfy the run time requirements of the Diffie-Hellman protocol, it should
take at most a fraction of a second (jointly on two consumer-devices) to construct
a personalized elliptic curve group suitable for the key agreement phase, that
will be used for just that key agreement phase, and that will be discarded right
after its usage – never to be used or even met again. In full generality this is
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not yet possible, as far as we know, and a subject of current research. However,
for the moment the method from [34] can be used if one is willing to settle
for partially personalized parameters: the finite field and thus the elliptic curve
group cardinality are still fully personalized and unpredictable to any third party,
but not more than eight choices are available for the Weierstrass equation used
for the curve parameterization. Although the resulting parameters are not in
compliance with the security criteria adopted by [9] and implied by [39], we point
out that there is no indication whatsoever that either of these eight choices offers
inadequate security: citing [9] “there is no evidence of serious problems”. The
choice is between being vulnerable to as yet unknown attacks – as virtually all
cryptographic systems are – or being vulnerable to attacks aimed at others by
sharing parameters, on top of trusting choices made by others. Given where the
uncertainties lie these days, we opt for the former choice.

An issue that we are not paying attention to in this paper is the perfor-
mance of the elliptic curve cryptosystem itself, once the parameters have been
generated, or a comparison between the curves as generated here and the stan-
dardized ones. This is not because the issue is not of interest, but mostly because
for either type of curve perfectly adequate runtimes can easily be achieved using
generally available software. Also, our main point of concern in this paper is not
performance optimization but minimization of trust in other parties.

After introductory sections on elliptic curves and their selection for ECC
(Sect. 2) and complex multiplication (Sect. 3.1) we provide an explanation (in
Sect. 3.2) how the “class number one” Weierstrass equations proposed in [34]
were derived and how that same method generalizes to slightly larger class num-
bers. As a result we expand, also in Sect. 3.2, the table from [34] with eleven
more Weierstrass equations, thereby more than doubling the number of equa-
tions available. In Sect. 3.3 we show how our methods can be further generalized,
and why practical application of these ideas may not be worthwhile. In Sect. 4 we
describe a new method for partially personalized ECC parameter generation that
is substantially faster than the one from [34] and that also allows generation of
Montgomery friendly primes and, at non-trivial overhead, of twist-secure curves.
We demonstrate the effectiveness of our approach with an implementation on an
Android Samsung Galaxy S4 smartphone. It generates a unique 128-bit secure
elliptic curve group in about 50 milliseconds on average and thus allows effi-
cient generation and ephemeral usage of such groups during Diffie-Hellman key
agreement. Security issues (including the one mentioned above) are discussed in
Sect. 5. In the concluding Sect. 6 we briefly discuss extension of our method to
genus 2.

Our source code will be made available. As selecting ECC parameters on
the fly adds more complexity to Diffie-Hellman key agreement, users should
use the open-source code we will provide, after extensive testing and potential
improvement, to minimize the probability of failure. Techniques to make the
selection process more robust like additional sanity checks may be applied.
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2 Preliminaries

Elliptic Curves. We fix notation and recall some well known facts. For a finite
field K of characteristic larger than 3, a pair (a, b) ∈ K2 with 4a3 + 27b2 �= 0
defines an elliptic curve Ea,b = E over K, to be thought of as the coefficients of
the Weierstrass equation

y2 = x3 + ax + b.

The set of pairs (x, y) ∈ K2 that satisfy this equation along with a point at
infinity O is the set of points E(K) of E over K. This set has the structure
of an abelian group (with O acting as the identity element) and is thus also
referred to as the group of points of E over K or simply the elliptic curve group.
Traditionally, this group is written additively. See [53, Chap. III] for a more
general and formal introduction to this material, including effective ways to
perform the group operation in a constant number of operations in K.

For g ∈ E(K) the discrete logarithm problem with respect to g is the problem
to find, given h ∈ 〈g〉, an integer n such that h = ng. For properly chosen E,
the fastest published methods to solve this problem require on the order of

√
q

operations in the group E(K) (and thus in K), where q is the largest prime
dividing the order of g. If k ∈ Z is such that 2k−1 ≤ √

q < 2k, the discrete
logarithm problem in E(K) is said to offer k-bit security.

With K = Fp the finite field of cardinality p for a prime p > 3, and a
randomly chosen elliptic curve E over Fp, the order #E(Fp) behaves as a random
integer close to p+1 (see [38] for the precise statement) with |#E(Fp)−p−1| ≤
2
√

p. For ECC at k-bit security level it therefore suffices to select a 2k-bit prime p
and an elliptic curve E for which #E(Fp) is prime (or almost prime, i.e., up to
an �-bit factor, at an �

2 -bit security loss, for a small �), and to rely on the
alleged hardness of the discrete logarithm with respect to a generator (of a large
prime order subgroup) of E(Fp). How suitable p and E should be constructed
is the subject of this paper. For reasons adequately argued elsewhere (cf. [7,
Sect. 4.2]), for cryptographic purposes we explicitly exclude from consideration
elliptic curves over extension fields.

Depending on the application, twist-security may have to be enforced as well:
not just #Ea,b(Fp) = p + 1 − t must be (almost) prime (where |t| ≤ 2

√
p), but

also p + 1 + t must be (almost) prime. This number p + 1 + t is the cardinality
of the group of points of a (quadratic) twist Ẽ = Er2a,r3b of E = Ea,b, where r
is any non-square in Fp.

Generating Elliptic Curves for ECC. The direct approach is to first select,
for k-bit security, a random 2k-bit prime p and then to randomly select ellip-
tic curves E over Fp until #E(Fp) is (almost) prime. Because of the random
behavior of #E(Fp), the expected number of elliptic curves to be selected is lin-
ear in k and can be halved by considering #Ẽ(Fp) as well (and replacing E by
Ẽ if a prime #Ẽ(Fp) is found first). Because #E(Fp) can be computed in time
polynomial in k using the Schoof-Elkies-Atkin algorithm (SEA) [50], the over-
all expected effort is polynomial in k. This method is referred to as SEA-based
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Table 1. Timings of cryptographic parameter generation on a single 2.7 GHz Intel Core
i7-3820QM, averaged over 100 parameter sets, for prime elliptic curve group orders
and 80-bit, 112-bit, and 128-bit security. For RSA these security levels correspond,
roughly but close enough, to 1024-bit, 2048-bit, and 3072-bit composite moduli, for
DSA to 1024-bit, 2048-bit, and 3072-bit prime fields with 160-bit, 224-bit, and 256-bit
prime order subgroups of the multiplicative group, respectively. The timings in the last
two rows have been obtained using a C implementation of the method we present in
this paper.

80-bit security 112-bit security 128-bit security

RSA 80 milliseconds 0.8 s 2.5 s

DSA 0.2 s 1.8 s 8 s

Random ECC (MAGMA) 12 s 47 s 120 s

Same, but twist-secure 6 min 37 min 83 min

Low discriminant curves over
random prime fields

2 milliseconds 5 milliseconds 6 milliseconds

Same, but twist secure 10 milliseconds 27 milliseconds 45 milliseconds

ECC parameter selection. Generating twist-secure curves in this way is slower
by a factor linear in k.

Table 1 lists actual ECC parameter generation times, for k ∈ {80, 112, 128}.
Using primes p with special properties (such as being Montgomery friendly, i.e.,
p ≡ ±1 mod 232 or 264) has little or no influence on the timings. For com-
parison, key generation times are included for traditional non-ECC asymmetric
cryptosystems at approximately the same security levels. The ECC parameter
generation timings – in particular the twist-secure ones – may explain why the
direct approach to ECC parameter generation is not considered to be a method
that is suitable for the general public. Although this may have to be reconsidered
and end-users could in principle – given appropriate software – (re)generate their
ECC parameters and key material on a daily basis, the current state-of-the-art
of the direct approach does not allow fast enough on-the-fly ECC parameter
generation in the course of the Diffie-Hellman protocol. Table 1 also lists timings
obtained using the method presented in this paper.

Pre-selected Elliptic Curves. We briefly discuss some of the elliptic curves
that have been proposed or standardized for ECC. As mentioned above, we do
not consider any of the proposals that involve extension fields (most commonly
of characteristic two).

With two notable exceptions that focus on ≈ 125-bit security, most proposals
offer a range of security levels. Although 90-bit security [11] is still adequate, it
is unclear why parameters that offer less than 112-bit security (the minimal
security level recommended by NIST [43]) should currently still be considered,
given that the ≈ 125-bit security proposals offer excellent performance. With
128-bit security more than sufficient for the foreseeable future, it is not clear
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either what purpose is served by higher security levels, other than catering to
“TOP SECRET” 192-bit security from [44]. In this context it is interesting
to note that 256-bit AES, also prescribed by [44] for “TOP SECRET”, was
introduced only to still have a 128-bit secure symmetric cipher in the post-
quantum world (cf. [55]), and that 192-bit security was merely a side-effect that
resulted from the calculation 128+256

2 (cf. [55]). In that world ECC is obsolete
anyhow.

In [16] eleven different primes are given, all of a special form that makes
modular arithmetic somewhat easier than for generic primes of the same size,
and ranging from 112 to 521 bits. They are used to define fifteen elliptic curves
of eight security levels from 56-bit to 260-bit, four with a = 0 and b small
positive (“Koblitz curves”), the other eleven “verifiably at random” but nine of
which with a = p − 3, and all except two with prime group order (two with
cofactor 4 at security levels 56 and 64). Verifiability means that a standard
pseudo random number generator when seeded with a value that is provided,
results in the parameters a (if a �= p − 3) and b. The arbitrary and non-uniform
choice for the seeds, however, does not exclude the possibility that parameters
were aimed for that have properties that are unknown to the users. This could
easily have been avoided, but maybe this was not a concern at the time when
these curves were generated (i.e., before the fall of the year 2000). Neither was
twist-security a design criterion back then; indeed some curves have poor twist
security (particularly so the 96-bit secure curve), whereas the single 192-bit
secure curve is perfectly twist-secure. If one is willing to use pre-selected curves,
there does not seem to be a valid argument, at this point in time, to settle
for anything less than optimal twist-security: for general applications they are
arguably preferable and their only disadvantage is that they are relatively hard
to find, but this is done just once and thus no concern. Surprisingly, in the
latest (2013) update of the federal information processing standards (“FIPS”)
for digital signatures (cf. [58]) only two out of five twists of the curves at security
level 96 or higher and with a = p − 3 (all “recommended for federal government
use”) satisfy the group-cardinality margins allowed by [58].

The use of special primes was understandable back in 2000, because at that
time ECC was relatively slow and any method to boost its performance was
welcome, if not crucial, for the survival of ECC. The trend to use special primes
persists to the present day, in a seemingly unending competition for the fastest
ECC system. However, these days also regular primes without any special form
offer more than adequate ECC performance. This is reflected in one of the pro-
posals discussed below.

The proposals [5,7] each contain a single twist-secure curve of (approxi-
mately) 125-bit security, possibly based on the sensible argument that there is
no need to settle for less if the performance is adequate, and no need to require
more (cf. above). All choices are deterministic given the design criteria, easily
verifiable, and have indeed been verified. For instance, the finite field in [5] is
defined by the largest 255-bit prime, where the choice 255 is arguably optimal
given the clever field arithmetic. The curve equation is the “first” one given the
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computationally advantageous curve parameterization and various requirements
on the group orders. Another, but similarly rigidly observed, design criterion
(beyond the scope of the present paper) underlies the proposal in [7].

The curves from [5,7] are perfectly adequate from a security-level and design
point of view. If the issue of sharing pre-selected curves is disregarded they
should suffice to cater to all conceivable cryptographic applications (with the
exception of pairing-based cryptography, cf. below). Nevertheless, their design
approach triggered two follow-up papers by others. In [1] they are complemented
with their counterparts at approximate security levels 112, 192, and 256. In [13]
the scope of [7] is broadened by allowing more curve parameterizations and more
types of special primes, while handling exceptions more strictly. This leads to
eight new twist-secure curves of (approximately) 128-bit security, in addition to
eight and ten twist-secure curves at approximate security levels 192 and 256,
respectively.

The seven Brainpool curves [39] at seven security levels from 80-bit to 256-bit
revert to the verifiably pseudo random approach from [16], while improving it
and thereby making it harder to target specific curve properties (but see [6]).
The primes p have no special form (except that they are 3 mod 4) and are
deterministically determined as a function of a seed that is chosen in a uniform
manner based on the binary expansion of π = 3.14159 . . .. The curves use a =
p − 3 and a quadratic non-residue b ∈ Fp (deterministically determined as a
function of a different seed, similarly generated based on e = 2.71828 . . .) for
which the orders of the groups of the curve and its twist are both prime. As an
additional precaution, curves are required to satisfy #Ea,b(Fp) < p. In [37] it is
shown how usage of constants such as π and e can be avoided while still allowing
verifiable and trustworthy random parameter generation.

The SafeCurves project [9] specifies a set of criteria to analyze elliptic curve
parameters aiming to ensure the security of ECC and not just the security (i.e.,
the difficulty) of the elliptic curve discrete logarithm problem, and analyzes
many proposed parameter choices, including many of those presented above,
with respect to those criteria. This effort represents a step forward towards
better security for ECC. For this paper it is relevant to mention that the Safe-
Curves security criteria include the requirement that the complex-multiplication
field discriminant (cf. below) must be larger than 2100 in absolute value. Aside
from the lack of argumentation for the bound, this requirement seems to be
unnecessarily severe (and considerably larger than the rough 240 requirement
implied by [39]), not just because it is not supported by theoretical evidence,
but also because the requirement cannot be met by pairing-based cryptography,
considered by many as a legitimate and secure application of elliptic curves. On
the other hand, [9] does not express concerns about the trust problem inherent
in the usage of (shared) parameters pre-selected by third parties.

Attacking Multiple Keys. We conclude this section with a brief summary of
results concerning the security of multiple instances of the “same” asymmetric
cryptographic system. Early successes cannot be expected, or are sufficiently
unlikely (third case).
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1. Multiple RSA moduli of the same size. It is shown in [19, Sect. 4] that after a
costly size-specific precomputation (far exceeding the computation and stor-
age cost of an individual factoring effort), any RSA modulus of the proper
size can be factored at cost substantially less than its individual factoring
effort. This is not a consequence of key-sharing (as RSA moduli should not
be shared), it is a consequence of the number field sieve method for integer
factorization [35].

2. Multiple discrete logarithms all in the same multiplicative group of a prime
field. Finding a single discrete logarithm in the multiplicative group of a finite
field is about as hard as finding any number of discrete logarithms in the same
multiplicative group. Sharing a group is common (cf. DSA), but once a single
discrete logarithm has been solved, subsequent ones in the same group are
relatively easy.

3. Multiple discrete logarithms all in the same elliptic curve group. Solving a
single discrete logarithm problem takes on the order of

√
q operations, if the

group has prime order q, and solving k discrete logarithm problems takes
effort

√
kq. Thus, the average effort is reduced for each subsequent key that

uses the same group.
4. Multiple discrete logarithms in as many distinct, independent groups. Solving

k distinct discrete logarithm problems in k groups that have no relation to
each other requires in general solving k independent problems. With the
proper choice of groups, no savings can be obtained.

The final two cases most concern us in this paper. In the third case, with k
users, an overall attack effort

√
kq leads to an average attack effort per user of

“just”
√

q/k. This may look disconcerting, but if q is properly chosen in such a
way that effort

√
q is infeasible to begin with, there is arguably nothing to be

concerned about. Compared to the rather common second case (i.e., shared DSA
parameters), the situation is actually quite a bit better. Nevertheless, existing
users cannot prevent that new users may considerably affect the attack incen-
tives. In the final case such considerations are of no concern. However, given
the figures from Table 1, realizing the final case for ECC with randomly chosen
parameters is not feasible yet for all applications. The next best approach that
we are aware of is further explored below.

3 Special Cases of the Complex Multiplication Method

Our approach is based on and extends [34]. It may be regarded as a special
case, or a short-cut, of the well known complex multiplication (CM) method of
which many variants have been published and which appears under a variety of
names in the literature (such as “Atkin-Morain” method). As no explanation is
provided in [34], we first sketch one approach to the CM method and describe
how it leads to the method from [34]. We then use this description to get a more
general method, and indicate how further generalizations can be obtained.
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3.1 The CM Method

We refer to [3, Chap. 18], [48], and the references therein for all details of the
method sketched here. In the SEA-based ECC parameter selection described in
Sect. 2 one selects a prime field Fp and then keeps selecting elliptic curves over Fp

until the order of the elliptic curve group has a desirable property. Checking the
order is relatively cumbersome, making this type of ECC parameter selection a
slow process. Roughly speaking, the CM method switches around the order of
some of the above steps, making the process much faster at the expense of a
much smaller variety of resulting elliptic curves: first primes p are selected until
a trivial to compute function of p satisfies a desirable property, and only then
an elliptic curve over Fp is determined that satisfies one’s needs.

The standard CM method works as follows. Let d �= 1, 3 be a square-free
positive integer and let Hd(X) be the Hilbert class polynomial1 of the imaginary
quadratic field Q(

√−d). If d ≡ 3 mod 4 let m = 4 and s = 1, else let m = 1
and s = 2. Find integers u, v such that u2 + dv2 equals mp for a suitably large
prime p and such that p + 1 ± su satisfies the desired property (such as one of
p + 1 ± su prime, or both prime for perfect twist security). Compute a root j
of Hd(X) modulo p, then the pair

( −27j
4(j−123) ,

27j
4(j−123)

) ∈ F2
p defines an elliptic

curve E over Fp such that #E(Fp) = p + 1 ± su (and #Ẽ(Fp) = p + 1 ∓ su).
Finally, use scalar multiplications with a random element of E(Fp) to resolve
the ambiguity. For d ≡ 3 mod 4 the case u = 1 should be excluded because it
leads to anomalous curves.

The method requires access to a table of Hilbert class polynomials or their on-
the-fly computation. Either way, this implies that only relatively small d-values
can be used, thereby limiting the resulting elliptic curves to those for which the
“complex-multiplication field discriminant” (namely, d) is small. The degree of
Hd(X) is the class number h−d of Q(

√−d). Because h−d = 1 precisely for d ∈
{1, 2, 3, 7, 11, 19, 43, 67, 163} (assuming square-freeness), for those d-values the
root computation and derivation of the elliptic curve become a straightforward
one-time precomputation that is independent of the p-values that may be used.
This is what is exploited in [34], as further explained, and extended to other
d-values for which h−d is small, in the remainder of this section.

3.2 The CM Method for Class Numbers at Most Three

In [34] a further simplification was used to avoid the ambiguity in p+1±u. Here
we follow the description from [56, Theorem 1], restricting ourselves to d > 1
with gcd(d, 6) = 1, and leaving d ∈ {3, 8} from [34] as special cases. We assume
that d ≡ 3 mod 4 and aim for primes p ≡ 3 mod 4 to facilitate square root
computation in Fp. It follows that

(−1
p

)
= −1.

1 Obviously, we could have used Weber polynomials instead. Here we explain and
generalize the method from [34] and therefore use Hilbert polynomials because those
were the ones used in that paper.
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Let Hd(X) be as in Sect. 3.1. If d ≡ 3 mod 8 let s = 1, else let s = −1. As
above, find integers u > 1, v such that u2 + dv2 equals 4p for a (large) prime
p ≡ 3 mod 4 for which the numbers p + 1 ± u are (almost) prime, and for which

a = 27d 3
√

j and b = 54sd
√

d(123 − j)

are well-defined in Fp, where j is a root of Hd(X) modulo p. Then for any non-
zero c ∈ Fp, the pair (c4a, c6b) ∈ F2

p defines an elliptic curve E over Fp such
that #E(Fp) = p + 1 − (

2u
d

)
u (and #Ẽ(Fp) = p + 1 +

(
2u
d

)
u).

As an example, let d = 7, so s = −1. The Hilbert class polynomial H7(X)
of Q(

√−7) equals X + 153, which leads to j = −153, a = −34 · 5 · 7, and
b = −54 · 7

√
7(123 + 153) = −2 · 36 · 72. With c = 1

3 we find that the pair
(−35,−98) defines an elliptic curve E over any prime field Fp with 4p = u2+7v2

and that #E(Fp) = p + 1 − (
2u
7

)
u.

Similarly, H11(X) = X + 215 for d = 11. With s = 1 this leads to j = −215,
a = −25 · 23 · 11 = −9504, and b = 2 · 33 · 11

√
11(123 + 215) = 365904. For any

p ≡ 3 mod 4 the pair (−9504, 365904) defines an elliptic curve E over Fp for
which #E(Fp) = p + 1 − (

2u
11

)
u, where 4p = u2 + 11v2. This is the twist of the

curve for d = 11 in [34].
The elliptic curves corresponding to the four d-values with h−d = 1 and

d > 11 are derived in a similar way, and are listed in Table 2. The two remaining
cases with h−d = 1 listed in Table 2 are dealt with as described in [2, Theorem 8.2]
for d = 3 and [47] for d = 8.

For d = 91, the class number h−91 of Q(
√−91) equals two and H91(X) =

X2 + 217 · 33 · 5 · 227 · 2579X − 230 · 36 · 173 has root j =
(−24 · 3(227 + 32 ·

7
√

13)
)3. It follows that a = −24 · 34 · 7 · 13(227 + 32 · 7

√
13) and b = 24 · 36 ·

72 · 11 · 13(13 · 71 + 28
√

13) so that with c = 1
3 we find that the pair (−330512 −

91728
√

13, 103479376+28700672
√

13) defines an elliptic curve E over any prime
field Fp with p ≡ 3 mod 4 and

(
13
p

)
= 1, and that #E(Fp) = p + 1 − (

2u
91

)
u

where 4p = u2 + 91v2.
Table 2 lists nine more d-values for which h−d = 2, all with d ≡ 3 mod 4: for

those with gcd(d, 6) = 1 the construction of the elliptic curve goes as above for
d = 91, the other three (all with gcd(d, 6) = 3) are handled as shown in [30]. The
other d-values for which h−d = 2 also have gcd(d, 6) �= 1 and were not considered
(but see [30]). The example for h−d = 3 in the last row of Table 2 was taken
from [30].

3.3 The CM Method for Larger Class Numbers

In this section we give three examples to illustrate how larger class numbers may
be dealt with, still using the approach from Sect. 3.2. For each applicable d with
h−d < 5 a straightforward (but possibly cumbersome) one-time precomputation
suffices to express one of the roots of Hd(X) in radicals as a function of the
coefficients of Hd(X), and to restrict to primes p for which the root exists in Fp.
For larger h−d there are in principle two obvious approaches (other possibilities
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Table 2. Elliptic curves for fast ECC parameter selection. Each row contains a value d,
the class number h−d of the imaginary quadratic field Q(

√−d) with discriminant −d,
the root used (commonly referred to as the j-invariant), the elliptic curve E = Ea,b,
the constraints on the prime p and the values u and v, the value s such that #E(Fp) =

p+1−su, and with γ and γ̃ denoting fixed factors of #E(Fp) and # ˜E(Fp), respectively.

exist, but we do not explore them here). One approach would be to exploit the
solvability by radicals of the Hilbert class polynomial [29] for any d, to carry
out the corresponding one-time root calculation, and to restrict, as usual, to
primes modulo which a root exists. The other approach is to look up Hd(X)
for some appropriate d, to search for a prime p such that Hd(X) has a root
modulo p, and to determine it. In our application, the precomputation approach
leads to relatively lightweight online calculations, which for the last approach
quickly become more involved. We give examples for all three cases, with run
times obtained on a 2.7 GHz Intel Core i7-3820QM.

For d = 203 we have h−203 = 4 and H203(X) = X4 + 218 · 3 · 53 · 739 ·
378577789X3−230 ·56 ·17 ·1499 ·194261303X2+254 ·59 ·116 ·4021X+266 ·512 ·116
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with root −214 · 53j′ where

j
′
= 3357227832852+623421557759

√
29+3367

√

29(68565775894279681 + 12732344942060216
√
29).

This precomputation takes an insignificant amount of time for any poly-
nomial of degree at most four. With c = 24 · 33 · 203 it follows that the pair(−5c 3

√
4j′, c

√
203(33 + 28 · 53j′)

)
defines an elliptic curve E over any prime

field Fp that contains the various roots, and that #E(Fp) = p + 1 − (
2u
203

)
u

where 4p = u2 + 203v2. The online calculation can be done very quickly if the
choice of p is restricted to primes for which square and cube roots can be com-
puted using exponentiations modulo p.

As an example of the second approach, for d = 47 the polynomial H47(X)
has degree five and root 25j′, with the following expression by radicals for j′:

13
3(

7453991996007968795256512 − 2406037696832339815
√
5 + A(40891436090237416B

− 280953360772792427120048109055211
√
5/B)

)

/(2
3/5

C) − 13
(

5364746311921861372

− 856800988085
√
5 − A(29162309591B − 135009745365087109801596264

√
5)
)

/(2C
2
)
1/5

+ (3861085845907 − 1237935
√
5)/(2 · 133C

1/5
) − 18062673 + 13C

1/5
/2

2/5
,

where

A =
67206667

827296299281
, B =

√
47(119957963395745 + 21781710063898

√
5)

and

C = −20713746281284251563127089881529 + 16655517449486339268909175
√
5 − D

B

for

D = 52 · 112 · 19 · 23 · 29 · 31 · 41 · 47(206968333412491708847−46149532702509158373845
√
5
)
.

This one-time precomputation took 0.005 s (using Maple 18). Elliptic curves and
group orders follow easily, for properly chosen primes. In principle such root-
expressions can be tabulated for any list of d-values one sees fit, but obtaining
them, in general and for higher degrees, may be challenging.

As an example of the final approach mentioned above, for d = 5923 the
polynomial H5923(X) has degree seven and equals

Given H5923(X) and 128-bit security, we look for 123-bit integers u and v such
that 4p = u2 + 5923v2 for a prime p for which H5923(X) has a root j modulo p
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and such that 3
√

j and
√

j exist in Fp and can easily be calculated. For the
present case it took 0.11 s (using Mathematica 9) to find

u = 9798954896523297426122257220379636584,

v = 6794158457021689958168162443422271774

which leads to the 256-bit prime

p = 68376297247017003283970261221870401697343820120616991149309517708508634100051

and

j = 5424365599110950567709761214027360693147818342174987232449996549675868443312.

Because p ≡ 2 mod 3 all elements of Fp have a cube root (in particular 3
√

j =
j

2p−1
3 mod p),

(
j
p

)
= 1 and p ≡ 3 mod 4. The elliptic curve and group order

follow in the customary fashion.
From our results and run times it is clear that none of these approaches

(one-time root precomputations, or online root calculation) is compatible with
the requirements on the class number (at least 106 in [39]) or the discriminant
(at least 2100 in [9]). In the remainder of this paper we focus on the approach
from Sect. 3.2. Our approach thus does not comply with the class number or
discriminant requirements from [9,39], security requirements that are, as far as
we know, not supported by published evidence.

4 Ephemeral ECC Parameter Generation

We describe how to use Table 2 to online generate ephemeral ECC parameters,
improving the speed of the search for a prime p and curve E over Fp compared
to the method from [34, Sect. 3.2], and while allowing an additional security
requirement to the ones from [34] (without explicitly mentioning the ones already
in place in [34]; refer to Sect. 5 for details). In the first place, on top of the trivial
modifications to handle the extended table and determination of a base point as
mentioned in [34, Sect. 3.6], we introduce the following additional search criteria:

1. Efficiency considerations.
(a) Montgomery friendly modulus. The prime p may be chosen as −1 modulo

264 or modulo 232 to allow somewhat faster modular arithmetic.
(b) Conversion friendly curve. A small positive factor f may be prescribed

that must divide #E(Fp) (such as for instance f = 4 to allow conversion
to a Montgomery curve).

2. Twist security. Writing #E(Fp) = fcq and #Ẽ(Fp) = c̃q̃, with f ∈ Z>0 as
above, cofactors c, c̃ ∈ Z>0, and primes q and q̃, independent upper bounds
� and �̃ on the total security loss may be specified such that fc < 2� and
c̃ < 2�̃. The roles of E and Ẽ may be reversed to meet these requirements
faster (with f always a factor of the “new” #E(Fp), which is automatically
the case if p ≡ 3 mod 4 and f = 4).
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These new requirements still allow a search as in [34, Sect. 3.2] where, based
on external parameters and a random value, an initial pair (u0, v0) is chosen
and the pairs (u, v) ∈ {(u0, v0 + i) : i ∈ [0, 255]} are inspected on a one-by-one
basis for each of the eight rows of [34, Table 1] until a pair is found that cor-
responds to a satisfactory p and E. If the search is unsuccessful (after trying
256 ∗ 8 possibilities), the process is repeated with a fresh random value and new
initial pair (u0, v0). With m = 1, c = 32, and no restrictions on #Ẽ(Fp), it
required on average less than ten seconds on a 133 MHz Pentium processor to
generate a satisfactory ECC parameter set at the 90-bit security level. Though
this performance was apparently acceptable at the time [34] was published, it
does not bode well for higher security levels and, in particular, when twist secu-
rity is required as well. This is confirmed by experiments (cf. runtimes reported
in Table 3 below).

Sieving-Based Search. Secondly, we show how the performance of the search
can be considerably improved compared to [34]. Because, for a fixed d, the prime
p and both group orders are quadratic polynomials in u and v, sieving with a
set P of small primes can be used to quickly identify (u, v) pairs that do not
correspond to a satisfactory p or E. The remaining pairs, for which the candidates
for the prime and for the group order(s) do not have factors in P , can then be
subjected to more precise inspection, similar to the search from [34]. We sketch
our sieving-based search for ECC parameters as in Table 2 where we assume
that min(2� − 1, 2�̃ − 1) = f and max(2� − 1, 2�̃ − 1) ∈ {f,∞}, i.e., we settle for
perfect twist security (except for the factor f) or no twist security at all. More
liberal choices require a more cumbersome approach to the sieving; we do not
elaborate.

Let (u0, v0) be chosen as above, but restricted to certain residue classes mod-
ulo small primes to satisfy a variety of divisibility criteria depending on the above
choices of f , �, and �̃, and with respect to Montgomery friendliness. We found it
most convenient to fix u0 and to sieve over regularly spaced (v0+i)-values, again
restricted to certain residue classes for the same reasons (including divisibility
of #E(Fp) by f in case f > 1), but using a much larger range of i-values than
in [34]. Fixing u0, the first at most sixteen compatible d-values from Table 2
are selected; only ten d-values may remain and depending on the parity of u0

the value d = 7 may or may not occur. Let d0, d1, . . ., dk−1 be the selected
d-values, with 10 ≤ k ≤ 16. With I the set of distinct i-values to be considered,
we initialize for all i ∈ I the sieve-location si as 2k − 1 (i.e., all “one”-bits in the
k bit-positions indexed from 0 to k − 1), while leaving the constant difference
between consecutive i-values unspecified for the present description. We mostly
used difference 16, using difference 4 only for d = 8, and using a substantially
larger value if the prime p must be Montgomery friendly.

For each dj and each sieving-prime ς ∈ P up to six roots rjς modulo ς of up to
three quadratic polynomials are determined (computing square roots using ς+1

4 -
th powering for ς ≡ 3 mod 4 and using the Tonelli-Shanks algorithm [20, 2.3.8]
otherwise); the polynomials follow in a straightforward fashion from Table 2. To
sieve for dj the following is done for all ς ∈ P and for all roots rjς : all sieve-
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locations si with i ∈ (rjς + ςZ) ∩ I are replaced by si ∧ 2k − 2j − 1 (thus setting
a possible “one”-bit at bit-position j in si to a “zero”-bit, while not changing
the bits at the other k − 1 bit-positions in si).

A “one”-bit at bit-position j in si that is still “one” after the sieving (for all
indices, all sieving primes, and all roots) indicates that discriminant −dj and pair
(u0, v0 + i) warrants closer inspection because all relevant related values are free
of factors in P . If the search is unsuccessful (after considering k|I| possibilities),
the process is repeated with a new sieve. If for all indices j and all ς ∈ P all
last visited sieve locations are kept (at most 6k|P | values), recomputation of the
roots can be avoided if the same (u0, v0) is re-used with the “next” interval of
i-values.

Some savings may be obtained, in particular for small ς values, by combining
the sieving for identical roots modulo ς for distinct indices j. Or, one could make
just a single sieving pass per ς-value but simultaneously for all indices j and all
roots rjς modulo ς, by gathering (using “∧”), for that ς, all sieving information
(for all indices and all roots) for a block of ς consecutive sieve locations, and
using that block for the sieving.

Parameter Reconstruction. A successful search results in an index j and
value i such that dj and the prime corresponding to the (u, v)-pair (u0, v0 + i)
leads to ECC parameters that satisfy the aimed for criteria. Any party that has
the information required to construct (u0, v0) can use the pair (j, i) to instanta-
neously reconstruct (using Table 2) those same ECC parameters, without redoing
the search. It is straightforward to arrange for an additional value that allows
easy (re)construction of a base point.

Implementation Results. We implemented the basic search as used in [34]
and the sieving based approach sketched above for generic x86 processors and for
ARM/Android devices. To make the code easily portable to other platforms as
well we used the GMP 6.0 library [24] for multi-precision integer arithmetic after
having verified that modular exponentiation (crucial for an efficient search) offers
good performance on ARM processors. Making the code substantially faster
would require specific ARM processor dependent optimization. We used the
Java native interface [46] and the Android native development kit [26] to allow
the part of the application written in Java to call the GMP-based C-routines
that underlie the compute intensive core. To avoid making the user interface
non-responsive and avoid interruption by the Android run-time environment,
a background service (IntentService class) [27] is instantiated to run this core
independently of the thread that handles the user interface.

Table 3 lists detailed results for the 128-bit security level, using empirically
determined (and close to optimal, given the platform) sieving bounds, lengths,
etc. The implementations closely followed the description above, but we omit
many details that were used to obtain better performance, such as precom-
putations and extra conditions, and to make sure that a variety of security
requirements is met (more on this in Sect. 5). Table 4 shows average timings
in milliseconds for different security levels in two cases: prime order non twist-
secure generation and perfect twist security. The x86 platform is an Intel Core
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Table 3. Performance results in milliseconds for parameter generation at the 128-bit
security level, with �, �̃, f , P , and I as above, the “MF”-column to indicate Montgomery
friendliness, and μ the average and σ the standard deviation.

i7-3820QM, running at 2.7 GHz under OS X 10.9.2 and with 16 GB RAM. The
ARM device is a Samsung Galaxy S4 smartphone with a Snapdragon 600 (ARM
v7) running at 1.9 GHz under Android 4.4 with 2 GB RAM. Key reconstruction
takes around 1.5 (x86) and 10 (ARM) milliseconds.

5 Security Criteria

In this section we review security requirements that are relevant in the context of
ECC. Most are taken from [9], the order and keywords of which we roughly follow
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Table 4. Performance results in milliseconds for parameter generation at different
security levels: 80-bit, 112-bit, 128-bit, 160-bit, 192-bit and 256-bit. In comparison
with Table 3 the Montgomery friendliness option is always disabled and f = 1.

x86 ARM

basic sieving runs basic sieving runs

k {�} ∪ {�̃} μ μ |P | |I| μ μ |P | |I|

80

{

{1, ∞}
{1} 3 3 50 29 10000 22 19 100 211 100

31 10 200 212 1000 197 61 450 212 100

112

{

{1, ∞}
{1} 6 6 100 29 10000 47 38 200 210 100

114 30 800 214 1000 981 214 650 214 100

128

{

{1, ∞}
{1} 9 8 100 210 10000 65 53 250 212 3000

180 49 800 214 10000 1433 390 750 215 3000

160

{

{1, ∞}
{1} 19 16 300 211 1000 143 87 200 210 100

474 95 800 214 1000 5425 808 750 215 100

192

{

{1, ∞}
{1} 36 25 400 212 1000 265 169 20 210 100

1144 222 1200 216 1000 10785 2231 900 217 20

256

{

{1, ∞}
{1} 105 70 400 213 1000 14543 575 450 211 100

4635 994 1200 216 1000 50 s 10 s 1200 217 10

for ease of reference, and some are from [22]. We discuss to what extent these
requirements are met by the parameters generated by our method. Generally
speaking our approach is to focus on existing threats, as dealing with non-existing
ones only limits the parameter choice while not serving a published purpose.

ECDLP Security. For the security of ECC, the discrete logarithm problem in
the group of points of the elliptic curve must be hard. In this first category of
security requirements one attempts to make sure that elliptic curve groups are
chosen in such a way that this requirement is met.

– Pollard rho attack becomes ineffective if the group is chosen in such a way
that a sufficiently large prime factor divides its order. This is a straightforward
“key-length” issue (cf. [36]). Using a 128-bit prime field cardinality with � ≤ 5,
as suggested by Table 3, is more than sufficient.

– Transfers refer to the possibility to embed the group into a group where
the discrete logarithm problem is easy, as would be the case for “anomalous
curves” and for curves with a low “embedding degree”. For the former, the
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elliptic curve group over the finite field Fp has cardinality p and can be effec-
tively embedded in the additive group Fp, allowing trivial solution of the
elliptic curve discrete logarithm problem (cf. [49,51,54]). By construction our
method avoids these curves.
For the latter, the group can be embedded in the multiplicative group F×

pk

of Fpk for a low embedding degree k. To avoid those curves, we follow the
approach from [34] which ties the smallest permissible value for k to the pub-
lished difficulty of finding discrete logarithms in F×

pk . It would be trivial, and
would have negligible effect on our performance results, to adopt the “overkill”
approach favored by [9,13,39], but we see no good reason to do so.

– Complex-multiplication field discriminants refers to the concern that
for small values of the discriminant (−d in our case) there are endomorphism-
based speedups for the Pollard rho attack [25,61]. For instance, the first row of
Table 2 leads to groups with the same automorphism group [53, Chap. III.10]
as the pairing-friendly groups proposed in [4] and thereby to an additional
speedup of the Pollard rho attack by a factor of

√
3. We refer to [14,21] for a

discussion of the practical implications and note that such speedups are of no
concern for 128-bit prime field cardinalities with � ≤ 5.
Despite the fact that the authors of [9] agree with this observation (cf. their
quotation cited in the introduction), and as already mentioned in Sect. 2,
[9] chooses a lower bound of 2100 for the absolute value of the complex-
multiplication field discriminant while [39] settles for roughly 240. Neither
bound can be satisfied by out method, as amply illustrated in Sect. 3.3. Until
a valid concern is published, we see no reason to abandon our approach.

– Rigidity is the security requirement that the entire parameter generation
process must be transparent and exclude the possibility that malicious choices
are targeted. Assuming a transparent process to generate the initial pair
(u0, v0) (for instance by following the approach described in [34]) the process
proposed here is fully deterministic, fully explained, and leaves no room for
trickery. Note also that a third party is excluded and that the affected par-
ties (the public key owner or the two communicating parties engaging in the
Diffie-Hellman protocol) are the only ones involved in the parameter genera-
tion process.

ECC Security. Properly chosen groups can still be used in insecure ways. Here
we discuss a number of precautions that may be taken to avoid some attacks
that are aimed at exploiting the way ECC may be used.

– Constant-time single-coordinate scalar multiplication (“Ladders”
in [9]) makes it harder to exploit timing differences during the most important
operation in ECC, the multiplication of a group element by a scalar that usu-
ally needs to be kept secret, as such differences may reveal information about
the scalar (where it should be noted that the “single-coordinate” part is just
for efficiency and ease of implementation). For all Weierstrass curve parame-
terizations used here constant-time single-coordinate scalar multiplication can
be achieved using the method from [15]. If efficiency is a bigger concern than
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freedom of choice, one may impose the requirement that the group order is
divisible by four (“f = 4” in Table 3) as it allows conversion to Montgomery
form [42] and thereby a more efficient constant-time single-coordinate scalar
multiplication [41].

– Invalid-point attacks (“Twists” in [9]) refer to attempts to exploit a user’s
omission to verify properties of alleged group elements received. They are of
no concern if the proper tests are consistently performed (at the cost of some
performance loss) or if a closed software environment can be relied upon.
Some are also thwarted if the curve’s twist satisfies the same ECDLP security
requirements as the curve itself, an approach that thus avoids implementation
assumptions while replacing recurring verification costs by one-time but more
costly parameter generation: for one-time parameter usage one-time verifica-
tion is less costly (than relatively expensive generation of twist secure parame-
ters), for possibly repeated usage (as in certified keys) twist secure parameters
may be preferred. Our parameter selection method includes the twist security
option and thus caters to either scenario. Below we elaborate on the various
attack possibilities.
Small-Subgroup Attacks. If the group order is not prime but has a rela-

tively small factor h, an attacker may send a group element of order h
(as opposed to large prime order), learn the residue class modulo h of the
victim’s secret key, and thus obtain a speedup of the Pollard rho attack
by a factor of

√
h. It suffices to ascertain that group elements received do

not have order dividing h, or to generate the parameters such that the
group order is prime (one of our options).

Invalid-Curve Attacks. An attacker may send elements of different small
prime orders belonging to different appropriately selected elliptic curve
groups, all distinct from the proper group. Each time the targeted victim
fails to check proper group membership of elements received the attacker
learns the residue class modulo a new small prime of the victim’s secret
key, ultimately enabling the attacker to use the Chinese remainder theo-
rem to recover the key [10]. This attack cannot be avoided at the parame-
ter selection level, but is avoided by checking that each element received
belongs to the right group (at negligible cost). Also, using parameters just
once renders the attack ineffective.

Twist Attacks Against Single-Coordinate Scalar Multiplication .
Usage of single coordinates goes a long way to counter the above invalid-
curve attacks, because each element that does not belong to the group of
the curve automatically belongs to the group of the twist of the curve.
Effective attacks can thus be avoided either by checking membership of
the proper group (i.e., not of the group of the twist) or by making sure
that the group of the twist of the curve satisfies the same security require-
ments as the group of the curve itself (at a one-time twist secure para-
meter generation cost, avoiding the possibly recurring membership test).
As mentioned above, it depends on the usage scenario which method is
preferred; for each scenario our method offers a compatible option.
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– Exceptions in scalar multiplication (“Completeness” in [9]). Depending
on the curve parameterization, the implementation of the group law may dis-
tinguish between adding two distinct points and doubling a point. Using addi-
tion where doubling should have been used may be leveraged by an attacker to
learn information about the secret key [31]. Either a check must be included
(while maintaining constant-time execution, as in [13]) or a “complete” addi-
tion formula must be used, i.e., one that works even if the two points are
not distinct. This leads to a somewhat slower group law for our Weierstrass
curve parameterizations, but if they are used along with f = 4 in Table 3 the
parameterization can be converted to Edwards or Montgomery form, which
are both endowed with fast complete formulae for the group law [5,8].

– Indistinguishability of group elements and uniform random strings is
important for ECC applications such as censorship-circumvention proto-
cols [9], but we are not aware of its importance for the applications targeted
in this paper. We refer to [7,23] for ways to achieve indistinguishability using
families of curves in Montgomery, Edwards or Hessian form and to [57] for a
solution that applies to the Weierstrass curve parameterization (which, how-
ever, doubles the lengths of the strings involved). Either way, our methods
can be made to deal with this issue as well.

– Strong Diffie-Hellman problem (not mentioned in [9]). In [18] it is shown
that for protocols relying on the ECC version of the strong Diffie-Hellman
problem the large prime q dividing the group order must be chosen such
that q − 1 and q + 1 both have a large prime factor. Although several argu-
ments are presented in [17, Sect. B.1] why this attack is “unlikely to be feasi-
ble”, [17] nevertheless continues with “as a precautionary measure, one may
want to choose elliptic curve domain parameters that resist Cheon’s attack
by arranging that q − 1 and q + 1 have very large prime factors”. Taking
this precaution, however, would add considerable overhead to the parame-
ter generation process. Our methods can in principle be adapted to take this
additional requirement into account, but doing so will cause the parameter
generation timings to skyrocket. The attack is not considered in [9], and none
of the standardized parameter choices that we inspected take the precaution
recommended in [17].

Side-channel attacks are physical attacks on the device executing the para-
meter generation process or the cryptographic protocols. Most of these attacks
require multiple runs of the ECC protocol with the same private key (cf. [22,
Table 1]) and are thus of no concern in an ephemeral key agreement application.
There are three attacks for which a single protocol execution suffices:

Simple power analysis (SPA) attacks are avoided when using a scalar mul-
tiplication algorithm ensuring that the sequence of operations performed is
independent of the scalar.

Fault induced invalid curve attacks can be expected to require several trials
before a weak parameter choice is hit, and can be prevented by enforcing
more sanity checks in the scalar multiplication [22].
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Template attacks may recover a small number of bits of the secret key and
can be avoided using one of the randomization techniques mentioned in [22].

6 Conclusions and Future Work

We showed how communicating parties can efficiently generate fresh ECC
parameters every time they need to agree on a session key, generalizing and
improving the method from [34]. Our major modifications consist of the use of
sieving to speed up the generation process, a greater variety of security and effi-
ciency options, and the inclusion of eleven more curve equations. Furthermore,
we explained how to further generalize our method and showed that doing so
may have limited practical value. We demonstrated the practical potential of our
method on constrained devices, presented performance figures of an implemen-
tation on an ARM/Android platform, and discussed relevant security issues.

Future work could include further efficiency enhancements by targeting spe-
cific ARM processors, direct inclusion of Montgomery and Edwards forms, exten-
sion to genus 2 hyperelliptic curves and, much more challenging and important,
improving elliptic curve point counting methods to allow on-the-fly generation
of ephemeral random elliptic curves over prime fields. Unfortunately, we do not
know yet how to approach the latter problem, but genus 2 extension of our
methods seems to be quite within reach. We conclude with a few remarks on
this issue.

Extension to Genus 2 Hyperelliptic Curves. Jacobians of hyperelliptic
curves of genus 2 allow cryptographic applications similar to elliptic curves [33]
and, as recently shown in [12], offer comparable or even better performance.
Genus 2 hyperelliptic curves may thus be a worthwhile alternative to elliptic
curves and, in particular given the lack of a reasonable variety of standardized
genus 2 curves, generalization of our methods to the genus 2 case may have
practical appeal. In [60] it is described how this could work. The imaginary
quadratic fields are replaced by quartic CM fields and the j-invariant (a root of
the Hilbert class polynomial) is replaced by three j-invariants which are usually
referred to as Igusa’s invariants. In [59] a table is given listing equations with
integer coefficients of genus 2 hyperelliptic curves having complex multiplication
by class number one quartic CM fields and class number two quartic CM fields.
The three algorithms presented at the beginning of [60, Sect. 8] can then be
used to easily compute the orders of the Jacobians of these curves over suitably
chosen prime fields. The main remaining problem seems to be to resolve the
ambiguity between the order of the Jacobian of the hyperelliptic curve and of its
quadratic twist other than by using scalar multiplication. We leave the solution of
this problem – and implementation of the resulting genus 2 parameter selection
method – as future work.

Acknowledgement. Thanks to Adrian Antipa for bringing the strong Diffie-Hellman
security requirement and additional precaution from [17, Sect. B.1] to our attention,
and to René Schoof for inspiring this paper by providing the original table in [34].
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Abstract. Distributed parameter and key generation plays a fundamen-
tal role in cryptographic applications and is motivated by the need to
relax the trust assumption on a single authority that is responsible for
producing the necessary keys for cryptographic algorithms to operate.
There are many well-studied distributed key generation protocols for
the discrete logarithm problem. In this paper, building upon previous
distributed key generation protocols for discrete logarithms, we provide
two new building blocks that one can use them in a sequential fashion
to derive distributed parameter generation protocols for a class of prob-
lems in the bilinear groups setting, most notably the n-Bilinear Diffie
Hellman Exponentiation problem. Based on this we present new appli-
cations in distributed multi-party oriented cryptographic schemes includ-
ing decentralized broadcast encryption, revocation systems and identity
based encryption.

1 Introduction

The n-Bilinear Diffie Hellman Exponentiation (n-BDHE) problem introduced
in [7] has found many applications in the design of multi-party encryption
schemes, notably broadcast encryption (BE) schemes [8]. In these schemes there
is an authority or trustee that produces a suitable public key that may be used
subsequently by the participants to communicate securely. Specifically, a sender
can use the public parameters to transmit to any subset of the group members
a private message. The trustee is supposed to issue private key information to
the members of the group. Naturally, the trustee is a single point of failure and
it is highly desirable to develop a mechanism to distribute its operation.

The n-BDHE assumption allows substantial efficiency gains (e.g., it enabled
the first constant size ciphertext BE to be developed [8]) and for this reason it is
highly structured. An n-BDHE instance contains a series of powers gαi

, with all
values in the set i ∈ {1, . . . , n, n + 2, . . . , 2n} public. The n-BDHE assumption
postulates that the value gαn+1

is indistinguishable from a random group element
for any probabilistic polynomial time observer (the assumption was shown to be
true in the generic bilinear group model, [7]). The specialized structure of the
n-BDHE public parameter complicates its distributed generation: specifically,
c© Springer International Publishing Switzerland 2015
J. Lopez and C.J. Mitchell (Eds.): ISC 2015, LNCS 9290, pp. 548–567, 2015.
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any set of entities possessing the shares of α should be able to produce all
intermediate powers gαi

for i �= n + 1, while at the same time no information
about gαn+1

should be leaked. No existing discrete-logarithm based distributed
key generation protocols can handle this task.

Our Contribution. Motivated by the above we build upon previous distributed
key generation protocols for discrete logarithms and we provide two new building
blocks that one can use them in a sequential fashion to derive a distributed
parameter generation protocol for the n-BDHE problem (as well as other related
assumptions).

Using our distributed parameter generation protocol for n-BDHE we show
how to apply our protocols to [8] and we develop a decentralized broadcast
encryption (DBE) with constant size ciphertext and private key. Furthermore,
we comment how one can easily apply our protocols to enable other primitives
to be distributed such as identity-based encryption (IBE) schemes [6,32] and
revocation systems [27].

Related Work on Distributed Key Generation. A number of previous
works focused on distributed generation of cryptographic keys and parameters
by a set of parties so that the parties equally share the trust of key generation.
This line of work starts with the seminal works of Shamir [31] and Blakley [5],
followed by the works of Benaloh and Yung, [4], Desmedt, [15] and a great num-
ber of others, e.g., [19]. Desmedt et al. [16] proposed a black box threshold secret
sharing scheme that secret is chosen from any Abelian group. To share a single
element in the black box group among n players, each player receives n elements
from the group. The result of [16] is exploited in [14] to obtain an efficient and
secure solution for sharing any function. Later, Cramer et al. [12] improved the
result of [16] by decreasing the expansion factor from n to O(log n). The work
of [12] was also improved by Cramer et al. [13] where they provide a computa-
tionally efficient scheme. Notably, for the discrete-logarithm problem, Gennaro
et al. [20] present a distributed key generation protocol for discrete log based
cryptosystems that parties jointly generate a system public/secret key pair.
Canny et al. [9] provided a protocol with asymptotically better efficiency. Their
protocol reduces communication and computation complexity from O(n log n)
[20] to O(log3 n) assuming t = Θ(log n) is the threshold parameter and n the
total number of parties running the protocol. Kate et al. [25] introduced a private
distributed key generation protocol for IBE schemes in the multi-server setting.

These well-known distributed key generation protocols do not solve our main
problem to generate distributively an instance for the n-BDHE problem: specif-
ically, using the above techniques, parties that are given shares of α can easily
produce gαi+1

given gαi

, however it is not straightforward how to generate gαn+2

given gαn

without leaking any information about gαn+1
. A possible strategy is to

invoke a protocol that enables the squaring of a shared secret (or more generally
the multiplication of two shared secret values). Unfortunately, a straightforward
multiplication of the shares would not allow the simulation of the protocol to go
through and the polynomial degree doubles (when standard polynomial secret
sharing is used). A number of previous works consider a similar problem in other
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settings. Notably using the techniques of Ben-Or et al. [3], or those of [10,22]
it is possible to achieve the stated goal, however the resulting generic proto-
cols are quite inefficient for multiplication in the exponent especially for the
n-BDHE parameters that require elliptic curve operations. In a more targeted
work, Gennaro et al. [21] propose a way for an efficient share multiplication in
the exponent but the security of the construction is based on Decisional Diffie-
Hellman (DDH) assumption. Since we are in the bilinear group setting (where
DDH does not hold), their protocol is not useful. Abe [1] presents a robust
protocol that does not use zero-knowledge proofs and enables multiplication of
shared secrets very efficiently. We are inspired by this idea and combine [1] with
Pedersen [29] and Feldman [17] verifiable secret sharing protocols to obtain a
squaring protocol that yields the solution.

RelatedWork onDecentralized Broadcast Encryption (DBE) Schemes.
BE was first introduced by Fiat et al. [18] to enable a distributor to privately trans-
mit information to a set of parties. It had been the major open problem of BE since
then to achieve a scheme with constant size ciphertext, until Boneh et al. exploited
the structure of n-BDHE and constructed the first constant size ciphertext BE [8].
Phan et al. [30] recently proposed a DBE, in which there is no need for a trusted
party to generate public and secret keys for parties, and instead parties themselves
can jointly create key pairs. They provide two schemes that use complete subset
(CS) and subset difference (SD) thus the ciphertext size depends on the number
of revoked parties. They achieve ciphertext size O(r log n/r) for CS and O(2r−1)
for the SD scheme variant where r is number of revoked parties and n is the total
number of parties; in contrast the decentralized BE that we construct with our
protocols has only constant size ciphertexts.

There are some other works that use the asymmetric group key agreement
primitive to produce DBE schemes. Wu et al. [33], introduced such a scheme
that has O(n) size public/secret key per member and does not allow a sender to
do revocation thus it is not suitable, as it is, for a DBE. The work of [36] extends
the setting of [33] so that interaction is permitted and members may be excluded
at will. However, this protocol requires O(n2) public and O(n) secret key size
per member. They introduce a tradeoff between key and ciphertext size and the
resulting BE has O(n2/3) public key and ciphertext size and O(n1/3) private key
size. Wu et al. [35] suggest to use multiple dealers in a BE scheme. The dealers
interactively generate a common system public key and share the master secret
key. Each party needs to interact with at least t dealers in order to obtain its
secret decryption key. Every party needs O(n) elements from each dealer and
the total size of private-key is O(tn) (where t is the threshold parameter) for
the scheme of [35]. The public information is of length O(n) and the scheme
offers constant size ciphertexts. They also provide a tradeoff between key and
ciphertext size and the resulting public key, private key and ciphertext size are
O(n1/2). A more closely related notion is that of ad hoc broadcast encryption
(AHBE) which was proposed in [34] with a construction of O(n2) public key size,
O(n) secret key size per party and constant size ciphertext but without a formal
security proof. They also provide a way to achieve a tradeoff between ciphertexts
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and public keys; the resulting AHBE has sub-linear complexity O(n2/3) for both
public keys and ciphertexts and O(n1/3) for private keys.

None of the above schemes have the same efficiency profile in terms of size of
ciphertext, secret key and public key as [8]. Recall that [8] is the first construction
for (plain) BE that has constant size ciphertext and secret key and linear size
(in the total number of parties in the system) public key. With our distributed
parameter generation protocol for the n-BDHE problem, we can construct a
decentralized BE on top of [8] that inherits all the good properties of [8].

2 Definitions

In this section, we introduce definitions of the underlying blocks. Specifically,
we will define several correlated sub-protocols which will later be composed in a
sequential fashion to distributively generate n-BDHE parameters. For the ease
of presentation, we use the terminology of a suite of distributed protocols intro-
duced in [26]. A suite of n-party protocols Suite = (PROT0, PROT1, ..., PROTs)
is a set of protocols that can be executed sequentially and use some joint states.
In particular after the initialization protocols (PROT0 and PROT1) are per-
formed, subsequent protocols executions can be sequentially composed in an
arbitrary way. Each party takes the current state as input for each protocol,
in that way each party can easily keep track the protocols. An execution of n-
party protocol Suite denoted by ΥSuite

A (κ, n) proceeds as follows: (1) First the
adversary A selects a set of at most t parties to corrupt subject to the con-
straint t < n/3; (2) The initialization protocols prot0 and prot1(execution of the
program of the protocols PROT0 and PROT1 with a single trusted party) is exe-
cuted with adversary participation on behalf of the corrupted parties; note that
this protocol requires no private inputs for any of the parties and its public input
is security parameter κ and number of parties n; the private outputs of honest
parties are maintained in a local state of the execution that is inaccessible to
the adversary; (3) The adversary may provide a public input and ask the honest
parties to execute together with the corrupted parties under adversary’s control
any of the protocols in the Suite. This execution can be repeated sequentially
as many times as the adversary commands.

Definition 1. [26] A suite of n−party protocols Suite = PROT0, . . . , PROTs

is called t-distribution safe if for all adversaries A corrupting no more than t
parties and t < n/3, it holds that there exists an expected PPT simulator S,
|Pr[ΥSuite

A (1κ, 1n) = 1] − Pr[Sprot0,prot1,...,prots (1κ) = 1]| = negl (κ) , where
(prot0, prot1, ..., prots) expresses the execution of the functionality of (PROT0,
PROT1, ..., PROTs) by a trusted party.

The intuition behind this definition is that the adversary’s knowledge gain (view)
can be simulated by a sequential execution of the same set of protocols with a
single trusted party (represented by the set of oracles available to the simulator
S). Given that anything the adversary can compute in the corrupted setting with
controlling t parties, it can also compute while interacting with a single trusted
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party (This follows from the standard simulation based security of the protocols,
e.g., [9,20]). We can conclude that the protocol Suite is t-distribution safe or
t-secure. The adversary’s view consists of his local coins, inputs and received
messages from other honest parties in those protocols. As a note that we will
use this definition for all of the sub-protocols that we introduce.

Next, we present definitions of several sub-protocols which will be used in a
suite. We will apply them to generate the parameters of the n-BDHE problem,
and they can later be used in other applications as well. Each party i in a pro-
tocol suite (PROT0, PROT1, ..., PROTs) keeps a local state stki for each PROTk

sub-protocol which consists some of the communication transcript in PROTk. We
also use Ik

i , Ok
i to denote for the party i’s inputs and outputs of PROTk respec-

tively. As a note that since each honest party’s output is the same as the protocol’s
output, we can write Ok = Ok

i for PROTk for each honest party i.

Definition 2. [Parameter Generation (ParGen)] This is an n-party protocol
and ParGen = PROT0. It inputs the security parameter κ and number of parties
n, outputs the public parameter set PP = (κ, n, t, p, q, g, h, e (, )), where p, q are
two large prime numbers, q divides p − 1, g and h are two group elements in G,
t is the threshold parameter and e (, ) is description of a bilinear group.

Definition 3. DKG is a t-secure n-party protocol that is run in PROT1 as
well as any protocol in suite. Suppose it is run in PROTk, where 1 ≤ k ≤ s.
Every party i ∈ {1, .., n} inputs Ik

i = (PP ) (it is the public parameter set that
output by ParGen), outputs gx for a random x ∈ Zq. The local states of DKG
is stki = [(xi, x

′
i) ,Vk, {τk

ji}j∈Vk
], where Vk is the valid party set, τk

ji are the
messages received from party j ∈ Vk in PROTk, (xi, x

′
i) values are computed

as a function of {τk
ji}j∈Vk

by the party i and they are called party i’s shared
of secret x and random x′. A t-secure DKG sub-protocol satisfies the following
properties as follows [20]: (1) All subsets of t + 1 shares {xj}j∈Vk

provided by
honest parties define the same unique secret key x, even if up to t shares are
submitted by faulty parties; (2) All honest parties have the same value of public
key gx; (3) x is uniformly distributed in Zq.

Definition 4. REC is an n party protocol that has to run after a DKG sub-
protocol. Suppose REC is for PROTl. We assume the parties agree on one DKG
instance (say PROTk with Ok = gx) if multiple DKG sub-protocols were run
before PROTl. Each party i ∈ Vl−1 takes I l

i =
(
stl−1

i , stki , PP, y
)
as inputs,

where y ∈ G is any public value. It outputs Oj
i = yx, if |Vl| ≥ t + 1. Party i’s

local state for REC sub-protocol is stli =
(Vl, {τ l

ji}j∈Vl

)
.

Definition 5. RECSQ is an n party protocol that has to run after a DKG sub-
protocol. Suppose RECSQ is for PROTl. We assume the parties agree on one
DKG instance (say PROTk with Ok = gx) if multiple DKG sub-protocols were
run before PROTl. Each party i ∈ (Vl−1 ⊆ Vk) takes I l

i =
(
stl−1

i , stki , PP, y
)
as

inputs, where y ∈ G is any public value. It outputs Ol
i = yx2

, if |Vl| ≥ 2t + 1.
Party i’s local state for RECSQ is stli =

(Vl, {τ l
ji}j∈Vl

)
.
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Definition 6. A t-secure decentralized broadcast encryption is a protocol that
n parties jointly generate the public keys and secret keys of the parties and one
can send encrypted message to any subset of these parties. In a static corrup-
tion model, a t-secure decentralized broadcast encryption scheme is static chosen
plaintext attack ( static-CPA) secure if in the following game between a PPT
adversary A and a challenger C holds: (1) A submits corrupted party set S with
|S | ≤ t and C returns A all private inputs of the parties in S; (2) A submits
the target set T ⊆ {1, .., n} (static adversary); (3) C interacts with A to jointly
generate the public keys and secret keys of the system. In addition, A receives
all secret keys of parties that are not in T ; (4) A submits two messages M0,M1

and receives a challenge chooses a bit b and encrypts Mb to T ; (5) A receives
the challenge ciphertext and outputs a bit b′.

For any PPT A, |Pr[b′ = b] − 1
2 | ≤ ε where ε is a negligible function.

3 Building Blocks

In this section, we will describe three building blocks which are t-secure sub-
protocols, named as DKG,REC,RECSQ respectively. DKG is the well-studied
distributed key generation for discrete log problem and REC is a simple extension
to raise the same exponent to a different base, while RECSQ is a new building
block that allows the parties to jointly square at the exponent and leaks nothing
more. They can be used together to distributively generate n-BDHE problem
parameters [8]; in turn, we can have distributed version of cryptographic prim-
itives constructed using those algebraic structures, and we will present some
examples of applications using our t-secure sub-protocols in Sect. 4. Note that
those applications are by no means exhaustive, one can freely combine our build-
ing blocks sequentially to derive new distributed parameter generation protocols
for other problem instances.

3.1 Sub-protocols

DKG Sub-protocol. This is the well-known distributed key generation protocol
in which n parties jointly generate gx, for public parameters PP , and the protocol
satisfies (i) x is uniform; (ii) more than t parties together can recover x via
polynomial interpolation. The main difficulty in the DKG is to guarantee that
the exponent in the output is uniformly distributed, and how to build a simulator
to show the security via simulation. Each party executes one Pedersen verifiable
secret sharing (PVSS) [29] and one Feldman verifiable secret sharing (FVSS)
[17] of their individual secrets so that guarantees uniform output distribution
and t + 1 receivers could jointly recover all the secrets, thus simulator could
recover the secret inputs of the corrupted parties, then simulate a transcription
identically distributed as in the real protocol. As a note that we assume that the
parties already agree with the discrete log parameters (g, p, q) and h ∈ G before
the PROT1 = DKG. This parameters can be distributively generated the same
way as in [26] or [24]. We can simply use the previous results on this, e.g. [9,20],
so we do not present full construction of it in this paper and omit the details.
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REC Sub-protocol. This sub-protocol is carried out after a DKG as each party
will take states from the DKG as inputs. Since parties keep local states about the
protocols’ computation history, they can agree on which DKG instance to use
if there were multiple such sub-protocols, and then start REC. Suppose REC is
the PROTl and it will be run under DKG = PROTk for some k < l. Each valid
party i ∈ Vl−1 inputs its states stl−1

i from the PROTl−1, stki from the PROTk

(outputs Ok = gx), public parameter set PP , and y, then jointly generates yx.
stl−1

i is needed because the party i needs to know the valid party set Vl−1 ∈ stl−1
i

in order to avoid interacting with malicious party j that j ∈ Vk but j /∈ Vl−1.
Observe that in the DKG, at least t+1 honest parties together can recover x via
polynomial interpolation. Suppose xi ∈ stki is the piece of information party i can
contribute for the interpolation, and x =

∑t+1
i=1 λixi, where λi is the Lagrange

interpolation coefficient. We would use this fact to build a simple REC to put x
into the exponent of y. The details are presented in Fig. 1.

Each party i ∈ Vl−1 on inputs
(
Vl−1, (g

xj )j∈Vk
, PP, y, xi

)
, where valid set Vl−1 ∈

stl−1
i ; xi and (gxj )j∈Vk

values are computed from the transcript {τk
ji}j∈Vk ∈ stk

i

)
;

and y ∈ G. Then the party i does the followings:
(1) computes yxi and broadcasts it; (2) checks if j ∈ (Vl−1 ⊆ Vk) and e (g, yxj ) =
e (gxj , y). Then, (3) computes yx =

∏
j∈Vzl(y

xj )λj and outputs Ol
i = yx and stores

stl
i = Vl, {τ l

ji}j∈Vl

)
to the local state, where |Vl| ≥ t + 1.

Fig. 1. REC sub-protocol

RECSQ Sub-protocol. This sub-protocol is also run after a DKG, with the
transcript from the DKG generating gx, this sub-protocol allows 2t + 1 parties
jointly generate yx2

for another value y ∈ G without leaking extra information.
One may think that we can run REC twice and the second one use yx as the base
value, however, this trivially leaks the value of yx. Alternatively, if x is the shared
constant term of two degree-t polynomials f(·) and g(·) (they could be the same
polynomials), then x2 will be the constant term of a 2t-degree polynomial f · g.
Suppose the shares for the party i for x from f, g are xi, yi respectively, then one
can recover x2 from 2t + 1 shares of xi · yi from interpolation. If we implement
this idea straightforwardly as in [21], the security analysis could not go through.
With t adversaries’ secret shares

(
gx2

i

)

i=1,..,t
recovered, it is not clear how the

simulator can produce consistent share gx2
j for each honest party j so that any

2t + 1 shares will interpolate to the same target value gx2
. If we use a similar

simulation procedure from [21], that the simulator chooses honest parties shares
at random (say, the t + 1, .., 2t parties) (e.g. for party j ∈ G , it chooses random
gr2

j from G) then it recovers other 2t+1, .., 3t honest parties share one by one by
simply doing a reverse interpolation. However, the adversary can easily check the
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consistency of these values (the ones that are randomly chosen by the simulator)
by computing e (gxj , gxj ) = e

(
gr2

j , g
)

since gxj value is public. Abe proposed
a secure multiparty multiplication protocol in [1] that uses couple of PVSS [29]
on the product of their shares with degree reduction technique that allow t + 1
of parties to compute xy. We leverage the idea of Abe for secure multiplication
[1] together with one PVSS and FVSS protocols to compute xy (in our case x2,
where x = y) in the exponent. Using one more PVSS and FVSS guarantees that
the parties share their secrets correctly. This method is also used in [20]. In this
case, the simulator perfectly simulates the transcript with the degree reduction
technique. Since the simulator recovers t corrupted parties secret shares during
the PVSS, each honest party’s value (in the exponent) will be recovered based
on the target value. As any t + 1 of them interpolate to the target value on the
exponent, no consistency problem will appear in the simulation. Similar to the
REC, since each valid party keeps every sub-protocol’s states that he participated
in, every valid party can jointly run RECSQ with other valid parties based on a
DKG instance (if there are multiple instances, they can agree one of them before
running RECSQ). If RECSQ is the PROTl and is run under DKG = PROTk.
Each party j ∈ Vl−1 inputs states stl−1

j from last PROTl−1, stkj from PROTk,
PP and a value y, then jointly generates yx2

without obtaining yx. The details
are given in Fig. 2.

3.2 Security Analysis

In this section, we will analyze the security of the sub-protocols. In particular,
we will show when these sub-protocols are arbitrarily and sequentially executed
(composed) in a suite as in Definition 1. Then we sequentially compose them to
derive the security for the distributed key generation protocol for the n-BDHE
problem.

Since REC and RECSQ sub-protocols are both based on DKG sub-protocol,
we assume DKG is only run once at the beginning, (the case that has multiple
independent running of DKG can be easily handled as the simulation can be
done by the same way for each). For any sub-protocol PROTi if it is REC, the
simulation of the joint view with DKG can be proceeded by running the simulator
of SDKG (simulator for DKG sub-protocol) first, and use the transcript of SDKG

to simulate corresponding REC sub-protocol. Note that SDKG is able to recover
all the t corrupted parties’ private inputs (xi, i = 1, .., t), and thus to guarantee
consistency, the REC simulator can simply do a reverse interpolation to recover
the private inputs of honest parties (xj , j = t+1, .., 3t) one by one by hitting the
desired simulator’s input which is output of REC sub-protocol (as the exponent
can be derived using t + 1 secret inputs through interpolation).

If PROTi is RECSQ, the simulation is a little bit more involved. The crucial
part of the simulation is to produce honest parties’ share of squared secret in
the exponent. The difficulty of this was explained in Sect. 3.1 using the idea [21],
due to having bilinear map structure. In order to provide consistent shares, the
SRECSQ (simulator for RECSQ) controls the honest parties and chooses ran-
dom messages for the malicious parties in behalf of honest parties by simulating
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DM-1 [1]: Each party i ∈ Vl−1 on input

(
Vl−1,

(
gxj hx′

j

)
j∈Vk

, PP, y, xi, x
′
i

)
, where

Vl−1 ∈ stl−1
i ; (xi, x

′
i) and

(
gxj hx′

j

)
j∈Vk

values are computed from {τk
ji} ∈ stk

i ; and

y ∈ G. Then party i ∈ Vl−1 does the followings;

– randomly picks t-degree polynomials fi1, di1, di2 from Zq[X] so that fi1 (0) =
xi, di1 (0) = x′

i. Let ri randomly chosen free term of di2 (.). Party i shares xi

twice as
• PV SS (xi, x

′
i) (g, h)

fi1,di1−−−−→ xij , x
′
ij

)
(〈Xi〉, Xi1, ..., Xit)

• PV SS (xi, ri)
(
gxihx′

i , h
)

fi1,di2−−−−→ (〈xij〉, rij) (Yi0, Yi1, ..., Yit).

– Party i ∈ Vl−1 then selects two random polynomials fi2, di3 that satisfy fi2 (0) =

x2
i , di3 (0) = xix

′
i + ri mod q and performs: PV SS x2

i , xix
′
i + ri

)
(g, h)

fi2,di3−−−−→
cij , c

′
ij

)
(〈Yi0〉, Zi1, ..., Zit).

DM-2 [1]: Party j ∈ Vl−1 verifies messages received from party i as follows:

– checks if i ∈ (Vl−1 ⊆ Vk). It the check fails, the messages from party i are dis-
carded. Otherwise party j checks if

gxij hx′
ij = Xi

∏t
k=1 Xjk

ik ;
(
gxihx′

i

)xij

hrij =
∏t

k=0 Y jk

ik ; gcij hc′
ij = Yi0

∏t
k=1 Zjk

ik .

If a check fails, party j declares so and goes to the disqualification protocol described
in figure 3.
DM-3 [1]: Let I ⊆ Vl−1 and |I| ≥ 2t + 1. Each party j ∈ I then computes cj :=∑

i∈I λicij ; c′
j :=

∑
i∈I λic

′
ij ; Zk :=

∏
i∈I Zλi

ik for k = 0, .., t, where Zi0 = Yi0.
DM-4 [New]: Each party i ∈ (I ⊆ Vj−1) broadcasts yci and performs one PV SS
and one FV SS below:

– PV SS (ci, c
′
i) (g, h)

fi3,di4−−−−→ eij , e
′
ij

)
(〈Di0〉, Di1, ..., Dit), where Di0 = gcihc′

i =∏t
k=0 Zik

k that can be computed from DM-3.

– FV SS (ci) (y)
fi3−−→ (〈eij〉) (Ei0, Ei1, ..., Eit).

DM-5 [New]: Each party j ∈ I ⊆ Vj−1 verifies everything received from party i in
DM-4 as follows:

– geij he′
ij = Di0

∏t
k=1 Djk

ik ; yeij =
∏t

k=0 Ejk

ik

If the checks do not fail, the party j saves local state stl
j = Vl, {τ l

ij}i∈Vl

)
, where

I = Vl. If a check fails, party j declares so and goes to the disqualification protocol
described in figure 3.

It there are t + 1 party set Q ⊆ I satisfies DM-5 above, the party j computes,

yx2
=

∏
i∈Q (yci)λi .

Fig. 2. RECSQ sub-protocol: Note that in DM-1 gxihx′
i is used as the base of the

commitments in the second sharing and angle bracket means that the value can be
publicly computed by the parties or it has been sent before.

couple PVSS schemes using degree reduction technique. Using this method, the
simulator recovers the malicious parties’ shares (t of them). Because of the degree
reduction technique, t+1 honest parties are sufficient for recovering the squared
secret (x2). To recover honest parties’ shares in the exponent, RECSQ simu-
lates one FVSS and one PVSS. This step provides consistency between shares
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DQ-1: Party i ∈ Vl−1 ⊆ Vk is requested to broadcast all the data that he privately
sent to party j, which is xij , x

′
ij , rij , cij , c

′
ij , eij , e

′
ij

)
. (If party i keeps silent, he is

disqualified immediately.)
DQ-2: If t+1 or more parties decide that those shares are faulty, party i is disqualied.

Fig. 3. Protocol disqualification

that [21] does not provide in Sect. 3.1. The simulation process starts with simu-
lating the SDKG , then the simulator simulates the corresponding RECSQ sub-
protocol using the transcript from DKG and gets the malicious parties (t of
them) shares of x2, where x is the random secret value. After getting the mali-
cious parties’ shares of x2, it basically does reverse interpolation to recover each
honest party’s share of x2 in the exponent by hitting the output of the RECSQ
sub-protocol which is yx2

since t + 1 shares are enough to recover yx2
through

interpolation. However, the task of recovering the malicious party inputs requires
at least 2t + 1 honest parties.

The above simulation procedure can be done for any i, as any of REC,RECSQ
is independent to other instances (except DKG), thus the joint view can be
simulated with a concatenation of each simulated view. The joint simulated
view is still indistinguishable from real as long as each PROTi is handled as
above and the correlation with the same DKG is preserved. Now, we will present
a theorem that after the DKG sub-protocol, all the sub-protocols above, (e.g.,
REC,RECSQ) can be arbitrarily composed in a sequential fashion.

Theorem 1. An n-party protocol GSuite = (PROT0, PROT1, ..., PROTs),
where PROT0 = ParGen, PROT1 = DKG, PROTk ∈ {REC,RECSQ} for
k = 2, .., s is t-secure in the sense of Definition 1, when t < n

3 .

Proof. In order to prove the protocol GSuite is t-secure, we need to
show that for every adversary A there exists a simulator S such that
{ΥGSuite=PROT0,..,PROTs

A } ≈ {Sprot0,..,prots} computationally indistinguishable.
We need to build such S from SDKG ,SREC , and SRECSQ that each of them
simulates adversary’s view for the corresponding real protocol PROT by using
input and output of the PROT . W.l.o.g., we assume that the adversary A
controls the set B = {1, 2, ..., t} and honest parties controlled by the simula-
tor S are G = {t + 1, t + 2, ..., n}. We need to show that for each protocol
PROTi, where i = 1, .., s adversary’s view

(
viewi

j

)
j=1,.,t

needs to be simulated by

SDKG (a simulator for DKG sub-protocol), SREC , and SRECSQ sequentially. For
PROT1 = DKG, a simulator SDKG takes public parameter set PP and desired
output gx which is output of the protocol DKG and simulates the adversary’s
view in PROT1. The view of the A for PROT1 is view1

A =
(
view1

j

)
j=1,..,t

consists
of (αi (j) , α′

i (j) , Cik, Aik) ∈ τ1
ij , where j ∈ B, i ∈ G, k = 0, .., t. As explained in

Sect. 3.1, the simulator would reconstruct the secret inputs ((αi, α
′
i)i=1,..,t) and

corresponding secret outputs ((xi, x
′
i)i=1,..,t) where of the t corrupted parties

from the shares of the PVSS received from them, and manipulate one of the
simulated honest values based on the final output. The view of the A can be
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SREC takes
(
(xj)j∈J , PP, y, yx

)
as inputs and does the followings:

– Computes yxj , for all j ∈ J and yxi for each i ∈ G ⊆ V1 one by one as

yxi =

⎛
⎜⎝ yx

∏
j∈Qi\{i}

(

y(xj)
)λj

⎞
⎟⎠

(λi)
−1

, where λjs are appropriate Lagrange coeffi-

cients and Qi = J ∪ {i} and broadcast yxi for all i ∈ G ⊆ V1.

As a result, yxi , where i ∈ G, is obtained.

Fig. 4. Simulator SREC

perfectly simulated. Due to space constraint and since we use DKG from [20],
we do not present the correctness and secrecy of DKG in this paper.

If PROT2 = REC, we will construct a simulator SREC to simulate the view
of the adversary from only inputs and outputs from PROT2 so that any distin-
guisher could not tell the difference between the real protocol and the simulated
protocol. This means the protocol does not leak more information other than
the input and output of the protocol. The view of the A view2

A =
(
view2

j

)
j=1,..,t

consists of (yxi)i∈G ∈ st2j that any t + 1 of them recovers x in the exponent
(yx). Recall that REC is run after a DKG, and the simulator of DKG = PROT1

where recovers the secret inputs of the A (xi)i=1,..,t during the simulation, and
manipulates one simulated honest value according to the output, thus the SREC

can take those transcripts from corresponding simulator SDKG as inputs and
manipulate the corresponding simulated honest value. Assume J is the set of
corrupted parties, and V1 the valid party set from simulated protocol PROT1,
SREC continues the simulation as in Fig. 4.

If PROT2 = RECSQ, in this case to show that A is not able to learn
any extra information about the secret x from the yx2

which is output of the
protocol PROT2 including yx, we create a simulator SRECSQ and show that
the view of the A interacts with SRECSQ on inputs y(x2) is the same as the
view of A in a real sub-protocol that outputs the given yx2

. The view of the
adversary from real sub-protocol PROT2 is view2

A =
(
view2

j

)
j=1,..,t

and con-

sisting of
(
xij , x

′
ij , rij , cij , c

′
ij ,Xik, Yik, Zik, eij , e

′
ij ,Dik, Eik

) ∈ st2j , where j ∈ B
i ∈ G, k = 0, .., t. With the help of the corresponding SDKG , the SRECSQ simu-
lates the transcript taking inputs and outputs of the DKG = PROT1. During the
simulation, the simulator has to simulate the transcript for a couple of FVSS and
PVSS protocols. To present the proof in a clearer way, we describe the simulation
of these two secret sharing schemes in Fig. 5.

The details of SRECSQ in Figs. 6 and 7 are shown. In step SIM-4 in Fig. 7, G
is the honest party set, Qi is the set of all corrupted parties plus a honest party
i ∈ G.

Now, we consider for any l, where 3 ≤ l ≤ s;
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FV SSBB
S [rij ]j∈[1,t], 〈PP, Vi0〉

) fi(.)→ (Vik)
– takes publicly available (or known before) t, g ∈ PP , Vi0 values, chooses rij ∈ Zq

randomly for each server i ∈ G and j ∈ B, where i = t + 1, ..., n and j = 1, .., t.
– computes Vik where i = t + 1, ..., n and k = 1, .., t.
– sends rij to j ∈ A and broadcasts Vik = gaik where aik kth coefficient of fi.

PV SSBB
S [rij , r

′
ij ]j∈[1,t], 〈PP, Vi0〉

) fi(.),f
′
i(.)−−−−−−→ (Vik)

– takes publicly available (or known before) t, g, h ∈ PP , Vi0 values, chooses rij , r
′
ij ∈

Zq randomly for each server i ∈ G and j ∈ B, where i = t + 1, ..., n and j = 1, .., t.
– computes Vik where i = t + 1, ..., n and k = 1, .., t
– sends rij , r

′
ij to j ∈ A and broadcasts Vik = gaikhbik where aik, bik are th k−th

coefficient of fi, f
′
i for k = (1, .., t).

Fig. 5. Simulation of BlackBox FVSS and PVSS: Square brackets mean that the vari-
able(s) are random values and chosen by the simulator S.

The simulator SRECSQ takes PP, y, yx2
, bad parties’ share of secrets xj , x

′
j (j = 1, .., t)

that follows the protocol from SDKG where j ∈ V1 and does the following:

SIM-1 : PV SSBB
S [xij , x

′
ij ]j∈[1,t], 〈PP, Xi0〉

) fi1(.),di1(.)−−−−−−−→ (Xik).

SIM-2 : PV SSBB
S [{rij}j∈[1,t], Yi0], 〈{xij}j∈[1,t], PP, Xi0〉

) fi1(.),di2(.)−−−−−−−→ (Yik).

SIM-3 : PV SSBB
S [cij , c

′
ij ]j∈[1,t], 〈PP, Yi0〉

) fi2(.),di3(.)−−−−−−−→ (Zik).

As a result, xij , x
′
ij , rij , cij , c

′
ij , Xik, Yik, Zik where i ∈ G, j ∈ B, k = 0, ..., t obtained.

Fig. 6. Algorithm of the SRECSQ-(First Part): Note that the value Yi0 is chosen ran-
domly by SRECSQ in the SIM-2 above.

From the first part of the proof, SRECSQ has enough information to calculate: (1)
cj :=

∑
i∈I λicij , (2) c′

j :=
∑

i∈I λic
′
ij , (3) Zk :=

∏
i∈I Zλi

ik for k = 0, .., t, where
Zi0 = Yi0, where j = 1, .., t, i ∈ I ⊆ Vk and |I| ≥ 2t + 1.

SIM-4 : Then SRECSQ calculates Ei0 = yci for each i ∈ G one by one as yci =⎛
⎜⎝ yx2

∏
j∈Qi\{i}

(

y(cj)
)λj

⎞
⎟⎠

(λi)
−1

, where λjs are appropriate Lagrange coefficients.

SIM-5 : PV SSBB
S [eij , e

′
ij ]j∈[1,t], 〈t, g, h, Di0〉

) fi3(.),di4(.)−−−−−−−→ (Dik).

(Di0 = gcihc′
i =

∏t
k=0 Zik

k can be calculated by the simulator from step 3 above.)

SIM-6 : FV SSBB
S 〈{eij}j∈[1,t], t, y, Ei0〉

) fi3(.)→ (Eik).

As a result, eij , e
′
ij , Dik, Eik where i ∈ G, j ∈ B, k = 0, ..., t obtained.

Fig. 7. Algorithm of SRECSQ-(Second Part)
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if PROTl = REC, the SREC takes the corresponding simulated DKG tran-
script, the output and input values from PROTl to simulate view of the A in
PROTl as described in Fig. 4.

If PROTl = RECSQ, the SRECSQ inputs the corresponding simulated DKG
transcript, the output and input values from PROTl to simulate view of the
adversary in PROTl as described in Figs. 6 and 7. As a result, the S consists
of sequence of simulators that each of them simulates adversary’s corresponding
real protocol views

(
viewk

j

)
sequentially, where j = 1, .., t and k = 1, .., s.

4 Distributed Parameter Generation for the n-BDHE
Problem and Applications

We will show how to combine these sub-protocols introduced above to distribu-
tively generate n-BDHE problem parameters. We then show how to use this to
construct a t-secure DBE without a trusted authority that enjoys constant size
ciphertext, secret key overhead and present some other possible applications.

4.1 t-Secure Distributed n-BDHE Problem Parameters Generation
Protocol

Recall that the parameters of the n-BDHE problem have the form of g1, g2,..,
gn, gn+2, ..., g2n, where gi = gαi

and for a random α ∈ Zq. Having the three
sub-protocols, one can compose them and distributively generate the n-BDHE
problem parameters. We describe a suite protocol for n-BDHE parameters as
(n−BDHE)Suite = PROT0, PROT1, ..., PROT2n−1, where PROT0 = ParGen,
PROT1 = DKG,PROT2 = REC1, .., PROTn = RECn−1, PROTn+1 =
RECSQ, PROTn+2 = RECn, .., PROT2n−1 = REC2n−3 and RECj is the j

Generating g1: Each party i runs DKG with input PP , outputs gα and keeps its
local state as st1i = V1, {τ1

ji}V1

)
.

Generating g2, . . . , gn: For 1 ≤ k ≤ n − 1, each party i ∈ Vk runs REC with

inputs
(
Vk, (gxj )j∈V1

, PP, gk, xi

)
, outputs (gα

k ) and keeps its local state as stk+1
i =

Vk+1, {τk+1
ji }Vk+1

)
.

Generating gn+2: Each party i runs RECSQ with input(
Vn,

(
gxj hx′

j

)
j∈V1

, PP, gn, xi, x
′
i

)
, outputs (gn)α2

and keeps its local state as

stn+1
i = Vn+1, {τn+1

ji }Vn+1

)
.

Generating gn+3, . . . , g2n: For n + 2 ≤ l ≤ 2n − 1, each party i ∈ Vn+1 runs REC
with input

(
Vn+1, (g

xj )j∈V1
, PP, gl, xi

)
, outputs (gα

l ) and keeps its local state as

stl
i = Vl, {τ l

ji}Vl

)
.

Fig. 8. n-BDHE problem parameters generation protocol
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th run of the sub-protocol REC. The details for generating these parameters are
given in Fig. 8. The security follows easily from Theorem 1, and we summarize
them into the following theorem, for the detailed definition and analysis for the
security of the n-BDHE problem, we refer to AppendixA.2.

Theorem 2. The protocol described in Fig. 8 is a t-secure distributed n-BDHE
problem protocol when t < n/3.

4.2 t-Secure DBE with Constant Size Ciphertext and Secret Key

Now we proceed to construct a t−secure DBE scheme by allowing parties to
distributively generate the public and secret keys of the Boneh-Gentry-Waters
(BGW) BE scheme [8]. We will inherit the good property of constant size secret
keys and ciphertexts. Recall that the public keys for BGW BE is in the form
of PK = (g, g1, .., gn, gn+2, .., g2n, v = gγ), while secret key for party i is in the
form of di = gγ

i . As a note that our t−secure DBE scheme’s Encryption and
Decryption algorithms are the same as in BGW scheme.

Decentralized BGW Public Key Generation. It is easy to see that one
can generate the public keys using our t−secure distributed n-BDHE parameter
generation protocol (Fig. 8) plus an independent DKG to generate v = gγ . Basi-
cally, sequentially composable n party Suite = (PROT0, .., PROTs) protocol
can generate all the public key instances, where (PROT0 = ParGen, PROT1 =
DKG, (PROTk)k=2,..,n,n+2,.,2n = RECk−1, PROTn+1 = RECSQ, PROT2n+1 =
DKG2) and s = 2n + 1. The proof also easily follows from Theorem 1.

Decentralized BGW Secret Key Generation. Generating the secret keys
are slightly different, as for public keys, every party can publicly broadcast their
messages and compute the final output from the received messages. While for
each secret key, only a single party should be able to compute the final value
without referring to a secure channel. We let the party i select a random mask so
that one can compute a blinded secret key but only he can remove the random
mask, and further derive the secret key. The details are given in Fig. 9 below.

– party i chooses a random ri, calculates gri , gri
i and broadcasts them.

– Each party j first checks if the chosen PK instance by party i is gi by checking,
e (gri , gi) = e (gri

i , g). If this is correct, each party j ∈ V2n+1 runs REC on inputs(
V2n+1, gki

)
i∈V2n+1

, PP, gri
i , kj

)
and party i gets the value (gri

i )γ following the steps

in Fig. 1, where valid set V2k+1 ∈ st2n+1
j , kj and gki

)
i∈V2n+1

values are computed

from the transcript {τk
ij}i∈V2n+1 ∈ st2n+1

j

)
.

– party i gets his decryption key by computing di = ((gri
i )γ)

1/ri = gγ
i if it satisfies

e (gγ , gi) = e (gγ
i , g).

Fig. 9. Decentralized BGW secret key generation protocol
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Theorem 3. Our t-secure DBE is static-CPA secure under static corruption.

Proof. After adversary A submits the corrupted party set S to control and the
target set T that wishes to be challenged on, the simulator SBE needs to generate
public keys in a way that he can answer secret key queries, specifically, he wants
to set v = gu

(∏
j∈T gn+1−j

)
, where u ∈ Zq. This can be done by running the

simulator of the DKG SDKG as any value can be set as a target value as long
as the simulator controls a majority of honest parties. While other parts of the
public key instances are in the form of the n-BDHE problem, thus they can be
simulated by running the simulator of the n-BDHE protocol. Since the simulator
SBE knows the value u, he can generate the private keys for every i /∈ T as

di = gu
i

(∏
j∈T gn+1−j+i

)−1

and gives it to A. The other phases (challenge and
guess) will proceed identically as in the proof of [8].

4.3 Other Applications

Similar as we construct the DBE, our n-BDHE parameters generation protocol
can be applied directly to many other primitives to make a distributive version
of the corresponding primitive when they have the public/private keys with
the structure of the n-BDHE problem. To name a few, p-signature from [23],
forward-secure and searchable broadcast encryption with short ciphertexts and
private keys from [2], conditional proxy broadcast re-encryption from [11], and
TMDS: Thin-Model Data Sharing Scheme Supporting Keyword Search in Cloud
Storage from [28].

It is not hard to see that our building blocks can also be composed sequen-
tially and distributively to generate parameters for other problems. The most
immediate one would be the Diffie-Hellman type of problems, e.g., the structure
of gα, gα

1 in the bilinear map setting for which we can run the REC. One of
the examples is the revocation system from Lewko et al. [27], the public key
is in the form of (g, gb, gb2 , hb, e(g, g)α). The suite protocol for generating pub-
lic key for this example is Suite = ParGen,DKG1,DKG2,REC1, REC2. The
authorities (servers) can run DKG twice to generate gb, e(g, g)α, and run REC
twice to generate (gb)b,hb. The secret key for a user in [27] is in the form of
D0 = gαgb2t,D1 = (gbIDh)t,D2 = g−t and can be distributively generated as
follows: (1) The servers first run the DKG3 to generate gt and compute (gb)IDh;
(2) The servers use (gb)IDh as a base to run REC3 to get D1; (3) since each
server has the share of α from DKG2 and t from the DKG3, they simply send
the user gαi(gb2)ti and the user can interpolate to recover D0. D2 is basically
the inverse of gt.

Another example is Waters IBE [32], in which the master public key is in the
form of g, g1 = gα, g2, u

′ and an n length random vector U = (ui), while the mas-
ter secret key is gα

2 , where g, g1, g2, u
′, (ui) ∈ G and α ∈ Zq. The suite protocol for

generating public key for this example is Suite = ParGen,DKG1, ..,DKGn+3.
Servers run DKG n+3 times to generate g1 = gα, g2, u

′, (ui) (u′, (ui) can be gen-
erated using coin flipping protocols). As a note that each server has the share
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of gα
2 (without running the REC) from DKG1. The secret key for a user with

identity ID is in the form of dv = (gα
2 · (u′ ∏

i∈V ui)r, gr), where v is an n bit
string representing an identity, V is the set of indicies for which the bitstring v
is set to 1, it can be distributively generated as follows: (1) The servers run the
DKGn+4 to generate gr, now they have the shares of (u′ ∏

i∈V ui)r without run-
ning the REC. Thus (2) each server j can send g

αj

2 (u′ ∏
i∈V ui)rj , then the user

can interpolate to get his secret key by computing
∏

j∈Q(gαj

2 (u′ ∏
i∈V ui)rj )λj =

∏
j∈Q(gαjλj

2 (u′ ∏
i∈V ui)rjλj ) = gα

2 · (u′ ∏
i∈V ui)r, where |Q| ≥ t + 1.

Note: In these schemes [27,32], the secret keys are given to the users via secure
channels. These channels can be omitted by using random mask that we showed
in Fig. 9. The analysis of above examples are very similar to that of our building
blocks and the n-BDHE protocol, and we omit the details here.

5 Conclusion

We construct a cryptographic tool set consisting of three sub-protocols DKG,
REC, and RECSQ that are used in a sequential fashion to produce distributed
parameter generation protocols. Our main application is a protocol that gener-
ates public parameters for schemes based on the n-BDHE problem. As a result,
we distribute the BGW broadcast encryption scheme [8] that has constant size
secret keys and ciphertexts. In addition, we show some other applications that
they are based on the bilinear Diffie Hellman (BDH) problem such as identity
based encryption (IBE) and revocation systems that can be similarly distributed.

Acknowledgment. The first author was supported by the ERC project
CODAMODA and the project FINER of the Greek Secretariat of Research and Tech-
nology.

A Appendix

A.1 Preliminaries

Parties (Servers and an Adversary): Let P is a set of parties P = {1, .., n}.
Party i ∈ P is assumed to be probabilistic polynomial time Turing Machine.
Among those parties, there are up to t corrupt parties completely controlled by
a static adversary and the adversary is active.

Input and Output: Each party is given private and public input. The input
of each party includes the number of parties n. At the end of the computation
each party will produce private and public output that should be equal among
all honest parties (global public output). The private input of corrupted servers
as well as the public input is given to the adversary at the start of the protocol.

Communication Model: We assume that the communication is synchronous
and protocol execution proceeds in rounds. In each round the each party using
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its current state and all history of communication from all rounds produces two
types of messages to be delivered to other parties: (1) private messages that
are sent to other parties by using private channel network where a message is
assured of being delivered in a fixed period. The network is assumed to be secure
and complete, that is every pair of parties is connected by an untappable and
mutually authenticated channel; (2) broadcast message that will be delivered to
all parties at the beginning of the next round. At each round a party produces
private messages for all other parties as well as a public broadcast message.

Adversarial Operation: Each round, after adversary sees all broadcast mes-
sages and secret messages from honest parties that are received by corrupted
parties, he sends public and private messages depending on those received mes-
sages (public and private) as well as all information that the corrupted parties
have had from previous rounds.

Computational Assumption: We use the large primes p, q that satisfy q|p−1.
We represent by G the subgroup of elements of order q in Z∗

p . It is assumed that
solving the discrete logarithm problem in G is intractable.

Feldman’s Verifiable Secret Sharing (FVSS): FVSS [17] allows a mali-
cious adversary which corrupts up to (n−1)

2 parties including the dealer. The
dealer generates a random t-degree polynomial f (.), where f (0) = x which is
the secret value, and sends to each party i a share si = f (i) mod q. The dealer
also broadcasts values Vk = gak , where ak is the kth coefficient of f (.). This
will allow the parties to check if the values si really define a secret by checking
that gsi =

∏t
k=0 V ik

k mod p (Eq. 1), where k = 0, ..., t. If this equation is not
satisfied, party i complains and asks the dealer to reveal his share. If more than
t parties complain then the dealer is clearly bad and he is disqualified. Other-
wise, he reveals the share si matching Equation Eq. 1 for each complaining i.
Equation Eq. 1 also allows detection of incorrect shares s′

i at reconstruction
time. Notice that the value of the secret is only computationally secure, e.g., the
value ga0 = gx is leaked. However, it can be shown that an adversary that learns
t or less shares cannot obtain any information on the secret x beyond what can
be derived from gx. We will use the following notation to describe the execution
of a FVSS protocol: FV SS (x) (g)

f,n,t−−−→ (si) (Vk), k = 0, ..., t.

Pedersen’s Verifiable Secret Sharing (PVSS): We now recall a VSS pro-
tocol that provides information theoretic secrecy for the shared secret. This is
in contrast to FVSS protocol which leaks the value of gx. PVSS [29] uses the
parameters p, q, g as defined for FVSS. In addition, it uses an element h ∈ Z∗

p

such that h belongs to the subgroup generated by g and the discrete log of h
in base g is unknown (and assumed hard to compute). The dealer first chooses
two t-degree random polynomials f (.) , f ′ (.), with random coefficients over Zq,
subject to f (0) = x, which is the secret. The dealer sends to each party i the
values xi = f (i) mod q and x′

i = f ′ (i) mod q. The dealer then commits to each
coefficient of the polynomials f and f ′ publishing the values Vk = gakhbk , where
ak (resp. bk) is the kth coefficient of f (resp. f ′). This allows the parties to verify
the received shares by checking that gsihs′

i =
∏t

k=0 V ik

k mod p (Eq. 2). If the
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shares that do not satisfy the equation Eq. 2 broadcast a complaint. If more
than t parties complain the dealer is disqualified. Otherwise the dealer broad-
casts the values xi and x′

i matching the equation for each complaining party i.
At reconstruction time the parties are required to reveal both xi and x′

i and
Equation Eq. 2 is used to validate the shares. Indeed in order to have an incor-
rect share ti accepted at reconstruction time, it can be shown that party i has
to compute the discrete log of h in base g. Notice that the value of the secret is
unconditionally protected since the only value revealed is V0 = gshr (it can be
seen that for any value x′ there is exactly one value r′ such that V0 = gs′

hr′
thus

V0 gives no information on s). We will use the following notation to denote an

execution of PVSS: PV SS (x, x′) (g, h)
f,f ′,n,t−−−−−→ (xi, x

′
i) (Vk) (Eq. 3), k = 0, ..., t.

Bilinear Maps: (1) G and G′ are two multiplicative cyclic groups of prime
order q; (2) g is a generator of G; (3) e : G × G → G′. Let G and G′ be two
groups as above. A bilinear map is a map e : G × G → G′ with the following
properties: (1) for all u, v ∈ G and a, b ∈ Z, we have e

(
ua, vb

)
= e (u, v)ab; (2)

the map is not degenerate, i.e., e (g, g) �= 1

A.2 Proof of Theorem 2

Definition 7 (t-Secure Distributed n-BDHE Protocol). Dn−BDHE is
an n-party sequentially composable 2n protocols (each protocol generates one
instance of n-BDHE parameter). Each party takes public parameter set PP
as input, and sequentially outputs n − BDHE = (g1, .., gn, gn+2, .., g2n), where
gi = gxi

for some random value x with the presence of at most t corrupted
parties. t-Secure Distributed n-BDHE protocol satisfies the following properties
from [20]:

Correctness: (1) x is uniformly distributed in Zq; (2) All subsets of t + 1 shares
provided by honest players define the same unique secret key x; (3) All honest
parties have the same public values g1, .., gn, gn+2, .., g2n; (4) If at least 2t + 1
parties follow the protocol, shares are accepted with probability 1.

Secrecy: No information on x can be learned by the adversary except for what is
implied by the values g1, .., gn, gn+2, .., g2n. More formally, we state this con-
dition in terms of simulatability: for every PPT adversary A that corrupts
up to t parties, there exists a PPT simulator S, such that on input an elements
g1, .., gn, gn+2, .., g2n, produces an output distribution which is polynomially indis-
tinguishable from A’s view (Definition 1) of a run of the n-BDHE protocol that
ends with g1, .., gn, gn+2, .., g2n as its public key output.

Proof. Correctness: The correctness properties (1), (2), (3) for g1 can be shown
by following [20], the other instances g2, .., gn can be obtained by the presence of
at least t+1 honest parties that use their share of secret xi and recover the value
x in the exponent sequentially. Basically, they raise sequentially their shares (xi)
to recover x value in the exponent using Lagrange interpolation. The share g

xj

i ,
where i = 1, 2, .., n can be verified publicly using bilinear map. To show the value
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gn+2 is obtained from gn by any t + 1 honest parties, at least 2t + 1 parties are
needed that they follow RECSQ sub-protocol. The process can be followed in a
similar way in [1] (Lemma 2). The difference is that we have x2 in the exponent.
To do that parties need to run one more PVSS and one more FVSS to show they
share the correct value of their cis in the exponent using g and gn as the bases.
The other instances gn+2, .., g2n also can be obtained as the same way with at
least t + 1 honest parties.

Secrecy: It follows from Theorem 1 since it is the special protocol of ΥGSuite
A .
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